17b0efd86f9a49d7b5e049e950a9fcf7802ddaad
[pandora-kernel.git] / drivers / net / wireless / ath / key.c
1 /*
2  * Copyright (c) 2009 Atheros Communications Inc.
3  * Copyright (c) 2010 Bruno Randolf <br1@einfach.org>
4  *
5  * Permission to use, copy, modify, and/or distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17
18 #include <asm/unaligned.h>
19 #include <net/mac80211.h>
20
21 #include "ath.h"
22 #include "reg.h"
23
24 #define REG_READ                        (common->ops->read)
25 #define REG_WRITE(_ah, _reg, _val)      (common->ops->write)(_ah, _val, _reg)
26 #define ENABLE_REGWRITE_BUFFER(_ah)                     \
27         if (common->ops->enable_write_buffer)           \
28                 common->ops->enable_write_buffer((_ah));
29
30 #define REGWRITE_BUFFER_FLUSH(_ah)                      \
31         if (common->ops->write_flush)                   \
32                 common->ops->write_flush((_ah));
33
34
35 #define IEEE80211_WEP_NKID      4       /* number of key ids */
36
37 /************************/
38 /* Key Cache Management */
39 /************************/
40
41 bool ath_hw_keyreset(struct ath_common *common, u16 entry)
42 {
43         u32 keyType;
44         void *ah = common->ah;
45
46         if (entry >= common->keymax) {
47                 ath_err(common, "keycache entry %u out of range\n", entry);
48                 return false;
49         }
50
51         keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
52
53         ENABLE_REGWRITE_BUFFER(ah);
54
55         REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
56         REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
57         REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
58         REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
59         REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
60         REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
61         REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
62         REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
63
64         if (keyType == AR_KEYTABLE_TYPE_TKIP) {
65                 u16 micentry = entry + 64;
66
67                 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
68                 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
69                 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
70                 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
71                 if (common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) {
72                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
73                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
74                                   AR_KEYTABLE_TYPE_CLR);
75                 }
76
77         }
78
79         REGWRITE_BUFFER_FLUSH(ah);
80
81         return true;
82 }
83 EXPORT_SYMBOL(ath_hw_keyreset);
84
85 static bool ath_hw_keysetmac(struct ath_common *common,
86                              u16 entry, const u8 *mac)
87 {
88         u32 macHi, macLo;
89         u32 unicast_flag = AR_KEYTABLE_VALID;
90         void *ah = common->ah;
91
92         if (entry >= common->keymax) {
93                 ath_err(common, "keycache entry %u out of range\n", entry);
94                 return false;
95         }
96
97         if (mac != NULL) {
98                 /*
99                  * AR_KEYTABLE_VALID indicates that the address is a unicast
100                  * address, which must match the transmitter address for
101                  * decrypting frames.
102                  * Not setting this bit allows the hardware to use the key
103                  * for multicast frame decryption.
104                  */
105                 if (mac[0] & 0x01)
106                         unicast_flag = 0;
107
108                 macLo = get_unaligned_le32(mac);
109                 macHi = get_unaligned_le16(mac + 4);
110                 macLo >>= 1;
111                 macLo |= (macHi & 1) << 31;
112                 macHi >>= 1;
113         } else {
114                 macLo = macHi = 0;
115         }
116         ENABLE_REGWRITE_BUFFER(ah);
117
118         REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
119         REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | unicast_flag);
120
121         REGWRITE_BUFFER_FLUSH(ah);
122
123         return true;
124 }
125
126 static bool ath_hw_set_keycache_entry(struct ath_common *common, u16 entry,
127                                       const struct ath_keyval *k,
128                                       const u8 *mac)
129 {
130         void *ah = common->ah;
131         u32 key0, key1, key2, key3, key4;
132         u32 keyType;
133
134         if (entry >= common->keymax) {
135                 ath_err(common, "keycache entry %u out of range\n", entry);
136                 return false;
137         }
138
139         switch (k->kv_type) {
140         case ATH_CIPHER_AES_OCB:
141                 keyType = AR_KEYTABLE_TYPE_AES;
142                 break;
143         case ATH_CIPHER_AES_CCM:
144                 if (!(common->crypt_caps & ATH_CRYPT_CAP_CIPHER_AESCCM)) {
145                         ath_dbg(common, ATH_DBG_ANY,
146                                 "AES-CCM not supported by this mac rev\n");
147                         return false;
148                 }
149                 keyType = AR_KEYTABLE_TYPE_CCM;
150                 break;
151         case ATH_CIPHER_TKIP:
152                 keyType = AR_KEYTABLE_TYPE_TKIP;
153                 if (entry + 64 >= common->keymax) {
154                         ath_dbg(common, ATH_DBG_ANY,
155                                 "entry %u inappropriate for TKIP\n", entry);
156                         return false;
157                 }
158                 break;
159         case ATH_CIPHER_WEP:
160                 if (k->kv_len < WLAN_KEY_LEN_WEP40) {
161                         ath_dbg(common, ATH_DBG_ANY,
162                                 "WEP key length %u too small\n", k->kv_len);
163                         return false;
164                 }
165                 if (k->kv_len <= WLAN_KEY_LEN_WEP40)
166                         keyType = AR_KEYTABLE_TYPE_40;
167                 else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
168                         keyType = AR_KEYTABLE_TYPE_104;
169                 else
170                         keyType = AR_KEYTABLE_TYPE_128;
171                 break;
172         case ATH_CIPHER_CLR:
173                 keyType = AR_KEYTABLE_TYPE_CLR;
174                 break;
175         default:
176                 ath_err(common, "cipher %u not supported\n", k->kv_type);
177                 return false;
178         }
179
180         key0 = get_unaligned_le32(k->kv_val + 0);
181         key1 = get_unaligned_le16(k->kv_val + 4);
182         key2 = get_unaligned_le32(k->kv_val + 6);
183         key3 = get_unaligned_le16(k->kv_val + 10);
184         key4 = get_unaligned_le32(k->kv_val + 12);
185         if (k->kv_len <= WLAN_KEY_LEN_WEP104)
186                 key4 &= 0xff;
187
188         /*
189          * Note: Key cache registers access special memory area that requires
190          * two 32-bit writes to actually update the values in the internal
191          * memory. Consequently, the exact order and pairs used here must be
192          * maintained.
193          */
194
195         if (keyType == AR_KEYTABLE_TYPE_TKIP) {
196                 u16 micentry = entry + 64;
197
198                 /*
199                  * Write inverted key[47:0] first to avoid Michael MIC errors
200                  * on frames that could be sent or received at the same time.
201                  * The correct key will be written in the end once everything
202                  * else is ready.
203                  */
204                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
205                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
206
207                 /* Write key[95:48] */
208                 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
209                 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
210
211                 /* Write key[127:96] and key type */
212                 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
213                 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
214
215                 /* Write MAC address for the entry */
216                 (void) ath_hw_keysetmac(common, entry, mac);
217
218                 if (common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) {
219                         /*
220                          * TKIP uses two key cache entries:
221                          * Michael MIC TX/RX keys in the same key cache entry
222                          * (idx = main index + 64):
223                          * key0 [31:0] = RX key [31:0]
224                          * key1 [15:0] = TX key [31:16]
225                          * key1 [31:16] = reserved
226                          * key2 [31:0] = RX key [63:32]
227                          * key3 [15:0] = TX key [15:0]
228                          * key3 [31:16] = reserved
229                          * key4 [31:0] = TX key [63:32]
230                          */
231                         u32 mic0, mic1, mic2, mic3, mic4;
232
233                         mic0 = get_unaligned_le32(k->kv_mic + 0);
234                         mic2 = get_unaligned_le32(k->kv_mic + 4);
235                         mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
236                         mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
237                         mic4 = get_unaligned_le32(k->kv_txmic + 4);
238
239                         ENABLE_REGWRITE_BUFFER(ah);
240
241                         /* Write RX[31:0] and TX[31:16] */
242                         REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
243                         REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
244
245                         /* Write RX[63:32] and TX[15:0] */
246                         REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
247                         REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
248
249                         /* Write TX[63:32] and keyType(reserved) */
250                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
251                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
252                                   AR_KEYTABLE_TYPE_CLR);
253
254                         REGWRITE_BUFFER_FLUSH(ah);
255
256                 } else {
257                         /*
258                          * TKIP uses four key cache entries (two for group
259                          * keys):
260                          * Michael MIC TX/RX keys are in different key cache
261                          * entries (idx = main index + 64 for TX and
262                          * main index + 32 + 96 for RX):
263                          * key0 [31:0] = TX/RX MIC key [31:0]
264                          * key1 [31:0] = reserved
265                          * key2 [31:0] = TX/RX MIC key [63:32]
266                          * key3 [31:0] = reserved
267                          * key4 [31:0] = reserved
268                          *
269                          * Upper layer code will call this function separately
270                          * for TX and RX keys when these registers offsets are
271                          * used.
272                          */
273                         u32 mic0, mic2;
274
275                         mic0 = get_unaligned_le32(k->kv_mic + 0);
276                         mic2 = get_unaligned_le32(k->kv_mic + 4);
277
278                         ENABLE_REGWRITE_BUFFER(ah);
279
280                         /* Write MIC key[31:0] */
281                         REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
282                         REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
283
284                         /* Write MIC key[63:32] */
285                         REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
286                         REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
287
288                         /* Write TX[63:32] and keyType(reserved) */
289                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
290                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
291                                   AR_KEYTABLE_TYPE_CLR);
292
293                         REGWRITE_BUFFER_FLUSH(ah);
294                 }
295
296                 ENABLE_REGWRITE_BUFFER(ah);
297
298                 /* MAC address registers are reserved for the MIC entry */
299                 REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
300                 REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
301
302                 /*
303                  * Write the correct (un-inverted) key[47:0] last to enable
304                  * TKIP now that all other registers are set with correct
305                  * values.
306                  */
307                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
308                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
309
310                 REGWRITE_BUFFER_FLUSH(ah);
311         } else {
312                 ENABLE_REGWRITE_BUFFER(ah);
313
314                 /* Write key[47:0] */
315                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
316                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
317
318                 /* Write key[95:48] */
319                 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
320                 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
321
322                 /* Write key[127:96] and key type */
323                 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
324                 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
325
326                 REGWRITE_BUFFER_FLUSH(ah);
327
328                 /* Write MAC address for the entry */
329                 (void) ath_hw_keysetmac(common, entry, mac);
330         }
331
332         return true;
333 }
334
335 static int ath_setkey_tkip(struct ath_common *common, u16 keyix, const u8 *key,
336                            struct ath_keyval *hk, const u8 *addr,
337                            bool authenticator)
338 {
339         const u8 *key_rxmic;
340         const u8 *key_txmic;
341
342         key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
343         key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
344
345         if (addr == NULL) {
346                 /*
347                  * Group key installation - only two key cache entries are used
348                  * regardless of splitmic capability since group key is only
349                  * used either for TX or RX.
350                  */
351                 if (authenticator) {
352                         memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
353                         memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_mic));
354                 } else {
355                         memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
356                         memcpy(hk->kv_txmic, key_rxmic, sizeof(hk->kv_mic));
357                 }
358                 return ath_hw_set_keycache_entry(common, keyix, hk, addr);
359         }
360         if (common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) {
361                 /* TX and RX keys share the same key cache entry. */
362                 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
363                 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
364                 return ath_hw_set_keycache_entry(common, keyix, hk, addr);
365         }
366
367         /* Separate key cache entries for TX and RX */
368
369         /* TX key goes at first index, RX key at +32. */
370         memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
371         if (!ath_hw_set_keycache_entry(common, keyix, hk, NULL)) {
372                 /* TX MIC entry failed. No need to proceed further */
373                 ath_err(common, "Setting TX MIC Key Failed\n");
374                 return 0;
375         }
376
377         memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
378         /* XXX delete tx key on failure? */
379         return ath_hw_set_keycache_entry(common, keyix + 32, hk, addr);
380 }
381
382 static int ath_reserve_key_cache_slot_tkip(struct ath_common *common)
383 {
384         int i;
385
386         for (i = IEEE80211_WEP_NKID; i < common->keymax / 2; i++) {
387                 if (test_bit(i, common->keymap) ||
388                     test_bit(i + 64, common->keymap))
389                         continue; /* At least one part of TKIP key allocated */
390                 if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED) &&
391                     (test_bit(i + 32, common->keymap) ||
392                      test_bit(i + 64 + 32, common->keymap)))
393                         continue; /* At least one part of TKIP key allocated */
394
395                 /* Found a free slot for a TKIP key */
396                 return i;
397         }
398         return -1;
399 }
400
401 static int ath_reserve_key_cache_slot(struct ath_common *common,
402                                       u32 cipher)
403 {
404         int i;
405
406         if (cipher == WLAN_CIPHER_SUITE_TKIP)
407                 return ath_reserve_key_cache_slot_tkip(common);
408
409         /* First, try to find slots that would not be available for TKIP. */
410         if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
411                 for (i = IEEE80211_WEP_NKID; i < common->keymax / 4; i++) {
412                         if (!test_bit(i, common->keymap) &&
413                             (test_bit(i + 32, common->keymap) ||
414                              test_bit(i + 64, common->keymap) ||
415                              test_bit(i + 64 + 32, common->keymap)))
416                                 return i;
417                         if (!test_bit(i + 32, common->keymap) &&
418                             (test_bit(i, common->keymap) ||
419                              test_bit(i + 64, common->keymap) ||
420                              test_bit(i + 64 + 32, common->keymap)))
421                                 return i + 32;
422                         if (!test_bit(i + 64, common->keymap) &&
423                             (test_bit(i , common->keymap) ||
424                              test_bit(i + 32, common->keymap) ||
425                              test_bit(i + 64 + 32, common->keymap)))
426                                 return i + 64;
427                         if (!test_bit(i + 64 + 32, common->keymap) &&
428                             (test_bit(i, common->keymap) ||
429                              test_bit(i + 32, common->keymap) ||
430                              test_bit(i + 64, common->keymap)))
431                                 return i + 64 + 32;
432                 }
433         } else {
434                 for (i = IEEE80211_WEP_NKID; i < common->keymax / 2; i++) {
435                         if (!test_bit(i, common->keymap) &&
436                             test_bit(i + 64, common->keymap))
437                                 return i;
438                         if (test_bit(i, common->keymap) &&
439                             !test_bit(i + 64, common->keymap))
440                                 return i + 64;
441                 }
442         }
443
444         /* No partially used TKIP slots, pick any available slot */
445         for (i = IEEE80211_WEP_NKID; i < common->keymax; i++) {
446                 /* Do not allow slots that could be needed for TKIP group keys
447                  * to be used. This limitation could be removed if we know that
448                  * TKIP will not be used. */
449                 if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
450                         continue;
451                 if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
452                         if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
453                                 continue;
454                         if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
455                                 continue;
456                 }
457
458                 if (!test_bit(i, common->keymap))
459                         return i; /* Found a free slot for a key */
460         }
461
462         /* No free slot found */
463         return -1;
464 }
465
466 /*
467  * Configure encryption in the HW.
468  */
469 int ath_key_config(struct ath_common *common,
470                           struct ieee80211_vif *vif,
471                           struct ieee80211_sta *sta,
472                           struct ieee80211_key_conf *key)
473 {
474         struct ath_keyval hk;
475         const u8 *mac = NULL;
476         u8 gmac[ETH_ALEN];
477         int ret = 0;
478         int idx;
479
480         memset(&hk, 0, sizeof(hk));
481
482         switch (key->cipher) {
483         case 0:
484                 hk.kv_type = ATH_CIPHER_CLR;
485                 break;
486         case WLAN_CIPHER_SUITE_WEP40:
487         case WLAN_CIPHER_SUITE_WEP104:
488                 hk.kv_type = ATH_CIPHER_WEP;
489                 break;
490         case WLAN_CIPHER_SUITE_TKIP:
491                 hk.kv_type = ATH_CIPHER_TKIP;
492                 break;
493         case WLAN_CIPHER_SUITE_CCMP:
494                 hk.kv_type = ATH_CIPHER_AES_CCM;
495                 break;
496         default:
497                 return -EOPNOTSUPP;
498         }
499
500         hk.kv_len = key->keylen;
501         if (key->keylen)
502                 memcpy(hk.kv_val, key->key, key->keylen);
503
504         if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
505                 switch (vif->type) {
506                 case NL80211_IFTYPE_AP:
507                         memcpy(gmac, vif->addr, ETH_ALEN);
508                         gmac[0] |= 0x01;
509                         mac = gmac;
510                         idx = ath_reserve_key_cache_slot(common, key->cipher);
511                         break;
512                 case NL80211_IFTYPE_ADHOC:
513                         if (!sta) {
514                                 idx = key->keyidx;
515                                 break;
516                         }
517                         memcpy(gmac, sta->addr, ETH_ALEN);
518                         gmac[0] |= 0x01;
519                         mac = gmac;
520                         idx = ath_reserve_key_cache_slot(common, key->cipher);
521                         break;
522                 default:
523                         idx = key->keyidx;
524                         break;
525                 }
526         } else if (key->keyidx) {
527                 if (WARN_ON(!sta))
528                         return -EOPNOTSUPP;
529                 mac = sta->addr;
530
531                 if (vif->type != NL80211_IFTYPE_AP) {
532                         /* Only keyidx 0 should be used with unicast key, but
533                          * allow this for client mode for now. */
534                         idx = key->keyidx;
535                 } else
536                         return -EIO;
537         } else {
538                 if (WARN_ON(!sta))
539                         return -EOPNOTSUPP;
540                 mac = sta->addr;
541
542                 idx = ath_reserve_key_cache_slot(common, key->cipher);
543         }
544
545         if (idx < 0)
546                 return -ENOSPC; /* no free key cache entries */
547
548         if (key->cipher == WLAN_CIPHER_SUITE_TKIP)
549                 ret = ath_setkey_tkip(common, idx, key->key, &hk, mac,
550                                       vif->type == NL80211_IFTYPE_AP);
551         else
552                 ret = ath_hw_set_keycache_entry(common, idx, &hk, mac);
553
554         if (!ret)
555                 return -EIO;
556
557         set_bit(idx, common->keymap);
558         if (key->cipher == WLAN_CIPHER_SUITE_TKIP) {
559                 set_bit(idx + 64, common->keymap);
560                 set_bit(idx, common->tkip_keymap);
561                 set_bit(idx + 64, common->tkip_keymap);
562                 if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
563                         set_bit(idx + 32, common->keymap);
564                         set_bit(idx + 64 + 32, common->keymap);
565                         set_bit(idx + 32, common->tkip_keymap);
566                         set_bit(idx + 64 + 32, common->tkip_keymap);
567                 }
568         }
569
570         return idx;
571 }
572 EXPORT_SYMBOL(ath_key_config);
573
574 /*
575  * Delete Key.
576  */
577 void ath_key_delete(struct ath_common *common, struct ieee80211_key_conf *key)
578 {
579         ath_hw_keyreset(common, key->hw_key_idx);
580         if (key->hw_key_idx < IEEE80211_WEP_NKID)
581                 return;
582
583         clear_bit(key->hw_key_idx, common->keymap);
584         if (key->cipher != WLAN_CIPHER_SUITE_TKIP)
585                 return;
586
587         clear_bit(key->hw_key_idx + 64, common->keymap);
588
589         clear_bit(key->hw_key_idx, common->tkip_keymap);
590         clear_bit(key->hw_key_idx + 64, common->tkip_keymap);
591
592         if (!(common->crypt_caps & ATH_CRYPT_CAP_MIC_COMBINED)) {
593                 ath_hw_keyreset(common, key->hw_key_idx + 32);
594                 clear_bit(key->hw_key_idx + 32, common->keymap);
595                 clear_bit(key->hw_key_idx + 64 + 32, common->keymap);
596
597                 clear_bit(key->hw_key_idx + 32, common->tkip_keymap);
598                 clear_bit(key->hw_key_idx + 64 + 32, common->tkip_keymap);
599         }
600 }
601 EXPORT_SYMBOL(ath_key_delete);