df62113d89d680358512ac7ed624d63f2334057b
[pandora-kernel.git] / drivers / net / wireless / ath / ath9k / hw.c
1 /*
2  * Copyright (c) 2008-2009 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include <linux/io.h>
18 #include <asm/unaligned.h>
19
20 #include "ath9k.h"
21 #include "initvals.h"
22
23 static int btcoex_enable;
24 module_param(btcoex_enable, bool, 0);
25 MODULE_PARM_DESC(btcoex_enable, "Enable Bluetooth coexistence support");
26
27 #define ATH9K_CLOCK_RATE_CCK            22
28 #define ATH9K_CLOCK_RATE_5GHZ_OFDM      40
29 #define ATH9K_CLOCK_RATE_2GHZ_OFDM      44
30
31 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
32 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan,
33                               enum ath9k_ht_macmode macmode);
34 static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
35                               struct ar5416_eeprom_def *pEepData,
36                               u32 reg, u32 value);
37 static void ath9k_hw_9280_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan);
38 static void ath9k_hw_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan);
39
40 /********************/
41 /* Helper Functions */
42 /********************/
43
44 static u32 ath9k_hw_mac_usec(struct ath_hw *ah, u32 clks)
45 {
46         struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
47
48         if (!ah->curchan) /* should really check for CCK instead */
49                 return clks / ATH9K_CLOCK_RATE_CCK;
50         if (conf->channel->band == IEEE80211_BAND_2GHZ)
51                 return clks / ATH9K_CLOCK_RATE_2GHZ_OFDM;
52
53         return clks / ATH9K_CLOCK_RATE_5GHZ_OFDM;
54 }
55
56 static u32 ath9k_hw_mac_to_usec(struct ath_hw *ah, u32 clks)
57 {
58         struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
59
60         if (conf_is_ht40(conf))
61                 return ath9k_hw_mac_usec(ah, clks) / 2;
62         else
63                 return ath9k_hw_mac_usec(ah, clks);
64 }
65
66 static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs)
67 {
68         struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
69
70         if (!ah->curchan) /* should really check for CCK instead */
71                 return usecs *ATH9K_CLOCK_RATE_CCK;
72         if (conf->channel->band == IEEE80211_BAND_2GHZ)
73                 return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
74         return usecs *ATH9K_CLOCK_RATE_5GHZ_OFDM;
75 }
76
77 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
78 {
79         struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
80
81         if (conf_is_ht40(conf))
82                 return ath9k_hw_mac_clks(ah, usecs) * 2;
83         else
84                 return ath9k_hw_mac_clks(ah, usecs);
85 }
86
87 /*
88  * Read and write, they both share the same lock. We do this to serialize
89  * reads and writes on Atheros 802.11n PCI devices only. This is required
90  * as the FIFO on these devices can only accept sanely 2 requests. After
91  * that the device goes bananas. Serializing the reads/writes prevents this
92  * from happening.
93  */
94
95 void ath9k_iowrite32(struct ath_hw *ah, u32 reg_offset, u32 val)
96 {
97         if (ah->config.serialize_regmode == SER_REG_MODE_ON) {
98                 unsigned long flags;
99                 spin_lock_irqsave(&ah->ah_sc->sc_serial_rw, flags);
100                 iowrite32(val, ah->ah_sc->mem + reg_offset);
101                 spin_unlock_irqrestore(&ah->ah_sc->sc_serial_rw, flags);
102         } else
103                 iowrite32(val, ah->ah_sc->mem + reg_offset);
104 }
105
106 unsigned int ath9k_ioread32(struct ath_hw *ah, u32 reg_offset)
107 {
108         u32 val;
109         if (ah->config.serialize_regmode == SER_REG_MODE_ON) {
110                 unsigned long flags;
111                 spin_lock_irqsave(&ah->ah_sc->sc_serial_rw, flags);
112                 val = ioread32(ah->ah_sc->mem + reg_offset);
113                 spin_unlock_irqrestore(&ah->ah_sc->sc_serial_rw, flags);
114         } else
115                 val = ioread32(ah->ah_sc->mem + reg_offset);
116         return val;
117 }
118
119 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
120 {
121         int i;
122
123         BUG_ON(timeout < AH_TIME_QUANTUM);
124
125         for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
126                 if ((REG_READ(ah, reg) & mask) == val)
127                         return true;
128
129                 udelay(AH_TIME_QUANTUM);
130         }
131
132         DPRINTF(ah->ah_sc, ATH_DBG_ANY,
133                 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
134                 timeout, reg, REG_READ(ah, reg), mask, val);
135
136         return false;
137 }
138
139 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
140 {
141         u32 retval;
142         int i;
143
144         for (i = 0, retval = 0; i < n; i++) {
145                 retval = (retval << 1) | (val & 1);
146                 val >>= 1;
147         }
148         return retval;
149 }
150
151 bool ath9k_get_channel_edges(struct ath_hw *ah,
152                              u16 flags, u16 *low,
153                              u16 *high)
154 {
155         struct ath9k_hw_capabilities *pCap = &ah->caps;
156
157         if (flags & CHANNEL_5GHZ) {
158                 *low = pCap->low_5ghz_chan;
159                 *high = pCap->high_5ghz_chan;
160                 return true;
161         }
162         if ((flags & CHANNEL_2GHZ)) {
163                 *low = pCap->low_2ghz_chan;
164                 *high = pCap->high_2ghz_chan;
165                 return true;
166         }
167         return false;
168 }
169
170 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
171                            const struct ath_rate_table *rates,
172                            u32 frameLen, u16 rateix,
173                            bool shortPreamble)
174 {
175         u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
176         u32 kbps;
177
178         kbps = rates->info[rateix].ratekbps;
179
180         if (kbps == 0)
181                 return 0;
182
183         switch (rates->info[rateix].phy) {
184         case WLAN_RC_PHY_CCK:
185                 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
186                 if (shortPreamble && rates->info[rateix].short_preamble)
187                         phyTime >>= 1;
188                 numBits = frameLen << 3;
189                 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
190                 break;
191         case WLAN_RC_PHY_OFDM:
192                 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
193                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
194                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
195                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
196                         txTime = OFDM_SIFS_TIME_QUARTER
197                                 + OFDM_PREAMBLE_TIME_QUARTER
198                                 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
199                 } else if (ah->curchan &&
200                            IS_CHAN_HALF_RATE(ah->curchan)) {
201                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
202                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
203                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
204                         txTime = OFDM_SIFS_TIME_HALF +
205                                 OFDM_PREAMBLE_TIME_HALF
206                                 + (numSymbols * OFDM_SYMBOL_TIME_HALF);
207                 } else {
208                         bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
209                         numBits = OFDM_PLCP_BITS + (frameLen << 3);
210                         numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
211                         txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
212                                 + (numSymbols * OFDM_SYMBOL_TIME);
213                 }
214                 break;
215         default:
216                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
217                         "Unknown phy %u (rate ix %u)\n",
218                         rates->info[rateix].phy, rateix);
219                 txTime = 0;
220                 break;
221         }
222
223         return txTime;
224 }
225
226 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
227                                   struct ath9k_channel *chan,
228                                   struct chan_centers *centers)
229 {
230         int8_t extoff;
231
232         if (!IS_CHAN_HT40(chan)) {
233                 centers->ctl_center = centers->ext_center =
234                         centers->synth_center = chan->channel;
235                 return;
236         }
237
238         if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
239             (chan->chanmode == CHANNEL_G_HT40PLUS)) {
240                 centers->synth_center =
241                         chan->channel + HT40_CHANNEL_CENTER_SHIFT;
242                 extoff = 1;
243         } else {
244                 centers->synth_center =
245                         chan->channel - HT40_CHANNEL_CENTER_SHIFT;
246                 extoff = -1;
247         }
248
249         centers->ctl_center =
250                 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
251         centers->ext_center =
252                 centers->synth_center + (extoff *
253                          ((ah->extprotspacing == ATH9K_HT_EXTPROTSPACING_20) ?
254                           HT40_CHANNEL_CENTER_SHIFT : 15));
255 }
256
257 /******************/
258 /* Chip Revisions */
259 /******************/
260
261 static void ath9k_hw_read_revisions(struct ath_hw *ah)
262 {
263         u32 val;
264
265         val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
266
267         if (val == 0xFF) {
268                 val = REG_READ(ah, AR_SREV);
269                 ah->hw_version.macVersion =
270                         (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
271                 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
272                 ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
273         } else {
274                 if (!AR_SREV_9100(ah))
275                         ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
276
277                 ah->hw_version.macRev = val & AR_SREV_REVISION;
278
279                 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
280                         ah->is_pciexpress = true;
281         }
282 }
283
284 static int ath9k_hw_get_radiorev(struct ath_hw *ah)
285 {
286         u32 val;
287         int i;
288
289         REG_WRITE(ah, AR_PHY(0x36), 0x00007058);
290
291         for (i = 0; i < 8; i++)
292                 REG_WRITE(ah, AR_PHY(0x20), 0x00010000);
293         val = (REG_READ(ah, AR_PHY(256)) >> 24) & 0xff;
294         val = ((val & 0xf0) >> 4) | ((val & 0x0f) << 4);
295
296         return ath9k_hw_reverse_bits(val, 8);
297 }
298
299 /************************************/
300 /* HW Attach, Detach, Init Routines */
301 /************************************/
302
303 static void ath9k_hw_disablepcie(struct ath_hw *ah)
304 {
305         if (AR_SREV_9100(ah))
306                 return;
307
308         REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
309         REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
310         REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
311         REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
312         REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
313         REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
314         REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
315         REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
316         REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
317
318         REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
319 }
320
321 static bool ath9k_hw_chip_test(struct ath_hw *ah)
322 {
323         u32 regAddr[2] = { AR_STA_ID0, AR_PHY_BASE + (8 << 2) };
324         u32 regHold[2];
325         u32 patternData[4] = { 0x55555555,
326                                0xaaaaaaaa,
327                                0x66666666,
328                                0x99999999 };
329         int i, j;
330
331         for (i = 0; i < 2; i++) {
332                 u32 addr = regAddr[i];
333                 u32 wrData, rdData;
334
335                 regHold[i] = REG_READ(ah, addr);
336                 for (j = 0; j < 0x100; j++) {
337                         wrData = (j << 16) | j;
338                         REG_WRITE(ah, addr, wrData);
339                         rdData = REG_READ(ah, addr);
340                         if (rdData != wrData) {
341                                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
342                                         "address test failed "
343                                         "addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
344                                         addr, wrData, rdData);
345                                 return false;
346                         }
347                 }
348                 for (j = 0; j < 4; j++) {
349                         wrData = patternData[j];
350                         REG_WRITE(ah, addr, wrData);
351                         rdData = REG_READ(ah, addr);
352                         if (wrData != rdData) {
353                                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
354                                         "address test failed "
355                                         "addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
356                                         addr, wrData, rdData);
357                                 return false;
358                         }
359                 }
360                 REG_WRITE(ah, regAddr[i], regHold[i]);
361         }
362         udelay(100);
363
364         return true;
365 }
366
367 static const char *ath9k_hw_devname(u16 devid)
368 {
369         switch (devid) {
370         case AR5416_DEVID_PCI:
371                 return "Atheros 5416";
372         case AR5416_DEVID_PCIE:
373                 return "Atheros 5418";
374         case AR9160_DEVID_PCI:
375                 return "Atheros 9160";
376         case AR5416_AR9100_DEVID:
377                 return "Atheros 9100";
378         case AR9280_DEVID_PCI:
379         case AR9280_DEVID_PCIE:
380                 return "Atheros 9280";
381         case AR9285_DEVID_PCIE:
382                 return "Atheros 9285";
383         case AR5416_DEVID_AR9287_PCI:
384         case AR5416_DEVID_AR9287_PCIE:
385                 return "Atheros 9287";
386         }
387
388         return NULL;
389 }
390
391 static void ath9k_hw_init_config(struct ath_hw *ah)
392 {
393         int i;
394
395         ah->config.dma_beacon_response_time = 2;
396         ah->config.sw_beacon_response_time = 10;
397         ah->config.additional_swba_backoff = 0;
398         ah->config.ack_6mb = 0x0;
399         ah->config.cwm_ignore_extcca = 0;
400         ah->config.pcie_powersave_enable = 0;
401         ah->config.pcie_clock_req = 0;
402         ah->config.pcie_waen = 0;
403         ah->config.analog_shiftreg = 1;
404         ah->config.ht_enable = 1;
405         ah->config.ofdm_trig_low = 200;
406         ah->config.ofdm_trig_high = 500;
407         ah->config.cck_trig_high = 200;
408         ah->config.cck_trig_low = 100;
409         ah->config.enable_ani = 1;
410         ah->config.diversity_control = ATH9K_ANT_VARIABLE;
411         ah->config.antenna_switch_swap = 0;
412
413         for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
414                 ah->config.spurchans[i][0] = AR_NO_SPUR;
415                 ah->config.spurchans[i][1] = AR_NO_SPUR;
416         }
417
418         ah->config.intr_mitigation = true;
419
420         /*
421          * We need this for PCI devices only (Cardbus, PCI, miniPCI)
422          * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
423          * This means we use it for all AR5416 devices, and the few
424          * minor PCI AR9280 devices out there.
425          *
426          * Serialization is required because these devices do not handle
427          * well the case of two concurrent reads/writes due to the latency
428          * involved. During one read/write another read/write can be issued
429          * on another CPU while the previous read/write may still be working
430          * on our hardware, if we hit this case the hardware poops in a loop.
431          * We prevent this by serializing reads and writes.
432          *
433          * This issue is not present on PCI-Express devices or pre-AR5416
434          * devices (legacy, 802.11abg).
435          */
436         if (num_possible_cpus() > 1)
437                 ah->config.serialize_regmode = SER_REG_MODE_AUTO;
438 }
439
440 static void ath9k_hw_init_defaults(struct ath_hw *ah)
441 {
442         ah->hw_version.magic = AR5416_MAGIC;
443         ah->regulatory.country_code = CTRY_DEFAULT;
444         ah->hw_version.subvendorid = 0;
445
446         ah->ah_flags = 0;
447         if (ah->hw_version.devid == AR5416_AR9100_DEVID)
448                 ah->hw_version.macVersion = AR_SREV_VERSION_9100;
449         if (!AR_SREV_9100(ah))
450                 ah->ah_flags = AH_USE_EEPROM;
451
452         ah->regulatory.power_limit = MAX_RATE_POWER;
453         ah->regulatory.tp_scale = ATH9K_TP_SCALE_MAX;
454         ah->atim_window = 0;
455         ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE;
456         ah->beacon_interval = 100;
457         ah->enable_32kHz_clock = DONT_USE_32KHZ;
458         ah->slottime = (u32) -1;
459         ah->acktimeout = (u32) -1;
460         ah->ctstimeout = (u32) -1;
461         ah->globaltxtimeout = (u32) -1;
462
463         ah->gbeacon_rate = 0;
464
465         ah->power_mode = ATH9K_PM_UNDEFINED;
466 }
467
468 static int ath9k_hw_rfattach(struct ath_hw *ah)
469 {
470         bool rfStatus = false;
471         int ecode = 0;
472
473         rfStatus = ath9k_hw_init_rf(ah, &ecode);
474         if (!rfStatus) {
475                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
476                         "RF setup failed, status: %u\n", ecode);
477                 return ecode;
478         }
479
480         return 0;
481 }
482
483 static int ath9k_hw_rf_claim(struct ath_hw *ah)
484 {
485         u32 val;
486
487         REG_WRITE(ah, AR_PHY(0), 0x00000007);
488
489         val = ath9k_hw_get_radiorev(ah);
490         switch (val & AR_RADIO_SREV_MAJOR) {
491         case 0:
492                 val = AR_RAD5133_SREV_MAJOR;
493                 break;
494         case AR_RAD5133_SREV_MAJOR:
495         case AR_RAD5122_SREV_MAJOR:
496         case AR_RAD2133_SREV_MAJOR:
497         case AR_RAD2122_SREV_MAJOR:
498                 break;
499         default:
500                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
501                         "Radio Chip Rev 0x%02X not supported\n",
502                         val & AR_RADIO_SREV_MAJOR);
503                 return -EOPNOTSUPP;
504         }
505
506         ah->hw_version.analog5GhzRev = val;
507
508         return 0;
509 }
510
511 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
512 {
513         u32 sum;
514         int i;
515         u16 eeval;
516
517         sum = 0;
518         for (i = 0; i < 3; i++) {
519                 eeval = ah->eep_ops->get_eeprom(ah, AR_EEPROM_MAC(i));
520                 sum += eeval;
521                 ah->macaddr[2 * i] = eeval >> 8;
522                 ah->macaddr[2 * i + 1] = eeval & 0xff;
523         }
524         if (sum == 0 || sum == 0xffff * 3)
525                 return -EADDRNOTAVAIL;
526
527         return 0;
528 }
529
530 static void ath9k_hw_init_rxgain_ini(struct ath_hw *ah)
531 {
532         u32 rxgain_type;
533
534         if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_17) {
535                 rxgain_type = ah->eep_ops->get_eeprom(ah, EEP_RXGAIN_TYPE);
536
537                 if (rxgain_type == AR5416_EEP_RXGAIN_13DB_BACKOFF)
538                         INIT_INI_ARRAY(&ah->iniModesRxGain,
539                         ar9280Modes_backoff_13db_rxgain_9280_2,
540                         ARRAY_SIZE(ar9280Modes_backoff_13db_rxgain_9280_2), 6);
541                 else if (rxgain_type == AR5416_EEP_RXGAIN_23DB_BACKOFF)
542                         INIT_INI_ARRAY(&ah->iniModesRxGain,
543                         ar9280Modes_backoff_23db_rxgain_9280_2,
544                         ARRAY_SIZE(ar9280Modes_backoff_23db_rxgain_9280_2), 6);
545                 else
546                         INIT_INI_ARRAY(&ah->iniModesRxGain,
547                         ar9280Modes_original_rxgain_9280_2,
548                         ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
549         } else {
550                 INIT_INI_ARRAY(&ah->iniModesRxGain,
551                         ar9280Modes_original_rxgain_9280_2,
552                         ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
553         }
554 }
555
556 static void ath9k_hw_init_txgain_ini(struct ath_hw *ah)
557 {
558         u32 txgain_type;
559
560         if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_19) {
561                 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
562
563                 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER)
564                         INIT_INI_ARRAY(&ah->iniModesTxGain,
565                         ar9280Modes_high_power_tx_gain_9280_2,
566                         ARRAY_SIZE(ar9280Modes_high_power_tx_gain_9280_2), 6);
567                 else
568                         INIT_INI_ARRAY(&ah->iniModesTxGain,
569                         ar9280Modes_original_tx_gain_9280_2,
570                         ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
571         } else {
572                 INIT_INI_ARRAY(&ah->iniModesTxGain,
573                 ar9280Modes_original_tx_gain_9280_2,
574                 ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
575         }
576 }
577
578 static int ath9k_hw_post_init(struct ath_hw *ah)
579 {
580         int ecode;
581
582         if (!ath9k_hw_chip_test(ah))
583                 return -ENODEV;
584
585         ecode = ath9k_hw_rf_claim(ah);
586         if (ecode != 0)
587                 return ecode;
588
589         ecode = ath9k_hw_eeprom_init(ah);
590         if (ecode != 0)
591                 return ecode;
592
593         DPRINTF(ah->ah_sc, ATH_DBG_CONFIG, "Eeprom VER: %d, REV: %d\n",
594                 ah->eep_ops->get_eeprom_ver(ah), ah->eep_ops->get_eeprom_rev(ah));
595
596         ecode = ath9k_hw_rfattach(ah);
597         if (ecode != 0)
598                 return ecode;
599
600         if (!AR_SREV_9100(ah)) {
601                 ath9k_hw_ani_setup(ah);
602                 ath9k_hw_ani_init(ah);
603         }
604
605         return 0;
606 }
607
608 static bool ath9k_hw_devid_supported(u16 devid)
609 {
610         switch (devid) {
611         case AR5416_DEVID_PCI:
612         case AR5416_DEVID_PCIE:
613         case AR5416_AR9100_DEVID:
614         case AR9160_DEVID_PCI:
615         case AR9280_DEVID_PCI:
616         case AR9280_DEVID_PCIE:
617         case AR9285_DEVID_PCIE:
618         case AR5416_DEVID_AR9287_PCI:
619         case AR5416_DEVID_AR9287_PCIE:
620                 return true;
621         default:
622                 break;
623         }
624         return false;
625 }
626
627 static bool ath9k_hw_macversion_supported(u32 macversion)
628 {
629         switch (macversion) {
630         case AR_SREV_VERSION_5416_PCI:
631         case AR_SREV_VERSION_5416_PCIE:
632         case AR_SREV_VERSION_9160:
633         case AR_SREV_VERSION_9100:
634         case AR_SREV_VERSION_9280:
635         case AR_SREV_VERSION_9285:
636         case AR_SREV_VERSION_9287:
637                 return true;
638         /* Not yet */
639         case AR_SREV_VERSION_9271:
640         default:
641                 break;
642         }
643         return false;
644 }
645
646 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
647 {
648         if (AR_SREV_9160_10_OR_LATER(ah)) {
649                 if (AR_SREV_9280_10_OR_LATER(ah)) {
650                         ah->iq_caldata.calData = &iq_cal_single_sample;
651                         ah->adcgain_caldata.calData =
652                                 &adc_gain_cal_single_sample;
653                         ah->adcdc_caldata.calData =
654                                 &adc_dc_cal_single_sample;
655                         ah->adcdc_calinitdata.calData =
656                                 &adc_init_dc_cal;
657                 } else {
658                         ah->iq_caldata.calData = &iq_cal_multi_sample;
659                         ah->adcgain_caldata.calData =
660                                 &adc_gain_cal_multi_sample;
661                         ah->adcdc_caldata.calData =
662                                 &adc_dc_cal_multi_sample;
663                         ah->adcdc_calinitdata.calData =
664                                 &adc_init_dc_cal;
665                 }
666                 ah->supp_cals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL;
667         }
668 }
669
670 static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
671 {
672         if (AR_SREV_9271(ah)) {
673                 INIT_INI_ARRAY(&ah->iniModes, ar9271Modes_9271_1_0,
674                                ARRAY_SIZE(ar9271Modes_9271_1_0), 6);
675                 INIT_INI_ARRAY(&ah->iniCommon, ar9271Common_9271_1_0,
676                                ARRAY_SIZE(ar9271Common_9271_1_0), 2);
677                 return;
678         }
679
680         if (AR_SREV_9287_11_OR_LATER(ah)) {
681                 INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_1,
682                                 ARRAY_SIZE(ar9287Modes_9287_1_1), 6);
683                 INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_1,
684                                 ARRAY_SIZE(ar9287Common_9287_1_1), 2);
685                 if (ah->config.pcie_clock_req)
686                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
687                         ar9287PciePhy_clkreq_off_L1_9287_1_1,
688                         ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_1), 2);
689                 else
690                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
691                         ar9287PciePhy_clkreq_always_on_L1_9287_1_1,
692                         ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_1),
693                                         2);
694         } else if (AR_SREV_9287_10_OR_LATER(ah)) {
695                 INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_0,
696                                 ARRAY_SIZE(ar9287Modes_9287_1_0), 6);
697                 INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_0,
698                                 ARRAY_SIZE(ar9287Common_9287_1_0), 2);
699
700                 if (ah->config.pcie_clock_req)
701                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
702                         ar9287PciePhy_clkreq_off_L1_9287_1_0,
703                         ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_0), 2);
704                 else
705                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
706                         ar9287PciePhy_clkreq_always_on_L1_9287_1_0,
707                         ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_0),
708                                   2);
709         } else if (AR_SREV_9285_12_OR_LATER(ah)) {
710
711
712                 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285_1_2,
713                                ARRAY_SIZE(ar9285Modes_9285_1_2), 6);
714                 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285_1_2,
715                                ARRAY_SIZE(ar9285Common_9285_1_2), 2);
716
717                 if (ah->config.pcie_clock_req) {
718                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
719                         ar9285PciePhy_clkreq_off_L1_9285_1_2,
720                         ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285_1_2), 2);
721                 } else {
722                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
723                         ar9285PciePhy_clkreq_always_on_L1_9285_1_2,
724                         ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285_1_2),
725                                   2);
726                 }
727         } else if (AR_SREV_9285_10_OR_LATER(ah)) {
728                 INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285,
729                                ARRAY_SIZE(ar9285Modes_9285), 6);
730                 INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285,
731                                ARRAY_SIZE(ar9285Common_9285), 2);
732
733                 if (ah->config.pcie_clock_req) {
734                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
735                         ar9285PciePhy_clkreq_off_L1_9285,
736                         ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285), 2);
737                 } else {
738                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
739                         ar9285PciePhy_clkreq_always_on_L1_9285,
740                         ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285), 2);
741                 }
742         } else if (AR_SREV_9280_20_OR_LATER(ah)) {
743                 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280_2,
744                                ARRAY_SIZE(ar9280Modes_9280_2), 6);
745                 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280_2,
746                                ARRAY_SIZE(ar9280Common_9280_2), 2);
747
748                 if (ah->config.pcie_clock_req) {
749                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
750                                ar9280PciePhy_clkreq_off_L1_9280,
751                                ARRAY_SIZE(ar9280PciePhy_clkreq_off_L1_9280),2);
752                 } else {
753                         INIT_INI_ARRAY(&ah->iniPcieSerdes,
754                                ar9280PciePhy_clkreq_always_on_L1_9280,
755                                ARRAY_SIZE(ar9280PciePhy_clkreq_always_on_L1_9280), 2);
756                 }
757                 INIT_INI_ARRAY(&ah->iniModesAdditional,
758                                ar9280Modes_fast_clock_9280_2,
759                                ARRAY_SIZE(ar9280Modes_fast_clock_9280_2), 3);
760         } else if (AR_SREV_9280_10_OR_LATER(ah)) {
761                 INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280,
762                                ARRAY_SIZE(ar9280Modes_9280), 6);
763                 INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280,
764                                ARRAY_SIZE(ar9280Common_9280), 2);
765         } else if (AR_SREV_9160_10_OR_LATER(ah)) {
766                 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9160,
767                                ARRAY_SIZE(ar5416Modes_9160), 6);
768                 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9160,
769                                ARRAY_SIZE(ar5416Common_9160), 2);
770                 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9160,
771                                ARRAY_SIZE(ar5416Bank0_9160), 2);
772                 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9160,
773                                ARRAY_SIZE(ar5416BB_RfGain_9160), 3);
774                 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9160,
775                                ARRAY_SIZE(ar5416Bank1_9160), 2);
776                 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9160,
777                                ARRAY_SIZE(ar5416Bank2_9160), 2);
778                 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9160,
779                                ARRAY_SIZE(ar5416Bank3_9160), 3);
780                 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9160,
781                                ARRAY_SIZE(ar5416Bank6_9160), 3);
782                 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9160,
783                                ARRAY_SIZE(ar5416Bank6TPC_9160), 3);
784                 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9160,
785                                ARRAY_SIZE(ar5416Bank7_9160), 2);
786                 if (AR_SREV_9160_11(ah)) {
787                         INIT_INI_ARRAY(&ah->iniAddac,
788                                        ar5416Addac_91601_1,
789                                        ARRAY_SIZE(ar5416Addac_91601_1), 2);
790                 } else {
791                         INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9160,
792                                        ARRAY_SIZE(ar5416Addac_9160), 2);
793                 }
794         } else if (AR_SREV_9100_OR_LATER(ah)) {
795                 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9100,
796                                ARRAY_SIZE(ar5416Modes_9100), 6);
797                 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9100,
798                                ARRAY_SIZE(ar5416Common_9100), 2);
799                 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9100,
800                                ARRAY_SIZE(ar5416Bank0_9100), 2);
801                 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9100,
802                                ARRAY_SIZE(ar5416BB_RfGain_9100), 3);
803                 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9100,
804                                ARRAY_SIZE(ar5416Bank1_9100), 2);
805                 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9100,
806                                ARRAY_SIZE(ar5416Bank2_9100), 2);
807                 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9100,
808                                ARRAY_SIZE(ar5416Bank3_9100), 3);
809                 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9100,
810                                ARRAY_SIZE(ar5416Bank6_9100), 3);
811                 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9100,
812                                ARRAY_SIZE(ar5416Bank6TPC_9100), 3);
813                 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9100,
814                                ARRAY_SIZE(ar5416Bank7_9100), 2);
815                 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9100,
816                                ARRAY_SIZE(ar5416Addac_9100), 2);
817         } else {
818                 INIT_INI_ARRAY(&ah->iniModes, ar5416Modes,
819                                ARRAY_SIZE(ar5416Modes), 6);
820                 INIT_INI_ARRAY(&ah->iniCommon, ar5416Common,
821                                ARRAY_SIZE(ar5416Common), 2);
822                 INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0,
823                                ARRAY_SIZE(ar5416Bank0), 2);
824                 INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain,
825                                ARRAY_SIZE(ar5416BB_RfGain), 3);
826                 INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1,
827                                ARRAY_SIZE(ar5416Bank1), 2);
828                 INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2,
829                                ARRAY_SIZE(ar5416Bank2), 2);
830                 INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3,
831                                ARRAY_SIZE(ar5416Bank3), 3);
832                 INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6,
833                                ARRAY_SIZE(ar5416Bank6), 3);
834                 INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC,
835                                ARRAY_SIZE(ar5416Bank6TPC), 3);
836                 INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7,
837                                ARRAY_SIZE(ar5416Bank7), 2);
838                 INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac,
839                                ARRAY_SIZE(ar5416Addac), 2);
840         }
841 }
842
843 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
844 {
845         if (AR_SREV_9287_11(ah))
846                 INIT_INI_ARRAY(&ah->iniModesRxGain,
847                 ar9287Modes_rx_gain_9287_1_1,
848                 ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_1), 6);
849         else if (AR_SREV_9287_10(ah))
850                 INIT_INI_ARRAY(&ah->iniModesRxGain,
851                 ar9287Modes_rx_gain_9287_1_0,
852                 ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_0), 6);
853         else if (AR_SREV_9280_20(ah))
854                 ath9k_hw_init_rxgain_ini(ah);
855
856         if (AR_SREV_9287_11(ah)) {
857                 INIT_INI_ARRAY(&ah->iniModesTxGain,
858                 ar9287Modes_tx_gain_9287_1_1,
859                 ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_1), 6);
860         } else if (AR_SREV_9287_10(ah)) {
861                 INIT_INI_ARRAY(&ah->iniModesTxGain,
862                 ar9287Modes_tx_gain_9287_1_0,
863                 ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_0), 6);
864         } else if (AR_SREV_9280_20(ah)) {
865                 ath9k_hw_init_txgain_ini(ah);
866         } else if (AR_SREV_9285_12_OR_LATER(ah)) {
867                 u32 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
868
869                 /* txgain table */
870                 if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER) {
871                         INIT_INI_ARRAY(&ah->iniModesTxGain,
872                         ar9285Modes_high_power_tx_gain_9285_1_2,
873                         ARRAY_SIZE(ar9285Modes_high_power_tx_gain_9285_1_2), 6);
874                 } else {
875                         INIT_INI_ARRAY(&ah->iniModesTxGain,
876                         ar9285Modes_original_tx_gain_9285_1_2,
877                         ARRAY_SIZE(ar9285Modes_original_tx_gain_9285_1_2), 6);
878                 }
879
880         }
881 }
882
883 static void ath9k_hw_init_11a_eeprom_fix(struct ath_hw *ah)
884 {
885         u32 i, j;
886
887         if ((ah->hw_version.devid == AR9280_DEVID_PCI) &&
888             test_bit(ATH9K_MODE_11A, ah->caps.wireless_modes)) {
889
890                 /* EEPROM Fixup */
891                 for (i = 0; i < ah->iniModes.ia_rows; i++) {
892                         u32 reg = INI_RA(&ah->iniModes, i, 0);
893
894                         for (j = 1; j < ah->iniModes.ia_columns; j++) {
895                                 u32 val = INI_RA(&ah->iniModes, i, j);
896
897                                 INI_RA(&ah->iniModes, i, j) =
898                                         ath9k_hw_ini_fixup(ah,
899                                                            &ah->eeprom.def,
900                                                            reg, val);
901                         }
902                 }
903         }
904 }
905
906 int ath9k_hw_init(struct ath_hw *ah)
907 {
908         int r = 0;
909
910         if (!ath9k_hw_devid_supported(ah->hw_version.devid))
911                 return -EOPNOTSUPP;
912
913         ath9k_hw_init_defaults(ah);
914         ath9k_hw_init_config(ah);
915
916         if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
917                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL, "Couldn't reset chip\n");
918                 return -EIO;
919         }
920
921         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
922                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL, "Couldn't wakeup chip\n");
923                 return -EIO;
924         }
925
926         if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
927                 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
928                     (AR_SREV_9280(ah) && !ah->is_pciexpress)) {
929                         ah->config.serialize_regmode =
930                                 SER_REG_MODE_ON;
931                 } else {
932                         ah->config.serialize_regmode =
933                                 SER_REG_MODE_OFF;
934                 }
935         }
936
937         DPRINTF(ah->ah_sc, ATH_DBG_RESET, "serialize_regmode is %d\n",
938                 ah->config.serialize_regmode);
939
940         if (!ath9k_hw_macversion_supported(ah->hw_version.macVersion)) {
941                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
942                         "Mac Chip Rev 0x%02x.%x is not supported by "
943                         "this driver\n", ah->hw_version.macVersion,
944                         ah->hw_version.macRev);
945                 return -EOPNOTSUPP;
946         }
947
948         if (AR_SREV_9100(ah)) {
949                 ah->iq_caldata.calData = &iq_cal_multi_sample;
950                 ah->supp_cals = IQ_MISMATCH_CAL;
951                 ah->is_pciexpress = false;
952         }
953
954         if (AR_SREV_9271(ah))
955                 ah->is_pciexpress = false;
956
957         ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
958
959         ath9k_hw_init_cal_settings(ah);
960
961         ah->ani_function = ATH9K_ANI_ALL;
962         if (AR_SREV_9280_10_OR_LATER(ah))
963                 ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
964
965         ath9k_hw_init_mode_regs(ah);
966
967         if (ah->is_pciexpress)
968                 ath9k_hw_configpcipowersave(ah, 0);
969         else
970                 ath9k_hw_disablepcie(ah);
971
972         r = ath9k_hw_post_init(ah);
973         if (r)
974                 return r;
975
976         ath9k_hw_init_mode_gain_regs(ah);
977         ath9k_hw_fill_cap_info(ah);
978         ath9k_hw_init_11a_eeprom_fix(ah);
979
980         r = ath9k_hw_init_macaddr(ah);
981         if (r) {
982                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
983                         "Failed to initialize MAC address\n");
984                 return r;
985         }
986
987         if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
988                 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
989         else
990                 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
991
992         ath9k_init_nfcal_hist_buffer(ah);
993
994         return 0;
995 }
996
997 static void ath9k_hw_init_bb(struct ath_hw *ah,
998                              struct ath9k_channel *chan)
999 {
1000         u32 synthDelay;
1001
1002         synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
1003         if (IS_CHAN_B(chan))
1004                 synthDelay = (4 * synthDelay) / 22;
1005         else
1006                 synthDelay /= 10;
1007
1008         REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
1009
1010         udelay(synthDelay + BASE_ACTIVATE_DELAY);
1011 }
1012
1013 static void ath9k_hw_init_qos(struct ath_hw *ah)
1014 {
1015         REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
1016         REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
1017
1018         REG_WRITE(ah, AR_QOS_NO_ACK,
1019                   SM(2, AR_QOS_NO_ACK_TWO_BIT) |
1020                   SM(5, AR_QOS_NO_ACK_BIT_OFF) |
1021                   SM(0, AR_QOS_NO_ACK_BYTE_OFF));
1022
1023         REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
1024         REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
1025         REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
1026         REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
1027         REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
1028 }
1029
1030 static void ath9k_hw_init_pll(struct ath_hw *ah,
1031                               struct ath9k_channel *chan)
1032 {
1033         u32 pll;
1034
1035         if (AR_SREV_9100(ah)) {
1036                 if (chan && IS_CHAN_5GHZ(chan))
1037                         pll = 0x1450;
1038                 else
1039                         pll = 0x1458;
1040         } else {
1041                 if (AR_SREV_9280_10_OR_LATER(ah)) {
1042                         pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1043
1044                         if (chan && IS_CHAN_HALF_RATE(chan))
1045                                 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1046                         else if (chan && IS_CHAN_QUARTER_RATE(chan))
1047                                 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1048
1049                         if (chan && IS_CHAN_5GHZ(chan)) {
1050                                 pll |= SM(0x28, AR_RTC_9160_PLL_DIV);
1051
1052
1053                                 if (AR_SREV_9280_20(ah)) {
1054                                         if (((chan->channel % 20) == 0)
1055                                             || ((chan->channel % 10) == 0))
1056                                                 pll = 0x2850;
1057                                         else
1058                                                 pll = 0x142c;
1059                                 }
1060                         } else {
1061                                 pll |= SM(0x2c, AR_RTC_9160_PLL_DIV);
1062                         }
1063
1064                 } else if (AR_SREV_9160_10_OR_LATER(ah)) {
1065
1066                         pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1067
1068                         if (chan && IS_CHAN_HALF_RATE(chan))
1069                                 pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1070                         else if (chan && IS_CHAN_QUARTER_RATE(chan))
1071                                 pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1072
1073                         if (chan && IS_CHAN_5GHZ(chan))
1074                                 pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
1075                         else
1076                                 pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
1077                 } else {
1078                         pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
1079
1080                         if (chan && IS_CHAN_HALF_RATE(chan))
1081                                 pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
1082                         else if (chan && IS_CHAN_QUARTER_RATE(chan))
1083                                 pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
1084
1085                         if (chan && IS_CHAN_5GHZ(chan))
1086                                 pll |= SM(0xa, AR_RTC_PLL_DIV);
1087                         else
1088                                 pll |= SM(0xb, AR_RTC_PLL_DIV);
1089                 }
1090         }
1091         REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
1092
1093         udelay(RTC_PLL_SETTLE_DELAY);
1094
1095         REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
1096 }
1097
1098 static void ath9k_hw_init_chain_masks(struct ath_hw *ah)
1099 {
1100         int rx_chainmask, tx_chainmask;
1101
1102         rx_chainmask = ah->rxchainmask;
1103         tx_chainmask = ah->txchainmask;
1104
1105         switch (rx_chainmask) {
1106         case 0x5:
1107                 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1108                             AR_PHY_SWAP_ALT_CHAIN);
1109         case 0x3:
1110                 if (((ah)->hw_version.macVersion <= AR_SREV_VERSION_9160)) {
1111                         REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
1112                         REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
1113                         break;
1114                 }
1115         case 0x1:
1116         case 0x2:
1117         case 0x7:
1118                 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
1119                 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
1120                 break;
1121         default:
1122                 break;
1123         }
1124
1125         REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
1126         if (tx_chainmask == 0x5) {
1127                 REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1128                             AR_PHY_SWAP_ALT_CHAIN);
1129         }
1130         if (AR_SREV_9100(ah))
1131                 REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
1132                           REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
1133 }
1134
1135 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
1136                                           enum nl80211_iftype opmode)
1137 {
1138         ah->mask_reg = AR_IMR_TXERR |
1139                 AR_IMR_TXURN |
1140                 AR_IMR_RXERR |
1141                 AR_IMR_RXORN |
1142                 AR_IMR_BCNMISC;
1143
1144         if (ah->config.intr_mitigation)
1145                 ah->mask_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
1146         else
1147                 ah->mask_reg |= AR_IMR_RXOK;
1148
1149         ah->mask_reg |= AR_IMR_TXOK;
1150
1151         if (opmode == NL80211_IFTYPE_AP)
1152                 ah->mask_reg |= AR_IMR_MIB;
1153
1154         REG_WRITE(ah, AR_IMR, ah->mask_reg);
1155         REG_WRITE(ah, AR_IMR_S2, REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT);
1156
1157         if (!AR_SREV_9100(ah)) {
1158                 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
1159                 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
1160                 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
1161         }
1162 }
1163
1164 static bool ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1165 {
1166         if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
1167                 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad ack timeout %u\n", us);
1168                 ah->acktimeout = (u32) -1;
1169                 return false;
1170         } else {
1171                 REG_RMW_FIELD(ah, AR_TIME_OUT,
1172                               AR_TIME_OUT_ACK, ath9k_hw_mac_to_clks(ah, us));
1173                 ah->acktimeout = us;
1174                 return true;
1175         }
1176 }
1177
1178 static bool ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1179 {
1180         if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
1181                 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad cts timeout %u\n", us);
1182                 ah->ctstimeout = (u32) -1;
1183                 return false;
1184         } else {
1185                 REG_RMW_FIELD(ah, AR_TIME_OUT,
1186                               AR_TIME_OUT_CTS, ath9k_hw_mac_to_clks(ah, us));
1187                 ah->ctstimeout = us;
1188                 return true;
1189         }
1190 }
1191
1192 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1193 {
1194         if (tu > 0xFFFF) {
1195                 DPRINTF(ah->ah_sc, ATH_DBG_XMIT,
1196                         "bad global tx timeout %u\n", tu);
1197                 ah->globaltxtimeout = (u32) -1;
1198                 return false;
1199         } else {
1200                 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1201                 ah->globaltxtimeout = tu;
1202                 return true;
1203         }
1204 }
1205
1206 static void ath9k_hw_init_user_settings(struct ath_hw *ah)
1207 {
1208         DPRINTF(ah->ah_sc, ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
1209                 ah->misc_mode);
1210
1211         if (ah->misc_mode != 0)
1212                 REG_WRITE(ah, AR_PCU_MISC,
1213                           REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
1214         if (ah->slottime != (u32) -1)
1215                 ath9k_hw_setslottime(ah, ah->slottime);
1216         if (ah->acktimeout != (u32) -1)
1217                 ath9k_hw_set_ack_timeout(ah, ah->acktimeout);
1218         if (ah->ctstimeout != (u32) -1)
1219                 ath9k_hw_set_cts_timeout(ah, ah->ctstimeout);
1220         if (ah->globaltxtimeout != (u32) -1)
1221                 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1222 }
1223
1224 const char *ath9k_hw_probe(u16 vendorid, u16 devid)
1225 {
1226         return vendorid == ATHEROS_VENDOR_ID ?
1227                 ath9k_hw_devname(devid) : NULL;
1228 }
1229
1230 void ath9k_hw_detach(struct ath_hw *ah)
1231 {
1232         if (!AR_SREV_9100(ah))
1233                 ath9k_hw_ani_disable(ah);
1234
1235         ath9k_hw_rf_free(ah);
1236         ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1237         kfree(ah);
1238         ah = NULL;
1239 }
1240
1241 /*******/
1242 /* INI */
1243 /*******/
1244
1245 static void ath9k_hw_override_ini(struct ath_hw *ah,
1246                                   struct ath9k_channel *chan)
1247 {
1248         u32 val;
1249
1250         if (AR_SREV_9271(ah)) {
1251                 /*
1252                  * Enable spectral scan to solution for issues with stuck
1253                  * beacons on AR9271 1.0. The beacon stuck issue is not seeon on
1254                  * AR9271 1.1
1255                  */
1256                 if (AR_SREV_9271_10(ah)) {
1257                         val = REG_READ(ah, AR_PHY_SPECTRAL_SCAN) | AR_PHY_SPECTRAL_SCAN_ENABLE;
1258                         REG_WRITE(ah, AR_PHY_SPECTRAL_SCAN, val);
1259                 }
1260                 else if (AR_SREV_9271_11(ah))
1261                         /*
1262                          * change AR_PHY_RF_CTL3 setting to fix MAC issue
1263                          * present on AR9271 1.1
1264                          */
1265                         REG_WRITE(ah, AR_PHY_RF_CTL3, 0x3a020001);
1266                 return;
1267         }
1268
1269         /*
1270          * Set the RX_ABORT and RX_DIS and clear if off only after
1271          * RXE is set for MAC. This prevents frames with corrupted
1272          * descriptor status.
1273          */
1274         REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
1275
1276
1277         if (!AR_SREV_5416_20_OR_LATER(ah) ||
1278             AR_SREV_9280_10_OR_LATER(ah))
1279                 return;
1280         /*
1281          * Disable BB clock gating
1282          * Necessary to avoid issues on AR5416 2.0
1283          */
1284         REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
1285 }
1286
1287 static u32 ath9k_hw_def_ini_fixup(struct ath_hw *ah,
1288                               struct ar5416_eeprom_def *pEepData,
1289                               u32 reg, u32 value)
1290 {
1291         struct base_eep_header *pBase = &(pEepData->baseEepHeader);
1292
1293         switch (ah->hw_version.devid) {
1294         case AR9280_DEVID_PCI:
1295                 if (reg == 0x7894) {
1296                         DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1297                                 "ini VAL: %x  EEPROM: %x\n", value,
1298                                 (pBase->version & 0xff));
1299
1300                         if ((pBase->version & 0xff) > 0x0a) {
1301                                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1302                                         "PWDCLKIND: %d\n",
1303                                         pBase->pwdclkind);
1304                                 value &= ~AR_AN_TOP2_PWDCLKIND;
1305                                 value |= AR_AN_TOP2_PWDCLKIND &
1306                                         (pBase->pwdclkind << AR_AN_TOP2_PWDCLKIND_S);
1307                         } else {
1308                                 DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1309                                         "PWDCLKIND Earlier Rev\n");
1310                         }
1311
1312                         DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1313                                 "final ini VAL: %x\n", value);
1314                 }
1315                 break;
1316         }
1317
1318         return value;
1319 }
1320
1321 static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
1322                               struct ar5416_eeprom_def *pEepData,
1323                               u32 reg, u32 value)
1324 {
1325         if (ah->eep_map == EEP_MAP_4KBITS)
1326                 return value;
1327         else
1328                 return ath9k_hw_def_ini_fixup(ah, pEepData, reg, value);
1329 }
1330
1331 static void ath9k_olc_init(struct ath_hw *ah)
1332 {
1333         u32 i;
1334
1335         if (OLC_FOR_AR9287_10_LATER) {
1336                 REG_SET_BIT(ah, AR_PHY_TX_PWRCTRL9,
1337                                 AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL);
1338                 ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TXPC0,
1339                                 AR9287_AN_TXPC0_TXPCMODE,
1340                                 AR9287_AN_TXPC0_TXPCMODE_S,
1341                                 AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE);
1342                 udelay(100);
1343         } else {
1344                 for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
1345                         ah->originalGain[i] =
1346                                 MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
1347                                                 AR_PHY_TX_GAIN);
1348                 ah->PDADCdelta = 0;
1349         }
1350 }
1351
1352 static u32 ath9k_regd_get_ctl(struct ath_regulatory *reg,
1353                               struct ath9k_channel *chan)
1354 {
1355         u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1356
1357         if (IS_CHAN_B(chan))
1358                 ctl |= CTL_11B;
1359         else if (IS_CHAN_G(chan))
1360                 ctl |= CTL_11G;
1361         else
1362                 ctl |= CTL_11A;
1363
1364         return ctl;
1365 }
1366
1367 static int ath9k_hw_process_ini(struct ath_hw *ah,
1368                                 struct ath9k_channel *chan,
1369                                 enum ath9k_ht_macmode macmode)
1370 {
1371         int i, regWrites = 0;
1372         struct ieee80211_channel *channel = chan->chan;
1373         u32 modesIndex, freqIndex;
1374
1375         switch (chan->chanmode) {
1376         case CHANNEL_A:
1377         case CHANNEL_A_HT20:
1378                 modesIndex = 1;
1379                 freqIndex = 1;
1380                 break;
1381         case CHANNEL_A_HT40PLUS:
1382         case CHANNEL_A_HT40MINUS:
1383                 modesIndex = 2;
1384                 freqIndex = 1;
1385                 break;
1386         case CHANNEL_G:
1387         case CHANNEL_G_HT20:
1388         case CHANNEL_B:
1389                 modesIndex = 4;
1390                 freqIndex = 2;
1391                 break;
1392         case CHANNEL_G_HT40PLUS:
1393         case CHANNEL_G_HT40MINUS:
1394                 modesIndex = 3;
1395                 freqIndex = 2;
1396                 break;
1397
1398         default:
1399                 return -EINVAL;
1400         }
1401
1402         REG_WRITE(ah, AR_PHY(0), 0x00000007);
1403         REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
1404         ah->eep_ops->set_addac(ah, chan);
1405
1406         if (AR_SREV_5416_22_OR_LATER(ah)) {
1407                 REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites);
1408         } else {
1409                 struct ar5416IniArray temp;
1410                 u32 addacSize =
1411                         sizeof(u32) * ah->iniAddac.ia_rows *
1412                         ah->iniAddac.ia_columns;
1413
1414                 memcpy(ah->addac5416_21,
1415                        ah->iniAddac.ia_array, addacSize);
1416
1417                 (ah->addac5416_21)[31 * ah->iniAddac.ia_columns + 1] = 0;
1418
1419                 temp.ia_array = ah->addac5416_21;
1420                 temp.ia_columns = ah->iniAddac.ia_columns;
1421                 temp.ia_rows = ah->iniAddac.ia_rows;
1422                 REG_WRITE_ARRAY(&temp, 1, regWrites);
1423         }
1424
1425         REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
1426
1427         for (i = 0; i < ah->iniModes.ia_rows; i++) {
1428                 u32 reg = INI_RA(&ah->iniModes, i, 0);
1429                 u32 val = INI_RA(&ah->iniModes, i, modesIndex);
1430
1431                 REG_WRITE(ah, reg, val);
1432
1433                 if (reg >= 0x7800 && reg < 0x78a0
1434                     && ah->config.analog_shiftreg) {
1435                         udelay(100);
1436                 }
1437
1438                 DO_DELAY(regWrites);
1439         }
1440
1441         if (AR_SREV_9280(ah) || AR_SREV_9287_10_OR_LATER(ah))
1442                 REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites);
1443
1444         if (AR_SREV_9280(ah) || AR_SREV_9285_12_OR_LATER(ah) ||
1445             AR_SREV_9287_10_OR_LATER(ah))
1446                 REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
1447
1448         for (i = 0; i < ah->iniCommon.ia_rows; i++) {
1449                 u32 reg = INI_RA(&ah->iniCommon, i, 0);
1450                 u32 val = INI_RA(&ah->iniCommon, i, 1);
1451
1452                 REG_WRITE(ah, reg, val);
1453
1454                 if (reg >= 0x7800 && reg < 0x78a0
1455                     && ah->config.analog_shiftreg) {
1456                         udelay(100);
1457                 }
1458
1459                 DO_DELAY(regWrites);
1460         }
1461
1462         ath9k_hw_write_regs(ah, modesIndex, freqIndex, regWrites);
1463
1464         if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) {
1465                 REG_WRITE_ARRAY(&ah->iniModesAdditional, modesIndex,
1466                                 regWrites);
1467         }
1468
1469         ath9k_hw_override_ini(ah, chan);
1470         ath9k_hw_set_regs(ah, chan, macmode);
1471         ath9k_hw_init_chain_masks(ah);
1472
1473         if (OLC_FOR_AR9280_20_LATER)
1474                 ath9k_olc_init(ah);
1475
1476         ah->eep_ops->set_txpower(ah, chan,
1477                                  ath9k_regd_get_ctl(&ah->regulatory, chan),
1478                                  channel->max_antenna_gain * 2,
1479                                  channel->max_power * 2,
1480                                  min((u32) MAX_RATE_POWER,
1481                                  (u32) ah->regulatory.power_limit));
1482
1483         if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
1484                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
1485                         "ar5416SetRfRegs failed\n");
1486                 return -EIO;
1487         }
1488
1489         return 0;
1490 }
1491
1492 /****************************************/
1493 /* Reset and Channel Switching Routines */
1494 /****************************************/
1495
1496 static void ath9k_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan)
1497 {
1498         u32 rfMode = 0;
1499
1500         if (chan == NULL)
1501                 return;
1502
1503         rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
1504                 ? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
1505
1506         if (!AR_SREV_9280_10_OR_LATER(ah))
1507                 rfMode |= (IS_CHAN_5GHZ(chan)) ?
1508                         AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
1509
1510         if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan))
1511                 rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
1512
1513         REG_WRITE(ah, AR_PHY_MODE, rfMode);
1514 }
1515
1516 static void ath9k_hw_mark_phy_inactive(struct ath_hw *ah)
1517 {
1518         REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
1519 }
1520
1521 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1522 {
1523         u32 regval;
1524
1525         /*
1526          * set AHB_MODE not to do cacheline prefetches
1527         */
1528         regval = REG_READ(ah, AR_AHB_MODE);
1529         REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
1530
1531         /*
1532          * let mac dma reads be in 128 byte chunks
1533          */
1534         regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
1535         REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
1536
1537         /*
1538          * Restore TX Trigger Level to its pre-reset value.
1539          * The initial value depends on whether aggregation is enabled, and is
1540          * adjusted whenever underruns are detected.
1541          */
1542         REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1543
1544         /*
1545          * let mac dma writes be in 128 byte chunks
1546          */
1547         regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
1548         REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
1549
1550         /*
1551          * Setup receive FIFO threshold to hold off TX activities
1552          */
1553         REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1554
1555         /*
1556          * reduce the number of usable entries in PCU TXBUF to avoid
1557          * wrap around issues.
1558          */
1559         if (AR_SREV_9285(ah)) {
1560                 /* For AR9285 the number of Fifos are reduced to half.
1561                  * So set the usable tx buf size also to half to
1562                  * avoid data/delimiter underruns
1563                  */
1564                 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1565                           AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1566         } else if (!AR_SREV_9271(ah)) {
1567                 REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1568                           AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1569         }
1570 }
1571
1572 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1573 {
1574         u32 val;
1575
1576         val = REG_READ(ah, AR_STA_ID1);
1577         val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
1578         switch (opmode) {
1579         case NL80211_IFTYPE_AP:
1580                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
1581                           | AR_STA_ID1_KSRCH_MODE);
1582                 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1583                 break;
1584         case NL80211_IFTYPE_ADHOC:
1585         case NL80211_IFTYPE_MESH_POINT:
1586                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
1587                           | AR_STA_ID1_KSRCH_MODE);
1588                 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1589                 break;
1590         case NL80211_IFTYPE_STATION:
1591         case NL80211_IFTYPE_MONITOR:
1592                 REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
1593                 break;
1594         }
1595 }
1596
1597 static inline void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah,
1598                                                  u32 coef_scaled,
1599                                                  u32 *coef_mantissa,
1600                                                  u32 *coef_exponent)
1601 {
1602         u32 coef_exp, coef_man;
1603
1604         for (coef_exp = 31; coef_exp > 0; coef_exp--)
1605                 if ((coef_scaled >> coef_exp) & 0x1)
1606                         break;
1607
1608         coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1609
1610         coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1611
1612         *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1613         *coef_exponent = coef_exp - 16;
1614 }
1615
1616 static void ath9k_hw_set_delta_slope(struct ath_hw *ah,
1617                                      struct ath9k_channel *chan)
1618 {
1619         u32 coef_scaled, ds_coef_exp, ds_coef_man;
1620         u32 clockMhzScaled = 0x64000000;
1621         struct chan_centers centers;
1622
1623         if (IS_CHAN_HALF_RATE(chan))
1624                 clockMhzScaled = clockMhzScaled >> 1;
1625         else if (IS_CHAN_QUARTER_RATE(chan))
1626                 clockMhzScaled = clockMhzScaled >> 2;
1627
1628         ath9k_hw_get_channel_centers(ah, chan, &centers);
1629         coef_scaled = clockMhzScaled / centers.synth_center;
1630
1631         ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1632                                       &ds_coef_exp);
1633
1634         REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1635                       AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
1636         REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1637                       AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
1638
1639         coef_scaled = (9 * coef_scaled) / 10;
1640
1641         ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1642                                       &ds_coef_exp);
1643
1644         REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1645                       AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
1646         REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1647                       AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
1648 }
1649
1650 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1651 {
1652         u32 rst_flags;
1653         u32 tmpReg;
1654
1655         if (AR_SREV_9100(ah)) {
1656                 u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
1657                 val &= ~AR_RTC_DERIVED_CLK_PERIOD;
1658                 val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
1659                 REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
1660                 (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1661         }
1662
1663         REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1664                   AR_RTC_FORCE_WAKE_ON_INT);
1665
1666         if (AR_SREV_9100(ah)) {
1667                 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1668                         AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1669         } else {
1670                 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1671                 if (tmpReg &
1672                     (AR_INTR_SYNC_LOCAL_TIMEOUT |
1673                      AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1674                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1675                         REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1676                 } else {
1677                         REG_WRITE(ah, AR_RC, AR_RC_AHB);
1678                 }
1679
1680                 rst_flags = AR_RTC_RC_MAC_WARM;
1681                 if (type == ATH9K_RESET_COLD)
1682                         rst_flags |= AR_RTC_RC_MAC_COLD;
1683         }
1684
1685         REG_WRITE(ah, AR_RTC_RC, rst_flags);
1686         udelay(50);
1687
1688         REG_WRITE(ah, AR_RTC_RC, 0);
1689         if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1690                 DPRINTF(ah->ah_sc, ATH_DBG_RESET,
1691                         "RTC stuck in MAC reset\n");
1692                 return false;
1693         }
1694
1695         if (!AR_SREV_9100(ah))
1696                 REG_WRITE(ah, AR_RC, 0);
1697
1698         ath9k_hw_init_pll(ah, NULL);
1699
1700         if (AR_SREV_9100(ah))
1701                 udelay(50);
1702
1703         return true;
1704 }
1705
1706 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1707 {
1708         REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1709                   AR_RTC_FORCE_WAKE_ON_INT);
1710
1711         REG_WRITE(ah, AR_RTC_RESET, 0);
1712         udelay(2);
1713         REG_WRITE(ah, AR_RTC_RESET, 1);
1714
1715         if (!ath9k_hw_wait(ah,
1716                            AR_RTC_STATUS,
1717                            AR_RTC_STATUS_M,
1718                            AR_RTC_STATUS_ON,
1719                            AH_WAIT_TIMEOUT)) {
1720                 DPRINTF(ah->ah_sc, ATH_DBG_RESET, "RTC not waking up\n");
1721                 return false;
1722         }
1723
1724         ath9k_hw_read_revisions(ah);
1725
1726         return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1727 }
1728
1729 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1730 {
1731         REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1732                   AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1733
1734         switch (type) {
1735         case ATH9K_RESET_POWER_ON:
1736                 return ath9k_hw_set_reset_power_on(ah);
1737         case ATH9K_RESET_WARM:
1738         case ATH9K_RESET_COLD:
1739                 return ath9k_hw_set_reset(ah, type);
1740         default:
1741                 return false;
1742         }
1743 }
1744
1745 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan,
1746                               enum ath9k_ht_macmode macmode)
1747 {
1748         u32 phymode;
1749         u32 enableDacFifo = 0;
1750
1751         if (AR_SREV_9285_10_OR_LATER(ah))
1752                 enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) &
1753                                          AR_PHY_FC_ENABLE_DAC_FIFO);
1754
1755         phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
1756                 | AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
1757
1758         if (IS_CHAN_HT40(chan)) {
1759                 phymode |= AR_PHY_FC_DYN2040_EN;
1760
1761                 if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
1762                     (chan->chanmode == CHANNEL_G_HT40PLUS))
1763                         phymode |= AR_PHY_FC_DYN2040_PRI_CH;
1764
1765                 if (ah->extprotspacing == ATH9K_HT_EXTPROTSPACING_25)
1766                         phymode |= AR_PHY_FC_DYN2040_EXT_CH;
1767         }
1768         REG_WRITE(ah, AR_PHY_TURBO, phymode);
1769
1770         ath9k_hw_set11nmac2040(ah, macmode);
1771
1772         REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
1773         REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
1774 }
1775
1776 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1777                                 struct ath9k_channel *chan)
1778 {
1779         if (OLC_FOR_AR9280_20_LATER) {
1780                 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1781                         return false;
1782         } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1783                 return false;
1784
1785         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1786                 return false;
1787
1788         ah->chip_fullsleep = false;
1789         ath9k_hw_init_pll(ah, chan);
1790         ath9k_hw_set_rfmode(ah, chan);
1791
1792         return true;
1793 }
1794
1795 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1796                                     struct ath9k_channel *chan,
1797                                     enum ath9k_ht_macmode macmode)
1798 {
1799         struct ieee80211_channel *channel = chan->chan;
1800         u32 synthDelay, qnum;
1801
1802         for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1803                 if (ath9k_hw_numtxpending(ah, qnum)) {
1804                         DPRINTF(ah->ah_sc, ATH_DBG_QUEUE,
1805                                 "Transmit frames pending on queue %d\n", qnum);
1806                         return false;
1807                 }
1808         }
1809
1810         REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
1811         if (!ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
1812                            AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT)) {
1813                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
1814                         "Could not kill baseband RX\n");
1815                 return false;
1816         }
1817
1818         ath9k_hw_set_regs(ah, chan, macmode);
1819
1820         if (AR_SREV_9280_10_OR_LATER(ah)) {
1821                 ath9k_hw_ar9280_set_channel(ah, chan);
1822         } else {
1823                 if (!(ath9k_hw_set_channel(ah, chan))) {
1824                         DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
1825                                 "Failed to set channel\n");
1826                         return false;
1827                 }
1828         }
1829
1830         ah->eep_ops->set_txpower(ah, chan,
1831                              ath9k_regd_get_ctl(&ah->regulatory, chan),
1832                              channel->max_antenna_gain * 2,
1833                              channel->max_power * 2,
1834                              min((u32) MAX_RATE_POWER,
1835                              (u32) ah->regulatory.power_limit));
1836
1837         synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
1838         if (IS_CHAN_B(chan))
1839                 synthDelay = (4 * synthDelay) / 22;
1840         else
1841                 synthDelay /= 10;
1842
1843         udelay(synthDelay + BASE_ACTIVATE_DELAY);
1844
1845         REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
1846
1847         if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1848                 ath9k_hw_set_delta_slope(ah, chan);
1849
1850         if (AR_SREV_9280_10_OR_LATER(ah))
1851                 ath9k_hw_9280_spur_mitigate(ah, chan);
1852         else
1853                 ath9k_hw_spur_mitigate(ah, chan);
1854
1855         if (!chan->oneTimeCalsDone)
1856                 chan->oneTimeCalsDone = true;
1857
1858         return true;
1859 }
1860
1861 static void ath9k_hw_9280_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan)
1862 {
1863         int bb_spur = AR_NO_SPUR;
1864         int freq;
1865         int bin, cur_bin;
1866         int bb_spur_off, spur_subchannel_sd;
1867         int spur_freq_sd;
1868         int spur_delta_phase;
1869         int denominator;
1870         int upper, lower, cur_vit_mask;
1871         int tmp, newVal;
1872         int i;
1873         int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
1874                           AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
1875         };
1876         int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
1877                          AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
1878         };
1879         int inc[4] = { 0, 100, 0, 0 };
1880         struct chan_centers centers;
1881
1882         int8_t mask_m[123];
1883         int8_t mask_p[123];
1884         int8_t mask_amt;
1885         int tmp_mask;
1886         int cur_bb_spur;
1887         bool is2GHz = IS_CHAN_2GHZ(chan);
1888
1889         memset(&mask_m, 0, sizeof(int8_t) * 123);
1890         memset(&mask_p, 0, sizeof(int8_t) * 123);
1891
1892         ath9k_hw_get_channel_centers(ah, chan, &centers);
1893         freq = centers.synth_center;
1894
1895         ah->config.spurmode = SPUR_ENABLE_EEPROM;
1896         for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
1897                 cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
1898
1899                 if (is2GHz)
1900                         cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
1901                 else
1902                         cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
1903
1904                 if (AR_NO_SPUR == cur_bb_spur)
1905                         break;
1906                 cur_bb_spur = cur_bb_spur - freq;
1907
1908                 if (IS_CHAN_HT40(chan)) {
1909                         if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
1910                             (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
1911                                 bb_spur = cur_bb_spur;
1912                                 break;
1913                         }
1914                 } else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
1915                            (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
1916                         bb_spur = cur_bb_spur;
1917                         break;
1918                 }
1919         }
1920
1921         if (AR_NO_SPUR == bb_spur) {
1922                 REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
1923                             AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
1924                 return;
1925         } else {
1926                 REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
1927                             AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
1928         }
1929
1930         bin = bb_spur * 320;
1931
1932         tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
1933
1934         newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
1935                         AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
1936                         AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
1937                         AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
1938         REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal);
1939
1940         newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
1941                   AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
1942                   AR_PHY_SPUR_REG_MASK_RATE_SELECT |
1943                   AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
1944                   SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
1945         REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);
1946
1947         if (IS_CHAN_HT40(chan)) {
1948                 if (bb_spur < 0) {
1949                         spur_subchannel_sd = 1;
1950                         bb_spur_off = bb_spur + 10;
1951                 } else {
1952                         spur_subchannel_sd = 0;
1953                         bb_spur_off = bb_spur - 10;
1954                 }
1955         } else {
1956                 spur_subchannel_sd = 0;
1957                 bb_spur_off = bb_spur;
1958         }
1959
1960         if (IS_CHAN_HT40(chan))
1961                 spur_delta_phase =
1962                         ((bb_spur * 262144) /
1963                          10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
1964         else
1965                 spur_delta_phase =
1966                         ((bb_spur * 524288) /
1967                          10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
1968
1969         denominator = IS_CHAN_2GHZ(chan) ? 44 : 40;
1970         spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;
1971
1972         newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
1973                   SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
1974                   SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
1975         REG_WRITE(ah, AR_PHY_TIMING11, newVal);
1976
1977         newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
1978         REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);
1979
1980         cur_bin = -6000;
1981         upper = bin + 100;
1982         lower = bin - 100;
1983
1984         for (i = 0; i < 4; i++) {
1985                 int pilot_mask = 0;
1986                 int chan_mask = 0;
1987                 int bp = 0;
1988                 for (bp = 0; bp < 30; bp++) {
1989                         if ((cur_bin > lower) && (cur_bin < upper)) {
1990                                 pilot_mask = pilot_mask | 0x1 << bp;
1991                                 chan_mask = chan_mask | 0x1 << bp;
1992                         }
1993                         cur_bin += 100;
1994                 }
1995                 cur_bin += inc[i];
1996                 REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
1997                 REG_WRITE(ah, chan_mask_reg[i], chan_mask);
1998         }
1999
2000         cur_vit_mask = 6100;
2001         upper = bin + 120;
2002         lower = bin - 120;
2003
2004         for (i = 0; i < 123; i++) {
2005                 if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
2006
2007                         /* workaround for gcc bug #37014 */
2008                         volatile int tmp_v = abs(cur_vit_mask - bin);
2009
2010                         if (tmp_v < 75)
2011                                 mask_amt = 1;
2012                         else
2013                                 mask_amt = 0;
2014                         if (cur_vit_mask < 0)
2015                                 mask_m[abs(cur_vit_mask / 100)] = mask_amt;
2016                         else
2017                                 mask_p[cur_vit_mask / 100] = mask_amt;
2018                 }
2019                 cur_vit_mask -= 100;
2020         }
2021
2022         tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
2023                 | (mask_m[48] << 26) | (mask_m[49] << 24)
2024                 | (mask_m[50] << 22) | (mask_m[51] << 20)
2025                 | (mask_m[52] << 18) | (mask_m[53] << 16)
2026                 | (mask_m[54] << 14) | (mask_m[55] << 12)
2027                 | (mask_m[56] << 10) | (mask_m[57] << 8)
2028                 | (mask_m[58] << 6) | (mask_m[59] << 4)
2029                 | (mask_m[60] << 2) | (mask_m[61] << 0);
2030         REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
2031         REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
2032
2033         tmp_mask = (mask_m[31] << 28)
2034                 | (mask_m[32] << 26) | (mask_m[33] << 24)
2035                 | (mask_m[34] << 22) | (mask_m[35] << 20)
2036                 | (mask_m[36] << 18) | (mask_m[37] << 16)
2037                 | (mask_m[48] << 14) | (mask_m[39] << 12)
2038                 | (mask_m[40] << 10) | (mask_m[41] << 8)
2039                 | (mask_m[42] << 6) | (mask_m[43] << 4)
2040                 | (mask_m[44] << 2) | (mask_m[45] << 0);
2041         REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
2042         REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
2043
2044         tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
2045                 | (mask_m[18] << 26) | (mask_m[18] << 24)
2046                 | (mask_m[20] << 22) | (mask_m[20] << 20)
2047                 | (mask_m[22] << 18) | (mask_m[22] << 16)
2048                 | (mask_m[24] << 14) | (mask_m[24] << 12)
2049                 | (mask_m[25] << 10) | (mask_m[26] << 8)
2050                 | (mask_m[27] << 6) | (mask_m[28] << 4)
2051                 | (mask_m[29] << 2) | (mask_m[30] << 0);
2052         REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
2053         REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
2054
2055         tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
2056                 | (mask_m[2] << 26) | (mask_m[3] << 24)
2057                 | (mask_m[4] << 22) | (mask_m[5] << 20)
2058                 | (mask_m[6] << 18) | (mask_m[7] << 16)
2059                 | (mask_m[8] << 14) | (mask_m[9] << 12)
2060                 | (mask_m[10] << 10) | (mask_m[11] << 8)
2061                 | (mask_m[12] << 6) | (mask_m[13] << 4)
2062                 | (mask_m[14] << 2) | (mask_m[15] << 0);
2063         REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
2064         REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
2065
2066         tmp_mask = (mask_p[15] << 28)
2067                 | (mask_p[14] << 26) | (mask_p[13] << 24)
2068                 | (mask_p[12] << 22) | (mask_p[11] << 20)
2069                 | (mask_p[10] << 18) | (mask_p[9] << 16)
2070                 | (mask_p[8] << 14) | (mask_p[7] << 12)
2071                 | (mask_p[6] << 10) | (mask_p[5] << 8)
2072                 | (mask_p[4] << 6) | (mask_p[3] << 4)
2073                 | (mask_p[2] << 2) | (mask_p[1] << 0);
2074         REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
2075         REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
2076
2077         tmp_mask = (mask_p[30] << 28)
2078                 | (mask_p[29] << 26) | (mask_p[28] << 24)
2079                 | (mask_p[27] << 22) | (mask_p[26] << 20)
2080                 | (mask_p[25] << 18) | (mask_p[24] << 16)
2081                 | (mask_p[23] << 14) | (mask_p[22] << 12)
2082                 | (mask_p[21] << 10) | (mask_p[20] << 8)
2083                 | (mask_p[19] << 6) | (mask_p[18] << 4)
2084                 | (mask_p[17] << 2) | (mask_p[16] << 0);
2085         REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
2086         REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
2087
2088         tmp_mask = (mask_p[45] << 28)
2089                 | (mask_p[44] << 26) | (mask_p[43] << 24)
2090                 | (mask_p[42] << 22) | (mask_p[41] << 20)
2091                 | (mask_p[40] << 18) | (mask_p[39] << 16)
2092                 | (mask_p[38] << 14) | (mask_p[37] << 12)
2093                 | (mask_p[36] << 10) | (mask_p[35] << 8)
2094                 | (mask_p[34] << 6) | (mask_p[33] << 4)
2095                 | (mask_p[32] << 2) | (mask_p[31] << 0);
2096         REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
2097         REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
2098
2099         tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
2100                 | (mask_p[59] << 26) | (mask_p[58] << 24)
2101                 | (mask_p[57] << 22) | (mask_p[56] << 20)
2102                 | (mask_p[55] << 18) | (mask_p[54] << 16)
2103                 | (mask_p[53] << 14) | (mask_p[52] << 12)
2104                 | (mask_p[51] << 10) | (mask_p[50] << 8)
2105                 | (mask_p[49] << 6) | (mask_p[48] << 4)
2106                 | (mask_p[47] << 2) | (mask_p[46] << 0);
2107         REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
2108         REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
2109 }
2110
2111 static void ath9k_hw_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan)
2112 {
2113         int bb_spur = AR_NO_SPUR;
2114         int bin, cur_bin;
2115         int spur_freq_sd;
2116         int spur_delta_phase;
2117         int denominator;
2118         int upper, lower, cur_vit_mask;
2119         int tmp, new;
2120         int i;
2121         int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
2122                           AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
2123         };
2124         int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
2125                          AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
2126         };
2127         int inc[4] = { 0, 100, 0, 0 };
2128
2129         int8_t mask_m[123];
2130         int8_t mask_p[123];
2131         int8_t mask_amt;
2132         int tmp_mask;
2133         int cur_bb_spur;
2134         bool is2GHz = IS_CHAN_2GHZ(chan);
2135
2136         memset(&mask_m, 0, sizeof(int8_t) * 123);
2137         memset(&mask_p, 0, sizeof(int8_t) * 123);
2138
2139         for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
2140                 cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
2141                 if (AR_NO_SPUR == cur_bb_spur)
2142                         break;
2143                 cur_bb_spur = cur_bb_spur - (chan->channel * 10);
2144                 if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) {
2145                         bb_spur = cur_bb_spur;
2146                         break;
2147                 }
2148         }
2149
2150         if (AR_NO_SPUR == bb_spur)
2151                 return;
2152
2153         bin = bb_spur * 32;
2154
2155         tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
2156         new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
2157                      AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
2158                      AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
2159                      AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
2160
2161         REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), new);
2162
2163         new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
2164                AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
2165                AR_PHY_SPUR_REG_MASK_RATE_SELECT |
2166                AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
2167                SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
2168         REG_WRITE(ah, AR_PHY_SPUR_REG, new);
2169
2170         spur_delta_phase = ((bb_spur * 524288) / 100) &
2171                 AR_PHY_TIMING11_SPUR_DELTA_PHASE;
2172
2173         denominator = IS_CHAN_2GHZ(chan) ? 440 : 400;
2174         spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff;
2175
2176         new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
2177                SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
2178                SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
2179         REG_WRITE(ah, AR_PHY_TIMING11, new);
2180
2181         cur_bin = -6000;
2182         upper = bin + 100;
2183         lower = bin - 100;
2184
2185         for (i = 0; i < 4; i++) {
2186                 int pilot_mask = 0;
2187                 int chan_mask = 0;
2188                 int bp = 0;
2189                 for (bp = 0; bp < 30; bp++) {
2190                         if ((cur_bin > lower) && (cur_bin < upper)) {
2191                                 pilot_mask = pilot_mask | 0x1 << bp;
2192                                 chan_mask = chan_mask | 0x1 << bp;
2193                         }
2194                         cur_bin += 100;
2195                 }
2196                 cur_bin += inc[i];
2197                 REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
2198                 REG_WRITE(ah, chan_mask_reg[i], chan_mask);
2199         }
2200
2201         cur_vit_mask = 6100;
2202         upper = bin + 120;
2203         lower = bin - 120;
2204
2205         for (i = 0; i < 123; i++) {
2206                 if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
2207
2208                         /* workaround for gcc bug #37014 */
2209                         volatile int tmp_v = abs(cur_vit_mask - bin);
2210
2211                         if (tmp_v < 75)
2212                                 mask_amt = 1;
2213                         else
2214                                 mask_amt = 0;
2215                         if (cur_vit_mask < 0)
2216                                 mask_m[abs(cur_vit_mask / 100)] = mask_amt;
2217                         else
2218                                 mask_p[cur_vit_mask / 100] = mask_amt;
2219                 }
2220                 cur_vit_mask -= 100;
2221         }
2222
2223         tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
2224                 | (mask_m[48] << 26) | (mask_m[49] << 24)
2225                 | (mask_m[50] << 22) | (mask_m[51] << 20)
2226                 | (mask_m[52] << 18) | (mask_m[53] << 16)
2227                 | (mask_m[54] << 14) | (mask_m[55] << 12)
2228                 | (mask_m[56] << 10) | (mask_m[57] << 8)
2229                 | (mask_m[58] << 6) | (mask_m[59] << 4)
2230                 | (mask_m[60] << 2) | (mask_m[61] << 0);
2231         REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
2232         REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
2233
2234         tmp_mask = (mask_m[31] << 28)
2235                 | (mask_m[32] << 26) | (mask_m[33] << 24)
2236                 | (mask_m[34] << 22) | (mask_m[35] << 20)
2237                 | (mask_m[36] << 18) | (mask_m[37] << 16)
2238                 | (mask_m[48] << 14) | (mask_m[39] << 12)
2239                 | (mask_m[40] << 10) | (mask_m[41] << 8)
2240                 | (mask_m[42] << 6) | (mask_m[43] << 4)
2241                 | (mask_m[44] << 2) | (mask_m[45] << 0);
2242         REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
2243         REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
2244
2245         tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
2246                 | (mask_m[18] << 26) | (mask_m[18] << 24)
2247                 | (mask_m[20] << 22) | (mask_m[20] << 20)
2248                 | (mask_m[22] << 18) | (mask_m[22] << 16)
2249                 | (mask_m[24] << 14) | (mask_m[24] << 12)
2250                 | (mask_m[25] << 10) | (mask_m[26] << 8)
2251                 | (mask_m[27] << 6) | (mask_m[28] << 4)
2252                 | (mask_m[29] << 2) | (mask_m[30] << 0);
2253         REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
2254         REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
2255
2256         tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
2257                 | (mask_m[2] << 26) | (mask_m[3] << 24)
2258                 | (mask_m[4] << 22) | (mask_m[5] << 20)
2259                 | (mask_m[6] << 18) | (mask_m[7] << 16)
2260                 | (mask_m[8] << 14) | (mask_m[9] << 12)
2261                 | (mask_m[10] << 10) | (mask_m[11] << 8)
2262                 | (mask_m[12] << 6) | (mask_m[13] << 4)
2263                 | (mask_m[14] << 2) | (mask_m[15] << 0);
2264         REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
2265         REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
2266
2267         tmp_mask = (mask_p[15] << 28)
2268                 | (mask_p[14] << 26) | (mask_p[13] << 24)
2269                 | (mask_p[12] << 22) | (mask_p[11] << 20)
2270                 | (mask_p[10] << 18) | (mask_p[9] << 16)
2271                 | (mask_p[8] << 14) | (mask_p[7] << 12)
2272                 | (mask_p[6] << 10) | (mask_p[5] << 8)
2273                 | (mask_p[4] << 6) | (mask_p[3] << 4)
2274                 | (mask_p[2] << 2) | (mask_p[1] << 0);
2275         REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
2276         REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
2277
2278         tmp_mask = (mask_p[30] << 28)
2279                 | (mask_p[29] << 26) | (mask_p[28] << 24)
2280                 | (mask_p[27] << 22) | (mask_p[26] << 20)
2281                 | (mask_p[25] << 18) | (mask_p[24] << 16)
2282                 | (mask_p[23] << 14) | (mask_p[22] << 12)
2283                 | (mask_p[21] << 10) | (mask_p[20] << 8)
2284                 | (mask_p[19] << 6) | (mask_p[18] << 4)
2285                 | (mask_p[17] << 2) | (mask_p[16] << 0);
2286         REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
2287         REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
2288
2289         tmp_mask = (mask_p[45] << 28)
2290                 | (mask_p[44] << 26) | (mask_p[43] << 24)
2291                 | (mask_p[42] << 22) | (mask_p[41] << 20)
2292                 | (mask_p[40] << 18) | (mask_p[39] << 16)
2293                 | (mask_p[38] << 14) | (mask_p[37] << 12)
2294                 | (mask_p[36] << 10) | (mask_p[35] << 8)
2295                 | (mask_p[34] << 6) | (mask_p[33] << 4)
2296                 | (mask_p[32] << 2) | (mask_p[31] << 0);
2297         REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
2298         REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
2299
2300         tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
2301                 | (mask_p[59] << 26) | (mask_p[58] << 24)
2302                 | (mask_p[57] << 22) | (mask_p[56] << 20)
2303                 | (mask_p[55] << 18) | (mask_p[54] << 16)
2304                 | (mask_p[53] << 14) | (mask_p[52] << 12)
2305                 | (mask_p[51] << 10) | (mask_p[50] << 8)
2306                 | (mask_p[49] << 6) | (mask_p[48] << 4)
2307                 | (mask_p[47] << 2) | (mask_p[46] << 0);
2308         REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
2309         REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
2310 }
2311
2312 static void ath9k_enable_rfkill(struct ath_hw *ah)
2313 {
2314         REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
2315                     AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
2316
2317         REG_CLR_BIT(ah, AR_GPIO_INPUT_MUX2,
2318                     AR_GPIO_INPUT_MUX2_RFSILENT);
2319
2320         ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
2321         REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
2322 }
2323
2324 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
2325                     bool bChannelChange)
2326 {
2327         u32 saveLedState;
2328         struct ath_softc *sc = ah->ah_sc;
2329         struct ath9k_channel *curchan = ah->curchan;
2330         u32 saveDefAntenna;
2331         u32 macStaId1;
2332         int i, rx_chainmask, r;
2333
2334         ah->extprotspacing = sc->ht_extprotspacing;
2335         ah->txchainmask = sc->tx_chainmask;
2336         ah->rxchainmask = sc->rx_chainmask;
2337
2338         if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2339                 return -EIO;
2340
2341         if (curchan)
2342                 ath9k_hw_getnf(ah, curchan);
2343
2344         if (bChannelChange &&
2345             (ah->chip_fullsleep != true) &&
2346             (ah->curchan != NULL) &&
2347             (chan->channel != ah->curchan->channel) &&
2348             ((chan->channelFlags & CHANNEL_ALL) ==
2349              (ah->curchan->channelFlags & CHANNEL_ALL)) &&
2350             (!AR_SREV_9280(ah) || (!IS_CHAN_A_5MHZ_SPACED(chan) &&
2351                                    !IS_CHAN_A_5MHZ_SPACED(ah->curchan)))) {
2352
2353                 if (ath9k_hw_channel_change(ah, chan, sc->tx_chan_width)) {
2354                         ath9k_hw_loadnf(ah, ah->curchan);
2355                         ath9k_hw_start_nfcal(ah);
2356                         return 0;
2357                 }
2358         }
2359
2360         saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
2361         if (saveDefAntenna == 0)
2362                 saveDefAntenna = 1;
2363
2364         macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
2365
2366         saveLedState = REG_READ(ah, AR_CFG_LED) &
2367                 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
2368                  AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
2369
2370         ath9k_hw_mark_phy_inactive(ah);
2371
2372         if (AR_SREV_9271(ah) && ah->htc_reset_init) {
2373                 REG_WRITE(ah,
2374                           AR9271_RESET_POWER_DOWN_CONTROL,
2375                           AR9271_RADIO_RF_RST);
2376                 udelay(50);
2377         }
2378
2379         if (!ath9k_hw_chip_reset(ah, chan)) {
2380                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL, "Chip reset failed\n");
2381                 return -EINVAL;
2382         }
2383
2384         if (AR_SREV_9271(ah) && ah->htc_reset_init) {
2385                 ah->htc_reset_init = false;
2386                 REG_WRITE(ah,
2387                           AR9271_RESET_POWER_DOWN_CONTROL,
2388                           AR9271_GATE_MAC_CTL);
2389                 udelay(50);
2390         }
2391
2392         if (AR_SREV_9280_10_OR_LATER(ah))
2393                 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
2394
2395         if (AR_SREV_9287_12_OR_LATER(ah)) {
2396                 /* Enable ASYNC FIFO */
2397                 REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2398                                 AR_MAC_PCU_ASYNC_FIFO_REG3_DATAPATH_SEL);
2399                 REG_SET_BIT(ah, AR_PHY_MODE, AR_PHY_MODE_ASYNCFIFO);
2400                 REG_CLR_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2401                                 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
2402                 REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2403                                 AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
2404         }
2405         r = ath9k_hw_process_ini(ah, chan, sc->tx_chan_width);
2406         if (r)
2407                 return r;
2408
2409         /* Setup MFP options for CCMP */
2410         if (AR_SREV_9280_20_OR_LATER(ah)) {
2411                 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
2412                  * frames when constructing CCMP AAD. */
2413                 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
2414                               0xc7ff);
2415                 ah->sw_mgmt_crypto = false;
2416         } else if (AR_SREV_9160_10_OR_LATER(ah)) {
2417                 /* Disable hardware crypto for management frames */
2418                 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
2419                             AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
2420                 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2421                             AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
2422                 ah->sw_mgmt_crypto = true;
2423         } else
2424                 ah->sw_mgmt_crypto = true;
2425
2426         if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
2427                 ath9k_hw_set_delta_slope(ah, chan);
2428
2429         if (AR_SREV_9280_10_OR_LATER(ah))
2430                 ath9k_hw_9280_spur_mitigate(ah, chan);
2431         else
2432                 ath9k_hw_spur_mitigate(ah, chan);
2433
2434         ah->eep_ops->set_board_values(ah, chan);
2435
2436         ath9k_hw_decrease_chain_power(ah, chan);
2437
2438         REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(ah->macaddr));
2439         REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(ah->macaddr + 4)
2440                   | macStaId1
2441                   | AR_STA_ID1_RTS_USE_DEF
2442                   | (ah->config.
2443                      ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
2444                   | ah->sta_id1_defaults);
2445         ath9k_hw_set_operating_mode(ah, ah->opmode);
2446
2447         REG_WRITE(ah, AR_BSSMSKL, get_unaligned_le32(sc->bssidmask));
2448         REG_WRITE(ah, AR_BSSMSKU, get_unaligned_le16(sc->bssidmask + 4));
2449
2450         REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
2451
2452         REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(sc->curbssid));
2453         REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(sc->curbssid + 4) |
2454                   ((sc->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2455
2456         REG_WRITE(ah, AR_ISR, ~0);
2457
2458         REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
2459
2460         if (AR_SREV_9280_10_OR_LATER(ah))
2461                 ath9k_hw_ar9280_set_channel(ah, chan);
2462         else
2463                 if (!(ath9k_hw_set_channel(ah, chan)))
2464                         return -EIO;
2465
2466         for (i = 0; i < AR_NUM_DCU; i++)
2467                 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
2468
2469         ah->intr_txqs = 0;
2470         for (i = 0; i < ah->caps.total_queues; i++)
2471                 ath9k_hw_resettxqueue(ah, i);
2472
2473         ath9k_hw_init_interrupt_masks(ah, ah->opmode);
2474         ath9k_hw_init_qos(ah);
2475
2476         if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2477                 ath9k_enable_rfkill(ah);
2478
2479         ath9k_hw_init_user_settings(ah);
2480
2481         if (AR_SREV_9287_12_OR_LATER(ah)) {
2482                 REG_WRITE(ah, AR_D_GBL_IFS_SIFS,
2483                           AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR);
2484                 REG_WRITE(ah, AR_D_GBL_IFS_SLOT,
2485                           AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR);
2486                 REG_WRITE(ah, AR_D_GBL_IFS_EIFS,
2487                           AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR);
2488
2489                 REG_WRITE(ah, AR_TIME_OUT, AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR);
2490                 REG_WRITE(ah, AR_USEC, AR_USEC_ASYNC_FIFO_DUR);
2491
2492                 REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
2493                             AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
2494                 REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
2495                               AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
2496         }
2497         if (AR_SREV_9287_12_OR_LATER(ah)) {
2498                 REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2499                                 AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
2500         }
2501
2502         REG_WRITE(ah, AR_STA_ID1,
2503                   REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
2504
2505         ath9k_hw_set_dma(ah);
2506
2507         REG_WRITE(ah, AR_OBS, 8);
2508
2509         if (ah->config.intr_mitigation) {
2510                 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
2511                 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
2512         }
2513
2514         ath9k_hw_init_bb(ah, chan);
2515
2516         if (!ath9k_hw_init_cal(ah, chan))
2517                 return -EIO;
2518
2519         rx_chainmask = ah->rxchainmask;
2520         if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
2521                 REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
2522                 REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
2523         }
2524
2525         REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2526
2527         /*
2528          * For big endian systems turn on swapping for descriptors
2529          */
2530         if (AR_SREV_9100(ah)) {
2531                 u32 mask;
2532                 mask = REG_READ(ah, AR_CFG);
2533                 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
2534                         DPRINTF(ah->ah_sc, ATH_DBG_RESET,
2535                                 "CFG Byte Swap Set 0x%x\n", mask);
2536                 } else {
2537                         mask =
2538                                 INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
2539                         REG_WRITE(ah, AR_CFG, mask);
2540                         DPRINTF(ah->ah_sc, ATH_DBG_RESET,
2541                                 "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
2542                 }
2543         } else {
2544                 /* Configure AR9271 target WLAN */
2545                 if (AR_SREV_9271(ah))
2546                         REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
2547 #ifdef __BIG_ENDIAN
2548                 else
2549                         REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2550 #endif
2551         }
2552
2553         return 0;
2554 }
2555
2556 /************************/
2557 /* Key Cache Management */
2558 /************************/
2559
2560 bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry)
2561 {
2562         u32 keyType;
2563
2564         if (entry >= ah->caps.keycache_size) {
2565                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2566                         "keychache entry %u out of range\n", entry);
2567                 return false;
2568         }
2569
2570         keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
2571
2572         REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
2573         REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
2574         REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
2575         REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
2576         REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
2577         REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
2578         REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
2579         REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
2580
2581         if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2582                 u16 micentry = entry + 64;
2583
2584                 REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
2585                 REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2586                 REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
2587                 REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2588
2589         }
2590
2591         return true;
2592 }
2593
2594 bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac)
2595 {
2596         u32 macHi, macLo;
2597
2598         if (entry >= ah->caps.keycache_size) {
2599                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2600                         "keychache entry %u out of range\n", entry);
2601                 return false;
2602         }
2603
2604         if (mac != NULL) {
2605                 macHi = (mac[5] << 8) | mac[4];
2606                 macLo = (mac[3] << 24) |
2607                         (mac[2] << 16) |
2608                         (mac[1] << 8) |
2609                         mac[0];
2610                 macLo >>= 1;
2611                 macLo |= (macHi & 1) << 31;
2612                 macHi >>= 1;
2613         } else {
2614                 macLo = macHi = 0;
2615         }
2616         REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
2617         REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
2618
2619         return true;
2620 }
2621
2622 bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry,
2623                                  const struct ath9k_keyval *k,
2624                                  const u8 *mac)
2625 {
2626         const struct ath9k_hw_capabilities *pCap = &ah->caps;
2627         u32 key0, key1, key2, key3, key4;
2628         u32 keyType;
2629
2630         if (entry >= pCap->keycache_size) {
2631                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2632                         "keycache entry %u out of range\n", entry);
2633                 return false;
2634         }
2635
2636         switch (k->kv_type) {
2637         case ATH9K_CIPHER_AES_OCB:
2638                 keyType = AR_KEYTABLE_TYPE_AES;
2639                 break;
2640         case ATH9K_CIPHER_AES_CCM:
2641                 if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
2642                         DPRINTF(ah->ah_sc, ATH_DBG_ANY,
2643                                 "AES-CCM not supported by mac rev 0x%x\n",
2644                                 ah->hw_version.macRev);
2645                         return false;
2646                 }
2647                 keyType = AR_KEYTABLE_TYPE_CCM;
2648                 break;
2649         case ATH9K_CIPHER_TKIP:
2650                 keyType = AR_KEYTABLE_TYPE_TKIP;
2651                 if (ATH9K_IS_MIC_ENABLED(ah)
2652                     && entry + 64 >= pCap->keycache_size) {
2653                         DPRINTF(ah->ah_sc, ATH_DBG_ANY,
2654                                 "entry %u inappropriate for TKIP\n", entry);
2655                         return false;
2656                 }
2657                 break;
2658         case ATH9K_CIPHER_WEP:
2659                 if (k->kv_len < WLAN_KEY_LEN_WEP40) {
2660                         DPRINTF(ah->ah_sc, ATH_DBG_ANY,
2661                                 "WEP key length %u too small\n", k->kv_len);
2662                         return false;
2663                 }
2664                 if (k->kv_len <= WLAN_KEY_LEN_WEP40)
2665                         keyType = AR_KEYTABLE_TYPE_40;
2666                 else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
2667                         keyType = AR_KEYTABLE_TYPE_104;
2668                 else
2669                         keyType = AR_KEYTABLE_TYPE_128;
2670                 break;
2671         case ATH9K_CIPHER_CLR:
2672                 keyType = AR_KEYTABLE_TYPE_CLR;
2673                 break;
2674         default:
2675                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2676                         "cipher %u not supported\n", k->kv_type);
2677                 return false;
2678         }
2679
2680         key0 = get_unaligned_le32(k->kv_val + 0);
2681         key1 = get_unaligned_le16(k->kv_val + 4);
2682         key2 = get_unaligned_le32(k->kv_val + 6);
2683         key3 = get_unaligned_le16(k->kv_val + 10);
2684         key4 = get_unaligned_le32(k->kv_val + 12);
2685         if (k->kv_len <= WLAN_KEY_LEN_WEP104)
2686                 key4 &= 0xff;
2687
2688         /*
2689          * Note: Key cache registers access special memory area that requires
2690          * two 32-bit writes to actually update the values in the internal
2691          * memory. Consequently, the exact order and pairs used here must be
2692          * maintained.
2693          */
2694
2695         if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2696                 u16 micentry = entry + 64;
2697
2698                 /*
2699                  * Write inverted key[47:0] first to avoid Michael MIC errors
2700                  * on frames that could be sent or received at the same time.
2701                  * The correct key will be written in the end once everything
2702                  * else is ready.
2703                  */
2704                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
2705                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
2706
2707                 /* Write key[95:48] */
2708                 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2709                 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2710
2711                 /* Write key[127:96] and key type */
2712                 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2713                 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2714
2715                 /* Write MAC address for the entry */
2716                 (void) ath9k_hw_keysetmac(ah, entry, mac);
2717
2718                 if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
2719                         /*
2720                          * TKIP uses two key cache entries:
2721                          * Michael MIC TX/RX keys in the same key cache entry
2722                          * (idx = main index + 64):
2723                          * key0 [31:0] = RX key [31:0]
2724                          * key1 [15:0] = TX key [31:16]
2725                          * key1 [31:16] = reserved
2726                          * key2 [31:0] = RX key [63:32]
2727                          * key3 [15:0] = TX key [15:0]
2728                          * key3 [31:16] = reserved
2729                          * key4 [31:0] = TX key [63:32]
2730                          */
2731                         u32 mic0, mic1, mic2, mic3, mic4;
2732
2733                         mic0 = get_unaligned_le32(k->kv_mic + 0);
2734                         mic2 = get_unaligned_le32(k->kv_mic + 4);
2735                         mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
2736                         mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
2737                         mic4 = get_unaligned_le32(k->kv_txmic + 4);
2738
2739                         /* Write RX[31:0] and TX[31:16] */
2740                         REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2741                         REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
2742
2743                         /* Write RX[63:32] and TX[15:0] */
2744                         REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2745                         REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
2746
2747                         /* Write TX[63:32] and keyType(reserved) */
2748                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
2749                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2750                                   AR_KEYTABLE_TYPE_CLR);
2751
2752                 } else {
2753                         /*
2754                          * TKIP uses four key cache entries (two for group
2755                          * keys):
2756                          * Michael MIC TX/RX keys are in different key cache
2757                          * entries (idx = main index + 64 for TX and
2758                          * main index + 32 + 96 for RX):
2759                          * key0 [31:0] = TX/RX MIC key [31:0]
2760                          * key1 [31:0] = reserved
2761                          * key2 [31:0] = TX/RX MIC key [63:32]
2762                          * key3 [31:0] = reserved
2763                          * key4 [31:0] = reserved
2764                          *
2765                          * Upper layer code will call this function separately
2766                          * for TX and RX keys when these registers offsets are
2767                          * used.
2768                          */
2769                         u32 mic0, mic2;
2770
2771                         mic0 = get_unaligned_le32(k->kv_mic + 0);
2772                         mic2 = get_unaligned_le32(k->kv_mic + 4);
2773
2774                         /* Write MIC key[31:0] */
2775                         REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2776                         REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2777
2778                         /* Write MIC key[63:32] */
2779                         REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2780                         REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2781
2782                         /* Write TX[63:32] and keyType(reserved) */
2783                         REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
2784                         REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2785                                   AR_KEYTABLE_TYPE_CLR);
2786                 }
2787
2788                 /* MAC address registers are reserved for the MIC entry */
2789                 REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
2790                 REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
2791
2792                 /*
2793                  * Write the correct (un-inverted) key[47:0] last to enable
2794                  * TKIP now that all other registers are set with correct
2795                  * values.
2796                  */
2797                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2798                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2799         } else {
2800                 /* Write key[47:0] */
2801                 REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2802                 REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2803
2804                 /* Write key[95:48] */
2805                 REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2806                 REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2807
2808                 /* Write key[127:96] and key type */
2809                 REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2810                 REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2811
2812                 /* Write MAC address for the entry */
2813                 (void) ath9k_hw_keysetmac(ah, entry, mac);
2814         }
2815
2816         return true;
2817 }
2818
2819 bool ath9k_hw_keyisvalid(struct ath_hw *ah, u16 entry)
2820 {
2821         if (entry < ah->caps.keycache_size) {
2822                 u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
2823                 if (val & AR_KEYTABLE_VALID)
2824                         return true;
2825         }
2826         return false;
2827 }
2828
2829 /******************************/
2830 /* Power Management (Chipset) */
2831 /******************************/
2832
2833 static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
2834 {
2835         REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2836         if (setChip) {
2837                 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2838                             AR_RTC_FORCE_WAKE_EN);
2839                 if (!AR_SREV_9100(ah))
2840                         REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2841
2842                 REG_CLR_BIT(ah, (AR_RTC_RESET),
2843                             AR_RTC_RESET_EN);
2844         }
2845 }
2846
2847 static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
2848 {
2849         REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2850         if (setChip) {
2851                 struct ath9k_hw_capabilities *pCap = &ah->caps;
2852
2853                 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2854                         REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2855                                   AR_RTC_FORCE_WAKE_ON_INT);
2856                 } else {
2857                         REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2858                                     AR_RTC_FORCE_WAKE_EN);
2859                 }
2860         }
2861 }
2862
2863 static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
2864 {
2865         u32 val;
2866         int i;
2867
2868         if (setChip) {
2869                 if ((REG_READ(ah, AR_RTC_STATUS) &
2870                      AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2871                         if (ath9k_hw_set_reset_reg(ah,
2872                                            ATH9K_RESET_POWER_ON) != true) {
2873                                 return false;
2874                         }
2875                 }
2876                 if (AR_SREV_9100(ah))
2877                         REG_SET_BIT(ah, AR_RTC_RESET,
2878                                     AR_RTC_RESET_EN);
2879
2880                 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2881                             AR_RTC_FORCE_WAKE_EN);
2882                 udelay(50);
2883
2884                 for (i = POWER_UP_TIME / 50; i > 0; i--) {
2885                         val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2886                         if (val == AR_RTC_STATUS_ON)
2887                                 break;
2888                         udelay(50);
2889                         REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2890                                     AR_RTC_FORCE_WAKE_EN);
2891                 }
2892                 if (i == 0) {
2893                         DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2894                                 "Failed to wakeup in %uus\n", POWER_UP_TIME / 20);
2895                         return false;
2896                 }
2897         }
2898
2899         REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2900
2901         return true;
2902 }
2903
2904 static bool ath9k_hw_setpower_nolock(struct ath_hw *ah,
2905                                      enum ath9k_power_mode mode)
2906 {
2907         int status = true, setChip = true;
2908         static const char *modes[] = {
2909                 "AWAKE",
2910                 "FULL-SLEEP",
2911                 "NETWORK SLEEP",
2912                 "UNDEFINED"
2913         };
2914
2915         if (ah->power_mode == mode)
2916                 return status;
2917
2918         DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s -> %s\n",
2919                 modes[ah->power_mode], modes[mode]);
2920
2921         switch (mode) {
2922         case ATH9K_PM_AWAKE:
2923                 status = ath9k_hw_set_power_awake(ah, setChip);
2924                 break;
2925         case ATH9K_PM_FULL_SLEEP:
2926                 ath9k_set_power_sleep(ah, setChip);
2927                 ah->chip_fullsleep = true;
2928                 break;
2929         case ATH9K_PM_NETWORK_SLEEP:
2930                 ath9k_set_power_network_sleep(ah, setChip);
2931                 break;
2932         default:
2933                 DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2934                         "Unknown power mode %u\n", mode);
2935                 return false;
2936         }
2937         ah->power_mode = mode;
2938
2939         return status;
2940 }
2941
2942 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2943 {
2944         unsigned long flags;
2945         bool ret;
2946
2947         spin_lock_irqsave(&ah->ah_sc->sc_pm_lock, flags);
2948         ret = ath9k_hw_setpower_nolock(ah, mode);
2949         spin_unlock_irqrestore(&ah->ah_sc->sc_pm_lock, flags);
2950
2951         return ret;
2952 }
2953
2954 void ath9k_ps_wakeup(struct ath_softc *sc)
2955 {
2956         unsigned long flags;
2957
2958         spin_lock_irqsave(&sc->sc_pm_lock, flags);
2959         if (++sc->ps_usecount != 1)
2960                 goto unlock;
2961
2962         ath9k_hw_setpower_nolock(sc->sc_ah, ATH9K_PM_AWAKE);
2963
2964  unlock:
2965         spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
2966 }
2967
2968 void ath9k_ps_restore(struct ath_softc *sc)
2969 {
2970         unsigned long flags;
2971
2972         spin_lock_irqsave(&sc->sc_pm_lock, flags);
2973         if (--sc->ps_usecount != 0)
2974                 goto unlock;
2975
2976         if (sc->ps_enabled &&
2977             !(sc->sc_flags & (SC_OP_WAIT_FOR_BEACON |
2978                               SC_OP_WAIT_FOR_CAB |
2979                               SC_OP_WAIT_FOR_PSPOLL_DATA |
2980                               SC_OP_WAIT_FOR_TX_ACK)))
2981                 ath9k_hw_setpower_nolock(sc->sc_ah, ATH9K_PM_NETWORK_SLEEP);
2982
2983  unlock:
2984         spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
2985 }
2986
2987 /*
2988  * Helper for ASPM support.
2989  *
2990  * Disable PLL when in L0s as well as receiver clock when in L1.
2991  * This power saving option must be enabled through the SerDes.
2992  *
2993  * Programming the SerDes must go through the same 288 bit serial shift
2994  * register as the other analog registers.  Hence the 9 writes.
2995  */
2996 void ath9k_hw_configpcipowersave(struct ath_hw *ah, int restore)
2997 {
2998         u8 i;
2999
3000         if (ah->is_pciexpress != true)
3001                 return;
3002
3003         /* Do not touch SerDes registers */
3004         if (ah->config.pcie_powersave_enable == 2)
3005                 return;
3006
3007         /* Nothing to do on restore for 11N */
3008         if (restore)
3009                 return;
3010
3011         if (AR_SREV_9280_20_OR_LATER(ah)) {
3012                 /*
3013                  * AR9280 2.0 or later chips use SerDes values from the
3014                  * initvals.h initialized depending on chipset during
3015                  * ath9k_hw_init()
3016                  */
3017                 for (i = 0; i < ah->iniPcieSerdes.ia_rows; i++) {
3018                         REG_WRITE(ah, INI_RA(&ah->iniPcieSerdes, i, 0),
3019                                   INI_RA(&ah->iniPcieSerdes, i, 1));
3020                 }
3021         } else if (AR_SREV_9280(ah) &&
3022                    (ah->hw_version.macRev == AR_SREV_REVISION_9280_10)) {
3023                 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fd00);
3024                 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
3025
3026                 /* RX shut off when elecidle is asserted */
3027                 REG_WRITE(ah, AR_PCIE_SERDES, 0xa8000019);
3028                 REG_WRITE(ah, AR_PCIE_SERDES, 0x13160820);
3029                 REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980560);
3030
3031                 /* Shut off CLKREQ active in L1 */
3032                 if (ah->config.pcie_clock_req)
3033                         REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffc);
3034                 else
3035                         REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffd);
3036
3037                 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
3038                 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
3039                 REG_WRITE(ah, AR_PCIE_SERDES, 0x00043007);
3040
3041                 /* Load the new settings */
3042                 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
3043
3044         } else {
3045                 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
3046                 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
3047
3048                 /* RX shut off when elecidle is asserted */
3049                 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000039);
3050                 REG_WRITE(ah, AR_PCIE_SERDES, 0x53160824);
3051                 REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980579);
3052
3053                 /*
3054                  * Ignore ah->ah_config.pcie_clock_req setting for
3055                  * pre-AR9280 11n
3056                  */
3057                 REG_WRITE(ah, AR_PCIE_SERDES, 0x001defff);
3058
3059                 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
3060                 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
3061                 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e3007);
3062
3063                 /* Load the new settings */
3064                 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
3065         }
3066
3067         udelay(1000);
3068
3069         /* set bit 19 to allow forcing of pcie core into L1 state */
3070         REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
3071
3072         /* Several PCIe massages to ensure proper behaviour */
3073         if (ah->config.pcie_waen) {
3074                 REG_WRITE(ah, AR_WA, ah->config.pcie_waen);
3075         } else {
3076                 if (AR_SREV_9285(ah) || AR_SREV_9271(ah) || AR_SREV_9287(ah))
3077                         REG_WRITE(ah, AR_WA, AR9285_WA_DEFAULT);
3078                 /*
3079                  * On AR9280 chips bit 22 of 0x4004 needs to be set to
3080                  * otherwise card may disappear.
3081                  */
3082                 else if (AR_SREV_9280(ah))
3083                         REG_WRITE(ah, AR_WA, AR9280_WA_DEFAULT);
3084                 else
3085                         REG_WRITE(ah, AR_WA, AR_WA_DEFAULT);
3086         }
3087 }
3088
3089 /**********************/
3090 /* Interrupt Handling */
3091 /**********************/
3092
3093 bool ath9k_hw_intrpend(struct ath_hw *ah)
3094 {
3095         u32 host_isr;
3096
3097         if (AR_SREV_9100(ah))
3098                 return true;
3099
3100         host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
3101         if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS))
3102                 return true;
3103
3104         host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
3105         if ((host_isr & AR_INTR_SYNC_DEFAULT)
3106             && (host_isr != AR_INTR_SPURIOUS))
3107                 return true;
3108
3109         return false;
3110 }
3111
3112 bool ath9k_hw_getisr(struct ath_hw *ah, enum ath9k_int *masked)
3113 {
3114         u32 isr = 0;
3115         u32 mask2 = 0;
3116         struct ath9k_hw_capabilities *pCap = &ah->caps;
3117         u32 sync_cause = 0;
3118         bool fatal_int = false;
3119
3120         if (!AR_SREV_9100(ah)) {
3121                 if (REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) {
3122                         if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M)
3123                             == AR_RTC_STATUS_ON) {
3124                                 isr = REG_READ(ah, AR_ISR);
3125                         }
3126                 }
3127
3128                 sync_cause = REG_READ(ah, AR_INTR_SYNC_CAUSE) &
3129                         AR_INTR_SYNC_DEFAULT;
3130
3131                 *masked = 0;
3132
3133                 if (!isr && !sync_cause)
3134                         return false;
3135         } else {
3136                 *masked = 0;
3137                 isr = REG_READ(ah, AR_ISR);
3138         }
3139
3140         if (isr) {
3141                 if (isr & AR_ISR_BCNMISC) {
3142                         u32 isr2;
3143                         isr2 = REG_READ(ah, AR_ISR_S2);
3144                         if (isr2 & AR_ISR_S2_TIM)
3145                                 mask2 |= ATH9K_INT_TIM;
3146                         if (isr2 & AR_ISR_S2_DTIM)
3147                                 mask2 |= ATH9K_INT_DTIM;
3148                         if (isr2 & AR_ISR_S2_DTIMSYNC)
3149                                 mask2 |= ATH9K_INT_DTIMSYNC;
3150                         if (isr2 & (AR_ISR_S2_CABEND))
3151                                 mask2 |= ATH9K_INT_CABEND;
3152                         if (isr2 & AR_ISR_S2_GTT)
3153                                 mask2 |= ATH9K_INT_GTT;
3154                         if (isr2 & AR_ISR_S2_CST)
3155                                 mask2 |= ATH9K_INT_CST;
3156                         if (isr2 & AR_ISR_S2_TSFOOR)
3157                                 mask2 |= ATH9K_INT_TSFOOR;
3158                 }
3159
3160                 isr = REG_READ(ah, AR_ISR_RAC);
3161                 if (isr == 0xffffffff) {
3162                         *masked = 0;
3163                         return false;
3164                 }
3165
3166                 *masked = isr & ATH9K_INT_COMMON;
3167
3168                 if (ah->config.intr_mitigation) {
3169                         if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
3170                                 *masked |= ATH9K_INT_RX;
3171                 }
3172
3173                 if (isr & (AR_ISR_RXOK | AR_ISR_RXERR))
3174                         *masked |= ATH9K_INT_RX;
3175                 if (isr &
3176                     (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR |
3177                      AR_ISR_TXEOL)) {
3178                         u32 s0_s, s1_s;
3179
3180                         *masked |= ATH9K_INT_TX;
3181
3182                         s0_s = REG_READ(ah, AR_ISR_S0_S);
3183                         ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXOK);
3184                         ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXDESC);
3185
3186                         s1_s = REG_READ(ah, AR_ISR_S1_S);
3187                         ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXERR);
3188                         ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXEOL);
3189                 }
3190
3191                 if (isr & AR_ISR_RXORN) {
3192                         DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
3193                                 "receive FIFO overrun interrupt\n");
3194                 }
3195
3196                 if (!AR_SREV_9100(ah)) {
3197                         if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
3198                                 u32 isr5 = REG_READ(ah, AR_ISR_S5_S);
3199                                 if (isr5 & AR_ISR_S5_TIM_TIMER)
3200                                         *masked |= ATH9K_INT_TIM_TIMER;
3201                         }
3202                 }
3203
3204                 *masked |= mask2;
3205         }
3206
3207         if (AR_SREV_9100(ah))
3208                 return true;
3209
3210         if (sync_cause) {
3211                 fatal_int =
3212                         (sync_cause &
3213                          (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR))
3214                         ? true : false;
3215
3216                 if (fatal_int) {
3217                         if (sync_cause & AR_INTR_SYNC_HOST1_FATAL) {
3218                                 DPRINTF(ah->ah_sc, ATH_DBG_ANY,
3219                                         "received PCI FATAL interrupt\n");
3220                         }
3221                         if (sync_cause & AR_INTR_SYNC_HOST1_PERR) {
3222                                 DPRINTF(ah->ah_sc, ATH_DBG_ANY,
3223                                         "received PCI PERR interrupt\n");
3224                         }
3225                         *masked |= ATH9K_INT_FATAL;
3226                 }
3227                 if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
3228                         DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
3229                                 "AR_INTR_SYNC_RADM_CPL_TIMEOUT\n");
3230                         REG_WRITE(ah, AR_RC, AR_RC_HOSTIF);
3231                         REG_WRITE(ah, AR_RC, 0);
3232                         *masked |= ATH9K_INT_FATAL;
3233                 }
3234                 if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT) {
3235                         DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
3236                                 "AR_INTR_SYNC_LOCAL_TIMEOUT\n");
3237                 }
3238
3239                 REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause);
3240                 (void) REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR);
3241         }
3242
3243         return true;
3244 }
3245
3246 enum ath9k_int ath9k_hw_set_interrupts(struct ath_hw *ah, enum ath9k_int ints)
3247 {
3248         u32 omask = ah->mask_reg;
3249         u32 mask, mask2;
3250         struct ath9k_hw_capabilities *pCap = &ah->caps;
3251
3252         DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "0x%x => 0x%x\n", omask, ints);
3253
3254         if (omask & ATH9K_INT_GLOBAL) {
3255                 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "disable IER\n");
3256                 REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
3257                 (void) REG_READ(ah, AR_IER);
3258                 if (!AR_SREV_9100(ah)) {
3259                         REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
3260                         (void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
3261
3262                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
3263                         (void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
3264                 }
3265         }
3266
3267         mask = ints & ATH9K_INT_COMMON;
3268         mask2 = 0;
3269
3270         if (ints & ATH9K_INT_TX) {
3271                 if (ah->txok_interrupt_mask)
3272                         mask |= AR_IMR_TXOK;
3273                 if (ah->txdesc_interrupt_mask)
3274                         mask |= AR_IMR_TXDESC;
3275                 if (ah->txerr_interrupt_mask)
3276                         mask |= AR_IMR_TXERR;
3277                 if (ah->txeol_interrupt_mask)
3278                         mask |= AR_IMR_TXEOL;
3279         }
3280         if (ints & ATH9K_INT_RX) {
3281                 mask |= AR_IMR_RXERR;
3282                 if (ah->config.intr_mitigation)
3283                         mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
3284                 else
3285                         mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
3286                 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
3287                         mask |= AR_IMR_GENTMR;
3288         }
3289
3290         if (ints & (ATH9K_INT_BMISC)) {
3291                 mask |= AR_IMR_BCNMISC;
3292                 if (ints & ATH9K_INT_TIM)
3293                         mask2 |= AR_IMR_S2_TIM;
3294                 if (ints & ATH9K_INT_DTIM)
3295                         mask2 |= AR_IMR_S2_DTIM;
3296                 if (ints & ATH9K_INT_DTIMSYNC)
3297                         mask2 |= AR_IMR_S2_DTIMSYNC;
3298                 if (ints & ATH9K_INT_CABEND)
3299                         mask2 |= AR_IMR_S2_CABEND;
3300                 if (ints & ATH9K_INT_TSFOOR)
3301                         mask2 |= AR_IMR_S2_TSFOOR;
3302         }
3303
3304         if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
3305                 mask |= AR_IMR_BCNMISC;
3306                 if (ints & ATH9K_INT_GTT)
3307                         mask2 |= AR_IMR_S2_GTT;
3308                 if (ints & ATH9K_INT_CST)
3309                         mask2 |= AR_IMR_S2_CST;
3310         }
3311
3312         DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "new IMR 0x%x\n", mask);
3313         REG_WRITE(ah, AR_IMR, mask);
3314         mask = REG_READ(ah, AR_IMR_S2) & ~(AR_IMR_S2_TIM |
3315                                            AR_IMR_S2_DTIM |
3316                                            AR_IMR_S2_DTIMSYNC |
3317                                            AR_IMR_S2_CABEND |
3318                                            AR_IMR_S2_CABTO |
3319                                            AR_IMR_S2_TSFOOR |
3320                                            AR_IMR_S2_GTT | AR_IMR_S2_CST);
3321         REG_WRITE(ah, AR_IMR_S2, mask | mask2);
3322         ah->mask_reg = ints;
3323
3324         if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
3325                 if (ints & ATH9K_INT_TIM_TIMER)
3326                         REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
3327                 else
3328                         REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
3329         }
3330
3331         if (ints & ATH9K_INT_GLOBAL) {
3332                 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "enable IER\n");
3333                 REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
3334                 if (!AR_SREV_9100(ah)) {
3335                         REG_WRITE(ah, AR_INTR_ASYNC_ENABLE,
3336                                   AR_INTR_MAC_IRQ);
3337                         REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
3338
3339
3340                         REG_WRITE(ah, AR_INTR_SYNC_ENABLE,
3341                                   AR_INTR_SYNC_DEFAULT);
3342                         REG_WRITE(ah, AR_INTR_SYNC_MASK,
3343                                   AR_INTR_SYNC_DEFAULT);
3344                 }
3345                 DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
3346                          REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
3347         }