0c462c904cbea7a3603641c70f0013dfdfbb7e81
[pandora-kernel.git] / drivers / net / wireless / ath / ath9k / ar9003_paprd.c
1 /*
2  * Copyright (c) 2010-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16
17 #include "hw.h"
18 #include "ar9003_phy.h"
19
20 void ar9003_paprd_enable(struct ath_hw *ah, bool val)
21 {
22         struct ath9k_channel *chan = ah->curchan;
23         struct ar9300_eeprom *eep = &ah->eeprom.ar9300_eep;
24
25         /*
26          * 3 bits for modalHeader5G.papdRateMaskHt20
27          * is used for sub-band disabling of PAPRD.
28          * 5G band is divided into 3 sub-bands -- upper,
29          * middle, lower.
30          * if bit 30 of modalHeader5G.papdRateMaskHt20 is set
31          * -- disable PAPRD for upper band 5GHz
32          * if bit 29 of modalHeader5G.papdRateMaskHt20 is set
33          * -- disable PAPRD for middle band 5GHz
34          * if bit 28 of modalHeader5G.papdRateMaskHt20 is set
35          * -- disable PAPRD for lower band 5GHz
36          */
37
38         if (IS_CHAN_5GHZ(chan)) {
39                 if (chan->channel >= UPPER_5G_SUB_BAND_START) {
40                         if (le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20)
41                                                                   & BIT(30))
42                                 val = false;
43                 } else if (chan->channel >= MID_5G_SUB_BAND_START) {
44                         if (le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20)
45                                                                   & BIT(29))
46                                 val = false;
47                 } else {
48                         if (le32_to_cpu(eep->modalHeader5G.papdRateMaskHt20)
49                                                                   & BIT(28))
50                                 val = false;
51                 }
52         }
53
54         if (val) {
55                 ah->paprd_table_write_done = true;
56                 ath9k_hw_apply_txpower(ah, chan);
57         }
58
59         REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B0,
60                       AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val);
61         if (ah->caps.tx_chainmask & BIT(1))
62                 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B1,
63                               AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val);
64         if (ah->caps.tx_chainmask & BIT(2))
65                 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL0_B2,
66                               AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE, !!val);
67 }
68 EXPORT_SYMBOL(ar9003_paprd_enable);
69
70 static int ar9003_get_training_power_2g(struct ath_hw *ah)
71 {
72         struct ath9k_channel *chan = ah->curchan;
73         unsigned int power, scale, delta;
74
75         scale = ar9003_get_paprd_scale_factor(ah, chan);
76         power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE5,
77                                AR_PHY_POWERTX_RATE5_POWERTXHT20_0);
78
79         delta = abs((int) ah->paprd_target_power - (int) power);
80         if (delta > scale)
81                 return -1;
82
83         if (delta < 4)
84                 power -= 4 - delta;
85
86         return power;
87 }
88
89 static int ar9003_get_training_power_5g(struct ath_hw *ah)
90 {
91         struct ath_common *common = ath9k_hw_common(ah);
92         struct ath9k_channel *chan = ah->curchan;
93         unsigned int power, scale, delta;
94
95         scale = ar9003_get_paprd_scale_factor(ah, chan);
96
97         if (IS_CHAN_HT40(chan))
98                 power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE8,
99                         AR_PHY_POWERTX_RATE8_POWERTXHT40_5);
100         else
101                 power = REG_READ_FIELD(ah, AR_PHY_POWERTX_RATE6,
102                         AR_PHY_POWERTX_RATE6_POWERTXHT20_5);
103
104         power += scale;
105         delta = abs((int) ah->paprd_target_power - (int) power);
106         if (delta > scale)
107                 return -1;
108
109         switch (get_streams(ah->txchainmask)) {
110         case 1:
111                 delta = 6;
112                 break;
113         case 2:
114                 delta = 4;
115                 break;
116         case 3:
117                 delta = 2;
118                 break;
119         default:
120                 delta = 0;
121                 ath_dbg(common, ATH_DBG_CALIBRATE,
122                 "Invalid tx-chainmask: %u\n", ah->txchainmask);
123         }
124
125         power += delta;
126         return power;
127 }
128
129 static int ar9003_paprd_setup_single_table(struct ath_hw *ah)
130 {
131         struct ath_common *common = ath9k_hw_common(ah);
132         static const u32 ctrl0[3] = {
133                 AR_PHY_PAPRD_CTRL0_B0,
134                 AR_PHY_PAPRD_CTRL0_B1,
135                 AR_PHY_PAPRD_CTRL0_B2
136         };
137         static const u32 ctrl1[3] = {
138                 AR_PHY_PAPRD_CTRL1_B0,
139                 AR_PHY_PAPRD_CTRL1_B1,
140                 AR_PHY_PAPRD_CTRL1_B2
141         };
142         int training_power;
143         int i, val;
144
145         if (IS_CHAN_2GHZ(ah->curchan))
146                 training_power = ar9003_get_training_power_2g(ah);
147         else
148                 training_power = ar9003_get_training_power_5g(ah);
149
150         ath_dbg(common, ATH_DBG_CALIBRATE,
151                 "Training power: %d, Target power: %d\n",
152                 training_power, ah->paprd_target_power);
153
154         if (training_power < 0) {
155                 ath_dbg(common, ATH_DBG_CALIBRATE,
156                         "PAPRD target power delta out of range");
157                 return -ERANGE;
158         }
159         ah->paprd_training_power = training_power;
160
161         REG_RMW_FIELD(ah, AR_PHY_PAPRD_AM2AM, AR_PHY_PAPRD_AM2AM_MASK,
162                       ah->paprd_ratemask);
163         REG_RMW_FIELD(ah, AR_PHY_PAPRD_AM2PM, AR_PHY_PAPRD_AM2PM_MASK,
164                       ah->paprd_ratemask);
165         REG_RMW_FIELD(ah, AR_PHY_PAPRD_HT40, AR_PHY_PAPRD_HT40_MASK,
166                       ah->paprd_ratemask_ht40);
167
168         for (i = 0; i < ah->caps.max_txchains; i++) {
169                 REG_RMW_FIELD(ah, ctrl0[i],
170                               AR_PHY_PAPRD_CTRL0_USE_SINGLE_TABLE_MASK, 1);
171                 REG_RMW_FIELD(ah, ctrl1[i],
172                               AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2PM_ENABLE, 1);
173                 REG_RMW_FIELD(ah, ctrl1[i],
174                               AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2AM_ENABLE, 1);
175                 REG_RMW_FIELD(ah, ctrl1[i],
176                               AR_PHY_PAPRD_CTRL1_ADAPTIVE_SCALING_ENA, 0);
177                 REG_RMW_FIELD(ah, ctrl1[i],
178                               AR_PHY_PAPRD_CTRL1_PA_GAIN_SCALE_FACT_MASK, 181);
179                 REG_RMW_FIELD(ah, ctrl1[i],
180                               AR_PHY_PAPRD_CTRL1_PAPRD_MAG_SCALE_FACT, 361);
181                 REG_RMW_FIELD(ah, ctrl1[i],
182                               AR_PHY_PAPRD_CTRL1_ADAPTIVE_SCALING_ENA, 0);
183                 REG_RMW_FIELD(ah, ctrl0[i],
184                               AR_PHY_PAPRD_CTRL0_PAPRD_MAG_THRSH, 3);
185         }
186
187         ar9003_paprd_enable(ah, false);
188
189         REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
190                       AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_LB_SKIP, 0x30);
191         REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
192                       AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_LB_ENABLE, 1);
193         REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
194                       AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_TX_GAIN_FORCE, 1);
195         REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
196                       AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_RX_BB_GAIN_FORCE, 0);
197         REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
198                       AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_IQCORR_ENABLE, 0);
199         REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
200                       AR_PHY_PAPRD_TRAINER_CNTL1_CF_PAPRD_AGC2_SETTLING, 28);
201         REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL1,
202                       AR_PHY_PAPRD_TRAINER_CNTL1_CF_CF_PAPRD_TRAIN_ENABLE, 1);
203         val = AR_SREV_9462(ah) ? 0x91 : 147;
204         REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL2,
205                       AR_PHY_PAPRD_TRAINER_CNTL2_CF_PAPRD_INIT_RX_BB_GAIN, val);
206         REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
207                       AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_FINE_CORR_LEN, 4);
208         REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
209                       AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_COARSE_CORR_LEN, 4);
210         REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
211                       AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_NUM_CORR_STAGES, 7);
212         REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
213                       AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_MIN_LOOPBACK_DEL, 1);
214         if (AR_SREV_9485(ah) || AR_SREV_9462(ah))
215                 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
216                               AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP,
217                               -3);
218         else
219                 REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
220                               AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_QUICK_DROP,
221                               -6);
222         val = AR_SREV_9462(ah) ? -10 : -15;
223         REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
224                       AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_ADC_DESIRED_SIZE,
225                       val);
226         REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL3,
227                       AR_PHY_PAPRD_TRAINER_CNTL3_CF_PAPRD_BBTXMIX_DISABLE, 1);
228         REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4,
229                       AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_SAFETY_DELTA, 0);
230         REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4,
231                       AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_MIN_CORR, 400);
232         REG_RMW_FIELD(ah, AR_PHY_PAPRD_TRAINER_CNTL4,
233                       AR_PHY_PAPRD_TRAINER_CNTL4_CF_PAPRD_NUM_TRAIN_SAMPLES,
234                       100);
235         REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_0_B0,
236                       AR_PHY_PAPRD_PRE_POST_SCALING, 261376);
237         REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_1_B0,
238                       AR_PHY_PAPRD_PRE_POST_SCALING, 248079);
239         REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_2_B0,
240                       AR_PHY_PAPRD_PRE_POST_SCALING, 233759);
241         REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_3_B0,
242                       AR_PHY_PAPRD_PRE_POST_SCALING, 220464);
243         REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_4_B0,
244                       AR_PHY_PAPRD_PRE_POST_SCALING, 208194);
245         REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_5_B0,
246                       AR_PHY_PAPRD_PRE_POST_SCALING, 196949);
247         REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_6_B0,
248                       AR_PHY_PAPRD_PRE_POST_SCALING, 185706);
249         REG_RMW_FIELD(ah, AR_PHY_PAPRD_PRE_POST_SCALE_7_B0,
250                       AR_PHY_PAPRD_PRE_POST_SCALING, 175487);
251         return 0;
252 }
253
254 static void ar9003_paprd_get_gain_table(struct ath_hw *ah)
255 {
256         u32 *entry = ah->paprd_gain_table_entries;
257         u8 *index = ah->paprd_gain_table_index;
258         u32 reg = AR_PHY_TXGAIN_TABLE;
259         int i;
260
261         memset(entry, 0, sizeof(ah->paprd_gain_table_entries));
262         memset(index, 0, sizeof(ah->paprd_gain_table_index));
263
264         for (i = 0; i < PAPRD_GAIN_TABLE_ENTRIES; i++) {
265                 entry[i] = REG_READ(ah, reg);
266                 index[i] = (entry[i] >> 24) & 0xff;
267                 reg += 4;
268         }
269 }
270
271 static unsigned int ar9003_get_desired_gain(struct ath_hw *ah, int chain,
272                                             int target_power)
273 {
274         int olpc_gain_delta = 0, cl_gain_mod;
275         int alpha_therm, alpha_volt;
276         int therm_cal_value, volt_cal_value;
277         int therm_value, volt_value;
278         int thermal_gain_corr, voltage_gain_corr;
279         int desired_scale, desired_gain = 0;
280         u32 reg_olpc  = 0, reg_cl_gain  = 0;
281
282         REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1,
283                     AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
284         desired_scale = REG_READ_FIELD(ah, AR_PHY_TPC_12,
285                                        AR_PHY_TPC_12_DESIRED_SCALE_HT40_5);
286         alpha_therm = REG_READ_FIELD(ah, AR_PHY_TPC_19,
287                                      AR_PHY_TPC_19_ALPHA_THERM);
288         alpha_volt = REG_READ_FIELD(ah, AR_PHY_TPC_19,
289                                     AR_PHY_TPC_19_ALPHA_VOLT);
290         therm_cal_value = REG_READ_FIELD(ah, AR_PHY_TPC_18,
291                                          AR_PHY_TPC_18_THERM_CAL_VALUE);
292         volt_cal_value = REG_READ_FIELD(ah, AR_PHY_TPC_18,
293                                         AR_PHY_TPC_18_VOLT_CAL_VALUE);
294         therm_value = REG_READ_FIELD(ah, AR_PHY_BB_THERM_ADC_4,
295                                      AR_PHY_BB_THERM_ADC_4_LATEST_THERM_VALUE);
296         volt_value = REG_READ_FIELD(ah, AR_PHY_BB_THERM_ADC_4,
297                                     AR_PHY_BB_THERM_ADC_4_LATEST_VOLT_VALUE);
298
299         switch (chain) {
300         case 0:
301                 reg_olpc = AR_PHY_TPC_11_B0;
302                 reg_cl_gain = AR_PHY_CL_TAB_0;
303                 break;
304         case 1:
305                 reg_olpc = AR_PHY_TPC_11_B1;
306                 reg_cl_gain = AR_PHY_CL_TAB_1;
307                 break;
308         case 2:
309                 reg_olpc = AR_PHY_TPC_11_B2;
310                 reg_cl_gain = AR_PHY_CL_TAB_2;
311                 break;
312         default:
313                 ath_dbg(ath9k_hw_common(ah), ATH_DBG_CALIBRATE,
314                 "Invalid chainmask: %d\n", chain);
315                 break;
316         }
317
318         olpc_gain_delta = REG_READ_FIELD(ah, reg_olpc,
319                                          AR_PHY_TPC_11_OLPC_GAIN_DELTA);
320         cl_gain_mod = REG_READ_FIELD(ah, reg_cl_gain,
321                                          AR_PHY_CL_TAB_CL_GAIN_MOD);
322
323         if (olpc_gain_delta >= 128)
324                 olpc_gain_delta = olpc_gain_delta - 256;
325
326         thermal_gain_corr = (alpha_therm * (therm_value - therm_cal_value) +
327                              (256 / 2)) / 256;
328         voltage_gain_corr = (alpha_volt * (volt_value - volt_cal_value) +
329                              (128 / 2)) / 128;
330         desired_gain = target_power - olpc_gain_delta - thermal_gain_corr -
331             voltage_gain_corr + desired_scale + cl_gain_mod;
332
333         return desired_gain;
334 }
335
336 static void ar9003_tx_force_gain(struct ath_hw *ah, unsigned int gain_index)
337 {
338         int selected_gain_entry, txbb1dbgain, txbb6dbgain, txmxrgain;
339         int padrvgnA, padrvgnB, padrvgnC, padrvgnD;
340         u32 *gain_table_entries = ah->paprd_gain_table_entries;
341
342         selected_gain_entry = gain_table_entries[gain_index];
343         txbb1dbgain = selected_gain_entry & 0x7;
344         txbb6dbgain = (selected_gain_entry >> 3) & 0x3;
345         txmxrgain = (selected_gain_entry >> 5) & 0xf;
346         padrvgnA = (selected_gain_entry >> 9) & 0xf;
347         padrvgnB = (selected_gain_entry >> 13) & 0xf;
348         padrvgnC = (selected_gain_entry >> 17) & 0xf;
349         padrvgnD = (selected_gain_entry >> 21) & 0x3;
350
351         REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
352                       AR_PHY_TX_FORCED_GAIN_FORCED_TXBB1DBGAIN, txbb1dbgain);
353         REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
354                       AR_PHY_TX_FORCED_GAIN_FORCED_TXBB6DBGAIN, txbb6dbgain);
355         REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
356                       AR_PHY_TX_FORCED_GAIN_FORCED_TXMXRGAIN, txmxrgain);
357         REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
358                       AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNA, padrvgnA);
359         REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
360                       AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNB, padrvgnB);
361         REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
362                       AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGNC, padrvgnC);
363         REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
364                       AR_PHY_TX_FORCED_GAIN_FORCED_PADRVGND, padrvgnD);
365         REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
366                       AR_PHY_TX_FORCED_GAIN_FORCED_ENABLE_PAL, 0);
367         REG_RMW_FIELD(ah, AR_PHY_TX_FORCED_GAIN,
368                       AR_PHY_TX_FORCED_GAIN_FORCE_TX_GAIN, 0);
369         REG_RMW_FIELD(ah, AR_PHY_TPC_1, AR_PHY_TPC_1_FORCED_DAC_GAIN, 0);
370         REG_RMW_FIELD(ah, AR_PHY_TPC_1, AR_PHY_TPC_1_FORCE_DAC_GAIN, 0);
371 }
372
373 static inline int find_expn(int num)
374 {
375         return fls(num) - 1;
376 }
377
378 static inline int find_proper_scale(int expn, int N)
379 {
380         return (expn > N) ? expn - 10 : 0;
381 }
382
383 #define NUM_BIN 23
384
385 static bool create_pa_curve(u32 *data_L, u32 *data_U, u32 *pa_table, u16 *gain)
386 {
387         unsigned int thresh_accum_cnt;
388         int x_est[NUM_BIN + 1], Y[NUM_BIN + 1], theta[NUM_BIN + 1];
389         int PA_in[NUM_BIN + 1];
390         int B1_tmp[NUM_BIN + 1], B2_tmp[NUM_BIN + 1];
391         unsigned int B1_abs_max, B2_abs_max;
392         int max_index, scale_factor;
393         int y_est[NUM_BIN + 1];
394         int x_est_fxp1_nonlin, x_tilde[NUM_BIN + 1];
395         unsigned int x_tilde_abs;
396         int G_fxp, Y_intercept, order_x_by_y, M, I, L, sum_y_sqr, sum_y_quad;
397         int Q_x, Q_B1, Q_B2, beta_raw, alpha_raw, scale_B;
398         int Q_scale_B, Q_beta, Q_alpha, alpha, beta, order_1, order_2;
399         int order1_5x, order2_3x, order1_5x_rem, order2_3x_rem;
400         int y5, y3, tmp;
401         int theta_low_bin = 0;
402         int i;
403
404         /* disregard any bin that contains <= 16 samples */
405         thresh_accum_cnt = 16;
406         scale_factor = 5;
407         max_index = 0;
408         memset(theta, 0, sizeof(theta));
409         memset(x_est, 0, sizeof(x_est));
410         memset(Y, 0, sizeof(Y));
411         memset(y_est, 0, sizeof(y_est));
412         memset(x_tilde, 0, sizeof(x_tilde));
413
414         for (i = 0; i < NUM_BIN; i++) {
415                 s32 accum_cnt, accum_tx, accum_rx, accum_ang;
416
417                 /* number of samples */
418                 accum_cnt = data_L[i] & 0xffff;
419
420                 if (accum_cnt <= thresh_accum_cnt)
421                         continue;
422
423                 /* sum(tx amplitude) */
424                 accum_tx = ((data_L[i] >> 16) & 0xffff) |
425                     ((data_U[i] & 0x7ff) << 16);
426
427                 /* sum(rx amplitude distance to lower bin edge) */
428                 accum_rx = ((data_U[i] >> 11) & 0x1f) |
429                     ((data_L[i + 23] & 0xffff) << 5);
430
431                 /* sum(angles) */
432                 accum_ang = ((data_L[i + 23] >> 16) & 0xffff) |
433                     ((data_U[i + 23] & 0x7ff) << 16);
434
435                 accum_tx <<= scale_factor;
436                 accum_rx <<= scale_factor;
437                 x_est[i + 1] = (((accum_tx + accum_cnt) / accum_cnt) + 32) >>
438                     scale_factor;
439
440                 Y[i + 1] = ((((accum_rx + accum_cnt) / accum_cnt) + 32) >>
441                             scale_factor) +
442                             (1 << scale_factor) * max_index + 16;
443
444                 if (accum_ang >= (1 << 26))
445                         accum_ang -= 1 << 27;
446
447                 theta[i + 1] = ((accum_ang * (1 << scale_factor)) + accum_cnt) /
448                     accum_cnt;
449
450                 max_index++;
451         }
452
453         /*
454          * Find average theta of first 5 bin and all of those to same value.
455          * Curve is linear at that range.
456          */
457         for (i = 1; i < 6; i++)
458                 theta_low_bin += theta[i];
459
460         theta_low_bin = theta_low_bin / 5;
461         for (i = 1; i < 6; i++)
462                 theta[i] = theta_low_bin;
463
464         /* Set values at origin */
465         theta[0] = theta_low_bin;
466         for (i = 0; i <= max_index; i++)
467                 theta[i] -= theta_low_bin;
468
469         x_est[0] = 0;
470         Y[0] = 0;
471         scale_factor = 8;
472
473         /* low signal gain */
474         if (x_est[6] == x_est[3])
475                 return false;
476
477         G_fxp =
478             (((Y[6] - Y[3]) * 1 << scale_factor) +
479              (x_est[6] - x_est[3])) / (x_est[6] - x_est[3]);
480
481         /* prevent division by zero */
482         if (G_fxp == 0)
483                 return false;
484
485         Y_intercept =
486             (G_fxp * (x_est[0] - x_est[3]) +
487              (1 << scale_factor)) / (1 << scale_factor) + Y[3];
488
489         for (i = 0; i <= max_index; i++)
490                 y_est[i] = Y[i] - Y_intercept;
491
492         for (i = 0; i <= 3; i++) {
493                 y_est[i] = i * 32;
494                 x_est[i] = ((y_est[i] * 1 << scale_factor) + G_fxp) / G_fxp;
495         }
496
497         if (y_est[max_index] == 0)
498                 return false;
499
500         x_est_fxp1_nonlin =
501             x_est[max_index] - ((1 << scale_factor) * y_est[max_index] +
502                                 G_fxp) / G_fxp;
503
504         order_x_by_y =
505             (x_est_fxp1_nonlin + y_est[max_index]) / y_est[max_index];
506
507         if (order_x_by_y == 0)
508                 M = 10;
509         else if (order_x_by_y == 1)
510                 M = 9;
511         else
512                 M = 8;
513
514         I = (max_index > 15) ? 7 : max_index >> 1;
515         L = max_index - I;
516         scale_factor = 8;
517         sum_y_sqr = 0;
518         sum_y_quad = 0;
519         x_tilde_abs = 0;
520
521         for (i = 0; i <= L; i++) {
522                 unsigned int y_sqr;
523                 unsigned int y_quad;
524                 unsigned int tmp_abs;
525
526                 /* prevent division by zero */
527                 if (y_est[i + I] == 0)
528                         return false;
529
530                 x_est_fxp1_nonlin =
531                     x_est[i + I] - ((1 << scale_factor) * y_est[i + I] +
532                                     G_fxp) / G_fxp;
533
534                 x_tilde[i] =
535                     (x_est_fxp1_nonlin * (1 << M) + y_est[i + I]) / y_est[i +
536                                                                           I];
537                 x_tilde[i] =
538                     (x_tilde[i] * (1 << M) + y_est[i + I]) / y_est[i + I];
539                 x_tilde[i] =
540                     (x_tilde[i] * (1 << M) + y_est[i + I]) / y_est[i + I];
541                 y_sqr =
542                     (y_est[i + I] * y_est[i + I] +
543                      (scale_factor * scale_factor)) / (scale_factor *
544                                                        scale_factor);
545                 tmp_abs = abs(x_tilde[i]);
546                 if (tmp_abs > x_tilde_abs)
547                         x_tilde_abs = tmp_abs;
548
549                 y_quad = y_sqr * y_sqr;
550                 sum_y_sqr = sum_y_sqr + y_sqr;
551                 sum_y_quad = sum_y_quad + y_quad;
552                 B1_tmp[i] = y_sqr * (L + 1);
553                 B2_tmp[i] = y_sqr;
554         }
555
556         B1_abs_max = 0;
557         B2_abs_max = 0;
558         for (i = 0; i <= L; i++) {
559                 int abs_val;
560
561                 B1_tmp[i] -= sum_y_sqr;
562                 B2_tmp[i] = sum_y_quad - sum_y_sqr * B2_tmp[i];
563
564                 abs_val = abs(B1_tmp[i]);
565                 if (abs_val > B1_abs_max)
566                         B1_abs_max = abs_val;
567
568                 abs_val = abs(B2_tmp[i]);
569                 if (abs_val > B2_abs_max)
570                         B2_abs_max = abs_val;
571         }
572
573         Q_x = find_proper_scale(find_expn(x_tilde_abs), 10);
574         Q_B1 = find_proper_scale(find_expn(B1_abs_max), 10);
575         Q_B2 = find_proper_scale(find_expn(B2_abs_max), 10);
576
577         beta_raw = 0;
578         alpha_raw = 0;
579         for (i = 0; i <= L; i++) {
580                 x_tilde[i] = x_tilde[i] / (1 << Q_x);
581                 B1_tmp[i] = B1_tmp[i] / (1 << Q_B1);
582                 B2_tmp[i] = B2_tmp[i] / (1 << Q_B2);
583                 beta_raw = beta_raw + B1_tmp[i] * x_tilde[i];
584                 alpha_raw = alpha_raw + B2_tmp[i] * x_tilde[i];
585         }
586
587         scale_B =
588             ((sum_y_quad / scale_factor) * (L + 1) -
589              (sum_y_sqr / scale_factor) * sum_y_sqr) * scale_factor;
590
591         Q_scale_B = find_proper_scale(find_expn(abs(scale_B)), 10);
592         scale_B = scale_B / (1 << Q_scale_B);
593         if (scale_B == 0)
594                 return false;
595         Q_beta = find_proper_scale(find_expn(abs(beta_raw)), 10);
596         Q_alpha = find_proper_scale(find_expn(abs(alpha_raw)), 10);
597         beta_raw = beta_raw / (1 << Q_beta);
598         alpha_raw = alpha_raw / (1 << Q_alpha);
599         alpha = (alpha_raw << 10) / scale_B;
600         beta = (beta_raw << 10) / scale_B;
601         order_1 = 3 * M - Q_x - Q_B1 - Q_beta + 10 + Q_scale_B;
602         order_2 = 3 * M - Q_x - Q_B2 - Q_alpha + 10 + Q_scale_B;
603         order1_5x = order_1 / 5;
604         order2_3x = order_2 / 3;
605         order1_5x_rem = order_1 - 5 * order1_5x;
606         order2_3x_rem = order_2 - 3 * order2_3x;
607
608         for (i = 0; i < PAPRD_TABLE_SZ; i++) {
609                 tmp = i * 32;
610                 y5 = ((beta * tmp) >> 6) >> order1_5x;
611                 y5 = (y5 * tmp) >> order1_5x;
612                 y5 = (y5 * tmp) >> order1_5x;
613                 y5 = (y5 * tmp) >> order1_5x;
614                 y5 = (y5 * tmp) >> order1_5x;
615                 y5 = y5 >> order1_5x_rem;
616                 y3 = (alpha * tmp) >> order2_3x;
617                 y3 = (y3 * tmp) >> order2_3x;
618                 y3 = (y3 * tmp) >> order2_3x;
619                 y3 = y3 >> order2_3x_rem;
620                 PA_in[i] = y5 + y3 + (256 * tmp) / G_fxp;
621
622                 if (i >= 2) {
623                         tmp = PA_in[i] - PA_in[i - 1];
624                         if (tmp < 0)
625                                 PA_in[i] =
626                                     PA_in[i - 1] + (PA_in[i - 1] -
627                                                     PA_in[i - 2]);
628                 }
629
630                 PA_in[i] = (PA_in[i] < 1400) ? PA_in[i] : 1400;
631         }
632
633         beta_raw = 0;
634         alpha_raw = 0;
635
636         for (i = 0; i <= L; i++) {
637                 int theta_tilde =
638                     ((theta[i + I] << M) + y_est[i + I]) / y_est[i + I];
639                 theta_tilde =
640                     ((theta_tilde << M) + y_est[i + I]) / y_est[i + I];
641                 theta_tilde =
642                     ((theta_tilde << M) + y_est[i + I]) / y_est[i + I];
643                 beta_raw = beta_raw + B1_tmp[i] * theta_tilde;
644                 alpha_raw = alpha_raw + B2_tmp[i] * theta_tilde;
645         }
646
647         Q_beta = find_proper_scale(find_expn(abs(beta_raw)), 10);
648         Q_alpha = find_proper_scale(find_expn(abs(alpha_raw)), 10);
649         beta_raw = beta_raw / (1 << Q_beta);
650         alpha_raw = alpha_raw / (1 << Q_alpha);
651
652         alpha = (alpha_raw << 10) / scale_B;
653         beta = (beta_raw << 10) / scale_B;
654         order_1 = 3 * M - Q_x - Q_B1 - Q_beta + 10 + Q_scale_B + 5;
655         order_2 = 3 * M - Q_x - Q_B2 - Q_alpha + 10 + Q_scale_B + 5;
656         order1_5x = order_1 / 5;
657         order2_3x = order_2 / 3;
658         order1_5x_rem = order_1 - 5 * order1_5x;
659         order2_3x_rem = order_2 - 3 * order2_3x;
660
661         for (i = 0; i < PAPRD_TABLE_SZ; i++) {
662                 int PA_angle;
663
664                 /* pa_table[4] is calculated from PA_angle for i=5 */
665                 if (i == 4)
666                         continue;
667
668                 tmp = i * 32;
669                 if (beta > 0)
670                         y5 = (((beta * tmp - 64) >> 6) -
671                               (1 << order1_5x)) / (1 << order1_5x);
672                 else
673                         y5 = ((((beta * tmp - 64) >> 6) +
674                                (1 << order1_5x)) / (1 << order1_5x));
675
676                 y5 = (y5 * tmp) / (1 << order1_5x);
677                 y5 = (y5 * tmp) / (1 << order1_5x);
678                 y5 = (y5 * tmp) / (1 << order1_5x);
679                 y5 = (y5 * tmp) / (1 << order1_5x);
680                 y5 = y5 / (1 << order1_5x_rem);
681
682                 if (beta > 0)
683                         y3 = (alpha * tmp -
684                               (1 << order2_3x)) / (1 << order2_3x);
685                 else
686                         y3 = (alpha * tmp +
687                               (1 << order2_3x)) / (1 << order2_3x);
688                 y3 = (y3 * tmp) / (1 << order2_3x);
689                 y3 = (y3 * tmp) / (1 << order2_3x);
690                 y3 = y3 / (1 << order2_3x_rem);
691
692                 if (i < 4) {
693                         PA_angle = 0;
694                 } else {
695                         PA_angle = y5 + y3;
696                         if (PA_angle < -150)
697                                 PA_angle = -150;
698                         else if (PA_angle > 150)
699                                 PA_angle = 150;
700                 }
701
702                 pa_table[i] = ((PA_in[i] & 0x7ff) << 11) + (PA_angle & 0x7ff);
703                 if (i == 5) {
704                         PA_angle = (PA_angle + 2) >> 1;
705                         pa_table[i - 1] = ((PA_in[i - 1] & 0x7ff) << 11) +
706                             (PA_angle & 0x7ff);
707                 }
708         }
709
710         *gain = G_fxp;
711         return true;
712 }
713
714 void ar9003_paprd_populate_single_table(struct ath_hw *ah,
715                                         struct ath9k_hw_cal_data *caldata,
716                                         int chain)
717 {
718         u32 *paprd_table_val = caldata->pa_table[chain];
719         u32 small_signal_gain = caldata->small_signal_gain[chain];
720         u32 training_power = ah->paprd_training_power;
721         u32 reg = 0;
722         int i;
723
724         if (chain == 0)
725                 reg = AR_PHY_PAPRD_MEM_TAB_B0;
726         else if (chain == 1)
727                 reg = AR_PHY_PAPRD_MEM_TAB_B1;
728         else if (chain == 2)
729                 reg = AR_PHY_PAPRD_MEM_TAB_B2;
730
731         for (i = 0; i < PAPRD_TABLE_SZ; i++) {
732                 REG_WRITE(ah, reg, paprd_table_val[i]);
733                 reg = reg + 4;
734         }
735
736         if (chain == 0)
737                 reg = AR_PHY_PA_GAIN123_B0;
738         else if (chain == 1)
739                 reg = AR_PHY_PA_GAIN123_B1;
740         else
741                 reg = AR_PHY_PA_GAIN123_B2;
742
743         REG_RMW_FIELD(ah, reg, AR_PHY_PA_GAIN123_PA_GAIN1, small_signal_gain);
744
745         REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B0,
746                       AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL,
747                       training_power);
748
749         if (ah->caps.tx_chainmask & BIT(1))
750                 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B1,
751                               AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL,
752                               training_power);
753
754         if (ah->caps.tx_chainmask & BIT(2))
755                 /* val AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL correct? */
756                 REG_RMW_FIELD(ah, AR_PHY_PAPRD_CTRL1_B2,
757                               AR_PHY_PAPRD_CTRL1_PAPRD_POWER_AT_AM2AM_CAL,
758                               training_power);
759 }
760 EXPORT_SYMBOL(ar9003_paprd_populate_single_table);
761
762 int ar9003_paprd_setup_gain_table(struct ath_hw *ah, int chain)
763 {
764         unsigned int i, desired_gain, gain_index;
765         unsigned int train_power = ah->paprd_training_power;
766
767         desired_gain = ar9003_get_desired_gain(ah, chain, train_power);
768
769         gain_index = 0;
770         for (i = 0; i < PAPRD_GAIN_TABLE_ENTRIES; i++) {
771                 if (ah->paprd_gain_table_index[i] >= desired_gain)
772                         break;
773                 gain_index++;
774         }
775
776         ar9003_tx_force_gain(ah, gain_index);
777
778         REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1,
779                         AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
780
781         return 0;
782 }
783 EXPORT_SYMBOL(ar9003_paprd_setup_gain_table);
784
785 int ar9003_paprd_create_curve(struct ath_hw *ah,
786                               struct ath9k_hw_cal_data *caldata, int chain)
787 {
788         u16 *small_signal_gain = &caldata->small_signal_gain[chain];
789         u32 *pa_table = caldata->pa_table[chain];
790         u32 *data_L, *data_U;
791         int i, status = 0;
792         u32 *buf;
793         u32 reg;
794
795         memset(caldata->pa_table[chain], 0, sizeof(caldata->pa_table[chain]));
796
797         buf = kmalloc(2 * 48 * sizeof(u32), GFP_ATOMIC);
798         if (!buf)
799                 return -ENOMEM;
800
801         data_L = &buf[0];
802         data_U = &buf[48];
803
804         REG_CLR_BIT(ah, AR_PHY_CHAN_INFO_MEMORY,
805                     AR_PHY_CHAN_INFO_MEMORY_CHANINFOMEM_S2_READ);
806
807         reg = AR_PHY_CHAN_INFO_TAB_0;
808         for (i = 0; i < 48; i++)
809                 data_L[i] = REG_READ(ah, reg + (i << 2));
810
811         REG_SET_BIT(ah, AR_PHY_CHAN_INFO_MEMORY,
812                     AR_PHY_CHAN_INFO_MEMORY_CHANINFOMEM_S2_READ);
813
814         for (i = 0; i < 48; i++)
815                 data_U[i] = REG_READ(ah, reg + (i << 2));
816
817         if (!create_pa_curve(data_L, data_U, pa_table, small_signal_gain))
818                 status = -2;
819
820         REG_CLR_BIT(ah, AR_PHY_PAPRD_TRAINER_STAT1,
821                     AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
822
823         kfree(buf);
824
825         return status;
826 }
827 EXPORT_SYMBOL(ar9003_paprd_create_curve);
828
829 int ar9003_paprd_init_table(struct ath_hw *ah)
830 {
831         int ret;
832
833         ret = ar9003_paprd_setup_single_table(ah);
834         if (ret < 0)
835             return ret;
836
837         ar9003_paprd_get_gain_table(ah);
838         return 0;
839 }
840 EXPORT_SYMBOL(ar9003_paprd_init_table);
841
842 bool ar9003_paprd_is_done(struct ath_hw *ah)
843 {
844         int paprd_done, agc2_pwr;
845         paprd_done = REG_READ_FIELD(ah, AR_PHY_PAPRD_TRAINER_STAT1,
846                                 AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_TRAIN_DONE);
847
848         if (paprd_done == 0x1) {
849                 agc2_pwr = REG_READ_FIELD(ah, AR_PHY_PAPRD_TRAINER_STAT1,
850                                 AR_PHY_PAPRD_TRAINER_STAT1_PAPRD_AGC2_PWR);
851
852                 ath_dbg(ath9k_hw_common(ah), ATH_DBG_CALIBRATE,
853                         "AGC2_PWR = 0x%x training done = 0x%x\n",
854                         agc2_pwr, paprd_done);
855         /*
856          * agc2_pwr range should not be less than 'IDEAL_AGC2_PWR_CHANGE'
857          * when the training is completely done, otherwise retraining is
858          * done to make sure the value is in ideal range
859          */
860                 if (agc2_pwr <= PAPRD_IDEAL_AGC2_PWR_RANGE)
861                         paprd_done = 0;
862         }
863
864         return !!paprd_done;
865 }
866 EXPORT_SYMBOL(ar9003_paprd_is_done);