bf1e55e7869e770251a7215b0611ea22b8904d87
[pandora-kernel.git] / drivers / net / sfc / rx.c
1 /****************************************************************************
2  * Driver for Solarflare Solarstorm network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2005-2009 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10
11 #include <linux/socket.h>
12 #include <linux/in.h>
13 #include <linux/slab.h>
14 #include <linux/ip.h>
15 #include <linux/tcp.h>
16 #include <linux/udp.h>
17 #include <net/ip.h>
18 #include <net/checksum.h>
19 #include "net_driver.h"
20 #include "efx.h"
21 #include "nic.h"
22 #include "selftest.h"
23 #include "workarounds.h"
24
25 /* Number of RX descriptors pushed at once. */
26 #define EFX_RX_BATCH  8
27
28 /* Size of buffer allocated for skb header area. */
29 #define EFX_SKB_HEADERS  64u
30
31 /*
32  * rx_alloc_method - RX buffer allocation method
33  *
34  * This driver supports two methods for allocating and using RX buffers:
35  * each RX buffer may be backed by an skb or by an order-n page.
36  *
37  * When LRO is in use then the second method has a lower overhead,
38  * since we don't have to allocate then free skbs on reassembled frames.
39  *
40  * Values:
41  *   - RX_ALLOC_METHOD_AUTO = 0
42  *   - RX_ALLOC_METHOD_SKB  = 1
43  *   - RX_ALLOC_METHOD_PAGE = 2
44  *
45  * The heuristic for %RX_ALLOC_METHOD_AUTO is a simple hysteresis count
46  * controlled by the parameters below.
47  *
48  *   - Since pushing and popping descriptors are separated by the rx_queue
49  *     size, so the watermarks should be ~rxd_size.
50  *   - The performance win by using page-based allocation for LRO is less
51  *     than the performance hit of using page-based allocation of non-LRO,
52  *     so the watermarks should reflect this.
53  *
54  * Per channel we maintain a single variable, updated by each channel:
55  *
56  *   rx_alloc_level += (lro_performed ? RX_ALLOC_FACTOR_LRO :
57  *                      RX_ALLOC_FACTOR_SKB)
58  * Per NAPI poll interval, we constrain rx_alloc_level to 0..MAX (which
59  * limits the hysteresis), and update the allocation strategy:
60  *
61  *   rx_alloc_method = (rx_alloc_level > RX_ALLOC_LEVEL_LRO ?
62  *                      RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB)
63  */
64 static int rx_alloc_method = RX_ALLOC_METHOD_AUTO;
65
66 #define RX_ALLOC_LEVEL_LRO 0x2000
67 #define RX_ALLOC_LEVEL_MAX 0x3000
68 #define RX_ALLOC_FACTOR_LRO 1
69 #define RX_ALLOC_FACTOR_SKB (-2)
70
71 /* This is the percentage fill level below which new RX descriptors
72  * will be added to the RX descriptor ring.
73  */
74 static unsigned int rx_refill_threshold = 90;
75
76 /* This is the percentage fill level to which an RX queue will be refilled
77  * when the "RX refill threshold" is reached.
78  */
79 static unsigned int rx_refill_limit = 95;
80
81 /*
82  * RX maximum head room required.
83  *
84  * This must be at least 1 to prevent overflow and at least 2 to allow
85  * pipelined receives.
86  */
87 #define EFX_RXD_HEAD_ROOM 2
88
89 static inline unsigned int efx_rx_buf_offset(struct efx_rx_buffer *buf)
90 {
91         /* Offset is always within one page, so we don't need to consider
92          * the page order.
93          */
94         return (__force unsigned long) buf->data & (PAGE_SIZE - 1);
95 }
96 static inline unsigned int efx_rx_buf_size(struct efx_nic *efx)
97 {
98         return PAGE_SIZE << efx->rx_buffer_order;
99 }
100
101
102 /**
103  * efx_init_rx_buffer_skb - create new RX buffer using skb-based allocation
104  *
105  * @rx_queue:           Efx RX queue
106  * @rx_buf:             RX buffer structure to populate
107  *
108  * This allocates memory for a new receive buffer, maps it for DMA,
109  * and populates a struct efx_rx_buffer with the relevant
110  * information.  Return a negative error code or 0 on success.
111  */
112 static int efx_init_rx_buffer_skb(struct efx_rx_queue *rx_queue,
113                                   struct efx_rx_buffer *rx_buf)
114 {
115         struct efx_nic *efx = rx_queue->efx;
116         struct net_device *net_dev = efx->net_dev;
117         int skb_len = efx->rx_buffer_len;
118
119         rx_buf->skb = netdev_alloc_skb(net_dev, skb_len);
120         if (unlikely(!rx_buf->skb))
121                 return -ENOMEM;
122
123         /* Adjust the SKB for padding and checksum */
124         skb_reserve(rx_buf->skb, NET_IP_ALIGN);
125         rx_buf->len = skb_len - NET_IP_ALIGN;
126         rx_buf->data = (char *)rx_buf->skb->data;
127         rx_buf->skb->ip_summed = CHECKSUM_UNNECESSARY;
128
129         rx_buf->dma_addr = pci_map_single(efx->pci_dev,
130                                           rx_buf->data, rx_buf->len,
131                                           PCI_DMA_FROMDEVICE);
132
133         if (unlikely(pci_dma_mapping_error(efx->pci_dev, rx_buf->dma_addr))) {
134                 dev_kfree_skb_any(rx_buf->skb);
135                 rx_buf->skb = NULL;
136                 return -EIO;
137         }
138
139         return 0;
140 }
141
142 /**
143  * efx_init_rx_buffer_page - create new RX buffer using page-based allocation
144  *
145  * @rx_queue:           Efx RX queue
146  * @rx_buf:             RX buffer structure to populate
147  *
148  * This allocates memory for a new receive buffer, maps it for DMA,
149  * and populates a struct efx_rx_buffer with the relevant
150  * information.  Return a negative error code or 0 on success.
151  */
152 static int efx_init_rx_buffer_page(struct efx_rx_queue *rx_queue,
153                                    struct efx_rx_buffer *rx_buf)
154 {
155         struct efx_nic *efx = rx_queue->efx;
156         int bytes, space, offset;
157
158         bytes = efx->rx_buffer_len - EFX_PAGE_IP_ALIGN;
159
160         /* If there is space left in the previously allocated page,
161          * then use it. Otherwise allocate a new one */
162         rx_buf->page = rx_queue->buf_page;
163         if (rx_buf->page == NULL) {
164                 dma_addr_t dma_addr;
165
166                 rx_buf->page = alloc_pages(__GFP_COLD | __GFP_COMP | GFP_ATOMIC,
167                                            efx->rx_buffer_order);
168                 if (unlikely(rx_buf->page == NULL))
169                         return -ENOMEM;
170
171                 dma_addr = pci_map_page(efx->pci_dev, rx_buf->page,
172                                         0, efx_rx_buf_size(efx),
173                                         PCI_DMA_FROMDEVICE);
174
175                 if (unlikely(pci_dma_mapping_error(efx->pci_dev, dma_addr))) {
176                         __free_pages(rx_buf->page, efx->rx_buffer_order);
177                         rx_buf->page = NULL;
178                         return -EIO;
179                 }
180
181                 rx_queue->buf_page = rx_buf->page;
182                 rx_queue->buf_dma_addr = dma_addr;
183                 rx_queue->buf_data = (page_address(rx_buf->page) +
184                                       EFX_PAGE_IP_ALIGN);
185         }
186
187         rx_buf->len = bytes;
188         rx_buf->data = rx_queue->buf_data;
189         offset = efx_rx_buf_offset(rx_buf);
190         rx_buf->dma_addr = rx_queue->buf_dma_addr + offset;
191
192         /* Try to pack multiple buffers per page */
193         if (efx->rx_buffer_order == 0) {
194                 /* The next buffer starts on the next 512 byte boundary */
195                 rx_queue->buf_data += ((bytes + 0x1ff) & ~0x1ff);
196                 offset += ((bytes + 0x1ff) & ~0x1ff);
197
198                 space = efx_rx_buf_size(efx) - offset;
199                 if (space >= bytes) {
200                         /* Refs dropped on kernel releasing each skb */
201                         get_page(rx_queue->buf_page);
202                         goto out;
203                 }
204         }
205
206         /* This is the final RX buffer for this page, so mark it for
207          * unmapping */
208         rx_queue->buf_page = NULL;
209         rx_buf->unmap_addr = rx_queue->buf_dma_addr;
210
211  out:
212         return 0;
213 }
214
215 /* This allocates memory for a new receive buffer, maps it for DMA,
216  * and populates a struct efx_rx_buffer with the relevant
217  * information.
218  */
219 static int efx_init_rx_buffer(struct efx_rx_queue *rx_queue,
220                               struct efx_rx_buffer *new_rx_buf)
221 {
222         int rc = 0;
223
224         if (rx_queue->channel->rx_alloc_push_pages) {
225                 new_rx_buf->skb = NULL;
226                 rc = efx_init_rx_buffer_page(rx_queue, new_rx_buf);
227                 rx_queue->alloc_page_count++;
228         } else {
229                 new_rx_buf->page = NULL;
230                 rc = efx_init_rx_buffer_skb(rx_queue, new_rx_buf);
231                 rx_queue->alloc_skb_count++;
232         }
233
234         if (unlikely(rc < 0))
235                 EFX_LOG_RL(rx_queue->efx, "%s RXQ[%d] =%d\n", __func__,
236                            rx_queue->queue, rc);
237         return rc;
238 }
239
240 static void efx_unmap_rx_buffer(struct efx_nic *efx,
241                                 struct efx_rx_buffer *rx_buf)
242 {
243         if (rx_buf->page) {
244                 EFX_BUG_ON_PARANOID(rx_buf->skb);
245                 if (rx_buf->unmap_addr) {
246                         pci_unmap_page(efx->pci_dev, rx_buf->unmap_addr,
247                                        efx_rx_buf_size(efx),
248                                        PCI_DMA_FROMDEVICE);
249                         rx_buf->unmap_addr = 0;
250                 }
251         } else if (likely(rx_buf->skb)) {
252                 pci_unmap_single(efx->pci_dev, rx_buf->dma_addr,
253                                  rx_buf->len, PCI_DMA_FROMDEVICE);
254         }
255 }
256
257 static void efx_free_rx_buffer(struct efx_nic *efx,
258                                struct efx_rx_buffer *rx_buf)
259 {
260         if (rx_buf->page) {
261                 __free_pages(rx_buf->page, efx->rx_buffer_order);
262                 rx_buf->page = NULL;
263         } else if (likely(rx_buf->skb)) {
264                 dev_kfree_skb_any(rx_buf->skb);
265                 rx_buf->skb = NULL;
266         }
267 }
268
269 static void efx_fini_rx_buffer(struct efx_rx_queue *rx_queue,
270                                struct efx_rx_buffer *rx_buf)
271 {
272         efx_unmap_rx_buffer(rx_queue->efx, rx_buf);
273         efx_free_rx_buffer(rx_queue->efx, rx_buf);
274 }
275
276 /**
277  * efx_fast_push_rx_descriptors - push new RX descriptors quickly
278  * @rx_queue:           RX descriptor queue
279  * This will aim to fill the RX descriptor queue up to
280  * @rx_queue->@fast_fill_limit. If there is insufficient atomic
281  * memory to do so, a slow fill will be scheduled.
282  *
283  * The caller must provide serialisation (none is used here). In practise,
284  * this means this function must run from the NAPI handler, or be called
285  * when NAPI is disabled.
286  */
287 void efx_fast_push_rx_descriptors(struct efx_rx_queue *rx_queue)
288 {
289         struct efx_rx_buffer *rx_buf;
290         unsigned fill_level, index;
291         int i, space, rc = 0;
292
293         /* Calculate current fill level, and exit if we don't need to fill */
294         fill_level = (rx_queue->added_count - rx_queue->removed_count);
295         EFX_BUG_ON_PARANOID(fill_level > EFX_RXQ_SIZE);
296         if (fill_level >= rx_queue->fast_fill_trigger)
297                 return;
298
299         /* Record minimum fill level */
300         if (unlikely(fill_level < rx_queue->min_fill)) {
301                 if (fill_level)
302                         rx_queue->min_fill = fill_level;
303         }
304
305         space = rx_queue->fast_fill_limit - fill_level;
306         if (space < EFX_RX_BATCH)
307                 return;
308
309         EFX_TRACE(rx_queue->efx, "RX queue %d fast-filling descriptor ring from"
310                   " level %d to level %d using %s allocation\n",
311                   rx_queue->queue, fill_level, rx_queue->fast_fill_limit,
312                   rx_queue->channel->rx_alloc_push_pages ? "page" : "skb");
313
314         do {
315                 for (i = 0; i < EFX_RX_BATCH; ++i) {
316                         index = rx_queue->added_count & EFX_RXQ_MASK;
317                         rx_buf = efx_rx_buffer(rx_queue, index);
318                         rc = efx_init_rx_buffer(rx_queue, rx_buf);
319                         if (unlikely(rc)) {
320                                 /* Ensure that we don't leave the rx queue
321                                  * empty */
322                                 if (rx_queue->added_count == rx_queue->removed_count)
323                                         efx_schedule_slow_fill(rx_queue);
324                                 goto out;
325                         }
326                         ++rx_queue->added_count;
327                 }
328         } while ((space -= EFX_RX_BATCH) >= EFX_RX_BATCH);
329
330         EFX_TRACE(rx_queue->efx, "RX queue %d fast-filled descriptor ring "
331                   "to level %d\n", rx_queue->queue,
332                   rx_queue->added_count - rx_queue->removed_count);
333
334  out:
335         /* Send write pointer to card. */
336         efx_nic_notify_rx_desc(rx_queue);
337 }
338
339 void efx_rx_slow_fill(unsigned long context)
340 {
341         struct efx_rx_queue *rx_queue = (struct efx_rx_queue *)context;
342         struct efx_channel *channel = rx_queue->channel;
343
344         /* Post an event to cause NAPI to run and refill the queue */
345         efx_nic_generate_fill_event(channel);
346         ++rx_queue->slow_fill_count;
347 }
348
349 static void efx_rx_packet__check_len(struct efx_rx_queue *rx_queue,
350                                      struct efx_rx_buffer *rx_buf,
351                                      int len, bool *discard,
352                                      bool *leak_packet)
353 {
354         struct efx_nic *efx = rx_queue->efx;
355         unsigned max_len = rx_buf->len - efx->type->rx_buffer_padding;
356
357         if (likely(len <= max_len))
358                 return;
359
360         /* The packet must be discarded, but this is only a fatal error
361          * if the caller indicated it was
362          */
363         *discard = true;
364
365         if ((len > rx_buf->len) && EFX_WORKAROUND_8071(efx)) {
366                 EFX_ERR_RL(efx, " RX queue %d seriously overlength "
367                            "RX event (0x%x > 0x%x+0x%x). Leaking\n",
368                            rx_queue->queue, len, max_len,
369                            efx->type->rx_buffer_padding);
370                 /* If this buffer was skb-allocated, then the meta
371                  * data at the end of the skb will be trashed. So
372                  * we have no choice but to leak the fragment.
373                  */
374                 *leak_packet = (rx_buf->skb != NULL);
375                 efx_schedule_reset(efx, RESET_TYPE_RX_RECOVERY);
376         } else {
377                 EFX_ERR_RL(efx, " RX queue %d overlength RX event "
378                            "(0x%x > 0x%x)\n", rx_queue->queue, len, max_len);
379         }
380
381         rx_queue->channel->n_rx_overlength++;
382 }
383
384 /* Pass a received packet up through the generic LRO stack
385  *
386  * Handles driverlink veto, and passes the fragment up via
387  * the appropriate LRO method
388  */
389 static void efx_rx_packet_lro(struct efx_channel *channel,
390                               struct efx_rx_buffer *rx_buf,
391                               bool checksummed)
392 {
393         struct napi_struct *napi = &channel->napi_str;
394         gro_result_t gro_result;
395
396         /* Pass the skb/page into the LRO engine */
397         if (rx_buf->page) {
398                 struct page *page = rx_buf->page;
399                 struct sk_buff *skb;
400
401                 EFX_BUG_ON_PARANOID(rx_buf->skb);
402                 rx_buf->page = NULL;
403
404                 skb = napi_get_frags(napi);
405                 if (!skb) {
406                         put_page(page);
407                         return;
408                 }
409
410                 skb_shinfo(skb)->frags[0].page = page;
411                 skb_shinfo(skb)->frags[0].page_offset =
412                         efx_rx_buf_offset(rx_buf);
413                 skb_shinfo(skb)->frags[0].size = rx_buf->len;
414                 skb_shinfo(skb)->nr_frags = 1;
415
416                 skb->len = rx_buf->len;
417                 skb->data_len = rx_buf->len;
418                 skb->truesize += rx_buf->len;
419                 skb->ip_summed =
420                         checksummed ? CHECKSUM_UNNECESSARY : CHECKSUM_NONE;
421
422                 skb_record_rx_queue(skb, channel->channel);
423
424                 gro_result = napi_gro_frags(napi);
425         } else {
426                 struct sk_buff *skb = rx_buf->skb;
427
428                 EFX_BUG_ON_PARANOID(!skb);
429                 EFX_BUG_ON_PARANOID(!checksummed);
430                 rx_buf->skb = NULL;
431
432                 gro_result = napi_gro_receive(napi, skb);
433         }
434
435         if (gro_result == GRO_NORMAL) {
436                 channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
437         } else if (gro_result != GRO_DROP) {
438                 channel->rx_alloc_level += RX_ALLOC_FACTOR_LRO;
439                 channel->irq_mod_score += 2;
440         }
441 }
442
443 void efx_rx_packet(struct efx_rx_queue *rx_queue, unsigned int index,
444                    unsigned int len, bool checksummed, bool discard)
445 {
446         struct efx_nic *efx = rx_queue->efx;
447         struct efx_rx_buffer *rx_buf;
448         bool leak_packet = false;
449
450         rx_buf = efx_rx_buffer(rx_queue, index);
451         EFX_BUG_ON_PARANOID(!rx_buf->data);
452         EFX_BUG_ON_PARANOID(rx_buf->skb && rx_buf->page);
453         EFX_BUG_ON_PARANOID(!(rx_buf->skb || rx_buf->page));
454
455         /* This allows the refill path to post another buffer.
456          * EFX_RXD_HEAD_ROOM ensures that the slot we are using
457          * isn't overwritten yet.
458          */
459         rx_queue->removed_count++;
460
461         /* Validate the length encoded in the event vs the descriptor pushed */
462         efx_rx_packet__check_len(rx_queue, rx_buf, len,
463                                  &discard, &leak_packet);
464
465         EFX_TRACE(efx, "RX queue %d received id %x at %llx+%x %s%s\n",
466                   rx_queue->queue, index,
467                   (unsigned long long)rx_buf->dma_addr, len,
468                   (checksummed ? " [SUMMED]" : ""),
469                   (discard ? " [DISCARD]" : ""));
470
471         /* Discard packet, if instructed to do so */
472         if (unlikely(discard)) {
473                 if (unlikely(leak_packet))
474                         rx_queue->channel->n_skbuff_leaks++;
475                 else
476                         /* We haven't called efx_unmap_rx_buffer yet,
477                          * so fini the entire rx_buffer here */
478                         efx_fini_rx_buffer(rx_queue, rx_buf);
479                 return;
480         }
481
482         /* Release card resources - assumes all RX buffers consumed in-order
483          * per RX queue
484          */
485         efx_unmap_rx_buffer(efx, rx_buf);
486
487         /* Prefetch nice and early so data will (hopefully) be in cache by
488          * the time we look at it.
489          */
490         prefetch(rx_buf->data);
491
492         /* Pipeline receives so that we give time for packet headers to be
493          * prefetched into cache.
494          */
495         rx_buf->len = len;
496         if (rx_queue->channel->rx_pkt)
497                 __efx_rx_packet(rx_queue->channel,
498                                 rx_queue->channel->rx_pkt,
499                                 rx_queue->channel->rx_pkt_csummed);
500         rx_queue->channel->rx_pkt = rx_buf;
501         rx_queue->channel->rx_pkt_csummed = checksummed;
502 }
503
504 /* Handle a received packet.  Second half: Touches packet payload. */
505 void __efx_rx_packet(struct efx_channel *channel,
506                      struct efx_rx_buffer *rx_buf, bool checksummed)
507 {
508         struct efx_nic *efx = channel->efx;
509         struct sk_buff *skb;
510
511         /* If we're in loopback test, then pass the packet directly to the
512          * loopback layer, and free the rx_buf here
513          */
514         if (unlikely(efx->loopback_selftest)) {
515                 efx_loopback_rx_packet(efx, rx_buf->data, rx_buf->len);
516                 efx_free_rx_buffer(efx, rx_buf);
517                 return;
518         }
519
520         if (rx_buf->skb) {
521                 prefetch(skb_shinfo(rx_buf->skb));
522
523                 skb_put(rx_buf->skb, rx_buf->len);
524
525                 /* Move past the ethernet header. rx_buf->data still points
526                  * at the ethernet header */
527                 rx_buf->skb->protocol = eth_type_trans(rx_buf->skb,
528                                                        efx->net_dev);
529
530                 skb_record_rx_queue(rx_buf->skb, channel->channel);
531         }
532
533         if (likely(checksummed || rx_buf->page)) {
534                 efx_rx_packet_lro(channel, rx_buf, checksummed);
535                 return;
536         }
537
538         /* We now own the SKB */
539         skb = rx_buf->skb;
540         rx_buf->skb = NULL;
541         EFX_BUG_ON_PARANOID(!skb);
542
543         /* Set the SKB flags */
544         skb->ip_summed = CHECKSUM_NONE;
545
546         /* Pass the packet up */
547         netif_receive_skb(skb);
548
549         /* Update allocation strategy method */
550         channel->rx_alloc_level += RX_ALLOC_FACTOR_SKB;
551 }
552
553 void efx_rx_strategy(struct efx_channel *channel)
554 {
555         enum efx_rx_alloc_method method = rx_alloc_method;
556
557         /* Only makes sense to use page based allocation if LRO is enabled */
558         if (!(channel->efx->net_dev->features & NETIF_F_GRO)) {
559                 method = RX_ALLOC_METHOD_SKB;
560         } else if (method == RX_ALLOC_METHOD_AUTO) {
561                 /* Constrain the rx_alloc_level */
562                 if (channel->rx_alloc_level < 0)
563                         channel->rx_alloc_level = 0;
564                 else if (channel->rx_alloc_level > RX_ALLOC_LEVEL_MAX)
565                         channel->rx_alloc_level = RX_ALLOC_LEVEL_MAX;
566
567                 /* Decide on the allocation method */
568                 method = ((channel->rx_alloc_level > RX_ALLOC_LEVEL_LRO) ?
569                           RX_ALLOC_METHOD_PAGE : RX_ALLOC_METHOD_SKB);
570         }
571
572         /* Push the option */
573         channel->rx_alloc_push_pages = (method == RX_ALLOC_METHOD_PAGE);
574 }
575
576 int efx_probe_rx_queue(struct efx_rx_queue *rx_queue)
577 {
578         struct efx_nic *efx = rx_queue->efx;
579         unsigned int rxq_size;
580         int rc;
581
582         EFX_LOG(efx, "creating RX queue %d\n", rx_queue->queue);
583
584         /* Allocate RX buffers */
585         rxq_size = EFX_RXQ_SIZE * sizeof(*rx_queue->buffer);
586         rx_queue->buffer = kzalloc(rxq_size, GFP_KERNEL);
587         if (!rx_queue->buffer)
588                 return -ENOMEM;
589
590         rc = efx_nic_probe_rx(rx_queue);
591         if (rc) {
592                 kfree(rx_queue->buffer);
593                 rx_queue->buffer = NULL;
594         }
595         return rc;
596 }
597
598 void efx_init_rx_queue(struct efx_rx_queue *rx_queue)
599 {
600         unsigned int max_fill, trigger, limit;
601
602         EFX_LOG(rx_queue->efx, "initialising RX queue %d\n", rx_queue->queue);
603
604         /* Initialise ptr fields */
605         rx_queue->added_count = 0;
606         rx_queue->notified_count = 0;
607         rx_queue->removed_count = 0;
608         rx_queue->min_fill = -1U;
609         rx_queue->min_overfill = -1U;
610
611         /* Initialise limit fields */
612         max_fill = EFX_RXQ_SIZE - EFX_RXD_HEAD_ROOM;
613         trigger = max_fill * min(rx_refill_threshold, 100U) / 100U;
614         limit = max_fill * min(rx_refill_limit, 100U) / 100U;
615
616         rx_queue->max_fill = max_fill;
617         rx_queue->fast_fill_trigger = trigger;
618         rx_queue->fast_fill_limit = limit;
619
620         /* Set up RX descriptor ring */
621         efx_nic_init_rx(rx_queue);
622 }
623
624 void efx_fini_rx_queue(struct efx_rx_queue *rx_queue)
625 {
626         int i;
627         struct efx_rx_buffer *rx_buf;
628
629         EFX_LOG(rx_queue->efx, "shutting down RX queue %d\n", rx_queue->queue);
630
631         del_timer_sync(&rx_queue->slow_fill);
632         efx_nic_fini_rx(rx_queue);
633
634         /* Release RX buffers NB start at index 0 not current HW ptr */
635         if (rx_queue->buffer) {
636                 for (i = 0; i <= EFX_RXQ_MASK; i++) {
637                         rx_buf = efx_rx_buffer(rx_queue, i);
638                         efx_fini_rx_buffer(rx_queue, rx_buf);
639                 }
640         }
641
642         /* For a page that is part-way through splitting into RX buffers */
643         if (rx_queue->buf_page != NULL) {
644                 pci_unmap_page(rx_queue->efx->pci_dev, rx_queue->buf_dma_addr,
645                                efx_rx_buf_size(rx_queue->efx),
646                                PCI_DMA_FROMDEVICE);
647                 __free_pages(rx_queue->buf_page,
648                              rx_queue->efx->rx_buffer_order);
649                 rx_queue->buf_page = NULL;
650         }
651 }
652
653 void efx_remove_rx_queue(struct efx_rx_queue *rx_queue)
654 {
655         EFX_LOG(rx_queue->efx, "destroying RX queue %d\n", rx_queue->queue);
656
657         efx_nic_remove_rx(rx_queue);
658
659         kfree(rx_queue->buffer);
660         rx_queue->buffer = NULL;
661 }
662
663
664 module_param(rx_alloc_method, int, 0644);
665 MODULE_PARM_DESC(rx_alloc_method, "Allocation method used for RX buffers");
666
667 module_param(rx_refill_threshold, uint, 0444);
668 MODULE_PARM_DESC(rx_refill_threshold,
669                  "RX descriptor ring fast/slow fill threshold (%)");
670