ed63ff4cf6d6fdac12f0a67d4dfec326a8a71380
[pandora-kernel.git] / drivers / net / igb / igb_ethtool.c
1 /*******************************************************************************
2
3   Intel(R) Gigabit Ethernet Linux driver
4   Copyright(c) 2007-2011 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26 *******************************************************************************/
27
28 /* ethtool support for igb */
29
30 #include <linux/vmalloc.h>
31 #include <linux/netdevice.h>
32 #include <linux/pci.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/if_ether.h>
36 #include <linux/ethtool.h>
37 #include <linux/sched.h>
38 #include <linux/slab.h>
39
40 #include "igb.h"
41
42 struct igb_stats {
43         char stat_string[ETH_GSTRING_LEN];
44         int sizeof_stat;
45         int stat_offset;
46 };
47
48 #define IGB_STAT(_name, _stat) { \
49         .stat_string = _name, \
50         .sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
51         .stat_offset = offsetof(struct igb_adapter, _stat) \
52 }
53 static const struct igb_stats igb_gstrings_stats[] = {
54         IGB_STAT("rx_packets", stats.gprc),
55         IGB_STAT("tx_packets", stats.gptc),
56         IGB_STAT("rx_bytes", stats.gorc),
57         IGB_STAT("tx_bytes", stats.gotc),
58         IGB_STAT("rx_broadcast", stats.bprc),
59         IGB_STAT("tx_broadcast", stats.bptc),
60         IGB_STAT("rx_multicast", stats.mprc),
61         IGB_STAT("tx_multicast", stats.mptc),
62         IGB_STAT("multicast", stats.mprc),
63         IGB_STAT("collisions", stats.colc),
64         IGB_STAT("rx_crc_errors", stats.crcerrs),
65         IGB_STAT("rx_no_buffer_count", stats.rnbc),
66         IGB_STAT("rx_missed_errors", stats.mpc),
67         IGB_STAT("tx_aborted_errors", stats.ecol),
68         IGB_STAT("tx_carrier_errors", stats.tncrs),
69         IGB_STAT("tx_window_errors", stats.latecol),
70         IGB_STAT("tx_abort_late_coll", stats.latecol),
71         IGB_STAT("tx_deferred_ok", stats.dc),
72         IGB_STAT("tx_single_coll_ok", stats.scc),
73         IGB_STAT("tx_multi_coll_ok", stats.mcc),
74         IGB_STAT("tx_timeout_count", tx_timeout_count),
75         IGB_STAT("rx_long_length_errors", stats.roc),
76         IGB_STAT("rx_short_length_errors", stats.ruc),
77         IGB_STAT("rx_align_errors", stats.algnerrc),
78         IGB_STAT("tx_tcp_seg_good", stats.tsctc),
79         IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
80         IGB_STAT("rx_flow_control_xon", stats.xonrxc),
81         IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
82         IGB_STAT("tx_flow_control_xon", stats.xontxc),
83         IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
84         IGB_STAT("rx_long_byte_count", stats.gorc),
85         IGB_STAT("tx_dma_out_of_sync", stats.doosync),
86         IGB_STAT("tx_smbus", stats.mgptc),
87         IGB_STAT("rx_smbus", stats.mgprc),
88         IGB_STAT("dropped_smbus", stats.mgpdc),
89         IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
90         IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
91         IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
92         IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
93 };
94
95 #define IGB_NETDEV_STAT(_net_stat) { \
96         .stat_string = __stringify(_net_stat), \
97         .sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
98         .stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
99 }
100 static const struct igb_stats igb_gstrings_net_stats[] = {
101         IGB_NETDEV_STAT(rx_errors),
102         IGB_NETDEV_STAT(tx_errors),
103         IGB_NETDEV_STAT(tx_dropped),
104         IGB_NETDEV_STAT(rx_length_errors),
105         IGB_NETDEV_STAT(rx_over_errors),
106         IGB_NETDEV_STAT(rx_frame_errors),
107         IGB_NETDEV_STAT(rx_fifo_errors),
108         IGB_NETDEV_STAT(tx_fifo_errors),
109         IGB_NETDEV_STAT(tx_heartbeat_errors)
110 };
111
112 #define IGB_GLOBAL_STATS_LEN    \
113         (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
114 #define IGB_NETDEV_STATS_LEN    \
115         (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
116 #define IGB_RX_QUEUE_STATS_LEN \
117         (sizeof(struct igb_rx_queue_stats) / sizeof(u64))
118
119 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
120
121 #define IGB_QUEUE_STATS_LEN \
122         ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
123           IGB_RX_QUEUE_STATS_LEN) + \
124          (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
125           IGB_TX_QUEUE_STATS_LEN))
126 #define IGB_STATS_LEN \
127         (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
128
129 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
130         "Register test  (offline)", "Eeprom test    (offline)",
131         "Interrupt test (offline)", "Loopback test  (offline)",
132         "Link test   (on/offline)"
133 };
134 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
135
136 static int igb_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
137 {
138         struct igb_adapter *adapter = netdev_priv(netdev);
139         struct e1000_hw *hw = &adapter->hw;
140         u32 status;
141
142         if (hw->phy.media_type == e1000_media_type_copper) {
143
144                 ecmd->supported = (SUPPORTED_10baseT_Half |
145                                    SUPPORTED_10baseT_Full |
146                                    SUPPORTED_100baseT_Half |
147                                    SUPPORTED_100baseT_Full |
148                                    SUPPORTED_1000baseT_Full|
149                                    SUPPORTED_Autoneg |
150                                    SUPPORTED_TP);
151                 ecmd->advertising = ADVERTISED_TP;
152
153                 if (hw->mac.autoneg == 1) {
154                         ecmd->advertising |= ADVERTISED_Autoneg;
155                         /* the e1000 autoneg seems to match ethtool nicely */
156                         ecmd->advertising |= hw->phy.autoneg_advertised;
157                 }
158
159                 ecmd->port = PORT_TP;
160                 ecmd->phy_address = hw->phy.addr;
161         } else {
162                 ecmd->supported   = (SUPPORTED_1000baseT_Full |
163                                      SUPPORTED_FIBRE |
164                                      SUPPORTED_Autoneg);
165
166                 ecmd->advertising = (ADVERTISED_1000baseT_Full |
167                                      ADVERTISED_FIBRE |
168                                      ADVERTISED_Autoneg);
169
170                 ecmd->port = PORT_FIBRE;
171         }
172
173         ecmd->transceiver = XCVR_INTERNAL;
174
175         status = rd32(E1000_STATUS);
176
177         if (status & E1000_STATUS_LU) {
178
179                 if ((status & E1000_STATUS_SPEED_1000) ||
180                     hw->phy.media_type != e1000_media_type_copper)
181                         ethtool_cmd_speed_set(ecmd, SPEED_1000);
182                 else if (status & E1000_STATUS_SPEED_100)
183                         ethtool_cmd_speed_set(ecmd, SPEED_100);
184                 else
185                         ethtool_cmd_speed_set(ecmd, SPEED_10);
186
187                 if ((status & E1000_STATUS_FD) ||
188                     hw->phy.media_type != e1000_media_type_copper)
189                         ecmd->duplex = DUPLEX_FULL;
190                 else
191                         ecmd->duplex = DUPLEX_HALF;
192         } else {
193                 ethtool_cmd_speed_set(ecmd, -1);
194                 ecmd->duplex = -1;
195         }
196
197         ecmd->autoneg = hw->mac.autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE;
198         return 0;
199 }
200
201 static int igb_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
202 {
203         struct igb_adapter *adapter = netdev_priv(netdev);
204         struct e1000_hw *hw = &adapter->hw;
205
206         /* When SoL/IDER sessions are active, autoneg/speed/duplex
207          * cannot be changed */
208         if (igb_check_reset_block(hw)) {
209                 dev_err(&adapter->pdev->dev, "Cannot change link "
210                         "characteristics when SoL/IDER is active.\n");
211                 return -EINVAL;
212         }
213
214         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
215                 msleep(1);
216
217         if (ecmd->autoneg == AUTONEG_ENABLE) {
218                 hw->mac.autoneg = 1;
219                 hw->phy.autoneg_advertised = ecmd->advertising |
220                                              ADVERTISED_TP |
221                                              ADVERTISED_Autoneg;
222                 ecmd->advertising = hw->phy.autoneg_advertised;
223                 if (adapter->fc_autoneg)
224                         hw->fc.requested_mode = e1000_fc_default;
225         } else {
226                 u32 speed = ethtool_cmd_speed(ecmd);
227                 if (igb_set_spd_dplx(adapter, speed, ecmd->duplex)) {
228                         clear_bit(__IGB_RESETTING, &adapter->state);
229                         return -EINVAL;
230                 }
231         }
232
233         /* reset the link */
234         if (netif_running(adapter->netdev)) {
235                 igb_down(adapter);
236                 igb_up(adapter);
237         } else
238                 igb_reset(adapter);
239
240         clear_bit(__IGB_RESETTING, &adapter->state);
241         return 0;
242 }
243
244 static u32 igb_get_link(struct net_device *netdev)
245 {
246         struct igb_adapter *adapter = netdev_priv(netdev);
247         struct e1000_mac_info *mac = &adapter->hw.mac;
248
249         /*
250          * If the link is not reported up to netdev, interrupts are disabled,
251          * and so the physical link state may have changed since we last
252          * looked. Set get_link_status to make sure that the true link
253          * state is interrogated, rather than pulling a cached and possibly
254          * stale link state from the driver.
255          */
256         if (!netif_carrier_ok(netdev))
257                 mac->get_link_status = 1;
258
259         return igb_has_link(adapter);
260 }
261
262 static void igb_get_pauseparam(struct net_device *netdev,
263                                struct ethtool_pauseparam *pause)
264 {
265         struct igb_adapter *adapter = netdev_priv(netdev);
266         struct e1000_hw *hw = &adapter->hw;
267
268         pause->autoneg =
269                 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
270
271         if (hw->fc.current_mode == e1000_fc_rx_pause)
272                 pause->rx_pause = 1;
273         else if (hw->fc.current_mode == e1000_fc_tx_pause)
274                 pause->tx_pause = 1;
275         else if (hw->fc.current_mode == e1000_fc_full) {
276                 pause->rx_pause = 1;
277                 pause->tx_pause = 1;
278         }
279 }
280
281 static int igb_set_pauseparam(struct net_device *netdev,
282                               struct ethtool_pauseparam *pause)
283 {
284         struct igb_adapter *adapter = netdev_priv(netdev);
285         struct e1000_hw *hw = &adapter->hw;
286         int retval = 0;
287
288         adapter->fc_autoneg = pause->autoneg;
289
290         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
291                 msleep(1);
292
293         if (adapter->fc_autoneg == AUTONEG_ENABLE) {
294                 hw->fc.requested_mode = e1000_fc_default;
295                 if (netif_running(adapter->netdev)) {
296                         igb_down(adapter);
297                         igb_up(adapter);
298                 } else {
299                         igb_reset(adapter);
300                 }
301         } else {
302                 if (pause->rx_pause && pause->tx_pause)
303                         hw->fc.requested_mode = e1000_fc_full;
304                 else if (pause->rx_pause && !pause->tx_pause)
305                         hw->fc.requested_mode = e1000_fc_rx_pause;
306                 else if (!pause->rx_pause && pause->tx_pause)
307                         hw->fc.requested_mode = e1000_fc_tx_pause;
308                 else if (!pause->rx_pause && !pause->tx_pause)
309                         hw->fc.requested_mode = e1000_fc_none;
310
311                 hw->fc.current_mode = hw->fc.requested_mode;
312
313                 retval = ((hw->phy.media_type == e1000_media_type_copper) ?
314                           igb_force_mac_fc(hw) : igb_setup_link(hw));
315         }
316
317         clear_bit(__IGB_RESETTING, &adapter->state);
318         return retval;
319 }
320
321 static u32 igb_get_msglevel(struct net_device *netdev)
322 {
323         struct igb_adapter *adapter = netdev_priv(netdev);
324         return adapter->msg_enable;
325 }
326
327 static void igb_set_msglevel(struct net_device *netdev, u32 data)
328 {
329         struct igb_adapter *adapter = netdev_priv(netdev);
330         adapter->msg_enable = data;
331 }
332
333 static int igb_get_regs_len(struct net_device *netdev)
334 {
335 #define IGB_REGS_LEN 551
336         return IGB_REGS_LEN * sizeof(u32);
337 }
338
339 static void igb_get_regs(struct net_device *netdev,
340                          struct ethtool_regs *regs, void *p)
341 {
342         struct igb_adapter *adapter = netdev_priv(netdev);
343         struct e1000_hw *hw = &adapter->hw;
344         u32 *regs_buff = p;
345         u8 i;
346
347         memset(p, 0, IGB_REGS_LEN * sizeof(u32));
348
349         regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
350
351         /* General Registers */
352         regs_buff[0] = rd32(E1000_CTRL);
353         regs_buff[1] = rd32(E1000_STATUS);
354         regs_buff[2] = rd32(E1000_CTRL_EXT);
355         regs_buff[3] = rd32(E1000_MDIC);
356         regs_buff[4] = rd32(E1000_SCTL);
357         regs_buff[5] = rd32(E1000_CONNSW);
358         regs_buff[6] = rd32(E1000_VET);
359         regs_buff[7] = rd32(E1000_LEDCTL);
360         regs_buff[8] = rd32(E1000_PBA);
361         regs_buff[9] = rd32(E1000_PBS);
362         regs_buff[10] = rd32(E1000_FRTIMER);
363         regs_buff[11] = rd32(E1000_TCPTIMER);
364
365         /* NVM Register */
366         regs_buff[12] = rd32(E1000_EECD);
367
368         /* Interrupt */
369         /* Reading EICS for EICR because they read the
370          * same but EICS does not clear on read */
371         regs_buff[13] = rd32(E1000_EICS);
372         regs_buff[14] = rd32(E1000_EICS);
373         regs_buff[15] = rd32(E1000_EIMS);
374         regs_buff[16] = rd32(E1000_EIMC);
375         regs_buff[17] = rd32(E1000_EIAC);
376         regs_buff[18] = rd32(E1000_EIAM);
377         /* Reading ICS for ICR because they read the
378          * same but ICS does not clear on read */
379         regs_buff[19] = rd32(E1000_ICS);
380         regs_buff[20] = rd32(E1000_ICS);
381         regs_buff[21] = rd32(E1000_IMS);
382         regs_buff[22] = rd32(E1000_IMC);
383         regs_buff[23] = rd32(E1000_IAC);
384         regs_buff[24] = rd32(E1000_IAM);
385         regs_buff[25] = rd32(E1000_IMIRVP);
386
387         /* Flow Control */
388         regs_buff[26] = rd32(E1000_FCAL);
389         regs_buff[27] = rd32(E1000_FCAH);
390         regs_buff[28] = rd32(E1000_FCTTV);
391         regs_buff[29] = rd32(E1000_FCRTL);
392         regs_buff[30] = rd32(E1000_FCRTH);
393         regs_buff[31] = rd32(E1000_FCRTV);
394
395         /* Receive */
396         regs_buff[32] = rd32(E1000_RCTL);
397         regs_buff[33] = rd32(E1000_RXCSUM);
398         regs_buff[34] = rd32(E1000_RLPML);
399         regs_buff[35] = rd32(E1000_RFCTL);
400         regs_buff[36] = rd32(E1000_MRQC);
401         regs_buff[37] = rd32(E1000_VT_CTL);
402
403         /* Transmit */
404         regs_buff[38] = rd32(E1000_TCTL);
405         regs_buff[39] = rd32(E1000_TCTL_EXT);
406         regs_buff[40] = rd32(E1000_TIPG);
407         regs_buff[41] = rd32(E1000_DTXCTL);
408
409         /* Wake Up */
410         regs_buff[42] = rd32(E1000_WUC);
411         regs_buff[43] = rd32(E1000_WUFC);
412         regs_buff[44] = rd32(E1000_WUS);
413         regs_buff[45] = rd32(E1000_IPAV);
414         regs_buff[46] = rd32(E1000_WUPL);
415
416         /* MAC */
417         regs_buff[47] = rd32(E1000_PCS_CFG0);
418         regs_buff[48] = rd32(E1000_PCS_LCTL);
419         regs_buff[49] = rd32(E1000_PCS_LSTAT);
420         regs_buff[50] = rd32(E1000_PCS_ANADV);
421         regs_buff[51] = rd32(E1000_PCS_LPAB);
422         regs_buff[52] = rd32(E1000_PCS_NPTX);
423         regs_buff[53] = rd32(E1000_PCS_LPABNP);
424
425         /* Statistics */
426         regs_buff[54] = adapter->stats.crcerrs;
427         regs_buff[55] = adapter->stats.algnerrc;
428         regs_buff[56] = adapter->stats.symerrs;
429         regs_buff[57] = adapter->stats.rxerrc;
430         regs_buff[58] = adapter->stats.mpc;
431         regs_buff[59] = adapter->stats.scc;
432         regs_buff[60] = adapter->stats.ecol;
433         regs_buff[61] = adapter->stats.mcc;
434         regs_buff[62] = adapter->stats.latecol;
435         regs_buff[63] = adapter->stats.colc;
436         regs_buff[64] = adapter->stats.dc;
437         regs_buff[65] = adapter->stats.tncrs;
438         regs_buff[66] = adapter->stats.sec;
439         regs_buff[67] = adapter->stats.htdpmc;
440         regs_buff[68] = adapter->stats.rlec;
441         regs_buff[69] = adapter->stats.xonrxc;
442         regs_buff[70] = adapter->stats.xontxc;
443         regs_buff[71] = adapter->stats.xoffrxc;
444         regs_buff[72] = adapter->stats.xofftxc;
445         regs_buff[73] = adapter->stats.fcruc;
446         regs_buff[74] = adapter->stats.prc64;
447         regs_buff[75] = adapter->stats.prc127;
448         regs_buff[76] = adapter->stats.prc255;
449         regs_buff[77] = adapter->stats.prc511;
450         regs_buff[78] = adapter->stats.prc1023;
451         regs_buff[79] = adapter->stats.prc1522;
452         regs_buff[80] = adapter->stats.gprc;
453         regs_buff[81] = adapter->stats.bprc;
454         regs_buff[82] = adapter->stats.mprc;
455         regs_buff[83] = adapter->stats.gptc;
456         regs_buff[84] = adapter->stats.gorc;
457         regs_buff[86] = adapter->stats.gotc;
458         regs_buff[88] = adapter->stats.rnbc;
459         regs_buff[89] = adapter->stats.ruc;
460         regs_buff[90] = adapter->stats.rfc;
461         regs_buff[91] = adapter->stats.roc;
462         regs_buff[92] = adapter->stats.rjc;
463         regs_buff[93] = adapter->stats.mgprc;
464         regs_buff[94] = adapter->stats.mgpdc;
465         regs_buff[95] = adapter->stats.mgptc;
466         regs_buff[96] = adapter->stats.tor;
467         regs_buff[98] = adapter->stats.tot;
468         regs_buff[100] = adapter->stats.tpr;
469         regs_buff[101] = adapter->stats.tpt;
470         regs_buff[102] = adapter->stats.ptc64;
471         regs_buff[103] = adapter->stats.ptc127;
472         regs_buff[104] = adapter->stats.ptc255;
473         regs_buff[105] = adapter->stats.ptc511;
474         regs_buff[106] = adapter->stats.ptc1023;
475         regs_buff[107] = adapter->stats.ptc1522;
476         regs_buff[108] = adapter->stats.mptc;
477         regs_buff[109] = adapter->stats.bptc;
478         regs_buff[110] = adapter->stats.tsctc;
479         regs_buff[111] = adapter->stats.iac;
480         regs_buff[112] = adapter->stats.rpthc;
481         regs_buff[113] = adapter->stats.hgptc;
482         regs_buff[114] = adapter->stats.hgorc;
483         regs_buff[116] = adapter->stats.hgotc;
484         regs_buff[118] = adapter->stats.lenerrs;
485         regs_buff[119] = adapter->stats.scvpc;
486         regs_buff[120] = adapter->stats.hrmpc;
487
488         for (i = 0; i < 4; i++)
489                 regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
490         for (i = 0; i < 4; i++)
491                 regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
492         for (i = 0; i < 4; i++)
493                 regs_buff[129 + i] = rd32(E1000_RDBAL(i));
494         for (i = 0; i < 4; i++)
495                 regs_buff[133 + i] = rd32(E1000_RDBAH(i));
496         for (i = 0; i < 4; i++)
497                 regs_buff[137 + i] = rd32(E1000_RDLEN(i));
498         for (i = 0; i < 4; i++)
499                 regs_buff[141 + i] = rd32(E1000_RDH(i));
500         for (i = 0; i < 4; i++)
501                 regs_buff[145 + i] = rd32(E1000_RDT(i));
502         for (i = 0; i < 4; i++)
503                 regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
504
505         for (i = 0; i < 10; i++)
506                 regs_buff[153 + i] = rd32(E1000_EITR(i));
507         for (i = 0; i < 8; i++)
508                 regs_buff[163 + i] = rd32(E1000_IMIR(i));
509         for (i = 0; i < 8; i++)
510                 regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
511         for (i = 0; i < 16; i++)
512                 regs_buff[179 + i] = rd32(E1000_RAL(i));
513         for (i = 0; i < 16; i++)
514                 regs_buff[195 + i] = rd32(E1000_RAH(i));
515
516         for (i = 0; i < 4; i++)
517                 regs_buff[211 + i] = rd32(E1000_TDBAL(i));
518         for (i = 0; i < 4; i++)
519                 regs_buff[215 + i] = rd32(E1000_TDBAH(i));
520         for (i = 0; i < 4; i++)
521                 regs_buff[219 + i] = rd32(E1000_TDLEN(i));
522         for (i = 0; i < 4; i++)
523                 regs_buff[223 + i] = rd32(E1000_TDH(i));
524         for (i = 0; i < 4; i++)
525                 regs_buff[227 + i] = rd32(E1000_TDT(i));
526         for (i = 0; i < 4; i++)
527                 regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
528         for (i = 0; i < 4; i++)
529                 regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
530         for (i = 0; i < 4; i++)
531                 regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
532         for (i = 0; i < 4; i++)
533                 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
534
535         for (i = 0; i < 4; i++)
536                 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
537         for (i = 0; i < 4; i++)
538                 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
539         for (i = 0; i < 32; i++)
540                 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
541         for (i = 0; i < 128; i++)
542                 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
543         for (i = 0; i < 128; i++)
544                 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
545         for (i = 0; i < 4; i++)
546                 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
547
548         regs_buff[547] = rd32(E1000_TDFH);
549         regs_buff[548] = rd32(E1000_TDFT);
550         regs_buff[549] = rd32(E1000_TDFHS);
551         regs_buff[550] = rd32(E1000_TDFPC);
552         regs_buff[551] = adapter->stats.o2bgptc;
553         regs_buff[552] = adapter->stats.b2ospc;
554         regs_buff[553] = adapter->stats.o2bspc;
555         regs_buff[554] = adapter->stats.b2ogprc;
556 }
557
558 static int igb_get_eeprom_len(struct net_device *netdev)
559 {
560         struct igb_adapter *adapter = netdev_priv(netdev);
561         return adapter->hw.nvm.word_size * 2;
562 }
563
564 static int igb_get_eeprom(struct net_device *netdev,
565                           struct ethtool_eeprom *eeprom, u8 *bytes)
566 {
567         struct igb_adapter *adapter = netdev_priv(netdev);
568         struct e1000_hw *hw = &adapter->hw;
569         u16 *eeprom_buff;
570         int first_word, last_word;
571         int ret_val = 0;
572         u16 i;
573
574         if (eeprom->len == 0)
575                 return -EINVAL;
576
577         eeprom->magic = hw->vendor_id | (hw->device_id << 16);
578
579         first_word = eeprom->offset >> 1;
580         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
581
582         eeprom_buff = kmalloc(sizeof(u16) *
583                         (last_word - first_word + 1), GFP_KERNEL);
584         if (!eeprom_buff)
585                 return -ENOMEM;
586
587         if (hw->nvm.type == e1000_nvm_eeprom_spi)
588                 ret_val = hw->nvm.ops.read(hw, first_word,
589                                             last_word - first_word + 1,
590                                             eeprom_buff);
591         else {
592                 for (i = 0; i < last_word - first_word + 1; i++) {
593                         ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
594                                                     &eeprom_buff[i]);
595                         if (ret_val)
596                                 break;
597                 }
598         }
599
600         /* Device's eeprom is always little-endian, word addressable */
601         for (i = 0; i < last_word - first_word + 1; i++)
602                 le16_to_cpus(&eeprom_buff[i]);
603
604         memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
605                         eeprom->len);
606         kfree(eeprom_buff);
607
608         return ret_val;
609 }
610
611 static int igb_set_eeprom(struct net_device *netdev,
612                           struct ethtool_eeprom *eeprom, u8 *bytes)
613 {
614         struct igb_adapter *adapter = netdev_priv(netdev);
615         struct e1000_hw *hw = &adapter->hw;
616         u16 *eeprom_buff;
617         void *ptr;
618         int max_len, first_word, last_word, ret_val = 0;
619         u16 i;
620
621         if (eeprom->len == 0)
622                 return -EOPNOTSUPP;
623
624         if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
625                 return -EFAULT;
626
627         max_len = hw->nvm.word_size * 2;
628
629         first_word = eeprom->offset >> 1;
630         last_word = (eeprom->offset + eeprom->len - 1) >> 1;
631         eeprom_buff = kmalloc(max_len, GFP_KERNEL);
632         if (!eeprom_buff)
633                 return -ENOMEM;
634
635         ptr = (void *)eeprom_buff;
636
637         if (eeprom->offset & 1) {
638                 /* need read/modify/write of first changed EEPROM word */
639                 /* only the second byte of the word is being modified */
640                 ret_val = hw->nvm.ops.read(hw, first_word, 1,
641                                             &eeprom_buff[0]);
642                 ptr++;
643         }
644         if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
645                 /* need read/modify/write of last changed EEPROM word */
646                 /* only the first byte of the word is being modified */
647                 ret_val = hw->nvm.ops.read(hw, last_word, 1,
648                                    &eeprom_buff[last_word - first_word]);
649         }
650
651         /* Device's eeprom is always little-endian, word addressable */
652         for (i = 0; i < last_word - first_word + 1; i++)
653                 le16_to_cpus(&eeprom_buff[i]);
654
655         memcpy(ptr, bytes, eeprom->len);
656
657         for (i = 0; i < last_word - first_word + 1; i++)
658                 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
659
660         ret_val = hw->nvm.ops.write(hw, first_word,
661                                      last_word - first_word + 1, eeprom_buff);
662
663         /* Update the checksum over the first part of the EEPROM if needed
664          * and flush shadow RAM for 82573 controllers */
665         if ((ret_val == 0) && ((first_word <= NVM_CHECKSUM_REG)))
666                 hw->nvm.ops.update(hw);
667
668         kfree(eeprom_buff);
669         return ret_val;
670 }
671
672 static void igb_get_drvinfo(struct net_device *netdev,
673                             struct ethtool_drvinfo *drvinfo)
674 {
675         struct igb_adapter *adapter = netdev_priv(netdev);
676         char firmware_version[32];
677         u16 eeprom_data;
678
679         strncpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver) - 1);
680         strncpy(drvinfo->version, igb_driver_version,
681                 sizeof(drvinfo->version) - 1);
682
683         /* EEPROM image version # is reported as firmware version # for
684          * 82575 controllers */
685         adapter->hw.nvm.ops.read(&adapter->hw, 5, 1, &eeprom_data);
686         sprintf(firmware_version, "%d.%d-%d",
687                 (eeprom_data & 0xF000) >> 12,
688                 (eeprom_data & 0x0FF0) >> 4,
689                 eeprom_data & 0x000F);
690
691         strncpy(drvinfo->fw_version, firmware_version,
692                 sizeof(drvinfo->fw_version) - 1);
693         strncpy(drvinfo->bus_info, pci_name(adapter->pdev),
694                 sizeof(drvinfo->bus_info) - 1);
695         drvinfo->n_stats = IGB_STATS_LEN;
696         drvinfo->testinfo_len = IGB_TEST_LEN;
697         drvinfo->regdump_len = igb_get_regs_len(netdev);
698         drvinfo->eedump_len = igb_get_eeprom_len(netdev);
699 }
700
701 static void igb_get_ringparam(struct net_device *netdev,
702                               struct ethtool_ringparam *ring)
703 {
704         struct igb_adapter *adapter = netdev_priv(netdev);
705
706         ring->rx_max_pending = IGB_MAX_RXD;
707         ring->tx_max_pending = IGB_MAX_TXD;
708         ring->rx_mini_max_pending = 0;
709         ring->rx_jumbo_max_pending = 0;
710         ring->rx_pending = adapter->rx_ring_count;
711         ring->tx_pending = adapter->tx_ring_count;
712         ring->rx_mini_pending = 0;
713         ring->rx_jumbo_pending = 0;
714 }
715
716 static int igb_set_ringparam(struct net_device *netdev,
717                              struct ethtool_ringparam *ring)
718 {
719         struct igb_adapter *adapter = netdev_priv(netdev);
720         struct igb_ring *temp_ring;
721         int i, err = 0;
722         u16 new_rx_count, new_tx_count;
723
724         if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
725                 return -EINVAL;
726
727         new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
728         new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
729         new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
730
731         new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
732         new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
733         new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
734
735         if ((new_tx_count == adapter->tx_ring_count) &&
736             (new_rx_count == adapter->rx_ring_count)) {
737                 /* nothing to do */
738                 return 0;
739         }
740
741         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
742                 msleep(1);
743
744         if (!netif_running(adapter->netdev)) {
745                 for (i = 0; i < adapter->num_tx_queues; i++)
746                         adapter->tx_ring[i]->count = new_tx_count;
747                 for (i = 0; i < adapter->num_rx_queues; i++)
748                         adapter->rx_ring[i]->count = new_rx_count;
749                 adapter->tx_ring_count = new_tx_count;
750                 adapter->rx_ring_count = new_rx_count;
751                 goto clear_reset;
752         }
753
754         if (adapter->num_tx_queues > adapter->num_rx_queues)
755                 temp_ring = vmalloc(adapter->num_tx_queues * sizeof(struct igb_ring));
756         else
757                 temp_ring = vmalloc(adapter->num_rx_queues * sizeof(struct igb_ring));
758
759         if (!temp_ring) {
760                 err = -ENOMEM;
761                 goto clear_reset;
762         }
763
764         igb_down(adapter);
765
766         /*
767          * We can't just free everything and then setup again,
768          * because the ISRs in MSI-X mode get passed pointers
769          * to the tx and rx ring structs.
770          */
771         if (new_tx_count != adapter->tx_ring_count) {
772                 for (i = 0; i < adapter->num_tx_queues; i++) {
773                         memcpy(&temp_ring[i], adapter->tx_ring[i],
774                                sizeof(struct igb_ring));
775
776                         temp_ring[i].count = new_tx_count;
777                         err = igb_setup_tx_resources(&temp_ring[i]);
778                         if (err) {
779                                 while (i) {
780                                         i--;
781                                         igb_free_tx_resources(&temp_ring[i]);
782                                 }
783                                 goto err_setup;
784                         }
785                 }
786
787                 for (i = 0; i < adapter->num_tx_queues; i++) {
788                         igb_free_tx_resources(adapter->tx_ring[i]);
789
790                         memcpy(adapter->tx_ring[i], &temp_ring[i],
791                                sizeof(struct igb_ring));
792                 }
793
794                 adapter->tx_ring_count = new_tx_count;
795         }
796
797         if (new_rx_count != adapter->rx_ring_count) {
798                 for (i = 0; i < adapter->num_rx_queues; i++) {
799                         memcpy(&temp_ring[i], adapter->rx_ring[i],
800                                sizeof(struct igb_ring));
801
802                         temp_ring[i].count = new_rx_count;
803                         err = igb_setup_rx_resources(&temp_ring[i]);
804                         if (err) {
805                                 while (i) {
806                                         i--;
807                                         igb_free_rx_resources(&temp_ring[i]);
808                                 }
809                                 goto err_setup;
810                         }
811
812                 }
813
814                 for (i = 0; i < adapter->num_rx_queues; i++) {
815                         igb_free_rx_resources(adapter->rx_ring[i]);
816
817                         memcpy(adapter->rx_ring[i], &temp_ring[i],
818                                sizeof(struct igb_ring));
819                 }
820
821                 adapter->rx_ring_count = new_rx_count;
822         }
823 err_setup:
824         igb_up(adapter);
825         vfree(temp_ring);
826 clear_reset:
827         clear_bit(__IGB_RESETTING, &adapter->state);
828         return err;
829 }
830
831 /* ethtool register test data */
832 struct igb_reg_test {
833         u16 reg;
834         u16 reg_offset;
835         u16 array_len;
836         u16 test_type;
837         u32 mask;
838         u32 write;
839 };
840
841 /* In the hardware, registers are laid out either singly, in arrays
842  * spaced 0x100 bytes apart, or in contiguous tables.  We assume
843  * most tests take place on arrays or single registers (handled
844  * as a single-element array) and special-case the tables.
845  * Table tests are always pattern tests.
846  *
847  * We also make provision for some required setup steps by specifying
848  * registers to be written without any read-back testing.
849  */
850
851 #define PATTERN_TEST    1
852 #define SET_READ_TEST   2
853 #define WRITE_NO_TEST   3
854 #define TABLE32_TEST    4
855 #define TABLE64_TEST_LO 5
856 #define TABLE64_TEST_HI 6
857
858 /* i350 reg test */
859 static struct igb_reg_test reg_test_i350[] = {
860         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
861         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
862         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
863         { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
864         { E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
865         { E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
866         { E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
867         { E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
868         { E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
869         { E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
870         /* RDH is read-only for i350, only test RDT. */
871         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
872         { E1000_RDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
873         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
874         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
875         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
876         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
877         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
878         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
879         { E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
880         { E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
881         { E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
882         { E1000_TDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
883         { E1000_TDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
884         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
885         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
886         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
887         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
888         { E1000_RA,        0, 16, TABLE64_TEST_LO,
889                                                 0xFFFFFFFF, 0xFFFFFFFF },
890         { E1000_RA,        0, 16, TABLE64_TEST_HI,
891                                                 0xC3FFFFFF, 0xFFFFFFFF },
892         { E1000_RA2,       0, 16, TABLE64_TEST_LO,
893                                                 0xFFFFFFFF, 0xFFFFFFFF },
894         { E1000_RA2,       0, 16, TABLE64_TEST_HI,
895                                                 0xC3FFFFFF, 0xFFFFFFFF },
896         { E1000_MTA,       0, 128, TABLE32_TEST,
897                                                 0xFFFFFFFF, 0xFFFFFFFF },
898         { 0, 0, 0, 0 }
899 };
900
901 /* 82580 reg test */
902 static struct igb_reg_test reg_test_82580[] = {
903         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
904         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
905         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
906         { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
907         { E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
908         { E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
909         { E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
910         { E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
911         { E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
912         { E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
913         /* RDH is read-only for 82580, only test RDT. */
914         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
915         { E1000_RDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
916         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
917         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
918         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
919         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
920         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
921         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
922         { E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
923         { E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
924         { E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
925         { E1000_TDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
926         { E1000_TDT(4),    0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
927         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
928         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
929         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
930         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
931         { E1000_RA,        0, 16, TABLE64_TEST_LO,
932                                                 0xFFFFFFFF, 0xFFFFFFFF },
933         { E1000_RA,        0, 16, TABLE64_TEST_HI,
934                                                 0x83FFFFFF, 0xFFFFFFFF },
935         { E1000_RA2,       0, 8, TABLE64_TEST_LO,
936                                                 0xFFFFFFFF, 0xFFFFFFFF },
937         { E1000_RA2,       0, 8, TABLE64_TEST_HI,
938                                                 0x83FFFFFF, 0xFFFFFFFF },
939         { E1000_MTA,       0, 128, TABLE32_TEST,
940                                                 0xFFFFFFFF, 0xFFFFFFFF },
941         { 0, 0, 0, 0 }
942 };
943
944 /* 82576 reg test */
945 static struct igb_reg_test reg_test_82576[] = {
946         { E1000_FCAL,      0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
947         { E1000_FCAH,      0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
948         { E1000_FCT,       0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
949         { E1000_VET,       0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
950         { E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
951         { E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
952         { E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
953         { E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
954         { E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
955         { E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
956         /* Enable all RX queues before testing. */
957         { E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
958         { E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
959         /* RDH is read-only for 82576, only test RDT. */
960         { E1000_RDT(0),    0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
961         { E1000_RDT(4),    0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
962         { E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
963         { E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
964         { E1000_FCRTH,     0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
965         { E1000_FCTTV,     0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
966         { E1000_TIPG,      0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
967         { E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
968         { E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
969         { E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
970         { E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
971         { E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
972         { E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
973         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
974         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
975         { E1000_RCTL,      0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
976         { E1000_TCTL,      0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
977         { E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
978         { E1000_RA,        0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
979         { E1000_RA2,       0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
980         { E1000_RA2,       0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
981         { E1000_MTA,       0, 128,TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
982         { 0, 0, 0, 0 }
983 };
984
985 /* 82575 register test */
986 static struct igb_reg_test reg_test_82575[] = {
987         { E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
988         { E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
989         { E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
990         { E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
991         { E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
992         { E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
993         { E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
994         /* Enable all four RX queues before testing. */
995         { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, E1000_RXDCTL_QUEUE_ENABLE },
996         /* RDH is read-only for 82575, only test RDT. */
997         { E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
998         { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
999         { E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1000         { E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1001         { E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1002         { E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1003         { E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1004         { E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1005         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1006         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1007         { E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1008         { E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1009         { E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1010         { E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1011         { E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1012         { E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1013         { 0, 0, 0, 0 }
1014 };
1015
1016 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1017                              int reg, u32 mask, u32 write)
1018 {
1019         struct e1000_hw *hw = &adapter->hw;
1020         u32 pat, val;
1021         static const u32 _test[] =
1022                 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1023         for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1024                 wr32(reg, (_test[pat] & write));
1025                 val = rd32(reg) & mask;
1026                 if (val != (_test[pat] & write & mask)) {
1027                         dev_err(&adapter->pdev->dev, "pattern test reg %04X "
1028                                 "failed: got 0x%08X expected 0x%08X\n",
1029                                 reg, val, (_test[pat] & write & mask));
1030                         *data = reg;
1031                         return 1;
1032                 }
1033         }
1034
1035         return 0;
1036 }
1037
1038 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1039                               int reg, u32 mask, u32 write)
1040 {
1041         struct e1000_hw *hw = &adapter->hw;
1042         u32 val;
1043         wr32(reg, write & mask);
1044         val = rd32(reg);
1045         if ((write & mask) != (val & mask)) {
1046                 dev_err(&adapter->pdev->dev, "set/check reg %04X test failed:"
1047                         " got 0x%08X expected 0x%08X\n", reg,
1048                         (val & mask), (write & mask));
1049                 *data = reg;
1050                 return 1;
1051         }
1052
1053         return 0;
1054 }
1055
1056 #define REG_PATTERN_TEST(reg, mask, write) \
1057         do { \
1058                 if (reg_pattern_test(adapter, data, reg, mask, write)) \
1059                         return 1; \
1060         } while (0)
1061
1062 #define REG_SET_AND_CHECK(reg, mask, write) \
1063         do { \
1064                 if (reg_set_and_check(adapter, data, reg, mask, write)) \
1065                         return 1; \
1066         } while (0)
1067
1068 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1069 {
1070         struct e1000_hw *hw = &adapter->hw;
1071         struct igb_reg_test *test;
1072         u32 value, before, after;
1073         u32 i, toggle;
1074
1075         switch (adapter->hw.mac.type) {
1076         case e1000_i350:
1077                 test = reg_test_i350;
1078                 toggle = 0x7FEFF3FF;
1079                 break;
1080         case e1000_82580:
1081                 test = reg_test_82580;
1082                 toggle = 0x7FEFF3FF;
1083                 break;
1084         case e1000_82576:
1085                 test = reg_test_82576;
1086                 toggle = 0x7FFFF3FF;
1087                 break;
1088         default:
1089                 test = reg_test_82575;
1090                 toggle = 0x7FFFF3FF;
1091                 break;
1092         }
1093
1094         /* Because the status register is such a special case,
1095          * we handle it separately from the rest of the register
1096          * tests.  Some bits are read-only, some toggle, and some
1097          * are writable on newer MACs.
1098          */
1099         before = rd32(E1000_STATUS);
1100         value = (rd32(E1000_STATUS) & toggle);
1101         wr32(E1000_STATUS, toggle);
1102         after = rd32(E1000_STATUS) & toggle;
1103         if (value != after) {
1104                 dev_err(&adapter->pdev->dev, "failed STATUS register test "
1105                         "got: 0x%08X expected: 0x%08X\n", after, value);
1106                 *data = 1;
1107                 return 1;
1108         }
1109         /* restore previous status */
1110         wr32(E1000_STATUS, before);
1111
1112         /* Perform the remainder of the register test, looping through
1113          * the test table until we either fail or reach the null entry.
1114          */
1115         while (test->reg) {
1116                 for (i = 0; i < test->array_len; i++) {
1117                         switch (test->test_type) {
1118                         case PATTERN_TEST:
1119                                 REG_PATTERN_TEST(test->reg +
1120                                                 (i * test->reg_offset),
1121                                                 test->mask,
1122                                                 test->write);
1123                                 break;
1124                         case SET_READ_TEST:
1125                                 REG_SET_AND_CHECK(test->reg +
1126                                                 (i * test->reg_offset),
1127                                                 test->mask,
1128                                                 test->write);
1129                                 break;
1130                         case WRITE_NO_TEST:
1131                                 writel(test->write,
1132                                     (adapter->hw.hw_addr + test->reg)
1133                                         + (i * test->reg_offset));
1134                                 break;
1135                         case TABLE32_TEST:
1136                                 REG_PATTERN_TEST(test->reg + (i * 4),
1137                                                 test->mask,
1138                                                 test->write);
1139                                 break;
1140                         case TABLE64_TEST_LO:
1141                                 REG_PATTERN_TEST(test->reg + (i * 8),
1142                                                 test->mask,
1143                                                 test->write);
1144                                 break;
1145                         case TABLE64_TEST_HI:
1146                                 REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1147                                                 test->mask,
1148                                                 test->write);
1149                                 break;
1150                         }
1151                 }
1152                 test++;
1153         }
1154
1155         *data = 0;
1156         return 0;
1157 }
1158
1159 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1160 {
1161         u16 temp;
1162         u16 checksum = 0;
1163         u16 i;
1164
1165         *data = 0;
1166         /* Read and add up the contents of the EEPROM */
1167         for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
1168                 if ((adapter->hw.nvm.ops.read(&adapter->hw, i, 1, &temp)) < 0) {
1169                         *data = 1;
1170                         break;
1171                 }
1172                 checksum += temp;
1173         }
1174
1175         /* If Checksum is not Correct return error else test passed */
1176         if ((checksum != (u16) NVM_SUM) && !(*data))
1177                 *data = 2;
1178
1179         return *data;
1180 }
1181
1182 static irqreturn_t igb_test_intr(int irq, void *data)
1183 {
1184         struct igb_adapter *adapter = (struct igb_adapter *) data;
1185         struct e1000_hw *hw = &adapter->hw;
1186
1187         adapter->test_icr |= rd32(E1000_ICR);
1188
1189         return IRQ_HANDLED;
1190 }
1191
1192 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1193 {
1194         struct e1000_hw *hw = &adapter->hw;
1195         struct net_device *netdev = adapter->netdev;
1196         u32 mask, ics_mask, i = 0, shared_int = true;
1197         u32 irq = adapter->pdev->irq;
1198
1199         *data = 0;
1200
1201         /* Hook up test interrupt handler just for this test */
1202         if (adapter->msix_entries) {
1203                 if (request_irq(adapter->msix_entries[0].vector,
1204                                 igb_test_intr, 0, netdev->name, adapter)) {
1205                         *data = 1;
1206                         return -1;
1207                 }
1208         } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1209                 shared_int = false;
1210                 if (request_irq(irq,
1211                                 igb_test_intr, 0, netdev->name, adapter)) {
1212                         *data = 1;
1213                         return -1;
1214                 }
1215         } else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1216                                 netdev->name, adapter)) {
1217                 shared_int = false;
1218         } else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1219                  netdev->name, adapter)) {
1220                 *data = 1;
1221                 return -1;
1222         }
1223         dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1224                 (shared_int ? "shared" : "unshared"));
1225
1226         /* Disable all the interrupts */
1227         wr32(E1000_IMC, ~0);
1228         msleep(10);
1229
1230         /* Define all writable bits for ICS */
1231         switch (hw->mac.type) {
1232         case e1000_82575:
1233                 ics_mask = 0x37F47EDD;
1234                 break;
1235         case e1000_82576:
1236                 ics_mask = 0x77D4FBFD;
1237                 break;
1238         case e1000_82580:
1239                 ics_mask = 0x77DCFED5;
1240                 break;
1241         case e1000_i350:
1242                 ics_mask = 0x77DCFED5;
1243                 break;
1244         default:
1245                 ics_mask = 0x7FFFFFFF;
1246                 break;
1247         }
1248
1249         /* Test each interrupt */
1250         for (; i < 31; i++) {
1251                 /* Interrupt to test */
1252                 mask = 1 << i;
1253
1254                 if (!(mask & ics_mask))
1255                         continue;
1256
1257                 if (!shared_int) {
1258                         /* Disable the interrupt to be reported in
1259                          * the cause register and then force the same
1260                          * interrupt and see if one gets posted.  If
1261                          * an interrupt was posted to the bus, the
1262                          * test failed.
1263                          */
1264                         adapter->test_icr = 0;
1265
1266                         /* Flush any pending interrupts */
1267                         wr32(E1000_ICR, ~0);
1268
1269                         wr32(E1000_IMC, mask);
1270                         wr32(E1000_ICS, mask);
1271                         msleep(10);
1272
1273                         if (adapter->test_icr & mask) {
1274                                 *data = 3;
1275                                 break;
1276                         }
1277                 }
1278
1279                 /* Enable the interrupt to be reported in
1280                  * the cause register and then force the same
1281                  * interrupt and see if one gets posted.  If
1282                  * an interrupt was not posted to the bus, the
1283                  * test failed.
1284                  */
1285                 adapter->test_icr = 0;
1286
1287                 /* Flush any pending interrupts */
1288                 wr32(E1000_ICR, ~0);
1289
1290                 wr32(E1000_IMS, mask);
1291                 wr32(E1000_ICS, mask);
1292                 msleep(10);
1293
1294                 if (!(adapter->test_icr & mask)) {
1295                         *data = 4;
1296                         break;
1297                 }
1298
1299                 if (!shared_int) {
1300                         /* Disable the other interrupts to be reported in
1301                          * the cause register and then force the other
1302                          * interrupts and see if any get posted.  If
1303                          * an interrupt was posted to the bus, the
1304                          * test failed.
1305                          */
1306                         adapter->test_icr = 0;
1307
1308                         /* Flush any pending interrupts */
1309                         wr32(E1000_ICR, ~0);
1310
1311                         wr32(E1000_IMC, ~mask);
1312                         wr32(E1000_ICS, ~mask);
1313                         msleep(10);
1314
1315                         if (adapter->test_icr & mask) {
1316                                 *data = 5;
1317                                 break;
1318                         }
1319                 }
1320         }
1321
1322         /* Disable all the interrupts */
1323         wr32(E1000_IMC, ~0);
1324         msleep(10);
1325
1326         /* Unhook test interrupt handler */
1327         if (adapter->msix_entries)
1328                 free_irq(adapter->msix_entries[0].vector, adapter);
1329         else
1330                 free_irq(irq, adapter);
1331
1332         return *data;
1333 }
1334
1335 static void igb_free_desc_rings(struct igb_adapter *adapter)
1336 {
1337         igb_free_tx_resources(&adapter->test_tx_ring);
1338         igb_free_rx_resources(&adapter->test_rx_ring);
1339 }
1340
1341 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1342 {
1343         struct igb_ring *tx_ring = &adapter->test_tx_ring;
1344         struct igb_ring *rx_ring = &adapter->test_rx_ring;
1345         struct e1000_hw *hw = &adapter->hw;
1346         int ret_val;
1347
1348         /* Setup Tx descriptor ring and Tx buffers */
1349         tx_ring->count = IGB_DEFAULT_TXD;
1350         tx_ring->dev = &adapter->pdev->dev;
1351         tx_ring->netdev = adapter->netdev;
1352         tx_ring->reg_idx = adapter->vfs_allocated_count;
1353
1354         if (igb_setup_tx_resources(tx_ring)) {
1355                 ret_val = 1;
1356                 goto err_nomem;
1357         }
1358
1359         igb_setup_tctl(adapter);
1360         igb_configure_tx_ring(adapter, tx_ring);
1361
1362         /* Setup Rx descriptor ring and Rx buffers */
1363         rx_ring->count = IGB_DEFAULT_RXD;
1364         rx_ring->dev = &adapter->pdev->dev;
1365         rx_ring->netdev = adapter->netdev;
1366         rx_ring->rx_buffer_len = IGB_RXBUFFER_2048;
1367         rx_ring->reg_idx = adapter->vfs_allocated_count;
1368
1369         if (igb_setup_rx_resources(rx_ring)) {
1370                 ret_val = 3;
1371                 goto err_nomem;
1372         }
1373
1374         /* set the default queue to queue 0 of PF */
1375         wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1376
1377         /* enable receive ring */
1378         igb_setup_rctl(adapter);
1379         igb_configure_rx_ring(adapter, rx_ring);
1380
1381         igb_alloc_rx_buffers_adv(rx_ring, igb_desc_unused(rx_ring));
1382
1383         return 0;
1384
1385 err_nomem:
1386         igb_free_desc_rings(adapter);
1387         return ret_val;
1388 }
1389
1390 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1391 {
1392         struct e1000_hw *hw = &adapter->hw;
1393
1394         /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1395         igb_write_phy_reg(hw, 29, 0x001F);
1396         igb_write_phy_reg(hw, 30, 0x8FFC);
1397         igb_write_phy_reg(hw, 29, 0x001A);
1398         igb_write_phy_reg(hw, 30, 0x8FF0);
1399 }
1400
1401 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1402 {
1403         struct e1000_hw *hw = &adapter->hw;
1404         u32 ctrl_reg = 0;
1405
1406         hw->mac.autoneg = false;
1407
1408         if (hw->phy.type == e1000_phy_m88) {
1409                 /* Auto-MDI/MDIX Off */
1410                 igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1411                 /* reset to update Auto-MDI/MDIX */
1412                 igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1413                 /* autoneg off */
1414                 igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1415         } else if (hw->phy.type == e1000_phy_82580) {
1416                 /* enable MII loopback */
1417                 igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
1418         }
1419
1420         ctrl_reg = rd32(E1000_CTRL);
1421
1422         /* force 1000, set loopback */
1423         igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1424
1425         /* Now set up the MAC to the same speed/duplex as the PHY. */
1426         ctrl_reg = rd32(E1000_CTRL);
1427         ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1428         ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1429                      E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1430                      E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1431                      E1000_CTRL_FD |     /* Force Duplex to FULL */
1432                      E1000_CTRL_SLU);    /* Set link up enable bit */
1433
1434         if (hw->phy.type == e1000_phy_m88)
1435                 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1436
1437         wr32(E1000_CTRL, ctrl_reg);
1438
1439         /* Disable the receiver on the PHY so when a cable is plugged in, the
1440          * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1441          */
1442         if (hw->phy.type == e1000_phy_m88)
1443                 igb_phy_disable_receiver(adapter);
1444
1445         udelay(500);
1446
1447         return 0;
1448 }
1449
1450 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1451 {
1452         return igb_integrated_phy_loopback(adapter);
1453 }
1454
1455 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1456 {
1457         struct e1000_hw *hw = &adapter->hw;
1458         u32 reg;
1459
1460         reg = rd32(E1000_CTRL_EXT);
1461
1462         /* use CTRL_EXT to identify link type as SGMII can appear as copper */
1463         if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1464                 reg = rd32(E1000_RCTL);
1465                 reg |= E1000_RCTL_LBM_TCVR;
1466                 wr32(E1000_RCTL, reg);
1467
1468                 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1469
1470                 reg = rd32(E1000_CTRL);
1471                 reg &= ~(E1000_CTRL_RFCE |
1472                          E1000_CTRL_TFCE |
1473                          E1000_CTRL_LRST);
1474                 reg |= E1000_CTRL_SLU |
1475                        E1000_CTRL_FD;
1476                 wr32(E1000_CTRL, reg);
1477
1478                 /* Unset switch control to serdes energy detect */
1479                 reg = rd32(E1000_CONNSW);
1480                 reg &= ~E1000_CONNSW_ENRGSRC;
1481                 wr32(E1000_CONNSW, reg);
1482
1483                 /* Set PCS register for forced speed */
1484                 reg = rd32(E1000_PCS_LCTL);
1485                 reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1486                 reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1487                        E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1488                        E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1489                        E1000_PCS_LCTL_FSD |           /* Force Speed */
1490                        E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1491                 wr32(E1000_PCS_LCTL, reg);
1492
1493                 return 0;
1494         }
1495
1496         return igb_set_phy_loopback(adapter);
1497 }
1498
1499 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1500 {
1501         struct e1000_hw *hw = &adapter->hw;
1502         u32 rctl;
1503         u16 phy_reg;
1504
1505         rctl = rd32(E1000_RCTL);
1506         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1507         wr32(E1000_RCTL, rctl);
1508
1509         hw->mac.autoneg = true;
1510         igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1511         if (phy_reg & MII_CR_LOOPBACK) {
1512                 phy_reg &= ~MII_CR_LOOPBACK;
1513                 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1514                 igb_phy_sw_reset(hw);
1515         }
1516 }
1517
1518 static void igb_create_lbtest_frame(struct sk_buff *skb,
1519                                     unsigned int frame_size)
1520 {
1521         memset(skb->data, 0xFF, frame_size);
1522         frame_size /= 2;
1523         memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1524         memset(&skb->data[frame_size + 10], 0xBE, 1);
1525         memset(&skb->data[frame_size + 12], 0xAF, 1);
1526 }
1527
1528 static int igb_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1529 {
1530         frame_size /= 2;
1531         if (*(skb->data + 3) == 0xFF) {
1532                 if ((*(skb->data + frame_size + 10) == 0xBE) &&
1533                    (*(skb->data + frame_size + 12) == 0xAF)) {
1534                         return 0;
1535                 }
1536         }
1537         return 13;
1538 }
1539
1540 static int igb_clean_test_rings(struct igb_ring *rx_ring,
1541                                 struct igb_ring *tx_ring,
1542                                 unsigned int size)
1543 {
1544         union e1000_adv_rx_desc *rx_desc;
1545         struct igb_buffer *buffer_info;
1546         int rx_ntc, tx_ntc, count = 0;
1547         u32 staterr;
1548
1549         /* initialize next to clean and descriptor values */
1550         rx_ntc = rx_ring->next_to_clean;
1551         tx_ntc = tx_ring->next_to_clean;
1552         rx_desc = E1000_RX_DESC_ADV(*rx_ring, rx_ntc);
1553         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1554
1555         while (staterr & E1000_RXD_STAT_DD) {
1556                 /* check rx buffer */
1557                 buffer_info = &rx_ring->buffer_info[rx_ntc];
1558
1559                 /* unmap rx buffer, will be remapped by alloc_rx_buffers */
1560                 dma_unmap_single(rx_ring->dev,
1561                                  buffer_info->dma,
1562                                  rx_ring->rx_buffer_len,
1563                                  DMA_FROM_DEVICE);
1564                 buffer_info->dma = 0;
1565
1566                 /* verify contents of skb */
1567                 if (!igb_check_lbtest_frame(buffer_info->skb, size))
1568                         count++;
1569
1570                 /* unmap buffer on tx side */
1571                 buffer_info = &tx_ring->buffer_info[tx_ntc];
1572                 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
1573
1574                 /* increment rx/tx next to clean counters */
1575                 rx_ntc++;
1576                 if (rx_ntc == rx_ring->count)
1577                         rx_ntc = 0;
1578                 tx_ntc++;
1579                 if (tx_ntc == tx_ring->count)
1580                         tx_ntc = 0;
1581
1582                 /* fetch next descriptor */
1583                 rx_desc = E1000_RX_DESC_ADV(*rx_ring, rx_ntc);
1584                 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1585         }
1586
1587         /* re-map buffers to ring, store next to clean values */
1588         igb_alloc_rx_buffers_adv(rx_ring, count);
1589         rx_ring->next_to_clean = rx_ntc;
1590         tx_ring->next_to_clean = tx_ntc;
1591
1592         return count;
1593 }
1594
1595 static int igb_run_loopback_test(struct igb_adapter *adapter)
1596 {
1597         struct igb_ring *tx_ring = &adapter->test_tx_ring;
1598         struct igb_ring *rx_ring = &adapter->test_rx_ring;
1599         int i, j, lc, good_cnt, ret_val = 0;
1600         unsigned int size = 1024;
1601         netdev_tx_t tx_ret_val;
1602         struct sk_buff *skb;
1603
1604         /* allocate test skb */
1605         skb = alloc_skb(size, GFP_KERNEL);
1606         if (!skb)
1607                 return 11;
1608
1609         /* place data into test skb */
1610         igb_create_lbtest_frame(skb, size);
1611         skb_put(skb, size);
1612
1613         /*
1614          * Calculate the loop count based on the largest descriptor ring
1615          * The idea is to wrap the largest ring a number of times using 64
1616          * send/receive pairs during each loop
1617          */
1618
1619         if (rx_ring->count <= tx_ring->count)
1620                 lc = ((tx_ring->count / 64) * 2) + 1;
1621         else
1622                 lc = ((rx_ring->count / 64) * 2) + 1;
1623
1624         for (j = 0; j <= lc; j++) { /* loop count loop */
1625                 /* reset count of good packets */
1626                 good_cnt = 0;
1627
1628                 /* place 64 packets on the transmit queue*/
1629                 for (i = 0; i < 64; i++) {
1630                         skb_get(skb);
1631                         tx_ret_val = igb_xmit_frame_ring_adv(skb, tx_ring);
1632                         if (tx_ret_val == NETDEV_TX_OK)
1633                                 good_cnt++;
1634                 }
1635
1636                 if (good_cnt != 64) {
1637                         ret_val = 12;
1638                         break;
1639                 }
1640
1641                 /* allow 200 milliseconds for packets to go from tx to rx */
1642                 msleep(200);
1643
1644                 good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1645                 if (good_cnt != 64) {
1646                         ret_val = 13;
1647                         break;
1648                 }
1649         } /* end loop count loop */
1650
1651         /* free the original skb */
1652         kfree_skb(skb);
1653
1654         return ret_val;
1655 }
1656
1657 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1658 {
1659         /* PHY loopback cannot be performed if SoL/IDER
1660          * sessions are active */
1661         if (igb_check_reset_block(&adapter->hw)) {
1662                 dev_err(&adapter->pdev->dev,
1663                         "Cannot do PHY loopback test "
1664                         "when SoL/IDER is active.\n");
1665                 *data = 0;
1666                 goto out;
1667         }
1668         *data = igb_setup_desc_rings(adapter);
1669         if (*data)
1670                 goto out;
1671         *data = igb_setup_loopback_test(adapter);
1672         if (*data)
1673                 goto err_loopback;
1674         *data = igb_run_loopback_test(adapter);
1675         igb_loopback_cleanup(adapter);
1676
1677 err_loopback:
1678         igb_free_desc_rings(adapter);
1679 out:
1680         return *data;
1681 }
1682
1683 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1684 {
1685         struct e1000_hw *hw = &adapter->hw;
1686         *data = 0;
1687         if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1688                 int i = 0;
1689                 hw->mac.serdes_has_link = false;
1690
1691                 /* On some blade server designs, link establishment
1692                  * could take as long as 2-3 minutes */
1693                 do {
1694                         hw->mac.ops.check_for_link(&adapter->hw);
1695                         if (hw->mac.serdes_has_link)
1696                                 return *data;
1697                         msleep(20);
1698                 } while (i++ < 3750);
1699
1700                 *data = 1;
1701         } else {
1702                 hw->mac.ops.check_for_link(&adapter->hw);
1703                 if (hw->mac.autoneg)
1704                         msleep(4000);
1705
1706                 if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1707                         *data = 1;
1708         }
1709         return *data;
1710 }
1711
1712 static void igb_diag_test(struct net_device *netdev,
1713                           struct ethtool_test *eth_test, u64 *data)
1714 {
1715         struct igb_adapter *adapter = netdev_priv(netdev);
1716         u16 autoneg_advertised;
1717         u8 forced_speed_duplex, autoneg;
1718         bool if_running = netif_running(netdev);
1719
1720         set_bit(__IGB_TESTING, &adapter->state);
1721         if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1722                 /* Offline tests */
1723
1724                 /* save speed, duplex, autoneg settings */
1725                 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1726                 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1727                 autoneg = adapter->hw.mac.autoneg;
1728
1729                 dev_info(&adapter->pdev->dev, "offline testing starting\n");
1730
1731                 /* power up link for link test */
1732                 igb_power_up_link(adapter);
1733
1734                 /* Link test performed before hardware reset so autoneg doesn't
1735                  * interfere with test result */
1736                 if (igb_link_test(adapter, &data[4]))
1737                         eth_test->flags |= ETH_TEST_FL_FAILED;
1738
1739                 if (if_running)
1740                         /* indicate we're in test mode */
1741                         dev_close(netdev);
1742                 else
1743                         igb_reset(adapter);
1744
1745                 if (igb_reg_test(adapter, &data[0]))
1746                         eth_test->flags |= ETH_TEST_FL_FAILED;
1747
1748                 igb_reset(adapter);
1749                 if (igb_eeprom_test(adapter, &data[1]))
1750                         eth_test->flags |= ETH_TEST_FL_FAILED;
1751
1752                 igb_reset(adapter);
1753                 if (igb_intr_test(adapter, &data[2]))
1754                         eth_test->flags |= ETH_TEST_FL_FAILED;
1755
1756                 igb_reset(adapter);
1757                 /* power up link for loopback test */
1758                 igb_power_up_link(adapter);
1759                 if (igb_loopback_test(adapter, &data[3]))
1760                         eth_test->flags |= ETH_TEST_FL_FAILED;
1761
1762                 /* restore speed, duplex, autoneg settings */
1763                 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1764                 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1765                 adapter->hw.mac.autoneg = autoneg;
1766
1767                 /* force this routine to wait until autoneg complete/timeout */
1768                 adapter->hw.phy.autoneg_wait_to_complete = true;
1769                 igb_reset(adapter);
1770                 adapter->hw.phy.autoneg_wait_to_complete = false;
1771
1772                 clear_bit(__IGB_TESTING, &adapter->state);
1773                 if (if_running)
1774                         dev_open(netdev);
1775         } else {
1776                 dev_info(&adapter->pdev->dev, "online testing starting\n");
1777
1778                 /* PHY is powered down when interface is down */
1779                 if (if_running && igb_link_test(adapter, &data[4]))
1780                         eth_test->flags |= ETH_TEST_FL_FAILED;
1781                 else
1782                         data[4] = 0;
1783
1784                 /* Online tests aren't run; pass by default */
1785                 data[0] = 0;
1786                 data[1] = 0;
1787                 data[2] = 0;
1788                 data[3] = 0;
1789
1790                 clear_bit(__IGB_TESTING, &adapter->state);
1791         }
1792         msleep_interruptible(4 * 1000);
1793 }
1794
1795 static int igb_wol_exclusion(struct igb_adapter *adapter,
1796                              struct ethtool_wolinfo *wol)
1797 {
1798         struct e1000_hw *hw = &adapter->hw;
1799         int retval = 1; /* fail by default */
1800
1801         switch (hw->device_id) {
1802         case E1000_DEV_ID_82575GB_QUAD_COPPER:
1803                 /* WoL not supported */
1804                 wol->supported = 0;
1805                 break;
1806         case E1000_DEV_ID_82575EB_FIBER_SERDES:
1807         case E1000_DEV_ID_82576_FIBER:
1808         case E1000_DEV_ID_82576_SERDES:
1809                 /* Wake events not supported on port B */
1810                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1) {
1811                         wol->supported = 0;
1812                         break;
1813                 }
1814                 /* return success for non excluded adapter ports */
1815                 retval = 0;
1816                 break;
1817         case E1000_DEV_ID_82576_QUAD_COPPER:
1818         case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
1819                 /* quad port adapters only support WoL on port A */
1820                 if (!(adapter->flags & IGB_FLAG_QUAD_PORT_A)) {
1821                         wol->supported = 0;
1822                         break;
1823                 }
1824                 /* return success for non excluded adapter ports */
1825                 retval = 0;
1826                 break;
1827         default:
1828                 /* dual port cards only support WoL on port A from now on
1829                  * unless it was enabled in the eeprom for port B
1830                  * so exclude FUNC_1 ports from having WoL enabled */
1831                 if ((rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) &&
1832                     !adapter->eeprom_wol) {
1833                         wol->supported = 0;
1834                         break;
1835                 }
1836
1837                 retval = 0;
1838         }
1839
1840         return retval;
1841 }
1842
1843 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1844 {
1845         struct igb_adapter *adapter = netdev_priv(netdev);
1846
1847         wol->supported = WAKE_UCAST | WAKE_MCAST |
1848                          WAKE_BCAST | WAKE_MAGIC |
1849                          WAKE_PHY;
1850         wol->wolopts = 0;
1851
1852         /* this function will set ->supported = 0 and return 1 if wol is not
1853          * supported by this hardware */
1854         if (igb_wol_exclusion(adapter, wol) ||
1855             !device_can_wakeup(&adapter->pdev->dev))
1856                 return;
1857
1858         /* apply any specific unsupported masks here */
1859         switch (adapter->hw.device_id) {
1860         default:
1861                 break;
1862         }
1863
1864         if (adapter->wol & E1000_WUFC_EX)
1865                 wol->wolopts |= WAKE_UCAST;
1866         if (adapter->wol & E1000_WUFC_MC)
1867                 wol->wolopts |= WAKE_MCAST;
1868         if (adapter->wol & E1000_WUFC_BC)
1869                 wol->wolopts |= WAKE_BCAST;
1870         if (adapter->wol & E1000_WUFC_MAG)
1871                 wol->wolopts |= WAKE_MAGIC;
1872         if (adapter->wol & E1000_WUFC_LNKC)
1873                 wol->wolopts |= WAKE_PHY;
1874 }
1875
1876 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1877 {
1878         struct igb_adapter *adapter = netdev_priv(netdev);
1879
1880         if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
1881                 return -EOPNOTSUPP;
1882
1883         if (igb_wol_exclusion(adapter, wol) ||
1884             !device_can_wakeup(&adapter->pdev->dev))
1885                 return wol->wolopts ? -EOPNOTSUPP : 0;
1886
1887         /* these settings will always override what we currently have */
1888         adapter->wol = 0;
1889
1890         if (wol->wolopts & WAKE_UCAST)
1891                 adapter->wol |= E1000_WUFC_EX;
1892         if (wol->wolopts & WAKE_MCAST)
1893                 adapter->wol |= E1000_WUFC_MC;
1894         if (wol->wolopts & WAKE_BCAST)
1895                 adapter->wol |= E1000_WUFC_BC;
1896         if (wol->wolopts & WAKE_MAGIC)
1897                 adapter->wol |= E1000_WUFC_MAG;
1898         if (wol->wolopts & WAKE_PHY)
1899                 adapter->wol |= E1000_WUFC_LNKC;
1900         device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1901
1902         return 0;
1903 }
1904
1905 /* bit defines for adapter->led_status */
1906 #define IGB_LED_ON              0
1907
1908 static int igb_set_phys_id(struct net_device *netdev,
1909                            enum ethtool_phys_id_state state)
1910 {
1911         struct igb_adapter *adapter = netdev_priv(netdev);
1912         struct e1000_hw *hw = &adapter->hw;
1913
1914         switch (state) {
1915         case ETHTOOL_ID_ACTIVE:
1916                 igb_blink_led(hw);
1917                 return 2;
1918         case ETHTOOL_ID_ON:
1919                 igb_blink_led(hw);
1920                 break;
1921         case ETHTOOL_ID_OFF:
1922                 igb_led_off(hw);
1923                 break;
1924         case ETHTOOL_ID_INACTIVE:
1925                 igb_led_off(hw);
1926                 clear_bit(IGB_LED_ON, &adapter->led_status);
1927                 igb_cleanup_led(hw);
1928                 break;
1929         }
1930
1931         return 0;
1932 }
1933
1934 static int igb_set_coalesce(struct net_device *netdev,
1935                             struct ethtool_coalesce *ec)
1936 {
1937         struct igb_adapter *adapter = netdev_priv(netdev);
1938         int i;
1939
1940         if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
1941             ((ec->rx_coalesce_usecs > 3) &&
1942              (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
1943             (ec->rx_coalesce_usecs == 2))
1944                 return -EINVAL;
1945
1946         if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
1947             ((ec->tx_coalesce_usecs > 3) &&
1948              (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
1949             (ec->tx_coalesce_usecs == 2))
1950                 return -EINVAL;
1951
1952         if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
1953                 return -EINVAL;
1954
1955         /* If ITR is disabled, disable DMAC */
1956         if (ec->rx_coalesce_usecs == 0) {
1957                 if (adapter->flags & IGB_FLAG_DMAC)
1958                         adapter->flags &= ~IGB_FLAG_DMAC;
1959         }
1960
1961         /* convert to rate of irq's per second */
1962         if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
1963                 adapter->rx_itr_setting = ec->rx_coalesce_usecs;
1964         else
1965                 adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
1966
1967         /* convert to rate of irq's per second */
1968         if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
1969                 adapter->tx_itr_setting = adapter->rx_itr_setting;
1970         else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
1971                 adapter->tx_itr_setting = ec->tx_coalesce_usecs;
1972         else
1973                 adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
1974
1975         for (i = 0; i < adapter->num_q_vectors; i++) {
1976                 struct igb_q_vector *q_vector = adapter->q_vector[i];
1977                 if (q_vector->rx_ring)
1978                         q_vector->itr_val = adapter->rx_itr_setting;
1979                 else
1980                         q_vector->itr_val = adapter->tx_itr_setting;
1981                 if (q_vector->itr_val && q_vector->itr_val <= 3)
1982                         q_vector->itr_val = IGB_START_ITR;
1983                 q_vector->set_itr = 1;
1984         }
1985
1986         return 0;
1987 }
1988
1989 static int igb_get_coalesce(struct net_device *netdev,
1990                             struct ethtool_coalesce *ec)
1991 {
1992         struct igb_adapter *adapter = netdev_priv(netdev);
1993
1994         if (adapter->rx_itr_setting <= 3)
1995                 ec->rx_coalesce_usecs = adapter->rx_itr_setting;
1996         else
1997                 ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
1998
1999         if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2000                 if (adapter->tx_itr_setting <= 3)
2001                         ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2002                 else
2003                         ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2004         }
2005
2006         return 0;
2007 }
2008
2009 static int igb_nway_reset(struct net_device *netdev)
2010 {
2011         struct igb_adapter *adapter = netdev_priv(netdev);
2012         if (netif_running(netdev))
2013                 igb_reinit_locked(adapter);
2014         return 0;
2015 }
2016
2017 static int igb_get_sset_count(struct net_device *netdev, int sset)
2018 {
2019         switch (sset) {
2020         case ETH_SS_STATS:
2021                 return IGB_STATS_LEN;
2022         case ETH_SS_TEST:
2023                 return IGB_TEST_LEN;
2024         default:
2025                 return -ENOTSUPP;
2026         }
2027 }
2028
2029 static void igb_get_ethtool_stats(struct net_device *netdev,
2030                                   struct ethtool_stats *stats, u64 *data)
2031 {
2032         struct igb_adapter *adapter = netdev_priv(netdev);
2033         struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2034         unsigned int start;
2035         struct igb_ring *ring;
2036         int i, j;
2037         char *p;
2038
2039         spin_lock(&adapter->stats64_lock);
2040         igb_update_stats(adapter, net_stats);
2041
2042         for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2043                 p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2044                 data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2045                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2046         }
2047         for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2048                 p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2049                 data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2050                         sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2051         }
2052         for (j = 0; j < adapter->num_tx_queues; j++) {
2053                 u64     restart2;
2054
2055                 ring = adapter->tx_ring[j];
2056                 do {
2057                         start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
2058                         data[i]   = ring->tx_stats.packets;
2059                         data[i+1] = ring->tx_stats.bytes;
2060                         data[i+2] = ring->tx_stats.restart_queue;
2061                 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
2062                 do {
2063                         start = u64_stats_fetch_begin_bh(&ring->tx_syncp2);
2064                         restart2  = ring->tx_stats.restart_queue2;
2065                 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp2, start));
2066                 data[i+2] += restart2;
2067
2068                 i += IGB_TX_QUEUE_STATS_LEN;
2069         }
2070         for (j = 0; j < adapter->num_rx_queues; j++) {
2071                 ring = adapter->rx_ring[j];
2072                 do {
2073                         start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
2074                         data[i]   = ring->rx_stats.packets;
2075                         data[i+1] = ring->rx_stats.bytes;
2076                         data[i+2] = ring->rx_stats.drops;
2077                         data[i+3] = ring->rx_stats.csum_err;
2078                         data[i+4] = ring->rx_stats.alloc_failed;
2079                 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
2080                 i += IGB_RX_QUEUE_STATS_LEN;
2081         }
2082         spin_unlock(&adapter->stats64_lock);
2083 }
2084
2085 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2086 {
2087         struct igb_adapter *adapter = netdev_priv(netdev);
2088         u8 *p = data;
2089         int i;
2090
2091         switch (stringset) {
2092         case ETH_SS_TEST:
2093                 memcpy(data, *igb_gstrings_test,
2094                         IGB_TEST_LEN*ETH_GSTRING_LEN);
2095                 break;
2096         case ETH_SS_STATS:
2097                 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2098                         memcpy(p, igb_gstrings_stats[i].stat_string,
2099                                ETH_GSTRING_LEN);
2100                         p += ETH_GSTRING_LEN;
2101                 }
2102                 for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2103                         memcpy(p, igb_gstrings_net_stats[i].stat_string,
2104                                ETH_GSTRING_LEN);
2105                         p += ETH_GSTRING_LEN;
2106                 }
2107                 for (i = 0; i < adapter->num_tx_queues; i++) {
2108                         sprintf(p, "tx_queue_%u_packets", i);
2109                         p += ETH_GSTRING_LEN;
2110                         sprintf(p, "tx_queue_%u_bytes", i);
2111                         p += ETH_GSTRING_LEN;
2112                         sprintf(p, "tx_queue_%u_restart", i);
2113                         p += ETH_GSTRING_LEN;
2114                 }
2115                 for (i = 0; i < adapter->num_rx_queues; i++) {
2116                         sprintf(p, "rx_queue_%u_packets", i);
2117                         p += ETH_GSTRING_LEN;
2118                         sprintf(p, "rx_queue_%u_bytes", i);
2119                         p += ETH_GSTRING_LEN;
2120                         sprintf(p, "rx_queue_%u_drops", i);
2121                         p += ETH_GSTRING_LEN;
2122                         sprintf(p, "rx_queue_%u_csum_err", i);
2123                         p += ETH_GSTRING_LEN;
2124                         sprintf(p, "rx_queue_%u_alloc_failed", i);
2125                         p += ETH_GSTRING_LEN;
2126                 }
2127 /*              BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2128                 break;
2129         }
2130 }
2131
2132 static const struct ethtool_ops igb_ethtool_ops = {
2133         .get_settings           = igb_get_settings,
2134         .set_settings           = igb_set_settings,
2135         .get_drvinfo            = igb_get_drvinfo,
2136         .get_regs_len           = igb_get_regs_len,
2137         .get_regs               = igb_get_regs,
2138         .get_wol                = igb_get_wol,
2139         .set_wol                = igb_set_wol,
2140         .get_msglevel           = igb_get_msglevel,
2141         .set_msglevel           = igb_set_msglevel,
2142         .nway_reset             = igb_nway_reset,
2143         .get_link               = igb_get_link,
2144         .get_eeprom_len         = igb_get_eeprom_len,
2145         .get_eeprom             = igb_get_eeprom,
2146         .set_eeprom             = igb_set_eeprom,
2147         .get_ringparam          = igb_get_ringparam,
2148         .set_ringparam          = igb_set_ringparam,
2149         .get_pauseparam         = igb_get_pauseparam,
2150         .set_pauseparam         = igb_set_pauseparam,
2151         .self_test              = igb_diag_test,
2152         .get_strings            = igb_get_strings,
2153         .set_phys_id            = igb_set_phys_id,
2154         .get_sset_count         = igb_get_sset_count,
2155         .get_ethtool_stats      = igb_get_ethtool_stats,
2156         .get_coalesce           = igb_get_coalesce,
2157         .set_coalesce           = igb_set_coalesce,
2158 };
2159
2160 void igb_set_ethtool_ops(struct net_device *netdev)
2161 {
2162         SET_ETHTOOL_OPS(netdev, &igb_ethtool_ops);
2163 }