52911889fd122fb7dad0f69a3c4a0dcb53b48d28
[pandora-kernel.git] / drivers / net / fs_enet / fs_enet-main.c
1 /*
2  * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
3  *
4  * Copyright (c) 2003 Intracom S.A.
5  *  by Pantelis Antoniou <panto@intracom.gr>
6  *
7  * 2005 (c) MontaVista Software, Inc.
8  * Vitaly Bordug <vbordug@ru.mvista.com>
9  *
10  * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
11  * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
12  *
13  * This file is licensed under the terms of the GNU General Public License
14  * version 2. This program is licensed "as is" without any warranty of any
15  * kind, whether express or implied.
16  */
17
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/string.h>
22 #include <linux/ptrace.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/slab.h>
26 #include <linux/interrupt.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/netdevice.h>
30 #include <linux/etherdevice.h>
31 #include <linux/skbuff.h>
32 #include <linux/spinlock.h>
33 #include <linux/mii.h>
34 #include <linux/ethtool.h>
35 #include <linux/bitops.h>
36 #include <linux/fs.h>
37 #include <linux/platform_device.h>
38 #include <linux/phy.h>
39
40 #include <linux/vmalloc.h>
41 #include <asm/pgtable.h>
42 #include <asm/irq.h>
43 #include <asm/uaccess.h>
44
45 #ifdef CONFIG_PPC_CPM_NEW_BINDING
46 #include <linux/of_gpio.h>
47 #include <linux/of_platform.h>
48 #endif
49
50 #include "fs_enet.h"
51
52 /*************************************************/
53
54 #ifndef CONFIG_PPC_CPM_NEW_BINDING
55 static char version[] __devinitdata =
56     DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")" "\n";
57 #endif
58
59 MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
60 MODULE_DESCRIPTION("Freescale Ethernet Driver");
61 MODULE_LICENSE("GPL");
62 MODULE_VERSION(DRV_MODULE_VERSION);
63
64 static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
65 module_param(fs_enet_debug, int, 0);
66 MODULE_PARM_DESC(fs_enet_debug,
67                  "Freescale bitmapped debugging message enable value");
68
69 #ifdef CONFIG_NET_POLL_CONTROLLER
70 static void fs_enet_netpoll(struct net_device *dev);
71 #endif
72
73 static void fs_set_multicast_list(struct net_device *dev)
74 {
75         struct fs_enet_private *fep = netdev_priv(dev);
76
77         (*fep->ops->set_multicast_list)(dev);
78 }
79
80 static void skb_align(struct sk_buff *skb, int align)
81 {
82         int off = ((unsigned long)skb->data) & (align - 1);
83
84         if (off)
85                 skb_reserve(skb, align - off);
86 }
87
88 /* NAPI receive function */
89 static int fs_enet_rx_napi(struct napi_struct *napi, int budget)
90 {
91         struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
92         struct net_device *dev = fep->ndev;
93         const struct fs_platform_info *fpi = fep->fpi;
94         cbd_t __iomem *bdp;
95         struct sk_buff *skb, *skbn, *skbt;
96         int received = 0;
97         u16 pkt_len, sc;
98         int curidx;
99
100         /*
101          * First, grab all of the stats for the incoming packet.
102          * These get messed up if we get called due to a busy condition.
103          */
104         bdp = fep->cur_rx;
105
106         /* clear RX status bits for napi*/
107         (*fep->ops->napi_clear_rx_event)(dev);
108
109         while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
110                 curidx = bdp - fep->rx_bd_base;
111
112                 /*
113                  * Since we have allocated space to hold a complete frame,
114                  * the last indicator should be set.
115                  */
116                 if ((sc & BD_ENET_RX_LAST) == 0)
117                         printk(KERN_WARNING DRV_MODULE_NAME
118                                ": %s rcv is not +last\n",
119                                dev->name);
120
121                 /*
122                  * Check for errors.
123                  */
124                 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
125                           BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
126                         fep->stats.rx_errors++;
127                         /* Frame too long or too short. */
128                         if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
129                                 fep->stats.rx_length_errors++;
130                         /* Frame alignment */
131                         if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
132                                 fep->stats.rx_frame_errors++;
133                         /* CRC Error */
134                         if (sc & BD_ENET_RX_CR)
135                                 fep->stats.rx_crc_errors++;
136                         /* FIFO overrun */
137                         if (sc & BD_ENET_RX_OV)
138                                 fep->stats.rx_crc_errors++;
139
140                         skb = fep->rx_skbuff[curidx];
141
142                         dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
143                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
144                                 DMA_FROM_DEVICE);
145
146                         skbn = skb;
147
148                 } else {
149                         skb = fep->rx_skbuff[curidx];
150
151                         dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
152                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
153                                 DMA_FROM_DEVICE);
154
155                         /*
156                          * Process the incoming frame.
157                          */
158                         fep->stats.rx_packets++;
159                         pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
160                         fep->stats.rx_bytes += pkt_len + 4;
161
162                         if (pkt_len <= fpi->rx_copybreak) {
163                                 /* +2 to make IP header L1 cache aligned */
164                                 skbn = dev_alloc_skb(pkt_len + 2);
165                                 if (skbn != NULL) {
166                                         skb_reserve(skbn, 2);   /* align IP header */
167                                         skb_copy_from_linear_data(skb,
168                                                       skbn->data, pkt_len);
169                                         /* swap */
170                                         skbt = skb;
171                                         skb = skbn;
172                                         skbn = skbt;
173                                 }
174                         } else {
175                                 skbn = dev_alloc_skb(ENET_RX_FRSIZE);
176
177                                 if (skbn)
178                                         skb_align(skbn, ENET_RX_ALIGN);
179                         }
180
181                         if (skbn != NULL) {
182                                 skb_put(skb, pkt_len);  /* Make room */
183                                 skb->protocol = eth_type_trans(skb, dev);
184                                 received++;
185                                 netif_receive_skb(skb);
186                         } else {
187                                 printk(KERN_WARNING DRV_MODULE_NAME
188                                        ": %s Memory squeeze, dropping packet.\n",
189                                        dev->name);
190                                 fep->stats.rx_dropped++;
191                                 skbn = skb;
192                         }
193                 }
194
195                 fep->rx_skbuff[curidx] = skbn;
196                 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
197                              L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
198                              DMA_FROM_DEVICE));
199                 CBDW_DATLEN(bdp, 0);
200                 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
201
202                 /*
203                  * Update BD pointer to next entry.
204                  */
205                 if ((sc & BD_ENET_RX_WRAP) == 0)
206                         bdp++;
207                 else
208                         bdp = fep->rx_bd_base;
209
210                 (*fep->ops->rx_bd_done)(dev);
211
212                 if (received >= budget)
213                         break;
214         }
215
216         fep->cur_rx = bdp;
217
218         if (received < budget) {
219                 /* done */
220                 netif_rx_complete(dev, napi);
221                 (*fep->ops->napi_enable_rx)(dev);
222         }
223         return received;
224 }
225
226 /* non NAPI receive function */
227 static int fs_enet_rx_non_napi(struct net_device *dev)
228 {
229         struct fs_enet_private *fep = netdev_priv(dev);
230         const struct fs_platform_info *fpi = fep->fpi;
231         cbd_t __iomem *bdp;
232         struct sk_buff *skb, *skbn, *skbt;
233         int received = 0;
234         u16 pkt_len, sc;
235         int curidx;
236         /*
237          * First, grab all of the stats for the incoming packet.
238          * These get messed up if we get called due to a busy condition.
239          */
240         bdp = fep->cur_rx;
241
242         while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
243
244                 curidx = bdp - fep->rx_bd_base;
245
246                 /*
247                  * Since we have allocated space to hold a complete frame,
248                  * the last indicator should be set.
249                  */
250                 if ((sc & BD_ENET_RX_LAST) == 0)
251                         printk(KERN_WARNING DRV_MODULE_NAME
252                                ": %s rcv is not +last\n",
253                                dev->name);
254
255                 /*
256                  * Check for errors.
257                  */
258                 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
259                           BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
260                         fep->stats.rx_errors++;
261                         /* Frame too long or too short. */
262                         if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
263                                 fep->stats.rx_length_errors++;
264                         /* Frame alignment */
265                         if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
266                                 fep->stats.rx_frame_errors++;
267                         /* CRC Error */
268                         if (sc & BD_ENET_RX_CR)
269                                 fep->stats.rx_crc_errors++;
270                         /* FIFO overrun */
271                         if (sc & BD_ENET_RX_OV)
272                                 fep->stats.rx_crc_errors++;
273
274                         skb = fep->rx_skbuff[curidx];
275
276                         dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
277                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
278                                 DMA_FROM_DEVICE);
279
280                         skbn = skb;
281
282                 } else {
283
284                         skb = fep->rx_skbuff[curidx];
285
286                         dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
287                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
288                                 DMA_FROM_DEVICE);
289
290                         /*
291                          * Process the incoming frame.
292                          */
293                         fep->stats.rx_packets++;
294                         pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
295                         fep->stats.rx_bytes += pkt_len + 4;
296
297                         if (pkt_len <= fpi->rx_copybreak) {
298                                 /* +2 to make IP header L1 cache aligned */
299                                 skbn = dev_alloc_skb(pkt_len + 2);
300                                 if (skbn != NULL) {
301                                         skb_reserve(skbn, 2);   /* align IP header */
302                                         skb_copy_from_linear_data(skb,
303                                                       skbn->data, pkt_len);
304                                         /* swap */
305                                         skbt = skb;
306                                         skb = skbn;
307                                         skbn = skbt;
308                                 }
309                         } else {
310                                 skbn = dev_alloc_skb(ENET_RX_FRSIZE);
311
312                                 if (skbn)
313                                         skb_align(skbn, ENET_RX_ALIGN);
314                         }
315
316                         if (skbn != NULL) {
317                                 skb_put(skb, pkt_len);  /* Make room */
318                                 skb->protocol = eth_type_trans(skb, dev);
319                                 received++;
320                                 netif_rx(skb);
321                         } else {
322                                 printk(KERN_WARNING DRV_MODULE_NAME
323                                        ": %s Memory squeeze, dropping packet.\n",
324                                        dev->name);
325                                 fep->stats.rx_dropped++;
326                                 skbn = skb;
327                         }
328                 }
329
330                 fep->rx_skbuff[curidx] = skbn;
331                 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
332                              L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
333                              DMA_FROM_DEVICE));
334                 CBDW_DATLEN(bdp, 0);
335                 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
336
337                 /*
338                  * Update BD pointer to next entry.
339                  */
340                 if ((sc & BD_ENET_RX_WRAP) == 0)
341                         bdp++;
342                 else
343                         bdp = fep->rx_bd_base;
344
345                 (*fep->ops->rx_bd_done)(dev);
346         }
347
348         fep->cur_rx = bdp;
349
350         return 0;
351 }
352
353 static void fs_enet_tx(struct net_device *dev)
354 {
355         struct fs_enet_private *fep = netdev_priv(dev);
356         cbd_t __iomem *bdp;
357         struct sk_buff *skb;
358         int dirtyidx, do_wake, do_restart;
359         u16 sc;
360
361         spin_lock(&fep->tx_lock);
362         bdp = fep->dirty_tx;
363
364         do_wake = do_restart = 0;
365         while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
366                 dirtyidx = bdp - fep->tx_bd_base;
367
368                 if (fep->tx_free == fep->tx_ring)
369                         break;
370
371                 skb = fep->tx_skbuff[dirtyidx];
372
373                 /*
374                  * Check for errors.
375                  */
376                 if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
377                           BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
378
379                         if (sc & BD_ENET_TX_HB) /* No heartbeat */
380                                 fep->stats.tx_heartbeat_errors++;
381                         if (sc & BD_ENET_TX_LC) /* Late collision */
382                                 fep->stats.tx_window_errors++;
383                         if (sc & BD_ENET_TX_RL) /* Retrans limit */
384                                 fep->stats.tx_aborted_errors++;
385                         if (sc & BD_ENET_TX_UN) /* Underrun */
386                                 fep->stats.tx_fifo_errors++;
387                         if (sc & BD_ENET_TX_CSL)        /* Carrier lost */
388                                 fep->stats.tx_carrier_errors++;
389
390                         if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
391                                 fep->stats.tx_errors++;
392                                 do_restart = 1;
393                         }
394                 } else
395                         fep->stats.tx_packets++;
396
397                 if (sc & BD_ENET_TX_READY)
398                         printk(KERN_WARNING DRV_MODULE_NAME
399                                ": %s HEY! Enet xmit interrupt and TX_READY.\n",
400                                dev->name);
401
402                 /*
403                  * Deferred means some collisions occurred during transmit,
404                  * but we eventually sent the packet OK.
405                  */
406                 if (sc & BD_ENET_TX_DEF)
407                         fep->stats.collisions++;
408
409                 /* unmap */
410                 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
411                                 skb->len, DMA_TO_DEVICE);
412
413                 /*
414                  * Free the sk buffer associated with this last transmit.
415                  */
416                 dev_kfree_skb_irq(skb);
417                 fep->tx_skbuff[dirtyidx] = NULL;
418
419                 /*
420                  * Update pointer to next buffer descriptor to be transmitted.
421                  */
422                 if ((sc & BD_ENET_TX_WRAP) == 0)
423                         bdp++;
424                 else
425                         bdp = fep->tx_bd_base;
426
427                 /*
428                  * Since we have freed up a buffer, the ring is no longer
429                  * full.
430                  */
431                 if (!fep->tx_free++)
432                         do_wake = 1;
433         }
434
435         fep->dirty_tx = bdp;
436
437         if (do_restart)
438                 (*fep->ops->tx_restart)(dev);
439
440         spin_unlock(&fep->tx_lock);
441
442         if (do_wake)
443                 netif_wake_queue(dev);
444 }
445
446 /*
447  * The interrupt handler.
448  * This is called from the MPC core interrupt.
449  */
450 static irqreturn_t
451 fs_enet_interrupt(int irq, void *dev_id)
452 {
453         struct net_device *dev = dev_id;
454         struct fs_enet_private *fep;
455         const struct fs_platform_info *fpi;
456         u32 int_events;
457         u32 int_clr_events;
458         int nr, napi_ok;
459         int handled;
460
461         fep = netdev_priv(dev);
462         fpi = fep->fpi;
463
464         nr = 0;
465         while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
466                 nr++;
467
468                 int_clr_events = int_events;
469                 if (fpi->use_napi)
470                         int_clr_events &= ~fep->ev_napi_rx;
471
472                 (*fep->ops->clear_int_events)(dev, int_clr_events);
473
474                 if (int_events & fep->ev_err)
475                         (*fep->ops->ev_error)(dev, int_events);
476
477                 if (int_events & fep->ev_rx) {
478                         if (!fpi->use_napi)
479                                 fs_enet_rx_non_napi(dev);
480                         else {
481                                 napi_ok = napi_schedule_prep(&fep->napi);
482
483                                 (*fep->ops->napi_disable_rx)(dev);
484                                 (*fep->ops->clear_int_events)(dev, fep->ev_napi_rx);
485
486                                 /* NOTE: it is possible for FCCs in NAPI mode    */
487                                 /* to submit a spurious interrupt while in poll  */
488                                 if (napi_ok)
489                                         __netif_rx_schedule(dev, &fep->napi);
490                         }
491                 }
492
493                 if (int_events & fep->ev_tx)
494                         fs_enet_tx(dev);
495         }
496
497         handled = nr > 0;
498         return IRQ_RETVAL(handled);
499 }
500
501 void fs_init_bds(struct net_device *dev)
502 {
503         struct fs_enet_private *fep = netdev_priv(dev);
504         cbd_t __iomem *bdp;
505         struct sk_buff *skb;
506         int i;
507
508         fs_cleanup_bds(dev);
509
510         fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
511         fep->tx_free = fep->tx_ring;
512         fep->cur_rx = fep->rx_bd_base;
513
514         /*
515          * Initialize the receive buffer descriptors.
516          */
517         for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
518                 skb = dev_alloc_skb(ENET_RX_FRSIZE);
519                 if (skb == NULL) {
520                         printk(KERN_WARNING DRV_MODULE_NAME
521                                ": %s Memory squeeze, unable to allocate skb\n",
522                                dev->name);
523                         break;
524                 }
525                 skb_align(skb, ENET_RX_ALIGN);
526                 fep->rx_skbuff[i] = skb;
527                 CBDW_BUFADDR(bdp,
528                         dma_map_single(fep->dev, skb->data,
529                                 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
530                                 DMA_FROM_DEVICE));
531                 CBDW_DATLEN(bdp, 0);    /* zero */
532                 CBDW_SC(bdp, BD_ENET_RX_EMPTY |
533                         ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
534         }
535         /*
536          * if we failed, fillup remainder
537          */
538         for (; i < fep->rx_ring; i++, bdp++) {
539                 fep->rx_skbuff[i] = NULL;
540                 CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
541         }
542
543         /*
544          * ...and the same for transmit.
545          */
546         for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
547                 fep->tx_skbuff[i] = NULL;
548                 CBDW_BUFADDR(bdp, 0);
549                 CBDW_DATLEN(bdp, 0);
550                 CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
551         }
552 }
553
554 void fs_cleanup_bds(struct net_device *dev)
555 {
556         struct fs_enet_private *fep = netdev_priv(dev);
557         struct sk_buff *skb;
558         cbd_t __iomem *bdp;
559         int i;
560
561         /*
562          * Reset SKB transmit buffers.
563          */
564         for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
565                 if ((skb = fep->tx_skbuff[i]) == NULL)
566                         continue;
567
568                 /* unmap */
569                 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
570                                 skb->len, DMA_TO_DEVICE);
571
572                 fep->tx_skbuff[i] = NULL;
573                 dev_kfree_skb(skb);
574         }
575
576         /*
577          * Reset SKB receive buffers
578          */
579         for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
580                 if ((skb = fep->rx_skbuff[i]) == NULL)
581                         continue;
582
583                 /* unmap */
584                 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
585                         L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
586                         DMA_FROM_DEVICE);
587
588                 fep->rx_skbuff[i] = NULL;
589
590                 dev_kfree_skb(skb);
591         }
592 }
593
594 /**********************************************************************************/
595
596 static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
597 {
598         struct fs_enet_private *fep = netdev_priv(dev);
599         cbd_t __iomem *bdp;
600         int curidx;
601         u16 sc;
602         unsigned long flags;
603
604         spin_lock_irqsave(&fep->tx_lock, flags);
605
606         /*
607          * Fill in a Tx ring entry
608          */
609         bdp = fep->cur_tx;
610
611         if (!fep->tx_free || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
612                 netif_stop_queue(dev);
613                 spin_unlock_irqrestore(&fep->tx_lock, flags);
614
615                 /*
616                  * Ooops.  All transmit buffers are full.  Bail out.
617                  * This should not happen, since the tx queue should be stopped.
618                  */
619                 printk(KERN_WARNING DRV_MODULE_NAME
620                        ": %s tx queue full!.\n", dev->name);
621                 return NETDEV_TX_BUSY;
622         }
623
624         curidx = bdp - fep->tx_bd_base;
625         /*
626          * Clear all of the status flags.
627          */
628         CBDC_SC(bdp, BD_ENET_TX_STATS);
629
630         /*
631          * Save skb pointer.
632          */
633         fep->tx_skbuff[curidx] = skb;
634
635         fep->stats.tx_bytes += skb->len;
636
637         /*
638          * Push the data cache so the CPM does not get stale memory data.
639          */
640         CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
641                                 skb->data, skb->len, DMA_TO_DEVICE));
642         CBDW_DATLEN(bdp, skb->len);
643
644         dev->trans_start = jiffies;
645
646         /*
647          * If this was the last BD in the ring, start at the beginning again.
648          */
649         if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
650                 fep->cur_tx++;
651         else
652                 fep->cur_tx = fep->tx_bd_base;
653
654         if (!--fep->tx_free)
655                 netif_stop_queue(dev);
656
657         /* Trigger transmission start */
658         sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
659              BD_ENET_TX_LAST | BD_ENET_TX_TC;
660
661         /* note that while FEC does not have this bit
662          * it marks it as available for software use
663          * yay for hw reuse :) */
664         if (skb->len <= 60)
665                 sc |= BD_ENET_TX_PAD;
666         CBDS_SC(bdp, sc);
667
668         (*fep->ops->tx_kickstart)(dev);
669
670         spin_unlock_irqrestore(&fep->tx_lock, flags);
671
672         return NETDEV_TX_OK;
673 }
674
675 static int fs_request_irq(struct net_device *dev, int irq, const char *name,
676                 irq_handler_t irqf)
677 {
678         struct fs_enet_private *fep = netdev_priv(dev);
679
680         (*fep->ops->pre_request_irq)(dev, irq);
681         return request_irq(irq, irqf, IRQF_SHARED, name, dev);
682 }
683
684 static void fs_free_irq(struct net_device *dev, int irq)
685 {
686         struct fs_enet_private *fep = netdev_priv(dev);
687
688         free_irq(irq, dev);
689         (*fep->ops->post_free_irq)(dev, irq);
690 }
691
692 static void fs_timeout(struct net_device *dev)
693 {
694         struct fs_enet_private *fep = netdev_priv(dev);
695         unsigned long flags;
696         int wake = 0;
697
698         fep->stats.tx_errors++;
699
700         spin_lock_irqsave(&fep->lock, flags);
701
702         if (dev->flags & IFF_UP) {
703                 phy_stop(fep->phydev);
704                 (*fep->ops->stop)(dev);
705                 (*fep->ops->restart)(dev);
706                 phy_start(fep->phydev);
707         }
708
709         phy_start(fep->phydev);
710         wake = fep->tx_free && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
711         spin_unlock_irqrestore(&fep->lock, flags);
712
713         if (wake)
714                 netif_wake_queue(dev);
715 }
716
717 /*-----------------------------------------------------------------------------
718  *  generic link-change handler - should be sufficient for most cases
719  *-----------------------------------------------------------------------------*/
720 static void generic_adjust_link(struct  net_device *dev)
721 {
722         struct fs_enet_private *fep = netdev_priv(dev);
723         struct phy_device *phydev = fep->phydev;
724         int new_state = 0;
725
726         if (phydev->link) {
727                 /* adjust to duplex mode */
728                 if (phydev->duplex != fep->oldduplex) {
729                         new_state = 1;
730                         fep->oldduplex = phydev->duplex;
731                 }
732
733                 if (phydev->speed != fep->oldspeed) {
734                         new_state = 1;
735                         fep->oldspeed = phydev->speed;
736                 }
737
738                 if (!fep->oldlink) {
739                         new_state = 1;
740                         fep->oldlink = 1;
741                 }
742
743                 if (new_state)
744                         fep->ops->restart(dev);
745         } else if (fep->oldlink) {
746                 new_state = 1;
747                 fep->oldlink = 0;
748                 fep->oldspeed = 0;
749                 fep->oldduplex = -1;
750         }
751
752         if (new_state && netif_msg_link(fep))
753                 phy_print_status(phydev);
754 }
755
756
757 static void fs_adjust_link(struct net_device *dev)
758 {
759         struct fs_enet_private *fep = netdev_priv(dev);
760         unsigned long flags;
761
762         spin_lock_irqsave(&fep->lock, flags);
763
764         if(fep->ops->adjust_link)
765                 fep->ops->adjust_link(dev);
766         else
767                 generic_adjust_link(dev);
768
769         spin_unlock_irqrestore(&fep->lock, flags);
770 }
771
772 static int fs_init_phy(struct net_device *dev)
773 {
774         struct fs_enet_private *fep = netdev_priv(dev);
775         struct phy_device *phydev;
776
777         fep->oldlink = 0;
778         fep->oldspeed = 0;
779         fep->oldduplex = -1;
780         if(fep->fpi->bus_id)
781                 phydev = phy_connect(dev, fep->fpi->bus_id, &fs_adjust_link, 0,
782                                 PHY_INTERFACE_MODE_MII);
783         else {
784                 printk("No phy bus ID specified in BSP code\n");
785                 return -EINVAL;
786         }
787         if (IS_ERR(phydev)) {
788                 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
789                 return PTR_ERR(phydev);
790         }
791
792         fep->phydev = phydev;
793
794         return 0;
795 }
796
797 static int fs_enet_open(struct net_device *dev)
798 {
799         struct fs_enet_private *fep = netdev_priv(dev);
800         int r;
801         int err;
802
803         if (fep->fpi->use_napi)
804                 napi_enable(&fep->napi);
805
806         /* Install our interrupt handler. */
807         r = fs_request_irq(dev, fep->interrupt, "fs_enet-mac", fs_enet_interrupt);
808         if (r != 0) {
809                 printk(KERN_ERR DRV_MODULE_NAME
810                        ": %s Could not allocate FS_ENET IRQ!", dev->name);
811                 if (fep->fpi->use_napi)
812                         napi_disable(&fep->napi);
813                 return -EINVAL;
814         }
815
816         err = fs_init_phy(dev);
817         if (err) {
818                 if (fep->fpi->use_napi)
819                         napi_disable(&fep->napi);
820                 return err;
821         }
822         phy_start(fep->phydev);
823
824         netif_start_queue(dev);
825
826         return 0;
827 }
828
829 static int fs_enet_close(struct net_device *dev)
830 {
831         struct fs_enet_private *fep = netdev_priv(dev);
832         unsigned long flags;
833
834         netif_stop_queue(dev);
835         netif_carrier_off(dev);
836         if (fep->fpi->use_napi)
837                 napi_disable(&fep->napi);
838         phy_stop(fep->phydev);
839
840         spin_lock_irqsave(&fep->lock, flags);
841         spin_lock(&fep->tx_lock);
842         (*fep->ops->stop)(dev);
843         spin_unlock(&fep->tx_lock);
844         spin_unlock_irqrestore(&fep->lock, flags);
845
846         /* release any irqs */
847         phy_disconnect(fep->phydev);
848         fep->phydev = NULL;
849         fs_free_irq(dev, fep->interrupt);
850
851         return 0;
852 }
853
854 static struct net_device_stats *fs_enet_get_stats(struct net_device *dev)
855 {
856         struct fs_enet_private *fep = netdev_priv(dev);
857         return &fep->stats;
858 }
859
860 /*************************************************************************/
861
862 static void fs_get_drvinfo(struct net_device *dev,
863                             struct ethtool_drvinfo *info)
864 {
865         strcpy(info->driver, DRV_MODULE_NAME);
866         strcpy(info->version, DRV_MODULE_VERSION);
867 }
868
869 static int fs_get_regs_len(struct net_device *dev)
870 {
871         struct fs_enet_private *fep = netdev_priv(dev);
872
873         return (*fep->ops->get_regs_len)(dev);
874 }
875
876 static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
877                          void *p)
878 {
879         struct fs_enet_private *fep = netdev_priv(dev);
880         unsigned long flags;
881         int r, len;
882
883         len = regs->len;
884
885         spin_lock_irqsave(&fep->lock, flags);
886         r = (*fep->ops->get_regs)(dev, p, &len);
887         spin_unlock_irqrestore(&fep->lock, flags);
888
889         if (r == 0)
890                 regs->version = 0;
891 }
892
893 static int fs_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
894 {
895         struct fs_enet_private *fep = netdev_priv(dev);
896
897         if (!fep->phydev)
898                 return -ENODEV;
899
900         return phy_ethtool_gset(fep->phydev, cmd);
901 }
902
903 static int fs_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
904 {
905         struct fs_enet_private *fep = netdev_priv(dev);
906
907         if (!fep->phydev)
908                 return -ENODEV;
909
910         return phy_ethtool_sset(fep->phydev, cmd);
911 }
912
913 static int fs_nway_reset(struct net_device *dev)
914 {
915         return 0;
916 }
917
918 static u32 fs_get_msglevel(struct net_device *dev)
919 {
920         struct fs_enet_private *fep = netdev_priv(dev);
921         return fep->msg_enable;
922 }
923
924 static void fs_set_msglevel(struct net_device *dev, u32 value)
925 {
926         struct fs_enet_private *fep = netdev_priv(dev);
927         fep->msg_enable = value;
928 }
929
930 static const struct ethtool_ops fs_ethtool_ops = {
931         .get_drvinfo = fs_get_drvinfo,
932         .get_regs_len = fs_get_regs_len,
933         .get_settings = fs_get_settings,
934         .set_settings = fs_set_settings,
935         .nway_reset = fs_nway_reset,
936         .get_link = ethtool_op_get_link,
937         .get_msglevel = fs_get_msglevel,
938         .set_msglevel = fs_set_msglevel,
939         .set_tx_csum = ethtool_op_set_tx_csum,  /* local! */
940         .set_sg = ethtool_op_set_sg,
941         .get_regs = fs_get_regs,
942 };
943
944 static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
945 {
946         struct fs_enet_private *fep = netdev_priv(dev);
947         struct mii_ioctl_data *mii = (struct mii_ioctl_data *)&rq->ifr_data;
948
949         if (!netif_running(dev))
950                 return -EINVAL;
951
952         return phy_mii_ioctl(fep->phydev, mii, cmd);
953 }
954
955 extern int fs_mii_connect(struct net_device *dev);
956 extern void fs_mii_disconnect(struct net_device *dev);
957
958 #ifndef CONFIG_PPC_CPM_NEW_BINDING
959 static struct net_device *fs_init_instance(struct device *dev,
960                 struct fs_platform_info *fpi)
961 {
962         struct net_device *ndev = NULL;
963         struct fs_enet_private *fep = NULL;
964         int privsize, i, r, err = 0, registered = 0;
965
966         fpi->fs_no = fs_get_id(fpi);
967         /* guard */
968         if ((unsigned int)fpi->fs_no >= FS_MAX_INDEX)
969                 return ERR_PTR(-EINVAL);
970
971         privsize = sizeof(*fep) + (sizeof(struct sk_buff **) *
972                             (fpi->rx_ring + fpi->tx_ring));
973
974         ndev = alloc_etherdev(privsize);
975         if (!ndev) {
976                 err = -ENOMEM;
977                 goto err;
978         }
979
980         fep = netdev_priv(ndev);
981
982         fep->dev = dev;
983         dev_set_drvdata(dev, ndev);
984         fep->fpi = fpi;
985         if (fpi->init_ioports)
986                 fpi->init_ioports((struct fs_platform_info *)fpi);
987
988 #ifdef CONFIG_FS_ENET_HAS_FEC
989         if (fs_get_fec_index(fpi->fs_no) >= 0)
990                 fep->ops = &fs_fec_ops;
991 #endif
992
993 #ifdef CONFIG_FS_ENET_HAS_SCC
994         if (fs_get_scc_index(fpi->fs_no) >=0)
995                 fep->ops = &fs_scc_ops;
996 #endif
997
998 #ifdef CONFIG_FS_ENET_HAS_FCC
999         if (fs_get_fcc_index(fpi->fs_no) >= 0)
1000                 fep->ops = &fs_fcc_ops;
1001 #endif
1002
1003         if (fep->ops == NULL) {
1004                 printk(KERN_ERR DRV_MODULE_NAME
1005                        ": %s No matching ops found (%d).\n",
1006                        ndev->name, fpi->fs_no);
1007                 err = -EINVAL;
1008                 goto err;
1009         }
1010
1011         r = (*fep->ops->setup_data)(ndev);
1012         if (r != 0) {
1013                 printk(KERN_ERR DRV_MODULE_NAME
1014                        ": %s setup_data failed\n",
1015                         ndev->name);
1016                 err = r;
1017                 goto err;
1018         }
1019
1020         /* point rx_skbuff, tx_skbuff */
1021         fep->rx_skbuff = (struct sk_buff **)&fep[1];
1022         fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
1023
1024         /* init locks */
1025         spin_lock_init(&fep->lock);
1026         spin_lock_init(&fep->tx_lock);
1027
1028         /*
1029          * Set the Ethernet address.
1030          */
1031         for (i = 0; i < 6; i++)
1032                 ndev->dev_addr[i] = fpi->macaddr[i];
1033
1034         r = (*fep->ops->allocate_bd)(ndev);
1035
1036         if (fep->ring_base == NULL) {
1037                 printk(KERN_ERR DRV_MODULE_NAME
1038                        ": %s buffer descriptor alloc failed (%d).\n", ndev->name, r);
1039                 err = r;
1040                 goto err;
1041         }
1042
1043         /*
1044          * Set receive and transmit descriptor base.
1045          */
1046         fep->rx_bd_base = fep->ring_base;
1047         fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1048
1049         /* initialize ring size variables */
1050         fep->tx_ring = fpi->tx_ring;
1051         fep->rx_ring = fpi->rx_ring;
1052
1053         /*
1054          * The FEC Ethernet specific entries in the device structure.
1055          */
1056         ndev->open = fs_enet_open;
1057         ndev->hard_start_xmit = fs_enet_start_xmit;
1058         ndev->tx_timeout = fs_timeout;
1059         ndev->watchdog_timeo = 2 * HZ;
1060         ndev->stop = fs_enet_close;
1061         ndev->get_stats = fs_enet_get_stats;
1062         ndev->set_multicast_list = fs_set_multicast_list;
1063
1064 #ifdef CONFIG_NET_POLL_CONTROLLER
1065         ndev->poll_controller = fs_enet_netpoll;
1066 #endif
1067
1068         netif_napi_add(ndev, &fep->napi,
1069                        fs_enet_rx_napi, fpi->napi_weight);
1070
1071         ndev->ethtool_ops = &fs_ethtool_ops;
1072         ndev->do_ioctl = fs_ioctl;
1073
1074         init_timer(&fep->phy_timer_list);
1075
1076         netif_carrier_off(ndev);
1077
1078         err = register_netdev(ndev);
1079         if (err != 0) {
1080                 printk(KERN_ERR DRV_MODULE_NAME
1081                        ": %s register_netdev failed.\n", ndev->name);
1082                 goto err;
1083         }
1084         registered = 1;
1085
1086
1087         return ndev;
1088
1089 err:
1090         if (ndev != NULL) {
1091                 if (registered)
1092                         unregister_netdev(ndev);
1093
1094                 if (fep && fep->ops) {
1095                         (*fep->ops->free_bd)(ndev);
1096                         (*fep->ops->cleanup_data)(ndev);
1097                 }
1098
1099                 free_netdev(ndev);
1100         }
1101
1102         dev_set_drvdata(dev, NULL);
1103
1104         return ERR_PTR(err);
1105 }
1106
1107 static int fs_cleanup_instance(struct net_device *ndev)
1108 {
1109         struct fs_enet_private *fep;
1110         const struct fs_platform_info *fpi;
1111         struct device *dev;
1112
1113         if (ndev == NULL)
1114                 return -EINVAL;
1115
1116         fep = netdev_priv(ndev);
1117         if (fep == NULL)
1118                 return -EINVAL;
1119
1120         fpi = fep->fpi;
1121
1122         unregister_netdev(ndev);
1123
1124         dma_free_coherent(fep->dev, (fpi->tx_ring + fpi->rx_ring) * sizeof(cbd_t),
1125                           (void __force *)fep->ring_base, fep->ring_mem_addr);
1126
1127         /* reset it */
1128         (*fep->ops->cleanup_data)(ndev);
1129
1130         dev = fep->dev;
1131         if (dev != NULL) {
1132                 dev_set_drvdata(dev, NULL);
1133                 fep->dev = NULL;
1134         }
1135
1136         free_netdev(ndev);
1137
1138         return 0;
1139 }
1140 #endif
1141
1142 /**************************************************************************************/
1143
1144 /* handy pointer to the immap */
1145 void __iomem *fs_enet_immap = NULL;
1146
1147 static int setup_immap(void)
1148 {
1149 #ifdef CONFIG_CPM1
1150         fs_enet_immap = ioremap(IMAP_ADDR, 0x4000);
1151         WARN_ON(!fs_enet_immap);
1152 #elif defined(CONFIG_CPM2)
1153         fs_enet_immap = cpm2_immr;
1154 #endif
1155
1156         return 0;
1157 }
1158
1159 static void cleanup_immap(void)
1160 {
1161 #if defined(CONFIG_CPM1)
1162         iounmap(fs_enet_immap);
1163 #endif
1164 }
1165
1166 /**************************************************************************************/
1167
1168 #ifdef CONFIG_PPC_CPM_NEW_BINDING
1169 static int __devinit find_phy(struct device_node *np,
1170                               struct fs_platform_info *fpi)
1171 {
1172         struct device_node *phynode, *mdionode;
1173         int ret = 0, len, bus_id;
1174         const u32 *data;
1175
1176         data  = of_get_property(np, "fixed-link", NULL);
1177         if (data) {
1178                 snprintf(fpi->bus_id, 16, "%x:%02x", 0, *data);
1179                 return 0;
1180         }
1181
1182         data = of_get_property(np, "phy-handle", &len);
1183         if (!data || len != 4)
1184                 return -EINVAL;
1185
1186         phynode = of_find_node_by_phandle(*data);
1187         if (!phynode)
1188                 return -EINVAL;
1189
1190         data = of_get_property(phynode, "reg", &len);
1191         if (!data || len != 4) {
1192                 ret = -EINVAL;
1193                 goto out_put_phy;
1194         }
1195
1196         mdionode = of_get_parent(phynode);
1197         if (!mdionode) {
1198                 ret = -EINVAL;
1199                 goto out_put_phy;
1200         }
1201
1202         bus_id = of_get_gpio(mdionode, 0);
1203         if (bus_id < 0) {
1204                 struct resource res;
1205                 ret = of_address_to_resource(mdionode, 0, &res);
1206                 if (ret)
1207                         goto out_put_mdio;
1208                 bus_id = res.start;
1209         }
1210
1211         snprintf(fpi->bus_id, 16, "%x:%02x", bus_id, *data);
1212
1213 out_put_mdio:
1214         of_node_put(mdionode);
1215 out_put_phy:
1216         of_node_put(phynode);
1217         return ret;
1218 }
1219
1220 #ifdef CONFIG_FS_ENET_HAS_FEC
1221 #define IS_FEC(match) ((match)->data == &fs_fec_ops)
1222 #else
1223 #define IS_FEC(match) 0
1224 #endif
1225
1226 static int __devinit fs_enet_probe(struct of_device *ofdev,
1227                                    const struct of_device_id *match)
1228 {
1229         struct net_device *ndev;
1230         struct fs_enet_private *fep;
1231         struct fs_platform_info *fpi;
1232         const u32 *data;
1233         const u8 *mac_addr;
1234         int privsize, len, ret = -ENODEV;
1235
1236         fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
1237         if (!fpi)
1238                 return -ENOMEM;
1239
1240         if (!IS_FEC(match)) {
1241                 data = of_get_property(ofdev->node, "fsl,cpm-command", &len);
1242                 if (!data || len != 4)
1243                         goto out_free_fpi;
1244
1245                 fpi->cp_command = *data;
1246         }
1247
1248         fpi->rx_ring = 32;
1249         fpi->tx_ring = 32;
1250         fpi->rx_copybreak = 240;
1251         fpi->use_napi = 1;
1252         fpi->napi_weight = 17;
1253
1254         ret = find_phy(ofdev->node, fpi);
1255         if (ret)
1256                 goto out_free_fpi;
1257
1258         privsize = sizeof(*fep) +
1259                    sizeof(struct sk_buff **) *
1260                    (fpi->rx_ring + fpi->tx_ring);
1261
1262         ndev = alloc_etherdev(privsize);
1263         if (!ndev) {
1264                 ret = -ENOMEM;
1265                 goto out_free_fpi;
1266         }
1267
1268         dev_set_drvdata(&ofdev->dev, ndev);
1269
1270         fep = netdev_priv(ndev);
1271         fep->dev = &ofdev->dev;
1272         fep->ndev = ndev;
1273         fep->fpi = fpi;
1274         fep->ops = match->data;
1275
1276         ret = fep->ops->setup_data(ndev);
1277         if (ret)
1278                 goto out_free_dev;
1279
1280         fep->rx_skbuff = (struct sk_buff **)&fep[1];
1281         fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
1282
1283         spin_lock_init(&fep->lock);
1284         spin_lock_init(&fep->tx_lock);
1285
1286         mac_addr = of_get_mac_address(ofdev->node);
1287         if (mac_addr)
1288                 memcpy(ndev->dev_addr, mac_addr, 6);
1289
1290         ret = fep->ops->allocate_bd(ndev);
1291         if (ret)
1292                 goto out_cleanup_data;
1293
1294         fep->rx_bd_base = fep->ring_base;
1295         fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1296
1297         fep->tx_ring = fpi->tx_ring;
1298         fep->rx_ring = fpi->rx_ring;
1299
1300         ndev->open = fs_enet_open;
1301         ndev->hard_start_xmit = fs_enet_start_xmit;
1302         ndev->tx_timeout = fs_timeout;
1303         ndev->watchdog_timeo = 2 * HZ;
1304         ndev->stop = fs_enet_close;
1305         ndev->get_stats = fs_enet_get_stats;
1306         ndev->set_multicast_list = fs_set_multicast_list;
1307
1308         if (fpi->use_napi)
1309                 netif_napi_add(ndev, &fep->napi, fs_enet_rx_napi,
1310                                fpi->napi_weight);
1311
1312         ndev->ethtool_ops = &fs_ethtool_ops;
1313         ndev->do_ioctl = fs_ioctl;
1314
1315         init_timer(&fep->phy_timer_list);
1316
1317         netif_carrier_off(ndev);
1318
1319         ret = register_netdev(ndev);
1320         if (ret)
1321                 goto out_free_bd;
1322
1323         printk(KERN_INFO "%s: fs_enet: %02x:%02x:%02x:%02x:%02x:%02x\n",
1324                ndev->name,
1325                ndev->dev_addr[0], ndev->dev_addr[1], ndev->dev_addr[2],
1326                ndev->dev_addr[3], ndev->dev_addr[4], ndev->dev_addr[5]);
1327
1328         return 0;
1329
1330 out_free_bd:
1331         fep->ops->free_bd(ndev);
1332 out_cleanup_data:
1333         fep->ops->cleanup_data(ndev);
1334 out_free_dev:
1335         free_netdev(ndev);
1336         dev_set_drvdata(&ofdev->dev, NULL);
1337 out_free_fpi:
1338         kfree(fpi);
1339         return ret;
1340 }
1341
1342 static int fs_enet_remove(struct of_device *ofdev)
1343 {
1344         struct net_device *ndev = dev_get_drvdata(&ofdev->dev);
1345         struct fs_enet_private *fep = netdev_priv(ndev);
1346
1347         unregister_netdev(ndev);
1348
1349         fep->ops->free_bd(ndev);
1350         fep->ops->cleanup_data(ndev);
1351         dev_set_drvdata(fep->dev, NULL);
1352
1353         free_netdev(ndev);
1354         return 0;
1355 }
1356
1357 static struct of_device_id fs_enet_match[] = {
1358 #ifdef CONFIG_FS_ENET_HAS_SCC
1359         {
1360                 .compatible = "fsl,cpm1-scc-enet",
1361                 .data = (void *)&fs_scc_ops,
1362         },
1363 #endif
1364 #ifdef CONFIG_FS_ENET_HAS_FCC
1365         {
1366                 .compatible = "fsl,cpm2-fcc-enet",
1367                 .data = (void *)&fs_fcc_ops,
1368         },
1369 #endif
1370 #ifdef CONFIG_FS_ENET_HAS_FEC
1371         {
1372                 .compatible = "fsl,pq1-fec-enet",
1373                 .data = (void *)&fs_fec_ops,
1374         },
1375 #endif
1376         {}
1377 };
1378
1379 static struct of_platform_driver fs_enet_driver = {
1380         .name   = "fs_enet",
1381         .match_table = fs_enet_match,
1382         .probe = fs_enet_probe,
1383         .remove = fs_enet_remove,
1384 };
1385
1386 static int __init fs_init(void)
1387 {
1388         int r = setup_immap();
1389         if (r != 0)
1390                 return r;
1391
1392         r = of_register_platform_driver(&fs_enet_driver);
1393         if (r != 0)
1394                 goto out;
1395
1396         return 0;
1397
1398 out:
1399         cleanup_immap();
1400         return r;
1401 }
1402
1403 static void __exit fs_cleanup(void)
1404 {
1405         of_unregister_platform_driver(&fs_enet_driver);
1406         cleanup_immap();
1407 }
1408 #else
1409 static int __devinit fs_enet_probe(struct device *dev)
1410 {
1411         struct net_device *ndev;
1412
1413         /* no fixup - no device */
1414         if (dev->platform_data == NULL) {
1415                 printk(KERN_INFO "fs_enet: "
1416                                 "probe called with no platform data; "
1417                                 "remove unused devices\n");
1418                 return -ENODEV;
1419         }
1420
1421         ndev = fs_init_instance(dev, dev->platform_data);
1422         if (IS_ERR(ndev))
1423                 return PTR_ERR(ndev);
1424         return 0;
1425 }
1426
1427 static int fs_enet_remove(struct device *dev)
1428 {
1429         return fs_cleanup_instance(dev_get_drvdata(dev));
1430 }
1431
1432 static struct device_driver fs_enet_fec_driver = {
1433         .name           = "fsl-cpm-fec",
1434         .bus            = &platform_bus_type,
1435         .probe          = fs_enet_probe,
1436         .remove         = fs_enet_remove,
1437 #ifdef CONFIG_PM
1438 /*      .suspend        = fs_enet_suspend,      TODO */
1439 /*      .resume         = fs_enet_resume,       TODO */
1440 #endif
1441 };
1442
1443 static struct device_driver fs_enet_scc_driver = {
1444         .name           = "fsl-cpm-scc",
1445         .bus            = &platform_bus_type,
1446         .probe          = fs_enet_probe,
1447         .remove         = fs_enet_remove,
1448 #ifdef CONFIG_PM
1449 /*      .suspend        = fs_enet_suspend,      TODO */
1450 /*      .resume         = fs_enet_resume,       TODO */
1451 #endif
1452 };
1453
1454 static struct device_driver fs_enet_fcc_driver = {
1455         .name           = "fsl-cpm-fcc",
1456         .bus            = &platform_bus_type,
1457         .probe          = fs_enet_probe,
1458         .remove         = fs_enet_remove,
1459 #ifdef CONFIG_PM
1460 /*      .suspend        = fs_enet_suspend,      TODO */
1461 /*      .resume         = fs_enet_resume,       TODO */
1462 #endif
1463 };
1464
1465 static int __init fs_init(void)
1466 {
1467         int r;
1468
1469         printk(KERN_INFO
1470                         "%s", version);
1471
1472         r = setup_immap();
1473         if (r != 0)
1474                 return r;
1475
1476 #ifdef CONFIG_FS_ENET_HAS_FCC
1477         /* let's insert mii stuff */
1478         r = fs_enet_mdio_bb_init();
1479
1480         if (r != 0) {
1481                 printk(KERN_ERR DRV_MODULE_NAME
1482                         "BB PHY init failed.\n");
1483                 return r;
1484         }
1485         r = driver_register(&fs_enet_fcc_driver);
1486         if (r != 0)
1487                 goto err;
1488 #endif
1489
1490 #ifdef CONFIG_FS_ENET_HAS_FEC
1491         r =  fs_enet_mdio_fec_init();
1492         if (r != 0) {
1493                 printk(KERN_ERR DRV_MODULE_NAME
1494                         "FEC PHY init failed.\n");
1495                 return r;
1496         }
1497
1498         r = driver_register(&fs_enet_fec_driver);
1499         if (r != 0)
1500                 goto err;
1501 #endif
1502
1503 #ifdef CONFIG_FS_ENET_HAS_SCC
1504         r = driver_register(&fs_enet_scc_driver);
1505         if (r != 0)
1506                 goto err;
1507 #endif
1508
1509         return 0;
1510 err:
1511         cleanup_immap();
1512         return r;
1513 }
1514
1515 static void __exit fs_cleanup(void)
1516 {
1517         driver_unregister(&fs_enet_fec_driver);
1518         driver_unregister(&fs_enet_fcc_driver);
1519         driver_unregister(&fs_enet_scc_driver);
1520         cleanup_immap();
1521 }
1522 #endif
1523
1524 #ifdef CONFIG_NET_POLL_CONTROLLER
1525 static void fs_enet_netpoll(struct net_device *dev)
1526 {
1527        disable_irq(dev->irq);
1528        fs_enet_interrupt(dev->irq, dev, NULL);
1529        enable_irq(dev->irq);
1530 }
1531 #endif
1532
1533 /**************************************************************************************/
1534
1535 module_init(fs_init);
1536 module_exit(fs_cleanup);