2cca8fd5e574feb779be5cbc05f0e176574267da
[pandora-kernel.git] / drivers / net / ethernet / intel / igb / igb_ptp.c
1 /* PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580
2  *
3  * Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18 #include <linux/module.h>
19 #include <linux/device.h>
20 #include <linux/pci.h>
21 #include <linux/ptp_classify.h>
22
23 #include "igb.h"
24
25 #define INCVALUE_MASK           0x7fffffff
26 #define ISGN                    0x80000000
27
28 /* The 82580 timesync updates the system timer every 8ns by 8ns,
29  * and this update value cannot be reprogrammed.
30  *
31  * Neither the 82576 nor the 82580 offer registers wide enough to hold
32  * nanoseconds time values for very long. For the 82580, SYSTIM always
33  * counts nanoseconds, but the upper 24 bits are not availible. The
34  * frequency is adjusted by changing the 32 bit fractional nanoseconds
35  * register, TIMINCA.
36  *
37  * For the 82576, the SYSTIM register time unit is affect by the
38  * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
39  * field are needed to provide the nominal 16 nanosecond period,
40  * leaving 19 bits for fractional nanoseconds.
41  *
42  * We scale the NIC clock cycle by a large factor so that relatively
43  * small clock corrections can be added or subtracted at each clock
44  * tick. The drawbacks of a large factor are a) that the clock
45  * register overflows more quickly (not such a big deal) and b) that
46  * the increment per tick has to fit into 24 bits.  As a result we
47  * need to use a shift of 19 so we can fit a value of 16 into the
48  * TIMINCA register.
49  *
50  *
51  *             SYSTIMH            SYSTIML
52  *        +--------------+   +---+---+------+
53  *  82576 |      32      |   | 8 | 5 |  19  |
54  *        +--------------+   +---+---+------+
55  *         \________ 45 bits _______/  fract
56  *
57  *        +----------+---+   +--------------+
58  *  82580 |    24    | 8 |   |      32      |
59  *        +----------+---+   +--------------+
60  *          reserved  \______ 40 bits _____/
61  *
62  *
63  * The 45 bit 82576 SYSTIM overflows every
64  *   2^45 * 10^-9 / 3600 = 9.77 hours.
65  *
66  * The 40 bit 82580 SYSTIM overflows every
67  *   2^40 * 10^-9 /  60  = 18.3 minutes.
68  */
69
70 #define IGB_SYSTIM_OVERFLOW_PERIOD      (HZ * 60 * 9)
71 #define IGB_PTP_TX_TIMEOUT              (HZ * 15)
72 #define INCPERIOD_82576                 (1 << E1000_TIMINCA_16NS_SHIFT)
73 #define INCVALUE_82576_MASK             ((1 << E1000_TIMINCA_16NS_SHIFT) - 1)
74 #define INCVALUE_82576                  (16 << IGB_82576_TSYNC_SHIFT)
75 #define IGB_NBITS_82580                 40
76
77 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
78
79 /* SYSTIM read access for the 82576 */
80 static cycle_t igb_ptp_read_82576(const struct cyclecounter *cc)
81 {
82         struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
83         struct e1000_hw *hw = &igb->hw;
84         u64 val;
85         u32 lo, hi;
86
87         lo = rd32(E1000_SYSTIML);
88         hi = rd32(E1000_SYSTIMH);
89
90         val = ((u64) hi) << 32;
91         val |= lo;
92
93         return val;
94 }
95
96 /* SYSTIM read access for the 82580 */
97 static cycle_t igb_ptp_read_82580(const struct cyclecounter *cc)
98 {
99         struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
100         struct e1000_hw *hw = &igb->hw;
101         u32 lo, hi;
102         u64 val;
103
104         /* The timestamp latches on lowest register read. For the 82580
105          * the lowest register is SYSTIMR instead of SYSTIML.  However we only
106          * need to provide nanosecond resolution, so we just ignore it.
107          */
108         rd32(E1000_SYSTIMR);
109         lo = rd32(E1000_SYSTIML);
110         hi = rd32(E1000_SYSTIMH);
111
112         val = ((u64) hi) << 32;
113         val |= lo;
114
115         return val;
116 }
117
118 /* SYSTIM read access for I210/I211 */
119 static void igb_ptp_read_i210(struct igb_adapter *adapter, struct timespec *ts)
120 {
121         struct e1000_hw *hw = &adapter->hw;
122         u32 sec, nsec;
123
124         /* The timestamp latches on lowest register read. For I210/I211, the
125          * lowest register is SYSTIMR. Since we only need to provide nanosecond
126          * resolution, we can ignore it.
127          */
128         rd32(E1000_SYSTIMR);
129         nsec = rd32(E1000_SYSTIML);
130         sec = rd32(E1000_SYSTIMH);
131
132         ts->tv_sec = sec;
133         ts->tv_nsec = nsec;
134 }
135
136 static void igb_ptp_write_i210(struct igb_adapter *adapter,
137                                const struct timespec *ts)
138 {
139         struct e1000_hw *hw = &adapter->hw;
140
141         /* Writing the SYSTIMR register is not necessary as it only provides
142          * sub-nanosecond resolution.
143          */
144         wr32(E1000_SYSTIML, ts->tv_nsec);
145         wr32(E1000_SYSTIMH, ts->tv_sec);
146 }
147
148 /**
149  * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
150  * @adapter: board private structure
151  * @hwtstamps: timestamp structure to update
152  * @systim: unsigned 64bit system time value.
153  *
154  * We need to convert the system time value stored in the RX/TXSTMP registers
155  * into a hwtstamp which can be used by the upper level timestamping functions.
156  *
157  * The 'tmreg_lock' spinlock is used to protect the consistency of the
158  * system time value. This is needed because reading the 64 bit time
159  * value involves reading two (or three) 32 bit registers. The first
160  * read latches the value. Ditto for writing.
161  *
162  * In addition, here have extended the system time with an overflow
163  * counter in software.
164  **/
165 static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
166                                        struct skb_shared_hwtstamps *hwtstamps,
167                                        u64 systim)
168 {
169         unsigned long flags;
170         u64 ns;
171
172         switch (adapter->hw.mac.type) {
173         case e1000_82576:
174         case e1000_82580:
175         case e1000_i354:
176         case e1000_i350:
177                 spin_lock_irqsave(&adapter->tmreg_lock, flags);
178
179                 ns = timecounter_cyc2time(&adapter->tc, systim);
180
181                 spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
182
183                 memset(hwtstamps, 0, sizeof(*hwtstamps));
184                 hwtstamps->hwtstamp = ns_to_ktime(ns);
185                 break;
186         case e1000_i210:
187         case e1000_i211:
188                 memset(hwtstamps, 0, sizeof(*hwtstamps));
189                 /* Upper 32 bits contain s, lower 32 bits contain ns. */
190                 hwtstamps->hwtstamp = ktime_set(systim >> 32,
191                                                 systim & 0xFFFFFFFF);
192                 break;
193         default:
194                 break;
195         }
196 }
197
198 /* PTP clock operations */
199 static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
200 {
201         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
202                                                ptp_caps);
203         struct e1000_hw *hw = &igb->hw;
204         int neg_adj = 0;
205         u64 rate;
206         u32 incvalue;
207
208         if (ppb < 0) {
209                 neg_adj = 1;
210                 ppb = -ppb;
211         }
212         rate = ppb;
213         rate <<= 14;
214         rate = div_u64(rate, 1953125);
215
216         incvalue = 16 << IGB_82576_TSYNC_SHIFT;
217
218         if (neg_adj)
219                 incvalue -= rate;
220         else
221                 incvalue += rate;
222
223         wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
224
225         return 0;
226 }
227
228 static int igb_ptp_adjfreq_82580(struct ptp_clock_info *ptp, s32 ppb)
229 {
230         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
231                                                ptp_caps);
232         struct e1000_hw *hw = &igb->hw;
233         int neg_adj = 0;
234         u64 rate;
235         u32 inca;
236
237         if (ppb < 0) {
238                 neg_adj = 1;
239                 ppb = -ppb;
240         }
241         rate = ppb;
242         rate <<= 26;
243         rate = div_u64(rate, 1953125);
244
245         inca = rate & INCVALUE_MASK;
246         if (neg_adj)
247                 inca |= ISGN;
248
249         wr32(E1000_TIMINCA, inca);
250
251         return 0;
252 }
253
254 static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
255 {
256         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
257                                                ptp_caps);
258         unsigned long flags;
259         s64 now;
260
261         spin_lock_irqsave(&igb->tmreg_lock, flags);
262
263         now = timecounter_read(&igb->tc);
264         now += delta;
265         timecounter_init(&igb->tc, &igb->cc, now);
266
267         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
268
269         return 0;
270 }
271
272 static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
273 {
274         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
275                                                ptp_caps);
276         unsigned long flags;
277         struct timespec now, then = ns_to_timespec(delta);
278
279         spin_lock_irqsave(&igb->tmreg_lock, flags);
280
281         igb_ptp_read_i210(igb, &now);
282         now = timespec_add(now, then);
283         igb_ptp_write_i210(igb, (const struct timespec *)&now);
284
285         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
286
287         return 0;
288 }
289
290 static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp,
291                                  struct timespec *ts)
292 {
293         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
294                                                ptp_caps);
295         unsigned long flags;
296         u64 ns;
297         u32 remainder;
298
299         spin_lock_irqsave(&igb->tmreg_lock, flags);
300
301         ns = timecounter_read(&igb->tc);
302
303         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
304
305         ts->tv_sec = div_u64_rem(ns, 1000000000, &remainder);
306         ts->tv_nsec = remainder;
307
308         return 0;
309 }
310
311 static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp,
312                                 struct timespec *ts)
313 {
314         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
315                                                ptp_caps);
316         unsigned long flags;
317
318         spin_lock_irqsave(&igb->tmreg_lock, flags);
319
320         igb_ptp_read_i210(igb, ts);
321
322         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
323
324         return 0;
325 }
326
327 static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
328                                  const struct timespec *ts)
329 {
330         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
331                                                ptp_caps);
332         unsigned long flags;
333         u64 ns;
334
335         ns = ts->tv_sec * 1000000000ULL;
336         ns += ts->tv_nsec;
337
338         spin_lock_irqsave(&igb->tmreg_lock, flags);
339
340         timecounter_init(&igb->tc, &igb->cc, ns);
341
342         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
343
344         return 0;
345 }
346
347 static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
348                                 const struct timespec *ts)
349 {
350         struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
351                                                ptp_caps);
352         unsigned long flags;
353
354         spin_lock_irqsave(&igb->tmreg_lock, flags);
355
356         igb_ptp_write_i210(igb, ts);
357
358         spin_unlock_irqrestore(&igb->tmreg_lock, flags);
359
360         return 0;
361 }
362
363 static int igb_ptp_enable(struct ptp_clock_info *ptp,
364                           struct ptp_clock_request *rq, int on)
365 {
366         return -EOPNOTSUPP;
367 }
368
369 /**
370  * igb_ptp_tx_work
371  * @work: pointer to work struct
372  *
373  * This work function polls the TSYNCTXCTL valid bit to determine when a
374  * timestamp has been taken for the current stored skb.
375  **/
376 static void igb_ptp_tx_work(struct work_struct *work)
377 {
378         struct igb_adapter *adapter = container_of(work, struct igb_adapter,
379                                                    ptp_tx_work);
380         struct e1000_hw *hw = &adapter->hw;
381         u32 tsynctxctl;
382
383         if (!adapter->ptp_tx_skb)
384                 return;
385
386         if (time_is_before_jiffies(adapter->ptp_tx_start +
387                                    IGB_PTP_TX_TIMEOUT)) {
388                 dev_kfree_skb_any(adapter->ptp_tx_skb);
389                 adapter->ptp_tx_skb = NULL;
390                 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
391                 adapter->tx_hwtstamp_timeouts++;
392                 dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang");
393                 return;
394         }
395
396         tsynctxctl = rd32(E1000_TSYNCTXCTL);
397         if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
398                 igb_ptp_tx_hwtstamp(adapter);
399         else
400                 /* reschedule to check later */
401                 schedule_work(&adapter->ptp_tx_work);
402 }
403
404 static void igb_ptp_overflow_check(struct work_struct *work)
405 {
406         struct igb_adapter *igb =
407                 container_of(work, struct igb_adapter, ptp_overflow_work.work);
408         struct timespec ts;
409
410         igb->ptp_caps.gettime(&igb->ptp_caps, &ts);
411
412         pr_debug("igb overflow check at %ld.%09lu\n", ts.tv_sec, ts.tv_nsec);
413
414         schedule_delayed_work(&igb->ptp_overflow_work,
415                               IGB_SYSTIM_OVERFLOW_PERIOD);
416 }
417
418 /**
419  * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
420  * @adapter: private network adapter structure
421  *
422  * This watchdog task is scheduled to detect error case where hardware has
423  * dropped an Rx packet that was timestamped when the ring is full. The
424  * particular error is rare but leaves the device in a state unable to timestamp
425  * any future packets.
426  **/
427 void igb_ptp_rx_hang(struct igb_adapter *adapter)
428 {
429         struct e1000_hw *hw = &adapter->hw;
430         struct igb_ring *rx_ring;
431         u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
432         unsigned long rx_event;
433         int n;
434
435         if (hw->mac.type != e1000_82576)
436                 return;
437
438         /* If we don't have a valid timestamp in the registers, just update the
439          * timeout counter and exit
440          */
441         if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
442                 adapter->last_rx_ptp_check = jiffies;
443                 return;
444         }
445
446         /* Determine the most recent watchdog or rx_timestamp event */
447         rx_event = adapter->last_rx_ptp_check;
448         for (n = 0; n < adapter->num_rx_queues; n++) {
449                 rx_ring = adapter->rx_ring[n];
450                 if (time_after(rx_ring->last_rx_timestamp, rx_event))
451                         rx_event = rx_ring->last_rx_timestamp;
452         }
453
454         /* Only need to read the high RXSTMP register to clear the lock */
455         if (time_is_before_jiffies(rx_event + 5 * HZ)) {
456                 rd32(E1000_RXSTMPH);
457                 adapter->last_rx_ptp_check = jiffies;
458                 adapter->rx_hwtstamp_cleared++;
459                 dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang");
460         }
461 }
462
463 /**
464  * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
465  * @adapter: Board private structure.
466  *
467  * If we were asked to do hardware stamping and such a time stamp is
468  * available, then it must have been for this skb here because we only
469  * allow only one such packet into the queue.
470  **/
471 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
472 {
473         struct e1000_hw *hw = &adapter->hw;
474         struct skb_shared_hwtstamps shhwtstamps;
475         u64 regval;
476
477         regval = rd32(E1000_TXSTMPL);
478         regval |= (u64)rd32(E1000_TXSTMPH) << 32;
479
480         igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
481         skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps);
482         dev_kfree_skb_any(adapter->ptp_tx_skb);
483         adapter->ptp_tx_skb = NULL;
484         clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
485 }
486
487 /**
488  * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
489  * @q_vector: Pointer to interrupt specific structure
490  * @va: Pointer to address containing Rx buffer
491  * @skb: Buffer containing timestamp and packet
492  *
493  * This function is meant to retrieve a timestamp from the first buffer of an
494  * incoming frame.  The value is stored in little endian format starting on
495  * byte 8.
496  **/
497 void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector,
498                          unsigned char *va,
499                          struct sk_buff *skb)
500 {
501         __le64 *regval = (__le64 *)va;
502
503         /* The timestamp is recorded in little endian format.
504          * DWORD: 0        1        2        3
505          * Field: Reserved Reserved SYSTIML  SYSTIMH
506          */
507         igb_ptp_systim_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb),
508                                    le64_to_cpu(regval[1]));
509 }
510
511 /**
512  * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
513  * @q_vector: Pointer to interrupt specific structure
514  * @skb: Buffer containing timestamp and packet
515  *
516  * This function is meant to retrieve a timestamp from the internal registers
517  * of the adapter and store it in the skb.
518  **/
519 void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
520                          struct sk_buff *skb)
521 {
522         struct igb_adapter *adapter = q_vector->adapter;
523         struct e1000_hw *hw = &adapter->hw;
524         u64 regval;
525
526         /* If this bit is set, then the RX registers contain the time stamp. No
527          * other packet will be time stamped until we read these registers, so
528          * read the registers to make them available again. Because only one
529          * packet can be time stamped at a time, we know that the register
530          * values must belong to this one here and therefore we don't need to
531          * compare any of the additional attributes stored for it.
532          *
533          * If nothing went wrong, then it should have a shared tx_flags that we
534          * can turn into a skb_shared_hwtstamps.
535          */
536         if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
537                 return;
538
539         regval = rd32(E1000_RXSTMPL);
540         regval |= (u64)rd32(E1000_RXSTMPH) << 32;
541
542         igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
543 }
544
545 /**
546  * igb_ptp_get_ts_config - get hardware time stamping config
547  * @netdev:
548  * @ifreq:
549  *
550  * Get the hwtstamp_config settings to return to the user. Rather than attempt
551  * to deconstruct the settings from the registers, just return a shadow copy
552  * of the last known settings.
553  **/
554 int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
555 {
556         struct igb_adapter *adapter = netdev_priv(netdev);
557         struct hwtstamp_config *config = &adapter->tstamp_config;
558
559         return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
560                 -EFAULT : 0;
561 }
562 /**
563  * igb_ptp_set_ts_config - control hardware time stamping
564  * @netdev:
565  * @ifreq:
566  *
567  * Outgoing time stamping can be enabled and disabled. Play nice and
568  * disable it when requested, although it shouldn't case any overhead
569  * when no packet needs it. At most one packet in the queue may be
570  * marked for time stamping, otherwise it would be impossible to tell
571  * for sure to which packet the hardware time stamp belongs.
572  *
573  * Incoming time stamping has to be configured via the hardware
574  * filters. Not all combinations are supported, in particular event
575  * type has to be specified. Matching the kind of event packet is
576  * not supported, with the exception of "all V2 events regardless of
577  * level 2 or 4".
578  **/
579 int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
580 {
581         struct igb_adapter *adapter = netdev_priv(netdev);
582         struct e1000_hw *hw = &adapter->hw;
583         struct hwtstamp_config *config = &adapter->tstamp_config;
584         u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
585         u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
586         u32 tsync_rx_cfg = 0;
587         bool is_l4 = false;
588         bool is_l2 = false;
589         u32 regval;
590
591         if (copy_from_user(config, ifr->ifr_data, sizeof(*config)))
592                 return -EFAULT;
593
594         /* reserved for future extensions */
595         if (config->flags)
596                 return -EINVAL;
597
598         switch (config->tx_type) {
599         case HWTSTAMP_TX_OFF:
600                 tsync_tx_ctl = 0;
601         case HWTSTAMP_TX_ON:
602                 break;
603         default:
604                 return -ERANGE;
605         }
606
607         switch (config->rx_filter) {
608         case HWTSTAMP_FILTER_NONE:
609                 tsync_rx_ctl = 0;
610                 break;
611         case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
612                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
613                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
614                 is_l4 = true;
615                 break;
616         case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
617                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
618                 tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
619                 is_l4 = true;
620                 break;
621         case HWTSTAMP_FILTER_PTP_V2_EVENT:
622         case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
623         case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
624         case HWTSTAMP_FILTER_PTP_V2_SYNC:
625         case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
626         case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
627         case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
628         case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
629         case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
630                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
631                 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
632                 is_l2 = true;
633                 is_l4 = true;
634                 break;
635         case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
636         case HWTSTAMP_FILTER_ALL:
637                 /* 82576 cannot timestamp all packets, which it needs to do to
638                  * support both V1 Sync and Delay_Req messages
639                  */
640                 if (hw->mac.type != e1000_82576) {
641                         tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
642                         config->rx_filter = HWTSTAMP_FILTER_ALL;
643                         break;
644                 }
645                 /* fall through */
646         default:
647                 config->rx_filter = HWTSTAMP_FILTER_NONE;
648                 return -ERANGE;
649         }
650
651         if (hw->mac.type == e1000_82575) {
652                 if (tsync_rx_ctl | tsync_tx_ctl)
653                         return -EINVAL;
654                 return 0;
655         }
656
657         /* Per-packet timestamping only works if all packets are
658          * timestamped, so enable timestamping in all packets as
659          * long as one Rx filter was configured.
660          */
661         if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
662                 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
663                 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
664                 config->rx_filter = HWTSTAMP_FILTER_ALL;
665                 is_l2 = true;
666                 is_l4 = true;
667
668                 if ((hw->mac.type == e1000_i210) ||
669                     (hw->mac.type == e1000_i211)) {
670                         regval = rd32(E1000_RXPBS);
671                         regval |= E1000_RXPBS_CFG_TS_EN;
672                         wr32(E1000_RXPBS, regval);
673                 }
674         }
675
676         /* enable/disable TX */
677         regval = rd32(E1000_TSYNCTXCTL);
678         regval &= ~E1000_TSYNCTXCTL_ENABLED;
679         regval |= tsync_tx_ctl;
680         wr32(E1000_TSYNCTXCTL, regval);
681
682         /* enable/disable RX */
683         regval = rd32(E1000_TSYNCRXCTL);
684         regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
685         regval |= tsync_rx_ctl;
686         wr32(E1000_TSYNCRXCTL, regval);
687
688         /* define which PTP packets are time stamped */
689         wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
690
691         /* define ethertype filter for timestamped packets */
692         if (is_l2)
693                 wr32(E1000_ETQF(3),
694                      (E1000_ETQF_FILTER_ENABLE | /* enable filter */
695                       E1000_ETQF_1588 | /* enable timestamping */
696                       ETH_P_1588));     /* 1588 eth protocol type */
697         else
698                 wr32(E1000_ETQF(3), 0);
699
700         /* L4 Queue Filter[3]: filter by destination port and protocol */
701         if (is_l4) {
702                 u32 ftqf = (IPPROTO_UDP /* UDP */
703                         | E1000_FTQF_VF_BP /* VF not compared */
704                         | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
705                         | E1000_FTQF_MASK); /* mask all inputs */
706                 ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
707
708                 wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
709                 wr32(E1000_IMIREXT(3),
710                      (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
711                 if (hw->mac.type == e1000_82576) {
712                         /* enable source port check */
713                         wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
714                         ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
715                 }
716                 wr32(E1000_FTQF(3), ftqf);
717         } else {
718                 wr32(E1000_FTQF(3), E1000_FTQF_MASK);
719         }
720         wrfl();
721
722         /* clear TX/RX time stamp registers, just to be sure */
723         regval = rd32(E1000_TXSTMPL);
724         regval = rd32(E1000_TXSTMPH);
725         regval = rd32(E1000_RXSTMPL);
726         regval = rd32(E1000_RXSTMPH);
727
728         return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
729                 -EFAULT : 0;
730 }
731
732 void igb_ptp_init(struct igb_adapter *adapter)
733 {
734         struct e1000_hw *hw = &adapter->hw;
735         struct net_device *netdev = adapter->netdev;
736
737         switch (hw->mac.type) {
738         case e1000_82576:
739                 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
740                 adapter->ptp_caps.owner = THIS_MODULE;
741                 adapter->ptp_caps.max_adj = 999999881;
742                 adapter->ptp_caps.n_ext_ts = 0;
743                 adapter->ptp_caps.pps = 0;
744                 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
745                 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
746                 adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
747                 adapter->ptp_caps.settime = igb_ptp_settime_82576;
748                 adapter->ptp_caps.enable = igb_ptp_enable;
749                 adapter->cc.read = igb_ptp_read_82576;
750                 adapter->cc.mask = CLOCKSOURCE_MASK(64);
751                 adapter->cc.mult = 1;
752                 adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
753                 /* Dial the nominal frequency. */
754                 wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
755                 break;
756         case e1000_82580:
757         case e1000_i354:
758         case e1000_i350:
759                 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
760                 adapter->ptp_caps.owner = THIS_MODULE;
761                 adapter->ptp_caps.max_adj = 62499999;
762                 adapter->ptp_caps.n_ext_ts = 0;
763                 adapter->ptp_caps.pps = 0;
764                 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
765                 adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
766                 adapter->ptp_caps.gettime = igb_ptp_gettime_82576;
767                 adapter->ptp_caps.settime = igb_ptp_settime_82576;
768                 adapter->ptp_caps.enable = igb_ptp_enable;
769                 adapter->cc.read = igb_ptp_read_82580;
770                 adapter->cc.mask = CLOCKSOURCE_MASK(IGB_NBITS_82580);
771                 adapter->cc.mult = 1;
772                 adapter->cc.shift = 0;
773                 /* Enable the timer functions by clearing bit 31. */
774                 wr32(E1000_TSAUXC, 0x0);
775                 break;
776         case e1000_i210:
777         case e1000_i211:
778                 snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
779                 adapter->ptp_caps.owner = THIS_MODULE;
780                 adapter->ptp_caps.max_adj = 62499999;
781                 adapter->ptp_caps.n_ext_ts = 0;
782                 adapter->ptp_caps.pps = 0;
783                 adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
784                 adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
785                 adapter->ptp_caps.gettime = igb_ptp_gettime_i210;
786                 adapter->ptp_caps.settime = igb_ptp_settime_i210;
787                 adapter->ptp_caps.enable = igb_ptp_enable;
788                 /* Enable the timer functions by clearing bit 31. */
789                 wr32(E1000_TSAUXC, 0x0);
790                 break;
791         default:
792                 adapter->ptp_clock = NULL;
793                 return;
794         }
795
796         wrfl();
797
798         spin_lock_init(&adapter->tmreg_lock);
799         INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
800
801         /* Initialize the clock and overflow work for devices that need it. */
802         if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
803                 struct timespec ts = ktime_to_timespec(ktime_get_real());
804
805                 igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
806         } else {
807                 timecounter_init(&adapter->tc, &adapter->cc,
808                                  ktime_to_ns(ktime_get_real()));
809
810                 INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
811                                   igb_ptp_overflow_check);
812
813                 schedule_delayed_work(&adapter->ptp_overflow_work,
814                                       IGB_SYSTIM_OVERFLOW_PERIOD);
815         }
816
817         /* Initialize the time sync interrupts for devices that support it. */
818         if (hw->mac.type >= e1000_82580) {
819                 wr32(E1000_TSIM, TSYNC_INTERRUPTS);
820                 wr32(E1000_IMS, E1000_IMS_TS);
821         }
822
823         adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
824                                                 &adapter->pdev->dev);
825         if (IS_ERR(adapter->ptp_clock)) {
826                 adapter->ptp_clock = NULL;
827                 dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
828         } else {
829                 dev_info(&adapter->pdev->dev, "added PHC on %s\n",
830                          adapter->netdev->name);
831                 adapter->flags |= IGB_FLAG_PTP;
832         }
833 }
834
835 /**
836  * igb_ptp_stop - Disable PTP device and stop the overflow check.
837  * @adapter: Board private structure.
838  *
839  * This function stops the PTP support and cancels the delayed work.
840  **/
841 void igb_ptp_stop(struct igb_adapter *adapter)
842 {
843         switch (adapter->hw.mac.type) {
844         case e1000_82576:
845         case e1000_82580:
846         case e1000_i354:
847         case e1000_i350:
848                 cancel_delayed_work_sync(&adapter->ptp_overflow_work);
849                 break;
850         case e1000_i210:
851         case e1000_i211:
852                 /* No delayed work to cancel. */
853                 break;
854         default:
855                 return;
856         }
857
858         cancel_work_sync(&adapter->ptp_tx_work);
859         if (adapter->ptp_tx_skb) {
860                 dev_kfree_skb_any(adapter->ptp_tx_skb);
861                 adapter->ptp_tx_skb = NULL;
862                 clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
863         }
864
865         if (adapter->ptp_clock) {
866                 ptp_clock_unregister(adapter->ptp_clock);
867                 dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
868                          adapter->netdev->name);
869                 adapter->flags &= ~IGB_FLAG_PTP;
870         }
871 }
872
873 /**
874  * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
875  * @adapter: Board private structure.
876  *
877  * This function handles the reset work required to re-enable the PTP device.
878  **/
879 void igb_ptp_reset(struct igb_adapter *adapter)
880 {
881         struct e1000_hw *hw = &adapter->hw;
882
883         if (!(adapter->flags & IGB_FLAG_PTP))
884                 return;
885
886         /* reset the tstamp_config */
887         memset(&adapter->tstamp_config, 0, sizeof(adapter->tstamp_config));
888
889         switch (adapter->hw.mac.type) {
890         case e1000_82576:
891                 /* Dial the nominal frequency. */
892                 wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
893                 break;
894         case e1000_82580:
895         case e1000_i354:
896         case e1000_i350:
897         case e1000_i210:
898         case e1000_i211:
899                 /* Enable the timer functions and interrupts. */
900                 wr32(E1000_TSAUXC, 0x0);
901                 wr32(E1000_TSIM, TSYNC_INTERRUPTS);
902                 wr32(E1000_IMS, E1000_IMS_TS);
903                 break;
904         default:
905                 /* No work to do. */
906                 return;
907         }
908
909         /* Re-initialize the timer. */
910         if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
911                 struct timespec ts = ktime_to_timespec(ktime_get_real());
912
913                 igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
914         } else {
915                 timecounter_init(&adapter->tc, &adapter->cc,
916                                  ktime_to_ns(ktime_get_real()));
917         }
918 }