2e526d4904a6912638030297a9f60abd792d5f53
[pandora-kernel.git] / drivers / net / ethernet / intel / igb / igb_main.c
1 /* Intel(R) Gigabit Ethernet Linux driver
2  * Copyright(c) 2007-2014 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * The full GNU General Public License is included in this distribution in
17  * the file called "COPYING".
18  *
19  * Contact Information:
20  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22  */
23
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25
26 #include <linux/module.h>
27 #include <linux/types.h>
28 #include <linux/init.h>
29 #include <linux/bitops.h>
30 #include <linux/vmalloc.h>
31 #include <linux/pagemap.h>
32 #include <linux/netdevice.h>
33 #include <linux/ipv6.h>
34 #include <linux/slab.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 #include <linux/net_tstamp.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/if.h>
41 #include <linux/if_vlan.h>
42 #include <linux/pci.h>
43 #include <linux/pci-aspm.h>
44 #include <linux/delay.h>
45 #include <linux/interrupt.h>
46 #include <linux/ip.h>
47 #include <linux/tcp.h>
48 #include <linux/sctp.h>
49 #include <linux/if_ether.h>
50 #include <linux/aer.h>
51 #include <linux/prefetch.h>
52 #include <linux/pm_runtime.h>
53 #ifdef CONFIG_IGB_DCA
54 #include <linux/dca.h>
55 #endif
56 #include <linux/i2c.h>
57 #include "igb.h"
58
59 #define MAJ 5
60 #define MIN 2
61 #define BUILD 15
62 #define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
63 __stringify(BUILD) "-k"
64 char igb_driver_name[] = "igb";
65 char igb_driver_version[] = DRV_VERSION;
66 static const char igb_driver_string[] =
67                                 "Intel(R) Gigabit Ethernet Network Driver";
68 static const char igb_copyright[] =
69                                 "Copyright (c) 2007-2014 Intel Corporation.";
70
71 static const struct e1000_info *igb_info_tbl[] = {
72         [board_82575] = &e1000_82575_info,
73 };
74
75 static const struct pci_device_id igb_pci_tbl[] = {
76         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
77         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
78         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
79         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
80         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
81         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
82         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
83         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
84         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
85         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
86         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
87         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
88         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
89         { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
90         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
91         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
92         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
93         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
94         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
95         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
96         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
97         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
98         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
99         { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
100         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
101         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
102         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
103         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
104         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
105         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
106         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
107         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
108         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
109         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
110         { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
111         /* required last entry */
112         {0, }
113 };
114
115 MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
116
117 static int igb_setup_all_tx_resources(struct igb_adapter *);
118 static int igb_setup_all_rx_resources(struct igb_adapter *);
119 static void igb_free_all_tx_resources(struct igb_adapter *);
120 static void igb_free_all_rx_resources(struct igb_adapter *);
121 static void igb_setup_mrqc(struct igb_adapter *);
122 static int igb_probe(struct pci_dev *, const struct pci_device_id *);
123 static void igb_remove(struct pci_dev *pdev);
124 static int igb_sw_init(struct igb_adapter *);
125 static int igb_open(struct net_device *);
126 static int igb_close(struct net_device *);
127 static void igb_configure(struct igb_adapter *);
128 static void igb_configure_tx(struct igb_adapter *);
129 static void igb_configure_rx(struct igb_adapter *);
130 static void igb_clean_all_tx_rings(struct igb_adapter *);
131 static void igb_clean_all_rx_rings(struct igb_adapter *);
132 static void igb_clean_tx_ring(struct igb_ring *);
133 static void igb_clean_rx_ring(struct igb_ring *);
134 static void igb_set_rx_mode(struct net_device *);
135 static void igb_update_phy_info(unsigned long);
136 static void igb_watchdog(unsigned long);
137 static void igb_watchdog_task(struct work_struct *);
138 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
139 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
140                                           struct rtnl_link_stats64 *stats);
141 static int igb_change_mtu(struct net_device *, int);
142 static int igb_set_mac(struct net_device *, void *);
143 static void igb_set_uta(struct igb_adapter *adapter);
144 static irqreturn_t igb_intr(int irq, void *);
145 static irqreturn_t igb_intr_msi(int irq, void *);
146 static irqreturn_t igb_msix_other(int irq, void *);
147 static irqreturn_t igb_msix_ring(int irq, void *);
148 #ifdef CONFIG_IGB_DCA
149 static void igb_update_dca(struct igb_q_vector *);
150 static void igb_setup_dca(struct igb_adapter *);
151 #endif /* CONFIG_IGB_DCA */
152 static int igb_poll(struct napi_struct *, int);
153 static bool igb_clean_tx_irq(struct igb_q_vector *);
154 static bool igb_clean_rx_irq(struct igb_q_vector *, int);
155 static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
156 static void igb_tx_timeout(struct net_device *);
157 static void igb_reset_task(struct work_struct *);
158 static void igb_vlan_mode(struct net_device *netdev,
159                           netdev_features_t features);
160 static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
161 static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
162 static void igb_restore_vlan(struct igb_adapter *);
163 static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
164 static void igb_ping_all_vfs(struct igb_adapter *);
165 static void igb_msg_task(struct igb_adapter *);
166 static void igb_vmm_control(struct igb_adapter *);
167 static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
168 static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
169 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
170 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
171                                int vf, u16 vlan, u8 qos);
172 static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
173 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
174                                    bool setting);
175 static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
176                                  struct ifla_vf_info *ivi);
177 static void igb_check_vf_rate_limit(struct igb_adapter *);
178
179 #ifdef CONFIG_PCI_IOV
180 static int igb_vf_configure(struct igb_adapter *adapter, int vf);
181 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs);
182 #endif
183
184 #ifdef CONFIG_PM
185 #ifdef CONFIG_PM_SLEEP
186 static int igb_suspend(struct device *);
187 #endif
188 static int igb_resume(struct device *);
189 static int igb_runtime_suspend(struct device *dev);
190 static int igb_runtime_resume(struct device *dev);
191 static int igb_runtime_idle(struct device *dev);
192 static const struct dev_pm_ops igb_pm_ops = {
193         SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
194         SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
195                         igb_runtime_idle)
196 };
197 #endif
198 static void igb_shutdown(struct pci_dev *);
199 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
200 #ifdef CONFIG_IGB_DCA
201 static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
202 static struct notifier_block dca_notifier = {
203         .notifier_call  = igb_notify_dca,
204         .next           = NULL,
205         .priority       = 0
206 };
207 #endif
208 #ifdef CONFIG_NET_POLL_CONTROLLER
209 /* for netdump / net console */
210 static void igb_netpoll(struct net_device *);
211 #endif
212 #ifdef CONFIG_PCI_IOV
213 static unsigned int max_vfs;
214 module_param(max_vfs, uint, 0);
215 MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
216 #endif /* CONFIG_PCI_IOV */
217
218 static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
219                      pci_channel_state_t);
220 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
221 static void igb_io_resume(struct pci_dev *);
222
223 static const struct pci_error_handlers igb_err_handler = {
224         .error_detected = igb_io_error_detected,
225         .slot_reset = igb_io_slot_reset,
226         .resume = igb_io_resume,
227 };
228
229 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
230
231 static struct pci_driver igb_driver = {
232         .name     = igb_driver_name,
233         .id_table = igb_pci_tbl,
234         .probe    = igb_probe,
235         .remove   = igb_remove,
236 #ifdef CONFIG_PM
237         .driver.pm = &igb_pm_ops,
238 #endif
239         .shutdown = igb_shutdown,
240         .sriov_configure = igb_pci_sriov_configure,
241         .err_handler = &igb_err_handler
242 };
243
244 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
245 MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
246 MODULE_LICENSE("GPL");
247 MODULE_VERSION(DRV_VERSION);
248
249 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
250 static int debug = -1;
251 module_param(debug, int, 0);
252 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
253
254 struct igb_reg_info {
255         u32 ofs;
256         char *name;
257 };
258
259 static const struct igb_reg_info igb_reg_info_tbl[] = {
260
261         /* General Registers */
262         {E1000_CTRL, "CTRL"},
263         {E1000_STATUS, "STATUS"},
264         {E1000_CTRL_EXT, "CTRL_EXT"},
265
266         /* Interrupt Registers */
267         {E1000_ICR, "ICR"},
268
269         /* RX Registers */
270         {E1000_RCTL, "RCTL"},
271         {E1000_RDLEN(0), "RDLEN"},
272         {E1000_RDH(0), "RDH"},
273         {E1000_RDT(0), "RDT"},
274         {E1000_RXDCTL(0), "RXDCTL"},
275         {E1000_RDBAL(0), "RDBAL"},
276         {E1000_RDBAH(0), "RDBAH"},
277
278         /* TX Registers */
279         {E1000_TCTL, "TCTL"},
280         {E1000_TDBAL(0), "TDBAL"},
281         {E1000_TDBAH(0), "TDBAH"},
282         {E1000_TDLEN(0), "TDLEN"},
283         {E1000_TDH(0), "TDH"},
284         {E1000_TDT(0), "TDT"},
285         {E1000_TXDCTL(0), "TXDCTL"},
286         {E1000_TDFH, "TDFH"},
287         {E1000_TDFT, "TDFT"},
288         {E1000_TDFHS, "TDFHS"},
289         {E1000_TDFPC, "TDFPC"},
290
291         /* List Terminator */
292         {}
293 };
294
295 /* igb_regdump - register printout routine */
296 static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
297 {
298         int n = 0;
299         char rname[16];
300         u32 regs[8];
301
302         switch (reginfo->ofs) {
303         case E1000_RDLEN(0):
304                 for (n = 0; n < 4; n++)
305                         regs[n] = rd32(E1000_RDLEN(n));
306                 break;
307         case E1000_RDH(0):
308                 for (n = 0; n < 4; n++)
309                         regs[n] = rd32(E1000_RDH(n));
310                 break;
311         case E1000_RDT(0):
312                 for (n = 0; n < 4; n++)
313                         regs[n] = rd32(E1000_RDT(n));
314                 break;
315         case E1000_RXDCTL(0):
316                 for (n = 0; n < 4; n++)
317                         regs[n] = rd32(E1000_RXDCTL(n));
318                 break;
319         case E1000_RDBAL(0):
320                 for (n = 0; n < 4; n++)
321                         regs[n] = rd32(E1000_RDBAL(n));
322                 break;
323         case E1000_RDBAH(0):
324                 for (n = 0; n < 4; n++)
325                         regs[n] = rd32(E1000_RDBAH(n));
326                 break;
327         case E1000_TDBAL(0):
328                 for (n = 0; n < 4; n++)
329                         regs[n] = rd32(E1000_RDBAL(n));
330                 break;
331         case E1000_TDBAH(0):
332                 for (n = 0; n < 4; n++)
333                         regs[n] = rd32(E1000_TDBAH(n));
334                 break;
335         case E1000_TDLEN(0):
336                 for (n = 0; n < 4; n++)
337                         regs[n] = rd32(E1000_TDLEN(n));
338                 break;
339         case E1000_TDH(0):
340                 for (n = 0; n < 4; n++)
341                         regs[n] = rd32(E1000_TDH(n));
342                 break;
343         case E1000_TDT(0):
344                 for (n = 0; n < 4; n++)
345                         regs[n] = rd32(E1000_TDT(n));
346                 break;
347         case E1000_TXDCTL(0):
348                 for (n = 0; n < 4; n++)
349                         regs[n] = rd32(E1000_TXDCTL(n));
350                 break;
351         default:
352                 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
353                 return;
354         }
355
356         snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
357         pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
358                 regs[2], regs[3]);
359 }
360
361 /* igb_dump - Print registers, Tx-rings and Rx-rings */
362 static void igb_dump(struct igb_adapter *adapter)
363 {
364         struct net_device *netdev = adapter->netdev;
365         struct e1000_hw *hw = &adapter->hw;
366         struct igb_reg_info *reginfo;
367         struct igb_ring *tx_ring;
368         union e1000_adv_tx_desc *tx_desc;
369         struct my_u0 { u64 a; u64 b; } *u0;
370         struct igb_ring *rx_ring;
371         union e1000_adv_rx_desc *rx_desc;
372         u32 staterr;
373         u16 i, n;
374
375         if (!netif_msg_hw(adapter))
376                 return;
377
378         /* Print netdevice Info */
379         if (netdev) {
380                 dev_info(&adapter->pdev->dev, "Net device Info\n");
381                 pr_info("Device Name     state            trans_start      last_rx\n");
382                 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
383                         netdev->state, netdev->trans_start, netdev->last_rx);
384         }
385
386         /* Print Registers */
387         dev_info(&adapter->pdev->dev, "Register Dump\n");
388         pr_info(" Register Name   Value\n");
389         for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
390              reginfo->name; reginfo++) {
391                 igb_regdump(hw, reginfo);
392         }
393
394         /* Print TX Ring Summary */
395         if (!netdev || !netif_running(netdev))
396                 goto exit;
397
398         dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
399         pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
400         for (n = 0; n < adapter->num_tx_queues; n++) {
401                 struct igb_tx_buffer *buffer_info;
402                 tx_ring = adapter->tx_ring[n];
403                 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
404                 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
405                         n, tx_ring->next_to_use, tx_ring->next_to_clean,
406                         (u64)dma_unmap_addr(buffer_info, dma),
407                         dma_unmap_len(buffer_info, len),
408                         buffer_info->next_to_watch,
409                         (u64)buffer_info->time_stamp);
410         }
411
412         /* Print TX Rings */
413         if (!netif_msg_tx_done(adapter))
414                 goto rx_ring_summary;
415
416         dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
417
418         /* Transmit Descriptor Formats
419          *
420          * Advanced Transmit Descriptor
421          *   +--------------------------------------------------------------+
422          * 0 |         Buffer Address [63:0]                                |
423          *   +--------------------------------------------------------------+
424          * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
425          *   +--------------------------------------------------------------+
426          *   63      46 45    40 39 38 36 35 32 31   24             15       0
427          */
428
429         for (n = 0; n < adapter->num_tx_queues; n++) {
430                 tx_ring = adapter->tx_ring[n];
431                 pr_info("------------------------------------\n");
432                 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
433                 pr_info("------------------------------------\n");
434                 pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
435
436                 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
437                         const char *next_desc;
438                         struct igb_tx_buffer *buffer_info;
439                         tx_desc = IGB_TX_DESC(tx_ring, i);
440                         buffer_info = &tx_ring->tx_buffer_info[i];
441                         u0 = (struct my_u0 *)tx_desc;
442                         if (i == tx_ring->next_to_use &&
443                             i == tx_ring->next_to_clean)
444                                 next_desc = " NTC/U";
445                         else if (i == tx_ring->next_to_use)
446                                 next_desc = " NTU";
447                         else if (i == tx_ring->next_to_clean)
448                                 next_desc = " NTC";
449                         else
450                                 next_desc = "";
451
452                         pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
453                                 i, le64_to_cpu(u0->a),
454                                 le64_to_cpu(u0->b),
455                                 (u64)dma_unmap_addr(buffer_info, dma),
456                                 dma_unmap_len(buffer_info, len),
457                                 buffer_info->next_to_watch,
458                                 (u64)buffer_info->time_stamp,
459                                 buffer_info->skb, next_desc);
460
461                         if (netif_msg_pktdata(adapter) && buffer_info->skb)
462                                 print_hex_dump(KERN_INFO, "",
463                                         DUMP_PREFIX_ADDRESS,
464                                         16, 1, buffer_info->skb->data,
465                                         dma_unmap_len(buffer_info, len),
466                                         true);
467                 }
468         }
469
470         /* Print RX Rings Summary */
471 rx_ring_summary:
472         dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
473         pr_info("Queue [NTU] [NTC]\n");
474         for (n = 0; n < adapter->num_rx_queues; n++) {
475                 rx_ring = adapter->rx_ring[n];
476                 pr_info(" %5d %5X %5X\n",
477                         n, rx_ring->next_to_use, rx_ring->next_to_clean);
478         }
479
480         /* Print RX Rings */
481         if (!netif_msg_rx_status(adapter))
482                 goto exit;
483
484         dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
485
486         /* Advanced Receive Descriptor (Read) Format
487          *    63                                           1        0
488          *    +-----------------------------------------------------+
489          *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
490          *    +----------------------------------------------+------+
491          *  8 |       Header Buffer Address [63:1]           |  DD  |
492          *    +-----------------------------------------------------+
493          *
494          *
495          * Advanced Receive Descriptor (Write-Back) Format
496          *
497          *   63       48 47    32 31  30      21 20 17 16   4 3     0
498          *   +------------------------------------------------------+
499          * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
500          *   | Checksum   Ident  |   |           |    | Type | Type |
501          *   +------------------------------------------------------+
502          * 8 | VLAN Tag | Length | Extended Error | Extended Status |
503          *   +------------------------------------------------------+
504          *   63       48 47    32 31            20 19               0
505          */
506
507         for (n = 0; n < adapter->num_rx_queues; n++) {
508                 rx_ring = adapter->rx_ring[n];
509                 pr_info("------------------------------------\n");
510                 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
511                 pr_info("------------------------------------\n");
512                 pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
513                 pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
514
515                 for (i = 0; i < rx_ring->count; i++) {
516                         const char *next_desc;
517                         struct igb_rx_buffer *buffer_info;
518                         buffer_info = &rx_ring->rx_buffer_info[i];
519                         rx_desc = IGB_RX_DESC(rx_ring, i);
520                         u0 = (struct my_u0 *)rx_desc;
521                         staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
522
523                         if (i == rx_ring->next_to_use)
524                                 next_desc = " NTU";
525                         else if (i == rx_ring->next_to_clean)
526                                 next_desc = " NTC";
527                         else
528                                 next_desc = "";
529
530                         if (staterr & E1000_RXD_STAT_DD) {
531                                 /* Descriptor Done */
532                                 pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
533                                         "RWB", i,
534                                         le64_to_cpu(u0->a),
535                                         le64_to_cpu(u0->b),
536                                         next_desc);
537                         } else {
538                                 pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
539                                         "R  ", i,
540                                         le64_to_cpu(u0->a),
541                                         le64_to_cpu(u0->b),
542                                         (u64)buffer_info->dma,
543                                         next_desc);
544
545                                 if (netif_msg_pktdata(adapter) &&
546                                     buffer_info->dma && buffer_info->page) {
547                                         print_hex_dump(KERN_INFO, "",
548                                           DUMP_PREFIX_ADDRESS,
549                                           16, 1,
550                                           page_address(buffer_info->page) +
551                                                       buffer_info->page_offset,
552                                           IGB_RX_BUFSZ, true);
553                                 }
554                         }
555                 }
556         }
557
558 exit:
559         return;
560 }
561
562 /**
563  *  igb_get_i2c_data - Reads the I2C SDA data bit
564  *  @hw: pointer to hardware structure
565  *  @i2cctl: Current value of I2CCTL register
566  *
567  *  Returns the I2C data bit value
568  **/
569 static int igb_get_i2c_data(void *data)
570 {
571         struct igb_adapter *adapter = (struct igb_adapter *)data;
572         struct e1000_hw *hw = &adapter->hw;
573         s32 i2cctl = rd32(E1000_I2CPARAMS);
574
575         return !!(i2cctl & E1000_I2C_DATA_IN);
576 }
577
578 /**
579  *  igb_set_i2c_data - Sets the I2C data bit
580  *  @data: pointer to hardware structure
581  *  @state: I2C data value (0 or 1) to set
582  *
583  *  Sets the I2C data bit
584  **/
585 static void igb_set_i2c_data(void *data, int state)
586 {
587         struct igb_adapter *adapter = (struct igb_adapter *)data;
588         struct e1000_hw *hw = &adapter->hw;
589         s32 i2cctl = rd32(E1000_I2CPARAMS);
590
591         if (state)
592                 i2cctl |= E1000_I2C_DATA_OUT;
593         else
594                 i2cctl &= ~E1000_I2C_DATA_OUT;
595
596         i2cctl &= ~E1000_I2C_DATA_OE_N;
597         i2cctl |= E1000_I2C_CLK_OE_N;
598         wr32(E1000_I2CPARAMS, i2cctl);
599         wrfl();
600
601 }
602
603 /**
604  *  igb_set_i2c_clk - Sets the I2C SCL clock
605  *  @data: pointer to hardware structure
606  *  @state: state to set clock
607  *
608  *  Sets the I2C clock line to state
609  **/
610 static void igb_set_i2c_clk(void *data, int state)
611 {
612         struct igb_adapter *adapter = (struct igb_adapter *)data;
613         struct e1000_hw *hw = &adapter->hw;
614         s32 i2cctl = rd32(E1000_I2CPARAMS);
615
616         if (state) {
617                 i2cctl |= E1000_I2C_CLK_OUT;
618                 i2cctl &= ~E1000_I2C_CLK_OE_N;
619         } else {
620                 i2cctl &= ~E1000_I2C_CLK_OUT;
621                 i2cctl &= ~E1000_I2C_CLK_OE_N;
622         }
623         wr32(E1000_I2CPARAMS, i2cctl);
624         wrfl();
625 }
626
627 /**
628  *  igb_get_i2c_clk - Gets the I2C SCL clock state
629  *  @data: pointer to hardware structure
630  *
631  *  Gets the I2C clock state
632  **/
633 static int igb_get_i2c_clk(void *data)
634 {
635         struct igb_adapter *adapter = (struct igb_adapter *)data;
636         struct e1000_hw *hw = &adapter->hw;
637         s32 i2cctl = rd32(E1000_I2CPARAMS);
638
639         return !!(i2cctl & E1000_I2C_CLK_IN);
640 }
641
642 static const struct i2c_algo_bit_data igb_i2c_algo = {
643         .setsda         = igb_set_i2c_data,
644         .setscl         = igb_set_i2c_clk,
645         .getsda         = igb_get_i2c_data,
646         .getscl         = igb_get_i2c_clk,
647         .udelay         = 5,
648         .timeout        = 20,
649 };
650
651 /**
652  *  igb_get_hw_dev - return device
653  *  @hw: pointer to hardware structure
654  *
655  *  used by hardware layer to print debugging information
656  **/
657 struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
658 {
659         struct igb_adapter *adapter = hw->back;
660         return adapter->netdev;
661 }
662
663 /**
664  *  igb_init_module - Driver Registration Routine
665  *
666  *  igb_init_module is the first routine called when the driver is
667  *  loaded. All it does is register with the PCI subsystem.
668  **/
669 static int __init igb_init_module(void)
670 {
671         int ret;
672
673         pr_info("%s - version %s\n",
674                igb_driver_string, igb_driver_version);
675         pr_info("%s\n", igb_copyright);
676
677 #ifdef CONFIG_IGB_DCA
678         dca_register_notify(&dca_notifier);
679 #endif
680         ret = pci_register_driver(&igb_driver);
681         return ret;
682 }
683
684 module_init(igb_init_module);
685
686 /**
687  *  igb_exit_module - Driver Exit Cleanup Routine
688  *
689  *  igb_exit_module is called just before the driver is removed
690  *  from memory.
691  **/
692 static void __exit igb_exit_module(void)
693 {
694 #ifdef CONFIG_IGB_DCA
695         dca_unregister_notify(&dca_notifier);
696 #endif
697         pci_unregister_driver(&igb_driver);
698 }
699
700 module_exit(igb_exit_module);
701
702 #define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
703 /**
704  *  igb_cache_ring_register - Descriptor ring to register mapping
705  *  @adapter: board private structure to initialize
706  *
707  *  Once we know the feature-set enabled for the device, we'll cache
708  *  the register offset the descriptor ring is assigned to.
709  **/
710 static void igb_cache_ring_register(struct igb_adapter *adapter)
711 {
712         int i = 0, j = 0;
713         u32 rbase_offset = adapter->vfs_allocated_count;
714
715         switch (adapter->hw.mac.type) {
716         case e1000_82576:
717                 /* The queues are allocated for virtualization such that VF 0
718                  * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
719                  * In order to avoid collision we start at the first free queue
720                  * and continue consuming queues in the same sequence
721                  */
722                 if (adapter->vfs_allocated_count) {
723                         for (; i < adapter->rss_queues; i++)
724                                 adapter->rx_ring[i]->reg_idx = rbase_offset +
725                                                                Q_IDX_82576(i);
726                 }
727                 /* Fall through */
728         case e1000_82575:
729         case e1000_82580:
730         case e1000_i350:
731         case e1000_i354:
732         case e1000_i210:
733         case e1000_i211:
734                 /* Fall through */
735         default:
736                 for (; i < adapter->num_rx_queues; i++)
737                         adapter->rx_ring[i]->reg_idx = rbase_offset + i;
738                 for (; j < adapter->num_tx_queues; j++)
739                         adapter->tx_ring[j]->reg_idx = rbase_offset + j;
740                 break;
741         }
742 }
743
744 u32 igb_rd32(struct e1000_hw *hw, u32 reg)
745 {
746         struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
747         u8 __iomem *hw_addr = ACCESS_ONCE(hw->hw_addr);
748         u32 value = 0;
749
750         if (E1000_REMOVED(hw_addr))
751                 return ~value;
752
753         value = readl(&hw_addr[reg]);
754
755         /* reads should not return all F's */
756         if (!(~value) && (!reg || !(~readl(hw_addr)))) {
757                 struct net_device *netdev = igb->netdev;
758                 hw->hw_addr = NULL;
759                 netif_device_detach(netdev);
760                 netdev_err(netdev, "PCIe link lost, device now detached\n");
761         }
762
763         return value;
764 }
765
766 /**
767  *  igb_write_ivar - configure ivar for given MSI-X vector
768  *  @hw: pointer to the HW structure
769  *  @msix_vector: vector number we are allocating to a given ring
770  *  @index: row index of IVAR register to write within IVAR table
771  *  @offset: column offset of in IVAR, should be multiple of 8
772  *
773  *  This function is intended to handle the writing of the IVAR register
774  *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
775  *  each containing an cause allocation for an Rx and Tx ring, and a
776  *  variable number of rows depending on the number of queues supported.
777  **/
778 static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
779                            int index, int offset)
780 {
781         u32 ivar = array_rd32(E1000_IVAR0, index);
782
783         /* clear any bits that are currently set */
784         ivar &= ~((u32)0xFF << offset);
785
786         /* write vector and valid bit */
787         ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
788
789         array_wr32(E1000_IVAR0, index, ivar);
790 }
791
792 #define IGB_N0_QUEUE -1
793 static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
794 {
795         struct igb_adapter *adapter = q_vector->adapter;
796         struct e1000_hw *hw = &adapter->hw;
797         int rx_queue = IGB_N0_QUEUE;
798         int tx_queue = IGB_N0_QUEUE;
799         u32 msixbm = 0;
800
801         if (q_vector->rx.ring)
802                 rx_queue = q_vector->rx.ring->reg_idx;
803         if (q_vector->tx.ring)
804                 tx_queue = q_vector->tx.ring->reg_idx;
805
806         switch (hw->mac.type) {
807         case e1000_82575:
808                 /* The 82575 assigns vectors using a bitmask, which matches the
809                  * bitmask for the EICR/EIMS/EIMC registers.  To assign one
810                  * or more queues to a vector, we write the appropriate bits
811                  * into the MSIXBM register for that vector.
812                  */
813                 if (rx_queue > IGB_N0_QUEUE)
814                         msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
815                 if (tx_queue > IGB_N0_QUEUE)
816                         msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
817                 if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
818                         msixbm |= E1000_EIMS_OTHER;
819                 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
820                 q_vector->eims_value = msixbm;
821                 break;
822         case e1000_82576:
823                 /* 82576 uses a table that essentially consists of 2 columns
824                  * with 8 rows.  The ordering is column-major so we use the
825                  * lower 3 bits as the row index, and the 4th bit as the
826                  * column offset.
827                  */
828                 if (rx_queue > IGB_N0_QUEUE)
829                         igb_write_ivar(hw, msix_vector,
830                                        rx_queue & 0x7,
831                                        (rx_queue & 0x8) << 1);
832                 if (tx_queue > IGB_N0_QUEUE)
833                         igb_write_ivar(hw, msix_vector,
834                                        tx_queue & 0x7,
835                                        ((tx_queue & 0x8) << 1) + 8);
836                 q_vector->eims_value = 1 << msix_vector;
837                 break;
838         case e1000_82580:
839         case e1000_i350:
840         case e1000_i354:
841         case e1000_i210:
842         case e1000_i211:
843                 /* On 82580 and newer adapters the scheme is similar to 82576
844                  * however instead of ordering column-major we have things
845                  * ordered row-major.  So we traverse the table by using
846                  * bit 0 as the column offset, and the remaining bits as the
847                  * row index.
848                  */
849                 if (rx_queue > IGB_N0_QUEUE)
850                         igb_write_ivar(hw, msix_vector,
851                                        rx_queue >> 1,
852                                        (rx_queue & 0x1) << 4);
853                 if (tx_queue > IGB_N0_QUEUE)
854                         igb_write_ivar(hw, msix_vector,
855                                        tx_queue >> 1,
856                                        ((tx_queue & 0x1) << 4) + 8);
857                 q_vector->eims_value = 1 << msix_vector;
858                 break;
859         default:
860                 BUG();
861                 break;
862         }
863
864         /* add q_vector eims value to global eims_enable_mask */
865         adapter->eims_enable_mask |= q_vector->eims_value;
866
867         /* configure q_vector to set itr on first interrupt */
868         q_vector->set_itr = 1;
869 }
870
871 /**
872  *  igb_configure_msix - Configure MSI-X hardware
873  *  @adapter: board private structure to initialize
874  *
875  *  igb_configure_msix sets up the hardware to properly
876  *  generate MSI-X interrupts.
877  **/
878 static void igb_configure_msix(struct igb_adapter *adapter)
879 {
880         u32 tmp;
881         int i, vector = 0;
882         struct e1000_hw *hw = &adapter->hw;
883
884         adapter->eims_enable_mask = 0;
885
886         /* set vector for other causes, i.e. link changes */
887         switch (hw->mac.type) {
888         case e1000_82575:
889                 tmp = rd32(E1000_CTRL_EXT);
890                 /* enable MSI-X PBA support*/
891                 tmp |= E1000_CTRL_EXT_PBA_CLR;
892
893                 /* Auto-Mask interrupts upon ICR read. */
894                 tmp |= E1000_CTRL_EXT_EIAME;
895                 tmp |= E1000_CTRL_EXT_IRCA;
896
897                 wr32(E1000_CTRL_EXT, tmp);
898
899                 /* enable msix_other interrupt */
900                 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
901                 adapter->eims_other = E1000_EIMS_OTHER;
902
903                 break;
904
905         case e1000_82576:
906         case e1000_82580:
907         case e1000_i350:
908         case e1000_i354:
909         case e1000_i210:
910         case e1000_i211:
911                 /* Turn on MSI-X capability first, or our settings
912                  * won't stick.  And it will take days to debug.
913                  */
914                 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
915                      E1000_GPIE_PBA | E1000_GPIE_EIAME |
916                      E1000_GPIE_NSICR);
917
918                 /* enable msix_other interrupt */
919                 adapter->eims_other = 1 << vector;
920                 tmp = (vector++ | E1000_IVAR_VALID) << 8;
921
922                 wr32(E1000_IVAR_MISC, tmp);
923                 break;
924         default:
925                 /* do nothing, since nothing else supports MSI-X */
926                 break;
927         } /* switch (hw->mac.type) */
928
929         adapter->eims_enable_mask |= adapter->eims_other;
930
931         for (i = 0; i < adapter->num_q_vectors; i++)
932                 igb_assign_vector(adapter->q_vector[i], vector++);
933
934         wrfl();
935 }
936
937 /**
938  *  igb_request_msix - Initialize MSI-X interrupts
939  *  @adapter: board private structure to initialize
940  *
941  *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
942  *  kernel.
943  **/
944 static int igb_request_msix(struct igb_adapter *adapter)
945 {
946         struct net_device *netdev = adapter->netdev;
947         struct e1000_hw *hw = &adapter->hw;
948         int i, err = 0, vector = 0, free_vector = 0;
949
950         err = request_irq(adapter->msix_entries[vector].vector,
951                           igb_msix_other, 0, netdev->name, adapter);
952         if (err)
953                 goto err_out;
954
955         for (i = 0; i < adapter->num_q_vectors; i++) {
956                 struct igb_q_vector *q_vector = adapter->q_vector[i];
957
958                 vector++;
959
960                 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
961
962                 if (q_vector->rx.ring && q_vector->tx.ring)
963                         sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
964                                 q_vector->rx.ring->queue_index);
965                 else if (q_vector->tx.ring)
966                         sprintf(q_vector->name, "%s-tx-%u", netdev->name,
967                                 q_vector->tx.ring->queue_index);
968                 else if (q_vector->rx.ring)
969                         sprintf(q_vector->name, "%s-rx-%u", netdev->name,
970                                 q_vector->rx.ring->queue_index);
971                 else
972                         sprintf(q_vector->name, "%s-unused", netdev->name);
973
974                 err = request_irq(adapter->msix_entries[vector].vector,
975                                   igb_msix_ring, 0, q_vector->name,
976                                   q_vector);
977                 if (err)
978                         goto err_free;
979         }
980
981         igb_configure_msix(adapter);
982         return 0;
983
984 err_free:
985         /* free already assigned IRQs */
986         free_irq(adapter->msix_entries[free_vector++].vector, adapter);
987
988         vector--;
989         for (i = 0; i < vector; i++) {
990                 free_irq(adapter->msix_entries[free_vector++].vector,
991                          adapter->q_vector[i]);
992         }
993 err_out:
994         return err;
995 }
996
997 /**
998  *  igb_free_q_vector - Free memory allocated for specific interrupt vector
999  *  @adapter: board private structure to initialize
1000  *  @v_idx: Index of vector to be freed
1001  *
1002  *  This function frees the memory allocated to the q_vector.
1003  **/
1004 static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1005 {
1006         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1007
1008         adapter->q_vector[v_idx] = NULL;
1009
1010         /* igb_get_stats64() might access the rings on this vector,
1011          * we must wait a grace period before freeing it.
1012          */
1013         if (q_vector)
1014                 kfree_rcu(q_vector, rcu);
1015 }
1016
1017 /**
1018  *  igb_reset_q_vector - Reset config for interrupt vector
1019  *  @adapter: board private structure to initialize
1020  *  @v_idx: Index of vector to be reset
1021  *
1022  *  If NAPI is enabled it will delete any references to the
1023  *  NAPI struct. This is preparation for igb_free_q_vector.
1024  **/
1025 static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
1026 {
1027         struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1028
1029         /* Coming from igb_set_interrupt_capability, the vectors are not yet
1030          * allocated. So, q_vector is NULL so we should stop here.
1031          */
1032         if (!q_vector)
1033                 return;
1034
1035         if (q_vector->tx.ring)
1036                 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1037
1038         if (q_vector->rx.ring)
1039                 adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1040
1041         netif_napi_del(&q_vector->napi);
1042
1043 }
1044
1045 static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
1046 {
1047         int v_idx = adapter->num_q_vectors;
1048
1049         if (adapter->flags & IGB_FLAG_HAS_MSIX)
1050                 pci_disable_msix(adapter->pdev);
1051         else if (adapter->flags & IGB_FLAG_HAS_MSI)
1052                 pci_disable_msi(adapter->pdev);
1053
1054         while (v_idx--)
1055                 igb_reset_q_vector(adapter, v_idx);
1056 }
1057
1058 /**
1059  *  igb_free_q_vectors - Free memory allocated for interrupt vectors
1060  *  @adapter: board private structure to initialize
1061  *
1062  *  This function frees the memory allocated to the q_vectors.  In addition if
1063  *  NAPI is enabled it will delete any references to the NAPI struct prior
1064  *  to freeing the q_vector.
1065  **/
1066 static void igb_free_q_vectors(struct igb_adapter *adapter)
1067 {
1068         int v_idx = adapter->num_q_vectors;
1069
1070         adapter->num_tx_queues = 0;
1071         adapter->num_rx_queues = 0;
1072         adapter->num_q_vectors = 0;
1073
1074         while (v_idx--) {
1075                 igb_reset_q_vector(adapter, v_idx);
1076                 igb_free_q_vector(adapter, v_idx);
1077         }
1078 }
1079
1080 /**
1081  *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1082  *  @adapter: board private structure to initialize
1083  *
1084  *  This function resets the device so that it has 0 Rx queues, Tx queues, and
1085  *  MSI-X interrupts allocated.
1086  */
1087 static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1088 {
1089         igb_free_q_vectors(adapter);
1090         igb_reset_interrupt_capability(adapter);
1091 }
1092
1093 /**
1094  *  igb_set_interrupt_capability - set MSI or MSI-X if supported
1095  *  @adapter: board private structure to initialize
1096  *  @msix: boolean value of MSIX capability
1097  *
1098  *  Attempt to configure interrupts using the best available
1099  *  capabilities of the hardware and kernel.
1100  **/
1101 static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
1102 {
1103         int err;
1104         int numvecs, i;
1105
1106         if (!msix)
1107                 goto msi_only;
1108         adapter->flags |= IGB_FLAG_HAS_MSIX;
1109
1110         /* Number of supported queues. */
1111         adapter->num_rx_queues = adapter->rss_queues;
1112         if (adapter->vfs_allocated_count)
1113                 adapter->num_tx_queues = 1;
1114         else
1115                 adapter->num_tx_queues = adapter->rss_queues;
1116
1117         /* start with one vector for every Rx queue */
1118         numvecs = adapter->num_rx_queues;
1119
1120         /* if Tx handler is separate add 1 for every Tx queue */
1121         if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1122                 numvecs += adapter->num_tx_queues;
1123
1124         /* store the number of vectors reserved for queues */
1125         adapter->num_q_vectors = numvecs;
1126
1127         /* add 1 vector for link status interrupts */
1128         numvecs++;
1129         for (i = 0; i < numvecs; i++)
1130                 adapter->msix_entries[i].entry = i;
1131
1132         err = pci_enable_msix_range(adapter->pdev,
1133                                     adapter->msix_entries,
1134                                     numvecs,
1135                                     numvecs);
1136         if (err > 0)
1137                 return;
1138
1139         igb_reset_interrupt_capability(adapter);
1140
1141         /* If we can't do MSI-X, try MSI */
1142 msi_only:
1143         adapter->flags &= ~IGB_FLAG_HAS_MSIX;
1144 #ifdef CONFIG_PCI_IOV
1145         /* disable SR-IOV for non MSI-X configurations */
1146         if (adapter->vf_data) {
1147                 struct e1000_hw *hw = &adapter->hw;
1148                 /* disable iov and allow time for transactions to clear */
1149                 pci_disable_sriov(adapter->pdev);
1150                 msleep(500);
1151
1152                 kfree(adapter->vf_data);
1153                 adapter->vf_data = NULL;
1154                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
1155                 wrfl();
1156                 msleep(100);
1157                 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1158         }
1159 #endif
1160         adapter->vfs_allocated_count = 0;
1161         adapter->rss_queues = 1;
1162         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
1163         adapter->num_rx_queues = 1;
1164         adapter->num_tx_queues = 1;
1165         adapter->num_q_vectors = 1;
1166         if (!pci_enable_msi(adapter->pdev))
1167                 adapter->flags |= IGB_FLAG_HAS_MSI;
1168 }
1169
1170 static void igb_add_ring(struct igb_ring *ring,
1171                          struct igb_ring_container *head)
1172 {
1173         head->ring = ring;
1174         head->count++;
1175 }
1176
1177 /**
1178  *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
1179  *  @adapter: board private structure to initialize
1180  *  @v_count: q_vectors allocated on adapter, used for ring interleaving
1181  *  @v_idx: index of vector in adapter struct
1182  *  @txr_count: total number of Tx rings to allocate
1183  *  @txr_idx: index of first Tx ring to allocate
1184  *  @rxr_count: total number of Rx rings to allocate
1185  *  @rxr_idx: index of first Rx ring to allocate
1186  *
1187  *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
1188  **/
1189 static int igb_alloc_q_vector(struct igb_adapter *adapter,
1190                               int v_count, int v_idx,
1191                               int txr_count, int txr_idx,
1192                               int rxr_count, int rxr_idx)
1193 {
1194         struct igb_q_vector *q_vector;
1195         struct igb_ring *ring;
1196         int ring_count, size;
1197
1198         /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1199         if (txr_count > 1 || rxr_count > 1)
1200                 return -ENOMEM;
1201
1202         ring_count = txr_count + rxr_count;
1203         size = sizeof(struct igb_q_vector) +
1204                (sizeof(struct igb_ring) * ring_count);
1205
1206         /* allocate q_vector and rings */
1207         q_vector = adapter->q_vector[v_idx];
1208         if (!q_vector)
1209                 q_vector = kzalloc(size, GFP_KERNEL);
1210         if (!q_vector)
1211                 return -ENOMEM;
1212
1213         /* initialize NAPI */
1214         netif_napi_add(adapter->netdev, &q_vector->napi,
1215                        igb_poll, 64);
1216
1217         /* tie q_vector and adapter together */
1218         adapter->q_vector[v_idx] = q_vector;
1219         q_vector->adapter = adapter;
1220
1221         /* initialize work limits */
1222         q_vector->tx.work_limit = adapter->tx_work_limit;
1223
1224         /* initialize ITR configuration */
1225         q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1226         q_vector->itr_val = IGB_START_ITR;
1227
1228         /* initialize pointer to rings */
1229         ring = q_vector->ring;
1230
1231         /* intialize ITR */
1232         if (rxr_count) {
1233                 /* rx or rx/tx vector */
1234                 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1235                         q_vector->itr_val = adapter->rx_itr_setting;
1236         } else {
1237                 /* tx only vector */
1238                 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1239                         q_vector->itr_val = adapter->tx_itr_setting;
1240         }
1241
1242         if (txr_count) {
1243                 /* assign generic ring traits */
1244                 ring->dev = &adapter->pdev->dev;
1245                 ring->netdev = adapter->netdev;
1246
1247                 /* configure backlink on ring */
1248                 ring->q_vector = q_vector;
1249
1250                 /* update q_vector Tx values */
1251                 igb_add_ring(ring, &q_vector->tx);
1252
1253                 /* For 82575, context index must be unique per ring. */
1254                 if (adapter->hw.mac.type == e1000_82575)
1255                         set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1256
1257                 /* apply Tx specific ring traits */
1258                 ring->count = adapter->tx_ring_count;
1259                 ring->queue_index = txr_idx;
1260
1261                 u64_stats_init(&ring->tx_syncp);
1262                 u64_stats_init(&ring->tx_syncp2);
1263
1264                 /* assign ring to adapter */
1265                 adapter->tx_ring[txr_idx] = ring;
1266
1267                 /* push pointer to next ring */
1268                 ring++;
1269         }
1270
1271         if (rxr_count) {
1272                 /* assign generic ring traits */
1273                 ring->dev = &adapter->pdev->dev;
1274                 ring->netdev = adapter->netdev;
1275
1276                 /* configure backlink on ring */
1277                 ring->q_vector = q_vector;
1278
1279                 /* update q_vector Rx values */
1280                 igb_add_ring(ring, &q_vector->rx);
1281
1282                 /* set flag indicating ring supports SCTP checksum offload */
1283                 if (adapter->hw.mac.type >= e1000_82576)
1284                         set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
1285
1286                 /* On i350, i354, i210, and i211, loopback VLAN packets
1287                  * have the tag byte-swapped.
1288                  */
1289                 if (adapter->hw.mac.type >= e1000_i350)
1290                         set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
1291
1292                 /* apply Rx specific ring traits */
1293                 ring->count = adapter->rx_ring_count;
1294                 ring->queue_index = rxr_idx;
1295
1296                 u64_stats_init(&ring->rx_syncp);
1297
1298                 /* assign ring to adapter */
1299                 adapter->rx_ring[rxr_idx] = ring;
1300         }
1301
1302         return 0;
1303 }
1304
1305
1306 /**
1307  *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
1308  *  @adapter: board private structure to initialize
1309  *
1310  *  We allocate one q_vector per queue interrupt.  If allocation fails we
1311  *  return -ENOMEM.
1312  **/
1313 static int igb_alloc_q_vectors(struct igb_adapter *adapter)
1314 {
1315         int q_vectors = adapter->num_q_vectors;
1316         int rxr_remaining = adapter->num_rx_queues;
1317         int txr_remaining = adapter->num_tx_queues;
1318         int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1319         int err;
1320
1321         if (q_vectors >= (rxr_remaining + txr_remaining)) {
1322                 for (; rxr_remaining; v_idx++) {
1323                         err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1324                                                  0, 0, 1, rxr_idx);
1325
1326                         if (err)
1327                                 goto err_out;
1328
1329                         /* update counts and index */
1330                         rxr_remaining--;
1331                         rxr_idx++;
1332                 }
1333         }
1334
1335         for (; v_idx < q_vectors; v_idx++) {
1336                 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1337                 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1338
1339                 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1340                                          tqpv, txr_idx, rqpv, rxr_idx);
1341
1342                 if (err)
1343                         goto err_out;
1344
1345                 /* update counts and index */
1346                 rxr_remaining -= rqpv;
1347                 txr_remaining -= tqpv;
1348                 rxr_idx++;
1349                 txr_idx++;
1350         }
1351
1352         return 0;
1353
1354 err_out:
1355         adapter->num_tx_queues = 0;
1356         adapter->num_rx_queues = 0;
1357         adapter->num_q_vectors = 0;
1358
1359         while (v_idx--)
1360                 igb_free_q_vector(adapter, v_idx);
1361
1362         return -ENOMEM;
1363 }
1364
1365 /**
1366  *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1367  *  @adapter: board private structure to initialize
1368  *  @msix: boolean value of MSIX capability
1369  *
1370  *  This function initializes the interrupts and allocates all of the queues.
1371  **/
1372 static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
1373 {
1374         struct pci_dev *pdev = adapter->pdev;
1375         int err;
1376
1377         igb_set_interrupt_capability(adapter, msix);
1378
1379         err = igb_alloc_q_vectors(adapter);
1380         if (err) {
1381                 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1382                 goto err_alloc_q_vectors;
1383         }
1384
1385         igb_cache_ring_register(adapter);
1386
1387         return 0;
1388
1389 err_alloc_q_vectors:
1390         igb_reset_interrupt_capability(adapter);
1391         return err;
1392 }
1393
1394 /**
1395  *  igb_request_irq - initialize interrupts
1396  *  @adapter: board private structure to initialize
1397  *
1398  *  Attempts to configure interrupts using the best available
1399  *  capabilities of the hardware and kernel.
1400  **/
1401 static int igb_request_irq(struct igb_adapter *adapter)
1402 {
1403         struct net_device *netdev = adapter->netdev;
1404         struct pci_dev *pdev = adapter->pdev;
1405         int err = 0;
1406
1407         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1408                 err = igb_request_msix(adapter);
1409                 if (!err)
1410                         goto request_done;
1411                 /* fall back to MSI */
1412                 igb_free_all_tx_resources(adapter);
1413                 igb_free_all_rx_resources(adapter);
1414
1415                 igb_clear_interrupt_scheme(adapter);
1416                 err = igb_init_interrupt_scheme(adapter, false);
1417                 if (err)
1418                         goto request_done;
1419
1420                 igb_setup_all_tx_resources(adapter);
1421                 igb_setup_all_rx_resources(adapter);
1422                 igb_configure(adapter);
1423         }
1424
1425         igb_assign_vector(adapter->q_vector[0], 0);
1426
1427         if (adapter->flags & IGB_FLAG_HAS_MSI) {
1428                 err = request_irq(pdev->irq, igb_intr_msi, 0,
1429                                   netdev->name, adapter);
1430                 if (!err)
1431                         goto request_done;
1432
1433                 /* fall back to legacy interrupts */
1434                 igb_reset_interrupt_capability(adapter);
1435                 adapter->flags &= ~IGB_FLAG_HAS_MSI;
1436         }
1437
1438         err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
1439                           netdev->name, adapter);
1440
1441         if (err)
1442                 dev_err(&pdev->dev, "Error %d getting interrupt\n",
1443                         err);
1444
1445 request_done:
1446         return err;
1447 }
1448
1449 static void igb_free_irq(struct igb_adapter *adapter)
1450 {
1451         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1452                 int vector = 0, i;
1453
1454                 free_irq(adapter->msix_entries[vector++].vector, adapter);
1455
1456                 for (i = 0; i < adapter->num_q_vectors; i++)
1457                         free_irq(adapter->msix_entries[vector++].vector,
1458                                  adapter->q_vector[i]);
1459         } else {
1460                 free_irq(adapter->pdev->irq, adapter);
1461         }
1462 }
1463
1464 /**
1465  *  igb_irq_disable - Mask off interrupt generation on the NIC
1466  *  @adapter: board private structure
1467  **/
1468 static void igb_irq_disable(struct igb_adapter *adapter)
1469 {
1470         struct e1000_hw *hw = &adapter->hw;
1471
1472         /* we need to be careful when disabling interrupts.  The VFs are also
1473          * mapped into these registers and so clearing the bits can cause
1474          * issues on the VF drivers so we only need to clear what we set
1475          */
1476         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1477                 u32 regval = rd32(E1000_EIAM);
1478
1479                 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1480                 wr32(E1000_EIMC, adapter->eims_enable_mask);
1481                 regval = rd32(E1000_EIAC);
1482                 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
1483         }
1484
1485         wr32(E1000_IAM, 0);
1486         wr32(E1000_IMC, ~0);
1487         wrfl();
1488         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1489                 int i;
1490
1491                 for (i = 0; i < adapter->num_q_vectors; i++)
1492                         synchronize_irq(adapter->msix_entries[i].vector);
1493         } else {
1494                 synchronize_irq(adapter->pdev->irq);
1495         }
1496 }
1497
1498 /**
1499  *  igb_irq_enable - Enable default interrupt generation settings
1500  *  @adapter: board private structure
1501  **/
1502 static void igb_irq_enable(struct igb_adapter *adapter)
1503 {
1504         struct e1000_hw *hw = &adapter->hw;
1505
1506         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1507                 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
1508                 u32 regval = rd32(E1000_EIAC);
1509
1510                 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1511                 regval = rd32(E1000_EIAM);
1512                 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
1513                 wr32(E1000_EIMS, adapter->eims_enable_mask);
1514                 if (adapter->vfs_allocated_count) {
1515                         wr32(E1000_MBVFIMR, 0xFF);
1516                         ims |= E1000_IMS_VMMB;
1517                 }
1518                 wr32(E1000_IMS, ims);
1519         } else {
1520                 wr32(E1000_IMS, IMS_ENABLE_MASK |
1521                                 E1000_IMS_DRSTA);
1522                 wr32(E1000_IAM, IMS_ENABLE_MASK |
1523                                 E1000_IMS_DRSTA);
1524         }
1525 }
1526
1527 static void igb_update_mng_vlan(struct igb_adapter *adapter)
1528 {
1529         struct e1000_hw *hw = &adapter->hw;
1530         u16 vid = adapter->hw.mng_cookie.vlan_id;
1531         u16 old_vid = adapter->mng_vlan_id;
1532
1533         if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1534                 /* add VID to filter table */
1535                 igb_vfta_set(hw, vid, true);
1536                 adapter->mng_vlan_id = vid;
1537         } else {
1538                 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1539         }
1540
1541         if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1542             (vid != old_vid) &&
1543             !test_bit(old_vid, adapter->active_vlans)) {
1544                 /* remove VID from filter table */
1545                 igb_vfta_set(hw, old_vid, false);
1546         }
1547 }
1548
1549 /**
1550  *  igb_release_hw_control - release control of the h/w to f/w
1551  *  @adapter: address of board private structure
1552  *
1553  *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1554  *  For ASF and Pass Through versions of f/w this means that the
1555  *  driver is no longer loaded.
1556  **/
1557 static void igb_release_hw_control(struct igb_adapter *adapter)
1558 {
1559         struct e1000_hw *hw = &adapter->hw;
1560         u32 ctrl_ext;
1561
1562         /* Let firmware take over control of h/w */
1563         ctrl_ext = rd32(E1000_CTRL_EXT);
1564         wr32(E1000_CTRL_EXT,
1565                         ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1566 }
1567
1568 /**
1569  *  igb_get_hw_control - get control of the h/w from f/w
1570  *  @adapter: address of board private structure
1571  *
1572  *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1573  *  For ASF and Pass Through versions of f/w this means that
1574  *  the driver is loaded.
1575  **/
1576 static void igb_get_hw_control(struct igb_adapter *adapter)
1577 {
1578         struct e1000_hw *hw = &adapter->hw;
1579         u32 ctrl_ext;
1580
1581         /* Let firmware know the driver has taken over */
1582         ctrl_ext = rd32(E1000_CTRL_EXT);
1583         wr32(E1000_CTRL_EXT,
1584                         ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1585 }
1586
1587 /**
1588  *  igb_configure - configure the hardware for RX and TX
1589  *  @adapter: private board structure
1590  **/
1591 static void igb_configure(struct igb_adapter *adapter)
1592 {
1593         struct net_device *netdev = adapter->netdev;
1594         int i;
1595
1596         igb_get_hw_control(adapter);
1597         igb_set_rx_mode(netdev);
1598
1599         igb_restore_vlan(adapter);
1600
1601         igb_setup_tctl(adapter);
1602         igb_setup_mrqc(adapter);
1603         igb_setup_rctl(adapter);
1604
1605         igb_configure_tx(adapter);
1606         igb_configure_rx(adapter);
1607
1608         igb_rx_fifo_flush_82575(&adapter->hw);
1609
1610         /* call igb_desc_unused which always leaves
1611          * at least 1 descriptor unused to make sure
1612          * next_to_use != next_to_clean
1613          */
1614         for (i = 0; i < adapter->num_rx_queues; i++) {
1615                 struct igb_ring *ring = adapter->rx_ring[i];
1616                 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
1617         }
1618 }
1619
1620 /**
1621  *  igb_power_up_link - Power up the phy/serdes link
1622  *  @adapter: address of board private structure
1623  **/
1624 void igb_power_up_link(struct igb_adapter *adapter)
1625 {
1626         igb_reset_phy(&adapter->hw);
1627
1628         if (adapter->hw.phy.media_type == e1000_media_type_copper)
1629                 igb_power_up_phy_copper(&adapter->hw);
1630         else
1631                 igb_power_up_serdes_link_82575(&adapter->hw);
1632
1633         igb_setup_link(&adapter->hw);
1634 }
1635
1636 /**
1637  *  igb_power_down_link - Power down the phy/serdes link
1638  *  @adapter: address of board private structure
1639  */
1640 static void igb_power_down_link(struct igb_adapter *adapter)
1641 {
1642         if (adapter->hw.phy.media_type == e1000_media_type_copper)
1643                 igb_power_down_phy_copper_82575(&adapter->hw);
1644         else
1645                 igb_shutdown_serdes_link_82575(&adapter->hw);
1646 }
1647
1648 /**
1649  * Detect and switch function for Media Auto Sense
1650  * @adapter: address of the board private structure
1651  **/
1652 static void igb_check_swap_media(struct igb_adapter *adapter)
1653 {
1654         struct e1000_hw *hw = &adapter->hw;
1655         u32 ctrl_ext, connsw;
1656         bool swap_now = false;
1657
1658         ctrl_ext = rd32(E1000_CTRL_EXT);
1659         connsw = rd32(E1000_CONNSW);
1660
1661         /* need to live swap if current media is copper and we have fiber/serdes
1662          * to go to.
1663          */
1664
1665         if ((hw->phy.media_type == e1000_media_type_copper) &&
1666             (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
1667                 swap_now = true;
1668         } else if (!(connsw & E1000_CONNSW_SERDESD)) {
1669                 /* copper signal takes time to appear */
1670                 if (adapter->copper_tries < 4) {
1671                         adapter->copper_tries++;
1672                         connsw |= E1000_CONNSW_AUTOSENSE_CONF;
1673                         wr32(E1000_CONNSW, connsw);
1674                         return;
1675                 } else {
1676                         adapter->copper_tries = 0;
1677                         if ((connsw & E1000_CONNSW_PHYSD) &&
1678                             (!(connsw & E1000_CONNSW_PHY_PDN))) {
1679                                 swap_now = true;
1680                                 connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
1681                                 wr32(E1000_CONNSW, connsw);
1682                         }
1683                 }
1684         }
1685
1686         if (!swap_now)
1687                 return;
1688
1689         switch (hw->phy.media_type) {
1690         case e1000_media_type_copper:
1691                 netdev_info(adapter->netdev,
1692                         "MAS: changing media to fiber/serdes\n");
1693                 ctrl_ext |=
1694                         E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1695                 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1696                 adapter->copper_tries = 0;
1697                 break;
1698         case e1000_media_type_internal_serdes:
1699         case e1000_media_type_fiber:
1700                 netdev_info(adapter->netdev,
1701                         "MAS: changing media to copper\n");
1702                 ctrl_ext &=
1703                         ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1704                 adapter->flags |= IGB_FLAG_MEDIA_RESET;
1705                 break;
1706         default:
1707                 /* shouldn't get here during regular operation */
1708                 netdev_err(adapter->netdev,
1709                         "AMS: Invalid media type found, returning\n");
1710                 break;
1711         }
1712         wr32(E1000_CTRL_EXT, ctrl_ext);
1713 }
1714
1715 /**
1716  *  igb_up - Open the interface and prepare it to handle traffic
1717  *  @adapter: board private structure
1718  **/
1719 int igb_up(struct igb_adapter *adapter)
1720 {
1721         struct e1000_hw *hw = &adapter->hw;
1722         int i;
1723
1724         /* hardware has been reset, we need to reload some things */
1725         igb_configure(adapter);
1726
1727         clear_bit(__IGB_DOWN, &adapter->state);
1728
1729         for (i = 0; i < adapter->num_q_vectors; i++)
1730                 napi_enable(&(adapter->q_vector[i]->napi));
1731
1732         if (adapter->flags & IGB_FLAG_HAS_MSIX)
1733                 igb_configure_msix(adapter);
1734         else
1735                 igb_assign_vector(adapter->q_vector[0], 0);
1736
1737         /* Clear any pending interrupts. */
1738         rd32(E1000_ICR);
1739         igb_irq_enable(adapter);
1740
1741         /* notify VFs that reset has been completed */
1742         if (adapter->vfs_allocated_count) {
1743                 u32 reg_data = rd32(E1000_CTRL_EXT);
1744
1745                 reg_data |= E1000_CTRL_EXT_PFRSTD;
1746                 wr32(E1000_CTRL_EXT, reg_data);
1747         }
1748
1749         netif_tx_start_all_queues(adapter->netdev);
1750
1751         /* start the watchdog. */
1752         hw->mac.get_link_status = 1;
1753         schedule_work(&adapter->watchdog_task);
1754
1755         if ((adapter->flags & IGB_FLAG_EEE) &&
1756             (!hw->dev_spec._82575.eee_disable))
1757                 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
1758
1759         return 0;
1760 }
1761
1762 void igb_down(struct igb_adapter *adapter)
1763 {
1764         struct net_device *netdev = adapter->netdev;
1765         struct e1000_hw *hw = &adapter->hw;
1766         u32 tctl, rctl;
1767         int i;
1768
1769         /* signal that we're down so the interrupt handler does not
1770          * reschedule our watchdog timer
1771          */
1772         set_bit(__IGB_DOWN, &adapter->state);
1773
1774         /* disable receives in the hardware */
1775         rctl = rd32(E1000_RCTL);
1776         wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1777         /* flush and sleep below */
1778
1779         netif_tx_stop_all_queues(netdev);
1780
1781         /* disable transmits in the hardware */
1782         tctl = rd32(E1000_TCTL);
1783         tctl &= ~E1000_TCTL_EN;
1784         wr32(E1000_TCTL, tctl);
1785         /* flush both disables and wait for them to finish */
1786         wrfl();
1787         usleep_range(10000, 11000);
1788
1789         igb_irq_disable(adapter);
1790
1791         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
1792
1793         for (i = 0; i < adapter->num_q_vectors; i++) {
1794                 if (adapter->q_vector[i]) {
1795                         napi_synchronize(&adapter->q_vector[i]->napi);
1796                         napi_disable(&adapter->q_vector[i]->napi);
1797                 }
1798         }
1799
1800
1801         del_timer_sync(&adapter->watchdog_timer);
1802         del_timer_sync(&adapter->phy_info_timer);
1803
1804         netif_carrier_off(netdev);
1805
1806         /* record the stats before reset*/
1807         spin_lock(&adapter->stats64_lock);
1808         igb_update_stats(adapter, &adapter->stats64);
1809         spin_unlock(&adapter->stats64_lock);
1810
1811         adapter->link_speed = 0;
1812         adapter->link_duplex = 0;
1813
1814         if (!pci_channel_offline(adapter->pdev))
1815                 igb_reset(adapter);
1816         igb_clean_all_tx_rings(adapter);
1817         igb_clean_all_rx_rings(adapter);
1818 #ifdef CONFIG_IGB_DCA
1819
1820         /* since we reset the hardware DCA settings were cleared */
1821         igb_setup_dca(adapter);
1822 #endif
1823 }
1824
1825 void igb_reinit_locked(struct igb_adapter *adapter)
1826 {
1827         WARN_ON(in_interrupt());
1828         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1829                 usleep_range(1000, 2000);
1830         igb_down(adapter);
1831         igb_up(adapter);
1832         clear_bit(__IGB_RESETTING, &adapter->state);
1833 }
1834
1835 /** igb_enable_mas - Media Autosense re-enable after swap
1836  *
1837  * @adapter: adapter struct
1838  **/
1839 static s32 igb_enable_mas(struct igb_adapter *adapter)
1840 {
1841         struct e1000_hw *hw = &adapter->hw;
1842         u32 connsw;
1843         s32 ret_val = 0;
1844
1845         connsw = rd32(E1000_CONNSW);
1846         if (!(hw->phy.media_type == e1000_media_type_copper))
1847                 return ret_val;
1848
1849         /* configure for SerDes media detect */
1850         if (!(connsw & E1000_CONNSW_SERDESD)) {
1851                 connsw |= E1000_CONNSW_ENRGSRC;
1852                 connsw |= E1000_CONNSW_AUTOSENSE_EN;
1853                 wr32(E1000_CONNSW, connsw);
1854                 wrfl();
1855         } else if (connsw & E1000_CONNSW_SERDESD) {
1856                 /* already SerDes, no need to enable anything */
1857                 return ret_val;
1858         } else {
1859                 netdev_info(adapter->netdev,
1860                         "MAS: Unable to configure feature, disabling..\n");
1861                 adapter->flags &= ~IGB_FLAG_MAS_ENABLE;
1862         }
1863         return ret_val;
1864 }
1865
1866 void igb_reset(struct igb_adapter *adapter)
1867 {
1868         struct pci_dev *pdev = adapter->pdev;
1869         struct e1000_hw *hw = &adapter->hw;
1870         struct e1000_mac_info *mac = &hw->mac;
1871         struct e1000_fc_info *fc = &hw->fc;
1872         u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
1873
1874         /* Repartition Pba for greater than 9k mtu
1875          * To take effect CTRL.RST is required.
1876          */
1877         switch (mac->type) {
1878         case e1000_i350:
1879         case e1000_i354:
1880         case e1000_82580:
1881                 pba = rd32(E1000_RXPBS);
1882                 pba = igb_rxpbs_adjust_82580(pba);
1883                 break;
1884         case e1000_82576:
1885                 pba = rd32(E1000_RXPBS);
1886                 pba &= E1000_RXPBS_SIZE_MASK_82576;
1887                 break;
1888         case e1000_82575:
1889         case e1000_i210:
1890         case e1000_i211:
1891         default:
1892                 pba = E1000_PBA_34K;
1893                 break;
1894         }
1895
1896         if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1897             (mac->type < e1000_82576)) {
1898                 /* adjust PBA for jumbo frames */
1899                 wr32(E1000_PBA, pba);
1900
1901                 /* To maintain wire speed transmits, the Tx FIFO should be
1902                  * large enough to accommodate two full transmit packets,
1903                  * rounded up to the next 1KB and expressed in KB.  Likewise,
1904                  * the Rx FIFO should be large enough to accommodate at least
1905                  * one full receive packet and is similarly rounded up and
1906                  * expressed in KB.
1907                  */
1908                 pba = rd32(E1000_PBA);
1909                 /* upper 16 bits has Tx packet buffer allocation size in KB */
1910                 tx_space = pba >> 16;
1911                 /* lower 16 bits has Rx packet buffer allocation size in KB */
1912                 pba &= 0xffff;
1913                 /* the Tx fifo also stores 16 bytes of information about the Tx
1914                  * but don't include ethernet FCS because hardware appends it
1915                  */
1916                 min_tx_space = (adapter->max_frame_size +
1917                                 sizeof(union e1000_adv_tx_desc) -
1918                                 ETH_FCS_LEN) * 2;
1919                 min_tx_space = ALIGN(min_tx_space, 1024);
1920                 min_tx_space >>= 10;
1921                 /* software strips receive CRC, so leave room for it */
1922                 min_rx_space = adapter->max_frame_size;
1923                 min_rx_space = ALIGN(min_rx_space, 1024);
1924                 min_rx_space >>= 10;
1925
1926                 /* If current Tx allocation is less than the min Tx FIFO size,
1927                  * and the min Tx FIFO size is less than the current Rx FIFO
1928                  * allocation, take space away from current Rx allocation
1929                  */
1930                 if (tx_space < min_tx_space &&
1931                     ((min_tx_space - tx_space) < pba)) {
1932                         pba = pba - (min_tx_space - tx_space);
1933
1934                         /* if short on Rx space, Rx wins and must trump Tx
1935                          * adjustment
1936                          */
1937                         if (pba < min_rx_space)
1938                                 pba = min_rx_space;
1939                 }
1940                 wr32(E1000_PBA, pba);
1941         }
1942
1943         /* flow control settings */
1944         /* The high water mark must be low enough to fit one full frame
1945          * (or the size used for early receive) above it in the Rx FIFO.
1946          * Set it to the lower of:
1947          * - 90% of the Rx FIFO size, or
1948          * - the full Rx FIFO size minus one full frame
1949          */
1950         hwm = min(((pba << 10) * 9 / 10),
1951                         ((pba << 10) - 2 * adapter->max_frame_size));
1952
1953         fc->high_water = hwm & 0xFFFFFFF0;      /* 16-byte granularity */
1954         fc->low_water = fc->high_water - 16;
1955         fc->pause_time = 0xFFFF;
1956         fc->send_xon = 1;
1957         fc->current_mode = fc->requested_mode;
1958
1959         /* disable receive for all VFs and wait one second */
1960         if (adapter->vfs_allocated_count) {
1961                 int i;
1962
1963                 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
1964                         adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
1965
1966                 /* ping all the active vfs to let them know we are going down */
1967                 igb_ping_all_vfs(adapter);
1968
1969                 /* disable transmits and receives */
1970                 wr32(E1000_VFRE, 0);
1971                 wr32(E1000_VFTE, 0);
1972         }
1973
1974         /* Allow time for pending master requests to run */
1975         hw->mac.ops.reset_hw(hw);
1976         wr32(E1000_WUC, 0);
1977
1978         if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
1979                 /* need to resetup here after media swap */
1980                 adapter->ei.get_invariants(hw);
1981                 adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
1982         }
1983         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
1984                 if (igb_enable_mas(adapter))
1985                         dev_err(&pdev->dev,
1986                                 "Error enabling Media Auto Sense\n");
1987         }
1988         if (hw->mac.ops.init_hw(hw))
1989                 dev_err(&pdev->dev, "Hardware Error\n");
1990
1991         /* Flow control settings reset on hardware reset, so guarantee flow
1992          * control is off when forcing speed.
1993          */
1994         if (!hw->mac.autoneg)
1995                 igb_force_mac_fc(hw);
1996
1997         igb_init_dmac(adapter, pba);
1998 #ifdef CONFIG_IGB_HWMON
1999         /* Re-initialize the thermal sensor on i350 devices. */
2000         if (!test_bit(__IGB_DOWN, &adapter->state)) {
2001                 if (mac->type == e1000_i350 && hw->bus.func == 0) {
2002                         /* If present, re-initialize the external thermal sensor
2003                          * interface.
2004                          */
2005                         if (adapter->ets)
2006                                 mac->ops.init_thermal_sensor_thresh(hw);
2007                 }
2008         }
2009 #endif
2010         /* Re-establish EEE setting */
2011         if (hw->phy.media_type == e1000_media_type_copper) {
2012                 switch (mac->type) {
2013                 case e1000_i350:
2014                 case e1000_i210:
2015                 case e1000_i211:
2016                         igb_set_eee_i350(hw, true, true);
2017                         break;
2018                 case e1000_i354:
2019                         igb_set_eee_i354(hw, true, true);
2020                         break;
2021                 default:
2022                         break;
2023                 }
2024         }
2025         if (!netif_running(adapter->netdev))
2026                 igb_power_down_link(adapter);
2027
2028         igb_update_mng_vlan(adapter);
2029
2030         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2031         wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
2032
2033         /* Re-enable PTP, where applicable. */
2034         igb_ptp_reset(adapter);
2035
2036         igb_get_phy_info(hw);
2037 }
2038
2039 static netdev_features_t igb_fix_features(struct net_device *netdev,
2040         netdev_features_t features)
2041 {
2042         /* Since there is no support for separate Rx/Tx vlan accel
2043          * enable/disable make sure Tx flag is always in same state as Rx.
2044          */
2045         if (features & NETIF_F_HW_VLAN_CTAG_RX)
2046                 features |= NETIF_F_HW_VLAN_CTAG_TX;
2047         else
2048                 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2049
2050         return features;
2051 }
2052
2053 static int igb_set_features(struct net_device *netdev,
2054         netdev_features_t features)
2055 {
2056         netdev_features_t changed = netdev->features ^ features;
2057         struct igb_adapter *adapter = netdev_priv(netdev);
2058
2059         if (changed & NETIF_F_HW_VLAN_CTAG_RX)
2060                 igb_vlan_mode(netdev, features);
2061
2062         if (!(changed & NETIF_F_RXALL))
2063                 return 0;
2064
2065         netdev->features = features;
2066
2067         if (netif_running(netdev))
2068                 igb_reinit_locked(adapter);
2069         else
2070                 igb_reset(adapter);
2071
2072         return 0;
2073 }
2074
2075 static const struct net_device_ops igb_netdev_ops = {
2076         .ndo_open               = igb_open,
2077         .ndo_stop               = igb_close,
2078         .ndo_start_xmit         = igb_xmit_frame,
2079         .ndo_get_stats64        = igb_get_stats64,
2080         .ndo_set_rx_mode        = igb_set_rx_mode,
2081         .ndo_set_mac_address    = igb_set_mac,
2082         .ndo_change_mtu         = igb_change_mtu,
2083         .ndo_do_ioctl           = igb_ioctl,
2084         .ndo_tx_timeout         = igb_tx_timeout,
2085         .ndo_validate_addr      = eth_validate_addr,
2086         .ndo_vlan_rx_add_vid    = igb_vlan_rx_add_vid,
2087         .ndo_vlan_rx_kill_vid   = igb_vlan_rx_kill_vid,
2088         .ndo_set_vf_mac         = igb_ndo_set_vf_mac,
2089         .ndo_set_vf_vlan        = igb_ndo_set_vf_vlan,
2090         .ndo_set_vf_rate        = igb_ndo_set_vf_bw,
2091         .ndo_set_vf_spoofchk    = igb_ndo_set_vf_spoofchk,
2092         .ndo_get_vf_config      = igb_ndo_get_vf_config,
2093 #ifdef CONFIG_NET_POLL_CONTROLLER
2094         .ndo_poll_controller    = igb_netpoll,
2095 #endif
2096         .ndo_fix_features       = igb_fix_features,
2097         .ndo_set_features       = igb_set_features,
2098 };
2099
2100 /**
2101  * igb_set_fw_version - Configure version string for ethtool
2102  * @adapter: adapter struct
2103  **/
2104 void igb_set_fw_version(struct igb_adapter *adapter)
2105 {
2106         struct e1000_hw *hw = &adapter->hw;
2107         struct e1000_fw_version fw;
2108
2109         igb_get_fw_version(hw, &fw);
2110
2111         switch (hw->mac.type) {
2112         case e1000_i210:
2113         case e1000_i211:
2114                 if (!(igb_get_flash_presence_i210(hw))) {
2115                         snprintf(adapter->fw_version,
2116                                  sizeof(adapter->fw_version),
2117                                  "%2d.%2d-%d",
2118                                  fw.invm_major, fw.invm_minor,
2119                                  fw.invm_img_type);
2120                         break;
2121                 }
2122                 /* fall through */
2123         default:
2124                 /* if option is rom valid, display its version too */
2125                 if (fw.or_valid) {
2126                         snprintf(adapter->fw_version,
2127                                  sizeof(adapter->fw_version),
2128                                  "%d.%d, 0x%08x, %d.%d.%d",
2129                                  fw.eep_major, fw.eep_minor, fw.etrack_id,
2130                                  fw.or_major, fw.or_build, fw.or_patch);
2131                 /* no option rom */
2132                 } else if (fw.etrack_id != 0X0000) {
2133                         snprintf(adapter->fw_version,
2134                             sizeof(adapter->fw_version),
2135                             "%d.%d, 0x%08x",
2136                             fw.eep_major, fw.eep_minor, fw.etrack_id);
2137                 } else {
2138                 snprintf(adapter->fw_version,
2139                     sizeof(adapter->fw_version),
2140                     "%d.%d.%d",
2141                     fw.eep_major, fw.eep_minor, fw.eep_build);
2142                 }
2143                 break;
2144         }
2145 }
2146
2147 /**
2148  * igb_init_mas - init Media Autosense feature if enabled in the NVM
2149  *
2150  * @adapter: adapter struct
2151  **/
2152 static void igb_init_mas(struct igb_adapter *adapter)
2153 {
2154         struct e1000_hw *hw = &adapter->hw;
2155         u16 eeprom_data;
2156
2157         hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
2158         switch (hw->bus.func) {
2159         case E1000_FUNC_0:
2160                 if (eeprom_data & IGB_MAS_ENABLE_0) {
2161                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2162                         netdev_info(adapter->netdev,
2163                                 "MAS: Enabling Media Autosense for port %d\n",
2164                                 hw->bus.func);
2165                 }
2166                 break;
2167         case E1000_FUNC_1:
2168                 if (eeprom_data & IGB_MAS_ENABLE_1) {
2169                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2170                         netdev_info(adapter->netdev,
2171                                 "MAS: Enabling Media Autosense for port %d\n",
2172                                 hw->bus.func);
2173                 }
2174                 break;
2175         case E1000_FUNC_2:
2176                 if (eeprom_data & IGB_MAS_ENABLE_2) {
2177                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2178                         netdev_info(adapter->netdev,
2179                                 "MAS: Enabling Media Autosense for port %d\n",
2180                                 hw->bus.func);
2181                 }
2182                 break;
2183         case E1000_FUNC_3:
2184                 if (eeprom_data & IGB_MAS_ENABLE_3) {
2185                         adapter->flags |= IGB_FLAG_MAS_ENABLE;
2186                         netdev_info(adapter->netdev,
2187                                 "MAS: Enabling Media Autosense for port %d\n",
2188                                 hw->bus.func);
2189                 }
2190                 break;
2191         default:
2192                 /* Shouldn't get here */
2193                 netdev_err(adapter->netdev,
2194                         "MAS: Invalid port configuration, returning\n");
2195                 break;
2196         }
2197 }
2198
2199 /**
2200  *  igb_init_i2c - Init I2C interface
2201  *  @adapter: pointer to adapter structure
2202  **/
2203 static s32 igb_init_i2c(struct igb_adapter *adapter)
2204 {
2205         s32 status = 0;
2206
2207         /* I2C interface supported on i350 devices */
2208         if (adapter->hw.mac.type != e1000_i350)
2209                 return 0;
2210
2211         /* Initialize the i2c bus which is controlled by the registers.
2212          * This bus will use the i2c_algo_bit structue that implements
2213          * the protocol through toggling of the 4 bits in the register.
2214          */
2215         adapter->i2c_adap.owner = THIS_MODULE;
2216         adapter->i2c_algo = igb_i2c_algo;
2217         adapter->i2c_algo.data = adapter;
2218         adapter->i2c_adap.algo_data = &adapter->i2c_algo;
2219         adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
2220         strlcpy(adapter->i2c_adap.name, "igb BB",
2221                 sizeof(adapter->i2c_adap.name));
2222         status = i2c_bit_add_bus(&adapter->i2c_adap);
2223         return status;
2224 }
2225
2226 /**
2227  *  igb_probe - Device Initialization Routine
2228  *  @pdev: PCI device information struct
2229  *  @ent: entry in igb_pci_tbl
2230  *
2231  *  Returns 0 on success, negative on failure
2232  *
2233  *  igb_probe initializes an adapter identified by a pci_dev structure.
2234  *  The OS initialization, configuring of the adapter private structure,
2235  *  and a hardware reset occur.
2236  **/
2237 static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
2238 {
2239         struct net_device *netdev;
2240         struct igb_adapter *adapter;
2241         struct e1000_hw *hw;
2242         u16 eeprom_data = 0;
2243         s32 ret_val;
2244         static int global_quad_port_a; /* global quad port a indication */
2245         const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2246         int err, pci_using_dac;
2247         u8 part_str[E1000_PBANUM_LENGTH];
2248
2249         /* Catch broken hardware that put the wrong VF device ID in
2250          * the PCIe SR-IOV capability.
2251          */
2252         if (pdev->is_virtfn) {
2253                 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
2254                         pci_name(pdev), pdev->vendor, pdev->device);
2255                 return -EINVAL;
2256         }
2257
2258         err = pci_enable_device_mem(pdev);
2259         if (err)
2260                 return err;
2261
2262         pci_using_dac = 0;
2263         err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
2264         if (!err) {
2265                 pci_using_dac = 1;
2266         } else {
2267                 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
2268                 if (err) {
2269                         dev_err(&pdev->dev,
2270                                 "No usable DMA configuration, aborting\n");
2271                         goto err_dma;
2272                 }
2273         }
2274
2275         err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
2276                                            IORESOURCE_MEM),
2277                                            igb_driver_name);
2278         if (err)
2279                 goto err_pci_reg;
2280
2281         pci_enable_pcie_error_reporting(pdev);
2282
2283         pci_set_master(pdev);
2284         pci_save_state(pdev);
2285
2286         err = -ENOMEM;
2287         netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
2288                                    IGB_MAX_TX_QUEUES);
2289         if (!netdev)
2290                 goto err_alloc_etherdev;
2291
2292         SET_NETDEV_DEV(netdev, &pdev->dev);
2293
2294         pci_set_drvdata(pdev, netdev);
2295         adapter = netdev_priv(netdev);
2296         adapter->netdev = netdev;
2297         adapter->pdev = pdev;
2298         hw = &adapter->hw;
2299         hw->back = adapter;
2300         adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
2301
2302         err = -EIO;
2303         hw->hw_addr = pci_iomap(pdev, 0, 0);
2304         if (!hw->hw_addr)
2305                 goto err_ioremap;
2306
2307         netdev->netdev_ops = &igb_netdev_ops;
2308         igb_set_ethtool_ops(netdev);
2309         netdev->watchdog_timeo = 5 * HZ;
2310
2311         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2312
2313         netdev->mem_start = pci_resource_start(pdev, 0);
2314         netdev->mem_end = pci_resource_end(pdev, 0);
2315
2316         /* PCI config space info */
2317         hw->vendor_id = pdev->vendor;
2318         hw->device_id = pdev->device;
2319         hw->revision_id = pdev->revision;
2320         hw->subsystem_vendor_id = pdev->subsystem_vendor;
2321         hw->subsystem_device_id = pdev->subsystem_device;
2322
2323         /* Copy the default MAC, PHY and NVM function pointers */
2324         memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2325         memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2326         memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2327         /* Initialize skew-specific constants */
2328         err = ei->get_invariants(hw);
2329         if (err)
2330                 goto err_sw_init;
2331
2332         /* setup the private structure */
2333         err = igb_sw_init(adapter);
2334         if (err)
2335                 goto err_sw_init;
2336
2337         igb_get_bus_info_pcie(hw);
2338
2339         hw->phy.autoneg_wait_to_complete = false;
2340
2341         /* Copper options */
2342         if (hw->phy.media_type == e1000_media_type_copper) {
2343                 hw->phy.mdix = AUTO_ALL_MODES;
2344                 hw->phy.disable_polarity_correction = false;
2345                 hw->phy.ms_type = e1000_ms_hw_default;
2346         }
2347
2348         if (igb_check_reset_block(hw))
2349                 dev_info(&pdev->dev,
2350                         "PHY reset is blocked due to SOL/IDER session.\n");
2351
2352         /* features is initialized to 0 in allocation, it might have bits
2353          * set by igb_sw_init so we should use an or instead of an
2354          * assignment.
2355          */
2356         netdev->features |= NETIF_F_SG |
2357                             NETIF_F_IP_CSUM |
2358                             NETIF_F_IPV6_CSUM |
2359                             NETIF_F_TSO |
2360                             NETIF_F_TSO6 |
2361                             NETIF_F_RXHASH |
2362                             NETIF_F_RXCSUM |
2363                             NETIF_F_HW_VLAN_CTAG_RX |
2364                             NETIF_F_HW_VLAN_CTAG_TX;
2365
2366         /* copy netdev features into list of user selectable features */
2367         netdev->hw_features |= netdev->features;
2368         netdev->hw_features |= NETIF_F_RXALL;
2369
2370         /* set this bit last since it cannot be part of hw_features */
2371         netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
2372
2373         netdev->vlan_features |= NETIF_F_TSO |
2374                                  NETIF_F_TSO6 |
2375                                  NETIF_F_IP_CSUM |
2376                                  NETIF_F_IPV6_CSUM |
2377                                  NETIF_F_SG;
2378
2379         netdev->priv_flags |= IFF_SUPP_NOFCS;
2380
2381         if (pci_using_dac) {
2382                 netdev->features |= NETIF_F_HIGHDMA;
2383                 netdev->vlan_features |= NETIF_F_HIGHDMA;
2384         }
2385
2386         if (hw->mac.type >= e1000_82576) {
2387                 netdev->hw_features |= NETIF_F_SCTP_CSUM;
2388                 netdev->features |= NETIF_F_SCTP_CSUM;
2389         }
2390
2391         netdev->priv_flags |= IFF_UNICAST_FLT;
2392
2393         adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
2394
2395         /* before reading the NVM, reset the controller to put the device in a
2396          * known good starting state
2397          */
2398         hw->mac.ops.reset_hw(hw);
2399
2400         /* make sure the NVM is good , i211/i210 parts can have special NVM
2401          * that doesn't contain a checksum
2402          */
2403         switch (hw->mac.type) {
2404         case e1000_i210:
2405         case e1000_i211:
2406                 if (igb_get_flash_presence_i210(hw)) {
2407                         if (hw->nvm.ops.validate(hw) < 0) {
2408                                 dev_err(&pdev->dev,
2409                                         "The NVM Checksum Is Not Valid\n");
2410                                 err = -EIO;
2411                                 goto err_eeprom;
2412                         }
2413                 }
2414                 break;
2415         default:
2416                 if (hw->nvm.ops.validate(hw) < 0) {
2417                         dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2418                         err = -EIO;
2419                         goto err_eeprom;
2420                 }
2421                 break;
2422         }
2423
2424         /* copy the MAC address out of the NVM */
2425         if (hw->mac.ops.read_mac_addr(hw))
2426                 dev_err(&pdev->dev, "NVM Read Error\n");
2427
2428         memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
2429
2430         if (!is_valid_ether_addr(netdev->dev_addr)) {
2431                 dev_err(&pdev->dev, "Invalid MAC Address\n");
2432                 err = -EIO;
2433                 goto err_eeprom;
2434         }
2435
2436         /* get firmware version for ethtool -i */
2437         igb_set_fw_version(adapter);
2438
2439         /* configure RXPBSIZE and TXPBSIZE */
2440         if (hw->mac.type == e1000_i210) {
2441                 wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
2442                 wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
2443         }
2444
2445         setup_timer(&adapter->watchdog_timer, igb_watchdog,
2446                     (unsigned long) adapter);
2447         setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
2448                     (unsigned long) adapter);
2449
2450         INIT_WORK(&adapter->reset_task, igb_reset_task);
2451         INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2452
2453         /* Initialize link properties that are user-changeable */
2454         adapter->fc_autoneg = true;
2455         hw->mac.autoneg = true;
2456         hw->phy.autoneg_advertised = 0x2f;
2457
2458         hw->fc.requested_mode = e1000_fc_default;
2459         hw->fc.current_mode = e1000_fc_default;
2460
2461         igb_validate_mdi_setting(hw);
2462
2463         /* By default, support wake on port A */
2464         if (hw->bus.func == 0)
2465                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2466
2467         /* Check the NVM for wake support on non-port A ports */
2468         if (hw->mac.type >= e1000_82580)
2469                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2470                                  NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2471                                  &eeprom_data);
2472         else if (hw->bus.func == 1)
2473                 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
2474
2475         if (eeprom_data & IGB_EEPROM_APME)
2476                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2477
2478         /* now that we have the eeprom settings, apply the special cases where
2479          * the eeprom may be wrong or the board simply won't support wake on
2480          * lan on a particular port
2481          */
2482         switch (pdev->device) {
2483         case E1000_DEV_ID_82575GB_QUAD_COPPER:
2484                 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2485                 break;
2486         case E1000_DEV_ID_82575EB_FIBER_SERDES:
2487         case E1000_DEV_ID_82576_FIBER:
2488         case E1000_DEV_ID_82576_SERDES:
2489                 /* Wake events only supported on port A for dual fiber
2490                  * regardless of eeprom setting
2491                  */
2492                 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
2493                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2494                 break;
2495         case E1000_DEV_ID_82576_QUAD_COPPER:
2496         case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
2497                 /* if quad port adapter, disable WoL on all but port A */
2498                 if (global_quad_port_a != 0)
2499                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2500                 else
2501                         adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2502                 /* Reset for multiple quad port adapters */
2503                 if (++global_quad_port_a == 4)
2504                         global_quad_port_a = 0;
2505                 break;
2506         default:
2507                 /* If the device can't wake, don't set software support */
2508                 if (!device_can_wakeup(&adapter->pdev->dev))
2509                         adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
2510         }
2511
2512         /* initialize the wol settings based on the eeprom settings */
2513         if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2514                 adapter->wol |= E1000_WUFC_MAG;
2515
2516         /* Some vendors want WoL disabled by default, but still supported */
2517         if ((hw->mac.type == e1000_i350) &&
2518             (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2519                 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2520                 adapter->wol = 0;
2521         }
2522
2523         device_set_wakeup_enable(&adapter->pdev->dev,
2524                                  adapter->flags & IGB_FLAG_WOL_SUPPORTED);
2525
2526         /* reset the hardware with the new settings */
2527         igb_reset(adapter);
2528
2529         /* Init the I2C interface */
2530         err = igb_init_i2c(adapter);
2531         if (err) {
2532                 dev_err(&pdev->dev, "failed to init i2c interface\n");
2533                 goto err_eeprom;
2534         }
2535
2536         /* let the f/w know that the h/w is now under the control of the
2537          * driver.
2538          */
2539         igb_get_hw_control(adapter);
2540
2541         strcpy(netdev->name, "eth%d");
2542         err = register_netdev(netdev);
2543         if (err)
2544                 goto err_register;
2545
2546         /* carrier off reporting is important to ethtool even BEFORE open */
2547         netif_carrier_off(netdev);
2548
2549 #ifdef CONFIG_IGB_DCA
2550         if (dca_add_requester(&pdev->dev) == 0) {
2551                 adapter->flags |= IGB_FLAG_DCA_ENABLED;
2552                 dev_info(&pdev->dev, "DCA enabled\n");
2553                 igb_setup_dca(adapter);
2554         }
2555
2556 #endif
2557 #ifdef CONFIG_IGB_HWMON
2558         /* Initialize the thermal sensor on i350 devices. */
2559         if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2560                 u16 ets_word;
2561
2562                 /* Read the NVM to determine if this i350 device supports an
2563                  * external thermal sensor.
2564                  */
2565                 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2566                 if (ets_word != 0x0000 && ets_word != 0xFFFF)
2567                         adapter->ets = true;
2568                 else
2569                         adapter->ets = false;
2570                 if (igb_sysfs_init(adapter))
2571                         dev_err(&pdev->dev,
2572                                 "failed to allocate sysfs resources\n");
2573         } else {
2574                 adapter->ets = false;
2575         }
2576 #endif
2577         /* Check if Media Autosense is enabled */
2578         adapter->ei = *ei;
2579         if (hw->dev_spec._82575.mas_capable)
2580                 igb_init_mas(adapter);
2581
2582         /* do hw tstamp init after resetting */
2583         igb_ptp_init(adapter);
2584
2585         dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
2586         /* print bus type/speed/width info, not applicable to i354 */
2587         if (hw->mac.type != e1000_i354) {
2588                 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2589                          netdev->name,
2590                          ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2591                           (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2592                            "unknown"),
2593                          ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2594                           "Width x4" :
2595                           (hw->bus.width == e1000_bus_width_pcie_x2) ?
2596                           "Width x2" :
2597                           (hw->bus.width == e1000_bus_width_pcie_x1) ?
2598                           "Width x1" : "unknown"), netdev->dev_addr);
2599         }
2600
2601         if ((hw->mac.type >= e1000_i210 ||
2602              igb_get_flash_presence_i210(hw))) {
2603                 ret_val = igb_read_part_string(hw, part_str,
2604                                                E1000_PBANUM_LENGTH);
2605         } else {
2606                 ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
2607         }
2608
2609         if (ret_val)
2610                 strcpy(part_str, "Unknown");
2611         dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
2612         dev_info(&pdev->dev,
2613                 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2614                 (adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
2615                 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
2616                 adapter->num_rx_queues, adapter->num_tx_queues);
2617         if (hw->phy.media_type == e1000_media_type_copper) {
2618                 switch (hw->mac.type) {
2619                 case e1000_i350:
2620                 case e1000_i210:
2621                 case e1000_i211:
2622                         /* Enable EEE for internal copper PHY devices */
2623                         err = igb_set_eee_i350(hw, true, true);
2624                         if ((!err) &&
2625                             (!hw->dev_spec._82575.eee_disable)) {
2626                                 adapter->eee_advert =
2627                                         MDIO_EEE_100TX | MDIO_EEE_1000T;
2628                                 adapter->flags |= IGB_FLAG_EEE;
2629                         }
2630                         break;
2631                 case e1000_i354:
2632                         if ((rd32(E1000_CTRL_EXT) &
2633                             E1000_CTRL_EXT_LINK_MODE_SGMII)) {
2634                                 err = igb_set_eee_i354(hw, true, true);
2635                                 if ((!err) &&
2636                                         (!hw->dev_spec._82575.eee_disable)) {
2637                                         adapter->eee_advert =
2638                                            MDIO_EEE_100TX | MDIO_EEE_1000T;
2639                                         adapter->flags |= IGB_FLAG_EEE;
2640                                 }
2641                         }
2642                         break;
2643                 default:
2644                         break;
2645                 }
2646         }
2647         pm_runtime_put_noidle(&pdev->dev);
2648         return 0;
2649
2650 err_register:
2651         igb_release_hw_control(adapter);
2652         memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
2653 err_eeprom:
2654         if (!igb_check_reset_block(hw))
2655                 igb_reset_phy(hw);
2656
2657         if (hw->flash_address)
2658                 iounmap(hw->flash_address);
2659 err_sw_init:
2660         igb_clear_interrupt_scheme(adapter);
2661         pci_iounmap(pdev, hw->hw_addr);
2662 err_ioremap:
2663         free_netdev(netdev);
2664 err_alloc_etherdev:
2665         pci_release_selected_regions(pdev,
2666                                      pci_select_bars(pdev, IORESOURCE_MEM));
2667 err_pci_reg:
2668 err_dma:
2669         pci_disable_device(pdev);
2670         return err;
2671 }
2672
2673 #ifdef CONFIG_PCI_IOV
2674 static int igb_disable_sriov(struct pci_dev *pdev)
2675 {
2676         struct net_device *netdev = pci_get_drvdata(pdev);
2677         struct igb_adapter *adapter = netdev_priv(netdev);
2678         struct e1000_hw *hw = &adapter->hw;
2679
2680         /* reclaim resources allocated to VFs */
2681         if (adapter->vf_data) {
2682                 /* disable iov and allow time for transactions to clear */
2683                 if (pci_vfs_assigned(pdev)) {
2684                         dev_warn(&pdev->dev,
2685                                  "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2686                         return -EPERM;
2687                 } else {
2688                         pci_disable_sriov(pdev);
2689                         msleep(500);
2690                 }
2691
2692                 kfree(adapter->vf_data);
2693                 adapter->vf_data = NULL;
2694                 adapter->vfs_allocated_count = 0;
2695                 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2696                 wrfl();
2697                 msleep(100);
2698                 dev_info(&pdev->dev, "IOV Disabled\n");
2699
2700                 /* Re-enable DMA Coalescing flag since IOV is turned off */
2701                 adapter->flags |= IGB_FLAG_DMAC;
2702         }
2703
2704         return 0;
2705 }
2706
2707 static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2708 {
2709         struct net_device *netdev = pci_get_drvdata(pdev);
2710         struct igb_adapter *adapter = netdev_priv(netdev);
2711         int old_vfs = pci_num_vf(pdev);
2712         int err = 0;
2713         int i;
2714
2715         if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
2716                 err = -EPERM;
2717                 goto out;
2718         }
2719         if (!num_vfs)
2720                 goto out;
2721
2722         if (old_vfs) {
2723                 dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
2724                          old_vfs, max_vfs);
2725                 adapter->vfs_allocated_count = old_vfs;
2726         } else
2727                 adapter->vfs_allocated_count = num_vfs;
2728
2729         adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2730                                 sizeof(struct vf_data_storage), GFP_KERNEL);
2731
2732         /* if allocation failed then we do not support SR-IOV */
2733         if (!adapter->vf_data) {
2734                 adapter->vfs_allocated_count = 0;
2735                 dev_err(&pdev->dev,
2736                         "Unable to allocate memory for VF Data Storage\n");
2737                 err = -ENOMEM;
2738                 goto out;
2739         }
2740
2741         /* only call pci_enable_sriov() if no VFs are allocated already */
2742         if (!old_vfs) {
2743                 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2744                 if (err)
2745                         goto err_out;
2746         }
2747         dev_info(&pdev->dev, "%d VFs allocated\n",
2748                  adapter->vfs_allocated_count);
2749         for (i = 0; i < adapter->vfs_allocated_count; i++)
2750                 igb_vf_configure(adapter, i);
2751
2752         /* DMA Coalescing is not supported in IOV mode. */
2753         adapter->flags &= ~IGB_FLAG_DMAC;
2754         goto out;
2755
2756 err_out:
2757         kfree(adapter->vf_data);
2758         adapter->vf_data = NULL;
2759         adapter->vfs_allocated_count = 0;
2760 out:
2761         return err;
2762 }
2763
2764 #endif
2765 /**
2766  *  igb_remove_i2c - Cleanup  I2C interface
2767  *  @adapter: pointer to adapter structure
2768  **/
2769 static void igb_remove_i2c(struct igb_adapter *adapter)
2770 {
2771         /* free the adapter bus structure */
2772         i2c_del_adapter(&adapter->i2c_adap);
2773 }
2774
2775 /**
2776  *  igb_remove - Device Removal Routine
2777  *  @pdev: PCI device information struct
2778  *
2779  *  igb_remove is called by the PCI subsystem to alert the driver
2780  *  that it should release a PCI device.  The could be caused by a
2781  *  Hot-Plug event, or because the driver is going to be removed from
2782  *  memory.
2783  **/
2784 static void igb_remove(struct pci_dev *pdev)
2785 {
2786         struct net_device *netdev = pci_get_drvdata(pdev);
2787         struct igb_adapter *adapter = netdev_priv(netdev);
2788         struct e1000_hw *hw = &adapter->hw;
2789
2790         pm_runtime_get_noresume(&pdev->dev);
2791 #ifdef CONFIG_IGB_HWMON
2792         igb_sysfs_exit(adapter);
2793 #endif
2794         igb_remove_i2c(adapter);
2795         igb_ptp_stop(adapter);
2796         /* The watchdog timer may be rescheduled, so explicitly
2797          * disable watchdog from being rescheduled.
2798          */
2799         set_bit(__IGB_DOWN, &adapter->state);
2800         del_timer_sync(&adapter->watchdog_timer);
2801         del_timer_sync(&adapter->phy_info_timer);
2802
2803         cancel_work_sync(&adapter->reset_task);
2804         cancel_work_sync(&adapter->watchdog_task);
2805
2806 #ifdef CONFIG_IGB_DCA
2807         if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
2808                 dev_info(&pdev->dev, "DCA disabled\n");
2809                 dca_remove_requester(&pdev->dev);
2810                 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
2811                 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
2812         }
2813 #endif
2814
2815         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
2816          * would have already happened in close and is redundant.
2817          */
2818         igb_release_hw_control(adapter);
2819
2820         unregister_netdev(netdev);
2821
2822         igb_clear_interrupt_scheme(adapter);
2823
2824 #ifdef CONFIG_PCI_IOV
2825         igb_disable_sriov(pdev);
2826 #endif
2827
2828         pci_iounmap(pdev, hw->hw_addr);
2829         if (hw->flash_address)
2830                 iounmap(hw->flash_address);
2831         pci_release_selected_regions(pdev,
2832                                      pci_select_bars(pdev, IORESOURCE_MEM));
2833
2834         kfree(adapter->shadow_vfta);
2835         free_netdev(netdev);
2836
2837         pci_disable_pcie_error_reporting(pdev);
2838
2839         pci_disable_device(pdev);
2840 }
2841
2842 /**
2843  *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2844  *  @adapter: board private structure to initialize
2845  *
2846  *  This function initializes the vf specific data storage and then attempts to
2847  *  allocate the VFs.  The reason for ordering it this way is because it is much
2848  *  mor expensive time wise to disable SR-IOV than it is to allocate and free
2849  *  the memory for the VFs.
2850  **/
2851 static void igb_probe_vfs(struct igb_adapter *adapter)
2852 {
2853 #ifdef CONFIG_PCI_IOV
2854         struct pci_dev *pdev = adapter->pdev;
2855         struct e1000_hw *hw = &adapter->hw;
2856
2857         /* Virtualization features not supported on i210 family. */
2858         if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2859                 return;
2860
2861         pci_sriov_set_totalvfs(pdev, 7);
2862         igb_pci_enable_sriov(pdev, max_vfs);
2863
2864 #endif /* CONFIG_PCI_IOV */
2865 }
2866
2867 static void igb_init_queue_configuration(struct igb_adapter *adapter)
2868 {
2869         struct e1000_hw *hw = &adapter->hw;
2870         u32 max_rss_queues;
2871
2872         /* Determine the maximum number of RSS queues supported. */
2873         switch (hw->mac.type) {
2874         case e1000_i211:
2875                 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2876                 break;
2877         case e1000_82575:
2878         case e1000_i210:
2879                 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2880                 break;
2881         case e1000_i350:
2882                 /* I350 cannot do RSS and SR-IOV at the same time */
2883                 if (!!adapter->vfs_allocated_count) {
2884                         max_rss_queues = 1;
2885                         break;
2886                 }
2887                 /* fall through */
2888         case e1000_82576:
2889                 if (!!adapter->vfs_allocated_count) {
2890                         max_rss_queues = 2;
2891                         break;
2892                 }
2893                 /* fall through */
2894         case e1000_82580:
2895         case e1000_i354:
2896         default:
2897                 max_rss_queues = IGB_MAX_RX_QUEUES;
2898                 break;
2899         }
2900
2901         adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2902
2903         /* Determine if we need to pair queues. */
2904         switch (hw->mac.type) {
2905         case e1000_82575:
2906         case e1000_i211:
2907                 /* Device supports enough interrupts without queue pairing. */
2908                 break;
2909         case e1000_82576:
2910                 /* If VFs are going to be allocated with RSS queues then we
2911                  * should pair the queues in order to conserve interrupts due
2912                  * to limited supply.
2913                  */
2914                 if ((adapter->rss_queues > 1) &&
2915                     (adapter->vfs_allocated_count > 6))
2916                         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2917                 /* fall through */
2918         case e1000_82580:
2919         case e1000_i350:
2920         case e1000_i354:
2921         case e1000_i210:
2922         default:
2923                 /* If rss_queues > half of max_rss_queues, pair the queues in
2924                  * order to conserve interrupts due to limited supply.
2925                  */
2926                 if (adapter->rss_queues > (max_rss_queues / 2))
2927                         adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2928                 break;
2929         }
2930 }
2931
2932 /**
2933  *  igb_sw_init - Initialize general software structures (struct igb_adapter)
2934  *  @adapter: board private structure to initialize
2935  *
2936  *  igb_sw_init initializes the Adapter private data structure.
2937  *  Fields are initialized based on PCI device information and
2938  *  OS network device settings (MTU size).
2939  **/
2940 static int igb_sw_init(struct igb_adapter *adapter)
2941 {
2942         struct e1000_hw *hw = &adapter->hw;
2943         struct net_device *netdev = adapter->netdev;
2944         struct pci_dev *pdev = adapter->pdev;
2945
2946         pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2947
2948         /* set default ring sizes */
2949         adapter->tx_ring_count = IGB_DEFAULT_TXD;
2950         adapter->rx_ring_count = IGB_DEFAULT_RXD;
2951
2952         /* set default ITR values */
2953         adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2954         adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2955
2956         /* set default work limits */
2957         adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2958
2959         adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2960                                   VLAN_HLEN;
2961         adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2962
2963         spin_lock_init(&adapter->stats64_lock);
2964 #ifdef CONFIG_PCI_IOV
2965         switch (hw->mac.type) {
2966         case e1000_82576:
2967         case e1000_i350:
2968                 if (max_vfs > 7) {
2969                         dev_warn(&pdev->dev,
2970                                  "Maximum of 7 VFs per PF, using max\n");
2971                         max_vfs = adapter->vfs_allocated_count = 7;
2972                 } else
2973                         adapter->vfs_allocated_count = max_vfs;
2974                 if (adapter->vfs_allocated_count)
2975                         dev_warn(&pdev->dev,
2976                                  "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2977                 break;
2978         default:
2979                 break;
2980         }
2981 #endif /* CONFIG_PCI_IOV */
2982
2983         igb_init_queue_configuration(adapter);
2984
2985         /* Setup and initialize a copy of the hw vlan table array */
2986         adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2987                                        GFP_ATOMIC);
2988
2989         /* This call may decrease the number of queues */
2990         if (igb_init_interrupt_scheme(adapter, true)) {
2991                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2992                 return -ENOMEM;
2993         }
2994
2995         igb_probe_vfs(adapter);
2996
2997         /* Explicitly disable IRQ since the NIC can be in any state. */
2998         igb_irq_disable(adapter);
2999
3000         if (hw->mac.type >= e1000_i350)
3001                 adapter->flags &= ~IGB_FLAG_DMAC;
3002
3003         set_bit(__IGB_DOWN, &adapter->state);
3004         return 0;
3005 }
3006
3007 /**
3008  *  igb_open - Called when a network interface is made active
3009  *  @netdev: network interface device structure
3010  *
3011  *  Returns 0 on success, negative value on failure
3012  *
3013  *  The open entry point is called when a network interface is made
3014  *  active by the system (IFF_UP).  At this point all resources needed
3015  *  for transmit and receive operations are allocated, the interrupt
3016  *  handler is registered with the OS, the watchdog timer is started,
3017  *  and the stack is notified that the interface is ready.
3018  **/
3019 static int __igb_open(struct net_device *netdev, bool resuming)
3020 {
3021         struct igb_adapter *adapter = netdev_priv(netdev);
3022         struct e1000_hw *hw = &adapter->hw;
3023         struct pci_dev *pdev = adapter->pdev;
3024         int err;
3025         int i;
3026
3027         /* disallow open during test */
3028         if (test_bit(__IGB_TESTING, &adapter->state)) {
3029                 WARN_ON(resuming);
3030                 return -EBUSY;
3031         }
3032
3033         if (!resuming)
3034                 pm_runtime_get_sync(&pdev->dev);
3035
3036         netif_carrier_off(netdev);
3037
3038         /* allocate transmit descriptors */
3039         err = igb_setup_all_tx_resources(adapter);
3040         if (err)
3041                 goto err_setup_tx;
3042
3043         /* allocate receive descriptors */
3044         err = igb_setup_all_rx_resources(adapter);
3045         if (err)
3046                 goto err_setup_rx;
3047
3048         igb_power_up_link(adapter);
3049
3050         /* before we allocate an interrupt, we must be ready to handle it.
3051          * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3052          * as soon as we call pci_request_irq, so we have to setup our
3053          * clean_rx handler before we do so.
3054          */
3055         igb_configure(adapter);
3056
3057         err = igb_request_irq(adapter);
3058         if (err)
3059                 goto err_req_irq;
3060
3061         /* Notify the stack of the actual queue counts. */
3062         err = netif_set_real_num_tx_queues(adapter->netdev,
3063                                            adapter->num_tx_queues);
3064         if (err)
3065                 goto err_set_queues;
3066
3067         err = netif_set_real_num_rx_queues(adapter->netdev,
3068                                            adapter->num_rx_queues);
3069         if (err)
3070                 goto err_set_queues;
3071
3072         /* From here on the code is the same as igb_up() */
3073         clear_bit(__IGB_DOWN, &adapter->state);
3074
3075         for (i = 0; i < adapter->num_q_vectors; i++)
3076                 napi_enable(&(adapter->q_vector[i]->napi));
3077
3078         /* Clear any pending interrupts. */
3079         rd32(E1000_ICR);
3080
3081         igb_irq_enable(adapter);
3082
3083         /* notify VFs that reset has been completed */
3084         if (adapter->vfs_allocated_count) {
3085                 u32 reg_data = rd32(E1000_CTRL_EXT);
3086
3087                 reg_data |= E1000_CTRL_EXT_PFRSTD;
3088                 wr32(E1000_CTRL_EXT, reg_data);
3089         }
3090
3091         netif_tx_start_all_queues(netdev);
3092
3093         if (!resuming)
3094                 pm_runtime_put(&pdev->dev);
3095
3096         /* start the watchdog. */
3097         hw->mac.get_link_status = 1;
3098         schedule_work(&adapter->watchdog_task);
3099
3100         return 0;
3101
3102 err_set_queues:
3103         igb_free_irq(adapter);
3104 err_req_irq:
3105         igb_release_hw_control(adapter);
3106         igb_power_down_link(adapter);
3107         igb_free_all_rx_resources(adapter);
3108 err_setup_rx:
3109         igb_free_all_tx_resources(adapter);
3110 err_setup_tx:
3111         igb_reset(adapter);
3112         if (!resuming)
3113                 pm_runtime_put(&pdev->dev);
3114
3115         return err;
3116 }
3117
3118 static int igb_open(struct net_device *netdev)
3119 {
3120         return __igb_open(netdev, false);
3121 }
3122
3123 /**
3124  *  igb_close - Disables a network interface
3125  *  @netdev: network interface device structure
3126  *
3127  *  Returns 0, this is not allowed to fail
3128  *
3129  *  The close entry point is called when an interface is de-activated
3130  *  by the OS.  The hardware is still under the driver's control, but
3131  *  needs to be disabled.  A global MAC reset is issued to stop the
3132  *  hardware, and all transmit and receive resources are freed.
3133  **/
3134 static int __igb_close(struct net_device *netdev, bool suspending)
3135 {
3136         struct igb_adapter *adapter = netdev_priv(netdev);
3137         struct pci_dev *pdev = adapter->pdev;
3138
3139         WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
3140
3141         if (!suspending)
3142                 pm_runtime_get_sync(&pdev->dev);
3143
3144         igb_down(adapter);
3145         igb_free_irq(adapter);
3146
3147         igb_free_all_tx_resources(adapter);
3148         igb_free_all_rx_resources(adapter);
3149
3150         if (!suspending)
3151                 pm_runtime_put_sync(&pdev->dev);
3152         return 0;
3153 }
3154
3155 static int igb_close(struct net_device *netdev)
3156 {
3157         return __igb_close(netdev, false);
3158 }
3159
3160 /**
3161  *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
3162  *  @tx_ring: tx descriptor ring (for a specific queue) to setup
3163  *
3164  *  Return 0 on success, negative on failure
3165  **/
3166 int igb_setup_tx_resources(struct igb_ring *tx_ring)
3167 {
3168         struct device *dev = tx_ring->dev;
3169         int size;
3170
3171         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3172
3173         tx_ring->tx_buffer_info = vzalloc(size);
3174         if (!tx_ring->tx_buffer_info)
3175                 goto err;
3176
3177         /* round up to nearest 4K */
3178         tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
3179         tx_ring->size = ALIGN(tx_ring->size, 4096);
3180
3181         tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
3182                                            &tx_ring->dma, GFP_KERNEL);
3183         if (!tx_ring->desc)
3184                 goto err;
3185
3186         tx_ring->next_to_use = 0;
3187         tx_ring->next_to_clean = 0;
3188
3189         return 0;
3190
3191 err:
3192         vfree(tx_ring->tx_buffer_info);
3193         tx_ring->tx_buffer_info = NULL;
3194         dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
3195         return -ENOMEM;
3196 }
3197
3198 /**
3199  *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
3200  *                               (Descriptors) for all queues
3201  *  @adapter: board private structure
3202  *
3203  *  Return 0 on success, negative on failure
3204  **/
3205 static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
3206 {
3207         struct pci_dev *pdev = adapter->pdev;
3208         int i, err = 0;
3209
3210         for (i = 0; i < adapter->num_tx_queues; i++) {
3211                 err = igb_setup_tx_resources(adapter->tx_ring[i]);
3212                 if (err) {
3213                         dev_err(&pdev->dev,
3214                                 "Allocation for Tx Queue %u failed\n", i);
3215                         for (i--; i >= 0; i--)
3216                                 igb_free_tx_resources(adapter->tx_ring[i]);
3217                         break;
3218                 }
3219         }
3220
3221         return err;
3222 }
3223
3224 /**
3225  *  igb_setup_tctl - configure the transmit control registers
3226  *  @adapter: Board private structure
3227  **/
3228 void igb_setup_tctl(struct igb_adapter *adapter)
3229 {
3230         struct e1000_hw *hw = &adapter->hw;
3231         u32 tctl;
3232
3233         /* disable queue 0 which is enabled by default on 82575 and 82576 */
3234         wr32(E1000_TXDCTL(0), 0);
3235
3236         /* Program the Transmit Control Register */
3237         tctl = rd32(E1000_TCTL);
3238         tctl &= ~E1000_TCTL_CT;
3239         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
3240                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
3241
3242         igb_config_collision_dist(hw);
3243
3244         /* Enable transmits */
3245         tctl |= E1000_TCTL_EN;
3246
3247         wr32(E1000_TCTL, tctl);
3248 }
3249
3250 /**
3251  *  igb_configure_tx_ring - Configure transmit ring after Reset
3252  *  @adapter: board private structure
3253  *  @ring: tx ring to configure
3254  *
3255  *  Configure a transmit ring after a reset.
3256  **/
3257 void igb_configure_tx_ring(struct igb_adapter *adapter,
3258                            struct igb_ring *ring)
3259 {
3260         struct e1000_hw *hw = &adapter->hw;
3261         u32 txdctl = 0;
3262         u64 tdba = ring->dma;
3263         int reg_idx = ring->reg_idx;
3264
3265         /* disable the queue */
3266         wr32(E1000_TXDCTL(reg_idx), 0);
3267         wrfl();
3268         mdelay(10);
3269
3270         wr32(E1000_TDLEN(reg_idx),
3271              ring->count * sizeof(union e1000_adv_tx_desc));
3272         wr32(E1000_TDBAL(reg_idx),
3273              tdba & 0x00000000ffffffffULL);
3274         wr32(E1000_TDBAH(reg_idx), tdba >> 32);
3275
3276         ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
3277         wr32(E1000_TDH(reg_idx), 0);
3278         writel(0, ring->tail);
3279
3280         txdctl |= IGB_TX_PTHRESH;
3281         txdctl |= IGB_TX_HTHRESH << 8;
3282         txdctl |= IGB_TX_WTHRESH << 16;
3283
3284         txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3285         wr32(E1000_TXDCTL(reg_idx), txdctl);
3286 }
3287
3288 /**
3289  *  igb_configure_tx - Configure transmit Unit after Reset
3290  *  @adapter: board private structure
3291  *
3292  *  Configure the Tx unit of the MAC after a reset.
3293  **/
3294 static void igb_configure_tx(struct igb_adapter *adapter)
3295 {
3296         int i;
3297
3298         for (i = 0; i < adapter->num_tx_queues; i++)
3299                 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
3300 }
3301
3302 /**
3303  *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
3304  *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
3305  *
3306  *  Returns 0 on success, negative on failure
3307  **/
3308 int igb_setup_rx_resources(struct igb_ring *rx_ring)
3309 {
3310         struct device *dev = rx_ring->dev;
3311         int size;
3312
3313         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3314
3315         rx_ring->rx_buffer_info = vzalloc(size);
3316         if (!rx_ring->rx_buffer_info)
3317                 goto err;
3318
3319         /* Round up to nearest 4K */
3320         rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
3321         rx_ring->size = ALIGN(rx_ring->size, 4096);
3322
3323         rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3324                                            &rx_ring->dma, GFP_KERNEL);
3325         if (!rx_ring->desc)
3326                 goto err;
3327
3328         rx_ring->next_to_alloc = 0;
3329         rx_ring->next_to_clean = 0;
3330         rx_ring->next_to_use = 0;
3331
3332         return 0;
3333
3334 err:
3335         vfree(rx_ring->rx_buffer_info);
3336         rx_ring->rx_buffer_info = NULL;
3337         dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
3338         return -ENOMEM;
3339 }
3340
3341 /**
3342  *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
3343  *                               (Descriptors) for all queues
3344  *  @adapter: board private structure
3345  *
3346  *  Return 0 on success, negative on failure
3347  **/
3348 static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3349 {
3350         struct pci_dev *pdev = adapter->pdev;
3351         int i, err = 0;
3352
3353         for (i = 0; i < adapter->num_rx_queues; i++) {
3354                 err = igb_setup_rx_resources(adapter->rx_ring[i]);
3355                 if (err) {
3356                         dev_err(&pdev->dev,
3357                                 "Allocation for Rx Queue %u failed\n", i);
3358                         for (i--; i >= 0; i--)
3359                                 igb_free_rx_resources(adapter->rx_ring[i]);
3360                         break;
3361                 }
3362         }
3363
3364         return err;
3365 }
3366
3367 /**
3368  *  igb_setup_mrqc - configure the multiple receive queue control registers
3369  *  @adapter: Board private structure
3370  **/
3371 static void igb_setup_mrqc(struct igb_adapter *adapter)
3372 {
3373         struct e1000_hw *hw = &adapter->hw;
3374         u32 mrqc, rxcsum;
3375         u32 j, num_rx_queues;
3376         u32 rss_key[10];
3377
3378         netdev_rss_key_fill(rss_key, sizeof(rss_key));
3379         for (j = 0; j < 10; j++)
3380                 wr32(E1000_RSSRK(j), rss_key[j]);
3381
3382         num_rx_queues = adapter->rss_queues;
3383
3384         switch (hw->mac.type) {
3385         case e1000_82576:
3386                 /* 82576 supports 2 RSS queues for SR-IOV */
3387                 if (adapter->vfs_allocated_count)
3388                         num_rx_queues = 2;
3389                 break;
3390         default:
3391                 break;
3392         }
3393
3394         if (adapter->rss_indir_tbl_init != num_rx_queues) {
3395                 for (j = 0; j < IGB_RETA_SIZE; j++)
3396                         adapter->rss_indir_tbl[j] =
3397                         (j * num_rx_queues) / IGB_RETA_SIZE;
3398                 adapter->rss_indir_tbl_init = num_rx_queues;
3399         }
3400         igb_write_rss_indir_tbl(adapter);
3401
3402         /* Disable raw packet checksumming so that RSS hash is placed in
3403          * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
3404          * offloads as they are enabled by default
3405          */
3406         rxcsum = rd32(E1000_RXCSUM);
3407         rxcsum |= E1000_RXCSUM_PCSD;
3408
3409         if (adapter->hw.mac.type >= e1000_82576)
3410                 /* Enable Receive Checksum Offload for SCTP */
3411                 rxcsum |= E1000_RXCSUM_CRCOFL;
3412
3413         /* Don't need to set TUOFL or IPOFL, they default to 1 */
3414         wr32(E1000_RXCSUM, rxcsum);
3415
3416         /* Generate RSS hash based on packet types, TCP/UDP
3417          * port numbers and/or IPv4/v6 src and dst addresses
3418          */
3419         mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3420                E1000_MRQC_RSS_FIELD_IPV4_TCP |
3421                E1000_MRQC_RSS_FIELD_IPV6 |
3422                E1000_MRQC_RSS_FIELD_IPV6_TCP |
3423                E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
3424
3425         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3426                 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3427         if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3428                 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3429
3430         /* If VMDq is enabled then we set the appropriate mode for that, else
3431          * we default to RSS so that an RSS hash is calculated per packet even
3432          * if we are only using one queue
3433          */
3434         if (adapter->vfs_allocated_count) {
3435                 if (hw->mac.type > e1000_82575) {
3436                         /* Set the default pool for the PF's first queue */
3437                         u32 vtctl = rd32(E1000_VT_CTL);
3438
3439                         vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3440                                    E1000_VT_CTL_DISABLE_DEF_POOL);
3441                         vtctl |= adapter->vfs_allocated_count <<
3442                                 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3443                         wr32(E1000_VT_CTL, vtctl);
3444                 }
3445                 if (adapter->rss_queues > 1)
3446                         mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
3447                 else
3448                         mrqc |= E1000_MRQC_ENABLE_VMDQ;
3449         } else {
3450                 if (hw->mac.type != e1000_i211)
3451                         mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
3452         }
3453         igb_vmm_control(adapter);
3454
3455         wr32(E1000_MRQC, mrqc);
3456 }
3457
3458 /**
3459  *  igb_setup_rctl - configure the receive control registers
3460  *  @adapter: Board private structure
3461  **/
3462 void igb_setup_rctl(struct igb_adapter *adapter)
3463 {
3464         struct e1000_hw *hw = &adapter->hw;
3465         u32 rctl;
3466
3467         rctl = rd32(E1000_RCTL);
3468
3469         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3470         rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
3471
3472         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
3473                 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3474
3475         /* enable stripping of CRC. It's unlikely this will break BMC
3476          * redirection as it did with e1000. Newer features require
3477          * that the HW strips the CRC.
3478          */
3479         rctl |= E1000_RCTL_SECRC;
3480
3481         /* disable store bad packets and clear size bits. */
3482         rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
3483
3484         /* enable LPE to prevent packets larger than max_frame_size */
3485         rctl |= E1000_RCTL_LPE;
3486
3487         /* disable queue 0 to prevent tail write w/o re-config */
3488         wr32(E1000_RXDCTL(0), 0);
3489
3490         /* Attention!!!  For SR-IOV PF driver operations you must enable
3491          * queue drop for all VF and PF queues to prevent head of line blocking
3492          * if an un-trusted VF does not provide descriptors to hardware.
3493          */
3494         if (adapter->vfs_allocated_count) {
3495                 /* set all queue drop enable bits */
3496                 wr32(E1000_QDE, ALL_QUEUES);
3497         }
3498
3499         /* This is useful for sniffing bad packets. */
3500         if (adapter->netdev->features & NETIF_F_RXALL) {
3501                 /* UPE and MPE will be handled by normal PROMISC logic
3502                  * in e1000e_set_rx_mode
3503                  */
3504                 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3505                          E1000_RCTL_BAM | /* RX All Bcast Pkts */
3506                          E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3507
3508                 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3509                           E1000_RCTL_DPF | /* Allow filtered pause */
3510                           E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3511                 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3512                  * and that breaks VLANs.
3513                  */
3514         }
3515
3516         wr32(E1000_RCTL, rctl);
3517 }
3518
3519 static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3520                                    int vfn)
3521 {
3522         struct e1000_hw *hw = &adapter->hw;
3523         u32 vmolr;
3524
3525         /* if it isn't the PF check to see if VFs are enabled and
3526          * increase the size to support vlan tags
3527          */
3528         if (vfn < adapter->vfs_allocated_count &&
3529             adapter->vf_data[vfn].vlans_enabled)
3530                 size += VLAN_TAG_SIZE;
3531
3532         vmolr = rd32(E1000_VMOLR(vfn));
3533         vmolr &= ~E1000_VMOLR_RLPML_MASK;
3534         vmolr |= size | E1000_VMOLR_LPE;
3535         wr32(E1000_VMOLR(vfn), vmolr);
3536
3537         return 0;
3538 }
3539
3540 /**
3541  *  igb_rlpml_set - set maximum receive packet size
3542  *  @adapter: board private structure
3543  *
3544  *  Configure maximum receivable packet size.
3545  **/
3546 static void igb_rlpml_set(struct igb_adapter *adapter)
3547 {
3548         u32 max_frame_size = adapter->max_frame_size;
3549         struct e1000_hw *hw = &adapter->hw;
3550         u16 pf_id = adapter->vfs_allocated_count;
3551
3552         if (pf_id) {
3553                 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
3554                 /* If we're in VMDQ or SR-IOV mode, then set global RLPML
3555                  * to our max jumbo frame size, in case we need to enable
3556                  * jumbo frames on one of the rings later.
3557                  * This will not pass over-length frames into the default
3558                  * queue because it's gated by the VMOLR.RLPML.
3559                  */
3560                 max_frame_size = MAX_JUMBO_FRAME_SIZE;
3561         }
3562
3563         wr32(E1000_RLPML, max_frame_size);
3564 }
3565
3566 static inline void igb_set_vmolr(struct igb_adapter *adapter,
3567                                  int vfn, bool aupe)
3568 {
3569         struct e1000_hw *hw = &adapter->hw;
3570         u32 vmolr;
3571
3572         /* This register exists only on 82576 and newer so if we are older then
3573          * we should exit and do nothing
3574          */
3575         if (hw->mac.type < e1000_82576)
3576                 return;
3577
3578         vmolr = rd32(E1000_VMOLR(vfn));
3579         vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
3580         if (hw->mac.type == e1000_i350) {
3581                 u32 dvmolr;
3582
3583                 dvmolr = rd32(E1000_DVMOLR(vfn));
3584                 dvmolr |= E1000_DVMOLR_STRVLAN;
3585                 wr32(E1000_DVMOLR(vfn), dvmolr);
3586         }
3587         if (aupe)
3588                 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
3589         else
3590                 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
3591
3592         /* clear all bits that might not be set */
3593         vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3594
3595         if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
3596                 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
3597         /* for VMDq only allow the VFs and pool 0 to accept broadcast and
3598          * multicast packets
3599          */
3600         if (vfn <= adapter->vfs_allocated_count)
3601                 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
3602
3603         wr32(E1000_VMOLR(vfn), vmolr);
3604 }
3605
3606 /**
3607  *  igb_configure_rx_ring - Configure a receive ring after Reset
3608  *  @adapter: board private structure
3609  *  @ring: receive ring to be configured
3610  *
3611  *  Configure the Rx unit of the MAC after a reset.
3612  **/
3613 void igb_configure_rx_ring(struct igb_adapter *adapter,
3614                            struct igb_ring *ring)
3615 {
3616         struct e1000_hw *hw = &adapter->hw;
3617         u64 rdba = ring->dma;
3618         int reg_idx = ring->reg_idx;
3619         u32 srrctl = 0, rxdctl = 0;
3620
3621         /* disable the queue */
3622         wr32(E1000_RXDCTL(reg_idx), 0);
3623
3624         /* Set DMA base address registers */
3625         wr32(E1000_RDBAL(reg_idx),
3626              rdba & 0x00000000ffffffffULL);
3627         wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3628         wr32(E1000_RDLEN(reg_idx),
3629              ring->count * sizeof(union e1000_adv_rx_desc));
3630
3631         /* initialize head and tail */
3632         ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
3633         wr32(E1000_RDH(reg_idx), 0);
3634         writel(0, ring->tail);
3635
3636         /* set descriptor configuration */
3637         srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
3638         srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
3639         srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
3640         if (hw->mac.type >= e1000_82580)
3641                 srrctl |= E1000_SRRCTL_TIMESTAMP;
3642         /* Only set Drop Enable if we are supporting multiple queues */
3643         if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3644                 srrctl |= E1000_SRRCTL_DROP_EN;
3645
3646         wr32(E1000_SRRCTL(reg_idx), srrctl);
3647
3648         /* set filtering for VMDQ pools */
3649         igb_set_vmolr(adapter, reg_idx & 0x7, true);
3650
3651         rxdctl |= IGB_RX_PTHRESH;
3652         rxdctl |= IGB_RX_HTHRESH << 8;
3653         rxdctl |= IGB_RX_WTHRESH << 16;
3654
3655         /* enable receive descriptor fetching */
3656         rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
3657         wr32(E1000_RXDCTL(reg_idx), rxdctl);
3658 }
3659
3660 /**
3661  *  igb_configure_rx - Configure receive Unit after Reset
3662  *  @adapter: board private structure
3663  *
3664  *  Configure the Rx unit of the MAC after a reset.
3665  **/
3666 static void igb_configure_rx(struct igb_adapter *adapter)
3667 {
3668         int i;
3669
3670         /* set UTA to appropriate mode */
3671         igb_set_uta(adapter);
3672
3673         /* set the correct pool for the PF default MAC address in entry 0 */
3674         igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
3675                          adapter->vfs_allocated_count);
3676
3677         /* Setup the HW Rx Head and Tail Descriptor Pointers and
3678          * the Base and Length of the Rx Descriptor Ring
3679          */
3680         for (i = 0; i < adapter->num_rx_queues; i++)
3681                 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
3682 }
3683
3684 /**
3685  *  igb_free_tx_resources - Free Tx Resources per Queue
3686  *  @tx_ring: Tx descriptor ring for a specific queue
3687  *
3688  *  Free all transmit software resources
3689  **/
3690 void igb_free_tx_resources(struct igb_ring *tx_ring)
3691 {
3692         igb_clean_tx_ring(tx_ring);
3693
3694         vfree(tx_ring->tx_buffer_info);
3695         tx_ring->tx_buffer_info = NULL;
3696
3697         /* if not set, then don't free */
3698         if (!tx_ring->desc)
3699                 return;
3700
3701         dma_free_coherent(tx_ring->dev, tx_ring->size,
3702                           tx_ring->desc, tx_ring->dma);
3703
3704         tx_ring->desc = NULL;
3705 }
3706
3707 /**
3708  *  igb_free_all_tx_resources - Free Tx Resources for All Queues
3709  *  @adapter: board private structure
3710  *
3711  *  Free all transmit software resources
3712  **/
3713 static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3714 {
3715         int i;
3716
3717         for (i = 0; i < adapter->num_tx_queues; i++)
3718                 if (adapter->tx_ring[i])
3719                         igb_free_tx_resources(adapter->tx_ring[i]);
3720 }
3721
3722 void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3723                                     struct igb_tx_buffer *tx_buffer)
3724 {
3725         if (tx_buffer->skb) {
3726                 dev_kfree_skb_any(tx_buffer->skb);
3727                 if (dma_unmap_len(tx_buffer, len))
3728                         dma_unmap_single(ring->dev,
3729                                          dma_unmap_addr(tx_buffer, dma),
3730                                          dma_unmap_len(tx_buffer, len),
3731                                          DMA_TO_DEVICE);
3732         } else if (dma_unmap_len(tx_buffer, len)) {
3733                 dma_unmap_page(ring->dev,
3734                                dma_unmap_addr(tx_buffer, dma),
3735                                dma_unmap_len(tx_buffer, len),
3736                                DMA_TO_DEVICE);
3737         }
3738         tx_buffer->next_to_watch = NULL;
3739         tx_buffer->skb = NULL;
3740         dma_unmap_len_set(tx_buffer, len, 0);
3741         /* buffer_info must be completely set up in the transmit path */
3742 }
3743
3744 /**
3745  *  igb_clean_tx_ring - Free Tx Buffers
3746  *  @tx_ring: ring to be cleaned
3747  **/
3748 static void igb_clean_tx_ring(struct igb_ring *tx_ring)
3749 {
3750         struct igb_tx_buffer *buffer_info;
3751         unsigned long size;
3752         u16 i;
3753
3754         if (!tx_ring->tx_buffer_info)
3755                 return;
3756         /* Free all the Tx ring sk_buffs */
3757
3758         for (i = 0; i < tx_ring->count; i++) {
3759                 buffer_info = &tx_ring->tx_buffer_info[i];
3760                 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
3761         }
3762
3763         netdev_tx_reset_queue(txring_txq(tx_ring));
3764
3765         size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3766         memset(tx_ring->tx_buffer_info, 0, size);
3767
3768         /* Zero out the descriptor ring */
3769         memset(tx_ring->desc, 0, tx_ring->size);
3770
3771         tx_ring->next_to_use = 0;
3772         tx_ring->next_to_clean = 0;
3773 }
3774
3775 /**
3776  *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
3777  *  @adapter: board private structure
3778  **/
3779 static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3780 {
3781         int i;
3782
3783         for (i = 0; i < adapter->num_tx_queues; i++)
3784                 if (adapter->tx_ring[i])
3785                         igb_clean_tx_ring(adapter->tx_ring[i]);
3786 }
3787
3788 /**
3789  *  igb_free_rx_resources - Free Rx Resources
3790  *  @rx_ring: ring to clean the resources from
3791  *
3792  *  Free all receive software resources
3793  **/
3794 void igb_free_rx_resources(struct igb_ring *rx_ring)
3795 {
3796         igb_clean_rx_ring(rx_ring);
3797
3798         vfree(rx_ring->rx_buffer_info);
3799         rx_ring->rx_buffer_info = NULL;
3800
3801         /* if not set, then don't free */
3802         if (!rx_ring->desc)
3803                 return;
3804
3805         dma_free_coherent(rx_ring->dev, rx_ring->size,
3806                           rx_ring->desc, rx_ring->dma);
3807
3808         rx_ring->desc = NULL;
3809 }
3810
3811 /**
3812  *  igb_free_all_rx_resources - Free Rx Resources for All Queues
3813  *  @adapter: board private structure
3814  *
3815  *  Free all receive software resources
3816  **/
3817 static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3818 {
3819         int i;
3820
3821         for (i = 0; i < adapter->num_rx_queues; i++)
3822                 if (adapter->rx_ring[i])
3823                         igb_free_rx_resources(adapter->rx_ring[i]);
3824 }
3825
3826 /**
3827  *  igb_clean_rx_ring - Free Rx Buffers per Queue
3828  *  @rx_ring: ring to free buffers from
3829  **/
3830 static void igb_clean_rx_ring(struct igb_ring *rx_ring)
3831 {
3832         unsigned long size;
3833         u16 i;
3834
3835         if (rx_ring->skb)
3836                 dev_kfree_skb(rx_ring->skb);
3837         rx_ring->skb = NULL;
3838
3839         if (!rx_ring->rx_buffer_info)
3840                 return;
3841
3842         /* Free all the Rx ring sk_buffs */
3843         for (i = 0; i < rx_ring->count; i++) {
3844                 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
3845
3846                 if (!buffer_info->page)
3847                         continue;
3848
3849                 dma_unmap_page(rx_ring->dev,
3850                                buffer_info->dma,
3851                                PAGE_SIZE,
3852                                DMA_FROM_DEVICE);
3853                 __free_page(buffer_info->page);
3854
3855                 buffer_info->page = NULL;
3856         }
3857
3858         size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3859         memset(rx_ring->rx_buffer_info, 0, size);
3860
3861         /* Zero out the descriptor ring */
3862         memset(rx_ring->desc, 0, rx_ring->size);
3863
3864         rx_ring->next_to_alloc = 0;
3865         rx_ring->next_to_clean = 0;
3866         rx_ring->next_to_use = 0;
3867 }
3868
3869 /**
3870  *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
3871  *  @adapter: board private structure
3872  **/
3873 static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3874 {
3875         int i;
3876
3877         for (i = 0; i < adapter->num_rx_queues; i++)
3878                 if (adapter->rx_ring[i])
3879                         igb_clean_rx_ring(adapter->rx_ring[i]);
3880 }
3881
3882 /**
3883  *  igb_set_mac - Change the Ethernet Address of the NIC
3884  *  @netdev: network interface device structure
3885  *  @p: pointer to an address structure
3886  *
3887  *  Returns 0 on success, negative on failure
3888  **/
3889 static int igb_set_mac(struct net_device *netdev, void *p)
3890 {
3891         struct igb_adapter *adapter = netdev_priv(netdev);
3892         struct e1000_hw *hw = &adapter->hw;
3893         struct sockaddr *addr = p;
3894
3895         if (!is_valid_ether_addr(addr->sa_data))
3896                 return -EADDRNOTAVAIL;
3897
3898         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3899         memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
3900
3901         /* set the correct pool for the new PF MAC address in entry 0 */
3902         igb_rar_set_qsel(adapter, hw->mac.addr, 0,
3903                          adapter->vfs_allocated_count);
3904
3905         return 0;
3906 }
3907
3908 /**
3909  *  igb_write_mc_addr_list - write multicast addresses to MTA
3910  *  @netdev: network interface device structure
3911  *
3912  *  Writes multicast address list to the MTA hash table.
3913  *  Returns: -ENOMEM on failure
3914  *           0 on no addresses written
3915  *           X on writing X addresses to MTA
3916  **/
3917 static int igb_write_mc_addr_list(struct net_device *netdev)
3918 {
3919         struct igb_adapter *adapter = netdev_priv(netdev);
3920         struct e1000_hw *hw = &adapter->hw;
3921         struct netdev_hw_addr *ha;
3922         u8  *mta_list;
3923         int i;
3924
3925         if (netdev_mc_empty(netdev)) {
3926                 /* nothing to program, so clear mc list */
3927                 igb_update_mc_addr_list(hw, NULL, 0);
3928                 igb_restore_vf_multicasts(adapter);
3929                 return 0;
3930         }
3931
3932         mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
3933         if (!mta_list)
3934                 return -ENOMEM;
3935
3936         /* The shared function expects a packed array of only addresses. */
3937         i = 0;
3938         netdev_for_each_mc_addr(ha, netdev)
3939                 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3940
3941         igb_update_mc_addr_list(hw, mta_list, i);
3942         kfree(mta_list);
3943
3944         return netdev_mc_count(netdev);
3945 }
3946
3947 /**
3948  *  igb_write_uc_addr_list - write unicast addresses to RAR table
3949  *  @netdev: network interface device structure
3950  *
3951  *  Writes unicast address list to the RAR table.
3952  *  Returns: -ENOMEM on failure/insufficient address space
3953  *           0 on no addresses written
3954  *           X on writing X addresses to the RAR table
3955  **/
3956 static int igb_write_uc_addr_list(struct net_device *netdev)
3957 {
3958         struct igb_adapter *adapter = netdev_priv(netdev);
3959         struct e1000_hw *hw = &adapter->hw;
3960         unsigned int vfn = adapter->vfs_allocated_count;
3961         unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3962         int count = 0;
3963
3964         /* return ENOMEM indicating insufficient memory for addresses */
3965         if (netdev_uc_count(netdev) > rar_entries)
3966                 return -ENOMEM;
3967
3968         if (!netdev_uc_empty(netdev) && rar_entries) {
3969                 struct netdev_hw_addr *ha;
3970
3971                 netdev_for_each_uc_addr(ha, netdev) {
3972                         if (!rar_entries)
3973                                 break;
3974                         igb_rar_set_qsel(adapter, ha->addr,
3975                                          rar_entries--,
3976                                          vfn);
3977                         count++;
3978                 }
3979         }
3980         /* write the addresses in reverse order to avoid write combining */
3981         for (; rar_entries > 0 ; rar_entries--) {
3982                 wr32(E1000_RAH(rar_entries), 0);
3983                 wr32(E1000_RAL(rar_entries), 0);
3984         }
3985         wrfl();
3986
3987         return count;
3988 }
3989
3990 /**
3991  *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3992  *  @netdev: network interface device structure
3993  *
3994  *  The set_rx_mode entry point is called whenever the unicast or multicast
3995  *  address lists or the network interface flags are updated.  This routine is
3996  *  responsible for configuring the hardware for proper unicast, multicast,
3997  *  promiscuous mode, and all-multi behavior.
3998  **/
3999 static void igb_set_rx_mode(struct net_device *netdev)
4000 {
4001         struct igb_adapter *adapter = netdev_priv(netdev);
4002         struct e1000_hw *hw = &adapter->hw;
4003         unsigned int vfn = adapter->vfs_allocated_count;
4004         u32 rctl, vmolr = 0;
4005         int count;
4006
4007         /* Check for Promiscuous and All Multicast modes */
4008         rctl = rd32(E1000_RCTL);
4009
4010         /* clear the effected bits */
4011         rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
4012
4013         if (netdev->flags & IFF_PROMISC) {
4014                 /* retain VLAN HW filtering if in VT mode */
4015                 if (adapter->vfs_allocated_count)
4016                         rctl |= E1000_RCTL_VFE;
4017                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
4018                 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
4019         } else {
4020                 if (netdev->flags & IFF_ALLMULTI) {
4021                         rctl |= E1000_RCTL_MPE;
4022                         vmolr |= E1000_VMOLR_MPME;
4023                 } else {
4024                         /* Write addresses to the MTA, if the attempt fails
4025                          * then we should just turn on promiscuous mode so
4026                          * that we can at least receive multicast traffic
4027                          */
4028                         count = igb_write_mc_addr_list(netdev);
4029                         if (count < 0) {
4030                                 rctl |= E1000_RCTL_MPE;
4031                                 vmolr |= E1000_VMOLR_MPME;
4032                         } else if (count) {
4033                                 vmolr |= E1000_VMOLR_ROMPE;
4034                         }
4035                 }
4036                 /* Write addresses to available RAR registers, if there is not
4037                  * sufficient space to store all the addresses then enable
4038                  * unicast promiscuous mode
4039                  */
4040                 count = igb_write_uc_addr_list(netdev);
4041                 if (count < 0) {
4042                         rctl |= E1000_RCTL_UPE;
4043                         vmolr |= E1000_VMOLR_ROPE;
4044                 }
4045                 rctl |= E1000_RCTL_VFE;
4046         }
4047         wr32(E1000_RCTL, rctl);
4048
4049         /* In order to support SR-IOV and eventually VMDq it is necessary to set
4050          * the VMOLR to enable the appropriate modes.  Without this workaround
4051          * we will have issues with VLAN tag stripping not being done for frames
4052          * that are only arriving because we are the default pool
4053          */
4054         if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
4055                 return;
4056
4057         vmolr |= rd32(E1000_VMOLR(vfn)) &
4058                  ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
4059         wr32(E1000_VMOLR(vfn), vmolr);
4060         igb_restore_vf_multicasts(adapter);
4061 }
4062
4063 static void igb_check_wvbr(struct igb_adapter *adapter)
4064 {
4065         struct e1000_hw *hw = &adapter->hw;
4066         u32 wvbr = 0;
4067
4068         switch (hw->mac.type) {
4069         case e1000_82576:
4070         case e1000_i350:
4071                 wvbr = rd32(E1000_WVBR);
4072                 if (!wvbr)
4073                         return;
4074                 break;
4075         default:
4076                 break;
4077         }
4078
4079         adapter->wvbr |= wvbr;
4080 }
4081
4082 #define IGB_STAGGERED_QUEUE_OFFSET 8
4083
4084 static void igb_spoof_check(struct igb_adapter *adapter)
4085 {
4086         int j;
4087
4088         if (!adapter->wvbr)
4089                 return;
4090
4091         for (j = 0; j < adapter->vfs_allocated_count; j++) {
4092                 if (adapter->wvbr & (1 << j) ||
4093                     adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
4094                         dev_warn(&adapter->pdev->dev,
4095                                 "Spoof event(s) detected on VF %d\n", j);
4096                         adapter->wvbr &=
4097                                 ~((1 << j) |
4098                                   (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
4099                 }
4100         }
4101 }
4102
4103 /* Need to wait a few seconds after link up to get diagnostic information from
4104  * the phy
4105  */
4106 static void igb_update_phy_info(unsigned long data)
4107 {
4108         struct igb_adapter *adapter = (struct igb_adapter *) data;
4109         igb_get_phy_info(&adapter->hw);
4110 }
4111
4112 /**
4113  *  igb_has_link - check shared code for link and determine up/down
4114  *  @adapter: pointer to driver private info
4115  **/
4116 bool igb_has_link(struct igb_adapter *adapter)
4117 {
4118         struct e1000_hw *hw = &adapter->hw;
4119         bool link_active = false;
4120
4121         /* get_link_status is set on LSC (link status) interrupt or
4122          * rx sequence error interrupt.  get_link_status will stay
4123          * false until the e1000_check_for_link establishes link
4124          * for copper adapters ONLY
4125          */
4126         switch (hw->phy.media_type) {
4127         case e1000_media_type_copper:
4128                 if (!hw->mac.get_link_status)
4129                         return true;
4130         case e1000_media_type_internal_serdes:
4131                 hw->mac.ops.check_for_link(hw);
4132                 link_active = !hw->mac.get_link_status;
4133                 break;
4134         default:
4135         case e1000_media_type_unknown:
4136                 break;
4137         }
4138
4139         if (((hw->mac.type == e1000_i210) ||
4140              (hw->mac.type == e1000_i211)) &&
4141              (hw->phy.id == I210_I_PHY_ID)) {
4142                 if (!netif_carrier_ok(adapter->netdev)) {
4143                         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4144                 } else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
4145                         adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
4146                         adapter->link_check_timeout = jiffies;
4147                 }
4148         }
4149
4150         return link_active;
4151 }
4152
4153 static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
4154 {
4155         bool ret = false;
4156         u32 ctrl_ext, thstat;
4157
4158         /* check for thermal sensor event on i350 copper only */
4159         if (hw->mac.type == e1000_i350) {
4160                 thstat = rd32(E1000_THSTAT);
4161                 ctrl_ext = rd32(E1000_CTRL_EXT);
4162
4163                 if ((hw->phy.media_type == e1000_media_type_copper) &&
4164                     !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
4165                         ret = !!(thstat & event);
4166         }
4167
4168         return ret;
4169 }
4170
4171 /**
4172  *  igb_check_lvmmc - check for malformed packets received
4173  *  and indicated in LVMMC register
4174  *  @adapter: pointer to adapter
4175  **/
4176 static void igb_check_lvmmc(struct igb_adapter *adapter)
4177 {
4178         struct e1000_hw *hw = &adapter->hw;
4179         u32 lvmmc;
4180
4181         lvmmc = rd32(E1000_LVMMC);
4182         if (lvmmc) {
4183                 if (unlikely(net_ratelimit())) {
4184                         netdev_warn(adapter->netdev,
4185                                     "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
4186                                     lvmmc);
4187                 }
4188         }
4189 }
4190
4191 /**
4192  *  igb_watchdog - Timer Call-back
4193  *  @data: pointer to adapter cast into an unsigned long
4194  **/
4195 static void igb_watchdog(unsigned long data)
4196 {
4197         struct igb_adapter *adapter = (struct igb_adapter *)data;
4198         /* Do the rest outside of interrupt context */
4199         schedule_work(&adapter->watchdog_task);
4200 }
4201
4202 static void igb_watchdog_task(struct work_struct *work)
4203 {
4204         struct igb_adapter *adapter = container_of(work,
4205                                                    struct igb_adapter,
4206                                                    watchdog_task);
4207         struct e1000_hw *hw = &adapter->hw;
4208         struct e1000_phy_info *phy = &hw->phy;
4209         struct net_device *netdev = adapter->netdev;
4210         u32 link;
4211         int i;
4212         u32 connsw;
4213
4214         link = igb_has_link(adapter);
4215
4216         if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
4217                 if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4218                         adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
4219                 else
4220                         link = false;
4221         }
4222
4223         /* Force link down if we have fiber to swap to */
4224         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4225                 if (hw->phy.media_type == e1000_media_type_copper) {
4226                         connsw = rd32(E1000_CONNSW);
4227                         if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
4228                                 link = 0;
4229                 }
4230         }
4231         if (link) {
4232                 /* Perform a reset if the media type changed. */
4233                 if (hw->dev_spec._82575.media_changed) {
4234                         hw->dev_spec._82575.media_changed = false;
4235                         adapter->flags |= IGB_FLAG_MEDIA_RESET;
4236                         igb_reset(adapter);
4237                 }
4238                 /* Cancel scheduled suspend requests. */
4239                 pm_runtime_resume(netdev->dev.parent);
4240
4241                 if (!netif_carrier_ok(netdev)) {
4242                         u32 ctrl;
4243
4244                         hw->mac.ops.get_speed_and_duplex(hw,
4245                                                          &adapter->link_speed,
4246                                                          &adapter->link_duplex);
4247
4248                         ctrl = rd32(E1000_CTRL);
4249                         /* Links status message must follow this format */
4250                         netdev_info(netdev,
4251                                "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4252                                netdev->name,
4253                                adapter->link_speed,
4254                                adapter->link_duplex == FULL_DUPLEX ?
4255                                "Full" : "Half",
4256                                (ctrl & E1000_CTRL_TFCE) &&
4257                                (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
4258                                (ctrl & E1000_CTRL_RFCE) ?  "RX" :
4259                                (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
4260
4261                         /* disable EEE if enabled */
4262                         if ((adapter->flags & IGB_FLAG_EEE) &&
4263                                 (adapter->link_duplex == HALF_DUPLEX)) {
4264                                 dev_info(&adapter->pdev->dev,
4265                                 "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
4266                                 adapter->hw.dev_spec._82575.eee_disable = true;
4267                                 adapter->flags &= ~IGB_FLAG_EEE;
4268                         }
4269
4270                         /* check if SmartSpeed worked */
4271                         igb_check_downshift(hw);
4272                         if (phy->speed_downgraded)
4273                                 netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
4274
4275                         /* check for thermal sensor event */
4276                         if (igb_thermal_sensor_event(hw,
4277                             E1000_THSTAT_LINK_THROTTLE))
4278                                 netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
4279
4280                         /* adjust timeout factor according to speed/duplex */
4281                         adapter->tx_timeout_factor = 1;
4282                         switch (adapter->link_speed) {
4283                         case SPEED_10:
4284                                 adapter->tx_timeout_factor = 14;
4285                                 break;
4286                         case SPEED_100:
4287                                 /* maybe add some timeout factor ? */
4288                                 break;
4289                         }
4290
4291                         netif_carrier_on(netdev);
4292
4293                         igb_ping_all_vfs(adapter);
4294                         igb_check_vf_rate_limit(adapter);
4295
4296                         /* link state has changed, schedule phy info update */
4297                         if (!test_bit(__IGB_DOWN, &adapter->state))
4298                                 mod_timer(&adapter->phy_info_timer,
4299                                           round_jiffies(jiffies + 2 * HZ));
4300                 }
4301         } else {
4302                 if (netif_carrier_ok(netdev)) {
4303                         adapter->link_speed = 0;
4304                         adapter->link_duplex = 0;
4305
4306                         /* check for thermal sensor event */
4307                         if (igb_thermal_sensor_event(hw,
4308                             E1000_THSTAT_PWR_DOWN)) {
4309                                 netdev_err(netdev, "The network adapter was stopped because it overheated\n");
4310                         }
4311
4312                         /* Links status message must follow this format */
4313                         netdev_info(netdev, "igb: %s NIC Link is Down\n",
4314                                netdev->name);
4315                         netif_carrier_off(netdev);
4316
4317                         igb_ping_all_vfs(adapter);
4318
4319                         /* link state has changed, schedule phy info update */
4320                         if (!test_bit(__IGB_DOWN, &adapter->state))
4321                                 mod_timer(&adapter->phy_info_timer,
4322                                           round_jiffies(jiffies + 2 * HZ));
4323
4324                         /* link is down, time to check for alternate media */
4325                         if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
4326                                 igb_check_swap_media(adapter);
4327                                 if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4328                                         schedule_work(&adapter->reset_task);
4329                                         /* return immediately */
4330                                         return;
4331                                 }
4332                         }
4333                         pm_schedule_suspend(netdev->dev.parent,
4334                                             MSEC_PER_SEC * 5);
4335
4336                 /* also check for alternate media here */
4337                 } else if (!netif_carrier_ok(netdev) &&
4338                            (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
4339                         igb_check_swap_media(adapter);
4340                         if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
4341                                 schedule_work(&adapter->reset_task);
4342                                 /* return immediately */
4343                                 return;
4344                         }
4345                 }
4346         }
4347
4348         spin_lock(&adapter->stats64_lock);
4349         igb_update_stats(adapter, &adapter->stats64);
4350         spin_unlock(&adapter->stats64_lock);
4351
4352         for (i = 0; i < adapter->num_tx_queues; i++) {
4353                 struct igb_ring *tx_ring = adapter->tx_ring[i];
4354                 if (!netif_carrier_ok(netdev)) {
4355                         /* We've lost link, so the controller stops DMA,
4356                          * but we've got queued Tx work that's never going
4357                          * to get done, so reset controller to flush Tx.
4358                          * (Do the reset outside of interrupt context).
4359                          */
4360                         if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4361                                 adapter->tx_timeout_count++;
4362                                 schedule_work(&adapter->reset_task);
4363                                 /* return immediately since reset is imminent */
4364                                 return;
4365                         }
4366                 }
4367
4368                 /* Force detection of hung controller every watchdog period */
4369                 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
4370         }
4371
4372         /* Cause software interrupt to ensure Rx ring is cleaned */
4373         if (adapter->flags & IGB_FLAG_HAS_MSIX) {
4374                 u32 eics = 0;
4375
4376                 for (i = 0; i < adapter->num_q_vectors; i++)
4377                         eics |= adapter->q_vector[i]->eims_value;
4378                 wr32(E1000_EICS, eics);
4379         } else {
4380                 wr32(E1000_ICS, E1000_ICS_RXDMT0);
4381         }
4382
4383         igb_spoof_check(adapter);
4384         igb_ptp_rx_hang(adapter);
4385
4386         /* Check LVMMC register on i350/i354 only */
4387         if ((adapter->hw.mac.type == e1000_i350) ||
4388             (adapter->hw.mac.type == e1000_i354))
4389                 igb_check_lvmmc(adapter);
4390
4391         /* Reset the timer */
4392         if (!test_bit(__IGB_DOWN, &adapter->state)) {
4393                 if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
4394                         mod_timer(&adapter->watchdog_timer,
4395                                   round_jiffies(jiffies +  HZ));
4396                 else
4397                         mod_timer(&adapter->watchdog_timer,
4398                                   round_jiffies(jiffies + 2 * HZ));
4399         }
4400 }
4401
4402 enum latency_range {
4403         lowest_latency = 0,
4404         low_latency = 1,
4405         bulk_latency = 2,
4406         latency_invalid = 255
4407 };
4408
4409 /**
4410  *  igb_update_ring_itr - update the dynamic ITR value based on packet size
4411  *  @q_vector: pointer to q_vector
4412  *
4413  *  Stores a new ITR value based on strictly on packet size.  This
4414  *  algorithm is less sophisticated than that used in igb_update_itr,
4415  *  due to the difficulty of synchronizing statistics across multiple
4416  *  receive rings.  The divisors and thresholds used by this function
4417  *  were determined based on theoretical maximum wire speed and testing
4418  *  data, in order to minimize response time while increasing bulk
4419  *  throughput.
4420  *  This functionality is controlled by ethtool's coalescing settings.
4421  *  NOTE:  This function is called only when operating in a multiqueue
4422  *         receive environment.
4423  **/
4424 static void igb_update_ring_itr(struct igb_q_vector *q_vector)
4425 {
4426         int new_val = q_vector->itr_val;
4427         int avg_wire_size = 0;
4428         struct igb_adapter *adapter = q_vector->adapter;
4429         unsigned int packets;
4430
4431         /* For non-gigabit speeds, just fix the interrupt rate at 4000
4432          * ints/sec - ITR timer value of 120 ticks.
4433          */
4434         if (adapter->link_speed != SPEED_1000) {
4435                 new_val = IGB_4K_ITR;
4436                 goto set_itr_val;
4437         }
4438
4439         packets = q_vector->rx.total_packets;
4440         if (packets)
4441                 avg_wire_size = q_vector->rx.total_bytes / packets;
4442
4443         packets = q_vector->tx.total_packets;
4444         if (packets)
4445                 avg_wire_size = max_t(u32, avg_wire_size,
4446                                       q_vector->tx.total_bytes / packets);
4447
4448         /* if avg_wire_size isn't set no work was done */
4449         if (!avg_wire_size)
4450                 goto clear_counts;
4451
4452         /* Add 24 bytes to size to account for CRC, preamble, and gap */
4453         avg_wire_size += 24;
4454
4455         /* Don't starve jumbo frames */
4456         avg_wire_size = min(avg_wire_size, 3000);
4457
4458         /* Give a little boost to mid-size frames */
4459         if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4460                 new_val = avg_wire_size / 3;
4461         else
4462                 new_val = avg_wire_size / 2;
4463
4464         /* conservative mode (itr 3) eliminates the lowest_latency setting */
4465         if (new_val < IGB_20K_ITR &&
4466             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4467              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4468                 new_val = IGB_20K_ITR;
4469
4470 set_itr_val:
4471         if (new_val != q_vector->itr_val) {
4472                 q_vector->itr_val = new_val;
4473                 q_vector->set_itr = 1;
4474         }
4475 clear_counts:
4476         q_vector->rx.total_bytes = 0;
4477         q_vector->rx.total_packets = 0;
4478         q_vector->tx.total_bytes = 0;
4479         q_vector->tx.total_packets = 0;
4480 }
4481
4482 /**
4483  *  igb_update_itr - update the dynamic ITR value based on statistics
4484  *  @q_vector: pointer to q_vector
4485  *  @ring_container: ring info to update the itr for
4486  *
4487  *  Stores a new ITR value based on packets and byte
4488  *  counts during the last interrupt.  The advantage of per interrupt
4489  *  computation is faster updates and more accurate ITR for the current
4490  *  traffic pattern.  Constants in this function were computed
4491  *  based on theoretical maximum wire speed and thresholds were set based
4492  *  on testing data as well as attempting to minimize response time
4493  *  while increasing bulk throughput.
4494  *  This functionality is controlled by ethtool's coalescing settings.
4495  *  NOTE:  These calculations are only valid when operating in a single-
4496  *         queue environment.
4497  **/
4498 static void igb_update_itr(struct igb_q_vector *q_vector,
4499                            struct igb_ring_container *ring_container)
4500 {
4501         unsigned int packets = ring_container->total_packets;
4502         unsigned int bytes = ring_container->total_bytes;
4503         u8 itrval = ring_container->itr;
4504
4505         /* no packets, exit with status unchanged */
4506         if (packets == 0)
4507                 return;
4508
4509         switch (itrval) {
4510         case lowest_latency:
4511                 /* handle TSO and jumbo frames */
4512                 if (bytes/packets > 8000)
4513                         itrval = bulk_latency;
4514                 else if ((packets < 5) && (bytes > 512))
4515                         itrval = low_latency;
4516                 break;
4517         case low_latency:  /* 50 usec aka 20000 ints/s */
4518                 if (bytes > 10000) {
4519                         /* this if handles the TSO accounting */
4520                         if (bytes/packets > 8000)
4521                                 itrval = bulk_latency;
4522                         else if ((packets < 10) || ((bytes/packets) > 1200))
4523                                 itrval = bulk_latency;
4524                         else if ((packets > 35))
4525                                 itrval = lowest_latency;
4526                 } else if (bytes/packets > 2000) {
4527                         itrval = bulk_latency;
4528                 } else if (packets <= 2 && bytes < 512) {
4529                         itrval = lowest_latency;
4530                 }
4531                 break;
4532         case bulk_latency: /* 250 usec aka 4000 ints/s */
4533                 if (bytes > 25000) {
4534                         if (packets > 35)
4535                                 itrval = low_latency;
4536                 } else if (bytes < 1500) {
4537                         itrval = low_latency;
4538                 }
4539                 break;
4540         }
4541
4542         /* clear work counters since we have the values we need */
4543         ring_container->total_bytes = 0;
4544         ring_container->total_packets = 0;
4545
4546         /* write updated itr to ring container */
4547         ring_container->itr = itrval;
4548 }
4549
4550 static void igb_set_itr(struct igb_q_vector *q_vector)
4551 {
4552         struct igb_adapter *adapter = q_vector->adapter;
4553         u32 new_itr = q_vector->itr_val;
4554         u8 current_itr = 0;
4555
4556         /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4557         if (adapter->link_speed != SPEED_1000) {
4558                 current_itr = 0;
4559                 new_itr = IGB_4K_ITR;
4560                 goto set_itr_now;
4561         }
4562
4563         igb_update_itr(q_vector, &q_vector->tx);
4564         igb_update_itr(q_vector, &q_vector->rx);
4565
4566         current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
4567
4568         /* conservative mode (itr 3) eliminates the lowest_latency setting */
4569         if (current_itr == lowest_latency &&
4570             ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4571              (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4572                 current_itr = low_latency;
4573
4574         switch (current_itr) {
4575         /* counts and packets in update_itr are dependent on these numbers */
4576         case lowest_latency:
4577                 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
4578                 break;
4579         case low_latency:
4580                 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
4581                 break;
4582         case bulk_latency:
4583                 new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
4584                 break;
4585         default:
4586                 break;
4587         }
4588
4589 set_itr_now:
4590         if (new_itr != q_vector->itr_val) {
4591                 /* this attempts to bias the interrupt rate towards Bulk
4592                  * by adding intermediate steps when interrupt rate is
4593                  * increasing
4594                  */
4595                 new_itr = new_itr > q_vector->itr_val ?
4596                           max((new_itr * q_vector->itr_val) /
4597                           (new_itr + (q_vector->itr_val >> 2)),
4598                           new_itr) : new_itr;
4599                 /* Don't write the value here; it resets the adapter's
4600                  * internal timer, and causes us to delay far longer than
4601                  * we should between interrupts.  Instead, we write the ITR
4602                  * value at the beginning of the next interrupt so the timing
4603                  * ends up being correct.
4604                  */
4605                 q_vector->itr_val = new_itr;
4606                 q_vector->set_itr = 1;
4607         }
4608 }
4609
4610 static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4611                             u32 type_tucmd, u32 mss_l4len_idx)
4612 {
4613         struct e1000_adv_tx_context_desc *context_desc;
4614         u16 i = tx_ring->next_to_use;
4615
4616         context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4617
4618         i++;
4619         tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4620
4621         /* set bits to identify this as an advanced context descriptor */
4622         type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4623
4624         /* For 82575, context index must be unique per ring. */
4625         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4626                 mss_l4len_idx |= tx_ring->reg_idx << 4;
4627
4628         context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
4629         context_desc->seqnum_seed       = 0;
4630         context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
4631         context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
4632 }
4633
4634 static int igb_tso(struct igb_ring *tx_ring,
4635                    struct igb_tx_buffer *first,
4636                    u8 *hdr_len)
4637 {
4638         struct sk_buff *skb = first->skb;
4639         u32 vlan_macip_lens, type_tucmd;
4640         u32 mss_l4len_idx, l4len;
4641         int err;
4642
4643         if (skb->ip_summed != CHECKSUM_PARTIAL)
4644                 return 0;
4645
4646         if (!skb_is_gso(skb))
4647                 return 0;
4648
4649         err = skb_cow_head(skb, 0);
4650         if (err < 0)
4651                 return err;
4652
4653         /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4654         type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
4655
4656         if (first->protocol == htons(ETH_P_IP)) {
4657                 struct iphdr *iph = ip_hdr(skb);
4658                 iph->tot_len = 0;
4659                 iph->check = 0;
4660                 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4661                                                          iph->daddr, 0,
4662                                                          IPPROTO_TCP,
4663                                                          0);
4664                 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4665                 first->tx_flags |= IGB_TX_FLAGS_TSO |
4666                                    IGB_TX_FLAGS_CSUM |
4667                                    IGB_TX_FLAGS_IPV4;
4668         } else if (skb_is_gso_v6(skb)) {
4669                 ipv6_hdr(skb)->payload_len = 0;
4670                 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4671                                                        &ipv6_hdr(skb)->daddr,
4672                                                        0, IPPROTO_TCP, 0);
4673                 first->tx_flags |= IGB_TX_FLAGS_TSO |
4674                                    IGB_TX_FLAGS_CSUM;
4675         }
4676
4677         /* compute header lengths */
4678         l4len = tcp_hdrlen(skb);
4679         *hdr_len = skb_transport_offset(skb) + l4len;
4680
4681         /* update gso size and bytecount with header size */
4682         first->gso_segs = skb_shinfo(skb)->gso_segs;
4683         first->bytecount += (first->gso_segs - 1) * *hdr_len;
4684
4685         /* MSS L4LEN IDX */
4686         mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4687         mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
4688
4689         /* VLAN MACLEN IPLEN */
4690         vlan_macip_lens = skb_network_header_len(skb);
4691         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4692         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4693
4694         igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4695
4696         return 1;
4697 }
4698
4699 static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
4700 {
4701         struct sk_buff *skb = first->skb;
4702         u32 vlan_macip_lens = 0;
4703         u32 mss_l4len_idx = 0;
4704         u32 type_tucmd = 0;
4705
4706         if (skb->ip_summed != CHECKSUM_PARTIAL) {
4707                 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4708                         return;
4709         } else {
4710                 u8 l4_hdr = 0;
4711
4712                 switch (first->protocol) {
4713                 case htons(ETH_P_IP):
4714                         vlan_macip_lens |= skb_network_header_len(skb);
4715                         type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4716                         l4_hdr = ip_hdr(skb)->protocol;
4717                         break;
4718                 case htons(ETH_P_IPV6):
4719                         vlan_macip_lens |= skb_network_header_len(skb);
4720                         l4_hdr = ipv6_hdr(skb)->nexthdr;
4721                         break;
4722                 default:
4723                         if (unlikely(net_ratelimit())) {
4724                                 dev_warn(tx_ring->dev,
4725                                          "partial checksum but proto=%x!\n",
4726                                          first->protocol);
4727                         }
4728                         break;
4729                 }
4730
4731                 switch (l4_hdr) {
4732                 case IPPROTO_TCP:
4733                         type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4734                         mss_l4len_idx = tcp_hdrlen(skb) <<
4735                                         E1000_ADVTXD_L4LEN_SHIFT;
4736                         break;
4737                 case IPPROTO_SCTP:
4738                         type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4739                         mss_l4len_idx = sizeof(struct sctphdr) <<
4740                                         E1000_ADVTXD_L4LEN_SHIFT;
4741                         break;
4742                 case IPPROTO_UDP:
4743                         mss_l4len_idx = sizeof(struct udphdr) <<
4744                                         E1000_ADVTXD_L4LEN_SHIFT;
4745                         break;
4746                 default:
4747                         if (unlikely(net_ratelimit())) {
4748                                 dev_warn(tx_ring->dev,
4749                                          "partial checksum but l4 proto=%x!\n",
4750                                          l4_hdr);
4751                         }
4752                         break;
4753                 }
4754
4755                 /* update TX checksum flag */
4756                 first->tx_flags |= IGB_TX_FLAGS_CSUM;
4757         }
4758
4759         vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
4760         vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
4761
4762         igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
4763 }
4764
4765 #define IGB_SET_FLAG(_input, _flag, _result) \
4766         ((_flag <= _result) ? \
4767          ((u32)(_input & _flag) * (_result / _flag)) : \
4768          ((u32)(_input & _flag) / (_flag / _result)))
4769
4770 static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
4771 {
4772         /* set type for advanced descriptor with frame checksum insertion */
4773         u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4774                        E1000_ADVTXD_DCMD_DEXT |
4775                        E1000_ADVTXD_DCMD_IFCS;
4776
4777         /* set HW vlan bit if vlan is present */
4778         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4779                                  (E1000_ADVTXD_DCMD_VLE));
4780
4781         /* set segmentation bits for TSO */
4782         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4783                                  (E1000_ADVTXD_DCMD_TSE));
4784
4785         /* set timestamp bit if present */
4786         cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4787                                  (E1000_ADVTXD_MAC_TSTAMP));
4788
4789         /* insert frame checksum */
4790         cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
4791
4792         return cmd_type;
4793 }
4794
4795 static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4796                                  union e1000_adv_tx_desc *tx_desc,
4797                                  u32 tx_flags, unsigned int paylen)
4798 {
4799         u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4800
4801         /* 82575 requires a unique index per ring */
4802         if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
4803                 olinfo_status |= tx_ring->reg_idx << 4;
4804
4805         /* insert L4 checksum */
4806         olinfo_status |= IGB_SET_FLAG(tx_flags,
4807                                       IGB_TX_FLAGS_CSUM,
4808                                       (E1000_TXD_POPTS_TXSM << 8));
4809
4810         /* insert IPv4 checksum */
4811         olinfo_status |= IGB_SET_FLAG(tx_flags,
4812                                       IGB_TX_FLAGS_IPV4,
4813                                       (E1000_TXD_POPTS_IXSM << 8));
4814
4815         tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
4816 }
4817
4818 static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4819 {
4820         struct net_device *netdev = tx_ring->netdev;
4821
4822         netif_stop_subqueue(netdev, tx_ring->queue_index);
4823
4824         /* Herbert's original patch had:
4825          *  smp_mb__after_netif_stop_queue();
4826          * but since that doesn't exist yet, just open code it.
4827          */
4828         smp_mb();
4829
4830         /* We need to check again in a case another CPU has just
4831          * made room available.
4832          */
4833         if (igb_desc_unused(tx_ring) < size)
4834                 return -EBUSY;
4835
4836         /* A reprieve! */
4837         netif_wake_subqueue(netdev, tx_ring->queue_index);
4838
4839         u64_stats_update_begin(&tx_ring->tx_syncp2);
4840         tx_ring->tx_stats.restart_queue2++;
4841         u64_stats_update_end(&tx_ring->tx_syncp2);
4842
4843         return 0;
4844 }
4845
4846 static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
4847 {
4848         if (igb_desc_unused(tx_ring) >= size)
4849                 return 0;
4850         return __igb_maybe_stop_tx(tx_ring, size);
4851 }
4852
4853 static void igb_tx_map(struct igb_ring *tx_ring,
4854                        struct igb_tx_buffer *first,
4855                        const u8 hdr_len)
4856 {
4857         struct sk_buff *skb = first->skb;
4858         struct igb_tx_buffer *tx_buffer;
4859         union e1000_adv_tx_desc *tx_desc;
4860         struct skb_frag_struct *frag;
4861         dma_addr_t dma;
4862         unsigned int data_len, size;
4863         u32 tx_flags = first->tx_flags;
4864         u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
4865         u16 i = tx_ring->next_to_use;
4866
4867         tx_desc = IGB_TX_DESC(tx_ring, i);
4868
4869         igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4870
4871         size = skb_headlen(skb);
4872         data_len = skb->data_len;
4873
4874         dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
4875
4876         tx_buffer = first;
4877
4878         for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4879                 if (dma_mapping_error(tx_ring->dev, dma))
4880                         goto dma_error;
4881
4882                 /* record length, and DMA address */
4883                 dma_unmap_len_set(tx_buffer, len, size);
4884                 dma_unmap_addr_set(tx_buffer, dma, dma);
4885
4886                 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4887
4888                 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4889                         tx_desc->read.cmd_type_len =
4890                                 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
4891
4892                         i++;
4893                         tx_desc++;
4894                         if (i == tx_ring->count) {
4895                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
4896                                 i = 0;
4897                         }
4898                         tx_desc->read.olinfo_status = 0;
4899
4900                         dma += IGB_MAX_DATA_PER_TXD;
4901                         size -= IGB_MAX_DATA_PER_TXD;
4902
4903                         tx_desc->read.buffer_addr = cpu_to_le64(dma);
4904                 }
4905
4906                 if (likely(!data_len))
4907                         break;
4908
4909                 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
4910
4911                 i++;
4912                 tx_desc++;
4913                 if (i == tx_ring->count) {
4914                         tx_desc = IGB_TX_DESC(tx_ring, 0);
4915                         i = 0;
4916                 }
4917                 tx_desc->read.olinfo_status = 0;
4918
4919                 size = skb_frag_size(frag);
4920                 data_len -= size;
4921
4922                 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
4923                                        size, DMA_TO_DEVICE);
4924
4925                 tx_buffer = &tx_ring->tx_buffer_info[i];
4926         }
4927
4928         /* write last descriptor with RS and EOP bits */
4929         cmd_type |= size | IGB_TXD_DCMD;
4930         tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
4931
4932         netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4933
4934         /* set the timestamp */
4935         first->time_stamp = jiffies;
4936
4937         /* Force memory writes to complete before letting h/w know there
4938          * are new descriptors to fetch.  (Only applicable for weak-ordered
4939          * memory model archs, such as IA-64).
4940          *
4941          * We also need this memory barrier to make certain all of the
4942          * status bits have been updated before next_to_watch is written.
4943          */
4944         wmb();
4945
4946         /* set next_to_watch value indicating a packet is present */
4947         first->next_to_watch = tx_desc;
4948
4949         i++;
4950         if (i == tx_ring->count)
4951                 i = 0;
4952
4953         tx_ring->next_to_use = i;
4954
4955         /* Make sure there is space in the ring for the next send. */
4956         igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
4957
4958         if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
4959                 writel(i, tx_ring->tail);
4960
4961                 /* we need this if more than one processor can write to our tail
4962                  * at a time, it synchronizes IO on IA64/Altix systems
4963                  */
4964                 mmiowb();
4965         }
4966         return;
4967
4968 dma_error:
4969         dev_err(tx_ring->dev, "TX DMA map failed\n");
4970
4971         /* clear dma mappings for failed tx_buffer_info map */
4972         for (;;) {
4973                 tx_buffer = &tx_ring->tx_buffer_info[i];
4974                 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4975                 if (tx_buffer == first)
4976                         break;
4977                 if (i == 0)
4978                         i = tx_ring->count;
4979                 i--;
4980         }
4981
4982         tx_ring->next_to_use = i;
4983 }
4984
4985 netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4986                                 struct igb_ring *tx_ring)
4987 {
4988         struct igb_tx_buffer *first;
4989         int tso;
4990         u32 tx_flags = 0;
4991         u16 count = TXD_USE_COUNT(skb_headlen(skb));
4992         __be16 protocol = vlan_get_protocol(skb);
4993         u8 hdr_len = 0;
4994
4995         /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4996          *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
4997          *       + 2 desc gap to keep tail from touching head,
4998          *       + 1 desc for context descriptor,
4999          * otherwise try next time
5000          */
5001         if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
5002                 unsigned short f;
5003
5004                 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
5005                         count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
5006         } else {
5007                 count += skb_shinfo(skb)->nr_frags;
5008         }
5009
5010         if (igb_maybe_stop_tx(tx_ring, count + 3)) {
5011                 /* this is a hard error */
5012                 return NETDEV_TX_BUSY;
5013         }
5014
5015         /* record the location of the first descriptor for this packet */
5016         first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
5017         first->skb = skb;
5018         first->bytecount = skb->len;
5019         first->gso_segs = 1;
5020
5021         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
5022                 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
5023
5024                 if (!test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
5025                                            &adapter->state)) {
5026                         skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5027                         tx_flags |= IGB_TX_FLAGS_TSTAMP;
5028
5029                         adapter->ptp_tx_skb = skb_get(skb);
5030                         adapter->ptp_tx_start = jiffies;
5031                         if (adapter->hw.mac.type == e1000_82576)
5032                                 schedule_work(&adapter->ptp_tx_work);
5033                 }
5034         }
5035
5036         skb_tx_timestamp(skb);
5037
5038         if (vlan_tx_tag_present(skb)) {
5039                 tx_flags |= IGB_TX_FLAGS_VLAN;
5040                 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
5041         }
5042
5043         /* record initial flags and protocol */
5044         first->tx_flags = tx_flags;
5045         first->protocol = protocol;
5046
5047         tso = igb_tso(tx_ring, first, &hdr_len);
5048         if (tso < 0)
5049                 goto out_drop;
5050         else if (!tso)
5051                 igb_tx_csum(tx_ring, first);
5052
5053         igb_tx_map(tx_ring, first, hdr_len);
5054
5055         return NETDEV_TX_OK;
5056
5057 out_drop:
5058         igb_unmap_and_free_tx_resource(tx_ring, first);
5059
5060         return NETDEV_TX_OK;
5061 }
5062
5063 static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
5064                                                     struct sk_buff *skb)
5065 {
5066         unsigned int r_idx = skb->queue_mapping;
5067
5068         if (r_idx >= adapter->num_tx_queues)
5069                 r_idx = r_idx % adapter->num_tx_queues;
5070
5071         return adapter->tx_ring[r_idx];
5072 }
5073
5074 static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
5075                                   struct net_device *netdev)
5076 {
5077         struct igb_adapter *adapter = netdev_priv(netdev);
5078
5079         if (test_bit(__IGB_DOWN, &adapter->state)) {
5080                 dev_kfree_skb_any(skb);
5081                 return NETDEV_TX_OK;
5082         }
5083
5084         if (skb->len <= 0) {
5085                 dev_kfree_skb_any(skb);
5086                 return NETDEV_TX_OK;
5087         }
5088
5089         /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
5090          * in order to meet this minimum size requirement.
5091          */
5092         if (skb_put_padto(skb, 17))
5093                 return NETDEV_TX_OK;
5094
5095         return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
5096 }
5097
5098 /**
5099  *  igb_tx_timeout - Respond to a Tx Hang
5100  *  @netdev: network interface device structure
5101  **/
5102 static void igb_tx_timeout(struct net_device *netdev)
5103 {
5104         struct igb_adapter *adapter = netdev_priv(netdev);
5105         struct e1000_hw *hw = &adapter->hw;
5106
5107         /* Do the reset outside of interrupt context */
5108         adapter->tx_timeout_count++;
5109
5110         if (hw->mac.type >= e1000_82580)
5111                 hw->dev_spec._82575.global_device_reset = true;
5112
5113         schedule_work(&adapter->reset_task);
5114         wr32(E1000_EICS,
5115              (adapter->eims_enable_mask & ~adapter->eims_other));
5116 }
5117
5118 static void igb_reset_task(struct work_struct *work)
5119 {
5120         struct igb_adapter *adapter;
5121         adapter = container_of(work, struct igb_adapter, reset_task);
5122
5123         igb_dump(adapter);
5124         netdev_err(adapter->netdev, "Reset adapter\n");
5125         igb_reinit_locked(adapter);
5126 }
5127
5128 /**
5129  *  igb_get_stats64 - Get System Network Statistics
5130  *  @netdev: network interface device structure
5131  *  @stats: rtnl_link_stats64 pointer
5132  **/
5133 static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
5134                                                 struct rtnl_link_stats64 *stats)
5135 {
5136         struct igb_adapter *adapter = netdev_priv(netdev);
5137
5138         spin_lock(&adapter->stats64_lock);
5139         igb_update_stats(adapter, &adapter->stats64);
5140         memcpy(stats, &adapter->stats64, sizeof(*stats));
5141         spin_unlock(&adapter->stats64_lock);
5142
5143         return stats;
5144 }
5145
5146 /**
5147  *  igb_change_mtu - Change the Maximum Transfer Unit
5148  *  @netdev: network interface device structure
5149  *  @new_mtu: new value for maximum frame size
5150  *
5151  *  Returns 0 on success, negative on failure
5152  **/
5153 static int igb_change_mtu(struct net_device *netdev, int new_mtu)
5154 {
5155         struct igb_adapter *adapter = netdev_priv(netdev);
5156         struct pci_dev *pdev = adapter->pdev;
5157         int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
5158
5159         if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
5160                 dev_err(&pdev->dev, "Invalid MTU setting\n");
5161                 return -EINVAL;
5162         }
5163
5164 #define MAX_STD_JUMBO_FRAME_SIZE 9238
5165         if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
5166                 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
5167                 return -EINVAL;
5168         }
5169
5170         /* adjust max frame to be at least the size of a standard frame */
5171         if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
5172                 max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
5173
5174         while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
5175                 usleep_range(1000, 2000);
5176
5177         /* igb_down has a dependency on max_frame_size */
5178         adapter->max_frame_size = max_frame;
5179
5180         if (netif_running(netdev))
5181                 igb_down(adapter);
5182
5183         dev_info(&pdev->dev, "changing MTU from %d to %d\n",
5184                  netdev->mtu, new_mtu);
5185         netdev->mtu = new_mtu;
5186
5187         if (netif_running(netdev))
5188                 igb_up(adapter);
5189         else
5190                 igb_reset(adapter);
5191
5192         clear_bit(__IGB_RESETTING, &adapter->state);
5193
5194         return 0;
5195 }
5196
5197 /**
5198  *  igb_update_stats - Update the board statistics counters
5199  *  @adapter: board private structure
5200  **/
5201 void igb_update_stats(struct igb_adapter *adapter,
5202                       struct rtnl_link_stats64 *net_stats)
5203 {
5204         struct e1000_hw *hw = &adapter->hw;
5205         struct pci_dev *pdev = adapter->pdev;
5206         u32 reg, mpc;
5207         int i;
5208         u64 bytes, packets;
5209         unsigned int start;
5210         u64 _bytes, _packets;
5211
5212         /* Prevent stats update while adapter is being reset, or if the pci
5213          * connection is down.
5214          */
5215         if (adapter->link_speed == 0)
5216                 return;
5217         if (pci_channel_offline(pdev))
5218                 return;
5219
5220         bytes = 0;
5221         packets = 0;
5222
5223         rcu_read_lock();
5224         for (i = 0; i < adapter->num_rx_queues; i++) {
5225                 struct igb_ring *ring = adapter->rx_ring[i];
5226                 u32 rqdpc = rd32(E1000_RQDPC(i));
5227                 if (hw->mac.type >= e1000_i210)
5228                         wr32(E1000_RQDPC(i), 0);
5229
5230                 if (rqdpc) {
5231                         ring->rx_stats.drops += rqdpc;
5232                         net_stats->rx_fifo_errors += rqdpc;
5233                 }
5234
5235                 do {
5236                         start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
5237                         _bytes = ring->rx_stats.bytes;
5238                         _packets = ring->rx_stats.packets;
5239                 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
5240                 bytes += _bytes;
5241                 packets += _packets;
5242         }
5243
5244         net_stats->rx_bytes = bytes;
5245         net_stats->rx_packets = packets;
5246
5247         bytes = 0;
5248         packets = 0;
5249         for (i = 0; i < adapter->num_tx_queues; i++) {
5250                 struct igb_ring *ring = adapter->tx_ring[i];
5251                 do {
5252                         start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
5253                         _bytes = ring->tx_stats.bytes;
5254                         _packets = ring->tx_stats.packets;
5255                 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
5256                 bytes += _bytes;
5257                 packets += _packets;
5258         }
5259         net_stats->tx_bytes = bytes;
5260         net_stats->tx_packets = packets;
5261         rcu_read_unlock();
5262
5263         /* read stats registers */
5264         adapter->stats.crcerrs += rd32(E1000_CRCERRS);
5265         adapter->stats.gprc += rd32(E1000_GPRC);
5266         adapter->stats.gorc += rd32(E1000_GORCL);
5267         rd32(E1000_GORCH); /* clear GORCL */
5268         adapter->stats.bprc += rd32(E1000_BPRC);
5269         adapter->stats.mprc += rd32(E1000_MPRC);
5270         adapter->stats.roc += rd32(E1000_ROC);
5271
5272         adapter->stats.prc64 += rd32(E1000_PRC64);
5273         adapter->stats.prc127 += rd32(E1000_PRC127);
5274         adapter->stats.prc255 += rd32(E1000_PRC255);
5275         adapter->stats.prc511 += rd32(E1000_PRC511);
5276         adapter->stats.prc1023 += rd32(E1000_PRC1023);
5277         adapter->stats.prc1522 += rd32(E1000_PRC1522);
5278         adapter->stats.symerrs += rd32(E1000_SYMERRS);
5279         adapter->stats.sec += rd32(E1000_SEC);
5280
5281         mpc = rd32(E1000_MPC);
5282         adapter->stats.mpc += mpc;
5283         net_stats->rx_fifo_errors += mpc;
5284         adapter->stats.scc += rd32(E1000_SCC);
5285         adapter->stats.ecol += rd32(E1000_ECOL);
5286         adapter->stats.mcc += rd32(E1000_MCC);
5287         adapter->stats.latecol += rd32(E1000_LATECOL);
5288         adapter->stats.dc += rd32(E1000_DC);
5289         adapter->stats.rlec += rd32(E1000_RLEC);
5290         adapter->stats.xonrxc += rd32(E1000_XONRXC);
5291         adapter->stats.xontxc += rd32(E1000_XONTXC);
5292         adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
5293         adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
5294         adapter->stats.fcruc += rd32(E1000_FCRUC);
5295         adapter->stats.gptc += rd32(E1000_GPTC);
5296         adapter->stats.gotc += rd32(E1000_GOTCL);
5297         rd32(E1000_GOTCH); /* clear GOTCL */
5298         adapter->stats.rnbc += rd32(E1000_RNBC);
5299         adapter->stats.ruc += rd32(E1000_RUC);
5300         adapter->stats.rfc += rd32(E1000_RFC);
5301         adapter->stats.rjc += rd32(E1000_RJC);
5302         adapter->stats.tor += rd32(E1000_TORH);
5303         adapter->stats.tot += rd32(E1000_TOTH);
5304         adapter->stats.tpr += rd32(E1000_TPR);
5305
5306         adapter->stats.ptc64 += rd32(E1000_PTC64);
5307         adapter->stats.ptc127 += rd32(E1000_PTC127);
5308         adapter->stats.ptc255 += rd32(E1000_PTC255);
5309         adapter->stats.ptc511 += rd32(E1000_PTC511);
5310         adapter->stats.ptc1023 += rd32(E1000_PTC1023);
5311         adapter->stats.ptc1522 += rd32(E1000_PTC1522);
5312
5313         adapter->stats.mptc += rd32(E1000_MPTC);
5314         adapter->stats.bptc += rd32(E1000_BPTC);
5315
5316         adapter->stats.tpt += rd32(E1000_TPT);
5317         adapter->stats.colc += rd32(E1000_COLC);
5318
5319         adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
5320         /* read internal phy specific stats */
5321         reg = rd32(E1000_CTRL_EXT);
5322         if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
5323                 adapter->stats.rxerrc += rd32(E1000_RXERRC);
5324
5325                 /* this stat has invalid values on i210/i211 */
5326                 if ((hw->mac.type != e1000_i210) &&
5327                     (hw->mac.type != e1000_i211))
5328                         adapter->stats.tncrs += rd32(E1000_TNCRS);
5329         }
5330
5331         adapter->stats.tsctc += rd32(E1000_TSCTC);
5332         adapter->stats.tsctfc += rd32(E1000_TSCTFC);
5333
5334         adapter->stats.iac += rd32(E1000_IAC);
5335         adapter->stats.icrxoc += rd32(E1000_ICRXOC);
5336         adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
5337         adapter->stats.icrxatc += rd32(E1000_ICRXATC);
5338         adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
5339         adapter->stats.ictxatc += rd32(E1000_ICTXATC);
5340         adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
5341         adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
5342         adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
5343
5344         /* Fill out the OS statistics structure */
5345         net_stats->multicast = adapter->stats.mprc;
5346         net_stats->collisions = adapter->stats.colc;
5347
5348         /* Rx Errors */
5349
5350         /* RLEC on some newer hardware can be incorrect so build
5351          * our own version based on RUC and ROC
5352          */
5353         net_stats->rx_errors = adapter->stats.rxerrc +
5354                 adapter->stats.crcerrs + adapter->stats.algnerrc +
5355                 adapter->stats.ruc + adapter->stats.roc +
5356                 adapter->stats.cexterr;
5357         net_stats->rx_length_errors = adapter->stats.ruc +
5358                                       adapter->stats.roc;
5359         net_stats->rx_crc_errors = adapter->stats.crcerrs;
5360         net_stats->rx_frame_errors = adapter->stats.algnerrc;
5361         net_stats->rx_missed_errors = adapter->stats.mpc;
5362
5363         /* Tx Errors */
5364         net_stats->tx_errors = adapter->stats.ecol +
5365                                adapter->stats.latecol;
5366         net_stats->tx_aborted_errors = adapter->stats.ecol;
5367         net_stats->tx_window_errors = adapter->stats.latecol;
5368         net_stats->tx_carrier_errors = adapter->stats.tncrs;
5369
5370         /* Tx Dropped needs to be maintained elsewhere */
5371
5372         /* Management Stats */
5373         adapter->stats.mgptc += rd32(E1000_MGTPTC);
5374         adapter->stats.mgprc += rd32(E1000_MGTPRC);
5375         adapter->stats.mgpdc += rd32(E1000_MGTPDC);
5376
5377         /* OS2BMC Stats */
5378         reg = rd32(E1000_MANC);
5379         if (reg & E1000_MANC_EN_BMC2OS) {
5380                 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5381                 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5382                 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5383                 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5384         }
5385 }
5386
5387 static irqreturn_t igb_msix_other(int irq, void *data)
5388 {
5389         struct igb_adapter *adapter = data;
5390         struct e1000_hw *hw = &adapter->hw;
5391         u32 icr = rd32(E1000_ICR);
5392         /* reading ICR causes bit 31 of EICR to be cleared */
5393
5394         if (icr & E1000_ICR_DRSTA)
5395                 schedule_work(&adapter->reset_task);
5396
5397         if (icr & E1000_ICR_DOUTSYNC) {
5398                 /* HW is reporting DMA is out of sync */
5399                 adapter->stats.doosync++;
5400                 /* The DMA Out of Sync is also indication of a spoof event
5401                  * in IOV mode. Check the Wrong VM Behavior register to
5402                  * see if it is really a spoof event.
5403                  */
5404                 igb_check_wvbr(adapter);
5405         }
5406
5407         /* Check for a mailbox event */
5408         if (icr & E1000_ICR_VMMB)
5409                 igb_msg_task(adapter);
5410
5411         if (icr & E1000_ICR_LSC) {
5412                 hw->mac.get_link_status = 1;
5413                 /* guard against interrupt when we're going down */
5414                 if (!test_bit(__IGB_DOWN, &adapter->state))
5415                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
5416         }
5417
5418         if (icr & E1000_ICR_TS) {
5419                 u32 tsicr = rd32(E1000_TSICR);
5420
5421                 if (tsicr & E1000_TSICR_TXTS) {
5422                         /* acknowledge the interrupt */
5423                         wr32(E1000_TSICR, E1000_TSICR_TXTS);
5424                         /* retrieve hardware timestamp */
5425                         schedule_work(&adapter->ptp_tx_work);
5426                 }
5427         }
5428
5429         wr32(E1000_EIMS, adapter->eims_other);
5430
5431         return IRQ_HANDLED;
5432 }
5433
5434 static void igb_write_itr(struct igb_q_vector *q_vector)
5435 {
5436         struct igb_adapter *adapter = q_vector->adapter;
5437         u32 itr_val = q_vector->itr_val & 0x7FFC;
5438
5439         if (!q_vector->set_itr)
5440                 return;
5441
5442         if (!itr_val)
5443                 itr_val = 0x4;
5444
5445         if (adapter->hw.mac.type == e1000_82575)
5446                 itr_val |= itr_val << 16;
5447         else
5448                 itr_val |= E1000_EITR_CNT_IGNR;
5449
5450         writel(itr_val, q_vector->itr_register);
5451         q_vector->set_itr = 0;
5452 }
5453
5454 static irqreturn_t igb_msix_ring(int irq, void *data)
5455 {
5456         struct igb_q_vector *q_vector = data;
5457
5458         /* Write the ITR value calculated from the previous interrupt. */
5459         igb_write_itr(q_vector);
5460
5461         napi_schedule(&q_vector->napi);
5462
5463         return IRQ_HANDLED;
5464 }
5465
5466 #ifdef CONFIG_IGB_DCA
5467 static void igb_update_tx_dca(struct igb_adapter *adapter,
5468                               struct igb_ring *tx_ring,
5469                               int cpu)
5470 {
5471         struct e1000_hw *hw = &adapter->hw;
5472         u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5473
5474         if (hw->mac.type != e1000_82575)
5475                 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5476
5477         /* We can enable relaxed ordering for reads, but not writes when
5478          * DCA is enabled.  This is due to a known issue in some chipsets
5479          * which will cause the DCA tag to be cleared.
5480          */
5481         txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5482                   E1000_DCA_TXCTRL_DATA_RRO_EN |
5483                   E1000_DCA_TXCTRL_DESC_DCA_EN;
5484
5485         wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5486 }
5487
5488 static void igb_update_rx_dca(struct igb_adapter *adapter,
5489                               struct igb_ring *rx_ring,
5490                               int cpu)
5491 {
5492         struct e1000_hw *hw = &adapter->hw;
5493         u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5494
5495         if (hw->mac.type != e1000_82575)
5496                 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5497
5498         /* We can enable relaxed ordering for reads, but not writes when
5499          * DCA is enabled.  This is due to a known issue in some chipsets
5500          * which will cause the DCA tag to be cleared.
5501          */
5502         rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5503                   E1000_DCA_RXCTRL_DESC_DCA_EN;
5504
5505         wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5506 }
5507
5508 static void igb_update_dca(struct igb_q_vector *q_vector)
5509 {
5510         struct igb_adapter *adapter = q_vector->adapter;
5511         int cpu = get_cpu();
5512
5513         if (q_vector->cpu == cpu)
5514                 goto out_no_update;
5515
5516         if (q_vector->tx.ring)
5517                 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5518
5519         if (q_vector->rx.ring)
5520                 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5521
5522         q_vector->cpu = cpu;
5523 out_no_update:
5524         put_cpu();
5525 }
5526
5527 static void igb_setup_dca(struct igb_adapter *adapter)
5528 {
5529         struct e1000_hw *hw = &adapter->hw;
5530         int i;
5531
5532         if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
5533                 return;
5534
5535         /* Always use CB2 mode, difference is masked in the CB driver. */
5536         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5537
5538         for (i = 0; i < adapter->num_q_vectors; i++) {
5539                 adapter->q_vector[i]->cpu = -1;
5540                 igb_update_dca(adapter->q_vector[i]);
5541         }
5542 }
5543
5544 static int __igb_notify_dca(struct device *dev, void *data)
5545 {
5546         struct net_device *netdev = dev_get_drvdata(dev);
5547         struct igb_adapter *adapter = netdev_priv(netdev);
5548         struct pci_dev *pdev = adapter->pdev;
5549         struct e1000_hw *hw = &adapter->hw;
5550         unsigned long event = *(unsigned long *)data;
5551
5552         switch (event) {
5553         case DCA_PROVIDER_ADD:
5554                 /* if already enabled, don't do it again */
5555                 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
5556                         break;
5557                 if (dca_add_requester(dev) == 0) {
5558                         adapter->flags |= IGB_FLAG_DCA_ENABLED;
5559                         dev_info(&pdev->dev, "DCA enabled\n");
5560                         igb_setup_dca(adapter);
5561                         break;
5562                 }
5563                 /* Fall Through since DCA is disabled. */
5564         case DCA_PROVIDER_REMOVE:
5565                 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
5566                         /* without this a class_device is left
5567                          * hanging around in the sysfs model
5568                          */
5569                         dca_remove_requester(dev);
5570                         dev_info(&pdev->dev, "DCA disabled\n");
5571                         adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
5572                         wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
5573                 }
5574                 break;
5575         }
5576
5577         return 0;
5578 }
5579
5580 static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
5581                           void *p)
5582 {
5583         int ret_val;
5584
5585         ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
5586                                          __igb_notify_dca);
5587
5588         return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5589 }
5590 #endif /* CONFIG_IGB_DCA */
5591
5592 #ifdef CONFIG_PCI_IOV
5593 static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5594 {
5595         unsigned char mac_addr[ETH_ALEN];
5596
5597         eth_zero_addr(mac_addr);
5598         igb_set_vf_mac(adapter, vf, mac_addr);
5599
5600         /* By default spoof check is enabled for all VFs */
5601         adapter->vf_data[vf].spoofchk_enabled = true;
5602
5603         return 0;
5604 }
5605
5606 #endif
5607 static void igb_ping_all_vfs(struct igb_adapter *adapter)
5608 {
5609         struct e1000_hw *hw = &adapter->hw;
5610         u32 ping;
5611         int i;
5612
5613         for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5614                 ping = E1000_PF_CONTROL_MSG;
5615                 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
5616                         ping |= E1000_VT_MSGTYPE_CTS;
5617                 igb_write_mbx(hw, &ping, 1, i);
5618         }
5619 }
5620
5621 static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5622 {
5623         struct e1000_hw *hw = &adapter->hw;
5624         u32 vmolr = rd32(E1000_VMOLR(vf));
5625         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5626
5627         vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
5628                             IGB_VF_FLAG_MULTI_PROMISC);
5629         vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5630
5631         if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5632                 vmolr |= E1000_VMOLR_MPME;
5633                 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
5634                 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5635         } else {
5636                 /* if we have hashes and we are clearing a multicast promisc
5637                  * flag we need to write the hashes to the MTA as this step
5638                  * was previously skipped
5639                  */
5640                 if (vf_data->num_vf_mc_hashes > 30) {
5641                         vmolr |= E1000_VMOLR_MPME;
5642                 } else if (vf_data->num_vf_mc_hashes) {
5643                         int j;
5644
5645                         vmolr |= E1000_VMOLR_ROMPE;
5646                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5647                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5648                 }
5649         }
5650
5651         wr32(E1000_VMOLR(vf), vmolr);
5652
5653         /* there are flags left unprocessed, likely not supported */
5654         if (*msgbuf & E1000_VT_MSGINFO_MASK)
5655                 return -EINVAL;
5656
5657         return 0;
5658 }
5659
5660 static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5661                                   u32 *msgbuf, u32 vf)
5662 {
5663         int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5664         u16 *hash_list = (u16 *)&msgbuf[1];
5665         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5666         int i;
5667
5668         /* salt away the number of multicast addresses assigned
5669          * to this VF for later use to restore when the PF multi cast
5670          * list changes
5671          */
5672         vf_data->num_vf_mc_hashes = n;
5673
5674         /* only up to 30 hash values supported */
5675         if (n > 30)
5676                 n = 30;
5677
5678         /* store the hashes for later use */
5679         for (i = 0; i < n; i++)
5680                 vf_data->vf_mc_hashes[i] = hash_list[i];
5681
5682         /* Flush and reset the mta with the new values */
5683         igb_set_rx_mode(adapter->netdev);
5684
5685         return 0;
5686 }
5687
5688 static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5689 {
5690         struct e1000_hw *hw = &adapter->hw;
5691         struct vf_data_storage *vf_data;
5692         int i, j;
5693
5694         for (i = 0; i < adapter->vfs_allocated_count; i++) {
5695                 u32 vmolr = rd32(E1000_VMOLR(i));
5696
5697                 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5698
5699                 vf_data = &adapter->vf_data[i];
5700
5701                 if ((vf_data->num_vf_mc_hashes > 30) ||
5702                     (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5703                         vmolr |= E1000_VMOLR_MPME;
5704                 } else if (vf_data->num_vf_mc_hashes) {
5705                         vmolr |= E1000_VMOLR_ROMPE;
5706                         for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5707                                 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5708                 }
5709                 wr32(E1000_VMOLR(i), vmolr);
5710         }
5711 }
5712
5713 static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5714 {
5715         struct e1000_hw *hw = &adapter->hw;
5716         u32 pool_mask, reg, vid;
5717         int i;
5718
5719         pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5720
5721         /* Find the vlan filter for this id */
5722         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5723                 reg = rd32(E1000_VLVF(i));
5724
5725                 /* remove the vf from the pool */
5726                 reg &= ~pool_mask;
5727
5728                 /* if pool is empty then remove entry from vfta */
5729                 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5730                     (reg & E1000_VLVF_VLANID_ENABLE)) {
5731                         reg = 0;
5732                         vid = reg & E1000_VLVF_VLANID_MASK;
5733                         igb_vfta_set(hw, vid, false);
5734                 }
5735
5736                 wr32(E1000_VLVF(i), reg);
5737         }
5738
5739         adapter->vf_data[vf].vlans_enabled = 0;
5740 }
5741
5742 static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5743 {
5744         struct e1000_hw *hw = &adapter->hw;
5745         u32 reg, i;
5746
5747         /* The vlvf table only exists on 82576 hardware and newer */
5748         if (hw->mac.type < e1000_82576)
5749                 return -1;
5750
5751         /* we only need to do this if VMDq is enabled */
5752         if (!adapter->vfs_allocated_count)
5753                 return -1;
5754
5755         /* Find the vlan filter for this id */
5756         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5757                 reg = rd32(E1000_VLVF(i));
5758                 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5759                     vid == (reg & E1000_VLVF_VLANID_MASK))
5760                         break;
5761         }
5762
5763         if (add) {
5764                 if (i == E1000_VLVF_ARRAY_SIZE) {
5765                         /* Did not find a matching VLAN ID entry that was
5766                          * enabled.  Search for a free filter entry, i.e.
5767                          * one without the enable bit set
5768                          */
5769                         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5770                                 reg = rd32(E1000_VLVF(i));
5771                                 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5772                                         break;
5773                         }
5774                 }
5775                 if (i < E1000_VLVF_ARRAY_SIZE) {
5776                         /* Found an enabled/available entry */
5777                         reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5778
5779                         /* if !enabled we need to set this up in vfta */
5780                         if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
5781                                 /* add VID to filter table */
5782                                 igb_vfta_set(hw, vid, true);
5783                                 reg |= E1000_VLVF_VLANID_ENABLE;
5784                         }
5785                         reg &= ~E1000_VLVF_VLANID_MASK;
5786                         reg |= vid;
5787                         wr32(E1000_VLVF(i), reg);
5788
5789                         /* do not modify RLPML for PF devices */
5790                         if (vf >= adapter->vfs_allocated_count)
5791                                 return 0;
5792
5793                         if (!adapter->vf_data[vf].vlans_enabled) {
5794                                 u32 size;
5795
5796                                 reg = rd32(E1000_VMOLR(vf));
5797                                 size = reg & E1000_VMOLR_RLPML_MASK;
5798                                 size += 4;
5799                                 reg &= ~E1000_VMOLR_RLPML_MASK;
5800                                 reg |= size;
5801                                 wr32(E1000_VMOLR(vf), reg);
5802                         }
5803
5804                         adapter->vf_data[vf].vlans_enabled++;
5805                 }
5806         } else {
5807                 if (i < E1000_VLVF_ARRAY_SIZE) {
5808                         /* remove vf from the pool */
5809                         reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5810                         /* if pool is empty then remove entry from vfta */
5811                         if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5812                                 reg = 0;
5813                                 igb_vfta_set(hw, vid, false);
5814                         }
5815                         wr32(E1000_VLVF(i), reg);
5816
5817                         /* do not modify RLPML for PF devices */
5818                         if (vf >= adapter->vfs_allocated_count)
5819                                 return 0;
5820
5821                         adapter->vf_data[vf].vlans_enabled--;
5822                         if (!adapter->vf_data[vf].vlans_enabled) {
5823                                 u32 size;
5824
5825                                 reg = rd32(E1000_VMOLR(vf));
5826                                 size = reg & E1000_VMOLR_RLPML_MASK;
5827                                 size -= 4;
5828                                 reg &= ~E1000_VMOLR_RLPML_MASK;
5829                                 reg |= size;
5830                                 wr32(E1000_VMOLR(vf), reg);
5831                         }
5832                 }
5833         }
5834         return 0;
5835 }
5836
5837 static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5838 {
5839         struct e1000_hw *hw = &adapter->hw;
5840
5841         if (vid)
5842                 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5843         else
5844                 wr32(E1000_VMVIR(vf), 0);
5845 }
5846
5847 static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5848                                int vf, u16 vlan, u8 qos)
5849 {
5850         int err = 0;
5851         struct igb_adapter *adapter = netdev_priv(netdev);
5852
5853         if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5854                 return -EINVAL;
5855         if (vlan || qos) {
5856                 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5857                 if (err)
5858                         goto out;
5859                 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5860                 igb_set_vmolr(adapter, vf, !vlan);
5861                 adapter->vf_data[vf].pf_vlan = vlan;
5862                 adapter->vf_data[vf].pf_qos = qos;
5863                 dev_info(&adapter->pdev->dev,
5864                          "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5865                 if (test_bit(__IGB_DOWN, &adapter->state)) {
5866                         dev_warn(&adapter->pdev->dev,
5867                                  "The VF VLAN has been set, but the PF device is not up.\n");
5868                         dev_warn(&adapter->pdev->dev,
5869                                  "Bring the PF device up before attempting to use the VF device.\n");
5870                 }
5871         } else {
5872                 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
5873                              false, vf);
5874                 igb_set_vmvir(adapter, vlan, vf);
5875                 igb_set_vmolr(adapter, vf, true);
5876                 adapter->vf_data[vf].pf_vlan = 0;
5877                 adapter->vf_data[vf].pf_qos = 0;
5878         }
5879 out:
5880         return err;
5881 }
5882
5883 static int igb_find_vlvf_entry(struct igb_adapter *adapter, int vid)
5884 {
5885         struct e1000_hw *hw = &adapter->hw;
5886         int i;
5887         u32 reg;
5888
5889         /* Find the vlan filter for this id */
5890         for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5891                 reg = rd32(E1000_VLVF(i));
5892                 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5893                     vid == (reg & E1000_VLVF_VLANID_MASK))
5894                         break;
5895         }
5896
5897         if (i >= E1000_VLVF_ARRAY_SIZE)
5898                 i = -1;
5899
5900         return i;
5901 }
5902
5903 static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5904 {
5905         struct e1000_hw *hw = &adapter->hw;
5906         int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5907         int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5908         int err = 0;
5909
5910         /* If in promiscuous mode we need to make sure the PF also has
5911          * the VLAN filter set.
5912          */
5913         if (add && (adapter->netdev->flags & IFF_PROMISC))
5914                 err = igb_vlvf_set(adapter, vid, add,
5915                                    adapter->vfs_allocated_count);
5916         if (err)
5917                 goto out;
5918
5919         err = igb_vlvf_set(adapter, vid, add, vf);
5920
5921         if (err)
5922                 goto out;
5923
5924         /* Go through all the checks to see if the VLAN filter should
5925          * be wiped completely.
5926          */
5927         if (!add && (adapter->netdev->flags & IFF_PROMISC)) {
5928                 u32 vlvf, bits;
5929                 int regndx = igb_find_vlvf_entry(adapter, vid);
5930
5931                 if (regndx < 0)
5932                         goto out;
5933                 /* See if any other pools are set for this VLAN filter
5934                  * entry other than the PF.
5935                  */
5936                 vlvf = bits = rd32(E1000_VLVF(regndx));
5937                 bits &= 1 << (E1000_VLVF_POOLSEL_SHIFT +
5938                               adapter->vfs_allocated_count);
5939                 /* If the filter was removed then ensure PF pool bit
5940                  * is cleared if the PF only added itself to the pool
5941                  * because the PF is in promiscuous mode.
5942                  */
5943                 if ((vlvf & VLAN_VID_MASK) == vid &&
5944                     !test_bit(vid, adapter->active_vlans) &&
5945                     !bits)
5946                         igb_vlvf_set(adapter, vid, add,
5947                                      adapter->vfs_allocated_count);
5948         }
5949
5950 out:
5951         return err;
5952 }
5953
5954 static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
5955 {
5956         /* clear flags - except flag that indicates PF has set the MAC */
5957         adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
5958         adapter->vf_data[vf].last_nack = jiffies;
5959
5960         /* reset offloads to defaults */
5961         igb_set_vmolr(adapter, vf, true);
5962
5963         /* reset vlans for device */
5964         igb_clear_vf_vfta(adapter, vf);
5965         if (adapter->vf_data[vf].pf_vlan)
5966                 igb_ndo_set_vf_vlan(adapter->netdev, vf,
5967                                     adapter->vf_data[vf].pf_vlan,
5968                                     adapter->vf_data[vf].pf_qos);
5969         else
5970                 igb_clear_vf_vfta(adapter, vf);
5971
5972         /* reset multicast table array for vf */
5973         adapter->vf_data[vf].num_vf_mc_hashes = 0;
5974
5975         /* Flush and reset the mta with the new values */
5976         igb_set_rx_mode(adapter->netdev);
5977 }
5978
5979 static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5980 {
5981         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5982
5983         /* clear mac address as we were hotplug removed/added */
5984         if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5985                 eth_zero_addr(vf_mac);
5986
5987         /* process remaining reset events */
5988         igb_vf_reset(adapter, vf);
5989 }
5990
5991 static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
5992 {
5993         struct e1000_hw *hw = &adapter->hw;
5994         unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5995         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
5996         u32 reg, msgbuf[3];
5997         u8 *addr = (u8 *)(&msgbuf[1]);
5998
5999         /* process all the same items cleared in a function level reset */
6000         igb_vf_reset(adapter, vf);
6001
6002         /* set vf mac address */
6003         igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
6004
6005         /* enable transmit and receive for vf */
6006         reg = rd32(E1000_VFTE);
6007         wr32(E1000_VFTE, reg | (1 << vf));
6008         reg = rd32(E1000_VFRE);
6009         wr32(E1000_VFRE, reg | (1 << vf));
6010
6011         adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
6012
6013         /* reply to reset with ack and vf mac address */
6014         msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
6015         memcpy(addr, vf_mac, ETH_ALEN);
6016         igb_write_mbx(hw, msgbuf, 3, vf);
6017 }
6018
6019 static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
6020 {
6021         /* The VF MAC Address is stored in a packed array of bytes
6022          * starting at the second 32 bit word of the msg array
6023          */
6024         unsigned char *addr = (char *)&msg[1];
6025         int err = -1;
6026
6027         if (is_valid_ether_addr(addr))
6028                 err = igb_set_vf_mac(adapter, vf, addr);
6029
6030         return err;
6031 }
6032
6033 static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
6034 {
6035         struct e1000_hw *hw = &adapter->hw;
6036         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6037         u32 msg = E1000_VT_MSGTYPE_NACK;
6038
6039         /* if device isn't clear to send it shouldn't be reading either */
6040         if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
6041             time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
6042                 igb_write_mbx(hw, &msg, 1, vf);
6043                 vf_data->last_nack = jiffies;
6044         }
6045 }
6046
6047 static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
6048 {
6049         struct pci_dev *pdev = adapter->pdev;
6050         u32 msgbuf[E1000_VFMAILBOX_SIZE];
6051         struct e1000_hw *hw = &adapter->hw;
6052         struct vf_data_storage *vf_data = &adapter->vf_data[vf];
6053         s32 retval;
6054
6055         retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
6056
6057         if (retval) {
6058                 /* if receive failed revoke VF CTS stats and restart init */
6059                 dev_err(&pdev->dev, "Error receiving message from VF\n");
6060                 vf_data->flags &= ~IGB_VF_FLAG_CTS;
6061                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6062                         return;
6063                 goto out;
6064         }
6065
6066         /* this is a message we already processed, do nothing */
6067         if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
6068                 return;
6069
6070         /* until the vf completes a reset it should not be
6071          * allowed to start any configuration.
6072          */
6073         if (msgbuf[0] == E1000_VF_RESET) {
6074                 igb_vf_reset_msg(adapter, vf);
6075                 return;
6076         }
6077
6078         if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
6079                 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
6080                         return;
6081                 retval = -1;
6082                 goto out;
6083         }
6084
6085         switch ((msgbuf[0] & 0xFFFF)) {
6086         case E1000_VF_SET_MAC_ADDR:
6087                 retval = -EINVAL;
6088                 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
6089                         retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
6090                 else
6091                         dev_warn(&pdev->dev,
6092                                  "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
6093                                  vf);
6094                 break;
6095         case E1000_VF_SET_PROMISC:
6096                 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
6097                 break;
6098         case E1000_VF_SET_MULTICAST:
6099                 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
6100                 break;
6101         case E1000_VF_SET_LPE:
6102                 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
6103                 break;
6104         case E1000_VF_SET_VLAN:
6105                 retval = -1;
6106                 if (vf_data->pf_vlan)
6107                         dev_warn(&pdev->dev,
6108                                  "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
6109                                  vf);
6110                 else
6111                         retval = igb_set_vf_vlan(adapter, msgbuf, vf);
6112                 break;
6113         default:
6114                 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
6115                 retval = -1;
6116                 break;
6117         }
6118
6119         msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
6120 out:
6121         /* notify the VF of the results of what it sent us */
6122         if (retval)
6123                 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
6124         else
6125                 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
6126
6127         igb_write_mbx(hw, msgbuf, 1, vf);
6128 }
6129
6130 static void igb_msg_task(struct igb_adapter *adapter)
6131 {
6132         struct e1000_hw *hw = &adapter->hw;
6133         u32 vf;
6134
6135         for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
6136                 /* process any reset requests */
6137                 if (!igb_check_for_rst(hw, vf))
6138                         igb_vf_reset_event(adapter, vf);
6139
6140                 /* process any messages pending */
6141                 if (!igb_check_for_msg(hw, vf))
6142                         igb_rcv_msg_from_vf(adapter, vf);
6143
6144                 /* process any acks */
6145                 if (!igb_check_for_ack(hw, vf))
6146                         igb_rcv_ack_from_vf(adapter, vf);
6147         }
6148 }
6149
6150 /**
6151  *  igb_set_uta - Set unicast filter table address
6152  *  @adapter: board private structure
6153  *
6154  *  The unicast table address is a register array of 32-bit registers.
6155  *  The table is meant to be used in a way similar to how the MTA is used
6156  *  however due to certain limitations in the hardware it is necessary to
6157  *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
6158  *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
6159  **/
6160 static void igb_set_uta(struct igb_adapter *adapter)
6161 {
6162         struct e1000_hw *hw = &adapter->hw;
6163         int i;
6164
6165         /* The UTA table only exists on 82576 hardware and newer */
6166         if (hw->mac.type < e1000_82576)
6167                 return;
6168
6169         /* we only need to do this if VMDq is enabled */
6170         if (!adapter->vfs_allocated_count)
6171                 return;
6172
6173         for (i = 0; i < hw->mac.uta_reg_count; i++)
6174                 array_wr32(E1000_UTA, i, ~0);
6175 }
6176
6177 /**
6178  *  igb_intr_msi - Interrupt Handler
6179  *  @irq: interrupt number
6180  *  @data: pointer to a network interface device structure
6181  **/
6182 static irqreturn_t igb_intr_msi(int irq, void *data)
6183 {
6184         struct igb_adapter *adapter = data;
6185         struct igb_q_vector *q_vector = adapter->q_vector[0];
6186         struct e1000_hw *hw = &adapter->hw;
6187         /* read ICR disables interrupts using IAM */
6188         u32 icr = rd32(E1000_ICR);
6189
6190         igb_write_itr(q_vector);
6191
6192         if (icr & E1000_ICR_DRSTA)
6193                 schedule_work(&adapter->reset_task);
6194
6195         if (icr & E1000_ICR_DOUTSYNC) {
6196                 /* HW is reporting DMA is out of sync */
6197                 adapter->stats.doosync++;
6198         }
6199
6200         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6201                 hw->mac.get_link_status = 1;
6202                 if (!test_bit(__IGB_DOWN, &adapter->state))
6203                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
6204         }
6205
6206         if (icr & E1000_ICR_TS) {
6207                 u32 tsicr = rd32(E1000_TSICR);
6208
6209                 if (tsicr & E1000_TSICR_TXTS) {
6210                         /* acknowledge the interrupt */
6211                         wr32(E1000_TSICR, E1000_TSICR_TXTS);
6212                         /* retrieve hardware timestamp */
6213                         schedule_work(&adapter->ptp_tx_work);
6214                 }
6215         }
6216
6217         napi_schedule(&q_vector->napi);
6218
6219         return IRQ_HANDLED;
6220 }
6221
6222 /**
6223  *  igb_intr - Legacy Interrupt Handler
6224  *  @irq: interrupt number
6225  *  @data: pointer to a network interface device structure
6226  **/
6227 static irqreturn_t igb_intr(int irq, void *data)
6228 {
6229         struct igb_adapter *adapter = data;
6230         struct igb_q_vector *q_vector = adapter->q_vector[0];
6231         struct e1000_hw *hw = &adapter->hw;
6232         /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
6233          * need for the IMC write
6234          */
6235         u32 icr = rd32(E1000_ICR);
6236
6237         /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
6238          * not set, then the adapter didn't send an interrupt
6239          */
6240         if (!(icr & E1000_ICR_INT_ASSERTED))
6241                 return IRQ_NONE;
6242
6243         igb_write_itr(q_vector);
6244
6245         if (icr & E1000_ICR_DRSTA)
6246                 schedule_work(&adapter->reset_task);
6247
6248         if (icr & E1000_ICR_DOUTSYNC) {
6249                 /* HW is reporting DMA is out of sync */
6250                 adapter->stats.doosync++;
6251         }
6252
6253         if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
6254                 hw->mac.get_link_status = 1;
6255                 /* guard against interrupt when we're going down */
6256                 if (!test_bit(__IGB_DOWN, &adapter->state))
6257                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
6258         }
6259
6260         if (icr & E1000_ICR_TS) {
6261                 u32 tsicr = rd32(E1000_TSICR);
6262
6263                 if (tsicr & E1000_TSICR_TXTS) {
6264                         /* acknowledge the interrupt */
6265                         wr32(E1000_TSICR, E1000_TSICR_TXTS);
6266                         /* retrieve hardware timestamp */
6267                         schedule_work(&adapter->ptp_tx_work);
6268                 }
6269         }
6270
6271         napi_schedule(&q_vector->napi);
6272
6273         return IRQ_HANDLED;
6274 }
6275
6276 static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
6277 {
6278         struct igb_adapter *adapter = q_vector->adapter;
6279         struct e1000_hw *hw = &adapter->hw;
6280
6281         if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
6282             (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
6283                 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
6284                         igb_set_itr(q_vector);
6285                 else
6286                         igb_update_ring_itr(q_vector);
6287         }
6288
6289         if (!test_bit(__IGB_DOWN, &adapter->state)) {
6290                 if (adapter->flags & IGB_FLAG_HAS_MSIX)
6291                         wr32(E1000_EIMS, q_vector->eims_value);
6292                 else
6293                         igb_irq_enable(adapter);
6294         }
6295 }
6296
6297 /**
6298  *  igb_poll - NAPI Rx polling callback
6299  *  @napi: napi polling structure
6300  *  @budget: count of how many packets we should handle
6301  **/
6302 static int igb_poll(struct napi_struct *napi, int budget)
6303 {
6304         struct igb_q_vector *q_vector = container_of(napi,
6305                                                      struct igb_q_vector,
6306                                                      napi);
6307         bool clean_complete = true;
6308
6309 #ifdef CONFIG_IGB_DCA
6310         if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
6311                 igb_update_dca(q_vector);
6312 #endif
6313         if (q_vector->tx.ring)
6314                 clean_complete = igb_clean_tx_irq(q_vector);
6315
6316         if (q_vector->rx.ring)
6317                 clean_complete &= igb_clean_rx_irq(q_vector, budget);
6318
6319         /* If all work not completed, return budget and keep polling */
6320         if (!clean_complete)
6321                 return budget;
6322
6323         /* If not enough Rx work done, exit the polling mode */
6324         napi_complete(napi);
6325         igb_ring_irq_enable(q_vector);
6326
6327         return 0;
6328 }
6329
6330 /**
6331  *  igb_clean_tx_irq - Reclaim resources after transmit completes
6332  *  @q_vector: pointer to q_vector containing needed info
6333  *
6334  *  returns true if ring is completely cleaned
6335  **/
6336 static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
6337 {
6338         struct igb_adapter *adapter = q_vector->adapter;
6339         struct igb_ring *tx_ring = q_vector->tx.ring;
6340         struct igb_tx_buffer *tx_buffer;
6341         union e1000_adv_tx_desc *tx_desc;
6342         unsigned int total_bytes = 0, total_packets = 0;
6343         unsigned int budget = q_vector->tx.work_limit;
6344         unsigned int i = tx_ring->next_to_clean;
6345
6346         if (test_bit(__IGB_DOWN, &adapter->state))
6347                 return true;
6348
6349         tx_buffer = &tx_ring->tx_buffer_info[i];
6350         tx_desc = IGB_TX_DESC(tx_ring, i);
6351         i -= tx_ring->count;
6352
6353         do {
6354                 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
6355
6356                 /* if next_to_watch is not set then there is no work pending */
6357                 if (!eop_desc)
6358                         break;
6359
6360                 /* prevent any other reads prior to eop_desc */
6361                 read_barrier_depends();
6362
6363                 /* if DD is not set pending work has not been completed */
6364                 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
6365                         break;
6366
6367                 /* clear next_to_watch to prevent false hangs */
6368                 tx_buffer->next_to_watch = NULL;
6369
6370                 /* update the statistics for this packet */
6371                 total_bytes += tx_buffer->bytecount;
6372                 total_packets += tx_buffer->gso_segs;
6373
6374                 /* free the skb */
6375                 dev_consume_skb_any(tx_buffer->skb);
6376
6377                 /* unmap skb header data */
6378                 dma_unmap_single(tx_ring->dev,
6379                                  dma_unmap_addr(tx_buffer, dma),
6380                                  dma_unmap_len(tx_buffer, len),
6381                                  DMA_TO_DEVICE);
6382
6383                 /* clear tx_buffer data */
6384                 tx_buffer->skb = NULL;
6385                 dma_unmap_len_set(tx_buffer, len, 0);
6386
6387                 /* clear last DMA location and unmap remaining buffers */
6388                 while (tx_desc != eop_desc) {
6389                         tx_buffer++;
6390                         tx_desc++;
6391                         i++;
6392                         if (unlikely(!i)) {
6393                                 i -= tx_ring->count;
6394                                 tx_buffer = tx_ring->tx_buffer_info;
6395                                 tx_desc = IGB_TX_DESC(tx_ring, 0);
6396                         }
6397
6398                         /* unmap any remaining paged data */
6399                         if (dma_unmap_len(tx_buffer, len)) {
6400                                 dma_unmap_page(tx_ring->dev,
6401                                                dma_unmap_addr(tx_buffer, dma),
6402                                                dma_unmap_len(tx_buffer, len),
6403                                                DMA_TO_DEVICE);
6404                                 dma_unmap_len_set(tx_buffer, len, 0);
6405                         }
6406                 }
6407
6408                 /* move us one more past the eop_desc for start of next pkt */
6409                 tx_buffer++;
6410                 tx_desc++;
6411                 i++;
6412                 if (unlikely(!i)) {
6413                         i -= tx_ring->count;
6414                         tx_buffer = tx_ring->tx_buffer_info;
6415                         tx_desc = IGB_TX_DESC(tx_ring, 0);
6416                 }
6417
6418                 /* issue prefetch for next Tx descriptor */
6419                 prefetch(tx_desc);
6420
6421                 /* update budget accounting */
6422                 budget--;
6423         } while (likely(budget));
6424
6425         netdev_tx_completed_queue(txring_txq(tx_ring),
6426                                   total_packets, total_bytes);
6427         i += tx_ring->count;
6428         tx_ring->next_to_clean = i;
6429         u64_stats_update_begin(&tx_ring->tx_syncp);
6430         tx_ring->tx_stats.bytes += total_bytes;
6431         tx_ring->tx_stats.packets += total_packets;
6432         u64_stats_update_end(&tx_ring->tx_syncp);
6433         q_vector->tx.total_bytes += total_bytes;
6434         q_vector->tx.total_packets += total_packets;
6435
6436         if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
6437                 struct e1000_hw *hw = &adapter->hw;
6438
6439                 /* Detect a transmit hang in hardware, this serializes the
6440                  * check with the clearing of time_stamp and movement of i
6441                  */
6442                 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
6443                 if (tx_buffer->next_to_watch &&
6444                     time_after(jiffies, tx_buffer->time_stamp +
6445                                (adapter->tx_timeout_factor * HZ)) &&
6446                     !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
6447
6448                         /* detected Tx unit hang */
6449                         dev_err(tx_ring->dev,
6450                                 "Detected Tx Unit Hang\n"
6451                                 "  Tx Queue             <%d>\n"
6452                                 "  TDH                  <%x>\n"
6453                                 "  TDT                  <%x>\n"
6454                                 "  next_to_use          <%x>\n"
6455                                 "  next_to_clean        <%x>\n"
6456                                 "buffer_info[next_to_clean]\n"
6457                                 "  time_stamp           <%lx>\n"
6458                                 "  next_to_watch        <%p>\n"
6459                                 "  jiffies              <%lx>\n"
6460                                 "  desc.status          <%x>\n",
6461                                 tx_ring->queue_index,
6462                                 rd32(E1000_TDH(tx_ring->reg_idx)),
6463                                 readl(tx_ring->tail),
6464                                 tx_ring->next_to_use,
6465                                 tx_ring->next_to_clean,
6466                                 tx_buffer->time_stamp,
6467                                 tx_buffer->next_to_watch,
6468                                 jiffies,
6469                                 tx_buffer->next_to_watch->wb.status);
6470                         netif_stop_subqueue(tx_ring->netdev,
6471                                             tx_ring->queue_index);
6472
6473                         /* we are about to reset, no point in enabling stuff */
6474                         return true;
6475                 }
6476         }
6477
6478 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
6479         if (unlikely(total_packets &&
6480             netif_carrier_ok(tx_ring->netdev) &&
6481             igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
6482                 /* Make sure that anybody stopping the queue after this
6483                  * sees the new next_to_clean.
6484                  */
6485                 smp_mb();
6486                 if (__netif_subqueue_stopped(tx_ring->netdev,
6487                                              tx_ring->queue_index) &&
6488                     !(test_bit(__IGB_DOWN, &adapter->state))) {
6489                         netif_wake_subqueue(tx_ring->netdev,
6490                                             tx_ring->queue_index);
6491
6492                         u64_stats_update_begin(&tx_ring->tx_syncp);
6493                         tx_ring->tx_stats.restart_queue++;
6494                         u64_stats_update_end(&tx_ring->tx_syncp);
6495                 }
6496         }
6497
6498         return !!budget;
6499 }
6500
6501 /**
6502  *  igb_reuse_rx_page - page flip buffer and store it back on the ring
6503  *  @rx_ring: rx descriptor ring to store buffers on
6504  *  @old_buff: donor buffer to have page reused
6505  *
6506  *  Synchronizes page for reuse by the adapter
6507  **/
6508 static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6509                               struct igb_rx_buffer *old_buff)
6510 {
6511         struct igb_rx_buffer *new_buff;
6512         u16 nta = rx_ring->next_to_alloc;
6513
6514         new_buff = &rx_ring->rx_buffer_info[nta];
6515
6516         /* update, and store next to alloc */
6517         nta++;
6518         rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6519
6520         /* transfer page from old buffer to new buffer */
6521         *new_buff = *old_buff;
6522
6523         /* sync the buffer for use by the device */
6524         dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6525                                          old_buff->page_offset,
6526                                          IGB_RX_BUFSZ,
6527                                          DMA_FROM_DEVICE);
6528 }
6529
6530 static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6531                                   struct page *page,
6532                                   unsigned int truesize)
6533 {
6534         /* avoid re-using remote pages */
6535         if (unlikely(page_to_nid(page) != numa_node_id()))
6536                 return false;
6537
6538         if (unlikely(page->pfmemalloc))
6539                 return false;
6540
6541 #if (PAGE_SIZE < 8192)
6542         /* if we are only owner of page we can reuse it */
6543         if (unlikely(page_count(page) != 1))
6544                 return false;
6545
6546         /* flip page offset to other buffer */
6547         rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6548
6549         /* Even if we own the page, we are not allowed to use atomic_set()
6550          * This would break get_page_unless_zero() users.
6551          */
6552         atomic_inc(&page->_count);
6553 #else
6554         /* move offset up to the next cache line */
6555         rx_buffer->page_offset += truesize;
6556
6557         if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6558                 return false;
6559
6560         /* bump ref count on page before it is given to the stack */
6561         get_page(page);
6562 #endif
6563
6564         return true;
6565 }
6566
6567 /**
6568  *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6569  *  @rx_ring: rx descriptor ring to transact packets on
6570  *  @rx_buffer: buffer containing page to add
6571  *  @rx_desc: descriptor containing length of buffer written by hardware
6572  *  @skb: sk_buff to place the data into
6573  *
6574  *  This function will add the data contained in rx_buffer->page to the skb.
6575  *  This is done either through a direct copy if the data in the buffer is
6576  *  less than the skb header size, otherwise it will just attach the page as
6577  *  a frag to the skb.
6578  *
6579  *  The function will then update the page offset if necessary and return
6580  *  true if the buffer can be reused by the adapter.
6581  **/
6582 static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6583                             struct igb_rx_buffer *rx_buffer,
6584                             union e1000_adv_rx_desc *rx_desc,
6585                             struct sk_buff *skb)
6586 {
6587         struct page *page = rx_buffer->page;
6588         unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
6589 #if (PAGE_SIZE < 8192)
6590         unsigned int truesize = IGB_RX_BUFSZ;
6591 #else
6592         unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6593 #endif
6594
6595         if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6596                 unsigned char *va = page_address(page) + rx_buffer->page_offset;
6597
6598                 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6599                         igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6600                         va += IGB_TS_HDR_LEN;
6601                         size -= IGB_TS_HDR_LEN;
6602                 }
6603
6604                 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6605
6606                 /* we can reuse buffer as-is, just make sure it is local */
6607                 if (likely((page_to_nid(page) == numa_node_id()) &&
6608                            !page->pfmemalloc))
6609                         return true;
6610
6611                 /* this page cannot be reused so discard it */
6612                 put_page(page);
6613                 return false;
6614         }
6615
6616         skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
6617                         rx_buffer->page_offset, size, truesize);
6618
6619         return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6620 }
6621
6622 static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6623                                            union e1000_adv_rx_desc *rx_desc,
6624                                            struct sk_buff *skb)
6625 {
6626         struct igb_rx_buffer *rx_buffer;
6627         struct page *page;
6628
6629         rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6630
6631         page = rx_buffer->page;
6632         prefetchw(page);
6633
6634         if (likely(!skb)) {
6635                 void *page_addr = page_address(page) +
6636                                   rx_buffer->page_offset;
6637
6638                 /* prefetch first cache line of first page */
6639                 prefetch(page_addr);
6640 #if L1_CACHE_BYTES < 128
6641                 prefetch(page_addr + L1_CACHE_BYTES);
6642 #endif
6643
6644                 /* allocate a skb to store the frags */
6645                 skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
6646                 if (unlikely(!skb)) {
6647                         rx_ring->rx_stats.alloc_failed++;
6648                         return NULL;
6649                 }
6650
6651                 /* we will be copying header into skb->data in
6652                  * pskb_may_pull so it is in our interest to prefetch
6653                  * it now to avoid a possible cache miss
6654                  */
6655                 prefetchw(skb->data);
6656         }
6657
6658         /* we are reusing so sync this buffer for CPU use */
6659         dma_sync_single_range_for_cpu(rx_ring->dev,
6660                                       rx_buffer->dma,
6661                                       rx_buffer->page_offset,
6662                                       IGB_RX_BUFSZ,
6663                                       DMA_FROM_DEVICE);
6664
6665         /* pull page into skb */
6666         if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6667                 /* hand second half of page back to the ring */
6668                 igb_reuse_rx_page(rx_ring, rx_buffer);
6669         } else {
6670                 /* we are not reusing the buffer so unmap it */
6671                 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6672                                PAGE_SIZE, DMA_FROM_DEVICE);
6673         }
6674
6675         /* clear contents of rx_buffer */
6676         rx_buffer->page = NULL;
6677
6678         return skb;
6679 }
6680
6681 static inline void igb_rx_checksum(struct igb_ring *ring,
6682                                    union e1000_adv_rx_desc *rx_desc,
6683                                    struct sk_buff *skb)
6684 {
6685         skb_checksum_none_assert(skb);
6686
6687         /* Ignore Checksum bit is set */
6688         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
6689                 return;
6690
6691         /* Rx checksum disabled via ethtool */
6692         if (!(ring->netdev->features & NETIF_F_RXCSUM))
6693                 return;
6694
6695         /* TCP/UDP checksum error bit is set */
6696         if (igb_test_staterr(rx_desc,
6697                              E1000_RXDEXT_STATERR_TCPE |
6698                              E1000_RXDEXT_STATERR_IPE)) {
6699                 /* work around errata with sctp packets where the TCPE aka
6700                  * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6701                  * packets, (aka let the stack check the crc32c)
6702                  */
6703                 if (!((skb->len == 60) &&
6704                       test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
6705                         u64_stats_update_begin(&ring->rx_syncp);
6706                         ring->rx_stats.csum_err++;
6707                         u64_stats_update_end(&ring->rx_syncp);
6708                 }
6709                 /* let the stack verify checksum errors */
6710                 return;
6711         }
6712         /* It must be a TCP or UDP packet with a valid checksum */
6713         if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6714                                       E1000_RXD_STAT_UDPCS))
6715                 skb->ip_summed = CHECKSUM_UNNECESSARY;
6716
6717         dev_dbg(ring->dev, "cksum success: bits %08X\n",
6718                 le32_to_cpu(rx_desc->wb.upper.status_error));
6719 }
6720
6721 static inline void igb_rx_hash(struct igb_ring *ring,
6722                                union e1000_adv_rx_desc *rx_desc,
6723                                struct sk_buff *skb)
6724 {
6725         if (ring->netdev->features & NETIF_F_RXHASH)
6726                 skb_set_hash(skb,
6727                              le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
6728                              PKT_HASH_TYPE_L3);
6729 }
6730
6731 /**
6732  *  igb_is_non_eop - process handling of non-EOP buffers
6733  *  @rx_ring: Rx ring being processed
6734  *  @rx_desc: Rx descriptor for current buffer
6735  *  @skb: current socket buffer containing buffer in progress
6736  *
6737  *  This function updates next to clean.  If the buffer is an EOP buffer
6738  *  this function exits returning false, otherwise it will place the
6739  *  sk_buff in the next buffer to be chained and return true indicating
6740  *  that this is in fact a non-EOP buffer.
6741  **/
6742 static bool igb_is_non_eop(struct igb_ring *rx_ring,
6743                            union e1000_adv_rx_desc *rx_desc)
6744 {
6745         u32 ntc = rx_ring->next_to_clean + 1;
6746
6747         /* fetch, update, and store next to clean */
6748         ntc = (ntc < rx_ring->count) ? ntc : 0;
6749         rx_ring->next_to_clean = ntc;
6750
6751         prefetch(IGB_RX_DESC(rx_ring, ntc));
6752
6753         if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6754                 return false;
6755
6756         return true;
6757 }
6758
6759 /**
6760  *  igb_pull_tail - igb specific version of skb_pull_tail
6761  *  @rx_ring: rx descriptor ring packet is being transacted on
6762  *  @rx_desc: pointer to the EOP Rx descriptor
6763  *  @skb: pointer to current skb being adjusted
6764  *
6765  *  This function is an igb specific version of __pskb_pull_tail.  The
6766  *  main difference between this version and the original function is that
6767  *  this function can make several assumptions about the state of things
6768  *  that allow for significant optimizations versus the standard function.
6769  *  As a result we can do things like drop a frag and maintain an accurate
6770  *  truesize for the skb.
6771  */
6772 static void igb_pull_tail(struct igb_ring *rx_ring,
6773                           union e1000_adv_rx_desc *rx_desc,
6774                           struct sk_buff *skb)
6775 {
6776         struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6777         unsigned char *va;
6778         unsigned int pull_len;
6779
6780         /* it is valid to use page_address instead of kmap since we are
6781          * working with pages allocated out of the lomem pool per
6782          * alloc_page(GFP_ATOMIC)
6783          */
6784         va = skb_frag_address(frag);
6785
6786         if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6787                 /* retrieve timestamp from buffer */
6788                 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6789
6790                 /* update pointers to remove timestamp header */
6791                 skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6792                 frag->page_offset += IGB_TS_HDR_LEN;
6793                 skb->data_len -= IGB_TS_HDR_LEN;
6794                 skb->len -= IGB_TS_HDR_LEN;
6795
6796                 /* move va to start of packet data */
6797                 va += IGB_TS_HDR_LEN;
6798         }
6799
6800         /* we need the header to contain the greater of either ETH_HLEN or
6801          * 60 bytes if the skb->len is less than 60 for skb_pad.
6802          */
6803         pull_len = eth_get_headlen(va, IGB_RX_HDR_LEN);
6804
6805         /* align pull length to size of long to optimize memcpy performance */
6806         skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6807
6808         /* update all of the pointers */
6809         skb_frag_size_sub(frag, pull_len);
6810         frag->page_offset += pull_len;
6811         skb->data_len -= pull_len;
6812         skb->tail += pull_len;
6813 }
6814
6815 /**
6816  *  igb_cleanup_headers - Correct corrupted or empty headers
6817  *  @rx_ring: rx descriptor ring packet is being transacted on
6818  *  @rx_desc: pointer to the EOP Rx descriptor
6819  *  @skb: pointer to current skb being fixed
6820  *
6821  *  Address the case where we are pulling data in on pages only
6822  *  and as such no data is present in the skb header.
6823  *
6824  *  In addition if skb is not at least 60 bytes we need to pad it so that
6825  *  it is large enough to qualify as a valid Ethernet frame.
6826  *
6827  *  Returns true if an error was encountered and skb was freed.
6828  **/
6829 static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6830                                 union e1000_adv_rx_desc *rx_desc,
6831                                 struct sk_buff *skb)
6832 {
6833         if (unlikely((igb_test_staterr(rx_desc,
6834                                        E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6835                 struct net_device *netdev = rx_ring->netdev;
6836                 if (!(netdev->features & NETIF_F_RXALL)) {
6837                         dev_kfree_skb_any(skb);
6838                         return true;
6839                 }
6840         }
6841
6842         /* place header in linear portion of buffer */
6843         if (skb_is_nonlinear(skb))
6844                 igb_pull_tail(rx_ring, rx_desc, skb);
6845
6846         /* if eth_skb_pad returns an error the skb was freed */
6847         if (eth_skb_pad(skb))
6848                 return true;
6849
6850         return false;
6851 }
6852
6853 /**
6854  *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
6855  *  @rx_ring: rx descriptor ring packet is being transacted on
6856  *  @rx_desc: pointer to the EOP Rx descriptor
6857  *  @skb: pointer to current skb being populated
6858  *
6859  *  This function checks the ring, descriptor, and packet information in
6860  *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
6861  *  other fields within the skb.
6862  **/
6863 static void igb_process_skb_fields(struct igb_ring *rx_ring,
6864                                    union e1000_adv_rx_desc *rx_desc,
6865                                    struct sk_buff *skb)
6866 {
6867         struct net_device *dev = rx_ring->netdev;
6868
6869         igb_rx_hash(rx_ring, rx_desc, skb);
6870
6871         igb_rx_checksum(rx_ring, rx_desc, skb);
6872
6873         if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
6874             !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
6875                 igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
6876
6877         if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
6878             igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6879                 u16 vid;
6880
6881                 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6882                     test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6883                         vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6884                 else
6885                         vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6886
6887                 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
6888         }
6889
6890         skb_record_rx_queue(skb, rx_ring->queue_index);
6891
6892         skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6893 }
6894
6895 static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
6896 {
6897         struct igb_ring *rx_ring = q_vector->rx.ring;
6898         struct sk_buff *skb = rx_ring->skb;
6899         unsigned int total_bytes = 0, total_packets = 0;
6900         u16 cleaned_count = igb_desc_unused(rx_ring);
6901
6902         while (likely(total_packets < budget)) {
6903                 union e1000_adv_rx_desc *rx_desc;
6904
6905                 /* return some buffers to hardware, one at a time is too slow */
6906                 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6907                         igb_alloc_rx_buffers(rx_ring, cleaned_count);
6908                         cleaned_count = 0;
6909                 }
6910
6911                 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
6912
6913                 if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
6914                         break;
6915
6916                 /* This memory barrier is needed to keep us from reading
6917                  * any other fields out of the rx_desc until we know the
6918                  * RXD_STAT_DD bit is set
6919                  */
6920                 rmb();
6921
6922                 /* retrieve a buffer from the ring */
6923                 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
6924
6925                 /* exit if we failed to retrieve a buffer */
6926                 if (!skb)
6927                         break;
6928
6929                 cleaned_count++;
6930
6931                 /* fetch next buffer in frame if non-eop */
6932                 if (igb_is_non_eop(rx_ring, rx_desc))
6933                         continue;
6934
6935                 /* verify the packet layout is correct */
6936                 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6937                         skb = NULL;
6938                         continue;
6939                 }
6940
6941                 /* probably a little skewed due to removing CRC */
6942                 total_bytes += skb->len;
6943
6944                 /* populate checksum, timestamp, VLAN, and protocol */
6945                 igb_process_skb_fields(rx_ring, rx_desc, skb);
6946
6947                 napi_gro_receive(&q_vector->napi, skb);
6948
6949                 /* reset skb pointer */
6950                 skb = NULL;
6951
6952                 /* update budget accounting */
6953                 total_packets++;
6954         }
6955
6956         /* place incomplete frames back on ring for completion */
6957         rx_ring->skb = skb;
6958
6959         u64_stats_update_begin(&rx_ring->rx_syncp);
6960         rx_ring->rx_stats.packets += total_packets;
6961         rx_ring->rx_stats.bytes += total_bytes;
6962         u64_stats_update_end(&rx_ring->rx_syncp);
6963         q_vector->rx.total_packets += total_packets;
6964         q_vector->rx.total_bytes += total_bytes;
6965
6966         if (cleaned_count)
6967                 igb_alloc_rx_buffers(rx_ring, cleaned_count);
6968
6969         return total_packets < budget;
6970 }
6971
6972 static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
6973                                   struct igb_rx_buffer *bi)
6974 {
6975         struct page *page = bi->page;
6976         dma_addr_t dma;
6977
6978         /* since we are recycling buffers we should seldom need to alloc */
6979         if (likely(page))
6980                 return true;
6981
6982         /* alloc new page for storage */
6983         page = dev_alloc_page();
6984         if (unlikely(!page)) {
6985                 rx_ring->rx_stats.alloc_failed++;
6986                 return false;
6987         }
6988
6989         /* map page for use */
6990         dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
6991
6992         /* if mapping failed free memory back to system since
6993          * there isn't much point in holding memory we can't use
6994          */
6995         if (dma_mapping_error(rx_ring->dev, dma)) {
6996                 __free_page(page);
6997
6998                 rx_ring->rx_stats.alloc_failed++;
6999                 return false;
7000         }
7001
7002         bi->dma = dma;
7003         bi->page = page;
7004         bi->page_offset = 0;
7005
7006         return true;
7007 }
7008
7009 /**
7010  *  igb_alloc_rx_buffers - Replace used receive buffers; packet split
7011  *  @adapter: address of board private structure
7012  **/
7013 void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
7014 {
7015         union e1000_adv_rx_desc *rx_desc;
7016         struct igb_rx_buffer *bi;
7017         u16 i = rx_ring->next_to_use;
7018
7019         /* nothing to do */
7020         if (!cleaned_count)
7021                 return;
7022
7023         rx_desc = IGB_RX_DESC(rx_ring, i);
7024         bi = &rx_ring->rx_buffer_info[i];
7025         i -= rx_ring->count;
7026
7027         do {
7028                 if (!igb_alloc_mapped_page(rx_ring, bi))
7029                         break;
7030
7031                 /* Refresh the desc even if buffer_addrs didn't change
7032                  * because each write-back erases this info.
7033                  */
7034                 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
7035
7036                 rx_desc++;
7037                 bi++;
7038                 i++;
7039                 if (unlikely(!i)) {
7040                         rx_desc = IGB_RX_DESC(rx_ring, 0);
7041                         bi = rx_ring->rx_buffer_info;
7042                         i -= rx_ring->count;
7043                 }
7044
7045                 /* clear the hdr_addr for the next_to_use descriptor */
7046                 rx_desc->read.hdr_addr = 0;
7047
7048                 cleaned_count--;
7049         } while (cleaned_count);
7050
7051         i += rx_ring->count;
7052
7053         if (rx_ring->next_to_use != i) {
7054                 /* record the next descriptor to use */
7055                 rx_ring->next_to_use = i;
7056
7057                 /* update next to alloc since we have filled the ring */
7058                 rx_ring->next_to_alloc = i;
7059
7060                 /* Force memory writes to complete before letting h/w
7061                  * know there are new descriptors to fetch.  (Only
7062                  * applicable for weak-ordered memory model archs,
7063                  * such as IA-64).
7064                  */
7065                 wmb();
7066                 writel(i, rx_ring->tail);
7067         }
7068 }
7069
7070 /**
7071  * igb_mii_ioctl -
7072  * @netdev:
7073  * @ifreq:
7074  * @cmd:
7075  **/
7076 static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7077 {
7078         struct igb_adapter *adapter = netdev_priv(netdev);
7079         struct mii_ioctl_data *data = if_mii(ifr);
7080
7081         if (adapter->hw.phy.media_type != e1000_media_type_copper)
7082                 return -EOPNOTSUPP;
7083
7084         switch (cmd) {
7085         case SIOCGMIIPHY:
7086                 data->phy_id = adapter->hw.phy.addr;
7087                 break;
7088         case SIOCGMIIREG:
7089                 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
7090                                      &data->val_out))
7091                         return -EIO;
7092                 break;
7093         case SIOCSMIIREG:
7094         default:
7095                 return -EOPNOTSUPP;
7096         }
7097         return 0;
7098 }
7099
7100 /**
7101  * igb_ioctl -
7102  * @netdev:
7103  * @ifreq:
7104  * @cmd:
7105  **/
7106 static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7107 {
7108         switch (cmd) {
7109         case SIOCGMIIPHY:
7110         case SIOCGMIIREG:
7111         case SIOCSMIIREG:
7112                 return igb_mii_ioctl(netdev, ifr, cmd);
7113         case SIOCGHWTSTAMP:
7114                 return igb_ptp_get_ts_config(netdev, ifr);
7115         case SIOCSHWTSTAMP:
7116                 return igb_ptp_set_ts_config(netdev, ifr);
7117         default:
7118                 return -EOPNOTSUPP;
7119         }
7120 }
7121
7122 void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7123 {
7124         struct igb_adapter *adapter = hw->back;
7125
7126         pci_read_config_word(adapter->pdev, reg, value);
7127 }
7128
7129 void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
7130 {
7131         struct igb_adapter *adapter = hw->back;
7132
7133         pci_write_config_word(adapter->pdev, reg, *value);
7134 }
7135
7136 s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7137 {
7138         struct igb_adapter *adapter = hw->back;
7139
7140         if (pcie_capability_read_word(adapter->pdev, reg, value))
7141                 return -E1000_ERR_CONFIG;
7142
7143         return 0;
7144 }
7145
7146 s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
7147 {
7148         struct igb_adapter *adapter = hw->back;
7149
7150         if (pcie_capability_write_word(adapter->pdev, reg, *value))
7151                 return -E1000_ERR_CONFIG;
7152
7153         return 0;
7154 }
7155
7156 static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
7157 {
7158         struct igb_adapter *adapter = netdev_priv(netdev);
7159         struct e1000_hw *hw = &adapter->hw;
7160         u32 ctrl, rctl;
7161         bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
7162
7163         if (enable) {
7164                 /* enable VLAN tag insert/strip */
7165                 ctrl = rd32(E1000_CTRL);
7166                 ctrl |= E1000_CTRL_VME;
7167                 wr32(E1000_CTRL, ctrl);
7168
7169                 /* Disable CFI check */
7170                 rctl = rd32(E1000_RCTL);
7171                 rctl &= ~E1000_RCTL_CFIEN;
7172                 wr32(E1000_RCTL, rctl);
7173         } else {
7174                 /* disable VLAN tag insert/strip */
7175                 ctrl = rd32(E1000_CTRL);
7176                 ctrl &= ~E1000_CTRL_VME;
7177                 wr32(E1000_CTRL, ctrl);
7178         }
7179
7180         igb_rlpml_set(adapter);
7181 }
7182
7183 static int igb_vlan_rx_add_vid(struct net_device *netdev,
7184                                __be16 proto, u16 vid)
7185 {
7186         struct igb_adapter *adapter = netdev_priv(netdev);
7187         struct e1000_hw *hw = &adapter->hw;
7188         int pf_id = adapter->vfs_allocated_count;
7189
7190         /* attempt to add filter to vlvf array */
7191         igb_vlvf_set(adapter, vid, true, pf_id);
7192
7193         /* add the filter since PF can receive vlans w/o entry in vlvf */
7194         igb_vfta_set(hw, vid, true);
7195
7196         set_bit(vid, adapter->active_vlans);
7197
7198         return 0;
7199 }
7200
7201 static int igb_vlan_rx_kill_vid(struct net_device *netdev,
7202                                 __be16 proto, u16 vid)
7203 {
7204         struct igb_adapter *adapter = netdev_priv(netdev);
7205         struct e1000_hw *hw = &adapter->hw;
7206         int pf_id = adapter->vfs_allocated_count;
7207         s32 err;
7208
7209         /* remove vlan from VLVF table array */
7210         err = igb_vlvf_set(adapter, vid, false, pf_id);
7211
7212         /* if vid was not present in VLVF just remove it from table */
7213         if (err)
7214                 igb_vfta_set(hw, vid, false);
7215
7216         clear_bit(vid, adapter->active_vlans);
7217
7218         return 0;
7219 }
7220
7221 static void igb_restore_vlan(struct igb_adapter *adapter)
7222 {
7223         u16 vid;
7224
7225         igb_vlan_mode(adapter->netdev, adapter->netdev->features);
7226
7227         for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
7228                 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
7229 }
7230
7231 int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
7232 {
7233         struct pci_dev *pdev = adapter->pdev;
7234         struct e1000_mac_info *mac = &adapter->hw.mac;
7235
7236         mac->autoneg = 0;
7237
7238         /* Make sure dplx is at most 1 bit and lsb of speed is not set
7239          * for the switch() below to work
7240          */
7241         if ((spd & 1) || (dplx & ~1))
7242                 goto err_inval;
7243
7244         /* Fiber NIC's only allow 1000 gbps Full duplex
7245          * and 100Mbps Full duplex for 100baseFx sfp
7246          */
7247         if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
7248                 switch (spd + dplx) {
7249                 case SPEED_10 + DUPLEX_HALF:
7250                 case SPEED_10 + DUPLEX_FULL:
7251                 case SPEED_100 + DUPLEX_HALF:
7252                         goto err_inval;
7253                 default:
7254                         break;
7255                 }
7256         }
7257
7258         switch (spd + dplx) {
7259         case SPEED_10 + DUPLEX_HALF:
7260                 mac->forced_speed_duplex = ADVERTISE_10_HALF;
7261                 break;
7262         case SPEED_10 + DUPLEX_FULL:
7263                 mac->forced_speed_duplex = ADVERTISE_10_FULL;
7264                 break;
7265         case SPEED_100 + DUPLEX_HALF:
7266                 mac->forced_speed_duplex = ADVERTISE_100_HALF;
7267                 break;
7268         case SPEED_100 + DUPLEX_FULL:
7269                 mac->forced_speed_duplex = ADVERTISE_100_FULL;
7270                 break;
7271         case SPEED_1000 + DUPLEX_FULL:
7272                 mac->autoneg = 1;
7273                 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
7274                 break;
7275         case SPEED_1000 + DUPLEX_HALF: /* not supported */
7276         default:
7277                 goto err_inval;
7278         }
7279
7280         /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
7281         adapter->hw.phy.mdix = AUTO_ALL_MODES;
7282
7283         return 0;
7284
7285 err_inval:
7286         dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
7287         return -EINVAL;
7288 }
7289
7290 static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
7291                           bool runtime)
7292 {
7293         struct net_device *netdev = pci_get_drvdata(pdev);
7294         struct igb_adapter *adapter = netdev_priv(netdev);
7295         struct e1000_hw *hw = &adapter->hw;
7296         u32 ctrl, rctl, status;
7297         u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
7298 #ifdef CONFIG_PM
7299         int retval = 0;
7300 #endif
7301
7302         netif_device_detach(netdev);
7303
7304         if (netif_running(netdev))
7305                 __igb_close(netdev, true);
7306
7307         igb_clear_interrupt_scheme(adapter);
7308
7309 #ifdef CONFIG_PM
7310         retval = pci_save_state(pdev);
7311         if (retval)
7312                 return retval;
7313 #endif
7314
7315         status = rd32(E1000_STATUS);
7316         if (status & E1000_STATUS_LU)
7317                 wufc &= ~E1000_WUFC_LNKC;
7318
7319         if (wufc) {
7320                 igb_setup_rctl(adapter);
7321                 igb_set_rx_mode(netdev);
7322
7323                 /* turn on all-multi mode if wake on multicast is enabled */
7324                 if (wufc & E1000_WUFC_MC) {
7325                         rctl = rd32(E1000_RCTL);
7326                         rctl |= E1000_RCTL_MPE;
7327                         wr32(E1000_RCTL, rctl);
7328                 }
7329
7330                 ctrl = rd32(E1000_CTRL);
7331                 /* advertise wake from D3Cold */
7332                 #define E1000_CTRL_ADVD3WUC 0x00100000
7333                 /* phy power management enable */
7334                 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7335                 ctrl |= E1000_CTRL_ADVD3WUC;
7336                 wr32(E1000_CTRL, ctrl);
7337
7338                 /* Allow time for pending master requests to run */
7339                 igb_disable_pcie_master(hw);
7340
7341                 wr32(E1000_WUC, E1000_WUC_PME_EN);
7342                 wr32(E1000_WUFC, wufc);
7343         } else {
7344                 wr32(E1000_WUC, 0);
7345                 wr32(E1000_WUFC, 0);
7346         }
7347
7348         *enable_wake = wufc || adapter->en_mng_pt;
7349         if (!*enable_wake)
7350                 igb_power_down_link(adapter);
7351         else
7352                 igb_power_up_link(adapter);
7353
7354         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
7355          * would have already happened in close and is redundant.
7356          */
7357         igb_release_hw_control(adapter);
7358
7359         pci_disable_device(pdev);
7360
7361         return 0;
7362 }
7363
7364 #ifdef CONFIG_PM
7365 #ifdef CONFIG_PM_SLEEP
7366 static int igb_suspend(struct device *dev)
7367 {
7368         int retval;
7369         bool wake;
7370         struct pci_dev *pdev = to_pci_dev(dev);
7371
7372         retval = __igb_shutdown(pdev, &wake, 0);
7373         if (retval)
7374                 return retval;
7375
7376         if (wake) {
7377                 pci_prepare_to_sleep(pdev);
7378         } else {
7379                 pci_wake_from_d3(pdev, false);
7380                 pci_set_power_state(pdev, PCI_D3hot);
7381         }
7382
7383         return 0;
7384 }
7385 #endif /* CONFIG_PM_SLEEP */
7386
7387 static int igb_resume(struct device *dev)
7388 {
7389         struct pci_dev *pdev = to_pci_dev(dev);
7390         struct net_device *netdev = pci_get_drvdata(pdev);
7391         struct igb_adapter *adapter = netdev_priv(netdev);
7392         struct e1000_hw *hw = &adapter->hw;
7393         u32 err;
7394
7395         pci_set_power_state(pdev, PCI_D0);
7396         pci_restore_state(pdev);
7397         pci_save_state(pdev);
7398
7399         if (!pci_device_is_present(pdev))
7400                 return -ENODEV;
7401         err = pci_enable_device_mem(pdev);
7402         if (err) {
7403                 dev_err(&pdev->dev,
7404                         "igb: Cannot enable PCI device from suspend\n");
7405                 return err;
7406         }
7407         pci_set_master(pdev);
7408
7409         pci_enable_wake(pdev, PCI_D3hot, 0);
7410         pci_enable_wake(pdev, PCI_D3cold, 0);
7411
7412         if (igb_init_interrupt_scheme(adapter, true)) {
7413                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7414                 return -ENOMEM;
7415         }
7416
7417         igb_reset(adapter);
7418
7419         /* let the f/w know that the h/w is now under the control of the
7420          * driver.
7421          */
7422         igb_get_hw_control(adapter);
7423
7424         wr32(E1000_WUS, ~0);
7425
7426         if (netdev->flags & IFF_UP) {
7427                 rtnl_lock();
7428                 err = __igb_open(netdev, true);
7429                 rtnl_unlock();
7430                 if (err)
7431                         return err;
7432         }
7433
7434         netif_device_attach(netdev);
7435         return 0;
7436 }
7437
7438 static int igb_runtime_idle(struct device *dev)
7439 {
7440         struct pci_dev *pdev = to_pci_dev(dev);
7441         struct net_device *netdev = pci_get_drvdata(pdev);
7442         struct igb_adapter *adapter = netdev_priv(netdev);
7443
7444         if (!igb_has_link(adapter))
7445                 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7446
7447         return -EBUSY;
7448 }
7449
7450 static int igb_runtime_suspend(struct device *dev)
7451 {
7452         struct pci_dev *pdev = to_pci_dev(dev);
7453         int retval;
7454         bool wake;
7455
7456         retval = __igb_shutdown(pdev, &wake, 1);
7457         if (retval)
7458                 return retval;
7459
7460         if (wake) {
7461                 pci_prepare_to_sleep(pdev);
7462         } else {
7463                 pci_wake_from_d3(pdev, false);
7464                 pci_set_power_state(pdev, PCI_D3hot);
7465         }
7466
7467         return 0;
7468 }
7469
7470 static int igb_runtime_resume(struct device *dev)
7471 {
7472         return igb_resume(dev);
7473 }
7474 #endif /* CONFIG_PM */
7475
7476 static void igb_shutdown(struct pci_dev *pdev)
7477 {
7478         bool wake;
7479
7480         __igb_shutdown(pdev, &wake, 0);
7481
7482         if (system_state == SYSTEM_POWER_OFF) {
7483                 pci_wake_from_d3(pdev, wake);
7484                 pci_set_power_state(pdev, PCI_D3hot);
7485         }
7486 }
7487
7488 #ifdef CONFIG_PCI_IOV
7489 static int igb_sriov_reinit(struct pci_dev *dev)
7490 {
7491         struct net_device *netdev = pci_get_drvdata(dev);
7492         struct igb_adapter *adapter = netdev_priv(netdev);
7493         struct pci_dev *pdev = adapter->pdev;
7494
7495         rtnl_lock();
7496
7497         if (netif_running(netdev))
7498                 igb_close(netdev);
7499         else
7500                 igb_reset(adapter);
7501
7502         igb_clear_interrupt_scheme(adapter);
7503
7504         igb_init_queue_configuration(adapter);
7505
7506         if (igb_init_interrupt_scheme(adapter, true)) {
7507                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7508                 return -ENOMEM;
7509         }
7510
7511         if (netif_running(netdev))
7512                 igb_open(netdev);
7513
7514         rtnl_unlock();
7515
7516         return 0;
7517 }
7518
7519 static int igb_pci_disable_sriov(struct pci_dev *dev)
7520 {
7521         int err = igb_disable_sriov(dev);
7522
7523         if (!err)
7524                 err = igb_sriov_reinit(dev);
7525
7526         return err;
7527 }
7528
7529 static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7530 {
7531         int err = igb_enable_sriov(dev, num_vfs);
7532
7533         if (err)
7534                 goto out;
7535
7536         err = igb_sriov_reinit(dev);
7537         if (!err)
7538                 return num_vfs;
7539
7540 out:
7541         return err;
7542 }
7543
7544 #endif
7545 static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7546 {
7547 #ifdef CONFIG_PCI_IOV
7548         if (num_vfs == 0)
7549                 return igb_pci_disable_sriov(dev);
7550         else
7551                 return igb_pci_enable_sriov(dev, num_vfs);
7552 #endif
7553         return 0;
7554 }
7555
7556 #ifdef CONFIG_NET_POLL_CONTROLLER
7557 /* Polling 'interrupt' - used by things like netconsole to send skbs
7558  * without having to re-enable interrupts. It's not called while
7559  * the interrupt routine is executing.
7560  */
7561 static void igb_netpoll(struct net_device *netdev)
7562 {
7563         struct igb_adapter *adapter = netdev_priv(netdev);
7564         struct e1000_hw *hw = &adapter->hw;
7565         struct igb_q_vector *q_vector;
7566         int i;
7567
7568         for (i = 0; i < adapter->num_q_vectors; i++) {
7569                 q_vector = adapter->q_vector[i];
7570                 if (adapter->flags & IGB_FLAG_HAS_MSIX)
7571                         wr32(E1000_EIMC, q_vector->eims_value);
7572                 else
7573                         igb_irq_disable(adapter);
7574                 napi_schedule(&q_vector->napi);
7575         }
7576 }
7577 #endif /* CONFIG_NET_POLL_CONTROLLER */
7578
7579 /**
7580  *  igb_io_error_detected - called when PCI error is detected
7581  *  @pdev: Pointer to PCI device
7582  *  @state: The current pci connection state
7583  *
7584  *  This function is called after a PCI bus error affecting
7585  *  this device has been detected.
7586  **/
7587 static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7588                                               pci_channel_state_t state)
7589 {
7590         struct net_device *netdev = pci_get_drvdata(pdev);
7591         struct igb_adapter *adapter = netdev_priv(netdev);
7592
7593         netif_device_detach(netdev);
7594
7595         if (state == pci_channel_io_perm_failure)
7596                 return PCI_ERS_RESULT_DISCONNECT;
7597
7598         if (netif_running(netdev))
7599                 igb_down(adapter);
7600         pci_disable_device(pdev);
7601
7602         /* Request a slot slot reset. */
7603         return PCI_ERS_RESULT_NEED_RESET;
7604 }
7605
7606 /**
7607  *  igb_io_slot_reset - called after the pci bus has been reset.
7608  *  @pdev: Pointer to PCI device
7609  *
7610  *  Restart the card from scratch, as if from a cold-boot. Implementation
7611  *  resembles the first-half of the igb_resume routine.
7612  **/
7613 static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7614 {
7615         struct net_device *netdev = pci_get_drvdata(pdev);
7616         struct igb_adapter *adapter = netdev_priv(netdev);
7617         struct e1000_hw *hw = &adapter->hw;
7618         pci_ers_result_t result;
7619         int err;
7620
7621         if (pci_enable_device_mem(pdev)) {
7622                 dev_err(&pdev->dev,
7623                         "Cannot re-enable PCI device after reset.\n");
7624                 result = PCI_ERS_RESULT_DISCONNECT;
7625         } else {
7626                 pci_set_master(pdev);
7627                 pci_restore_state(pdev);
7628                 pci_save_state(pdev);
7629
7630                 pci_enable_wake(pdev, PCI_D3hot, 0);
7631                 pci_enable_wake(pdev, PCI_D3cold, 0);
7632
7633                 igb_reset(adapter);
7634                 wr32(E1000_WUS, ~0);
7635                 result = PCI_ERS_RESULT_RECOVERED;
7636         }
7637
7638         err = pci_cleanup_aer_uncorrect_error_status(pdev);
7639         if (err) {
7640                 dev_err(&pdev->dev,
7641                         "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7642                         err);
7643                 /* non-fatal, continue */
7644         }
7645
7646         return result;
7647 }
7648
7649 /**
7650  *  igb_io_resume - called when traffic can start flowing again.
7651  *  @pdev: Pointer to PCI device
7652  *
7653  *  This callback is called when the error recovery driver tells us that
7654  *  its OK to resume normal operation. Implementation resembles the
7655  *  second-half of the igb_resume routine.
7656  */
7657 static void igb_io_resume(struct pci_dev *pdev)
7658 {
7659         struct net_device *netdev = pci_get_drvdata(pdev);
7660         struct igb_adapter *adapter = netdev_priv(netdev);
7661
7662         if (netif_running(netdev)) {
7663                 if (igb_up(adapter)) {
7664                         dev_err(&pdev->dev, "igb_up failed after reset\n");
7665                         return;
7666                 }
7667         }
7668
7669         netif_device_attach(netdev);
7670
7671         /* let the f/w know that the h/w is now under the control of the
7672          * driver.
7673          */
7674         igb_get_hw_control(adapter);
7675 }
7676
7677 static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
7678                              u8 qsel)
7679 {
7680         u32 rar_low, rar_high;
7681         struct e1000_hw *hw = &adapter->hw;
7682
7683         /* HW expects these in little endian so we reverse the byte order
7684          * from network order (big endian) to little endian
7685          */
7686         rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
7687                    ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
7688         rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7689
7690         /* Indicate to hardware the Address is Valid. */
7691         rar_high |= E1000_RAH_AV;
7692
7693         if (hw->mac.type == e1000_82575)
7694                 rar_high |= E1000_RAH_POOL_1 * qsel;
7695         else
7696                 rar_high |= E1000_RAH_POOL_1 << qsel;
7697
7698         wr32(E1000_RAL(index), rar_low);
7699         wrfl();
7700         wr32(E1000_RAH(index), rar_high);
7701         wrfl();
7702 }
7703
7704 static int igb_set_vf_mac(struct igb_adapter *adapter,
7705                           int vf, unsigned char *mac_addr)
7706 {
7707         struct e1000_hw *hw = &adapter->hw;
7708         /* VF MAC addresses start at end of receive addresses and moves
7709          * towards the first, as a result a collision should not be possible
7710          */
7711         int rar_entry = hw->mac.rar_entry_count - (vf + 1);
7712
7713         memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
7714
7715         igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
7716
7717         return 0;
7718 }
7719
7720 static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7721 {
7722         struct igb_adapter *adapter = netdev_priv(netdev);
7723         if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7724                 return -EINVAL;
7725         adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7726         dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
7727         dev_info(&adapter->pdev->dev,
7728                  "Reload the VF driver to make this change effective.");
7729         if (test_bit(__IGB_DOWN, &adapter->state)) {
7730                 dev_warn(&adapter->pdev->dev,
7731                          "The VF MAC address has been set, but the PF device is not up.\n");
7732                 dev_warn(&adapter->pdev->dev,
7733                          "Bring the PF device up before attempting to use the VF device.\n");
7734         }
7735         return igb_set_vf_mac(adapter, vf, mac);
7736 }
7737
7738 static int igb_link_mbps(int internal_link_speed)
7739 {
7740         switch (internal_link_speed) {
7741         case SPEED_100:
7742                 return 100;
7743         case SPEED_1000:
7744                 return 1000;
7745         default:
7746                 return 0;
7747         }
7748 }
7749
7750 static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7751                                   int link_speed)
7752 {
7753         int rf_dec, rf_int;
7754         u32 bcnrc_val;
7755
7756         if (tx_rate != 0) {
7757                 /* Calculate the rate factor values to set */
7758                 rf_int = link_speed / tx_rate;
7759                 rf_dec = (link_speed - (rf_int * tx_rate));
7760                 rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7761                          tx_rate;
7762
7763                 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
7764                 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7765                               E1000_RTTBCNRC_RF_INT_MASK);
7766                 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7767         } else {
7768                 bcnrc_val = 0;
7769         }
7770
7771         wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
7772         /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
7773          * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7774          */
7775         wr32(E1000_RTTBCNRM, 0x14);
7776         wr32(E1000_RTTBCNRC, bcnrc_val);
7777 }
7778
7779 static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7780 {
7781         int actual_link_speed, i;
7782         bool reset_rate = false;
7783
7784         /* VF TX rate limit was not set or not supported */
7785         if ((adapter->vf_rate_link_speed == 0) ||
7786             (adapter->hw.mac.type != e1000_82576))
7787                 return;
7788
7789         actual_link_speed = igb_link_mbps(adapter->link_speed);
7790         if (actual_link_speed != adapter->vf_rate_link_speed) {
7791                 reset_rate = true;
7792                 adapter->vf_rate_link_speed = 0;
7793                 dev_info(&adapter->pdev->dev,
7794                          "Link speed has been changed. VF Transmit rate is disabled\n");
7795         }
7796
7797         for (i = 0; i < adapter->vfs_allocated_count; i++) {
7798                 if (reset_rate)
7799                         adapter->vf_data[i].tx_rate = 0;
7800
7801                 igb_set_vf_rate_limit(&adapter->hw, i,
7802                                       adapter->vf_data[i].tx_rate,
7803                                       actual_link_speed);
7804         }
7805 }
7806
7807 static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
7808                              int min_tx_rate, int max_tx_rate)
7809 {
7810         struct igb_adapter *adapter = netdev_priv(netdev);
7811         struct e1000_hw *hw = &adapter->hw;
7812         int actual_link_speed;
7813
7814         if (hw->mac.type != e1000_82576)
7815                 return -EOPNOTSUPP;
7816
7817         if (min_tx_rate)
7818                 return -EINVAL;
7819
7820         actual_link_speed = igb_link_mbps(adapter->link_speed);
7821         if ((vf >= adapter->vfs_allocated_count) ||
7822             (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7823             (max_tx_rate < 0) ||
7824             (max_tx_rate > actual_link_speed))
7825                 return -EINVAL;
7826
7827         adapter->vf_rate_link_speed = actual_link_speed;
7828         adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
7829         igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
7830
7831         return 0;
7832 }
7833
7834 static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7835                                    bool setting)
7836 {
7837         struct igb_adapter *adapter = netdev_priv(netdev);
7838         struct e1000_hw *hw = &adapter->hw;
7839         u32 reg_val, reg_offset;
7840
7841         if (!adapter->vfs_allocated_count)
7842                 return -EOPNOTSUPP;
7843
7844         if (vf >= adapter->vfs_allocated_count)
7845                 return -EINVAL;
7846
7847         reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7848         reg_val = rd32(reg_offset);
7849         if (setting)
7850                 reg_val |= ((1 << vf) |
7851                             (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7852         else
7853                 reg_val &= ~((1 << vf) |
7854                              (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7855         wr32(reg_offset, reg_val);
7856
7857         adapter->vf_data[vf].spoofchk_enabled = setting;
7858         return 0;
7859 }
7860
7861 static int igb_ndo_get_vf_config(struct net_device *netdev,
7862                                  int vf, struct ifla_vf_info *ivi)
7863 {
7864         struct igb_adapter *adapter = netdev_priv(netdev);
7865         if (vf >= adapter->vfs_allocated_count)
7866                 return -EINVAL;
7867         ivi->vf = vf;
7868         memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
7869         ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
7870         ivi->min_tx_rate = 0;
7871         ivi->vlan = adapter->vf_data[vf].pf_vlan;
7872         ivi->qos = adapter->vf_data[vf].pf_qos;
7873         ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
7874         return 0;
7875 }
7876
7877 static void igb_vmm_control(struct igb_adapter *adapter)
7878 {
7879         struct e1000_hw *hw = &adapter->hw;
7880         u32 reg;
7881
7882         switch (hw->mac.type) {
7883         case e1000_82575:
7884         case e1000_i210:
7885         case e1000_i211:
7886         case e1000_i354:
7887         default:
7888                 /* replication is not supported for 82575 */
7889                 return;
7890         case e1000_82576:
7891                 /* notify HW that the MAC is adding vlan tags */
7892                 reg = rd32(E1000_DTXCTL);
7893                 reg |= E1000_DTXCTL_VLAN_ADDED;
7894                 wr32(E1000_DTXCTL, reg);
7895                 /* Fall through */
7896         case e1000_82580:
7897                 /* enable replication vlan tag stripping */
7898                 reg = rd32(E1000_RPLOLR);
7899                 reg |= E1000_RPLOLR_STRVLAN;
7900                 wr32(E1000_RPLOLR, reg);
7901                 /* Fall through */
7902         case e1000_i350:
7903                 /* none of the above registers are supported by i350 */
7904                 break;
7905         }
7906
7907         if (adapter->vfs_allocated_count) {
7908                 igb_vmdq_set_loopback_pf(hw, true);
7909                 igb_vmdq_set_replication_pf(hw, true);
7910                 igb_vmdq_set_anti_spoofing_pf(hw, true,
7911                                               adapter->vfs_allocated_count);
7912         } else {
7913                 igb_vmdq_set_loopback_pf(hw, false);
7914                 igb_vmdq_set_replication_pf(hw, false);
7915         }
7916 }
7917
7918 static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7919 {
7920         struct e1000_hw *hw = &adapter->hw;
7921         u32 dmac_thr;
7922         u16 hwm;
7923
7924         if (hw->mac.type > e1000_82580) {
7925                 if (adapter->flags & IGB_FLAG_DMAC) {
7926                         u32 reg;
7927
7928                         /* force threshold to 0. */
7929                         wr32(E1000_DMCTXTH, 0);
7930
7931                         /* DMA Coalescing high water mark needs to be greater
7932                          * than the Rx threshold. Set hwm to PBA - max frame
7933                          * size in 16B units, capping it at PBA - 6KB.
7934                          */
7935                         hwm = 64 * pba - adapter->max_frame_size / 16;
7936                         if (hwm < 64 * (pba - 6))
7937                                 hwm = 64 * (pba - 6);
7938                         reg = rd32(E1000_FCRTC);
7939                         reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7940                         reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7941                                 & E1000_FCRTC_RTH_COAL_MASK);
7942                         wr32(E1000_FCRTC, reg);
7943
7944                         /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
7945                          * frame size, capping it at PBA - 10KB.
7946                          */
7947                         dmac_thr = pba - adapter->max_frame_size / 512;
7948                         if (dmac_thr < pba - 10)
7949                                 dmac_thr = pba - 10;
7950                         reg = rd32(E1000_DMACR);
7951                         reg &= ~E1000_DMACR_DMACTHR_MASK;
7952                         reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7953                                 & E1000_DMACR_DMACTHR_MASK);
7954
7955                         /* transition to L0x or L1 if available..*/
7956                         reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7957
7958                         /* watchdog timer= +-1000 usec in 32usec intervals */
7959                         reg |= (1000 >> 5);
7960
7961                         /* Disable BMC-to-OS Watchdog Enable */
7962                         if (hw->mac.type != e1000_i354)
7963                                 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7964
7965                         wr32(E1000_DMACR, reg);
7966
7967                         /* no lower threshold to disable
7968                          * coalescing(smart fifb)-UTRESH=0
7969                          */
7970                         wr32(E1000_DMCRTRH, 0);
7971
7972                         reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
7973
7974                         wr32(E1000_DMCTLX, reg);
7975
7976                         /* free space in tx packet buffer to wake from
7977                          * DMA coal
7978                          */
7979                         wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
7980                              (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
7981
7982                         /* make low power state decision controlled
7983                          * by DMA coal
7984                          */
7985                         reg = rd32(E1000_PCIEMISC);
7986                         reg &= ~E1000_PCIEMISC_LX_DECISION;
7987                         wr32(E1000_PCIEMISC, reg);
7988                 } /* endif adapter->dmac is not disabled */
7989         } else if (hw->mac.type == e1000_82580) {
7990                 u32 reg = rd32(E1000_PCIEMISC);
7991
7992                 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
7993                 wr32(E1000_DMACR, 0);
7994         }
7995 }
7996
7997 /**
7998  *  igb_read_i2c_byte - Reads 8 bit word over I2C
7999  *  @hw: pointer to hardware structure
8000  *  @byte_offset: byte offset to read
8001  *  @dev_addr: device address
8002  *  @data: value read
8003  *
8004  *  Performs byte read operation over I2C interface at
8005  *  a specified device address.
8006  **/
8007 s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8008                       u8 dev_addr, u8 *data)
8009 {
8010         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8011         struct i2c_client *this_client = adapter->i2c_client;
8012         s32 status;
8013         u16 swfw_mask = 0;
8014
8015         if (!this_client)
8016                 return E1000_ERR_I2C;
8017
8018         swfw_mask = E1000_SWFW_PHY0_SM;
8019
8020         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8021                 return E1000_ERR_SWFW_SYNC;
8022
8023         status = i2c_smbus_read_byte_data(this_client, byte_offset);
8024         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8025
8026         if (status < 0)
8027                 return E1000_ERR_I2C;
8028         else {
8029                 *data = status;
8030                 return 0;
8031         }
8032 }
8033
8034 /**
8035  *  igb_write_i2c_byte - Writes 8 bit word over I2C
8036  *  @hw: pointer to hardware structure
8037  *  @byte_offset: byte offset to write
8038  *  @dev_addr: device address
8039  *  @data: value to write
8040  *
8041  *  Performs byte write operation over I2C interface at
8042  *  a specified device address.
8043  **/
8044 s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
8045                        u8 dev_addr, u8 data)
8046 {
8047         struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
8048         struct i2c_client *this_client = adapter->i2c_client;
8049         s32 status;
8050         u16 swfw_mask = E1000_SWFW_PHY0_SM;
8051
8052         if (!this_client)
8053                 return E1000_ERR_I2C;
8054
8055         if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
8056                 return E1000_ERR_SWFW_SYNC;
8057         status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
8058         hw->mac.ops.release_swfw_sync(hw, swfw_mask);
8059
8060         if (status)
8061                 return E1000_ERR_I2C;
8062         else
8063                 return 0;
8064
8065 }
8066
8067 int igb_reinit_queues(struct igb_adapter *adapter)
8068 {
8069         struct net_device *netdev = adapter->netdev;
8070         struct pci_dev *pdev = adapter->pdev;
8071         int err = 0;
8072
8073         if (netif_running(netdev))
8074                 igb_close(netdev);
8075
8076         igb_reset_interrupt_capability(adapter);
8077
8078         if (igb_init_interrupt_scheme(adapter, true)) {
8079                 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
8080                 return -ENOMEM;
8081         }
8082
8083         if (netif_running(netdev))
8084                 err = igb_open(netdev);
8085
8086         return err;
8087 }
8088 /* igb_main.c */