2c6b5694b3f03f2e97c16e10ddd0a6e1ff49bf18
[pandora-kernel.git] / drivers / net / ethernet / freescale / gianfar.c
1 /* drivers/net/ethernet/freescale/gianfar.c
2  *
3  * Gianfar Ethernet Driver
4  * This driver is designed for the non-CPM ethernet controllers
5  * on the 85xx and 83xx family of integrated processors
6  * Based on 8260_io/fcc_enet.c
7  *
8  * Author: Andy Fleming
9  * Maintainer: Kumar Gala
10  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
11  *
12  * Copyright 2002-2009, 2011 Freescale Semiconductor, Inc.
13  * Copyright 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through of_device. Configuration information
29  *  is therefore conveyed through an OF-style device tree.
30  *
31  *  The Gianfar Ethernet Controller uses a ring of buffer
32  *  descriptors.  The beginning is indicated by a register
33  *  pointing to the physical address of the start of the ring.
34  *  The end is determined by a "wrap" bit being set in the
35  *  last descriptor of the ring.
36  *
37  *  When a packet is received, the RXF bit in the
38  *  IEVENT register is set, triggering an interrupt when the
39  *  corresponding bit in the IMASK register is also set (if
40  *  interrupt coalescing is active, then the interrupt may not
41  *  happen immediately, but will wait until either a set number
42  *  of frames or amount of time have passed).  In NAPI, the
43  *  interrupt handler will signal there is work to be done, and
44  *  exit. This method will start at the last known empty
45  *  descriptor, and process every subsequent descriptor until there
46  *  are none left with data (NAPI will stop after a set number of
47  *  packets to give time to other tasks, but will eventually
48  *  process all the packets).  The data arrives inside a
49  *  pre-allocated skb, and so after the skb is passed up to the
50  *  stack, a new skb must be allocated, and the address field in
51  *  the buffer descriptor must be updated to indicate this new
52  *  skb.
53  *
54  *  When the kernel requests that a packet be transmitted, the
55  *  driver starts where it left off last time, and points the
56  *  descriptor at the buffer which was passed in.  The driver
57  *  then informs the DMA engine that there are packets ready to
58  *  be transmitted.  Once the controller is finished transmitting
59  *  the packet, an interrupt may be triggered (under the same
60  *  conditions as for reception, but depending on the TXF bit).
61  *  The driver then cleans up the buffer.
62  */
63
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 #define DEBUG
66
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/init.h>
74 #include <linux/delay.h>
75 #include <linux/netdevice.h>
76 #include <linux/etherdevice.h>
77 #include <linux/skbuff.h>
78 #include <linux/if_vlan.h>
79 #include <linux/spinlock.h>
80 #include <linux/mm.h>
81 #include <linux/of_mdio.h>
82 #include <linux/of_platform.h>
83 #include <linux/ip.h>
84 #include <linux/tcp.h>
85 #include <linux/udp.h>
86 #include <linux/in.h>
87 #include <linux/net_tstamp.h>
88
89 #include <asm/io.h>
90 #include <asm/reg.h>
91 #include <asm/irq.h>
92 #include <asm/uaccess.h>
93 #include <linux/module.h>
94 #include <linux/dma-mapping.h>
95 #include <linux/crc32.h>
96 #include <linux/mii.h>
97 #include <linux/phy.h>
98 #include <linux/phy_fixed.h>
99 #include <linux/of.h>
100 #include <linux/of_net.h>
101
102 #include "gianfar.h"
103
104 #define TX_TIMEOUT      (1*HZ)
105
106 const char gfar_driver_version[] = "1.3";
107
108 static int gfar_enet_open(struct net_device *dev);
109 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
110 static void gfar_reset_task(struct work_struct *work);
111 static void gfar_timeout(struct net_device *dev);
112 static int gfar_close(struct net_device *dev);
113 struct sk_buff *gfar_new_skb(struct net_device *dev);
114 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
115                            struct sk_buff *skb);
116 static int gfar_set_mac_address(struct net_device *dev);
117 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
118 static irqreturn_t gfar_error(int irq, void *dev_id);
119 static irqreturn_t gfar_transmit(int irq, void *dev_id);
120 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
121 static void adjust_link(struct net_device *dev);
122 static void init_registers(struct net_device *dev);
123 static int init_phy(struct net_device *dev);
124 static int gfar_probe(struct platform_device *ofdev);
125 static int gfar_remove(struct platform_device *ofdev);
126 static void free_skb_resources(struct gfar_private *priv);
127 static void gfar_set_multi(struct net_device *dev);
128 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
129 static void gfar_configure_serdes(struct net_device *dev);
130 static int gfar_poll(struct napi_struct *napi, int budget);
131 #ifdef CONFIG_NET_POLL_CONTROLLER
132 static void gfar_netpoll(struct net_device *dev);
133 #endif
134 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
135 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
136 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
137                               int amount_pull, struct napi_struct *napi);
138 void gfar_halt(struct net_device *dev);
139 static void gfar_halt_nodisable(struct net_device *dev);
140 void gfar_start(struct net_device *dev);
141 static void gfar_clear_exact_match(struct net_device *dev);
142 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
143                                   const u8 *addr);
144 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
145
146 MODULE_AUTHOR("Freescale Semiconductor, Inc");
147 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
148 MODULE_LICENSE("GPL");
149
150 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
151                             dma_addr_t buf)
152 {
153         u32 lstatus;
154
155         bdp->bufPtr = buf;
156
157         lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
158         if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
159                 lstatus |= BD_LFLAG(RXBD_WRAP);
160
161         eieio();
162
163         bdp->lstatus = lstatus;
164 }
165
166 static int gfar_init_bds(struct net_device *ndev)
167 {
168         struct gfar_private *priv = netdev_priv(ndev);
169         struct gfar_priv_tx_q *tx_queue = NULL;
170         struct gfar_priv_rx_q *rx_queue = NULL;
171         struct txbd8 *txbdp;
172         struct rxbd8 *rxbdp;
173         int i, j;
174
175         for (i = 0; i < priv->num_tx_queues; i++) {
176                 tx_queue = priv->tx_queue[i];
177                 /* Initialize some variables in our dev structure */
178                 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
179                 tx_queue->dirty_tx = tx_queue->tx_bd_base;
180                 tx_queue->cur_tx = tx_queue->tx_bd_base;
181                 tx_queue->skb_curtx = 0;
182                 tx_queue->skb_dirtytx = 0;
183
184                 /* Initialize Transmit Descriptor Ring */
185                 txbdp = tx_queue->tx_bd_base;
186                 for (j = 0; j < tx_queue->tx_ring_size; j++) {
187                         txbdp->lstatus = 0;
188                         txbdp->bufPtr = 0;
189                         txbdp++;
190                 }
191
192                 /* Set the last descriptor in the ring to indicate wrap */
193                 txbdp--;
194                 txbdp->status |= TXBD_WRAP;
195         }
196
197         for (i = 0; i < priv->num_rx_queues; i++) {
198                 rx_queue = priv->rx_queue[i];
199                 rx_queue->cur_rx = rx_queue->rx_bd_base;
200                 rx_queue->skb_currx = 0;
201                 rxbdp = rx_queue->rx_bd_base;
202
203                 for (j = 0; j < rx_queue->rx_ring_size; j++) {
204                         struct sk_buff *skb = rx_queue->rx_skbuff[j];
205
206                         if (skb) {
207                                 gfar_init_rxbdp(rx_queue, rxbdp,
208                                                 rxbdp->bufPtr);
209                         } else {
210                                 skb = gfar_new_skb(ndev);
211                                 if (!skb) {
212                                         netdev_err(ndev, "Can't allocate RX buffers\n");
213                                         return -ENOMEM;
214                                 }
215                                 rx_queue->rx_skbuff[j] = skb;
216
217                                 gfar_new_rxbdp(rx_queue, rxbdp, skb);
218                         }
219
220                         rxbdp++;
221                 }
222
223         }
224
225         return 0;
226 }
227
228 static int gfar_alloc_skb_resources(struct net_device *ndev)
229 {
230         void *vaddr;
231         dma_addr_t addr;
232         int i, j, k;
233         struct gfar_private *priv = netdev_priv(ndev);
234         struct device *dev = &priv->ofdev->dev;
235         struct gfar_priv_tx_q *tx_queue = NULL;
236         struct gfar_priv_rx_q *rx_queue = NULL;
237
238         priv->total_tx_ring_size = 0;
239         for (i = 0; i < priv->num_tx_queues; i++)
240                 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
241
242         priv->total_rx_ring_size = 0;
243         for (i = 0; i < priv->num_rx_queues; i++)
244                 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
245
246         /* Allocate memory for the buffer descriptors */
247         vaddr = dma_alloc_coherent(dev,
248                         sizeof(struct txbd8) * priv->total_tx_ring_size +
249                         sizeof(struct rxbd8) * priv->total_rx_ring_size,
250                         &addr, GFP_KERNEL);
251         if (!vaddr) {
252                 netif_err(priv, ifup, ndev,
253                           "Could not allocate buffer descriptors!\n");
254                 return -ENOMEM;
255         }
256
257         for (i = 0; i < priv->num_tx_queues; i++) {
258                 tx_queue = priv->tx_queue[i];
259                 tx_queue->tx_bd_base = vaddr;
260                 tx_queue->tx_bd_dma_base = addr;
261                 tx_queue->dev = ndev;
262                 /* enet DMA only understands physical addresses */
263                 addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
264                 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
265         }
266
267         /* Start the rx descriptor ring where the tx ring leaves off */
268         for (i = 0; i < priv->num_rx_queues; i++) {
269                 rx_queue = priv->rx_queue[i];
270                 rx_queue->rx_bd_base = vaddr;
271                 rx_queue->rx_bd_dma_base = addr;
272                 rx_queue->dev = ndev;
273                 addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
274                 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
275         }
276
277         /* Setup the skbuff rings */
278         for (i = 0; i < priv->num_tx_queues; i++) {
279                 tx_queue = priv->tx_queue[i];
280                 tx_queue->tx_skbuff =
281                         kmalloc_array(tx_queue->tx_ring_size,
282                                       sizeof(*tx_queue->tx_skbuff),
283                                       GFP_KERNEL);
284                 if (!tx_queue->tx_skbuff)
285                         goto cleanup;
286
287                 for (k = 0; k < tx_queue->tx_ring_size; k++)
288                         tx_queue->tx_skbuff[k] = NULL;
289         }
290
291         for (i = 0; i < priv->num_rx_queues; i++) {
292                 rx_queue = priv->rx_queue[i];
293                 rx_queue->rx_skbuff =
294                         kmalloc_array(rx_queue->rx_ring_size,
295                                       sizeof(*rx_queue->rx_skbuff),
296                                       GFP_KERNEL);
297                 if (!rx_queue->rx_skbuff)
298                         goto cleanup;
299
300                 for (j = 0; j < rx_queue->rx_ring_size; j++)
301                         rx_queue->rx_skbuff[j] = NULL;
302         }
303
304         if (gfar_init_bds(ndev))
305                 goto cleanup;
306
307         return 0;
308
309 cleanup:
310         free_skb_resources(priv);
311         return -ENOMEM;
312 }
313
314 static void gfar_init_tx_rx_base(struct gfar_private *priv)
315 {
316         struct gfar __iomem *regs = priv->gfargrp[0].regs;
317         u32 __iomem *baddr;
318         int i;
319
320         baddr = &regs->tbase0;
321         for (i = 0; i < priv->num_tx_queues; i++) {
322                 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
323                 baddr += 2;
324         }
325
326         baddr = &regs->rbase0;
327         for (i = 0; i < priv->num_rx_queues; i++) {
328                 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
329                 baddr += 2;
330         }
331 }
332
333 static void gfar_init_mac(struct net_device *ndev)
334 {
335         struct gfar_private *priv = netdev_priv(ndev);
336         struct gfar __iomem *regs = priv->gfargrp[0].regs;
337         u32 rctrl = 0;
338         u32 tctrl = 0;
339         u32 attrs = 0;
340
341         /* write the tx/rx base registers */
342         gfar_init_tx_rx_base(priv);
343
344         /* Configure the coalescing support */
345         gfar_configure_coalescing(priv, 0xFF, 0xFF);
346
347         if (priv->rx_filer_enable) {
348                 rctrl |= RCTRL_FILREN;
349                 /* Program the RIR0 reg with the required distribution */
350                 gfar_write(&regs->rir0, DEFAULT_RIR0);
351         }
352
353         /* Restore PROMISC mode */
354         if (ndev->flags & IFF_PROMISC)
355                 rctrl |= RCTRL_PROM;
356
357         if (ndev->features & NETIF_F_RXCSUM)
358                 rctrl |= RCTRL_CHECKSUMMING;
359
360         if (priv->extended_hash) {
361                 rctrl |= RCTRL_EXTHASH;
362
363                 gfar_clear_exact_match(ndev);
364                 rctrl |= RCTRL_EMEN;
365         }
366
367         if (priv->padding) {
368                 rctrl &= ~RCTRL_PAL_MASK;
369                 rctrl |= RCTRL_PADDING(priv->padding);
370         }
371
372         /* Insert receive time stamps into padding alignment bytes */
373         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) {
374                 rctrl &= ~RCTRL_PAL_MASK;
375                 rctrl |= RCTRL_PADDING(8);
376                 priv->padding = 8;
377         }
378
379         /* Enable HW time stamping if requested from user space */
380         if (priv->hwts_rx_en)
381                 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
382
383         if (ndev->features & NETIF_F_HW_VLAN_RX)
384                 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
385
386         /* Init rctrl based on our settings */
387         gfar_write(&regs->rctrl, rctrl);
388
389         if (ndev->features & NETIF_F_IP_CSUM)
390                 tctrl |= TCTRL_INIT_CSUM;
391
392         if (priv->prio_sched_en)
393                 tctrl |= TCTRL_TXSCHED_PRIO;
394         else {
395                 tctrl |= TCTRL_TXSCHED_WRRS;
396                 gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
397                 gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
398         }
399
400         gfar_write(&regs->tctrl, tctrl);
401
402         /* Set the extraction length and index */
403         attrs = ATTRELI_EL(priv->rx_stash_size) |
404                 ATTRELI_EI(priv->rx_stash_index);
405
406         gfar_write(&regs->attreli, attrs);
407
408         /* Start with defaults, and add stashing or locking
409          * depending on the approprate variables
410          */
411         attrs = ATTR_INIT_SETTINGS;
412
413         if (priv->bd_stash_en)
414                 attrs |= ATTR_BDSTASH;
415
416         if (priv->rx_stash_size != 0)
417                 attrs |= ATTR_BUFSTASH;
418
419         gfar_write(&regs->attr, attrs);
420
421         gfar_write(&regs->fifo_tx_thr, priv->fifo_threshold);
422         gfar_write(&regs->fifo_tx_starve, priv->fifo_starve);
423         gfar_write(&regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
424 }
425
426 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
427 {
428         struct gfar_private *priv = netdev_priv(dev);
429         unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
430         unsigned long tx_packets = 0, tx_bytes = 0;
431         int i;
432
433         for (i = 0; i < priv->num_rx_queues; i++) {
434                 rx_packets += priv->rx_queue[i]->stats.rx_packets;
435                 rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
436                 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
437         }
438
439         dev->stats.rx_packets = rx_packets;
440         dev->stats.rx_bytes   = rx_bytes;
441         dev->stats.rx_dropped = rx_dropped;
442
443         for (i = 0; i < priv->num_tx_queues; i++) {
444                 tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
445                 tx_packets += priv->tx_queue[i]->stats.tx_packets;
446         }
447
448         dev->stats.tx_bytes   = tx_bytes;
449         dev->stats.tx_packets = tx_packets;
450
451         return &dev->stats;
452 }
453
454 static const struct net_device_ops gfar_netdev_ops = {
455         .ndo_open = gfar_enet_open,
456         .ndo_start_xmit = gfar_start_xmit,
457         .ndo_stop = gfar_close,
458         .ndo_change_mtu = gfar_change_mtu,
459         .ndo_set_features = gfar_set_features,
460         .ndo_set_rx_mode = gfar_set_multi,
461         .ndo_tx_timeout = gfar_timeout,
462         .ndo_do_ioctl = gfar_ioctl,
463         .ndo_get_stats = gfar_get_stats,
464         .ndo_set_mac_address = eth_mac_addr,
465         .ndo_validate_addr = eth_validate_addr,
466 #ifdef CONFIG_NET_POLL_CONTROLLER
467         .ndo_poll_controller = gfar_netpoll,
468 #endif
469 };
470
471 void lock_rx_qs(struct gfar_private *priv)
472 {
473         int i;
474
475         for (i = 0; i < priv->num_rx_queues; i++)
476                 spin_lock(&priv->rx_queue[i]->rxlock);
477 }
478
479 void lock_tx_qs(struct gfar_private *priv)
480 {
481         int i;
482
483         for (i = 0; i < priv->num_tx_queues; i++)
484                 spin_lock(&priv->tx_queue[i]->txlock);
485 }
486
487 void unlock_rx_qs(struct gfar_private *priv)
488 {
489         int i;
490
491         for (i = 0; i < priv->num_rx_queues; i++)
492                 spin_unlock(&priv->rx_queue[i]->rxlock);
493 }
494
495 void unlock_tx_qs(struct gfar_private *priv)
496 {
497         int i;
498
499         for (i = 0; i < priv->num_tx_queues; i++)
500                 spin_unlock(&priv->tx_queue[i]->txlock);
501 }
502
503 static bool gfar_is_vlan_on(struct gfar_private *priv)
504 {
505         return (priv->ndev->features & NETIF_F_HW_VLAN_RX) ||
506                (priv->ndev->features & NETIF_F_HW_VLAN_TX);
507 }
508
509 /* Returns 1 if incoming frames use an FCB */
510 static inline int gfar_uses_fcb(struct gfar_private *priv)
511 {
512         return gfar_is_vlan_on(priv) ||
513                (priv->ndev->features & NETIF_F_RXCSUM) ||
514                (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER);
515 }
516
517 static void free_tx_pointers(struct gfar_private *priv)
518 {
519         int i;
520
521         for (i = 0; i < priv->num_tx_queues; i++)
522                 kfree(priv->tx_queue[i]);
523 }
524
525 static void free_rx_pointers(struct gfar_private *priv)
526 {
527         int i;
528
529         for (i = 0; i < priv->num_rx_queues; i++)
530                 kfree(priv->rx_queue[i]);
531 }
532
533 static void unmap_group_regs(struct gfar_private *priv)
534 {
535         int i;
536
537         for (i = 0; i < MAXGROUPS; i++)
538                 if (priv->gfargrp[i].regs)
539                         iounmap(priv->gfargrp[i].regs);
540 }
541
542 static void free_gfar_dev(struct gfar_private *priv)
543 {
544         int i, j;
545
546         for (i = 0; i < priv->num_grps; i++)
547                 for (j = 0; j < GFAR_NUM_IRQS; j++) {
548                         kfree(priv->gfargrp[i].irqinfo[j]);
549                         priv->gfargrp[i].irqinfo[j] = NULL;
550                 }
551
552         free_netdev(priv->ndev);
553 }
554
555 static void disable_napi(struct gfar_private *priv)
556 {
557         int i;
558
559         for (i = 0; i < priv->num_grps; i++)
560                 napi_disable(&priv->gfargrp[i].napi);
561 }
562
563 static void enable_napi(struct gfar_private *priv)
564 {
565         int i;
566
567         for (i = 0; i < priv->num_grps; i++)
568                 napi_enable(&priv->gfargrp[i].napi);
569 }
570
571 static int gfar_parse_group(struct device_node *np,
572                             struct gfar_private *priv, const char *model)
573 {
574         struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
575         u32 *queue_mask;
576         int i;
577
578         for (i = 0; i < GFAR_NUM_IRQS; i++) {
579                 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
580                                           GFP_KERNEL);
581                 if (!grp->irqinfo[i])
582                         return -ENOMEM;
583         }
584
585         grp->regs = of_iomap(np, 0);
586         if (!grp->regs)
587                 return -ENOMEM;
588
589         gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
590
591         /* If we aren't the FEC we have multiple interrupts */
592         if (model && strcasecmp(model, "FEC")) {
593                 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
594                 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
595                 if (gfar_irq(grp, TX)->irq == NO_IRQ ||
596                     gfar_irq(grp, RX)->irq == NO_IRQ ||
597                     gfar_irq(grp, ER)->irq == NO_IRQ)
598                         return -EINVAL;
599         }
600
601         grp->grp_id = priv->num_grps;
602         grp->priv = priv;
603         spin_lock_init(&grp->grplock);
604         if (priv->mode == MQ_MG_MODE) {
605                 queue_mask = (u32 *)of_get_property(np, "fsl,rx-bit-map", NULL);
606                 grp->rx_bit_map = queue_mask ?
607                         *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
608                 queue_mask = (u32 *)of_get_property(np, "fsl,tx-bit-map", NULL);
609                 grp->tx_bit_map = queue_mask ?
610                         *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
611         } else {
612                 grp->rx_bit_map = 0xFF;
613                 grp->tx_bit_map = 0xFF;
614         }
615         priv->num_grps++;
616
617         return 0;
618 }
619
620 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
621 {
622         const char *model;
623         const char *ctype;
624         const void *mac_addr;
625         int err = 0, i;
626         struct net_device *dev = NULL;
627         struct gfar_private *priv = NULL;
628         struct device_node *np = ofdev->dev.of_node;
629         struct device_node *child = NULL;
630         const u32 *stash;
631         const u32 *stash_len;
632         const u32 *stash_idx;
633         unsigned int num_tx_qs, num_rx_qs;
634         u32 *tx_queues, *rx_queues;
635
636         if (!np || !of_device_is_available(np))
637                 return -ENODEV;
638
639         /* parse the num of tx and rx queues */
640         tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
641         num_tx_qs = tx_queues ? *tx_queues : 1;
642
643         if (num_tx_qs > MAX_TX_QS) {
644                 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
645                        num_tx_qs, MAX_TX_QS);
646                 pr_err("Cannot do alloc_etherdev, aborting\n");
647                 return -EINVAL;
648         }
649
650         rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
651         num_rx_qs = rx_queues ? *rx_queues : 1;
652
653         if (num_rx_qs > MAX_RX_QS) {
654                 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
655                        num_rx_qs, MAX_RX_QS);
656                 pr_err("Cannot do alloc_etherdev, aborting\n");
657                 return -EINVAL;
658         }
659
660         *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
661         dev = *pdev;
662         if (NULL == dev)
663                 return -ENOMEM;
664
665         priv = netdev_priv(dev);
666         priv->ndev = dev;
667
668         priv->num_tx_queues = num_tx_qs;
669         netif_set_real_num_rx_queues(dev, num_rx_qs);
670         priv->num_rx_queues = num_rx_qs;
671         priv->num_grps = 0x0;
672
673         /* Init Rx queue filer rule set linked list */
674         INIT_LIST_HEAD(&priv->rx_list.list);
675         priv->rx_list.count = 0;
676         mutex_init(&priv->rx_queue_access);
677
678         model = of_get_property(np, "model", NULL);
679
680         for (i = 0; i < MAXGROUPS; i++)
681                 priv->gfargrp[i].regs = NULL;
682
683         /* Parse and initialize group specific information */
684         if (of_device_is_compatible(np, "fsl,etsec2")) {
685                 priv->mode = MQ_MG_MODE;
686                 for_each_child_of_node(np, child) {
687                         err = gfar_parse_group(child, priv, model);
688                         if (err)
689                                 goto err_grp_init;
690                 }
691         } else {
692                 priv->mode = SQ_SG_MODE;
693                 err = gfar_parse_group(np, priv, model);
694                 if (err)
695                         goto err_grp_init;
696         }
697
698         for (i = 0; i < priv->num_tx_queues; i++)
699                priv->tx_queue[i] = NULL;
700         for (i = 0; i < priv->num_rx_queues; i++)
701                 priv->rx_queue[i] = NULL;
702
703         for (i = 0; i < priv->num_tx_queues; i++) {
704                 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
705                                             GFP_KERNEL);
706                 if (!priv->tx_queue[i]) {
707                         err = -ENOMEM;
708                         goto tx_alloc_failed;
709                 }
710                 priv->tx_queue[i]->tx_skbuff = NULL;
711                 priv->tx_queue[i]->qindex = i;
712                 priv->tx_queue[i]->dev = dev;
713                 spin_lock_init(&(priv->tx_queue[i]->txlock));
714         }
715
716         for (i = 0; i < priv->num_rx_queues; i++) {
717                 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
718                                             GFP_KERNEL);
719                 if (!priv->rx_queue[i]) {
720                         err = -ENOMEM;
721                         goto rx_alloc_failed;
722                 }
723                 priv->rx_queue[i]->rx_skbuff = NULL;
724                 priv->rx_queue[i]->qindex = i;
725                 priv->rx_queue[i]->dev = dev;
726                 spin_lock_init(&(priv->rx_queue[i]->rxlock));
727         }
728
729
730         stash = of_get_property(np, "bd-stash", NULL);
731
732         if (stash) {
733                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
734                 priv->bd_stash_en = 1;
735         }
736
737         stash_len = of_get_property(np, "rx-stash-len", NULL);
738
739         if (stash_len)
740                 priv->rx_stash_size = *stash_len;
741
742         stash_idx = of_get_property(np, "rx-stash-idx", NULL);
743
744         if (stash_idx)
745                 priv->rx_stash_index = *stash_idx;
746
747         if (stash_len || stash_idx)
748                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
749
750         mac_addr = of_get_mac_address(np);
751
752         if (mac_addr)
753                 memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
754
755         if (model && !strcasecmp(model, "TSEC"))
756                 priv->device_flags = FSL_GIANFAR_DEV_HAS_GIGABIT |
757                                      FSL_GIANFAR_DEV_HAS_COALESCE |
758                                      FSL_GIANFAR_DEV_HAS_RMON |
759                                      FSL_GIANFAR_DEV_HAS_MULTI_INTR;
760
761         if (model && !strcasecmp(model, "eTSEC"))
762                 priv->device_flags = FSL_GIANFAR_DEV_HAS_GIGABIT |
763                                      FSL_GIANFAR_DEV_HAS_COALESCE |
764                                      FSL_GIANFAR_DEV_HAS_RMON |
765                                      FSL_GIANFAR_DEV_HAS_MULTI_INTR |
766                                      FSL_GIANFAR_DEV_HAS_PADDING |
767                                      FSL_GIANFAR_DEV_HAS_CSUM |
768                                      FSL_GIANFAR_DEV_HAS_VLAN |
769                                      FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
770                                      FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
771                                      FSL_GIANFAR_DEV_HAS_TIMER;
772
773         ctype = of_get_property(np, "phy-connection-type", NULL);
774
775         /* We only care about rgmii-id.  The rest are autodetected */
776         if (ctype && !strcmp(ctype, "rgmii-id"))
777                 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
778         else
779                 priv->interface = PHY_INTERFACE_MODE_MII;
780
781         if (of_get_property(np, "fsl,magic-packet", NULL))
782                 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
783
784         priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
785
786         /* Find the TBI PHY.  If it's not there, we don't support SGMII */
787         priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
788
789         return 0;
790
791 rx_alloc_failed:
792         free_rx_pointers(priv);
793 tx_alloc_failed:
794         free_tx_pointers(priv);
795 err_grp_init:
796         unmap_group_regs(priv);
797         free_gfar_dev(priv);
798         return err;
799 }
800
801 static int gfar_hwtstamp_ioctl(struct net_device *netdev,
802                                struct ifreq *ifr, int cmd)
803 {
804         struct hwtstamp_config config;
805         struct gfar_private *priv = netdev_priv(netdev);
806
807         if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
808                 return -EFAULT;
809
810         /* reserved for future extensions */
811         if (config.flags)
812                 return -EINVAL;
813
814         switch (config.tx_type) {
815         case HWTSTAMP_TX_OFF:
816                 priv->hwts_tx_en = 0;
817                 break;
818         case HWTSTAMP_TX_ON:
819                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
820                         return -ERANGE;
821                 priv->hwts_tx_en = 1;
822                 break;
823         default:
824                 return -ERANGE;
825         }
826
827         switch (config.rx_filter) {
828         case HWTSTAMP_FILTER_NONE:
829                 if (priv->hwts_rx_en) {
830                         stop_gfar(netdev);
831                         priv->hwts_rx_en = 0;
832                         startup_gfar(netdev);
833                 }
834                 break;
835         default:
836                 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
837                         return -ERANGE;
838                 if (!priv->hwts_rx_en) {
839                         stop_gfar(netdev);
840                         priv->hwts_rx_en = 1;
841                         startup_gfar(netdev);
842                 }
843                 config.rx_filter = HWTSTAMP_FILTER_ALL;
844                 break;
845         }
846
847         return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
848                 -EFAULT : 0;
849 }
850
851 /* Ioctl MII Interface */
852 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
853 {
854         struct gfar_private *priv = netdev_priv(dev);
855
856         if (!netif_running(dev))
857                 return -EINVAL;
858
859         if (cmd == SIOCSHWTSTAMP)
860                 return gfar_hwtstamp_ioctl(dev, rq, cmd);
861
862         if (!priv->phydev)
863                 return -ENODEV;
864
865         return phy_mii_ioctl(priv->phydev, rq, cmd);
866 }
867
868 static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs)
869 {
870         unsigned int new_bit_map = 0x0;
871         int mask = 0x1 << (max_qs - 1), i;
872
873         for (i = 0; i < max_qs; i++) {
874                 if (bit_map & mask)
875                         new_bit_map = new_bit_map + (1 << i);
876                 mask = mask >> 0x1;
877         }
878         return new_bit_map;
879 }
880
881 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
882                                    u32 class)
883 {
884         u32 rqfpr = FPR_FILER_MASK;
885         u32 rqfcr = 0x0;
886
887         rqfar--;
888         rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
889         priv->ftp_rqfpr[rqfar] = rqfpr;
890         priv->ftp_rqfcr[rqfar] = rqfcr;
891         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
892
893         rqfar--;
894         rqfcr = RQFCR_CMP_NOMATCH;
895         priv->ftp_rqfpr[rqfar] = rqfpr;
896         priv->ftp_rqfcr[rqfar] = rqfcr;
897         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
898
899         rqfar--;
900         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
901         rqfpr = class;
902         priv->ftp_rqfcr[rqfar] = rqfcr;
903         priv->ftp_rqfpr[rqfar] = rqfpr;
904         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
905
906         rqfar--;
907         rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
908         rqfpr = class;
909         priv->ftp_rqfcr[rqfar] = rqfcr;
910         priv->ftp_rqfpr[rqfar] = rqfpr;
911         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
912
913         return rqfar;
914 }
915
916 static void gfar_init_filer_table(struct gfar_private *priv)
917 {
918         int i = 0x0;
919         u32 rqfar = MAX_FILER_IDX;
920         u32 rqfcr = 0x0;
921         u32 rqfpr = FPR_FILER_MASK;
922
923         /* Default rule */
924         rqfcr = RQFCR_CMP_MATCH;
925         priv->ftp_rqfcr[rqfar] = rqfcr;
926         priv->ftp_rqfpr[rqfar] = rqfpr;
927         gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
928
929         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
930         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
931         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
932         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
933         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
934         rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
935
936         /* cur_filer_idx indicated the first non-masked rule */
937         priv->cur_filer_idx = rqfar;
938
939         /* Rest are masked rules */
940         rqfcr = RQFCR_CMP_NOMATCH;
941         for (i = 0; i < rqfar; i++) {
942                 priv->ftp_rqfcr[i] = rqfcr;
943                 priv->ftp_rqfpr[i] = rqfpr;
944                 gfar_write_filer(priv, i, rqfcr, rqfpr);
945         }
946 }
947
948 static void gfar_detect_errata(struct gfar_private *priv)
949 {
950         struct device *dev = &priv->ofdev->dev;
951         unsigned int pvr = mfspr(SPRN_PVR);
952         unsigned int svr = mfspr(SPRN_SVR);
953         unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
954         unsigned int rev = svr & 0xffff;
955
956         /* MPC8313 Rev 2.0 and higher; All MPC837x */
957         if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
958             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
959                 priv->errata |= GFAR_ERRATA_74;
960
961         /* MPC8313 and MPC837x all rev */
962         if ((pvr == 0x80850010 && mod == 0x80b0) ||
963             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
964                 priv->errata |= GFAR_ERRATA_76;
965
966         /* MPC8313 and MPC837x all rev */
967         if ((pvr == 0x80850010 && mod == 0x80b0) ||
968             (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
969                 priv->errata |= GFAR_ERRATA_A002;
970
971         /* MPC8313 Rev < 2.0, MPC8548 rev 2.0 */
972         if ((pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020) ||
973             (pvr == 0x80210020 && mod == 0x8030 && rev == 0x0020))
974                 priv->errata |= GFAR_ERRATA_12;
975
976         if (priv->errata)
977                 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
978                          priv->errata);
979 }
980
981 /* Set up the ethernet device structure, private data,
982  * and anything else we need before we start
983  */
984 static int gfar_probe(struct platform_device *ofdev)
985 {
986         u32 tempval;
987         struct net_device *dev = NULL;
988         struct gfar_private *priv = NULL;
989         struct gfar __iomem *regs = NULL;
990         int err = 0, i, grp_idx = 0;
991         u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0;
992         u32 isrg = 0;
993         u32 __iomem *baddr;
994
995         err = gfar_of_init(ofdev, &dev);
996
997         if (err)
998                 return err;
999
1000         priv = netdev_priv(dev);
1001         priv->ndev = dev;
1002         priv->ofdev = ofdev;
1003         SET_NETDEV_DEV(dev, &ofdev->dev);
1004
1005         spin_lock_init(&priv->bflock);
1006         INIT_WORK(&priv->reset_task, gfar_reset_task);
1007
1008         dev_set_drvdata(&ofdev->dev, priv);
1009         regs = priv->gfargrp[0].regs;
1010
1011         gfar_detect_errata(priv);
1012
1013         /* Stop the DMA engine now, in case it was running before
1014          * (The firmware could have used it, and left it running).
1015          */
1016         gfar_halt(dev);
1017
1018         /* Reset MAC layer */
1019         gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1020
1021         /* We need to delay at least 3 TX clocks */
1022         udelay(2);
1023
1024         tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1025         gfar_write(&regs->maccfg1, tempval);
1026
1027         /* Initialize MACCFG2. */
1028         tempval = MACCFG2_INIT_SETTINGS;
1029         if (gfar_has_errata(priv, GFAR_ERRATA_74))
1030                 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1031         gfar_write(&regs->maccfg2, tempval);
1032
1033         /* Initialize ECNTRL */
1034         gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1035
1036         /* Set the dev->base_addr to the gfar reg region */
1037         dev->base_addr = (unsigned long) regs;
1038
1039         /* Fill in the dev structure */
1040         dev->watchdog_timeo = TX_TIMEOUT;
1041         dev->mtu = 1500;
1042         dev->netdev_ops = &gfar_netdev_ops;
1043         dev->ethtool_ops = &gfar_ethtool_ops;
1044
1045         /* Register for napi ...We are registering NAPI for each grp */
1046         for (i = 0; i < priv->num_grps; i++)
1047                 netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll,
1048                                GFAR_DEV_WEIGHT);
1049
1050         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1051                 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1052                                    NETIF_F_RXCSUM;
1053                 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1054                                  NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1055         }
1056
1057         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1058                 dev->hw_features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1059                 dev->features |= NETIF_F_HW_VLAN_RX;
1060         }
1061
1062         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1063                 priv->extended_hash = 1;
1064                 priv->hash_width = 9;
1065
1066                 priv->hash_regs[0] = &regs->igaddr0;
1067                 priv->hash_regs[1] = &regs->igaddr1;
1068                 priv->hash_regs[2] = &regs->igaddr2;
1069                 priv->hash_regs[3] = &regs->igaddr3;
1070                 priv->hash_regs[4] = &regs->igaddr4;
1071                 priv->hash_regs[5] = &regs->igaddr5;
1072                 priv->hash_regs[6] = &regs->igaddr6;
1073                 priv->hash_regs[7] = &regs->igaddr7;
1074                 priv->hash_regs[8] = &regs->gaddr0;
1075                 priv->hash_regs[9] = &regs->gaddr1;
1076                 priv->hash_regs[10] = &regs->gaddr2;
1077                 priv->hash_regs[11] = &regs->gaddr3;
1078                 priv->hash_regs[12] = &regs->gaddr4;
1079                 priv->hash_regs[13] = &regs->gaddr5;
1080                 priv->hash_regs[14] = &regs->gaddr6;
1081                 priv->hash_regs[15] = &regs->gaddr7;
1082
1083         } else {
1084                 priv->extended_hash = 0;
1085                 priv->hash_width = 8;
1086
1087                 priv->hash_regs[0] = &regs->gaddr0;
1088                 priv->hash_regs[1] = &regs->gaddr1;
1089                 priv->hash_regs[2] = &regs->gaddr2;
1090                 priv->hash_regs[3] = &regs->gaddr3;
1091                 priv->hash_regs[4] = &regs->gaddr4;
1092                 priv->hash_regs[5] = &regs->gaddr5;
1093                 priv->hash_regs[6] = &regs->gaddr6;
1094                 priv->hash_regs[7] = &regs->gaddr7;
1095         }
1096
1097         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
1098                 priv->padding = DEFAULT_PADDING;
1099         else
1100                 priv->padding = 0;
1101
1102         if (dev->features & NETIF_F_IP_CSUM ||
1103             priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1104                 dev->needed_headroom = GMAC_FCB_LEN;
1105
1106         /* Program the isrg regs only if number of grps > 1 */
1107         if (priv->num_grps > 1) {
1108                 baddr = &regs->isrg0;
1109                 for (i = 0; i < priv->num_grps; i++) {
1110                         isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX);
1111                         isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX);
1112                         gfar_write(baddr, isrg);
1113                         baddr++;
1114                         isrg = 0x0;
1115                 }
1116         }
1117
1118         /* Need to reverse the bit maps as  bit_map's MSB is q0
1119          * but, for_each_set_bit parses from right to left, which
1120          * basically reverses the queue numbers
1121          */
1122         for (i = 0; i< priv->num_grps; i++) {
1123                 priv->gfargrp[i].tx_bit_map =
1124                         reverse_bitmap(priv->gfargrp[i].tx_bit_map, MAX_TX_QS);
1125                 priv->gfargrp[i].rx_bit_map =
1126                         reverse_bitmap(priv->gfargrp[i].rx_bit_map, MAX_RX_QS);
1127         }
1128
1129         /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1130          * also assign queues to groups
1131          */
1132         for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) {
1133                 priv->gfargrp[grp_idx].num_rx_queues = 0x0;
1134
1135                 for_each_set_bit(i, &priv->gfargrp[grp_idx].rx_bit_map,
1136                                  priv->num_rx_queues) {
1137                         priv->gfargrp[grp_idx].num_rx_queues++;
1138                         priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx];
1139                         rstat = rstat | (RSTAT_CLEAR_RHALT >> i);
1140                         rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
1141                 }
1142                 priv->gfargrp[grp_idx].num_tx_queues = 0x0;
1143
1144                 for_each_set_bit(i, &priv->gfargrp[grp_idx].tx_bit_map,
1145                                  priv->num_tx_queues) {
1146                         priv->gfargrp[grp_idx].num_tx_queues++;
1147                         priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx];
1148                         tstat = tstat | (TSTAT_CLEAR_THALT >> i);
1149                         tqueue = tqueue | (TQUEUE_EN0 >> i);
1150                 }
1151                 priv->gfargrp[grp_idx].rstat = rstat;
1152                 priv->gfargrp[grp_idx].tstat = tstat;
1153                 rstat = tstat =0;
1154         }
1155
1156         gfar_write(&regs->rqueue, rqueue);
1157         gfar_write(&regs->tqueue, tqueue);
1158
1159         priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1160
1161         /* Initializing some of the rx/tx queue level parameters */
1162         for (i = 0; i < priv->num_tx_queues; i++) {
1163                 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1164                 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1165                 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1166                 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1167         }
1168
1169         for (i = 0; i < priv->num_rx_queues; i++) {
1170                 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1171                 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1172                 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1173         }
1174
1175         /* always enable rx filer */
1176         priv->rx_filer_enable = 1;
1177         /* Enable most messages by default */
1178         priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1179         /* use pritority h/w tx queue scheduling for single queue devices */
1180         if (priv->num_tx_queues == 1)
1181                 priv->prio_sched_en = 1;
1182
1183         /* Carrier starts down, phylib will bring it up */
1184         netif_carrier_off(dev);
1185
1186         err = register_netdev(dev);
1187
1188         if (err) {
1189                 pr_err("%s: Cannot register net device, aborting\n", dev->name);
1190                 goto register_fail;
1191         }
1192
1193         device_init_wakeup(&dev->dev,
1194                            priv->device_flags &
1195                            FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1196
1197         /* fill out IRQ number and name fields */
1198         for (i = 0; i < priv->num_grps; i++) {
1199                 struct gfar_priv_grp *grp = &priv->gfargrp[i];
1200                 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1201                         sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1202                                 dev->name, "_g", '0' + i, "_tx");
1203                         sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1204                                 dev->name, "_g", '0' + i, "_rx");
1205                         sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1206                                 dev->name, "_g", '0' + i, "_er");
1207                 } else
1208                         strcpy(gfar_irq(grp, TX)->name, dev->name);
1209         }
1210
1211         /* Initialize the filer table */
1212         gfar_init_filer_table(priv);
1213
1214         /* Create all the sysfs files */
1215         gfar_init_sysfs(dev);
1216
1217         /* Print out the device info */
1218         netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1219
1220         /* Even more device info helps when determining which kernel
1221          * provided which set of benchmarks.
1222          */
1223         netdev_info(dev, "Running with NAPI enabled\n");
1224         for (i = 0; i < priv->num_rx_queues; i++)
1225                 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1226                             i, priv->rx_queue[i]->rx_ring_size);
1227         for (i = 0; i < priv->num_tx_queues; i++)
1228                 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1229                             i, priv->tx_queue[i]->tx_ring_size);
1230
1231         return 0;
1232
1233 register_fail:
1234         unmap_group_regs(priv);
1235         free_tx_pointers(priv);
1236         free_rx_pointers(priv);
1237         if (priv->phy_node)
1238                 of_node_put(priv->phy_node);
1239         if (priv->tbi_node)
1240                 of_node_put(priv->tbi_node);
1241         free_gfar_dev(priv);
1242         return err;
1243 }
1244
1245 static int gfar_remove(struct platform_device *ofdev)
1246 {
1247         struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
1248
1249         if (priv->phy_node)
1250                 of_node_put(priv->phy_node);
1251         if (priv->tbi_node)
1252                 of_node_put(priv->tbi_node);
1253
1254         dev_set_drvdata(&ofdev->dev, NULL);
1255
1256         unregister_netdev(priv->ndev);
1257         unmap_group_regs(priv);
1258         free_gfar_dev(priv);
1259
1260         return 0;
1261 }
1262
1263 #ifdef CONFIG_PM
1264
1265 static int gfar_suspend(struct device *dev)
1266 {
1267         struct gfar_private *priv = dev_get_drvdata(dev);
1268         struct net_device *ndev = priv->ndev;
1269         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1270         unsigned long flags;
1271         u32 tempval;
1272
1273         int magic_packet = priv->wol_en &&
1274                            (priv->device_flags &
1275                             FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1276
1277         netif_device_detach(ndev);
1278
1279         if (netif_running(ndev)) {
1280
1281                 local_irq_save(flags);
1282                 lock_tx_qs(priv);
1283                 lock_rx_qs(priv);
1284
1285                 gfar_halt_nodisable(ndev);
1286
1287                 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
1288                 tempval = gfar_read(&regs->maccfg1);
1289
1290                 tempval &= ~MACCFG1_TX_EN;
1291
1292                 if (!magic_packet)
1293                         tempval &= ~MACCFG1_RX_EN;
1294
1295                 gfar_write(&regs->maccfg1, tempval);
1296
1297                 unlock_rx_qs(priv);
1298                 unlock_tx_qs(priv);
1299                 local_irq_restore(flags);
1300
1301                 disable_napi(priv);
1302
1303                 if (magic_packet) {
1304                         /* Enable interrupt on Magic Packet */
1305                         gfar_write(&regs->imask, IMASK_MAG);
1306
1307                         /* Enable Magic Packet mode */
1308                         tempval = gfar_read(&regs->maccfg2);
1309                         tempval |= MACCFG2_MPEN;
1310                         gfar_write(&regs->maccfg2, tempval);
1311                 } else {
1312                         phy_stop(priv->phydev);
1313                 }
1314         }
1315
1316         return 0;
1317 }
1318
1319 static int gfar_resume(struct device *dev)
1320 {
1321         struct gfar_private *priv = dev_get_drvdata(dev);
1322         struct net_device *ndev = priv->ndev;
1323         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1324         unsigned long flags;
1325         u32 tempval;
1326         int magic_packet = priv->wol_en &&
1327                            (priv->device_flags &
1328                             FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1329
1330         if (!netif_running(ndev)) {
1331                 netif_device_attach(ndev);
1332                 return 0;
1333         }
1334
1335         if (!magic_packet && priv->phydev)
1336                 phy_start(priv->phydev);
1337
1338         /* Disable Magic Packet mode, in case something
1339          * else woke us up.
1340          */
1341         local_irq_save(flags);
1342         lock_tx_qs(priv);
1343         lock_rx_qs(priv);
1344
1345         tempval = gfar_read(&regs->maccfg2);
1346         tempval &= ~MACCFG2_MPEN;
1347         gfar_write(&regs->maccfg2, tempval);
1348
1349         gfar_start(ndev);
1350
1351         unlock_rx_qs(priv);
1352         unlock_tx_qs(priv);
1353         local_irq_restore(flags);
1354
1355         netif_device_attach(ndev);
1356
1357         enable_napi(priv);
1358
1359         return 0;
1360 }
1361
1362 static int gfar_restore(struct device *dev)
1363 {
1364         struct gfar_private *priv = dev_get_drvdata(dev);
1365         struct net_device *ndev = priv->ndev;
1366
1367         if (!netif_running(ndev)) {
1368                 netif_device_attach(ndev);
1369
1370                 return 0;
1371         }
1372
1373         if (gfar_init_bds(ndev)) {
1374                 free_skb_resources(priv);
1375                 return -ENOMEM;
1376         }
1377
1378         init_registers(ndev);
1379         gfar_set_mac_address(ndev);
1380         gfar_init_mac(ndev);
1381         gfar_start(ndev);
1382
1383         priv->oldlink = 0;
1384         priv->oldspeed = 0;
1385         priv->oldduplex = -1;
1386
1387         if (priv->phydev)
1388                 phy_start(priv->phydev);
1389
1390         netif_device_attach(ndev);
1391         enable_napi(priv);
1392
1393         return 0;
1394 }
1395
1396 static struct dev_pm_ops gfar_pm_ops = {
1397         .suspend = gfar_suspend,
1398         .resume = gfar_resume,
1399         .freeze = gfar_suspend,
1400         .thaw = gfar_resume,
1401         .restore = gfar_restore,
1402 };
1403
1404 #define GFAR_PM_OPS (&gfar_pm_ops)
1405
1406 #else
1407
1408 #define GFAR_PM_OPS NULL
1409
1410 #endif
1411
1412 /* Reads the controller's registers to determine what interface
1413  * connects it to the PHY.
1414  */
1415 static phy_interface_t gfar_get_interface(struct net_device *dev)
1416 {
1417         struct gfar_private *priv = netdev_priv(dev);
1418         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1419         u32 ecntrl;
1420
1421         ecntrl = gfar_read(&regs->ecntrl);
1422
1423         if (ecntrl & ECNTRL_SGMII_MODE)
1424                 return PHY_INTERFACE_MODE_SGMII;
1425
1426         if (ecntrl & ECNTRL_TBI_MODE) {
1427                 if (ecntrl & ECNTRL_REDUCED_MODE)
1428                         return PHY_INTERFACE_MODE_RTBI;
1429                 else
1430                         return PHY_INTERFACE_MODE_TBI;
1431         }
1432
1433         if (ecntrl & ECNTRL_REDUCED_MODE) {
1434                 if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1435                         return PHY_INTERFACE_MODE_RMII;
1436                 }
1437                 else {
1438                         phy_interface_t interface = priv->interface;
1439
1440                         /* This isn't autodetected right now, so it must
1441                          * be set by the device tree or platform code.
1442                          */
1443                         if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1444                                 return PHY_INTERFACE_MODE_RGMII_ID;
1445
1446                         return PHY_INTERFACE_MODE_RGMII;
1447                 }
1448         }
1449
1450         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1451                 return PHY_INTERFACE_MODE_GMII;
1452
1453         return PHY_INTERFACE_MODE_MII;
1454 }
1455
1456
1457 /* Initializes driver's PHY state, and attaches to the PHY.
1458  * Returns 0 on success.
1459  */
1460 static int init_phy(struct net_device *dev)
1461 {
1462         struct gfar_private *priv = netdev_priv(dev);
1463         uint gigabit_support =
1464                 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1465                 SUPPORTED_1000baseT_Full : 0;
1466         phy_interface_t interface;
1467
1468         priv->oldlink = 0;
1469         priv->oldspeed = 0;
1470         priv->oldduplex = -1;
1471
1472         interface = gfar_get_interface(dev);
1473
1474         priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1475                                       interface);
1476         if (!priv->phydev)
1477                 priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1478                                                          interface);
1479         if (!priv->phydev) {
1480                 dev_err(&dev->dev, "could not attach to PHY\n");
1481                 return -ENODEV;
1482         }
1483
1484         if (interface == PHY_INTERFACE_MODE_SGMII)
1485                 gfar_configure_serdes(dev);
1486
1487         /* Remove any features not supported by the controller */
1488         priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1489         priv->phydev->advertising = priv->phydev->supported;
1490
1491         return 0;
1492 }
1493
1494 /* Initialize TBI PHY interface for communicating with the
1495  * SERDES lynx PHY on the chip.  We communicate with this PHY
1496  * through the MDIO bus on each controller, treating it as a
1497  * "normal" PHY at the address found in the TBIPA register.  We assume
1498  * that the TBIPA register is valid.  Either the MDIO bus code will set
1499  * it to a value that doesn't conflict with other PHYs on the bus, or the
1500  * value doesn't matter, as there are no other PHYs on the bus.
1501  */
1502 static void gfar_configure_serdes(struct net_device *dev)
1503 {
1504         struct gfar_private *priv = netdev_priv(dev);
1505         struct phy_device *tbiphy;
1506
1507         if (!priv->tbi_node) {
1508                 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1509                                     "device tree specify a tbi-handle\n");
1510                 return;
1511         }
1512
1513         tbiphy = of_phy_find_device(priv->tbi_node);
1514         if (!tbiphy) {
1515                 dev_err(&dev->dev, "error: Could not get TBI device\n");
1516                 return;
1517         }
1518
1519         /* If the link is already up, we must already be ok, and don't need to
1520          * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1521          * everything for us?  Resetting it takes the link down and requires
1522          * several seconds for it to come back.
1523          */
1524         if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1525                 return;
1526
1527         /* Single clk mode, mii mode off(for serdes communication) */
1528         phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1529
1530         phy_write(tbiphy, MII_ADVERTISE,
1531                   ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1532                   ADVERTISE_1000XPSE_ASYM);
1533
1534         phy_write(tbiphy, MII_BMCR,
1535                   BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1536                   BMCR_SPEED1000);
1537 }
1538
1539 static void init_registers(struct net_device *dev)
1540 {
1541         struct gfar_private *priv = netdev_priv(dev);
1542         struct gfar __iomem *regs = NULL;
1543         int i;
1544
1545         for (i = 0; i < priv->num_grps; i++) {
1546                 regs = priv->gfargrp[i].regs;
1547                 /* Clear IEVENT */
1548                 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1549
1550                 /* Initialize IMASK */
1551                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1552         }
1553
1554         regs = priv->gfargrp[0].regs;
1555         /* Init hash registers to zero */
1556         gfar_write(&regs->igaddr0, 0);
1557         gfar_write(&regs->igaddr1, 0);
1558         gfar_write(&regs->igaddr2, 0);
1559         gfar_write(&regs->igaddr3, 0);
1560         gfar_write(&regs->igaddr4, 0);
1561         gfar_write(&regs->igaddr5, 0);
1562         gfar_write(&regs->igaddr6, 0);
1563         gfar_write(&regs->igaddr7, 0);
1564
1565         gfar_write(&regs->gaddr0, 0);
1566         gfar_write(&regs->gaddr1, 0);
1567         gfar_write(&regs->gaddr2, 0);
1568         gfar_write(&regs->gaddr3, 0);
1569         gfar_write(&regs->gaddr4, 0);
1570         gfar_write(&regs->gaddr5, 0);
1571         gfar_write(&regs->gaddr6, 0);
1572         gfar_write(&regs->gaddr7, 0);
1573
1574         /* Zero out the rmon mib registers if it has them */
1575         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1576                 memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib));
1577
1578                 /* Mask off the CAM interrupts */
1579                 gfar_write(&regs->rmon.cam1, 0xffffffff);
1580                 gfar_write(&regs->rmon.cam2, 0xffffffff);
1581         }
1582
1583         /* Initialize the max receive buffer length */
1584         gfar_write(&regs->mrblr, priv->rx_buffer_size);
1585
1586         /* Initialize the Minimum Frame Length Register */
1587         gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1588 }
1589
1590 static int __gfar_is_rx_idle(struct gfar_private *priv)
1591 {
1592         u32 res;
1593
1594         /* Normaly TSEC should not hang on GRS commands, so we should
1595          * actually wait for IEVENT_GRSC flag.
1596          */
1597         if (likely(!gfar_has_errata(priv, GFAR_ERRATA_A002)))
1598                 return 0;
1599
1600         /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1601          * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1602          * and the Rx can be safely reset.
1603          */
1604         res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1605         res &= 0x7f807f80;
1606         if ((res & 0xffff) == (res >> 16))
1607                 return 1;
1608
1609         return 0;
1610 }
1611
1612 /* Halt the receive and transmit queues */
1613 static void gfar_halt_nodisable(struct net_device *dev)
1614 {
1615         struct gfar_private *priv = netdev_priv(dev);
1616         struct gfar __iomem *regs = NULL;
1617         u32 tempval;
1618         int i;
1619
1620         for (i = 0; i < priv->num_grps; i++) {
1621                 regs = priv->gfargrp[i].regs;
1622                 /* Mask all interrupts */
1623                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1624
1625                 /* Clear all interrupts */
1626                 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1627         }
1628
1629         regs = priv->gfargrp[0].regs;
1630         /* Stop the DMA, and wait for it to stop */
1631         tempval = gfar_read(&regs->dmactrl);
1632         if ((tempval & (DMACTRL_GRS | DMACTRL_GTS)) !=
1633             (DMACTRL_GRS | DMACTRL_GTS)) {
1634                 int ret;
1635
1636                 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1637                 gfar_write(&regs->dmactrl, tempval);
1638
1639                 do {
1640                         ret = spin_event_timeout(((gfar_read(&regs->ievent) &
1641                                  (IEVENT_GRSC | IEVENT_GTSC)) ==
1642                                  (IEVENT_GRSC | IEVENT_GTSC)), 1000000, 0);
1643                         if (!ret && !(gfar_read(&regs->ievent) & IEVENT_GRSC))
1644                                 ret = __gfar_is_rx_idle(priv);
1645                 } while (!ret);
1646         }
1647 }
1648
1649 /* Halt the receive and transmit queues */
1650 void gfar_halt(struct net_device *dev)
1651 {
1652         struct gfar_private *priv = netdev_priv(dev);
1653         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1654         u32 tempval;
1655
1656         gfar_halt_nodisable(dev);
1657
1658         /* Disable Rx and Tx */
1659         tempval = gfar_read(&regs->maccfg1);
1660         tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1661         gfar_write(&regs->maccfg1, tempval);
1662 }
1663
1664 static void free_grp_irqs(struct gfar_priv_grp *grp)
1665 {
1666         free_irq(gfar_irq(grp, TX)->irq, grp);
1667         free_irq(gfar_irq(grp, RX)->irq, grp);
1668         free_irq(gfar_irq(grp, ER)->irq, grp);
1669 }
1670
1671 void stop_gfar(struct net_device *dev)
1672 {
1673         struct gfar_private *priv = netdev_priv(dev);
1674         unsigned long flags;
1675         int i;
1676
1677         phy_stop(priv->phydev);
1678
1679
1680         /* Lock it down */
1681         local_irq_save(flags);
1682         lock_tx_qs(priv);
1683         lock_rx_qs(priv);
1684
1685         gfar_halt(dev);
1686
1687         unlock_rx_qs(priv);
1688         unlock_tx_qs(priv);
1689         local_irq_restore(flags);
1690
1691         /* Free the IRQs */
1692         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1693                 for (i = 0; i < priv->num_grps; i++)
1694                         free_grp_irqs(&priv->gfargrp[i]);
1695         } else {
1696                 for (i = 0; i < priv->num_grps; i++)
1697                         free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
1698                                  &priv->gfargrp[i]);
1699         }
1700
1701         free_skb_resources(priv);
1702 }
1703
1704 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1705 {
1706         struct txbd8 *txbdp;
1707         struct gfar_private *priv = netdev_priv(tx_queue->dev);
1708         int i, j;
1709
1710         txbdp = tx_queue->tx_bd_base;
1711
1712         for (i = 0; i < tx_queue->tx_ring_size; i++) {
1713                 if (!tx_queue->tx_skbuff[i])
1714                         continue;
1715
1716                 dma_unmap_single(&priv->ofdev->dev, txbdp->bufPtr,
1717                                  txbdp->length, DMA_TO_DEVICE);
1718                 txbdp->lstatus = 0;
1719                 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1720                      j++) {
1721                         txbdp++;
1722                         dma_unmap_page(&priv->ofdev->dev, txbdp->bufPtr,
1723                                        txbdp->length, DMA_TO_DEVICE);
1724                 }
1725                 txbdp++;
1726                 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1727                 tx_queue->tx_skbuff[i] = NULL;
1728         }
1729         kfree(tx_queue->tx_skbuff);
1730         tx_queue->tx_skbuff = NULL;
1731 }
1732
1733 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1734 {
1735         struct rxbd8 *rxbdp;
1736         struct gfar_private *priv = netdev_priv(rx_queue->dev);
1737         int i;
1738
1739         rxbdp = rx_queue->rx_bd_base;
1740
1741         for (i = 0; i < rx_queue->rx_ring_size; i++) {
1742                 if (rx_queue->rx_skbuff[i]) {
1743                         dma_unmap_single(&priv->ofdev->dev,
1744                                          rxbdp->bufPtr, priv->rx_buffer_size,
1745                                          DMA_FROM_DEVICE);
1746                         dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1747                         rx_queue->rx_skbuff[i] = NULL;
1748                 }
1749                 rxbdp->lstatus = 0;
1750                 rxbdp->bufPtr = 0;
1751                 rxbdp++;
1752         }
1753         kfree(rx_queue->rx_skbuff);
1754         rx_queue->rx_skbuff = NULL;
1755 }
1756
1757 /* If there are any tx skbs or rx skbs still around, free them.
1758  * Then free tx_skbuff and rx_skbuff
1759  */
1760 static void free_skb_resources(struct gfar_private *priv)
1761 {
1762         struct gfar_priv_tx_q *tx_queue = NULL;
1763         struct gfar_priv_rx_q *rx_queue = NULL;
1764         int i;
1765
1766         /* Go through all the buffer descriptors and free their data buffers */
1767         for (i = 0; i < priv->num_tx_queues; i++) {
1768                 struct netdev_queue *txq;
1769
1770                 tx_queue = priv->tx_queue[i];
1771                 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1772                 if (tx_queue->tx_skbuff)
1773                         free_skb_tx_queue(tx_queue);
1774                 netdev_tx_reset_queue(txq);
1775         }
1776
1777         for (i = 0; i < priv->num_rx_queues; i++) {
1778                 rx_queue = priv->rx_queue[i];
1779                 if (rx_queue->rx_skbuff)
1780                         free_skb_rx_queue(rx_queue);
1781         }
1782
1783         dma_free_coherent(&priv->ofdev->dev,
1784                           sizeof(struct txbd8) * priv->total_tx_ring_size +
1785                           sizeof(struct rxbd8) * priv->total_rx_ring_size,
1786                           priv->tx_queue[0]->tx_bd_base,
1787                           priv->tx_queue[0]->tx_bd_dma_base);
1788 }
1789
1790 void gfar_start(struct net_device *dev)
1791 {
1792         struct gfar_private *priv = netdev_priv(dev);
1793         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1794         u32 tempval;
1795         int i = 0;
1796
1797         /* Enable Rx and Tx in MACCFG1 */
1798         tempval = gfar_read(&regs->maccfg1);
1799         tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1800         gfar_write(&regs->maccfg1, tempval);
1801
1802         /* Initialize DMACTRL to have WWR and WOP */
1803         tempval = gfar_read(&regs->dmactrl);
1804         tempval |= DMACTRL_INIT_SETTINGS;
1805         gfar_write(&regs->dmactrl, tempval);
1806
1807         /* Make sure we aren't stopped */
1808         tempval = gfar_read(&regs->dmactrl);
1809         tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1810         gfar_write(&regs->dmactrl, tempval);
1811
1812         for (i = 0; i < priv->num_grps; i++) {
1813                 regs = priv->gfargrp[i].regs;
1814                 /* Clear THLT/RHLT, so that the DMA starts polling now */
1815                 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1816                 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1817                 /* Unmask the interrupts we look for */
1818                 gfar_write(&regs->imask, IMASK_DEFAULT);
1819         }
1820
1821         dev->trans_start = jiffies; /* prevent tx timeout */
1822 }
1823
1824 void gfar_configure_coalescing(struct gfar_private *priv,
1825                                unsigned long tx_mask, unsigned long rx_mask)
1826 {
1827         struct gfar __iomem *regs = priv->gfargrp[0].regs;
1828         u32 __iomem *baddr;
1829         int i = 0;
1830
1831         /* Backward compatible case ---- even if we enable
1832          * multiple queues, there's only single reg to program
1833          */
1834         gfar_write(&regs->txic, 0);
1835         if (likely(priv->tx_queue[0]->txcoalescing))
1836                 gfar_write(&regs->txic, priv->tx_queue[0]->txic);
1837
1838         gfar_write(&regs->rxic, 0);
1839         if (unlikely(priv->rx_queue[0]->rxcoalescing))
1840                 gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
1841
1842         if (priv->mode == MQ_MG_MODE) {
1843                 baddr = &regs->txic0;
1844                 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
1845                         gfar_write(baddr + i, 0);
1846                         if (likely(priv->tx_queue[i]->txcoalescing))
1847                                 gfar_write(baddr + i, priv->tx_queue[i]->txic);
1848                 }
1849
1850                 baddr = &regs->rxic0;
1851                 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
1852                         gfar_write(baddr + i, 0);
1853                         if (likely(priv->rx_queue[i]->rxcoalescing))
1854                                 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
1855                 }
1856         }
1857 }
1858
1859 static int register_grp_irqs(struct gfar_priv_grp *grp)
1860 {
1861         struct gfar_private *priv = grp->priv;
1862         struct net_device *dev = priv->ndev;
1863         int err;
1864
1865         /* If the device has multiple interrupts, register for
1866          * them.  Otherwise, only register for the one
1867          */
1868         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1869                 /* Install our interrupt handlers for Error,
1870                  * Transmit, and Receive
1871                  */
1872                 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
1873                                   gfar_irq(grp, ER)->name, grp);
1874                 if (err < 0) {
1875                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1876                                   gfar_irq(grp, ER)->irq);
1877
1878                         goto err_irq_fail;
1879                 }
1880                 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
1881                                   gfar_irq(grp, TX)->name, grp);
1882                 if (err < 0) {
1883                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1884                                   gfar_irq(grp, TX)->irq);
1885                         goto tx_irq_fail;
1886                 }
1887                 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
1888                                   gfar_irq(grp, RX)->name, grp);
1889                 if (err < 0) {
1890                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1891                                   gfar_irq(grp, RX)->irq);
1892                         goto rx_irq_fail;
1893                 }
1894         } else {
1895                 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
1896                                   gfar_irq(grp, TX)->name, grp);
1897                 if (err < 0) {
1898                         netif_err(priv, intr, dev, "Can't get IRQ %d\n",
1899                                   gfar_irq(grp, TX)->irq);
1900                         goto err_irq_fail;
1901                 }
1902         }
1903
1904         return 0;
1905
1906 rx_irq_fail:
1907         free_irq(gfar_irq(grp, TX)->irq, grp);
1908 tx_irq_fail:
1909         free_irq(gfar_irq(grp, ER)->irq, grp);
1910 err_irq_fail:
1911         return err;
1912
1913 }
1914
1915 /* Bring the controller up and running */
1916 int startup_gfar(struct net_device *ndev)
1917 {
1918         struct gfar_private *priv = netdev_priv(ndev);
1919         struct gfar __iomem *regs = NULL;
1920         int err, i, j;
1921
1922         for (i = 0; i < priv->num_grps; i++) {
1923                 regs= priv->gfargrp[i].regs;
1924                 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1925         }
1926
1927         regs= priv->gfargrp[0].regs;
1928         err = gfar_alloc_skb_resources(ndev);
1929         if (err)
1930                 return err;
1931
1932         gfar_init_mac(ndev);
1933
1934         for (i = 0; i < priv->num_grps; i++) {
1935                 err = register_grp_irqs(&priv->gfargrp[i]);
1936                 if (err) {
1937                         for (j = 0; j < i; j++)
1938                                 free_grp_irqs(&priv->gfargrp[j]);
1939                         goto irq_fail;
1940                 }
1941         }
1942
1943         /* Start the controller */
1944         gfar_start(ndev);
1945
1946         phy_start(priv->phydev);
1947
1948         gfar_configure_coalescing(priv, 0xFF, 0xFF);
1949
1950         return 0;
1951
1952 irq_fail:
1953         free_skb_resources(priv);
1954         return err;
1955 }
1956
1957 /* Called when something needs to use the ethernet device
1958  * Returns 0 for success.
1959  */
1960 static int gfar_enet_open(struct net_device *dev)
1961 {
1962         struct gfar_private *priv = netdev_priv(dev);
1963         int err;
1964
1965         enable_napi(priv);
1966
1967         /* Initialize a bunch of registers */
1968         init_registers(dev);
1969
1970         gfar_set_mac_address(dev);
1971
1972         err = init_phy(dev);
1973
1974         if (err) {
1975                 disable_napi(priv);
1976                 return err;
1977         }
1978
1979         err = startup_gfar(dev);
1980         if (err) {
1981                 disable_napi(priv);
1982                 return err;
1983         }
1984
1985         netif_tx_start_all_queues(dev);
1986
1987         device_set_wakeup_enable(&dev->dev, priv->wol_en);
1988
1989         return err;
1990 }
1991
1992 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1993 {
1994         struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
1995
1996         memset(fcb, 0, GMAC_FCB_LEN);
1997
1998         return fcb;
1999 }
2000
2001 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2002                                     int fcb_length)
2003 {
2004         /* If we're here, it's a IP packet with a TCP or UDP
2005          * payload.  We set it to checksum, using a pseudo-header
2006          * we provide
2007          */
2008         u8 flags = TXFCB_DEFAULT;
2009
2010         /* Tell the controller what the protocol is
2011          * And provide the already calculated phcs
2012          */
2013         if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2014                 flags |= TXFCB_UDP;
2015                 fcb->phcs = udp_hdr(skb)->check;
2016         } else
2017                 fcb->phcs = tcp_hdr(skb)->check;
2018
2019         /* l3os is the distance between the start of the
2020          * frame (skb->data) and the start of the IP hdr.
2021          * l4os is the distance between the start of the
2022          * l3 hdr and the l4 hdr
2023          */
2024         fcb->l3os = (u16)(skb_network_offset(skb) - fcb_length);
2025         fcb->l4os = skb_network_header_len(skb);
2026
2027         fcb->flags = flags;
2028 }
2029
2030 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2031 {
2032         fcb->flags |= TXFCB_VLN;
2033         fcb->vlctl = vlan_tx_tag_get(skb);
2034 }
2035
2036 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2037                                       struct txbd8 *base, int ring_size)
2038 {
2039         struct txbd8 *new_bd = bdp + stride;
2040
2041         return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2042 }
2043
2044 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2045                                       int ring_size)
2046 {
2047         return skip_txbd(bdp, 1, base, ring_size);
2048 }
2049
2050 /* This is called by the kernel when a frame is ready for transmission.
2051  * It is pointed to by the dev->hard_start_xmit function pointer
2052  */
2053 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2054 {
2055         struct gfar_private *priv = netdev_priv(dev);
2056         struct gfar_priv_tx_q *tx_queue = NULL;
2057         struct netdev_queue *txq;
2058         struct gfar __iomem *regs = NULL;
2059         struct txfcb *fcb = NULL;
2060         struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2061         u32 lstatus;
2062         int i, rq = 0, do_tstamp = 0;
2063         u32 bufaddr;
2064         unsigned long flags;
2065         unsigned int nr_frags, nr_txbds, length, fcb_length = GMAC_FCB_LEN;
2066
2067         /* TOE=1 frames larger than 2500 bytes may see excess delays
2068          * before start of transmission.
2069          */
2070         if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_76) &&
2071                      skb->ip_summed == CHECKSUM_PARTIAL &&
2072                      skb->len > 2500)) {
2073                 int ret;
2074
2075                 ret = skb_checksum_help(skb);
2076                 if (ret)
2077                         return ret;
2078         }
2079
2080         rq = skb->queue_mapping;
2081         tx_queue = priv->tx_queue[rq];
2082         txq = netdev_get_tx_queue(dev, rq);
2083         base = tx_queue->tx_bd_base;
2084         regs = tx_queue->grp->regs;
2085
2086         /* check if time stamp should be generated */
2087         if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
2088                      priv->hwts_tx_en)) {
2089                 do_tstamp = 1;
2090                 fcb_length = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2091         }
2092
2093         /* make space for additional header when fcb is needed */
2094         if (((skb->ip_summed == CHECKSUM_PARTIAL) ||
2095              vlan_tx_tag_present(skb) ||
2096              unlikely(do_tstamp)) &&
2097             (skb_headroom(skb) < fcb_length)) {
2098                 struct sk_buff *skb_new;
2099
2100                 skb_new = skb_realloc_headroom(skb, fcb_length);
2101                 if (!skb_new) {
2102                         dev->stats.tx_errors++;
2103                         kfree_skb(skb);
2104                         return NETDEV_TX_OK;
2105                 }
2106
2107                 if (skb->sk)
2108                         skb_set_owner_w(skb_new, skb->sk);
2109                 consume_skb(skb);
2110                 skb = skb_new;
2111         }
2112
2113         /* total number of fragments in the SKB */
2114         nr_frags = skb_shinfo(skb)->nr_frags;
2115
2116         /* calculate the required number of TxBDs for this skb */
2117         if (unlikely(do_tstamp))
2118                 nr_txbds = nr_frags + 2;
2119         else
2120                 nr_txbds = nr_frags + 1;
2121
2122         /* check if there is space to queue this packet */
2123         if (nr_txbds > tx_queue->num_txbdfree) {
2124                 /* no space, stop the queue */
2125                 netif_tx_stop_queue(txq);
2126                 dev->stats.tx_fifo_errors++;
2127                 return NETDEV_TX_BUSY;
2128         }
2129
2130         /* Update transmit stats */
2131         tx_queue->stats.tx_bytes += skb->len;
2132         tx_queue->stats.tx_packets++;
2133
2134         txbdp = txbdp_start = tx_queue->cur_tx;
2135         lstatus = txbdp->lstatus;
2136
2137         /* Time stamp insertion requires one additional TxBD */
2138         if (unlikely(do_tstamp))
2139                 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2140                                                  tx_queue->tx_ring_size);
2141
2142         if (nr_frags == 0) {
2143                 if (unlikely(do_tstamp))
2144                         txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST |
2145                                                           TXBD_INTERRUPT);
2146                 else
2147                         lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2148         } else {
2149                 /* Place the fragment addresses and lengths into the TxBDs */
2150                 for (i = 0; i < nr_frags; i++) {
2151                         /* Point at the next BD, wrapping as needed */
2152                         txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2153
2154                         length = skb_shinfo(skb)->frags[i].size;
2155
2156                         lstatus = txbdp->lstatus | length |
2157                                   BD_LFLAG(TXBD_READY);
2158
2159                         /* Handle the last BD specially */
2160                         if (i == nr_frags - 1)
2161                                 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2162
2163                         bufaddr = skb_frag_dma_map(&priv->ofdev->dev,
2164                                                    &skb_shinfo(skb)->frags[i],
2165                                                    0,
2166                                                    length,
2167                                                    DMA_TO_DEVICE);
2168
2169                         /* set the TxBD length and buffer pointer */
2170                         txbdp->bufPtr = bufaddr;
2171                         txbdp->lstatus = lstatus;
2172                 }
2173
2174                 lstatus = txbdp_start->lstatus;
2175         }
2176
2177         /* Add TxPAL between FCB and frame if required */
2178         if (unlikely(do_tstamp)) {
2179                 skb_push(skb, GMAC_TXPAL_LEN);
2180                 memset(skb->data, 0, GMAC_TXPAL_LEN);
2181         }
2182
2183         /* Set up checksumming */
2184         if (CHECKSUM_PARTIAL == skb->ip_summed) {
2185                 fcb = gfar_add_fcb(skb);
2186                 /* as specified by errata */
2187                 if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_12) &&
2188                              ((unsigned long)fcb % 0x20) > 0x18)) {
2189                         __skb_pull(skb, GMAC_FCB_LEN);
2190                         skb_checksum_help(skb);
2191                 } else {
2192                         lstatus |= BD_LFLAG(TXBD_TOE);
2193                         gfar_tx_checksum(skb, fcb, fcb_length);
2194                 }
2195         }
2196
2197         if (vlan_tx_tag_present(skb)) {
2198                 if (unlikely(NULL == fcb)) {
2199                         fcb = gfar_add_fcb(skb);
2200                         lstatus |= BD_LFLAG(TXBD_TOE);
2201                 }
2202
2203                 gfar_tx_vlan(skb, fcb);
2204         }
2205
2206         /* Setup tx hardware time stamping if requested */
2207         if (unlikely(do_tstamp)) {
2208                 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2209                 if (fcb == NULL)
2210                         fcb = gfar_add_fcb(skb);
2211                 fcb->ptp = 1;
2212                 lstatus |= BD_LFLAG(TXBD_TOE);
2213         }
2214
2215         txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
2216                                              skb_headlen(skb), DMA_TO_DEVICE);
2217
2218         /* If time stamping is requested one additional TxBD must be set up. The
2219          * first TxBD points to the FCB and must have a data length of
2220          * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2221          * the full frame length.
2222          */
2223         if (unlikely(do_tstamp)) {
2224                 txbdp_tstamp->bufPtr = txbdp_start->bufPtr + fcb_length;
2225                 txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) |
2226                                          (skb_headlen(skb) - fcb_length);
2227                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2228         } else {
2229                 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2230         }
2231
2232         netdev_tx_sent_queue(txq, skb->len);
2233
2234         /* We can work in parallel with gfar_clean_tx_ring(), except
2235          * when modifying num_txbdfree. Note that we didn't grab the lock
2236          * when we were reading the num_txbdfree and checking for available
2237          * space, that's because outside of this function it can only grow,
2238          * and once we've got needed space, it cannot suddenly disappear.
2239          *
2240          * The lock also protects us from gfar_error(), which can modify
2241          * regs->tstat and thus retrigger the transfers, which is why we
2242          * also must grab the lock before setting ready bit for the first
2243          * to be transmitted BD.
2244          */
2245         spin_lock_irqsave(&tx_queue->txlock, flags);
2246
2247         /* The powerpc-specific eieio() is used, as wmb() has too strong
2248          * semantics (it requires synchronization between cacheable and
2249          * uncacheable mappings, which eieio doesn't provide and which we
2250          * don't need), thus requiring a more expensive sync instruction.  At
2251          * some point, the set of architecture-independent barrier functions
2252          * should be expanded to include weaker barriers.
2253          */
2254         eieio();
2255
2256         txbdp_start->lstatus = lstatus;
2257
2258         eieio(); /* force lstatus write before tx_skbuff */
2259
2260         tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2261
2262         /* Update the current skb pointer to the next entry we will use
2263          * (wrapping if necessary)
2264          */
2265         tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2266                               TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2267
2268         tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2269
2270         /* reduce TxBD free count */
2271         tx_queue->num_txbdfree -= (nr_txbds);
2272
2273         /* If the next BD still needs to be cleaned up, then the bds
2274          * are full.  We need to tell the kernel to stop sending us stuff.
2275          */
2276         if (!tx_queue->num_txbdfree) {
2277                 netif_tx_stop_queue(txq);
2278
2279                 dev->stats.tx_fifo_errors++;
2280         }
2281
2282         /* Tell the DMA to go go go */
2283         gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2284
2285         /* Unlock priv */
2286         spin_unlock_irqrestore(&tx_queue->txlock, flags);
2287
2288         return NETDEV_TX_OK;
2289 }
2290
2291 /* Stops the kernel queue, and halts the controller */
2292 static int gfar_close(struct net_device *dev)
2293 {
2294         struct gfar_private *priv = netdev_priv(dev);
2295
2296         disable_napi(priv);
2297
2298         cancel_work_sync(&priv->reset_task);
2299         stop_gfar(dev);
2300
2301         /* Disconnect from the PHY */
2302         phy_disconnect(priv->phydev);
2303         priv->phydev = NULL;
2304
2305         netif_tx_stop_all_queues(dev);
2306
2307         return 0;
2308 }
2309
2310 /* Changes the mac address if the controller is not running. */
2311 static int gfar_set_mac_address(struct net_device *dev)
2312 {
2313         gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2314
2315         return 0;
2316 }
2317
2318 /* Check if rx parser should be activated */
2319 void gfar_check_rx_parser_mode(struct gfar_private *priv)
2320 {
2321         struct gfar __iomem *regs;
2322         u32 tempval;
2323
2324         regs = priv->gfargrp[0].regs;
2325
2326         tempval = gfar_read(&regs->rctrl);
2327         /* If parse is no longer required, then disable parser */
2328         if (tempval & RCTRL_REQ_PARSER)
2329                 tempval |= RCTRL_PRSDEP_INIT;
2330         else
2331                 tempval &= ~RCTRL_PRSDEP_INIT;
2332         gfar_write(&regs->rctrl, tempval);
2333 }
2334
2335 /* Enables and disables VLAN insertion/extraction */
2336 void gfar_vlan_mode(struct net_device *dev, netdev_features_t features)
2337 {
2338         struct gfar_private *priv = netdev_priv(dev);
2339         struct gfar __iomem *regs = NULL;
2340         unsigned long flags;
2341         u32 tempval;
2342
2343         regs = priv->gfargrp[0].regs;
2344         local_irq_save(flags);
2345         lock_rx_qs(priv);
2346
2347         if (features & NETIF_F_HW_VLAN_TX) {
2348                 /* Enable VLAN tag insertion */
2349                 tempval = gfar_read(&regs->tctrl);
2350                 tempval |= TCTRL_VLINS;
2351                 gfar_write(&regs->tctrl, tempval);
2352         } else {
2353                 /* Disable VLAN tag insertion */
2354                 tempval = gfar_read(&regs->tctrl);
2355                 tempval &= ~TCTRL_VLINS;
2356                 gfar_write(&regs->tctrl, tempval);
2357         }
2358
2359         if (features & NETIF_F_HW_VLAN_RX) {
2360                 /* Enable VLAN tag extraction */
2361                 tempval = gfar_read(&regs->rctrl);
2362                 tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
2363                 gfar_write(&regs->rctrl, tempval);
2364         } else {
2365                 /* Disable VLAN tag extraction */
2366                 tempval = gfar_read(&regs->rctrl);
2367                 tempval &= ~RCTRL_VLEX;
2368                 gfar_write(&regs->rctrl, tempval);
2369
2370                 gfar_check_rx_parser_mode(priv);
2371         }
2372
2373         gfar_change_mtu(dev, dev->mtu);
2374
2375         unlock_rx_qs(priv);
2376         local_irq_restore(flags);
2377 }
2378
2379 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2380 {
2381         int tempsize, tempval;
2382         struct gfar_private *priv = netdev_priv(dev);
2383         struct gfar __iomem *regs = priv->gfargrp[0].regs;
2384         int oldsize = priv->rx_buffer_size;
2385         int frame_size = new_mtu + ETH_HLEN;
2386
2387         if (gfar_is_vlan_on(priv))
2388                 frame_size += VLAN_HLEN;
2389
2390         if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2391                 netif_err(priv, drv, dev, "Invalid MTU setting\n");
2392                 return -EINVAL;
2393         }
2394
2395         if (gfar_uses_fcb(priv))
2396                 frame_size += GMAC_FCB_LEN;
2397
2398         frame_size += priv->padding;
2399
2400         tempsize = (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
2401                    INCREMENTAL_BUFFER_SIZE;
2402
2403         /* Only stop and start the controller if it isn't already
2404          * stopped, and we changed something
2405          */
2406         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2407                 stop_gfar(dev);
2408
2409         priv->rx_buffer_size = tempsize;
2410
2411         dev->mtu = new_mtu;
2412
2413         gfar_write(&regs->mrblr, priv->rx_buffer_size);
2414         gfar_write(&regs->maxfrm, priv->rx_buffer_size);
2415
2416         /* If the mtu is larger than the max size for standard
2417          * ethernet frames (ie, a jumbo frame), then set maccfg2
2418          * to allow huge frames, and to check the length
2419          */
2420         tempval = gfar_read(&regs->maccfg2);
2421
2422         if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
2423             gfar_has_errata(priv, GFAR_ERRATA_74))
2424                 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2425         else
2426                 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2427
2428         gfar_write(&regs->maccfg2, tempval);
2429
2430         if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2431                 startup_gfar(dev);
2432
2433         return 0;
2434 }
2435
2436 /* gfar_reset_task gets scheduled when a packet has not been
2437  * transmitted after a set amount of time.
2438  * For now, assume that clearing out all the structures, and
2439  * starting over will fix the problem.
2440  */
2441 static void gfar_reset_task(struct work_struct *work)
2442 {
2443         struct gfar_private *priv = container_of(work, struct gfar_private,
2444                                                  reset_task);
2445         struct net_device *dev = priv->ndev;
2446
2447         if (dev->flags & IFF_UP) {
2448                 netif_tx_stop_all_queues(dev);
2449                 stop_gfar(dev);
2450                 startup_gfar(dev);
2451                 netif_tx_start_all_queues(dev);
2452         }
2453
2454         netif_tx_schedule_all(dev);
2455 }
2456
2457 static void gfar_timeout(struct net_device *dev)
2458 {
2459         struct gfar_private *priv = netdev_priv(dev);
2460
2461         dev->stats.tx_errors++;
2462         schedule_work(&priv->reset_task);
2463 }
2464
2465 static void gfar_align_skb(struct sk_buff *skb)
2466 {
2467         /* We need the data buffer to be aligned properly.  We will reserve
2468          * as many bytes as needed to align the data properly
2469          */
2470         skb_reserve(skb, RXBUF_ALIGNMENT -
2471                     (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
2472 }
2473
2474 /* Interrupt Handler for Transmit complete */
2475 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2476 {
2477         struct net_device *dev = tx_queue->dev;
2478         struct netdev_queue *txq;
2479         struct gfar_private *priv = netdev_priv(dev);
2480         struct gfar_priv_rx_q *rx_queue = NULL;
2481         struct txbd8 *bdp, *next = NULL;
2482         struct txbd8 *lbdp = NULL;
2483         struct txbd8 *base = tx_queue->tx_bd_base;
2484         struct sk_buff *skb;
2485         int skb_dirtytx;
2486         int tx_ring_size = tx_queue->tx_ring_size;
2487         int frags = 0, nr_txbds = 0;
2488         int i;
2489         int howmany = 0;
2490         int tqi = tx_queue->qindex;
2491         unsigned int bytes_sent = 0;
2492         u32 lstatus;
2493         size_t buflen;
2494
2495         rx_queue = priv->rx_queue[tqi];
2496         txq = netdev_get_tx_queue(dev, tqi);
2497         bdp = tx_queue->dirty_tx;
2498         skb_dirtytx = tx_queue->skb_dirtytx;
2499
2500         while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2501                 unsigned long flags;
2502
2503                 frags = skb_shinfo(skb)->nr_frags;
2504
2505                 /* When time stamping, one additional TxBD must be freed.
2506                  * Also, we need to dma_unmap_single() the TxPAL.
2507                  */
2508                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2509                         nr_txbds = frags + 2;
2510                 else
2511                         nr_txbds = frags + 1;
2512
2513                 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2514
2515                 lstatus = lbdp->lstatus;
2516
2517                 /* Only clean completed frames */
2518                 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2519                     (lstatus & BD_LENGTH_MASK))
2520                         break;
2521
2522                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2523                         next = next_txbd(bdp, base, tx_ring_size);
2524                         buflen = next->length + GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2525                 } else
2526                         buflen = bdp->length;
2527
2528                 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2529                                  buflen, DMA_TO_DEVICE);
2530
2531                 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2532                         struct skb_shared_hwtstamps shhwtstamps;
2533                         u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2534
2535                         memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2536                         shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2537                         skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2538                         skb_tstamp_tx(skb, &shhwtstamps);
2539                         bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2540                         bdp = next;
2541                 }
2542
2543                 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2544                 bdp = next_txbd(bdp, base, tx_ring_size);
2545
2546                 for (i = 0; i < frags; i++) {
2547                         dma_unmap_page(&priv->ofdev->dev, bdp->bufPtr,
2548                                        bdp->length, DMA_TO_DEVICE);
2549                         bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2550                         bdp = next_txbd(bdp, base, tx_ring_size);
2551                 }
2552
2553                 bytes_sent += skb->len;
2554
2555                 dev_kfree_skb_any(skb);
2556
2557                 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2558
2559                 skb_dirtytx = (skb_dirtytx + 1) &
2560                               TX_RING_MOD_MASK(tx_ring_size);
2561
2562                 howmany++;
2563                 spin_lock_irqsave(&tx_queue->txlock, flags);
2564                 tx_queue->num_txbdfree += nr_txbds;
2565                 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2566         }
2567
2568         /* If we freed a buffer, we can restart transmission, if necessary */
2569         if (netif_tx_queue_stopped(txq) && tx_queue->num_txbdfree)
2570                 netif_wake_subqueue(dev, tqi);
2571
2572         /* Update dirty indicators */
2573         tx_queue->skb_dirtytx = skb_dirtytx;
2574         tx_queue->dirty_tx = bdp;
2575
2576         netdev_tx_completed_queue(txq, howmany, bytes_sent);
2577
2578         return howmany;
2579 }
2580
2581 static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp)
2582 {
2583         unsigned long flags;
2584
2585         spin_lock_irqsave(&gfargrp->grplock, flags);
2586         if (napi_schedule_prep(&gfargrp->napi)) {
2587                 gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED);
2588                 __napi_schedule(&gfargrp->napi);
2589         } else {
2590                 /* Clear IEVENT, so interrupts aren't called again
2591                  * because of the packets that have already arrived.
2592                  */
2593                 gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK);
2594         }
2595         spin_unlock_irqrestore(&gfargrp->grplock, flags);
2596
2597 }
2598
2599 /* Interrupt Handler for Transmit complete */
2600 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2601 {
2602         gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2603         return IRQ_HANDLED;
2604 }
2605
2606 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2607                            struct sk_buff *skb)
2608 {
2609         struct net_device *dev = rx_queue->dev;
2610         struct gfar_private *priv = netdev_priv(dev);
2611         dma_addr_t buf;
2612
2613         buf = dma_map_single(&priv->ofdev->dev, skb->data,
2614                              priv->rx_buffer_size, DMA_FROM_DEVICE);
2615         gfar_init_rxbdp(rx_queue, bdp, buf);
2616 }
2617
2618 static struct sk_buff *gfar_alloc_skb(struct net_device *dev)
2619 {
2620         struct gfar_private *priv = netdev_priv(dev);
2621         struct sk_buff *skb;
2622
2623         skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2624         if (!skb)
2625                 return NULL;
2626
2627         gfar_align_skb(skb);
2628
2629         return skb;
2630 }
2631
2632 struct sk_buff *gfar_new_skb(struct net_device *dev)
2633 {
2634         return gfar_alloc_skb(dev);
2635 }
2636
2637 static inline void count_errors(unsigned short status, struct net_device *dev)
2638 {
2639         struct gfar_private *priv = netdev_priv(dev);
2640         struct net_device_stats *stats = &dev->stats;
2641         struct gfar_extra_stats *estats = &priv->extra_stats;
2642
2643         /* If the packet was truncated, none of the other errors matter */
2644         if (status & RXBD_TRUNCATED) {
2645                 stats->rx_length_errors++;
2646
2647                 atomic64_inc(&estats->rx_trunc);
2648
2649                 return;
2650         }
2651         /* Count the errors, if there were any */
2652         if (status & (RXBD_LARGE | RXBD_SHORT)) {
2653                 stats->rx_length_errors++;
2654
2655                 if (status & RXBD_LARGE)
2656                         atomic64_inc(&estats->rx_large);
2657                 else
2658                         atomic64_inc(&estats->rx_short);
2659         }
2660         if (status & RXBD_NONOCTET) {
2661                 stats->rx_frame_errors++;
2662                 atomic64_inc(&estats->rx_nonoctet);
2663         }
2664         if (status & RXBD_CRCERR) {
2665                 atomic64_inc(&estats->rx_crcerr);
2666                 stats->rx_crc_errors++;
2667         }
2668         if (status & RXBD_OVERRUN) {
2669                 atomic64_inc(&estats->rx_overrun);
2670                 stats->rx_crc_errors++;
2671         }
2672 }
2673
2674 irqreturn_t gfar_receive(int irq, void *grp_id)
2675 {
2676         gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2677         return IRQ_HANDLED;
2678 }
2679
2680 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2681 {
2682         /* If valid headers were found, and valid sums
2683          * were verified, then we tell the kernel that no
2684          * checksumming is necessary.  Otherwise, it is [FIXME]
2685          */
2686         if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2687                 skb->ip_summed = CHECKSUM_UNNECESSARY;
2688         else
2689                 skb_checksum_none_assert(skb);
2690 }
2691
2692
2693 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2694 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2695                               int amount_pull, struct napi_struct *napi)
2696 {
2697         struct gfar_private *priv = netdev_priv(dev);
2698         struct rxfcb *fcb = NULL;
2699
2700         gro_result_t ret;
2701
2702         /* fcb is at the beginning if exists */
2703         fcb = (struct rxfcb *)skb->data;
2704
2705         /* Remove the FCB from the skb
2706          * Remove the padded bytes, if there are any
2707          */
2708         if (amount_pull) {
2709                 skb_record_rx_queue(skb, fcb->rq);
2710                 skb_pull(skb, amount_pull);
2711         }
2712
2713         /* Get receive timestamp from the skb */
2714         if (priv->hwts_rx_en) {
2715                 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2716                 u64 *ns = (u64 *) skb->data;
2717
2718                 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2719                 shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2720         }
2721
2722         if (priv->padding)
2723                 skb_pull(skb, priv->padding);
2724
2725         if (dev->features & NETIF_F_RXCSUM)
2726                 gfar_rx_checksum(skb, fcb);
2727
2728         /* Tell the skb what kind of packet this is */
2729         skb->protocol = eth_type_trans(skb, dev);
2730
2731         /* There's need to check for NETIF_F_HW_VLAN_RX here.
2732          * Even if vlan rx accel is disabled, on some chips
2733          * RXFCB_VLN is pseudo randomly set.
2734          */
2735         if (dev->features & NETIF_F_HW_VLAN_RX &&
2736             fcb->flags & RXFCB_VLN)
2737                 __vlan_hwaccel_put_tag(skb, fcb->vlctl);
2738
2739         /* Send the packet up the stack */
2740         ret = napi_gro_receive(napi, skb);
2741
2742         if (GRO_DROP == ret)
2743                 atomic64_inc(&priv->extra_stats.kernel_dropped);
2744
2745         return 0;
2746 }
2747
2748 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2749  * until the budget/quota has been reached. Returns the number
2750  * of frames handled
2751  */
2752 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2753 {
2754         struct net_device *dev = rx_queue->dev;
2755         struct rxbd8 *bdp, *base;
2756         struct sk_buff *skb;
2757         int pkt_len;
2758         int amount_pull;
2759         int howmany = 0;
2760         struct gfar_private *priv = netdev_priv(dev);
2761
2762         /* Get the first full descriptor */
2763         bdp = rx_queue->cur_rx;
2764         base = rx_queue->rx_bd_base;
2765
2766         amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0);
2767
2768         while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2769                 struct sk_buff *newskb;
2770
2771                 rmb();
2772
2773                 /* Add another skb for the future */
2774                 newskb = gfar_new_skb(dev);
2775
2776                 skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2777
2778                 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2779                                  priv->rx_buffer_size, DMA_FROM_DEVICE);
2780
2781                 if (unlikely(!(bdp->status & RXBD_ERR) &&
2782                              bdp->length > priv->rx_buffer_size))
2783                         bdp->status = RXBD_LARGE;
2784
2785                 /* We drop the frame if we failed to allocate a new buffer */
2786                 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2787                              bdp->status & RXBD_ERR)) {
2788                         count_errors(bdp->status, dev);
2789
2790                         if (unlikely(!newskb))
2791                                 newskb = skb;
2792                         else if (skb)
2793                                 dev_kfree_skb(skb);
2794                 } else {
2795                         /* Increment the number of packets */
2796                         rx_queue->stats.rx_packets++;
2797                         howmany++;
2798
2799                         if (likely(skb)) {
2800                                 pkt_len = bdp->length - ETH_FCS_LEN;
2801                                 /* Remove the FCS from the packet length */
2802                                 skb_put(skb, pkt_len);
2803                                 rx_queue->stats.rx_bytes += pkt_len;
2804                                 skb_record_rx_queue(skb, rx_queue->qindex);
2805                                 gfar_process_frame(dev, skb, amount_pull,
2806                                                    &rx_queue->grp->napi);
2807
2808                         } else {
2809                                 netif_warn(priv, rx_err, dev, "Missing skb!\n");
2810                                 rx_queue->stats.rx_dropped++;
2811                                 atomic64_inc(&priv->extra_stats.rx_skbmissing);
2812                         }
2813
2814                 }
2815
2816                 rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2817
2818                 /* Setup the new bdp */
2819                 gfar_new_rxbdp(rx_queue, bdp, newskb);
2820
2821                 /* Update to the next pointer */
2822                 bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2823
2824                 /* update to point at the next skb */
2825                 rx_queue->skb_currx = (rx_queue->skb_currx + 1) &
2826                                       RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2827         }
2828
2829         /* Update the current rxbd pointer to be the next one */
2830         rx_queue->cur_rx = bdp;
2831
2832         return howmany;
2833 }
2834
2835 static int gfar_poll(struct napi_struct *napi, int budget)
2836 {
2837         struct gfar_priv_grp *gfargrp =
2838                 container_of(napi, struct gfar_priv_grp, napi);
2839         struct gfar_private *priv = gfargrp->priv;
2840         struct gfar __iomem *regs = gfargrp->regs;
2841         struct gfar_priv_tx_q *tx_queue = NULL;
2842         struct gfar_priv_rx_q *rx_queue = NULL;
2843         int rx_cleaned = 0, budget_per_queue = 0, rx_cleaned_per_queue = 0;
2844         int tx_cleaned = 0, i, left_over_budget = budget;
2845         unsigned long serviced_queues = 0;
2846         int num_queues = 0;
2847
2848         num_queues = gfargrp->num_rx_queues;
2849         budget_per_queue = budget/num_queues;
2850
2851         /* Clear IEVENT, so interrupts aren't called again
2852          * because of the packets that have already arrived
2853          */
2854         gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2855
2856         while (num_queues && left_over_budget) {
2857                 budget_per_queue = left_over_budget/num_queues;
2858                 left_over_budget = 0;
2859
2860                 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2861                         if (test_bit(i, &serviced_queues))
2862                                 continue;
2863                         rx_queue = priv->rx_queue[i];
2864                         tx_queue = priv->tx_queue[rx_queue->qindex];
2865
2866                         tx_cleaned += gfar_clean_tx_ring(tx_queue);
2867                         rx_cleaned_per_queue =
2868                                 gfar_clean_rx_ring(rx_queue, budget_per_queue);
2869                         rx_cleaned += rx_cleaned_per_queue;
2870                         if (rx_cleaned_per_queue < budget_per_queue) {
2871                                 left_over_budget = left_over_budget +
2872                                         (budget_per_queue -
2873                                          rx_cleaned_per_queue);
2874                                 set_bit(i, &serviced_queues);
2875                                 num_queues--;
2876                         }
2877                 }
2878         }
2879
2880         if (tx_cleaned)
2881                 return budget;
2882
2883         if (rx_cleaned < budget) {
2884                 napi_complete(napi);
2885
2886                 /* Clear the halt bit in RSTAT */
2887                 gfar_write(&regs->rstat, gfargrp->rstat);
2888
2889                 gfar_write(&regs->imask, IMASK_DEFAULT);
2890
2891                 /* If we are coalescing interrupts, update the timer
2892                  * Otherwise, clear it
2893                  */
2894                 gfar_configure_coalescing(priv, gfargrp->rx_bit_map,
2895                                           gfargrp->tx_bit_map);
2896         }
2897
2898         return rx_cleaned;
2899 }
2900
2901 #ifdef CONFIG_NET_POLL_CONTROLLER
2902 /* Polling 'interrupt' - used by things like netconsole to send skbs
2903  * without having to re-enable interrupts. It's not called while
2904  * the interrupt routine is executing.
2905  */
2906 static void gfar_netpoll(struct net_device *dev)
2907 {
2908         struct gfar_private *priv = netdev_priv(dev);
2909         int i;
2910
2911         /* If the device has multiple interrupts, run tx/rx */
2912         if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2913                 for (i = 0; i < priv->num_grps; i++) {
2914                         disable_irq(priv->gfargrp[i].interruptTransmit);
2915                         disable_irq(priv->gfargrp[i].interruptReceive);
2916                         disable_irq(priv->gfargrp[i].interruptError);
2917                         gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2918                                        &priv->gfargrp[i]);
2919                         enable_irq(priv->gfargrp[i].interruptError);
2920                         enable_irq(priv->gfargrp[i].interruptReceive);
2921                         enable_irq(priv->gfargrp[i].interruptTransmit);
2922                 }
2923         } else {
2924                 for (i = 0; i < priv->num_grps; i++) {
2925                         disable_irq(priv->gfargrp[i].interruptTransmit);
2926                         gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2927                                        &priv->gfargrp[i]);
2928                         enable_irq(priv->gfargrp[i].interruptTransmit);
2929                 }
2930         }
2931 }
2932 #endif
2933
2934 /* The interrupt handler for devices with one interrupt */
2935 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2936 {
2937         struct gfar_priv_grp *gfargrp = grp_id;
2938
2939         /* Save ievent for future reference */
2940         u32 events = gfar_read(&gfargrp->regs->ievent);
2941
2942         /* Check for reception */
2943         if (events & IEVENT_RX_MASK)
2944                 gfar_receive(irq, grp_id);
2945
2946         /* Check for transmit completion */
2947         if (events & IEVENT_TX_MASK)
2948                 gfar_transmit(irq, grp_id);
2949
2950         /* Check for errors */
2951         if (events & IEVENT_ERR_MASK)
2952                 gfar_error(irq, grp_id);
2953
2954         return IRQ_HANDLED;
2955 }
2956
2957 /* Called every time the controller might need to be made
2958  * aware of new link state.  The PHY code conveys this
2959  * information through variables in the phydev structure, and this
2960  * function converts those variables into the appropriate
2961  * register values, and can bring down the device if needed.
2962  */
2963 static void adjust_link(struct net_device *dev)
2964 {
2965         struct gfar_private *priv = netdev_priv(dev);
2966         struct gfar __iomem *regs = priv->gfargrp[0].regs;
2967         unsigned long flags;
2968         struct phy_device *phydev = priv->phydev;
2969         int new_state = 0;
2970
2971         local_irq_save(flags);
2972         lock_tx_qs(priv);
2973
2974         if (phydev->link) {
2975                 u32 tempval = gfar_read(&regs->maccfg2);
2976                 u32 ecntrl = gfar_read(&regs->ecntrl);
2977
2978                 /* Now we make sure that we can be in full duplex mode.
2979                  * If not, we operate in half-duplex mode.
2980                  */
2981                 if (phydev->duplex != priv->oldduplex) {
2982                         new_state = 1;
2983                         if (!(phydev->duplex))
2984                                 tempval &= ~(MACCFG2_FULL_DUPLEX);
2985                         else
2986                                 tempval |= MACCFG2_FULL_DUPLEX;
2987
2988                         priv->oldduplex = phydev->duplex;
2989                 }
2990
2991                 if (phydev->speed != priv->oldspeed) {
2992                         new_state = 1;
2993                         switch (phydev->speed) {
2994                         case 1000:
2995                                 tempval =
2996                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
2997
2998                                 ecntrl &= ~(ECNTRL_R100);
2999                                 break;
3000                         case 100:
3001                         case 10:
3002                                 tempval =
3003                                     ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3004
3005                                 /* Reduced mode distinguishes
3006                                  * between 10 and 100
3007                                  */
3008                                 if (phydev->speed == SPEED_100)
3009                                         ecntrl |= ECNTRL_R100;
3010                                 else
3011                                         ecntrl &= ~(ECNTRL_R100);
3012                                 break;
3013                         default:
3014                                 netif_warn(priv, link, dev,
3015                                            "Ack!  Speed (%d) is not 10/100/1000!\n",
3016                                            phydev->speed);
3017                                 break;
3018                         }
3019
3020                         priv->oldspeed = phydev->speed;
3021                 }
3022
3023                 gfar_write(&regs->maccfg2, tempval);
3024                 gfar_write(&regs->ecntrl, ecntrl);
3025
3026                 if (!priv->oldlink) {
3027                         new_state = 1;
3028                         priv->oldlink = 1;
3029                 }
3030         } else if (priv->oldlink) {
3031                 new_state = 1;
3032                 priv->oldlink = 0;
3033                 priv->oldspeed = 0;
3034                 priv->oldduplex = -1;
3035         }
3036
3037         if (new_state && netif_msg_link(priv))
3038                 phy_print_status(phydev);
3039         unlock_tx_qs(priv);
3040         local_irq_restore(flags);
3041 }
3042
3043 /* Update the hash table based on the current list of multicast
3044  * addresses we subscribe to.  Also, change the promiscuity of
3045  * the device based on the flags (this function is called
3046  * whenever dev->flags is changed
3047  */
3048 static void gfar_set_multi(struct net_device *dev)
3049 {
3050         struct netdev_hw_addr *ha;
3051         struct gfar_private *priv = netdev_priv(dev);
3052         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3053         u32 tempval;
3054
3055         if (dev->flags & IFF_PROMISC) {
3056                 /* Set RCTRL to PROM */
3057                 tempval = gfar_read(&regs->rctrl);
3058                 tempval |= RCTRL_PROM;
3059                 gfar_write(&regs->rctrl, tempval);
3060         } else {
3061                 /* Set RCTRL to not PROM */
3062                 tempval = gfar_read(&regs->rctrl);
3063                 tempval &= ~(RCTRL_PROM);
3064                 gfar_write(&regs->rctrl, tempval);
3065         }
3066
3067         if (dev->flags & IFF_ALLMULTI) {
3068                 /* Set the hash to rx all multicast frames */
3069                 gfar_write(&regs->igaddr0, 0xffffffff);
3070                 gfar_write(&regs->igaddr1, 0xffffffff);
3071                 gfar_write(&regs->igaddr2, 0xffffffff);
3072                 gfar_write(&regs->igaddr3, 0xffffffff);
3073                 gfar_write(&regs->igaddr4, 0xffffffff);
3074                 gfar_write(&regs->igaddr5, 0xffffffff);
3075                 gfar_write(&regs->igaddr6, 0xffffffff);
3076                 gfar_write(&regs->igaddr7, 0xffffffff);
3077                 gfar_write(&regs->gaddr0, 0xffffffff);
3078                 gfar_write(&regs->gaddr1, 0xffffffff);
3079                 gfar_write(&regs->gaddr2, 0xffffffff);
3080                 gfar_write(&regs->gaddr3, 0xffffffff);
3081                 gfar_write(&regs->gaddr4, 0xffffffff);
3082                 gfar_write(&regs->gaddr5, 0xffffffff);
3083                 gfar_write(&regs->gaddr6, 0xffffffff);
3084                 gfar_write(&regs->gaddr7, 0xffffffff);
3085         } else {
3086                 int em_num;
3087                 int idx;
3088
3089                 /* zero out the hash */
3090                 gfar_write(&regs->igaddr0, 0x0);
3091                 gfar_write(&regs->igaddr1, 0x0);
3092                 gfar_write(&regs->igaddr2, 0x0);
3093                 gfar_write(&regs->igaddr3, 0x0);
3094                 gfar_write(&regs->igaddr4, 0x0);
3095                 gfar_write(&regs->igaddr5, 0x0);
3096                 gfar_write(&regs->igaddr6, 0x0);
3097                 gfar_write(&regs->igaddr7, 0x0);
3098                 gfar_write(&regs->gaddr0, 0x0);
3099                 gfar_write(&regs->gaddr1, 0x0);
3100                 gfar_write(&regs->gaddr2, 0x0);
3101                 gfar_write(&regs->gaddr3, 0x0);
3102                 gfar_write(&regs->gaddr4, 0x0);
3103                 gfar_write(&regs->gaddr5, 0x0);
3104                 gfar_write(&regs->gaddr6, 0x0);
3105                 gfar_write(&regs->gaddr7, 0x0);
3106
3107                 /* If we have extended hash tables, we need to
3108                  * clear the exact match registers to prepare for
3109                  * setting them
3110                  */
3111                 if (priv->extended_hash) {
3112                         em_num = GFAR_EM_NUM + 1;
3113                         gfar_clear_exact_match(dev);
3114                         idx = 1;
3115                 } else {
3116                         idx = 0;
3117                         em_num = 0;
3118                 }
3119
3120                 if (netdev_mc_empty(dev))
3121                         return;
3122
3123                 /* Parse the list, and set the appropriate bits */
3124                 netdev_for_each_mc_addr(ha, dev) {
3125                         if (idx < em_num) {
3126                                 gfar_set_mac_for_addr(dev, idx, ha->addr);
3127                                 idx++;
3128                         } else
3129                                 gfar_set_hash_for_addr(dev, ha->addr);
3130                 }
3131         }
3132 }
3133
3134
3135 /* Clears each of the exact match registers to zero, so they
3136  * don't interfere with normal reception
3137  */
3138 static void gfar_clear_exact_match(struct net_device *dev)
3139 {
3140         int idx;
3141         static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3142
3143         for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3144                 gfar_set_mac_for_addr(dev, idx, zero_arr);
3145 }
3146
3147 /* Set the appropriate hash bit for the given addr */
3148 /* The algorithm works like so:
3149  * 1) Take the Destination Address (ie the multicast address), and
3150  * do a CRC on it (little endian), and reverse the bits of the
3151  * result.
3152  * 2) Use the 8 most significant bits as a hash into a 256-entry
3153  * table.  The table is controlled through 8 32-bit registers:
3154  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3155  * gaddr7.  This means that the 3 most significant bits in the
3156  * hash index which gaddr register to use, and the 5 other bits
3157  * indicate which bit (assuming an IBM numbering scheme, which
3158  * for PowerPC (tm) is usually the case) in the register holds
3159  * the entry.
3160  */
3161 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3162 {
3163         u32 tempval;
3164         struct gfar_private *priv = netdev_priv(dev);
3165         u32 result = ether_crc(ETH_ALEN, addr);
3166         int width = priv->hash_width;
3167         u8 whichbit = (result >> (32 - width)) & 0x1f;
3168         u8 whichreg = result >> (32 - width + 5);
3169         u32 value = (1 << (31-whichbit));
3170
3171         tempval = gfar_read(priv->hash_regs[whichreg]);
3172         tempval |= value;
3173         gfar_write(priv->hash_regs[whichreg], tempval);
3174 }
3175
3176
3177 /* There are multiple MAC Address register pairs on some controllers
3178  * This function sets the numth pair to a given address
3179  */
3180 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3181                                   const u8 *addr)
3182 {
3183         struct gfar_private *priv = netdev_priv(dev);
3184         struct gfar __iomem *regs = priv->gfargrp[0].regs;
3185         int idx;
3186         char tmpbuf[ETH_ALEN];
3187         u32 tempval;
3188         u32 __iomem *macptr = &regs->macstnaddr1;
3189
3190         macptr += num*2;
3191
3192         /* Now copy it into the mac registers backwards, cuz
3193          * little endian is silly
3194          */
3195         for (idx = 0; idx < ETH_ALEN; idx++)
3196                 tmpbuf[ETH_ALEN - 1 - idx] = addr[idx];
3197
3198         gfar_write(macptr, *((u32 *) (tmpbuf)));
3199
3200         tempval = *((u32 *) (tmpbuf + 4));
3201
3202         gfar_write(macptr+1, tempval);
3203 }
3204
3205 /* GFAR error interrupt handler */
3206 static irqreturn_t gfar_error(int irq, void *grp_id)
3207 {
3208         struct gfar_priv_grp *gfargrp = grp_id;
3209         struct gfar __iomem *regs = gfargrp->regs;
3210         struct gfar_private *priv= gfargrp->priv;
3211         struct net_device *dev = priv->ndev;
3212
3213         /* Save ievent for future reference */
3214         u32 events = gfar_read(&regs->ievent);
3215
3216         /* Clear IEVENT */
3217         gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3218
3219         /* Magic Packet is not an error. */
3220         if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3221             (events & IEVENT_MAG))
3222                 events &= ~IEVENT_MAG;
3223
3224         /* Hmm... */
3225         if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3226                 netdev_dbg(dev,
3227                            "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3228                            events, gfar_read(&regs->imask));
3229
3230         /* Update the error counters */
3231         if (events & IEVENT_TXE) {
3232                 dev->stats.tx_errors++;
3233
3234                 if (events & IEVENT_LC)
3235                         dev->stats.tx_window_errors++;
3236                 if (events & IEVENT_CRL)
3237                         dev->stats.tx_aborted_errors++;
3238                 if (events & IEVENT_XFUN) {
3239                         unsigned long flags;
3240
3241                         netif_dbg(priv, tx_err, dev,
3242                                   "TX FIFO underrun, packet dropped\n");
3243                         dev->stats.tx_dropped++;
3244                         atomic64_inc(&priv->extra_stats.tx_underrun);
3245
3246                         local_irq_save(flags);
3247                         lock_tx_qs(priv);
3248
3249                         /* Reactivate the Tx Queues */
3250                         gfar_write(&regs->tstat, gfargrp->tstat);
3251
3252                         unlock_tx_qs(priv);
3253                         local_irq_restore(flags);
3254                 }
3255                 netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3256         }
3257         if (events & IEVENT_BSY) {
3258                 dev->stats.rx_errors++;
3259                 atomic64_inc(&priv->extra_stats.rx_bsy);
3260
3261                 gfar_receive(irq, grp_id);
3262
3263                 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3264                           gfar_read(&regs->rstat));
3265         }
3266         if (events & IEVENT_BABR) {
3267                 dev->stats.rx_errors++;
3268                 atomic64_inc(&priv->extra_stats.rx_babr);
3269
3270                 netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3271         }
3272         if (events & IEVENT_EBERR) {
3273                 atomic64_inc(&priv->extra_stats.eberr);
3274                 netif_dbg(priv, rx_err, dev, "bus error\n");
3275         }
3276         if (events & IEVENT_RXC)
3277                 netif_dbg(priv, rx_status, dev, "control frame\n");
3278
3279         if (events & IEVENT_BABT) {
3280                 atomic64_inc(&priv->extra_stats.tx_babt);
3281                 netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3282         }
3283         return IRQ_HANDLED;
3284 }
3285
3286 static struct of_device_id gfar_match[] =
3287 {
3288         {
3289                 .type = "network",
3290                 .compatible = "gianfar",
3291         },
3292         {
3293                 .compatible = "fsl,etsec2",
3294         },
3295         {},
3296 };
3297 MODULE_DEVICE_TABLE(of, gfar_match);
3298
3299 /* Structure for a device driver */
3300 static struct platform_driver gfar_driver = {
3301         .driver = {
3302                 .name = "fsl-gianfar",
3303                 .owner = THIS_MODULE,
3304                 .pm = GFAR_PM_OPS,
3305                 .of_match_table = gfar_match,
3306         },
3307         .probe = gfar_probe,
3308         .remove = gfar_remove,
3309 };
3310
3311 module_platform_driver(gfar_driver);