cf14218697e4ef881327e5a504470d8f60a04549
[pandora-kernel.git] / drivers / net / ethernet / broadcom / bnx2x / bnx2x_main.c
1 /* bnx2x_main.c: Broadcom Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation.
8  *
9  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
10  * Written by: Eliezer Tamir
11  * Based on code from Michael Chan's bnx2 driver
12  * UDP CSUM errata workaround by Arik Gendelman
13  * Slowpath and fastpath rework by Vladislav Zolotarov
14  * Statistics and Link management by Yitchak Gertner
15  *
16  */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/kernel.h>
23 #include <linux/device.h>  /* for dev_info() */
24 #include <linux/timer.h>
25 #include <linux/errno.h>
26 #include <linux/ioport.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/pci.h>
30 #include <linux/aer.h>
31 #include <linux/init.h>
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/skbuff.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/bitops.h>
37 #include <linux/irq.h>
38 #include <linux/delay.h>
39 #include <asm/byteorder.h>
40 #include <linux/time.h>
41 #include <linux/ethtool.h>
42 #include <linux/mii.h>
43 #include <linux/if_vlan.h>
44 #include <net/ip.h>
45 #include <net/ipv6.h>
46 #include <net/tcp.h>
47 #include <net/checksum.h>
48 #include <net/ip6_checksum.h>
49 #include <linux/workqueue.h>
50 #include <linux/crc32.h>
51 #include <linux/crc32c.h>
52 #include <linux/prefetch.h>
53 #include <linux/zlib.h>
54 #include <linux/io.h>
55 #include <linux/semaphore.h>
56 #include <linux/stringify.h>
57 #include <linux/vmalloc.h>
58
59 #include "bnx2x.h"
60 #include "bnx2x_init.h"
61 #include "bnx2x_init_ops.h"
62 #include "bnx2x_cmn.h"
63 #include "bnx2x_vfpf.h"
64 #include "bnx2x_dcb.h"
65 #include "bnx2x_sp.h"
66
67 #include <linux/firmware.h>
68 #include "bnx2x_fw_file_hdr.h"
69 /* FW files */
70 #define FW_FILE_VERSION                                 \
71         __stringify(BCM_5710_FW_MAJOR_VERSION) "."      \
72         __stringify(BCM_5710_FW_MINOR_VERSION) "."      \
73         __stringify(BCM_5710_FW_REVISION_VERSION) "."   \
74         __stringify(BCM_5710_FW_ENGINEERING_VERSION)
75 #define FW_FILE_NAME_E1         "bnx2x/bnx2x-e1-" FW_FILE_VERSION ".fw"
76 #define FW_FILE_NAME_E1H        "bnx2x/bnx2x-e1h-" FW_FILE_VERSION ".fw"
77 #define FW_FILE_NAME_E2         "bnx2x/bnx2x-e2-" FW_FILE_VERSION ".fw"
78
79 /* Time in jiffies before concluding the transmitter is hung */
80 #define TX_TIMEOUT              (5*HZ)
81
82 static char version[] =
83         "Broadcom NetXtreme II 5771x/578xx 10/20-Gigabit Ethernet Driver "
84         DRV_MODULE_NAME " " DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
85
86 MODULE_AUTHOR("Eliezer Tamir");
87 MODULE_DESCRIPTION("Broadcom NetXtreme II "
88                    "BCM57710/57711/57711E/"
89                    "57712/57712_MF/57800/57800_MF/57810/57810_MF/"
90                    "57840/57840_MF Driver");
91 MODULE_LICENSE("GPL");
92 MODULE_VERSION(DRV_MODULE_VERSION);
93 MODULE_FIRMWARE(FW_FILE_NAME_E1);
94 MODULE_FIRMWARE(FW_FILE_NAME_E1H);
95 MODULE_FIRMWARE(FW_FILE_NAME_E2);
96
97 int bnx2x_num_queues;
98 module_param_named(num_queues, bnx2x_num_queues, int, S_IRUGO);
99 MODULE_PARM_DESC(num_queues,
100                  " Set number of queues (default is as a number of CPUs)");
101
102 static int disable_tpa;
103 module_param(disable_tpa, int, S_IRUGO);
104 MODULE_PARM_DESC(disable_tpa, " Disable the TPA (LRO) feature");
105
106 static int int_mode;
107 module_param(int_mode, int, S_IRUGO);
108 MODULE_PARM_DESC(int_mode, " Force interrupt mode other than MSI-X "
109                                 "(1 INT#x; 2 MSI)");
110
111 static int dropless_fc;
112 module_param(dropless_fc, int, S_IRUGO);
113 MODULE_PARM_DESC(dropless_fc, " Pause on exhausted host ring");
114
115 static int mrrs = -1;
116 module_param(mrrs, int, S_IRUGO);
117 MODULE_PARM_DESC(mrrs, " Force Max Read Req Size (0..3) (for debug)");
118
119 static int debug;
120 module_param(debug, int, S_IRUGO);
121 MODULE_PARM_DESC(debug, " Default debug msglevel");
122
123 static struct workqueue_struct *bnx2x_wq;
124 struct workqueue_struct *bnx2x_iov_wq;
125
126 struct bnx2x_mac_vals {
127         u32 xmac_addr;
128         u32 xmac_val;
129         u32 emac_addr;
130         u32 emac_val;
131         u32 umac_addr;
132         u32 umac_val;
133         u32 bmac_addr;
134         u32 bmac_val[2];
135 };
136
137 enum bnx2x_board_type {
138         BCM57710 = 0,
139         BCM57711,
140         BCM57711E,
141         BCM57712,
142         BCM57712_MF,
143         BCM57712_VF,
144         BCM57800,
145         BCM57800_MF,
146         BCM57800_VF,
147         BCM57810,
148         BCM57810_MF,
149         BCM57810_VF,
150         BCM57840_4_10,
151         BCM57840_2_20,
152         BCM57840_MF,
153         BCM57840_VF,
154         BCM57811,
155         BCM57811_MF,
156         BCM57840_O,
157         BCM57840_MFO,
158         BCM57811_VF
159 };
160
161 /* indexed by board_type, above */
162 static struct {
163         char *name;
164 } board_info[] = {
165         [BCM57710]      = { "Broadcom NetXtreme II BCM57710 10 Gigabit PCIe [Everest]" },
166         [BCM57711]      = { "Broadcom NetXtreme II BCM57711 10 Gigabit PCIe" },
167         [BCM57711E]     = { "Broadcom NetXtreme II BCM57711E 10 Gigabit PCIe" },
168         [BCM57712]      = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet" },
169         [BCM57712_MF]   = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Multi Function" },
170         [BCM57712_VF]   = { "Broadcom NetXtreme II BCM57712 10 Gigabit Ethernet Virtual Function" },
171         [BCM57800]      = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet" },
172         [BCM57800_MF]   = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Multi Function" },
173         [BCM57800_VF]   = { "Broadcom NetXtreme II BCM57800 10 Gigabit Ethernet Virtual Function" },
174         [BCM57810]      = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet" },
175         [BCM57810_MF]   = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Multi Function" },
176         [BCM57810_VF]   = { "Broadcom NetXtreme II BCM57810 10 Gigabit Ethernet Virtual Function" },
177         [BCM57840_4_10] = { "Broadcom NetXtreme II BCM57840 10 Gigabit Ethernet" },
178         [BCM57840_2_20] = { "Broadcom NetXtreme II BCM57840 20 Gigabit Ethernet" },
179         [BCM57840_MF]   = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
180         [BCM57840_VF]   = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" },
181         [BCM57811]      = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet" },
182         [BCM57811_MF]   = { "Broadcom NetXtreme II BCM57811 10 Gigabit Ethernet Multi Function" },
183         [BCM57840_O]    = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet" },
184         [BCM57840_MFO]  = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Multi Function" },
185         [BCM57811_VF]   = { "Broadcom NetXtreme II BCM57840 10/20 Gigabit Ethernet Virtual Function" }
186 };
187
188 #ifndef PCI_DEVICE_ID_NX2_57710
189 #define PCI_DEVICE_ID_NX2_57710         CHIP_NUM_57710
190 #endif
191 #ifndef PCI_DEVICE_ID_NX2_57711
192 #define PCI_DEVICE_ID_NX2_57711         CHIP_NUM_57711
193 #endif
194 #ifndef PCI_DEVICE_ID_NX2_57711E
195 #define PCI_DEVICE_ID_NX2_57711E        CHIP_NUM_57711E
196 #endif
197 #ifndef PCI_DEVICE_ID_NX2_57712
198 #define PCI_DEVICE_ID_NX2_57712         CHIP_NUM_57712
199 #endif
200 #ifndef PCI_DEVICE_ID_NX2_57712_MF
201 #define PCI_DEVICE_ID_NX2_57712_MF      CHIP_NUM_57712_MF
202 #endif
203 #ifndef PCI_DEVICE_ID_NX2_57712_VF
204 #define PCI_DEVICE_ID_NX2_57712_VF      CHIP_NUM_57712_VF
205 #endif
206 #ifndef PCI_DEVICE_ID_NX2_57800
207 #define PCI_DEVICE_ID_NX2_57800         CHIP_NUM_57800
208 #endif
209 #ifndef PCI_DEVICE_ID_NX2_57800_MF
210 #define PCI_DEVICE_ID_NX2_57800_MF      CHIP_NUM_57800_MF
211 #endif
212 #ifndef PCI_DEVICE_ID_NX2_57800_VF
213 #define PCI_DEVICE_ID_NX2_57800_VF      CHIP_NUM_57800_VF
214 #endif
215 #ifndef PCI_DEVICE_ID_NX2_57810
216 #define PCI_DEVICE_ID_NX2_57810         CHIP_NUM_57810
217 #endif
218 #ifndef PCI_DEVICE_ID_NX2_57810_MF
219 #define PCI_DEVICE_ID_NX2_57810_MF      CHIP_NUM_57810_MF
220 #endif
221 #ifndef PCI_DEVICE_ID_NX2_57840_O
222 #define PCI_DEVICE_ID_NX2_57840_O       CHIP_NUM_57840_OBSOLETE
223 #endif
224 #ifndef PCI_DEVICE_ID_NX2_57810_VF
225 #define PCI_DEVICE_ID_NX2_57810_VF      CHIP_NUM_57810_VF
226 #endif
227 #ifndef PCI_DEVICE_ID_NX2_57840_4_10
228 #define PCI_DEVICE_ID_NX2_57840_4_10    CHIP_NUM_57840_4_10
229 #endif
230 #ifndef PCI_DEVICE_ID_NX2_57840_2_20
231 #define PCI_DEVICE_ID_NX2_57840_2_20    CHIP_NUM_57840_2_20
232 #endif
233 #ifndef PCI_DEVICE_ID_NX2_57840_MFO
234 #define PCI_DEVICE_ID_NX2_57840_MFO     CHIP_NUM_57840_MF_OBSOLETE
235 #endif
236 #ifndef PCI_DEVICE_ID_NX2_57840_MF
237 #define PCI_DEVICE_ID_NX2_57840_MF      CHIP_NUM_57840_MF
238 #endif
239 #ifndef PCI_DEVICE_ID_NX2_57840_VF
240 #define PCI_DEVICE_ID_NX2_57840_VF      CHIP_NUM_57840_VF
241 #endif
242 #ifndef PCI_DEVICE_ID_NX2_57811
243 #define PCI_DEVICE_ID_NX2_57811         CHIP_NUM_57811
244 #endif
245 #ifndef PCI_DEVICE_ID_NX2_57811_MF
246 #define PCI_DEVICE_ID_NX2_57811_MF      CHIP_NUM_57811_MF
247 #endif
248 #ifndef PCI_DEVICE_ID_NX2_57811_VF
249 #define PCI_DEVICE_ID_NX2_57811_VF      CHIP_NUM_57811_VF
250 #endif
251
252 static DEFINE_PCI_DEVICE_TABLE(bnx2x_pci_tbl) = {
253         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57710), BCM57710 },
254         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711), BCM57711 },
255         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57711E), BCM57711E },
256         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712), BCM57712 },
257         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_MF), BCM57712_MF },
258         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57712_VF), BCM57712_VF },
259         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800), BCM57800 },
260         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_MF), BCM57800_MF },
261         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57800_VF), BCM57800_VF },
262         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810), BCM57810 },
263         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_MF), BCM57810_MF },
264         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_O), BCM57840_O },
265         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_4_10), BCM57840_4_10 },
266         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_2_20), BCM57840_2_20 },
267         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57810_VF), BCM57810_VF },
268         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MFO), BCM57840_MFO },
269         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_MF), BCM57840_MF },
270         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57840_VF), BCM57840_VF },
271         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811), BCM57811 },
272         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_MF), BCM57811_MF },
273         { PCI_VDEVICE(BROADCOM, PCI_DEVICE_ID_NX2_57811_VF), BCM57811_VF },
274         { 0 }
275 };
276
277 MODULE_DEVICE_TABLE(pci, bnx2x_pci_tbl);
278
279 /* Global resources for unloading a previously loaded device */
280 #define BNX2X_PREV_WAIT_NEEDED 1
281 static DEFINE_SEMAPHORE(bnx2x_prev_sem);
282 static LIST_HEAD(bnx2x_prev_list);
283
284 /* Forward declaration */
285 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev);
286 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp);
287 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp);
288
289 /****************************************************************************
290 * General service functions
291 ****************************************************************************/
292
293 static void __storm_memset_dma_mapping(struct bnx2x *bp,
294                                        u32 addr, dma_addr_t mapping)
295 {
296         REG_WR(bp,  addr, U64_LO(mapping));
297         REG_WR(bp,  addr + 4, U64_HI(mapping));
298 }
299
300 static void storm_memset_spq_addr(struct bnx2x *bp,
301                                   dma_addr_t mapping, u16 abs_fid)
302 {
303         u32 addr = XSEM_REG_FAST_MEMORY +
304                         XSTORM_SPQ_PAGE_BASE_OFFSET(abs_fid);
305
306         __storm_memset_dma_mapping(bp, addr, mapping);
307 }
308
309 static void storm_memset_vf_to_pf(struct bnx2x *bp, u16 abs_fid,
310                                   u16 pf_id)
311 {
312         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_VF_TO_PF_OFFSET(abs_fid),
313                 pf_id);
314         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_VF_TO_PF_OFFSET(abs_fid),
315                 pf_id);
316         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_VF_TO_PF_OFFSET(abs_fid),
317                 pf_id);
318         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_VF_TO_PF_OFFSET(abs_fid),
319                 pf_id);
320 }
321
322 static void storm_memset_func_en(struct bnx2x *bp, u16 abs_fid,
323                                  u8 enable)
324 {
325         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(abs_fid),
326                 enable);
327         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(abs_fid),
328                 enable);
329         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(abs_fid),
330                 enable);
331         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(abs_fid),
332                 enable);
333 }
334
335 static void storm_memset_eq_data(struct bnx2x *bp,
336                                  struct event_ring_data *eq_data,
337                                 u16 pfid)
338 {
339         size_t size = sizeof(struct event_ring_data);
340
341         u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_DATA_OFFSET(pfid);
342
343         __storm_memset_struct(bp, addr, size, (u32 *)eq_data);
344 }
345
346 static void storm_memset_eq_prod(struct bnx2x *bp, u16 eq_prod,
347                                  u16 pfid)
348 {
349         u32 addr = BAR_CSTRORM_INTMEM + CSTORM_EVENT_RING_PROD_OFFSET(pfid);
350         REG_WR16(bp, addr, eq_prod);
351 }
352
353 /* used only at init
354  * locking is done by mcp
355  */
356 static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val)
357 {
358         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
359         pci_write_config_dword(bp->pdev, PCICFG_GRC_DATA, val);
360         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
361                                PCICFG_VENDOR_ID_OFFSET);
362 }
363
364 static u32 bnx2x_reg_rd_ind(struct bnx2x *bp, u32 addr)
365 {
366         u32 val;
367
368         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS, addr);
369         pci_read_config_dword(bp->pdev, PCICFG_GRC_DATA, &val);
370         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
371                                PCICFG_VENDOR_ID_OFFSET);
372
373         return val;
374 }
375
376 #define DMAE_DP_SRC_GRC         "grc src_addr [%08x]"
377 #define DMAE_DP_SRC_PCI         "pci src_addr [%x:%08x]"
378 #define DMAE_DP_DST_GRC         "grc dst_addr [%08x]"
379 #define DMAE_DP_DST_PCI         "pci dst_addr [%x:%08x]"
380 #define DMAE_DP_DST_NONE        "dst_addr [none]"
381
382 static void bnx2x_dp_dmae(struct bnx2x *bp,
383                           struct dmae_command *dmae, int msglvl)
384 {
385         u32 src_type = dmae->opcode & DMAE_COMMAND_SRC;
386         int i;
387
388         switch (dmae->opcode & DMAE_COMMAND_DST) {
389         case DMAE_CMD_DST_PCI:
390                 if (src_type == DMAE_CMD_SRC_PCI)
391                         DP(msglvl, "DMAE: opcode 0x%08x\n"
392                            "src [%x:%08x], len [%d*4], dst [%x:%08x]\n"
393                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
394                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
395                            dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
396                            dmae->comp_addr_hi, dmae->comp_addr_lo,
397                            dmae->comp_val);
398                 else
399                         DP(msglvl, "DMAE: opcode 0x%08x\n"
400                            "src [%08x], len [%d*4], dst [%x:%08x]\n"
401                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
402                            dmae->opcode, dmae->src_addr_lo >> 2,
403                            dmae->len, dmae->dst_addr_hi, dmae->dst_addr_lo,
404                            dmae->comp_addr_hi, dmae->comp_addr_lo,
405                            dmae->comp_val);
406                 break;
407         case DMAE_CMD_DST_GRC:
408                 if (src_type == DMAE_CMD_SRC_PCI)
409                         DP(msglvl, "DMAE: opcode 0x%08x\n"
410                            "src [%x:%08x], len [%d*4], dst_addr [%08x]\n"
411                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
412                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
413                            dmae->len, dmae->dst_addr_lo >> 2,
414                            dmae->comp_addr_hi, dmae->comp_addr_lo,
415                            dmae->comp_val);
416                 else
417                         DP(msglvl, "DMAE: opcode 0x%08x\n"
418                            "src [%08x], len [%d*4], dst [%08x]\n"
419                            "comp_addr [%x:%08x], comp_val 0x%08x\n",
420                            dmae->opcode, dmae->src_addr_lo >> 2,
421                            dmae->len, dmae->dst_addr_lo >> 2,
422                            dmae->comp_addr_hi, dmae->comp_addr_lo,
423                            dmae->comp_val);
424                 break;
425         default:
426                 if (src_type == DMAE_CMD_SRC_PCI)
427                         DP(msglvl, "DMAE: opcode 0x%08x\n"
428                            "src_addr [%x:%08x]  len [%d * 4]  dst_addr [none]\n"
429                            "comp_addr [%x:%08x]  comp_val 0x%08x\n",
430                            dmae->opcode, dmae->src_addr_hi, dmae->src_addr_lo,
431                            dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
432                            dmae->comp_val);
433                 else
434                         DP(msglvl, "DMAE: opcode 0x%08x\n"
435                            "src_addr [%08x]  len [%d * 4]  dst_addr [none]\n"
436                            "comp_addr [%x:%08x]  comp_val 0x%08x\n",
437                            dmae->opcode, dmae->src_addr_lo >> 2,
438                            dmae->len, dmae->comp_addr_hi, dmae->comp_addr_lo,
439                            dmae->comp_val);
440                 break;
441         }
442
443         for (i = 0; i < (sizeof(struct dmae_command)/4); i++)
444                 DP(msglvl, "DMAE RAW [%02d]: 0x%08x\n",
445                    i, *(((u32 *)dmae) + i));
446 }
447
448 /* copy command into DMAE command memory and set DMAE command go */
449 void bnx2x_post_dmae(struct bnx2x *bp, struct dmae_command *dmae, int idx)
450 {
451         u32 cmd_offset;
452         int i;
453
454         cmd_offset = (DMAE_REG_CMD_MEM + sizeof(struct dmae_command) * idx);
455         for (i = 0; i < (sizeof(struct dmae_command)/4); i++) {
456                 REG_WR(bp, cmd_offset + i*4, *(((u32 *)dmae) + i));
457         }
458         REG_WR(bp, dmae_reg_go_c[idx], 1);
459 }
460
461 u32 bnx2x_dmae_opcode_add_comp(u32 opcode, u8 comp_type)
462 {
463         return opcode | ((comp_type << DMAE_COMMAND_C_DST_SHIFT) |
464                            DMAE_CMD_C_ENABLE);
465 }
466
467 u32 bnx2x_dmae_opcode_clr_src_reset(u32 opcode)
468 {
469         return opcode & ~DMAE_CMD_SRC_RESET;
470 }
471
472 u32 bnx2x_dmae_opcode(struct bnx2x *bp, u8 src_type, u8 dst_type,
473                              bool with_comp, u8 comp_type)
474 {
475         u32 opcode = 0;
476
477         opcode |= ((src_type << DMAE_COMMAND_SRC_SHIFT) |
478                    (dst_type << DMAE_COMMAND_DST_SHIFT));
479
480         opcode |= (DMAE_CMD_SRC_RESET | DMAE_CMD_DST_RESET);
481
482         opcode |= (BP_PORT(bp) ? DMAE_CMD_PORT_1 : DMAE_CMD_PORT_0);
483         opcode |= ((BP_VN(bp) << DMAE_CMD_E1HVN_SHIFT) |
484                    (BP_VN(bp) << DMAE_COMMAND_DST_VN_SHIFT));
485         opcode |= (DMAE_COM_SET_ERR << DMAE_COMMAND_ERR_POLICY_SHIFT);
486
487 #ifdef __BIG_ENDIAN
488         opcode |= DMAE_CMD_ENDIANITY_B_DW_SWAP;
489 #else
490         opcode |= DMAE_CMD_ENDIANITY_DW_SWAP;
491 #endif
492         if (with_comp)
493                 opcode = bnx2x_dmae_opcode_add_comp(opcode, comp_type);
494         return opcode;
495 }
496
497 void bnx2x_prep_dmae_with_comp(struct bnx2x *bp,
498                                       struct dmae_command *dmae,
499                                       u8 src_type, u8 dst_type)
500 {
501         memset(dmae, 0, sizeof(struct dmae_command));
502
503         /* set the opcode */
504         dmae->opcode = bnx2x_dmae_opcode(bp, src_type, dst_type,
505                                          true, DMAE_COMP_PCI);
506
507         /* fill in the completion parameters */
508         dmae->comp_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_comp));
509         dmae->comp_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_comp));
510         dmae->comp_val = DMAE_COMP_VAL;
511 }
512
513 /* issue a dmae command over the init-channel and wait for completion */
514 int bnx2x_issue_dmae_with_comp(struct bnx2x *bp, struct dmae_command *dmae,
515                                u32 *comp)
516 {
517         int cnt = CHIP_REV_IS_SLOW(bp) ? (400000) : 4000;
518         int rc = 0;
519
520         bnx2x_dp_dmae(bp, dmae, BNX2X_MSG_DMAE);
521
522         /* Lock the dmae channel. Disable BHs to prevent a dead-lock
523          * as long as this code is called both from syscall context and
524          * from ndo_set_rx_mode() flow that may be called from BH.
525          */
526         spin_lock_bh(&bp->dmae_lock);
527
528         /* reset completion */
529         *comp = 0;
530
531         /* post the command on the channel used for initializations */
532         bnx2x_post_dmae(bp, dmae, INIT_DMAE_C(bp));
533
534         /* wait for completion */
535         udelay(5);
536         while ((*comp & ~DMAE_PCI_ERR_FLAG) != DMAE_COMP_VAL) {
537
538                 if (!cnt ||
539                     (bp->recovery_state != BNX2X_RECOVERY_DONE &&
540                      bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
541                         BNX2X_ERR("DMAE timeout!\n");
542                         rc = DMAE_TIMEOUT;
543                         goto unlock;
544                 }
545                 cnt--;
546                 udelay(50);
547         }
548         if (*comp & DMAE_PCI_ERR_FLAG) {
549                 BNX2X_ERR("DMAE PCI error!\n");
550                 rc = DMAE_PCI_ERROR;
551         }
552
553 unlock:
554         spin_unlock_bh(&bp->dmae_lock);
555         return rc;
556 }
557
558 void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr, u32 dst_addr,
559                       u32 len32)
560 {
561         int rc;
562         struct dmae_command dmae;
563
564         if (!bp->dmae_ready) {
565                 u32 *data = bnx2x_sp(bp, wb_data[0]);
566
567                 if (CHIP_IS_E1(bp))
568                         bnx2x_init_ind_wr(bp, dst_addr, data, len32);
569                 else
570                         bnx2x_init_str_wr(bp, dst_addr, data, len32);
571                 return;
572         }
573
574         /* set opcode and fixed command fields */
575         bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_PCI, DMAE_DST_GRC);
576
577         /* fill in addresses and len */
578         dmae.src_addr_lo = U64_LO(dma_addr);
579         dmae.src_addr_hi = U64_HI(dma_addr);
580         dmae.dst_addr_lo = dst_addr >> 2;
581         dmae.dst_addr_hi = 0;
582         dmae.len = len32;
583
584         /* issue the command and wait for completion */
585         rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
586         if (rc) {
587                 BNX2X_ERR("DMAE returned failure %d\n", rc);
588 #ifdef BNX2X_STOP_ON_ERROR
589                 bnx2x_panic();
590 #endif
591         }
592 }
593
594 void bnx2x_read_dmae(struct bnx2x *bp, u32 src_addr, u32 len32)
595 {
596         int rc;
597         struct dmae_command dmae;
598
599         if (!bp->dmae_ready) {
600                 u32 *data = bnx2x_sp(bp, wb_data[0]);
601                 int i;
602
603                 if (CHIP_IS_E1(bp))
604                         for (i = 0; i < len32; i++)
605                                 data[i] = bnx2x_reg_rd_ind(bp, src_addr + i*4);
606                 else
607                         for (i = 0; i < len32; i++)
608                                 data[i] = REG_RD(bp, src_addr + i*4);
609
610                 return;
611         }
612
613         /* set opcode and fixed command fields */
614         bnx2x_prep_dmae_with_comp(bp, &dmae, DMAE_SRC_GRC, DMAE_DST_PCI);
615
616         /* fill in addresses and len */
617         dmae.src_addr_lo = src_addr >> 2;
618         dmae.src_addr_hi = 0;
619         dmae.dst_addr_lo = U64_LO(bnx2x_sp_mapping(bp, wb_data));
620         dmae.dst_addr_hi = U64_HI(bnx2x_sp_mapping(bp, wb_data));
621         dmae.len = len32;
622
623         /* issue the command and wait for completion */
624         rc = bnx2x_issue_dmae_with_comp(bp, &dmae, bnx2x_sp(bp, wb_comp));
625         if (rc) {
626                 BNX2X_ERR("DMAE returned failure %d\n", rc);
627 #ifdef BNX2X_STOP_ON_ERROR
628                 bnx2x_panic();
629 #endif
630         }
631 }
632
633 static void bnx2x_write_dmae_phys_len(struct bnx2x *bp, dma_addr_t phys_addr,
634                                       u32 addr, u32 len)
635 {
636         int dmae_wr_max = DMAE_LEN32_WR_MAX(bp);
637         int offset = 0;
638
639         while (len > dmae_wr_max) {
640                 bnx2x_write_dmae(bp, phys_addr + offset,
641                                  addr + offset, dmae_wr_max);
642                 offset += dmae_wr_max * 4;
643                 len -= dmae_wr_max;
644         }
645
646         bnx2x_write_dmae(bp, phys_addr + offset, addr + offset, len);
647 }
648
649 static int bnx2x_mc_assert(struct bnx2x *bp)
650 {
651         char last_idx;
652         int i, rc = 0;
653         u32 row0, row1, row2, row3;
654
655         /* XSTORM */
656         last_idx = REG_RD8(bp, BAR_XSTRORM_INTMEM +
657                            XSTORM_ASSERT_LIST_INDEX_OFFSET);
658         if (last_idx)
659                 BNX2X_ERR("XSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
660
661         /* print the asserts */
662         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
663
664                 row0 = REG_RD(bp, BAR_XSTRORM_INTMEM +
665                               XSTORM_ASSERT_LIST_OFFSET(i));
666                 row1 = REG_RD(bp, BAR_XSTRORM_INTMEM +
667                               XSTORM_ASSERT_LIST_OFFSET(i) + 4);
668                 row2 = REG_RD(bp, BAR_XSTRORM_INTMEM +
669                               XSTORM_ASSERT_LIST_OFFSET(i) + 8);
670                 row3 = REG_RD(bp, BAR_XSTRORM_INTMEM +
671                               XSTORM_ASSERT_LIST_OFFSET(i) + 12);
672
673                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
674                         BNX2X_ERR("XSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
675                                   i, row3, row2, row1, row0);
676                         rc++;
677                 } else {
678                         break;
679                 }
680         }
681
682         /* TSTORM */
683         last_idx = REG_RD8(bp, BAR_TSTRORM_INTMEM +
684                            TSTORM_ASSERT_LIST_INDEX_OFFSET);
685         if (last_idx)
686                 BNX2X_ERR("TSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
687
688         /* print the asserts */
689         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
690
691                 row0 = REG_RD(bp, BAR_TSTRORM_INTMEM +
692                               TSTORM_ASSERT_LIST_OFFSET(i));
693                 row1 = REG_RD(bp, BAR_TSTRORM_INTMEM +
694                               TSTORM_ASSERT_LIST_OFFSET(i) + 4);
695                 row2 = REG_RD(bp, BAR_TSTRORM_INTMEM +
696                               TSTORM_ASSERT_LIST_OFFSET(i) + 8);
697                 row3 = REG_RD(bp, BAR_TSTRORM_INTMEM +
698                               TSTORM_ASSERT_LIST_OFFSET(i) + 12);
699
700                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
701                         BNX2X_ERR("TSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
702                                   i, row3, row2, row1, row0);
703                         rc++;
704                 } else {
705                         break;
706                 }
707         }
708
709         /* CSTORM */
710         last_idx = REG_RD8(bp, BAR_CSTRORM_INTMEM +
711                            CSTORM_ASSERT_LIST_INDEX_OFFSET);
712         if (last_idx)
713                 BNX2X_ERR("CSTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
714
715         /* print the asserts */
716         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
717
718                 row0 = REG_RD(bp, BAR_CSTRORM_INTMEM +
719                               CSTORM_ASSERT_LIST_OFFSET(i));
720                 row1 = REG_RD(bp, BAR_CSTRORM_INTMEM +
721                               CSTORM_ASSERT_LIST_OFFSET(i) + 4);
722                 row2 = REG_RD(bp, BAR_CSTRORM_INTMEM +
723                               CSTORM_ASSERT_LIST_OFFSET(i) + 8);
724                 row3 = REG_RD(bp, BAR_CSTRORM_INTMEM +
725                               CSTORM_ASSERT_LIST_OFFSET(i) + 12);
726
727                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
728                         BNX2X_ERR("CSTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
729                                   i, row3, row2, row1, row0);
730                         rc++;
731                 } else {
732                         break;
733                 }
734         }
735
736         /* USTORM */
737         last_idx = REG_RD8(bp, BAR_USTRORM_INTMEM +
738                            USTORM_ASSERT_LIST_INDEX_OFFSET);
739         if (last_idx)
740                 BNX2X_ERR("USTORM_ASSERT_LIST_INDEX 0x%x\n", last_idx);
741
742         /* print the asserts */
743         for (i = 0; i < STROM_ASSERT_ARRAY_SIZE; i++) {
744
745                 row0 = REG_RD(bp, BAR_USTRORM_INTMEM +
746                               USTORM_ASSERT_LIST_OFFSET(i));
747                 row1 = REG_RD(bp, BAR_USTRORM_INTMEM +
748                               USTORM_ASSERT_LIST_OFFSET(i) + 4);
749                 row2 = REG_RD(bp, BAR_USTRORM_INTMEM +
750                               USTORM_ASSERT_LIST_OFFSET(i) + 8);
751                 row3 = REG_RD(bp, BAR_USTRORM_INTMEM +
752                               USTORM_ASSERT_LIST_OFFSET(i) + 12);
753
754                 if (row0 != COMMON_ASM_INVALID_ASSERT_OPCODE) {
755                         BNX2X_ERR("USTORM_ASSERT_INDEX 0x%x = 0x%08x 0x%08x 0x%08x 0x%08x\n",
756                                   i, row3, row2, row1, row0);
757                         rc++;
758                 } else {
759                         break;
760                 }
761         }
762
763         return rc;
764 }
765
766 #define MCPR_TRACE_BUFFER_SIZE  (0x800)
767 #define SCRATCH_BUFFER_SIZE(bp) \
768         (CHIP_IS_E1(bp) ? 0x10000 : (CHIP_IS_E1H(bp) ? 0x20000 : 0x28000))
769
770 void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl)
771 {
772         u32 addr, val;
773         u32 mark, offset;
774         __be32 data[9];
775         int word;
776         u32 trace_shmem_base;
777         if (BP_NOMCP(bp)) {
778                 BNX2X_ERR("NO MCP - can not dump\n");
779                 return;
780         }
781         netdev_printk(lvl, bp->dev, "bc %d.%d.%d\n",
782                 (bp->common.bc_ver & 0xff0000) >> 16,
783                 (bp->common.bc_ver & 0xff00) >> 8,
784                 (bp->common.bc_ver & 0xff));
785
786         val = REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER);
787         if (val == REG_RD(bp, MCP_REG_MCPR_CPU_PROGRAM_COUNTER))
788                 BNX2X_ERR("%s" "MCP PC at 0x%x\n", lvl, val);
789
790         if (BP_PATH(bp) == 0)
791                 trace_shmem_base = bp->common.shmem_base;
792         else
793                 trace_shmem_base = SHMEM2_RD(bp, other_shmem_base_addr);
794
795         /* sanity */
796         if (trace_shmem_base < MCPR_SCRATCH_BASE(bp) + MCPR_TRACE_BUFFER_SIZE ||
797             trace_shmem_base >= MCPR_SCRATCH_BASE(bp) +
798                                 SCRATCH_BUFFER_SIZE(bp)) {
799                 BNX2X_ERR("Unable to dump trace buffer (mark %x)\n",
800                           trace_shmem_base);
801                 return;
802         }
803
804         addr = trace_shmem_base - MCPR_TRACE_BUFFER_SIZE;
805
806         /* validate TRCB signature */
807         mark = REG_RD(bp, addr);
808         if (mark != MFW_TRACE_SIGNATURE) {
809                 BNX2X_ERR("Trace buffer signature is missing.");
810                 return ;
811         }
812
813         /* read cyclic buffer pointer */
814         addr += 4;
815         mark = REG_RD(bp, addr);
816         mark = MCPR_SCRATCH_BASE(bp) + ((mark + 0x3) & ~0x3) - 0x08000000;
817         if (mark >= trace_shmem_base || mark < addr + 4) {
818                 BNX2X_ERR("Mark doesn't fall inside Trace Buffer\n");
819                 return;
820         }
821         printk("%s" "begin fw dump (mark 0x%x)\n", lvl, mark);
822
823         printk("%s", lvl);
824
825         /* dump buffer after the mark */
826         for (offset = mark; offset < trace_shmem_base; offset += 0x8*4) {
827                 for (word = 0; word < 8; word++)
828                         data[word] = htonl(REG_RD(bp, offset + 4*word));
829                 data[8] = 0x0;
830                 pr_cont("%s", (char *)data);
831         }
832
833         /* dump buffer before the mark */
834         for (offset = addr + 4; offset <= mark; offset += 0x8*4) {
835                 for (word = 0; word < 8; word++)
836                         data[word] = htonl(REG_RD(bp, offset + 4*word));
837                 data[8] = 0x0;
838                 pr_cont("%s", (char *)data);
839         }
840         printk("%s" "end of fw dump\n", lvl);
841 }
842
843 static void bnx2x_fw_dump(struct bnx2x *bp)
844 {
845         bnx2x_fw_dump_lvl(bp, KERN_ERR);
846 }
847
848 static void bnx2x_hc_int_disable(struct bnx2x *bp)
849 {
850         int port = BP_PORT(bp);
851         u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
852         u32 val = REG_RD(bp, addr);
853
854         /* in E1 we must use only PCI configuration space to disable
855          * MSI/MSIX capability
856          * It's forbidden to disable IGU_PF_CONF_MSI_MSIX_EN in HC block
857          */
858         if (CHIP_IS_E1(bp)) {
859                 /* Since IGU_PF_CONF_MSI_MSIX_EN still always on
860                  * Use mask register to prevent from HC sending interrupts
861                  * after we exit the function
862                  */
863                 REG_WR(bp, HC_REG_INT_MASK + port*4, 0);
864
865                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
866                          HC_CONFIG_0_REG_INT_LINE_EN_0 |
867                          HC_CONFIG_0_REG_ATTN_BIT_EN_0);
868         } else
869                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
870                          HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
871                          HC_CONFIG_0_REG_INT_LINE_EN_0 |
872                          HC_CONFIG_0_REG_ATTN_BIT_EN_0);
873
874         DP(NETIF_MSG_IFDOWN,
875            "write %x to HC %d (addr 0x%x)\n",
876            val, port, addr);
877
878         /* flush all outstanding writes */
879         mmiowb();
880
881         REG_WR(bp, addr, val);
882         if (REG_RD(bp, addr) != val)
883                 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
884 }
885
886 static void bnx2x_igu_int_disable(struct bnx2x *bp)
887 {
888         u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
889
890         val &= ~(IGU_PF_CONF_MSI_MSIX_EN |
891                  IGU_PF_CONF_INT_LINE_EN |
892                  IGU_PF_CONF_ATTN_BIT_EN);
893
894         DP(NETIF_MSG_IFDOWN, "write %x to IGU\n", val);
895
896         /* flush all outstanding writes */
897         mmiowb();
898
899         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
900         if (REG_RD(bp, IGU_REG_PF_CONFIGURATION) != val)
901                 BNX2X_ERR("BUG! Proper val not read from IGU!\n");
902 }
903
904 static void bnx2x_int_disable(struct bnx2x *bp)
905 {
906         if (bp->common.int_block == INT_BLOCK_HC)
907                 bnx2x_hc_int_disable(bp);
908         else
909                 bnx2x_igu_int_disable(bp);
910 }
911
912 void bnx2x_panic_dump(struct bnx2x *bp, bool disable_int)
913 {
914         int i;
915         u16 j;
916         struct hc_sp_status_block_data sp_sb_data;
917         int func = BP_FUNC(bp);
918 #ifdef BNX2X_STOP_ON_ERROR
919         u16 start = 0, end = 0;
920         u8 cos;
921 #endif
922         if (IS_PF(bp) && disable_int)
923                 bnx2x_int_disable(bp);
924
925         bp->stats_state = STATS_STATE_DISABLED;
926         bp->eth_stats.unrecoverable_error++;
927         DP(BNX2X_MSG_STATS, "stats_state - DISABLED\n");
928
929         BNX2X_ERR("begin crash dump -----------------\n");
930
931         /* Indices */
932         /* Common */
933         if (IS_PF(bp)) {
934                 struct host_sp_status_block *def_sb = bp->def_status_blk;
935                 int data_size, cstorm_offset;
936
937                 BNX2X_ERR("def_idx(0x%x)  def_att_idx(0x%x)  attn_state(0x%x)  spq_prod_idx(0x%x) next_stats_cnt(0x%x)\n",
938                           bp->def_idx, bp->def_att_idx, bp->attn_state,
939                           bp->spq_prod_idx, bp->stats_counter);
940                 BNX2X_ERR("DSB: attn bits(0x%x)  ack(0x%x)  id(0x%x)  idx(0x%x)\n",
941                           def_sb->atten_status_block.attn_bits,
942                           def_sb->atten_status_block.attn_bits_ack,
943                           def_sb->atten_status_block.status_block_id,
944                           def_sb->atten_status_block.attn_bits_index);
945                 BNX2X_ERR("     def (");
946                 for (i = 0; i < HC_SP_SB_MAX_INDICES; i++)
947                         pr_cont("0x%x%s",
948                                 def_sb->sp_sb.index_values[i],
949                                 (i == HC_SP_SB_MAX_INDICES - 1) ? ")  " : " ");
950
951                 data_size = sizeof(struct hc_sp_status_block_data) /
952                             sizeof(u32);
953                 cstorm_offset = CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func);
954                 for (i = 0; i < data_size; i++)
955                         *((u32 *)&sp_sb_data + i) =
956                                 REG_RD(bp, BAR_CSTRORM_INTMEM + cstorm_offset +
957                                            i * sizeof(u32));
958
959                 pr_cont("igu_sb_id(0x%x)  igu_seg_id(0x%x) pf_id(0x%x)  vnic_id(0x%x)  vf_id(0x%x)  vf_valid (0x%x) state(0x%x)\n",
960                         sp_sb_data.igu_sb_id,
961                         sp_sb_data.igu_seg_id,
962                         sp_sb_data.p_func.pf_id,
963                         sp_sb_data.p_func.vnic_id,
964                         sp_sb_data.p_func.vf_id,
965                         sp_sb_data.p_func.vf_valid,
966                         sp_sb_data.state);
967         }
968
969         for_each_eth_queue(bp, i) {
970                 struct bnx2x_fastpath *fp = &bp->fp[i];
971                 int loop;
972                 struct hc_status_block_data_e2 sb_data_e2;
973                 struct hc_status_block_data_e1x sb_data_e1x;
974                 struct hc_status_block_sm  *hc_sm_p =
975                         CHIP_IS_E1x(bp) ?
976                         sb_data_e1x.common.state_machine :
977                         sb_data_e2.common.state_machine;
978                 struct hc_index_data *hc_index_p =
979                         CHIP_IS_E1x(bp) ?
980                         sb_data_e1x.index_data :
981                         sb_data_e2.index_data;
982                 u8 data_size, cos;
983                 u32 *sb_data_p;
984                 struct bnx2x_fp_txdata txdata;
985
986                 /* Rx */
987                 BNX2X_ERR("fp%d: rx_bd_prod(0x%x)  rx_bd_cons(0x%x)  rx_comp_prod(0x%x)  rx_comp_cons(0x%x)  *rx_cons_sb(0x%x)\n",
988                           i, fp->rx_bd_prod, fp->rx_bd_cons,
989                           fp->rx_comp_prod,
990                           fp->rx_comp_cons, le16_to_cpu(*fp->rx_cons_sb));
991                 BNX2X_ERR("     rx_sge_prod(0x%x)  last_max_sge(0x%x)  fp_hc_idx(0x%x)\n",
992                           fp->rx_sge_prod, fp->last_max_sge,
993                           le16_to_cpu(fp->fp_hc_idx));
994
995                 /* Tx */
996                 for_each_cos_in_tx_queue(fp, cos)
997                 {
998                         txdata = *fp->txdata_ptr[cos];
999                         BNX2X_ERR("fp%d: tx_pkt_prod(0x%x)  tx_pkt_cons(0x%x)  tx_bd_prod(0x%x)  tx_bd_cons(0x%x)  *tx_cons_sb(0x%x)\n",
1000                                   i, txdata.tx_pkt_prod,
1001                                   txdata.tx_pkt_cons, txdata.tx_bd_prod,
1002                                   txdata.tx_bd_cons,
1003                                   le16_to_cpu(*txdata.tx_cons_sb));
1004                 }
1005
1006                 loop = CHIP_IS_E1x(bp) ?
1007                         HC_SB_MAX_INDICES_E1X : HC_SB_MAX_INDICES_E2;
1008
1009                 /* host sb data */
1010
1011                 if (IS_FCOE_FP(fp))
1012                         continue;
1013
1014                 BNX2X_ERR("     run indexes (");
1015                 for (j = 0; j < HC_SB_MAX_SM; j++)
1016                         pr_cont("0x%x%s",
1017                                fp->sb_running_index[j],
1018                                (j == HC_SB_MAX_SM - 1) ? ")" : " ");
1019
1020                 BNX2X_ERR("     indexes (");
1021                 for (j = 0; j < loop; j++)
1022                         pr_cont("0x%x%s",
1023                                fp->sb_index_values[j],
1024                                (j == loop - 1) ? ")" : " ");
1025
1026                 /* VF cannot access FW refelection for status block */
1027                 if (IS_VF(bp))
1028                         continue;
1029
1030                 /* fw sb data */
1031                 data_size = CHIP_IS_E1x(bp) ?
1032                         sizeof(struct hc_status_block_data_e1x) :
1033                         sizeof(struct hc_status_block_data_e2);
1034                 data_size /= sizeof(u32);
1035                 sb_data_p = CHIP_IS_E1x(bp) ?
1036                         (u32 *)&sb_data_e1x :
1037                         (u32 *)&sb_data_e2;
1038                 /* copy sb data in here */
1039                 for (j = 0; j < data_size; j++)
1040                         *(sb_data_p + j) = REG_RD(bp, BAR_CSTRORM_INTMEM +
1041                                 CSTORM_STATUS_BLOCK_DATA_OFFSET(fp->fw_sb_id) +
1042                                 j * sizeof(u32));
1043
1044                 if (!CHIP_IS_E1x(bp)) {
1045                         pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1046                                 sb_data_e2.common.p_func.pf_id,
1047                                 sb_data_e2.common.p_func.vf_id,
1048                                 sb_data_e2.common.p_func.vf_valid,
1049                                 sb_data_e2.common.p_func.vnic_id,
1050                                 sb_data_e2.common.same_igu_sb_1b,
1051                                 sb_data_e2.common.state);
1052                 } else {
1053                         pr_cont("pf_id(0x%x)  vf_id(0x%x)  vf_valid(0x%x) vnic_id(0x%x)  same_igu_sb_1b(0x%x) state(0x%x)\n",
1054                                 sb_data_e1x.common.p_func.pf_id,
1055                                 sb_data_e1x.common.p_func.vf_id,
1056                                 sb_data_e1x.common.p_func.vf_valid,
1057                                 sb_data_e1x.common.p_func.vnic_id,
1058                                 sb_data_e1x.common.same_igu_sb_1b,
1059                                 sb_data_e1x.common.state);
1060                 }
1061
1062                 /* SB_SMs data */
1063                 for (j = 0; j < HC_SB_MAX_SM; j++) {
1064                         pr_cont("SM[%d] __flags (0x%x) igu_sb_id (0x%x)  igu_seg_id(0x%x) time_to_expire (0x%x) timer_value(0x%x)\n",
1065                                 j, hc_sm_p[j].__flags,
1066                                 hc_sm_p[j].igu_sb_id,
1067                                 hc_sm_p[j].igu_seg_id,
1068                                 hc_sm_p[j].time_to_expire,
1069                                 hc_sm_p[j].timer_value);
1070                 }
1071
1072                 /* Indices data */
1073                 for (j = 0; j < loop; j++) {
1074                         pr_cont("INDEX[%d] flags (0x%x) timeout (0x%x)\n", j,
1075                                hc_index_p[j].flags,
1076                                hc_index_p[j].timeout);
1077                 }
1078         }
1079
1080 #ifdef BNX2X_STOP_ON_ERROR
1081         if (IS_PF(bp)) {
1082                 /* event queue */
1083                 BNX2X_ERR("eq cons %x prod %x\n", bp->eq_cons, bp->eq_prod);
1084                 for (i = 0; i < NUM_EQ_DESC; i++) {
1085                         u32 *data = (u32 *)&bp->eq_ring[i].message.data;
1086
1087                         BNX2X_ERR("event queue [%d]: header: opcode %d, error %d\n",
1088                                   i, bp->eq_ring[i].message.opcode,
1089                                   bp->eq_ring[i].message.error);
1090                         BNX2X_ERR("data: %x %x %x\n",
1091                                   data[0], data[1], data[2]);
1092                 }
1093         }
1094
1095         /* Rings */
1096         /* Rx */
1097         for_each_valid_rx_queue(bp, i) {
1098                 struct bnx2x_fastpath *fp = &bp->fp[i];
1099
1100                 start = RX_BD(le16_to_cpu(*fp->rx_cons_sb) - 10);
1101                 end = RX_BD(le16_to_cpu(*fp->rx_cons_sb) + 503);
1102                 for (j = start; j != end; j = RX_BD(j + 1)) {
1103                         u32 *rx_bd = (u32 *)&fp->rx_desc_ring[j];
1104                         struct sw_rx_bd *sw_bd = &fp->rx_buf_ring[j];
1105
1106                         BNX2X_ERR("fp%d: rx_bd[%x]=[%x:%x]  sw_bd=[%p]\n",
1107                                   i, j, rx_bd[1], rx_bd[0], sw_bd->data);
1108                 }
1109
1110                 start = RX_SGE(fp->rx_sge_prod);
1111                 end = RX_SGE(fp->last_max_sge);
1112                 for (j = start; j != end; j = RX_SGE(j + 1)) {
1113                         u32 *rx_sge = (u32 *)&fp->rx_sge_ring[j];
1114                         struct sw_rx_page *sw_page = &fp->rx_page_ring[j];
1115
1116                         BNX2X_ERR("fp%d: rx_sge[%x]=[%x:%x]  sw_page=[%p]\n",
1117                                   i, j, rx_sge[1], rx_sge[0], sw_page->page);
1118                 }
1119
1120                 start = RCQ_BD(fp->rx_comp_cons - 10);
1121                 end = RCQ_BD(fp->rx_comp_cons + 503);
1122                 for (j = start; j != end; j = RCQ_BD(j + 1)) {
1123                         u32 *cqe = (u32 *)&fp->rx_comp_ring[j];
1124
1125                         BNX2X_ERR("fp%d: cqe[%x]=[%x:%x:%x:%x]\n",
1126                                   i, j, cqe[0], cqe[1], cqe[2], cqe[3]);
1127                 }
1128         }
1129
1130         /* Tx */
1131         for_each_valid_tx_queue(bp, i) {
1132                 struct bnx2x_fastpath *fp = &bp->fp[i];
1133                 for_each_cos_in_tx_queue(fp, cos) {
1134                         struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1135
1136                         start = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) - 10);
1137                         end = TX_BD(le16_to_cpu(*txdata->tx_cons_sb) + 245);
1138                         for (j = start; j != end; j = TX_BD(j + 1)) {
1139                                 struct sw_tx_bd *sw_bd =
1140                                         &txdata->tx_buf_ring[j];
1141
1142                                 BNX2X_ERR("fp%d: txdata %d, packet[%x]=[%p,%x]\n",
1143                                           i, cos, j, sw_bd->skb,
1144                                           sw_bd->first_bd);
1145                         }
1146
1147                         start = TX_BD(txdata->tx_bd_cons - 10);
1148                         end = TX_BD(txdata->tx_bd_cons + 254);
1149                         for (j = start; j != end; j = TX_BD(j + 1)) {
1150                                 u32 *tx_bd = (u32 *)&txdata->tx_desc_ring[j];
1151
1152                                 BNX2X_ERR("fp%d: txdata %d, tx_bd[%x]=[%x:%x:%x:%x]\n",
1153                                           i, cos, j, tx_bd[0], tx_bd[1],
1154                                           tx_bd[2], tx_bd[3]);
1155                         }
1156                 }
1157         }
1158 #endif
1159         if (IS_PF(bp)) {
1160                 bnx2x_fw_dump(bp);
1161                 bnx2x_mc_assert(bp);
1162         }
1163         BNX2X_ERR("end crash dump -----------------\n");
1164 }
1165
1166 /*
1167  * FLR Support for E2
1168  *
1169  * bnx2x_pf_flr_clnup() is called during nic_load in the per function HW
1170  * initialization.
1171  */
1172 #define FLR_WAIT_USEC           10000   /* 10 milliseconds */
1173 #define FLR_WAIT_INTERVAL       50      /* usec */
1174 #define FLR_POLL_CNT            (FLR_WAIT_USEC/FLR_WAIT_INTERVAL) /* 200 */
1175
1176 struct pbf_pN_buf_regs {
1177         int pN;
1178         u32 init_crd;
1179         u32 crd;
1180         u32 crd_freed;
1181 };
1182
1183 struct pbf_pN_cmd_regs {
1184         int pN;
1185         u32 lines_occup;
1186         u32 lines_freed;
1187 };
1188
1189 static void bnx2x_pbf_pN_buf_flushed(struct bnx2x *bp,
1190                                      struct pbf_pN_buf_regs *regs,
1191                                      u32 poll_count)
1192 {
1193         u32 init_crd, crd, crd_start, crd_freed, crd_freed_start;
1194         u32 cur_cnt = poll_count;
1195
1196         crd_freed = crd_freed_start = REG_RD(bp, regs->crd_freed);
1197         crd = crd_start = REG_RD(bp, regs->crd);
1198         init_crd = REG_RD(bp, regs->init_crd);
1199
1200         DP(BNX2X_MSG_SP, "INIT CREDIT[%d] : %x\n", regs->pN, init_crd);
1201         DP(BNX2X_MSG_SP, "CREDIT[%d]      : s:%x\n", regs->pN, crd);
1202         DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: s:%x\n", regs->pN, crd_freed);
1203
1204         while ((crd != init_crd) && ((u32)SUB_S32(crd_freed, crd_freed_start) <
1205                (init_crd - crd_start))) {
1206                 if (cur_cnt--) {
1207                         udelay(FLR_WAIT_INTERVAL);
1208                         crd = REG_RD(bp, regs->crd);
1209                         crd_freed = REG_RD(bp, regs->crd_freed);
1210                 } else {
1211                         DP(BNX2X_MSG_SP, "PBF tx buffer[%d] timed out\n",
1212                            regs->pN);
1213                         DP(BNX2X_MSG_SP, "CREDIT[%d]      : c:%x\n",
1214                            regs->pN, crd);
1215                         DP(BNX2X_MSG_SP, "CREDIT_FREED[%d]: c:%x\n",
1216                            regs->pN, crd_freed);
1217                         break;
1218                 }
1219         }
1220         DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF tx buffer[%d]\n",
1221            poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1222 }
1223
1224 static void bnx2x_pbf_pN_cmd_flushed(struct bnx2x *bp,
1225                                      struct pbf_pN_cmd_regs *regs,
1226                                      u32 poll_count)
1227 {
1228         u32 occup, to_free, freed, freed_start;
1229         u32 cur_cnt = poll_count;
1230
1231         occup = to_free = REG_RD(bp, regs->lines_occup);
1232         freed = freed_start = REG_RD(bp, regs->lines_freed);
1233
1234         DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n", regs->pN, occup);
1235         DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n", regs->pN, freed);
1236
1237         while (occup && ((u32)SUB_S32(freed, freed_start) < to_free)) {
1238                 if (cur_cnt--) {
1239                         udelay(FLR_WAIT_INTERVAL);
1240                         occup = REG_RD(bp, regs->lines_occup);
1241                         freed = REG_RD(bp, regs->lines_freed);
1242                 } else {
1243                         DP(BNX2X_MSG_SP, "PBF cmd queue[%d] timed out\n",
1244                            regs->pN);
1245                         DP(BNX2X_MSG_SP, "OCCUPANCY[%d]   : s:%x\n",
1246                            regs->pN, occup);
1247                         DP(BNX2X_MSG_SP, "LINES_FREED[%d] : s:%x\n",
1248                            regs->pN, freed);
1249                         break;
1250                 }
1251         }
1252         DP(BNX2X_MSG_SP, "Waited %d*%d usec for PBF cmd queue[%d]\n",
1253            poll_count-cur_cnt, FLR_WAIT_INTERVAL, regs->pN);
1254 }
1255
1256 static u32 bnx2x_flr_clnup_reg_poll(struct bnx2x *bp, u32 reg,
1257                                     u32 expected, u32 poll_count)
1258 {
1259         u32 cur_cnt = poll_count;
1260         u32 val;
1261
1262         while ((val = REG_RD(bp, reg)) != expected && cur_cnt--)
1263                 udelay(FLR_WAIT_INTERVAL);
1264
1265         return val;
1266 }
1267
1268 int bnx2x_flr_clnup_poll_hw_counter(struct bnx2x *bp, u32 reg,
1269                                     char *msg, u32 poll_cnt)
1270 {
1271         u32 val = bnx2x_flr_clnup_reg_poll(bp, reg, 0, poll_cnt);
1272         if (val != 0) {
1273                 BNX2X_ERR("%s usage count=%d\n", msg, val);
1274                 return 1;
1275         }
1276         return 0;
1277 }
1278
1279 /* Common routines with VF FLR cleanup */
1280 u32 bnx2x_flr_clnup_poll_count(struct bnx2x *bp)
1281 {
1282         /* adjust polling timeout */
1283         if (CHIP_REV_IS_EMUL(bp))
1284                 return FLR_POLL_CNT * 2000;
1285
1286         if (CHIP_REV_IS_FPGA(bp))
1287                 return FLR_POLL_CNT * 120;
1288
1289         return FLR_POLL_CNT;
1290 }
1291
1292 void bnx2x_tx_hw_flushed(struct bnx2x *bp, u32 poll_count)
1293 {
1294         struct pbf_pN_cmd_regs cmd_regs[] = {
1295                 {0, (CHIP_IS_E3B0(bp)) ?
1296                         PBF_REG_TQ_OCCUPANCY_Q0 :
1297                         PBF_REG_P0_TQ_OCCUPANCY,
1298                     (CHIP_IS_E3B0(bp)) ?
1299                         PBF_REG_TQ_LINES_FREED_CNT_Q0 :
1300                         PBF_REG_P0_TQ_LINES_FREED_CNT},
1301                 {1, (CHIP_IS_E3B0(bp)) ?
1302                         PBF_REG_TQ_OCCUPANCY_Q1 :
1303                         PBF_REG_P1_TQ_OCCUPANCY,
1304                     (CHIP_IS_E3B0(bp)) ?
1305                         PBF_REG_TQ_LINES_FREED_CNT_Q1 :
1306                         PBF_REG_P1_TQ_LINES_FREED_CNT},
1307                 {4, (CHIP_IS_E3B0(bp)) ?
1308                         PBF_REG_TQ_OCCUPANCY_LB_Q :
1309                         PBF_REG_P4_TQ_OCCUPANCY,
1310                     (CHIP_IS_E3B0(bp)) ?
1311                         PBF_REG_TQ_LINES_FREED_CNT_LB_Q :
1312                         PBF_REG_P4_TQ_LINES_FREED_CNT}
1313         };
1314
1315         struct pbf_pN_buf_regs buf_regs[] = {
1316                 {0, (CHIP_IS_E3B0(bp)) ?
1317                         PBF_REG_INIT_CRD_Q0 :
1318                         PBF_REG_P0_INIT_CRD ,
1319                     (CHIP_IS_E3B0(bp)) ?
1320                         PBF_REG_CREDIT_Q0 :
1321                         PBF_REG_P0_CREDIT,
1322                     (CHIP_IS_E3B0(bp)) ?
1323                         PBF_REG_INTERNAL_CRD_FREED_CNT_Q0 :
1324                         PBF_REG_P0_INTERNAL_CRD_FREED_CNT},
1325                 {1, (CHIP_IS_E3B0(bp)) ?
1326                         PBF_REG_INIT_CRD_Q1 :
1327                         PBF_REG_P1_INIT_CRD,
1328                     (CHIP_IS_E3B0(bp)) ?
1329                         PBF_REG_CREDIT_Q1 :
1330                         PBF_REG_P1_CREDIT,
1331                     (CHIP_IS_E3B0(bp)) ?
1332                         PBF_REG_INTERNAL_CRD_FREED_CNT_Q1 :
1333                         PBF_REG_P1_INTERNAL_CRD_FREED_CNT},
1334                 {4, (CHIP_IS_E3B0(bp)) ?
1335                         PBF_REG_INIT_CRD_LB_Q :
1336                         PBF_REG_P4_INIT_CRD,
1337                     (CHIP_IS_E3B0(bp)) ?
1338                         PBF_REG_CREDIT_LB_Q :
1339                         PBF_REG_P4_CREDIT,
1340                     (CHIP_IS_E3B0(bp)) ?
1341                         PBF_REG_INTERNAL_CRD_FREED_CNT_LB_Q :
1342                         PBF_REG_P4_INTERNAL_CRD_FREED_CNT},
1343         };
1344
1345         int i;
1346
1347         /* Verify the command queues are flushed P0, P1, P4 */
1348         for (i = 0; i < ARRAY_SIZE(cmd_regs); i++)
1349                 bnx2x_pbf_pN_cmd_flushed(bp, &cmd_regs[i], poll_count);
1350
1351         /* Verify the transmission buffers are flushed P0, P1, P4 */
1352         for (i = 0; i < ARRAY_SIZE(buf_regs); i++)
1353                 bnx2x_pbf_pN_buf_flushed(bp, &buf_regs[i], poll_count);
1354 }
1355
1356 #define OP_GEN_PARAM(param) \
1357         (((param) << SDM_OP_GEN_COMP_PARAM_SHIFT) & SDM_OP_GEN_COMP_PARAM)
1358
1359 #define OP_GEN_TYPE(type) \
1360         (((type) << SDM_OP_GEN_COMP_TYPE_SHIFT) & SDM_OP_GEN_COMP_TYPE)
1361
1362 #define OP_GEN_AGG_VECT(index) \
1363         (((index) << SDM_OP_GEN_AGG_VECT_IDX_SHIFT) & SDM_OP_GEN_AGG_VECT_IDX)
1364
1365 int bnx2x_send_final_clnup(struct bnx2x *bp, u8 clnup_func, u32 poll_cnt)
1366 {
1367         u32 op_gen_command = 0;
1368         u32 comp_addr = BAR_CSTRORM_INTMEM +
1369                         CSTORM_FINAL_CLEANUP_COMPLETE_OFFSET(clnup_func);
1370         int ret = 0;
1371
1372         if (REG_RD(bp, comp_addr)) {
1373                 BNX2X_ERR("Cleanup complete was not 0 before sending\n");
1374                 return 1;
1375         }
1376
1377         op_gen_command |= OP_GEN_PARAM(XSTORM_AGG_INT_FINAL_CLEANUP_INDEX);
1378         op_gen_command |= OP_GEN_TYPE(XSTORM_AGG_INT_FINAL_CLEANUP_COMP_TYPE);
1379         op_gen_command |= OP_GEN_AGG_VECT(clnup_func);
1380         op_gen_command |= 1 << SDM_OP_GEN_AGG_VECT_IDX_VALID_SHIFT;
1381
1382         DP(BNX2X_MSG_SP, "sending FW Final cleanup\n");
1383         REG_WR(bp, XSDM_REG_OPERATION_GEN, op_gen_command);
1384
1385         if (bnx2x_flr_clnup_reg_poll(bp, comp_addr, 1, poll_cnt) != 1) {
1386                 BNX2X_ERR("FW final cleanup did not succeed\n");
1387                 DP(BNX2X_MSG_SP, "At timeout completion address contained %x\n",
1388                    (REG_RD(bp, comp_addr)));
1389                 bnx2x_panic();
1390                 return 1;
1391         }
1392         /* Zero completion for next FLR */
1393         REG_WR(bp, comp_addr, 0);
1394
1395         return ret;
1396 }
1397
1398 u8 bnx2x_is_pcie_pending(struct pci_dev *dev)
1399 {
1400         u16 status;
1401
1402         pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &status);
1403         return status & PCI_EXP_DEVSTA_TRPND;
1404 }
1405
1406 /* PF FLR specific routines
1407 */
1408 static int bnx2x_poll_hw_usage_counters(struct bnx2x *bp, u32 poll_cnt)
1409 {
1410         /* wait for CFC PF usage-counter to zero (includes all the VFs) */
1411         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1412                         CFC_REG_NUM_LCIDS_INSIDE_PF,
1413                         "CFC PF usage counter timed out",
1414                         poll_cnt))
1415                 return 1;
1416
1417         /* Wait for DQ PF usage-counter to zero (until DQ cleanup) */
1418         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1419                         DORQ_REG_PF_USAGE_CNT,
1420                         "DQ PF usage counter timed out",
1421                         poll_cnt))
1422                 return 1;
1423
1424         /* Wait for QM PF usage-counter to zero (until DQ cleanup) */
1425         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1426                         QM_REG_PF_USG_CNT_0 + 4*BP_FUNC(bp),
1427                         "QM PF usage counter timed out",
1428                         poll_cnt))
1429                 return 1;
1430
1431         /* Wait for Timer PF usage-counters to zero (until DQ cleanup) */
1432         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1433                         TM_REG_LIN0_VNIC_UC + 4*BP_PORT(bp),
1434                         "Timers VNIC usage counter timed out",
1435                         poll_cnt))
1436                 return 1;
1437         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1438                         TM_REG_LIN0_NUM_SCANS + 4*BP_PORT(bp),
1439                         "Timers NUM_SCANS usage counter timed out",
1440                         poll_cnt))
1441                 return 1;
1442
1443         /* Wait DMAE PF usage counter to zero */
1444         if (bnx2x_flr_clnup_poll_hw_counter(bp,
1445                         dmae_reg_go_c[INIT_DMAE_C(bp)],
1446                         "DMAE command register timed out",
1447                         poll_cnt))
1448                 return 1;
1449
1450         return 0;
1451 }
1452
1453 static void bnx2x_hw_enable_status(struct bnx2x *bp)
1454 {
1455         u32 val;
1456
1457         val = REG_RD(bp, CFC_REG_WEAK_ENABLE_PF);
1458         DP(BNX2X_MSG_SP, "CFC_REG_WEAK_ENABLE_PF is 0x%x\n", val);
1459
1460         val = REG_RD(bp, PBF_REG_DISABLE_PF);
1461         DP(BNX2X_MSG_SP, "PBF_REG_DISABLE_PF is 0x%x\n", val);
1462
1463         val = REG_RD(bp, IGU_REG_PCI_PF_MSI_EN);
1464         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSI_EN is 0x%x\n", val);
1465
1466         val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_EN);
1467         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_EN is 0x%x\n", val);
1468
1469         val = REG_RD(bp, IGU_REG_PCI_PF_MSIX_FUNC_MASK);
1470         DP(BNX2X_MSG_SP, "IGU_REG_PCI_PF_MSIX_FUNC_MASK is 0x%x\n", val);
1471
1472         val = REG_RD(bp, PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR);
1473         DP(BNX2X_MSG_SP, "PGLUE_B_REG_SHADOW_BME_PF_7_0_CLR is 0x%x\n", val);
1474
1475         val = REG_RD(bp, PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR);
1476         DP(BNX2X_MSG_SP, "PGLUE_B_REG_FLR_REQUEST_PF_7_0_CLR is 0x%x\n", val);
1477
1478         val = REG_RD(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
1479         DP(BNX2X_MSG_SP, "PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER is 0x%x\n",
1480            val);
1481 }
1482
1483 static int bnx2x_pf_flr_clnup(struct bnx2x *bp)
1484 {
1485         u32 poll_cnt = bnx2x_flr_clnup_poll_count(bp);
1486
1487         DP(BNX2X_MSG_SP, "Cleanup after FLR PF[%d]\n", BP_ABS_FUNC(bp));
1488
1489         /* Re-enable PF target read access */
1490         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
1491
1492         /* Poll HW usage counters */
1493         DP(BNX2X_MSG_SP, "Polling usage counters\n");
1494         if (bnx2x_poll_hw_usage_counters(bp, poll_cnt))
1495                 return -EBUSY;
1496
1497         /* Zero the igu 'trailing edge' and 'leading edge' */
1498
1499         /* Send the FW cleanup command */
1500         if (bnx2x_send_final_clnup(bp, (u8)BP_FUNC(bp), poll_cnt))
1501                 return -EBUSY;
1502
1503         /* ATC cleanup */
1504
1505         /* Verify TX hw is flushed */
1506         bnx2x_tx_hw_flushed(bp, poll_cnt);
1507
1508         /* Wait 100ms (not adjusted according to platform) */
1509         msleep(100);
1510
1511         /* Verify no pending pci transactions */
1512         if (bnx2x_is_pcie_pending(bp->pdev))
1513                 BNX2X_ERR("PCIE Transactions still pending\n");
1514
1515         /* Debug */
1516         bnx2x_hw_enable_status(bp);
1517
1518         /*
1519          * Master enable - Due to WB DMAE writes performed before this
1520          * register is re-initialized as part of the regular function init
1521          */
1522         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
1523
1524         return 0;
1525 }
1526
1527 static void bnx2x_hc_int_enable(struct bnx2x *bp)
1528 {
1529         int port = BP_PORT(bp);
1530         u32 addr = port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0;
1531         u32 val = REG_RD(bp, addr);
1532         bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1533         bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1534         bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1535
1536         if (msix) {
1537                 val &= ~(HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1538                          HC_CONFIG_0_REG_INT_LINE_EN_0);
1539                 val |= (HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1540                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1541                 if (single_msix)
1542                         val |= HC_CONFIG_0_REG_SINGLE_ISR_EN_0;
1543         } else if (msi) {
1544                 val &= ~HC_CONFIG_0_REG_INT_LINE_EN_0;
1545                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1546                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1547                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1548         } else {
1549                 val |= (HC_CONFIG_0_REG_SINGLE_ISR_EN_0 |
1550                         HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0 |
1551                         HC_CONFIG_0_REG_INT_LINE_EN_0 |
1552                         HC_CONFIG_0_REG_ATTN_BIT_EN_0);
1553
1554                 if (!CHIP_IS_E1(bp)) {
1555                         DP(NETIF_MSG_IFUP,
1556                            "write %x to HC %d (addr 0x%x)\n", val, port, addr);
1557
1558                         REG_WR(bp, addr, val);
1559
1560                         val &= ~HC_CONFIG_0_REG_MSI_MSIX_INT_EN_0;
1561                 }
1562         }
1563
1564         if (CHIP_IS_E1(bp))
1565                 REG_WR(bp, HC_REG_INT_MASK + port*4, 0x1FFFF);
1566
1567         DP(NETIF_MSG_IFUP,
1568            "write %x to HC %d (addr 0x%x) mode %s\n", val, port, addr,
1569            (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1570
1571         REG_WR(bp, addr, val);
1572         /*
1573          * Ensure that HC_CONFIG is written before leading/trailing edge config
1574          */
1575         mmiowb();
1576         barrier();
1577
1578         if (!CHIP_IS_E1(bp)) {
1579                 /* init leading/trailing edge */
1580                 if (IS_MF(bp)) {
1581                         val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1582                         if (bp->port.pmf)
1583                                 /* enable nig and gpio3 attention */
1584                                 val |= 0x1100;
1585                 } else
1586                         val = 0xffff;
1587
1588                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
1589                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
1590         }
1591
1592         /* Make sure that interrupts are indeed enabled from here on */
1593         mmiowb();
1594 }
1595
1596 static void bnx2x_igu_int_enable(struct bnx2x *bp)
1597 {
1598         u32 val;
1599         bool msix = (bp->flags & USING_MSIX_FLAG) ? true : false;
1600         bool single_msix = (bp->flags & USING_SINGLE_MSIX_FLAG) ? true : false;
1601         bool msi = (bp->flags & USING_MSI_FLAG) ? true : false;
1602
1603         val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
1604
1605         if (msix) {
1606                 val &= ~(IGU_PF_CONF_INT_LINE_EN |
1607                          IGU_PF_CONF_SINGLE_ISR_EN);
1608                 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1609                         IGU_PF_CONF_ATTN_BIT_EN);
1610
1611                 if (single_msix)
1612                         val |= IGU_PF_CONF_SINGLE_ISR_EN;
1613         } else if (msi) {
1614                 val &= ~IGU_PF_CONF_INT_LINE_EN;
1615                 val |= (IGU_PF_CONF_MSI_MSIX_EN |
1616                         IGU_PF_CONF_ATTN_BIT_EN |
1617                         IGU_PF_CONF_SINGLE_ISR_EN);
1618         } else {
1619                 val &= ~IGU_PF_CONF_MSI_MSIX_EN;
1620                 val |= (IGU_PF_CONF_INT_LINE_EN |
1621                         IGU_PF_CONF_ATTN_BIT_EN |
1622                         IGU_PF_CONF_SINGLE_ISR_EN);
1623         }
1624
1625         /* Clean previous status - need to configure igu prior to ack*/
1626         if ((!msix) || single_msix) {
1627                 REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1628                 bnx2x_ack_int(bp);
1629         }
1630
1631         val |= IGU_PF_CONF_FUNC_EN;
1632
1633         DP(NETIF_MSG_IFUP, "write 0x%x to IGU  mode %s\n",
1634            val, (msix ? "MSI-X" : (msi ? "MSI" : "INTx")));
1635
1636         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
1637
1638         if (val & IGU_PF_CONF_INT_LINE_EN)
1639                 pci_intx(bp->pdev, true);
1640
1641         barrier();
1642
1643         /* init leading/trailing edge */
1644         if (IS_MF(bp)) {
1645                 val = (0xee0f | (1 << (BP_VN(bp) + 4)));
1646                 if (bp->port.pmf)
1647                         /* enable nig and gpio3 attention */
1648                         val |= 0x1100;
1649         } else
1650                 val = 0xffff;
1651
1652         REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
1653         REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
1654
1655         /* Make sure that interrupts are indeed enabled from here on */
1656         mmiowb();
1657 }
1658
1659 void bnx2x_int_enable(struct bnx2x *bp)
1660 {
1661         if (bp->common.int_block == INT_BLOCK_HC)
1662                 bnx2x_hc_int_enable(bp);
1663         else
1664                 bnx2x_igu_int_enable(bp);
1665 }
1666
1667 void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw)
1668 {
1669         int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
1670         int i, offset;
1671
1672         if (disable_hw)
1673                 /* prevent the HW from sending interrupts */
1674                 bnx2x_int_disable(bp);
1675
1676         /* make sure all ISRs are done */
1677         if (msix) {
1678                 synchronize_irq(bp->msix_table[0].vector);
1679                 offset = 1;
1680                 if (CNIC_SUPPORT(bp))
1681                         offset++;
1682                 for_each_eth_queue(bp, i)
1683                         synchronize_irq(bp->msix_table[offset++].vector);
1684         } else
1685                 synchronize_irq(bp->pdev->irq);
1686
1687         /* make sure sp_task is not running */
1688         cancel_delayed_work(&bp->sp_task);
1689         cancel_delayed_work(&bp->period_task);
1690         flush_workqueue(bnx2x_wq);
1691 }
1692
1693 /* fast path */
1694
1695 /*
1696  * General service functions
1697  */
1698
1699 /* Return true if succeeded to acquire the lock */
1700 static bool bnx2x_trylock_hw_lock(struct bnx2x *bp, u32 resource)
1701 {
1702         u32 lock_status;
1703         u32 resource_bit = (1 << resource);
1704         int func = BP_FUNC(bp);
1705         u32 hw_lock_control_reg;
1706
1707         DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1708            "Trying to take a lock on resource %d\n", resource);
1709
1710         /* Validating that the resource is within range */
1711         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1712                 DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1713                    "resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1714                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
1715                 return false;
1716         }
1717
1718         if (func <= 5)
1719                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1720         else
1721                 hw_lock_control_reg =
1722                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1723
1724         /* Try to acquire the lock */
1725         REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
1726         lock_status = REG_RD(bp, hw_lock_control_reg);
1727         if (lock_status & resource_bit)
1728                 return true;
1729
1730         DP(NETIF_MSG_HW | NETIF_MSG_IFUP,
1731            "Failed to get a lock on resource %d\n", resource);
1732         return false;
1733 }
1734
1735 /**
1736  * bnx2x_get_leader_lock_resource - get the recovery leader resource id
1737  *
1738  * @bp: driver handle
1739  *
1740  * Returns the recovery leader resource id according to the engine this function
1741  * belongs to. Currently only only 2 engines is supported.
1742  */
1743 static int bnx2x_get_leader_lock_resource(struct bnx2x *bp)
1744 {
1745         if (BP_PATH(bp))
1746                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_1;
1747         else
1748                 return HW_LOCK_RESOURCE_RECOVERY_LEADER_0;
1749 }
1750
1751 /**
1752  * bnx2x_trylock_leader_lock- try to acquire a leader lock.
1753  *
1754  * @bp: driver handle
1755  *
1756  * Tries to acquire a leader lock for current engine.
1757  */
1758 static bool bnx2x_trylock_leader_lock(struct bnx2x *bp)
1759 {
1760         return bnx2x_trylock_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
1761 }
1762
1763 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err);
1764
1765 /* schedule the sp task and mark that interrupt occurred (runs from ISR) */
1766 static int bnx2x_schedule_sp_task(struct bnx2x *bp)
1767 {
1768         /* Set the interrupt occurred bit for the sp-task to recognize it
1769          * must ack the interrupt and transition according to the IGU
1770          * state machine.
1771          */
1772         atomic_set(&bp->interrupt_occurred, 1);
1773
1774         /* The sp_task must execute only after this bit
1775          * is set, otherwise we will get out of sync and miss all
1776          * further interrupts. Hence, the barrier.
1777          */
1778         smp_wmb();
1779
1780         /* schedule sp_task to workqueue */
1781         return queue_delayed_work(bnx2x_wq, &bp->sp_task, 0);
1782 }
1783
1784 void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe)
1785 {
1786         struct bnx2x *bp = fp->bp;
1787         int cid = SW_CID(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1788         int command = CQE_CMD(rr_cqe->ramrod_cqe.conn_and_cmd_data);
1789         enum bnx2x_queue_cmd drv_cmd = BNX2X_Q_CMD_MAX;
1790         struct bnx2x_queue_sp_obj *q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
1791
1792         DP(BNX2X_MSG_SP,
1793            "fp %d  cid %d  got ramrod #%d  state is %x  type is %d\n",
1794            fp->index, cid, command, bp->state,
1795            rr_cqe->ramrod_cqe.ramrod_type);
1796
1797         /* If cid is within VF range, replace the slowpath object with the
1798          * one corresponding to this VF
1799          */
1800         if (cid >= BNX2X_FIRST_VF_CID  &&
1801             cid < BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)
1802                 bnx2x_iov_set_queue_sp_obj(bp, cid, &q_obj);
1803
1804         switch (command) {
1805         case (RAMROD_CMD_ID_ETH_CLIENT_UPDATE):
1806                 DP(BNX2X_MSG_SP, "got UPDATE ramrod. CID %d\n", cid);
1807                 drv_cmd = BNX2X_Q_CMD_UPDATE;
1808                 break;
1809
1810         case (RAMROD_CMD_ID_ETH_CLIENT_SETUP):
1811                 DP(BNX2X_MSG_SP, "got MULTI[%d] setup ramrod\n", cid);
1812                 drv_cmd = BNX2X_Q_CMD_SETUP;
1813                 break;
1814
1815         case (RAMROD_CMD_ID_ETH_TX_QUEUE_SETUP):
1816                 DP(BNX2X_MSG_SP, "got MULTI[%d] tx-only setup ramrod\n", cid);
1817                 drv_cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
1818                 break;
1819
1820         case (RAMROD_CMD_ID_ETH_HALT):
1821                 DP(BNX2X_MSG_SP, "got MULTI[%d] halt ramrod\n", cid);
1822                 drv_cmd = BNX2X_Q_CMD_HALT;
1823                 break;
1824
1825         case (RAMROD_CMD_ID_ETH_TERMINATE):
1826                 DP(BNX2X_MSG_SP, "got MULTI[%d] terminate ramrod\n", cid);
1827                 drv_cmd = BNX2X_Q_CMD_TERMINATE;
1828                 break;
1829
1830         case (RAMROD_CMD_ID_ETH_EMPTY):
1831                 DP(BNX2X_MSG_SP, "got MULTI[%d] empty ramrod\n", cid);
1832                 drv_cmd = BNX2X_Q_CMD_EMPTY;
1833                 break;
1834
1835         case (RAMROD_CMD_ID_ETH_TPA_UPDATE):
1836                 DP(BNX2X_MSG_SP, "got tpa update ramrod CID=%d\n", cid);
1837                 drv_cmd = BNX2X_Q_CMD_UPDATE_TPA;
1838                 break;
1839
1840         default:
1841                 BNX2X_ERR("unexpected MC reply (%d) on fp[%d]\n",
1842                           command, fp->index);
1843                 return;
1844         }
1845
1846         if ((drv_cmd != BNX2X_Q_CMD_MAX) &&
1847             q_obj->complete_cmd(bp, q_obj, drv_cmd))
1848                 /* q_obj->complete_cmd() failure means that this was
1849                  * an unexpected completion.
1850                  *
1851                  * In this case we don't want to increase the bp->spq_left
1852                  * because apparently we haven't sent this command the first
1853                  * place.
1854                  */
1855 #ifdef BNX2X_STOP_ON_ERROR
1856                 bnx2x_panic();
1857 #else
1858                 return;
1859 #endif
1860
1861         smp_mb__before_atomic_inc();
1862         atomic_inc(&bp->cq_spq_left);
1863         /* push the change in bp->spq_left and towards the memory */
1864         smp_mb__after_atomic_inc();
1865
1866         DP(BNX2X_MSG_SP, "bp->cq_spq_left %x\n", atomic_read(&bp->cq_spq_left));
1867
1868         if ((drv_cmd == BNX2X_Q_CMD_UPDATE) && (IS_FCOE_FP(fp)) &&
1869             (!!test_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state))) {
1870                 /* if Q update ramrod is completed for last Q in AFEX vif set
1871                  * flow, then ACK MCP at the end
1872                  *
1873                  * mark pending ACK to MCP bit.
1874                  * prevent case that both bits are cleared.
1875                  * At the end of load/unload driver checks that
1876                  * sp_state is cleared, and this order prevents
1877                  * races
1878                  */
1879                 smp_mb__before_clear_bit();
1880                 set_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK, &bp->sp_state);
1881                 wmb();
1882                 clear_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
1883                 smp_mb__after_clear_bit();
1884
1885                 /* schedule the sp task as mcp ack is required */
1886                 bnx2x_schedule_sp_task(bp);
1887         }
1888
1889         return;
1890 }
1891
1892 irqreturn_t bnx2x_interrupt(int irq, void *dev_instance)
1893 {
1894         struct bnx2x *bp = netdev_priv(dev_instance);
1895         u16 status = bnx2x_ack_int(bp);
1896         u16 mask;
1897         int i;
1898         u8 cos;
1899
1900         /* Return here if interrupt is shared and it's not for us */
1901         if (unlikely(status == 0)) {
1902                 DP(NETIF_MSG_INTR, "not our interrupt!\n");
1903                 return IRQ_NONE;
1904         }
1905         DP(NETIF_MSG_INTR, "got an interrupt  status 0x%x\n", status);
1906
1907 #ifdef BNX2X_STOP_ON_ERROR
1908         if (unlikely(bp->panic))
1909                 return IRQ_HANDLED;
1910 #endif
1911
1912         for_each_eth_queue(bp, i) {
1913                 struct bnx2x_fastpath *fp = &bp->fp[i];
1914
1915                 mask = 0x2 << (fp->index + CNIC_SUPPORT(bp));
1916                 if (status & mask) {
1917                         /* Handle Rx or Tx according to SB id */
1918                         for_each_cos_in_tx_queue(fp, cos)
1919                                 prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1920                         prefetch(&fp->sb_running_index[SM_RX_ID]);
1921                         napi_schedule(&bnx2x_fp(bp, fp->index, napi));
1922                         status &= ~mask;
1923                 }
1924         }
1925
1926         if (CNIC_SUPPORT(bp)) {
1927                 mask = 0x2;
1928                 if (status & (mask | 0x1)) {
1929                         struct cnic_ops *c_ops = NULL;
1930
1931                         rcu_read_lock();
1932                         c_ops = rcu_dereference(bp->cnic_ops);
1933                         if (c_ops && (bp->cnic_eth_dev.drv_state &
1934                                       CNIC_DRV_STATE_HANDLES_IRQ))
1935                                 c_ops->cnic_handler(bp->cnic_data, NULL);
1936                         rcu_read_unlock();
1937
1938                         status &= ~mask;
1939                 }
1940         }
1941
1942         if (unlikely(status & 0x1)) {
1943
1944                 /* schedule sp task to perform default status block work, ack
1945                  * attentions and enable interrupts.
1946                  */
1947                 bnx2x_schedule_sp_task(bp);
1948
1949                 status &= ~0x1;
1950                 if (!status)
1951                         return IRQ_HANDLED;
1952         }
1953
1954         if (unlikely(status))
1955                 DP(NETIF_MSG_INTR, "got an unknown interrupt! (status 0x%x)\n",
1956                    status);
1957
1958         return IRQ_HANDLED;
1959 }
1960
1961 /* Link */
1962
1963 /*
1964  * General service functions
1965  */
1966
1967 int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource)
1968 {
1969         u32 lock_status;
1970         u32 resource_bit = (1 << resource);
1971         int func = BP_FUNC(bp);
1972         u32 hw_lock_control_reg;
1973         int cnt;
1974
1975         /* Validating that the resource is within range */
1976         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
1977                 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
1978                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
1979                 return -EINVAL;
1980         }
1981
1982         if (func <= 5) {
1983                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
1984         } else {
1985                 hw_lock_control_reg =
1986                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
1987         }
1988
1989         /* Validating that the resource is not already taken */
1990         lock_status = REG_RD(bp, hw_lock_control_reg);
1991         if (lock_status & resource_bit) {
1992                 BNX2X_ERR("lock_status 0x%x  resource_bit 0x%x\n",
1993                    lock_status, resource_bit);
1994                 return -EEXIST;
1995         }
1996
1997         /* Try for 5 second every 5ms */
1998         for (cnt = 0; cnt < 1000; cnt++) {
1999                 /* Try to acquire the lock */
2000                 REG_WR(bp, hw_lock_control_reg + 4, resource_bit);
2001                 lock_status = REG_RD(bp, hw_lock_control_reg);
2002                 if (lock_status & resource_bit)
2003                         return 0;
2004
2005                 usleep_range(5000, 10000);
2006         }
2007         BNX2X_ERR("Timeout\n");
2008         return -EAGAIN;
2009 }
2010
2011 int bnx2x_release_leader_lock(struct bnx2x *bp)
2012 {
2013         return bnx2x_release_hw_lock(bp, bnx2x_get_leader_lock_resource(bp));
2014 }
2015
2016 int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource)
2017 {
2018         u32 lock_status;
2019         u32 resource_bit = (1 << resource);
2020         int func = BP_FUNC(bp);
2021         u32 hw_lock_control_reg;
2022
2023         /* Validating that the resource is within range */
2024         if (resource > HW_LOCK_MAX_RESOURCE_VALUE) {
2025                 BNX2X_ERR("resource(0x%x) > HW_LOCK_MAX_RESOURCE_VALUE(0x%x)\n",
2026                    resource, HW_LOCK_MAX_RESOURCE_VALUE);
2027                 return -EINVAL;
2028         }
2029
2030         if (func <= 5) {
2031                 hw_lock_control_reg = (MISC_REG_DRIVER_CONTROL_1 + func*8);
2032         } else {
2033                 hw_lock_control_reg =
2034                                 (MISC_REG_DRIVER_CONTROL_7 + (func - 6)*8);
2035         }
2036
2037         /* Validating that the resource is currently taken */
2038         lock_status = REG_RD(bp, hw_lock_control_reg);
2039         if (!(lock_status & resource_bit)) {
2040                 BNX2X_ERR("lock_status 0x%x resource_bit 0x%x. Unlock was called but lock wasn't taken!\n",
2041                           lock_status, resource_bit);
2042                 return -EFAULT;
2043         }
2044
2045         REG_WR(bp, hw_lock_control_reg, resource_bit);
2046         return 0;
2047 }
2048
2049 int bnx2x_get_gpio(struct bnx2x *bp, int gpio_num, u8 port)
2050 {
2051         /* The GPIO should be swapped if swap register is set and active */
2052         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2053                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2054         int gpio_shift = gpio_num +
2055                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2056         u32 gpio_mask = (1 << gpio_shift);
2057         u32 gpio_reg;
2058         int value;
2059
2060         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2061                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2062                 return -EINVAL;
2063         }
2064
2065         /* read GPIO value */
2066         gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2067
2068         /* get the requested pin value */
2069         if ((gpio_reg & gpio_mask) == gpio_mask)
2070                 value = 1;
2071         else
2072                 value = 0;
2073
2074         DP(NETIF_MSG_LINK, "pin %d  value 0x%x\n", gpio_num, value);
2075
2076         return value;
2077 }
2078
2079 int bnx2x_set_gpio(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2080 {
2081         /* The GPIO should be swapped if swap register is set and active */
2082         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2083                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2084         int gpio_shift = gpio_num +
2085                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2086         u32 gpio_mask = (1 << gpio_shift);
2087         u32 gpio_reg;
2088
2089         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2090                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2091                 return -EINVAL;
2092         }
2093
2094         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2095         /* read GPIO and mask except the float bits */
2096         gpio_reg = (REG_RD(bp, MISC_REG_GPIO) & MISC_REGISTERS_GPIO_FLOAT);
2097
2098         switch (mode) {
2099         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2100                 DP(NETIF_MSG_LINK,
2101                    "Set GPIO %d (shift %d) -> output low\n",
2102                    gpio_num, gpio_shift);
2103                 /* clear FLOAT and set CLR */
2104                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2105                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_CLR_POS);
2106                 break;
2107
2108         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2109                 DP(NETIF_MSG_LINK,
2110                    "Set GPIO %d (shift %d) -> output high\n",
2111                    gpio_num, gpio_shift);
2112                 /* clear FLOAT and set SET */
2113                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2114                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_SET_POS);
2115                 break;
2116
2117         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2118                 DP(NETIF_MSG_LINK,
2119                    "Set GPIO %d (shift %d) -> input\n",
2120                    gpio_num, gpio_shift);
2121                 /* set FLOAT */
2122                 gpio_reg |= (gpio_mask << MISC_REGISTERS_GPIO_FLOAT_POS);
2123                 break;
2124
2125         default:
2126                 break;
2127         }
2128
2129         REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2130         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2131
2132         return 0;
2133 }
2134
2135 int bnx2x_set_mult_gpio(struct bnx2x *bp, u8 pins, u32 mode)
2136 {
2137         u32 gpio_reg = 0;
2138         int rc = 0;
2139
2140         /* Any port swapping should be handled by caller. */
2141
2142         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2143         /* read GPIO and mask except the float bits */
2144         gpio_reg = REG_RD(bp, MISC_REG_GPIO);
2145         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2146         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_CLR_POS);
2147         gpio_reg &= ~(pins << MISC_REGISTERS_GPIO_SET_POS);
2148
2149         switch (mode) {
2150         case MISC_REGISTERS_GPIO_OUTPUT_LOW:
2151                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output low\n", pins);
2152                 /* set CLR */
2153                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_CLR_POS);
2154                 break;
2155
2156         case MISC_REGISTERS_GPIO_OUTPUT_HIGH:
2157                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> output high\n", pins);
2158                 /* set SET */
2159                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_SET_POS);
2160                 break;
2161
2162         case MISC_REGISTERS_GPIO_INPUT_HI_Z:
2163                 DP(NETIF_MSG_LINK, "Set GPIO 0x%x -> input\n", pins);
2164                 /* set FLOAT */
2165                 gpio_reg |= (pins << MISC_REGISTERS_GPIO_FLOAT_POS);
2166                 break;
2167
2168         default:
2169                 BNX2X_ERR("Invalid GPIO mode assignment %d\n", mode);
2170                 rc = -EINVAL;
2171                 break;
2172         }
2173
2174         if (rc == 0)
2175                 REG_WR(bp, MISC_REG_GPIO, gpio_reg);
2176
2177         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2178
2179         return rc;
2180 }
2181
2182 int bnx2x_set_gpio_int(struct bnx2x *bp, int gpio_num, u32 mode, u8 port)
2183 {
2184         /* The GPIO should be swapped if swap register is set and active */
2185         int gpio_port = (REG_RD(bp, NIG_REG_PORT_SWAP) &&
2186                          REG_RD(bp, NIG_REG_STRAP_OVERRIDE)) ^ port;
2187         int gpio_shift = gpio_num +
2188                         (gpio_port ? MISC_REGISTERS_GPIO_PORT_SHIFT : 0);
2189         u32 gpio_mask = (1 << gpio_shift);
2190         u32 gpio_reg;
2191
2192         if (gpio_num > MISC_REGISTERS_GPIO_3) {
2193                 BNX2X_ERR("Invalid GPIO %d\n", gpio_num);
2194                 return -EINVAL;
2195         }
2196
2197         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2198         /* read GPIO int */
2199         gpio_reg = REG_RD(bp, MISC_REG_GPIO_INT);
2200
2201         switch (mode) {
2202         case MISC_REGISTERS_GPIO_INT_OUTPUT_CLR:
2203                 DP(NETIF_MSG_LINK,
2204                    "Clear GPIO INT %d (shift %d) -> output low\n",
2205                    gpio_num, gpio_shift);
2206                 /* clear SET and set CLR */
2207                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2208                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2209                 break;
2210
2211         case MISC_REGISTERS_GPIO_INT_OUTPUT_SET:
2212                 DP(NETIF_MSG_LINK,
2213                    "Set GPIO INT %d (shift %d) -> output high\n",
2214                    gpio_num, gpio_shift);
2215                 /* clear CLR and set SET */
2216                 gpio_reg &= ~(gpio_mask << MISC_REGISTERS_GPIO_INT_CLR_POS);
2217                 gpio_reg |=  (gpio_mask << MISC_REGISTERS_GPIO_INT_SET_POS);
2218                 break;
2219
2220         default:
2221                 break;
2222         }
2223
2224         REG_WR(bp, MISC_REG_GPIO_INT, gpio_reg);
2225         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_GPIO);
2226
2227         return 0;
2228 }
2229
2230 static int bnx2x_set_spio(struct bnx2x *bp, int spio, u32 mode)
2231 {
2232         u32 spio_reg;
2233
2234         /* Only 2 SPIOs are configurable */
2235         if ((spio != MISC_SPIO_SPIO4) && (spio != MISC_SPIO_SPIO5)) {
2236                 BNX2X_ERR("Invalid SPIO 0x%x\n", spio);
2237                 return -EINVAL;
2238         }
2239
2240         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2241         /* read SPIO and mask except the float bits */
2242         spio_reg = (REG_RD(bp, MISC_REG_SPIO) & MISC_SPIO_FLOAT);
2243
2244         switch (mode) {
2245         case MISC_SPIO_OUTPUT_LOW:
2246                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output low\n", spio);
2247                 /* clear FLOAT and set CLR */
2248                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2249                 spio_reg |=  (spio << MISC_SPIO_CLR_POS);
2250                 break;
2251
2252         case MISC_SPIO_OUTPUT_HIGH:
2253                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> output high\n", spio);
2254                 /* clear FLOAT and set SET */
2255                 spio_reg &= ~(spio << MISC_SPIO_FLOAT_POS);
2256                 spio_reg |=  (spio << MISC_SPIO_SET_POS);
2257                 break;
2258
2259         case MISC_SPIO_INPUT_HI_Z:
2260                 DP(NETIF_MSG_HW, "Set SPIO 0x%x -> input\n", spio);
2261                 /* set FLOAT */
2262                 spio_reg |= (spio << MISC_SPIO_FLOAT_POS);
2263                 break;
2264
2265         default:
2266                 break;
2267         }
2268
2269         REG_WR(bp, MISC_REG_SPIO, spio_reg);
2270         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_SPIO);
2271
2272         return 0;
2273 }
2274
2275 void bnx2x_calc_fc_adv(struct bnx2x *bp)
2276 {
2277         u8 cfg_idx = bnx2x_get_link_cfg_idx(bp);
2278         switch (bp->link_vars.ieee_fc &
2279                 MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_MASK) {
2280         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_NONE:
2281                 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2282                                                    ADVERTISED_Pause);
2283                 break;
2284
2285         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_BOTH:
2286                 bp->port.advertising[cfg_idx] |= (ADVERTISED_Asym_Pause |
2287                                                   ADVERTISED_Pause);
2288                 break;
2289
2290         case MDIO_COMBO_IEEE0_AUTO_NEG_ADV_PAUSE_ASYMMETRIC:
2291                 bp->port.advertising[cfg_idx] |= ADVERTISED_Asym_Pause;
2292                 break;
2293
2294         default:
2295                 bp->port.advertising[cfg_idx] &= ~(ADVERTISED_Asym_Pause |
2296                                                    ADVERTISED_Pause);
2297                 break;
2298         }
2299 }
2300
2301 static void bnx2x_set_requested_fc(struct bnx2x *bp)
2302 {
2303         /* Initialize link parameters structure variables
2304          * It is recommended to turn off RX FC for jumbo frames
2305          *  for better performance
2306          */
2307         if (CHIP_IS_E1x(bp) && (bp->dev->mtu > 5000))
2308                 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_TX;
2309         else
2310                 bp->link_params.req_fc_auto_adv = BNX2X_FLOW_CTRL_BOTH;
2311 }
2312
2313 static void bnx2x_init_dropless_fc(struct bnx2x *bp)
2314 {
2315         u32 pause_enabled = 0;
2316
2317         if (!CHIP_IS_E1(bp) && bp->dropless_fc && bp->link_vars.link_up) {
2318                 if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
2319                         pause_enabled = 1;
2320
2321                 REG_WR(bp, BAR_USTRORM_INTMEM +
2322                            USTORM_ETH_PAUSE_ENABLED_OFFSET(BP_PORT(bp)),
2323                        pause_enabled);
2324         }
2325
2326         DP(NETIF_MSG_IFUP | NETIF_MSG_LINK, "dropless_fc is %s\n",
2327            pause_enabled ? "enabled" : "disabled");
2328 }
2329
2330 int bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode)
2331 {
2332         int rc, cfx_idx = bnx2x_get_link_cfg_idx(bp);
2333         u16 req_line_speed = bp->link_params.req_line_speed[cfx_idx];
2334
2335         if (!BP_NOMCP(bp)) {
2336                 bnx2x_set_requested_fc(bp);
2337                 bnx2x_acquire_phy_lock(bp);
2338
2339                 if (load_mode == LOAD_DIAG) {
2340                         struct link_params *lp = &bp->link_params;
2341                         lp->loopback_mode = LOOPBACK_XGXS;
2342                         /* do PHY loopback at 10G speed, if possible */
2343                         if (lp->req_line_speed[cfx_idx] < SPEED_10000) {
2344                                 if (lp->speed_cap_mask[cfx_idx] &
2345                                     PORT_HW_CFG_SPEED_CAPABILITY_D0_10G)
2346                                         lp->req_line_speed[cfx_idx] =
2347                                         SPEED_10000;
2348                                 else
2349                                         lp->req_line_speed[cfx_idx] =
2350                                         SPEED_1000;
2351                         }
2352                 }
2353
2354                 if (load_mode == LOAD_LOOPBACK_EXT) {
2355                         struct link_params *lp = &bp->link_params;
2356                         lp->loopback_mode = LOOPBACK_EXT;
2357                 }
2358
2359                 rc = bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2360
2361                 bnx2x_release_phy_lock(bp);
2362
2363                 bnx2x_init_dropless_fc(bp);
2364
2365                 bnx2x_calc_fc_adv(bp);
2366
2367                 if (bp->link_vars.link_up) {
2368                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2369                         bnx2x_link_report(bp);
2370                 }
2371                 queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2372                 bp->link_params.req_line_speed[cfx_idx] = req_line_speed;
2373                 return rc;
2374         }
2375         BNX2X_ERR("Bootcode is missing - can not initialize link\n");
2376         return -EINVAL;
2377 }
2378
2379 void bnx2x_link_set(struct bnx2x *bp)
2380 {
2381         if (!BP_NOMCP(bp)) {
2382                 bnx2x_acquire_phy_lock(bp);
2383                 bnx2x_phy_init(&bp->link_params, &bp->link_vars);
2384                 bnx2x_release_phy_lock(bp);
2385
2386                 bnx2x_init_dropless_fc(bp);
2387
2388                 bnx2x_calc_fc_adv(bp);
2389         } else
2390                 BNX2X_ERR("Bootcode is missing - can not set link\n");
2391 }
2392
2393 static void bnx2x__link_reset(struct bnx2x *bp)
2394 {
2395         if (!BP_NOMCP(bp)) {
2396                 bnx2x_acquire_phy_lock(bp);
2397                 bnx2x_lfa_reset(&bp->link_params, &bp->link_vars);
2398                 bnx2x_release_phy_lock(bp);
2399         } else
2400                 BNX2X_ERR("Bootcode is missing - can not reset link\n");
2401 }
2402
2403 void bnx2x_force_link_reset(struct bnx2x *bp)
2404 {
2405         bnx2x_acquire_phy_lock(bp);
2406         bnx2x_link_reset(&bp->link_params, &bp->link_vars, 1);
2407         bnx2x_release_phy_lock(bp);
2408 }
2409
2410 u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes)
2411 {
2412         u8 rc = 0;
2413
2414         if (!BP_NOMCP(bp)) {
2415                 bnx2x_acquire_phy_lock(bp);
2416                 rc = bnx2x_test_link(&bp->link_params, &bp->link_vars,
2417                                      is_serdes);
2418                 bnx2x_release_phy_lock(bp);
2419         } else
2420                 BNX2X_ERR("Bootcode is missing - can not test link\n");
2421
2422         return rc;
2423 }
2424
2425 /* Calculates the sum of vn_min_rates.
2426    It's needed for further normalizing of the min_rates.
2427    Returns:
2428      sum of vn_min_rates.
2429        or
2430      0 - if all the min_rates are 0.
2431      In the later case fairness algorithm should be deactivated.
2432      If not all min_rates are zero then those that are zeroes will be set to 1.
2433  */
2434 static void bnx2x_calc_vn_min(struct bnx2x *bp,
2435                                       struct cmng_init_input *input)
2436 {
2437         int all_zero = 1;
2438         int vn;
2439
2440         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2441                 u32 vn_cfg = bp->mf_config[vn];
2442                 u32 vn_min_rate = ((vn_cfg & FUNC_MF_CFG_MIN_BW_MASK) >>
2443                                    FUNC_MF_CFG_MIN_BW_SHIFT) * 100;
2444
2445                 /* Skip hidden vns */
2446                 if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2447                         vn_min_rate = 0;
2448                 /* If min rate is zero - set it to 1 */
2449                 else if (!vn_min_rate)
2450                         vn_min_rate = DEF_MIN_RATE;
2451                 else
2452                         all_zero = 0;
2453
2454                 input->vnic_min_rate[vn] = vn_min_rate;
2455         }
2456
2457         /* if ETS or all min rates are zeros - disable fairness */
2458         if (BNX2X_IS_ETS_ENABLED(bp)) {
2459                 input->flags.cmng_enables &=
2460                                         ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2461                 DP(NETIF_MSG_IFUP, "Fairness will be disabled due to ETS\n");
2462         } else if (all_zero) {
2463                 input->flags.cmng_enables &=
2464                                         ~CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2465                 DP(NETIF_MSG_IFUP,
2466                    "All MIN values are zeroes fairness will be disabled\n");
2467         } else
2468                 input->flags.cmng_enables |=
2469                                         CMNG_FLAGS_PER_PORT_FAIRNESS_VN;
2470 }
2471
2472 static void bnx2x_calc_vn_max(struct bnx2x *bp, int vn,
2473                                     struct cmng_init_input *input)
2474 {
2475         u16 vn_max_rate;
2476         u32 vn_cfg = bp->mf_config[vn];
2477
2478         if (vn_cfg & FUNC_MF_CFG_FUNC_HIDE)
2479                 vn_max_rate = 0;
2480         else {
2481                 u32 maxCfg = bnx2x_extract_max_cfg(bp, vn_cfg);
2482
2483                 if (IS_MF_SI(bp)) {
2484                         /* maxCfg in percents of linkspeed */
2485                         vn_max_rate = (bp->link_vars.line_speed * maxCfg) / 100;
2486                 } else /* SD modes */
2487                         /* maxCfg is absolute in 100Mb units */
2488                         vn_max_rate = maxCfg * 100;
2489         }
2490
2491         DP(NETIF_MSG_IFUP, "vn %d: vn_max_rate %d\n", vn, vn_max_rate);
2492
2493         input->vnic_max_rate[vn] = vn_max_rate;
2494 }
2495
2496 static int bnx2x_get_cmng_fns_mode(struct bnx2x *bp)
2497 {
2498         if (CHIP_REV_IS_SLOW(bp))
2499                 return CMNG_FNS_NONE;
2500         if (IS_MF(bp))
2501                 return CMNG_FNS_MINMAX;
2502
2503         return CMNG_FNS_NONE;
2504 }
2505
2506 void bnx2x_read_mf_cfg(struct bnx2x *bp)
2507 {
2508         int vn, n = (CHIP_MODE_IS_4_PORT(bp) ? 2 : 1);
2509
2510         if (BP_NOMCP(bp))
2511                 return; /* what should be the default value in this case */
2512
2513         /* For 2 port configuration the absolute function number formula
2514          * is:
2515          *      abs_func = 2 * vn + BP_PORT + BP_PATH
2516          *
2517          *      and there are 4 functions per port
2518          *
2519          * For 4 port configuration it is
2520          *      abs_func = 4 * vn + 2 * BP_PORT + BP_PATH
2521          *
2522          *      and there are 2 functions per port
2523          */
2524         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2525                 int /*abs*/func = n * (2 * vn + BP_PORT(bp)) + BP_PATH(bp);
2526
2527                 if (func >= E1H_FUNC_MAX)
2528                         break;
2529
2530                 bp->mf_config[vn] =
2531                         MF_CFG_RD(bp, func_mf_config[func].config);
2532         }
2533         if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
2534                 DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n");
2535                 bp->flags |= MF_FUNC_DIS;
2536         } else {
2537                 DP(NETIF_MSG_IFUP, "mf_cfg function enabled\n");
2538                 bp->flags &= ~MF_FUNC_DIS;
2539         }
2540 }
2541
2542 static void bnx2x_cmng_fns_init(struct bnx2x *bp, u8 read_cfg, u8 cmng_type)
2543 {
2544         struct cmng_init_input input;
2545         memset(&input, 0, sizeof(struct cmng_init_input));
2546
2547         input.port_rate = bp->link_vars.line_speed;
2548
2549         if (cmng_type == CMNG_FNS_MINMAX && input.port_rate) {
2550                 int vn;
2551
2552                 /* read mf conf from shmem */
2553                 if (read_cfg)
2554                         bnx2x_read_mf_cfg(bp);
2555
2556                 /* vn_weight_sum and enable fairness if not 0 */
2557                 bnx2x_calc_vn_min(bp, &input);
2558
2559                 /* calculate and set min-max rate for each vn */
2560                 if (bp->port.pmf)
2561                         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++)
2562                                 bnx2x_calc_vn_max(bp, vn, &input);
2563
2564                 /* always enable rate shaping and fairness */
2565                 input.flags.cmng_enables |=
2566                                         CMNG_FLAGS_PER_PORT_RATE_SHAPING_VN;
2567
2568                 bnx2x_init_cmng(&input, &bp->cmng);
2569                 return;
2570         }
2571
2572         /* rate shaping and fairness are disabled */
2573         DP(NETIF_MSG_IFUP,
2574            "rate shaping and fairness are disabled\n");
2575 }
2576
2577 static void storm_memset_cmng(struct bnx2x *bp,
2578                               struct cmng_init *cmng,
2579                               u8 port)
2580 {
2581         int vn;
2582         size_t size = sizeof(struct cmng_struct_per_port);
2583
2584         u32 addr = BAR_XSTRORM_INTMEM +
2585                         XSTORM_CMNG_PER_PORT_VARS_OFFSET(port);
2586
2587         __storm_memset_struct(bp, addr, size, (u32 *)&cmng->port);
2588
2589         for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) {
2590                 int func = func_by_vn(bp, vn);
2591
2592                 addr = BAR_XSTRORM_INTMEM +
2593                        XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(func);
2594                 size = sizeof(struct rate_shaping_vars_per_vn);
2595                 __storm_memset_struct(bp, addr, size,
2596                                       (u32 *)&cmng->vnic.vnic_max_rate[vn]);
2597
2598                 addr = BAR_XSTRORM_INTMEM +
2599                        XSTORM_FAIRNESS_PER_VN_VARS_OFFSET(func);
2600                 size = sizeof(struct fairness_vars_per_vn);
2601                 __storm_memset_struct(bp, addr, size,
2602                                       (u32 *)&cmng->vnic.vnic_min_rate[vn]);
2603         }
2604 }
2605
2606 /* init cmng mode in HW according to local configuration */
2607 void bnx2x_set_local_cmng(struct bnx2x *bp)
2608 {
2609         int cmng_fns = bnx2x_get_cmng_fns_mode(bp);
2610
2611         if (cmng_fns != CMNG_FNS_NONE) {
2612                 bnx2x_cmng_fns_init(bp, false, cmng_fns);
2613                 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
2614         } else {
2615                 /* rate shaping and fairness are disabled */
2616                 DP(NETIF_MSG_IFUP,
2617                    "single function mode without fairness\n");
2618         }
2619 }
2620
2621 /* This function is called upon link interrupt */
2622 static void bnx2x_link_attn(struct bnx2x *bp)
2623 {
2624         /* Make sure that we are synced with the current statistics */
2625         bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2626
2627         bnx2x_link_update(&bp->link_params, &bp->link_vars);
2628
2629         bnx2x_init_dropless_fc(bp);
2630
2631         if (bp->link_vars.link_up) {
2632
2633                 if (bp->link_vars.mac_type != MAC_TYPE_EMAC) {
2634                         struct host_port_stats *pstats;
2635
2636                         pstats = bnx2x_sp(bp, port_stats);
2637                         /* reset old mac stats */
2638                         memset(&(pstats->mac_stx[0]), 0,
2639                                sizeof(struct mac_stx));
2640                 }
2641                 if (bp->state == BNX2X_STATE_OPEN)
2642                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2643         }
2644
2645         if (bp->link_vars.link_up && bp->link_vars.line_speed)
2646                 bnx2x_set_local_cmng(bp);
2647
2648         __bnx2x_link_report(bp);
2649
2650         if (IS_MF(bp))
2651                 bnx2x_link_sync_notify(bp);
2652 }
2653
2654 void bnx2x__link_status_update(struct bnx2x *bp)
2655 {
2656         if (bp->state != BNX2X_STATE_OPEN)
2657                 return;
2658
2659         /* read updated dcb configuration */
2660         if (IS_PF(bp)) {
2661                 bnx2x_dcbx_pmf_update(bp);
2662                 bnx2x_link_status_update(&bp->link_params, &bp->link_vars);
2663                 if (bp->link_vars.link_up)
2664                         bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2665                 else
2666                         bnx2x_stats_handle(bp, STATS_EVENT_STOP);
2667                         /* indicate link status */
2668                 bnx2x_link_report(bp);
2669
2670         } else { /* VF */
2671                 bp->port.supported[0] |= (SUPPORTED_10baseT_Half |
2672                                           SUPPORTED_10baseT_Full |
2673                                           SUPPORTED_100baseT_Half |
2674                                           SUPPORTED_100baseT_Full |
2675                                           SUPPORTED_1000baseT_Full |
2676                                           SUPPORTED_2500baseX_Full |
2677                                           SUPPORTED_10000baseT_Full |
2678                                           SUPPORTED_TP |
2679                                           SUPPORTED_FIBRE |
2680                                           SUPPORTED_Autoneg |
2681                                           SUPPORTED_Pause |
2682                                           SUPPORTED_Asym_Pause);
2683                 bp->port.advertising[0] = bp->port.supported[0];
2684
2685                 bp->link_params.bp = bp;
2686                 bp->link_params.port = BP_PORT(bp);
2687                 bp->link_params.req_duplex[0] = DUPLEX_FULL;
2688                 bp->link_params.req_flow_ctrl[0] = BNX2X_FLOW_CTRL_NONE;
2689                 bp->link_params.req_line_speed[0] = SPEED_10000;
2690                 bp->link_params.speed_cap_mask[0] = 0x7f0000;
2691                 bp->link_params.switch_cfg = SWITCH_CFG_10G;
2692                 bp->link_vars.mac_type = MAC_TYPE_BMAC;
2693                 bp->link_vars.line_speed = SPEED_10000;
2694                 bp->link_vars.link_status =
2695                         (LINK_STATUS_LINK_UP |
2696                          LINK_STATUS_SPEED_AND_DUPLEX_10GTFD);
2697                 bp->link_vars.link_up = 1;
2698                 bp->link_vars.duplex = DUPLEX_FULL;
2699                 bp->link_vars.flow_ctrl = BNX2X_FLOW_CTRL_NONE;
2700                 __bnx2x_link_report(bp);
2701                 bnx2x_stats_handle(bp, STATS_EVENT_LINK_UP);
2702         }
2703 }
2704
2705 static int bnx2x_afex_func_update(struct bnx2x *bp, u16 vifid,
2706                                   u16 vlan_val, u8 allowed_prio)
2707 {
2708         struct bnx2x_func_state_params func_params = {NULL};
2709         struct bnx2x_func_afex_update_params *f_update_params =
2710                 &func_params.params.afex_update;
2711
2712         func_params.f_obj = &bp->func_obj;
2713         func_params.cmd = BNX2X_F_CMD_AFEX_UPDATE;
2714
2715         /* no need to wait for RAMROD completion, so don't
2716          * set RAMROD_COMP_WAIT flag
2717          */
2718
2719         f_update_params->vif_id = vifid;
2720         f_update_params->afex_default_vlan = vlan_val;
2721         f_update_params->allowed_priorities = allowed_prio;
2722
2723         /* if ramrod can not be sent, response to MCP immediately */
2724         if (bnx2x_func_state_change(bp, &func_params) < 0)
2725                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
2726
2727         return 0;
2728 }
2729
2730 static int bnx2x_afex_handle_vif_list_cmd(struct bnx2x *bp, u8 cmd_type,
2731                                           u16 vif_index, u8 func_bit_map)
2732 {
2733         struct bnx2x_func_state_params func_params = {NULL};
2734         struct bnx2x_func_afex_viflists_params *update_params =
2735                 &func_params.params.afex_viflists;
2736         int rc;
2737         u32 drv_msg_code;
2738
2739         /* validate only LIST_SET and LIST_GET are received from switch */
2740         if ((cmd_type != VIF_LIST_RULE_GET) && (cmd_type != VIF_LIST_RULE_SET))
2741                 BNX2X_ERR("BUG! afex_handle_vif_list_cmd invalid type 0x%x\n",
2742                           cmd_type);
2743
2744         func_params.f_obj = &bp->func_obj;
2745         func_params.cmd = BNX2X_F_CMD_AFEX_VIFLISTS;
2746
2747         /* set parameters according to cmd_type */
2748         update_params->afex_vif_list_command = cmd_type;
2749         update_params->vif_list_index = vif_index;
2750         update_params->func_bit_map =
2751                 (cmd_type == VIF_LIST_RULE_GET) ? 0 : func_bit_map;
2752         update_params->func_to_clear = 0;
2753         drv_msg_code =
2754                 (cmd_type == VIF_LIST_RULE_GET) ?
2755                 DRV_MSG_CODE_AFEX_LISTGET_ACK :
2756                 DRV_MSG_CODE_AFEX_LISTSET_ACK;
2757
2758         /* if ramrod can not be sent, respond to MCP immediately for
2759          * SET and GET requests (other are not triggered from MCP)
2760          */
2761         rc = bnx2x_func_state_change(bp, &func_params);
2762         if (rc < 0)
2763                 bnx2x_fw_command(bp, drv_msg_code, 0);
2764
2765         return 0;
2766 }
2767
2768 static void bnx2x_handle_afex_cmd(struct bnx2x *bp, u32 cmd)
2769 {
2770         struct afex_stats afex_stats;
2771         u32 func = BP_ABS_FUNC(bp);
2772         u32 mf_config;
2773         u16 vlan_val;
2774         u32 vlan_prio;
2775         u16 vif_id;
2776         u8 allowed_prio;
2777         u8 vlan_mode;
2778         u32 addr_to_write, vifid, addrs, stats_type, i;
2779
2780         if (cmd & DRV_STATUS_AFEX_LISTGET_REQ) {
2781                 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2782                 DP(BNX2X_MSG_MCP,
2783                    "afex: got MCP req LISTGET_REQ for vifid 0x%x\n", vifid);
2784                 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_GET, vifid, 0);
2785         }
2786
2787         if (cmd & DRV_STATUS_AFEX_LISTSET_REQ) {
2788                 vifid = SHMEM2_RD(bp, afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2789                 addrs = SHMEM2_RD(bp, afex_param2_to_driver[BP_FW_MB_IDX(bp)]);
2790                 DP(BNX2X_MSG_MCP,
2791                    "afex: got MCP req LISTSET_REQ for vifid 0x%x addrs 0x%x\n",
2792                    vifid, addrs);
2793                 bnx2x_afex_handle_vif_list_cmd(bp, VIF_LIST_RULE_SET, vifid,
2794                                                addrs);
2795         }
2796
2797         if (cmd & DRV_STATUS_AFEX_STATSGET_REQ) {
2798                 addr_to_write = SHMEM2_RD(bp,
2799                         afex_scratchpad_addr_to_write[BP_FW_MB_IDX(bp)]);
2800                 stats_type = SHMEM2_RD(bp,
2801                         afex_param1_to_driver[BP_FW_MB_IDX(bp)]);
2802
2803                 DP(BNX2X_MSG_MCP,
2804                    "afex: got MCP req STATSGET_REQ, write to addr 0x%x\n",
2805                    addr_to_write);
2806
2807                 bnx2x_afex_collect_stats(bp, (void *)&afex_stats, stats_type);
2808
2809                 /* write response to scratchpad, for MCP */
2810                 for (i = 0; i < (sizeof(struct afex_stats)/sizeof(u32)); i++)
2811                         REG_WR(bp, addr_to_write + i*sizeof(u32),
2812                                *(((u32 *)(&afex_stats))+i));
2813
2814                 /* send ack message to MCP */
2815                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_STATSGET_ACK, 0);
2816         }
2817
2818         if (cmd & DRV_STATUS_AFEX_VIFSET_REQ) {
2819                 mf_config = MF_CFG_RD(bp, func_mf_config[func].config);
2820                 bp->mf_config[BP_VN(bp)] = mf_config;
2821                 DP(BNX2X_MSG_MCP,
2822                    "afex: got MCP req VIFSET_REQ, mf_config 0x%x\n",
2823                    mf_config);
2824
2825                 /* if VIF_SET is "enabled" */
2826                 if (!(mf_config & FUNC_MF_CFG_FUNC_DISABLED)) {
2827                         /* set rate limit directly to internal RAM */
2828                         struct cmng_init_input cmng_input;
2829                         struct rate_shaping_vars_per_vn m_rs_vn;
2830                         size_t size = sizeof(struct rate_shaping_vars_per_vn);
2831                         u32 addr = BAR_XSTRORM_INTMEM +
2832                             XSTORM_RATE_SHAPING_PER_VN_VARS_OFFSET(BP_FUNC(bp));
2833
2834                         bp->mf_config[BP_VN(bp)] = mf_config;
2835
2836                         bnx2x_calc_vn_max(bp, BP_VN(bp), &cmng_input);
2837                         m_rs_vn.vn_counter.rate =
2838                                 cmng_input.vnic_max_rate[BP_VN(bp)];
2839                         m_rs_vn.vn_counter.quota =
2840                                 (m_rs_vn.vn_counter.rate *
2841                                  RS_PERIODIC_TIMEOUT_USEC) / 8;
2842
2843                         __storm_memset_struct(bp, addr, size, (u32 *)&m_rs_vn);
2844
2845                         /* read relevant values from mf_cfg struct in shmem */
2846                         vif_id =
2847                                 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2848                                  FUNC_MF_CFG_E1HOV_TAG_MASK) >>
2849                                 FUNC_MF_CFG_E1HOV_TAG_SHIFT;
2850                         vlan_val =
2851                                 (MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
2852                                  FUNC_MF_CFG_AFEX_VLAN_MASK) >>
2853                                 FUNC_MF_CFG_AFEX_VLAN_SHIFT;
2854                         vlan_prio = (mf_config &
2855                                      FUNC_MF_CFG_TRANSMIT_PRIORITY_MASK) >>
2856                                     FUNC_MF_CFG_TRANSMIT_PRIORITY_SHIFT;
2857                         vlan_val |= (vlan_prio << VLAN_PRIO_SHIFT);
2858                         vlan_mode =
2859                                 (MF_CFG_RD(bp,
2860                                            func_mf_config[func].afex_config) &
2861                                  FUNC_MF_CFG_AFEX_VLAN_MODE_MASK) >>
2862                                 FUNC_MF_CFG_AFEX_VLAN_MODE_SHIFT;
2863                         allowed_prio =
2864                                 (MF_CFG_RD(bp,
2865                                            func_mf_config[func].afex_config) &
2866                                  FUNC_MF_CFG_AFEX_COS_FILTER_MASK) >>
2867                                 FUNC_MF_CFG_AFEX_COS_FILTER_SHIFT;
2868
2869                         /* send ramrod to FW, return in case of failure */
2870                         if (bnx2x_afex_func_update(bp, vif_id, vlan_val,
2871                                                    allowed_prio))
2872                                 return;
2873
2874                         bp->afex_def_vlan_tag = vlan_val;
2875                         bp->afex_vlan_mode = vlan_mode;
2876                 } else {
2877                         /* notify link down because BP->flags is disabled */
2878                         bnx2x_link_report(bp);
2879
2880                         /* send INVALID VIF ramrod to FW */
2881                         bnx2x_afex_func_update(bp, 0xFFFF, 0, 0);
2882
2883                         /* Reset the default afex VLAN */
2884                         bp->afex_def_vlan_tag = -1;
2885                 }
2886         }
2887 }
2888
2889 static void bnx2x_pmf_update(struct bnx2x *bp)
2890 {
2891         int port = BP_PORT(bp);
2892         u32 val;
2893
2894         bp->port.pmf = 1;
2895         DP(BNX2X_MSG_MCP, "pmf %d\n", bp->port.pmf);
2896
2897         /*
2898          * We need the mb() to ensure the ordering between the writing to
2899          * bp->port.pmf here and reading it from the bnx2x_periodic_task().
2900          */
2901         smp_mb();
2902
2903         /* queue a periodic task */
2904         queue_delayed_work(bnx2x_wq, &bp->period_task, 0);
2905
2906         bnx2x_dcbx_pmf_update(bp);
2907
2908         /* enable nig attention */
2909         val = (0xff0f | (1 << (BP_VN(bp) + 4)));
2910         if (bp->common.int_block == INT_BLOCK_HC) {
2911                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, val);
2912                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, val);
2913         } else if (!CHIP_IS_E1x(bp)) {
2914                 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, val);
2915                 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, val);
2916         }
2917
2918         bnx2x_stats_handle(bp, STATS_EVENT_PMF);
2919 }
2920
2921 /* end of Link */
2922
2923 /* slow path */
2924
2925 /*
2926  * General service functions
2927  */
2928
2929 /* send the MCP a request, block until there is a reply */
2930 u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param)
2931 {
2932         int mb_idx = BP_FW_MB_IDX(bp);
2933         u32 seq;
2934         u32 rc = 0;
2935         u32 cnt = 1;
2936         u8 delay = CHIP_REV_IS_SLOW(bp) ? 100 : 10;
2937
2938         mutex_lock(&bp->fw_mb_mutex);
2939         seq = ++bp->fw_seq;
2940         SHMEM_WR(bp, func_mb[mb_idx].drv_mb_param, param);
2941         SHMEM_WR(bp, func_mb[mb_idx].drv_mb_header, (command | seq));
2942
2943         DP(BNX2X_MSG_MCP, "wrote command (%x) to FW MB param 0x%08x\n",
2944                         (command | seq), param);
2945
2946         do {
2947                 /* let the FW do it's magic ... */
2948                 msleep(delay);
2949
2950                 rc = SHMEM_RD(bp, func_mb[mb_idx].fw_mb_header);
2951
2952                 /* Give the FW up to 5 second (500*10ms) */
2953         } while ((seq != (rc & FW_MSG_SEQ_NUMBER_MASK)) && (cnt++ < 500));
2954
2955         DP(BNX2X_MSG_MCP, "[after %d ms] read (%x) seq is (%x) from FW MB\n",
2956            cnt*delay, rc, seq);
2957
2958         /* is this a reply to our command? */
2959         if (seq == (rc & FW_MSG_SEQ_NUMBER_MASK))
2960                 rc &= FW_MSG_CODE_MASK;
2961         else {
2962                 /* FW BUG! */
2963                 BNX2X_ERR("FW failed to respond!\n");
2964                 bnx2x_fw_dump(bp);
2965                 rc = 0;
2966         }
2967         mutex_unlock(&bp->fw_mb_mutex);
2968
2969         return rc;
2970 }
2971
2972 static void storm_memset_func_cfg(struct bnx2x *bp,
2973                                  struct tstorm_eth_function_common_config *tcfg,
2974                                  u16 abs_fid)
2975 {
2976         size_t size = sizeof(struct tstorm_eth_function_common_config);
2977
2978         u32 addr = BAR_TSTRORM_INTMEM +
2979                         TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid);
2980
2981         __storm_memset_struct(bp, addr, size, (u32 *)tcfg);
2982 }
2983
2984 void bnx2x_func_init(struct bnx2x *bp, struct bnx2x_func_init_params *p)
2985 {
2986         if (CHIP_IS_E1x(bp)) {
2987                 struct tstorm_eth_function_common_config tcfg = {0};
2988
2989                 storm_memset_func_cfg(bp, &tcfg, p->func_id);
2990         }
2991
2992         /* Enable the function in the FW */
2993         storm_memset_vf_to_pf(bp, p->func_id, p->pf_id);
2994         storm_memset_func_en(bp, p->func_id, 1);
2995
2996         /* spq */
2997         if (p->func_flgs & FUNC_FLG_SPQ) {
2998                 storm_memset_spq_addr(bp, p->spq_map, p->func_id);
2999                 REG_WR(bp, XSEM_REG_FAST_MEMORY +
3000                        XSTORM_SPQ_PROD_OFFSET(p->func_id), p->spq_prod);
3001         }
3002 }
3003
3004 /**
3005  * bnx2x_get_common_flags - Return common flags
3006  *
3007  * @bp          device handle
3008  * @fp          queue handle
3009  * @zero_stats  TRUE if statistics zeroing is needed
3010  *
3011  * Return the flags that are common for the Tx-only and not normal connections.
3012  */
3013 static unsigned long bnx2x_get_common_flags(struct bnx2x *bp,
3014                                             struct bnx2x_fastpath *fp,
3015                                             bool zero_stats)
3016 {
3017         unsigned long flags = 0;
3018
3019         /* PF driver will always initialize the Queue to an ACTIVE state */
3020         __set_bit(BNX2X_Q_FLG_ACTIVE, &flags);
3021
3022         /* tx only connections collect statistics (on the same index as the
3023          * parent connection). The statistics are zeroed when the parent
3024          * connection is initialized.
3025          */
3026
3027         __set_bit(BNX2X_Q_FLG_STATS, &flags);
3028         if (zero_stats)
3029                 __set_bit(BNX2X_Q_FLG_ZERO_STATS, &flags);
3030
3031         if (bp->flags & TX_SWITCHING)
3032                 __set_bit(BNX2X_Q_FLG_TX_SWITCH, &flags);
3033
3034         __set_bit(BNX2X_Q_FLG_PCSUM_ON_PKT, &flags);
3035         __set_bit(BNX2X_Q_FLG_TUN_INC_INNER_IP_ID, &flags);
3036
3037 #ifdef BNX2X_STOP_ON_ERROR
3038         __set_bit(BNX2X_Q_FLG_TX_SEC, &flags);
3039 #endif
3040
3041         return flags;
3042 }
3043
3044 static unsigned long bnx2x_get_q_flags(struct bnx2x *bp,
3045                                        struct bnx2x_fastpath *fp,
3046                                        bool leading)
3047 {
3048         unsigned long flags = 0;
3049
3050         /* calculate other queue flags */
3051         if (IS_MF_SD(bp))
3052                 __set_bit(BNX2X_Q_FLG_OV, &flags);
3053
3054         if (IS_FCOE_FP(fp)) {
3055                 __set_bit(BNX2X_Q_FLG_FCOE, &flags);
3056                 /* For FCoE - force usage of default priority (for afex) */
3057                 __set_bit(BNX2X_Q_FLG_FORCE_DEFAULT_PRI, &flags);
3058         }
3059
3060         if (!fp->disable_tpa) {
3061                 __set_bit(BNX2X_Q_FLG_TPA, &flags);
3062                 __set_bit(BNX2X_Q_FLG_TPA_IPV6, &flags);
3063                 if (fp->mode == TPA_MODE_GRO)
3064                         __set_bit(BNX2X_Q_FLG_TPA_GRO, &flags);
3065         }
3066
3067         if (leading) {
3068                 __set_bit(BNX2X_Q_FLG_LEADING_RSS, &flags);
3069                 __set_bit(BNX2X_Q_FLG_MCAST, &flags);
3070         }
3071
3072         /* Always set HW VLAN stripping */
3073         __set_bit(BNX2X_Q_FLG_VLAN, &flags);
3074
3075         /* configure silent vlan removal */
3076         if (IS_MF_AFEX(bp))
3077                 __set_bit(BNX2X_Q_FLG_SILENT_VLAN_REM, &flags);
3078
3079         return flags | bnx2x_get_common_flags(bp, fp, true);
3080 }
3081
3082 static void bnx2x_pf_q_prep_general(struct bnx2x *bp,
3083         struct bnx2x_fastpath *fp, struct bnx2x_general_setup_params *gen_init,
3084         u8 cos)
3085 {
3086         gen_init->stat_id = bnx2x_stats_id(fp);
3087         gen_init->spcl_id = fp->cl_id;
3088
3089         /* Always use mini-jumbo MTU for FCoE L2 ring */
3090         if (IS_FCOE_FP(fp))
3091                 gen_init->mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
3092         else
3093                 gen_init->mtu = bp->dev->mtu;
3094
3095         gen_init->cos = cos;
3096 }
3097
3098 static void bnx2x_pf_rx_q_prep(struct bnx2x *bp,
3099         struct bnx2x_fastpath *fp, struct rxq_pause_params *pause,
3100         struct bnx2x_rxq_setup_params *rxq_init)
3101 {
3102         u8 max_sge = 0;
3103         u16 sge_sz = 0;
3104         u16 tpa_agg_size = 0;
3105
3106         if (!fp->disable_tpa) {
3107                 pause->sge_th_lo = SGE_TH_LO(bp);
3108                 pause->sge_th_hi = SGE_TH_HI(bp);
3109
3110                 /* validate SGE ring has enough to cross high threshold */
3111                 WARN_ON(bp->dropless_fc &&
3112                                 pause->sge_th_hi + FW_PREFETCH_CNT >
3113                                 MAX_RX_SGE_CNT * NUM_RX_SGE_PAGES);
3114
3115                 tpa_agg_size = TPA_AGG_SIZE;
3116                 max_sge = SGE_PAGE_ALIGN(bp->dev->mtu) >>
3117                         SGE_PAGE_SHIFT;
3118                 max_sge = ((max_sge + PAGES_PER_SGE - 1) &
3119                           (~(PAGES_PER_SGE-1))) >> PAGES_PER_SGE_SHIFT;
3120                 sge_sz = (u16)min_t(u32, SGE_PAGES, 0xffff);
3121         }
3122
3123         /* pause - not for e1 */
3124         if (!CHIP_IS_E1(bp)) {
3125                 pause->bd_th_lo = BD_TH_LO(bp);
3126                 pause->bd_th_hi = BD_TH_HI(bp);
3127
3128                 pause->rcq_th_lo = RCQ_TH_LO(bp);
3129                 pause->rcq_th_hi = RCQ_TH_HI(bp);
3130                 /*
3131                  * validate that rings have enough entries to cross
3132                  * high thresholds
3133                  */
3134                 WARN_ON(bp->dropless_fc &&
3135                                 pause->bd_th_hi + FW_PREFETCH_CNT >
3136                                 bp->rx_ring_size);
3137                 WARN_ON(bp->dropless_fc &&
3138                                 pause->rcq_th_hi + FW_PREFETCH_CNT >
3139                                 NUM_RCQ_RINGS * MAX_RCQ_DESC_CNT);
3140
3141                 pause->pri_map = 1;
3142         }
3143
3144         /* rxq setup */
3145         rxq_init->dscr_map = fp->rx_desc_mapping;
3146         rxq_init->sge_map = fp->rx_sge_mapping;
3147         rxq_init->rcq_map = fp->rx_comp_mapping;
3148         rxq_init->rcq_np_map = fp->rx_comp_mapping + BCM_PAGE_SIZE;
3149
3150         /* This should be a maximum number of data bytes that may be
3151          * placed on the BD (not including paddings).
3152          */
3153         rxq_init->buf_sz = fp->rx_buf_size - BNX2X_FW_RX_ALIGN_START -
3154                            BNX2X_FW_RX_ALIGN_END - IP_HEADER_ALIGNMENT_PADDING;
3155
3156         rxq_init->cl_qzone_id = fp->cl_qzone_id;
3157         rxq_init->tpa_agg_sz = tpa_agg_size;
3158         rxq_init->sge_buf_sz = sge_sz;
3159         rxq_init->max_sges_pkt = max_sge;
3160         rxq_init->rss_engine_id = BP_FUNC(bp);
3161         rxq_init->mcast_engine_id = BP_FUNC(bp);
3162
3163         /* Maximum number or simultaneous TPA aggregation for this Queue.
3164          *
3165          * For PF Clients it should be the maximum available number.
3166          * VF driver(s) may want to define it to a smaller value.
3167          */
3168         rxq_init->max_tpa_queues = MAX_AGG_QS(bp);
3169
3170         rxq_init->cache_line_log = BNX2X_RX_ALIGN_SHIFT;
3171         rxq_init->fw_sb_id = fp->fw_sb_id;
3172
3173         if (IS_FCOE_FP(fp))
3174                 rxq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS;
3175         else
3176                 rxq_init->sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
3177         /* configure silent vlan removal
3178          * if multi function mode is afex, then mask default vlan
3179          */
3180         if (IS_MF_AFEX(bp)) {
3181                 rxq_init->silent_removal_value = bp->afex_def_vlan_tag;
3182                 rxq_init->silent_removal_mask = VLAN_VID_MASK;
3183         }
3184 }
3185
3186 static void bnx2x_pf_tx_q_prep(struct bnx2x *bp,
3187         struct bnx2x_fastpath *fp, struct bnx2x_txq_setup_params *txq_init,
3188         u8 cos)
3189 {
3190         txq_init->dscr_map = fp->txdata_ptr[cos]->tx_desc_mapping;
3191         txq_init->sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS + cos;
3192         txq_init->traffic_type = LLFC_TRAFFIC_TYPE_NW;
3193         txq_init->fw_sb_id = fp->fw_sb_id;
3194
3195         /*
3196          * set the tss leading client id for TX classification ==
3197          * leading RSS client id
3198          */
3199         txq_init->tss_leading_cl_id = bnx2x_fp(bp, 0, cl_id);
3200
3201         if (IS_FCOE_FP(fp)) {
3202                 txq_init->sb_cq_index = HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS;
3203                 txq_init->traffic_type = LLFC_TRAFFIC_TYPE_FCOE;
3204         }
3205 }
3206
3207 static void bnx2x_pf_init(struct bnx2x *bp)
3208 {
3209         struct bnx2x_func_init_params func_init = {0};
3210         struct event_ring_data eq_data = { {0} };
3211         u16 flags;
3212
3213         if (!CHIP_IS_E1x(bp)) {
3214                 /* reset IGU PF statistics: MSIX + ATTN */
3215                 /* PF */
3216                 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3217                            BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3218                            (CHIP_MODE_IS_4_PORT(bp) ?
3219                                 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3220                 /* ATTN */
3221                 REG_WR(bp, IGU_REG_STATISTIC_NUM_MESSAGE_SENT +
3222                            BNX2X_IGU_STAS_MSG_VF_CNT*4 +
3223                            BNX2X_IGU_STAS_MSG_PF_CNT*4 +
3224                            (CHIP_MODE_IS_4_PORT(bp) ?
3225                                 BP_FUNC(bp) : BP_VN(bp))*4, 0);
3226         }
3227
3228         /* function setup flags */
3229         flags = (FUNC_FLG_STATS | FUNC_FLG_LEADING | FUNC_FLG_SPQ);
3230
3231         /* This flag is relevant for E1x only.
3232          * E2 doesn't have a TPA configuration in a function level.
3233          */
3234         flags |= (bp->flags & TPA_ENABLE_FLAG) ? FUNC_FLG_TPA : 0;
3235
3236         func_init.func_flgs = flags;
3237         func_init.pf_id = BP_FUNC(bp);
3238         func_init.func_id = BP_FUNC(bp);
3239         func_init.spq_map = bp->spq_mapping;
3240         func_init.spq_prod = bp->spq_prod_idx;
3241
3242         bnx2x_func_init(bp, &func_init);
3243
3244         memset(&(bp->cmng), 0, sizeof(struct cmng_struct_per_port));
3245
3246         /*
3247          * Congestion management values depend on the link rate
3248          * There is no active link so initial link rate is set to 10 Gbps.
3249          * When the link comes up The congestion management values are
3250          * re-calculated according to the actual link rate.
3251          */
3252         bp->link_vars.line_speed = SPEED_10000;
3253         bnx2x_cmng_fns_init(bp, true, bnx2x_get_cmng_fns_mode(bp));
3254
3255         /* Only the PMF sets the HW */
3256         if (bp->port.pmf)
3257                 storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3258
3259         /* init Event Queue - PCI bus guarantees correct endianity*/
3260         eq_data.base_addr.hi = U64_HI(bp->eq_mapping);
3261         eq_data.base_addr.lo = U64_LO(bp->eq_mapping);
3262         eq_data.producer = bp->eq_prod;
3263         eq_data.index_id = HC_SP_INDEX_EQ_CONS;
3264         eq_data.sb_id = DEF_SB_ID;
3265         storm_memset_eq_data(bp, &eq_data, BP_FUNC(bp));
3266 }
3267
3268 static void bnx2x_e1h_disable(struct bnx2x *bp)
3269 {
3270         int port = BP_PORT(bp);
3271
3272         bnx2x_tx_disable(bp);
3273
3274         REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
3275 }
3276
3277 static void bnx2x_e1h_enable(struct bnx2x *bp)
3278 {
3279         int port = BP_PORT(bp);
3280
3281         REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
3282
3283         /* Tx queue should be only re-enabled */
3284         netif_tx_wake_all_queues(bp->dev);
3285
3286         /*
3287          * Should not call netif_carrier_on since it will be called if the link
3288          * is up when checking for link state
3289          */
3290 }
3291
3292 #define DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED 3
3293
3294 static void bnx2x_drv_info_ether_stat(struct bnx2x *bp)
3295 {
3296         struct eth_stats_info *ether_stat =
3297                 &bp->slowpath->drv_info_to_mcp.ether_stat;
3298         struct bnx2x_vlan_mac_obj *mac_obj =
3299                 &bp->sp_objs->mac_obj;
3300         int i;
3301
3302         strlcpy(ether_stat->version, DRV_MODULE_VERSION,
3303                 ETH_STAT_INFO_VERSION_LEN);
3304
3305         /* get DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED macs, placing them in the
3306          * mac_local field in ether_stat struct. The base address is offset by 2
3307          * bytes to account for the field being 8 bytes but a mac address is
3308          * only 6 bytes. Likewise, the stride for the get_n_elements function is
3309          * 2 bytes to compensate from the 6 bytes of a mac to the 8 bytes
3310          * allocated by the ether_stat struct, so the macs will land in their
3311          * proper positions.
3312          */
3313         for (i = 0; i < DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED; i++)
3314                 memset(ether_stat->mac_local + i, 0,
3315                        sizeof(ether_stat->mac_local[0]));
3316         mac_obj->get_n_elements(bp, &bp->sp_objs[0].mac_obj,
3317                                 DRV_INFO_ETH_STAT_NUM_MACS_REQUIRED,
3318                                 ether_stat->mac_local + MAC_PAD, MAC_PAD,
3319                                 ETH_ALEN);
3320         ether_stat->mtu_size = bp->dev->mtu;
3321         if (bp->dev->features & NETIF_F_RXCSUM)
3322                 ether_stat->feature_flags |= FEATURE_ETH_CHKSUM_OFFLOAD_MASK;
3323         if (bp->dev->features & NETIF_F_TSO)
3324                 ether_stat->feature_flags |= FEATURE_ETH_LSO_MASK;
3325         ether_stat->feature_flags |= bp->common.boot_mode;
3326
3327         ether_stat->promiscuous_mode = (bp->dev->flags & IFF_PROMISC) ? 1 : 0;
3328
3329         ether_stat->txq_size = bp->tx_ring_size;
3330         ether_stat->rxq_size = bp->rx_ring_size;
3331
3332 #ifdef CONFIG_BNX2X_SRIOV
3333         ether_stat->vf_cnt = IS_SRIOV(bp) ? bp->vfdb->sriov.nr_virtfn : 0;
3334 #endif
3335 }
3336
3337 static void bnx2x_drv_info_fcoe_stat(struct bnx2x *bp)
3338 {
3339         struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3340         struct fcoe_stats_info *fcoe_stat =
3341                 &bp->slowpath->drv_info_to_mcp.fcoe_stat;
3342
3343         if (!CNIC_LOADED(bp))
3344                 return;
3345
3346         memcpy(fcoe_stat->mac_local + MAC_PAD, bp->fip_mac, ETH_ALEN);
3347
3348         fcoe_stat->qos_priority =
3349                 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_FCOE];
3350
3351         /* insert FCoE stats from ramrod response */
3352         if (!NO_FCOE(bp)) {
3353                 struct tstorm_per_queue_stats *fcoe_q_tstorm_stats =
3354                         &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3355                         tstorm_queue_statistics;
3356
3357                 struct xstorm_per_queue_stats *fcoe_q_xstorm_stats =
3358                         &bp->fw_stats_data->queue_stats[FCOE_IDX(bp)].
3359                         xstorm_queue_statistics;
3360
3361                 struct fcoe_statistics_params *fw_fcoe_stat =
3362                         &bp->fw_stats_data->fcoe;
3363
3364                 ADD_64_LE(fcoe_stat->rx_bytes_hi, LE32_0,
3365                           fcoe_stat->rx_bytes_lo,
3366                           fw_fcoe_stat->rx_stat0.fcoe_rx_byte_cnt);
3367
3368                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3369                           fcoe_q_tstorm_stats->rcv_ucast_bytes.hi,
3370                           fcoe_stat->rx_bytes_lo,
3371                           fcoe_q_tstorm_stats->rcv_ucast_bytes.lo);
3372
3373                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3374                           fcoe_q_tstorm_stats->rcv_bcast_bytes.hi,
3375                           fcoe_stat->rx_bytes_lo,
3376                           fcoe_q_tstorm_stats->rcv_bcast_bytes.lo);
3377
3378                 ADD_64_LE(fcoe_stat->rx_bytes_hi,
3379                           fcoe_q_tstorm_stats->rcv_mcast_bytes.hi,
3380                           fcoe_stat->rx_bytes_lo,
3381                           fcoe_q_tstorm_stats->rcv_mcast_bytes.lo);
3382
3383                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3384                           fcoe_stat->rx_frames_lo,
3385                           fw_fcoe_stat->rx_stat0.fcoe_rx_pkt_cnt);
3386
3387                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3388                           fcoe_stat->rx_frames_lo,
3389                           fcoe_q_tstorm_stats->rcv_ucast_pkts);
3390
3391                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3392                           fcoe_stat->rx_frames_lo,
3393                           fcoe_q_tstorm_stats->rcv_bcast_pkts);
3394
3395                 ADD_64_LE(fcoe_stat->rx_frames_hi, LE32_0,
3396                           fcoe_stat->rx_frames_lo,
3397                           fcoe_q_tstorm_stats->rcv_mcast_pkts);
3398
3399                 ADD_64_LE(fcoe_stat->tx_bytes_hi, LE32_0,
3400                           fcoe_stat->tx_bytes_lo,
3401                           fw_fcoe_stat->tx_stat.fcoe_tx_byte_cnt);
3402
3403                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3404                           fcoe_q_xstorm_stats->ucast_bytes_sent.hi,
3405                           fcoe_stat->tx_bytes_lo,
3406                           fcoe_q_xstorm_stats->ucast_bytes_sent.lo);
3407
3408                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3409                           fcoe_q_xstorm_stats->bcast_bytes_sent.hi,
3410                           fcoe_stat->tx_bytes_lo,
3411                           fcoe_q_xstorm_stats->bcast_bytes_sent.lo);
3412
3413                 ADD_64_LE(fcoe_stat->tx_bytes_hi,
3414                           fcoe_q_xstorm_stats->mcast_bytes_sent.hi,
3415                           fcoe_stat->tx_bytes_lo,
3416                           fcoe_q_xstorm_stats->mcast_bytes_sent.lo);
3417
3418                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3419                           fcoe_stat->tx_frames_lo,
3420                           fw_fcoe_stat->tx_stat.fcoe_tx_pkt_cnt);
3421
3422                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3423                           fcoe_stat->tx_frames_lo,
3424                           fcoe_q_xstorm_stats->ucast_pkts_sent);
3425
3426                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3427                           fcoe_stat->tx_frames_lo,
3428                           fcoe_q_xstorm_stats->bcast_pkts_sent);
3429
3430                 ADD_64_LE(fcoe_stat->tx_frames_hi, LE32_0,
3431                           fcoe_stat->tx_frames_lo,
3432                           fcoe_q_xstorm_stats->mcast_pkts_sent);
3433         }
3434
3435         /* ask L5 driver to add data to the struct */
3436         bnx2x_cnic_notify(bp, CNIC_CTL_FCOE_STATS_GET_CMD);
3437 }
3438
3439 static void bnx2x_drv_info_iscsi_stat(struct bnx2x *bp)
3440 {
3441         struct bnx2x_dcbx_app_params *app = &bp->dcbx_port_params.app;
3442         struct iscsi_stats_info *iscsi_stat =
3443                 &bp->slowpath->drv_info_to_mcp.iscsi_stat;
3444
3445         if (!CNIC_LOADED(bp))
3446                 return;
3447
3448         memcpy(iscsi_stat->mac_local + MAC_PAD, bp->cnic_eth_dev.iscsi_mac,
3449                ETH_ALEN);
3450
3451         iscsi_stat->qos_priority =
3452                 app->traffic_type_priority[LLFC_TRAFFIC_TYPE_ISCSI];
3453
3454         /* ask L5 driver to add data to the struct */
3455         bnx2x_cnic_notify(bp, CNIC_CTL_ISCSI_STATS_GET_CMD);
3456 }
3457
3458 /* called due to MCP event (on pmf):
3459  *      reread new bandwidth configuration
3460  *      configure FW
3461  *      notify others function about the change
3462  */
3463 static void bnx2x_config_mf_bw(struct bnx2x *bp)
3464 {
3465         if (bp->link_vars.link_up) {
3466                 bnx2x_cmng_fns_init(bp, true, CMNG_FNS_MINMAX);
3467                 bnx2x_link_sync_notify(bp);
3468         }
3469         storm_memset_cmng(bp, &bp->cmng, BP_PORT(bp));
3470 }
3471
3472 static void bnx2x_set_mf_bw(struct bnx2x *bp)
3473 {
3474         bnx2x_config_mf_bw(bp);
3475         bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW_ACK, 0);
3476 }
3477
3478 static void bnx2x_handle_eee_event(struct bnx2x *bp)
3479 {
3480         DP(BNX2X_MSG_MCP, "EEE - LLDP event\n");
3481         bnx2x_fw_command(bp, DRV_MSG_CODE_EEE_RESULTS_ACK, 0);
3482 }
3483
3484 #define BNX2X_UPDATE_DRV_INFO_IND_LENGTH        (20)
3485 #define BNX2X_UPDATE_DRV_INFO_IND_COUNT         (25)
3486
3487 static void bnx2x_handle_drv_info_req(struct bnx2x *bp)
3488 {
3489         enum drv_info_opcode op_code;
3490         u32 drv_info_ctl = SHMEM2_RD(bp, drv_info_control);
3491         bool release = false;
3492         int wait;
3493
3494         /* if drv_info version supported by MFW doesn't match - send NACK */
3495         if ((drv_info_ctl & DRV_INFO_CONTROL_VER_MASK) != DRV_INFO_CUR_VER) {
3496                 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3497                 return;
3498         }
3499
3500         op_code = (drv_info_ctl & DRV_INFO_CONTROL_OP_CODE_MASK) >>
3501                   DRV_INFO_CONTROL_OP_CODE_SHIFT;
3502
3503         /* Must prevent other flows from accessing drv_info_to_mcp */
3504         mutex_lock(&bp->drv_info_mutex);
3505
3506         memset(&bp->slowpath->drv_info_to_mcp, 0,
3507                sizeof(union drv_info_to_mcp));
3508
3509         switch (op_code) {
3510         case ETH_STATS_OPCODE:
3511                 bnx2x_drv_info_ether_stat(bp);
3512                 break;
3513         case FCOE_STATS_OPCODE:
3514                 bnx2x_drv_info_fcoe_stat(bp);
3515                 break;
3516         case ISCSI_STATS_OPCODE:
3517                 bnx2x_drv_info_iscsi_stat(bp);
3518                 break;
3519         default:
3520                 /* if op code isn't supported - send NACK */
3521                 bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_NACK, 0);
3522                 goto out;
3523         }
3524
3525         /* if we got drv_info attn from MFW then these fields are defined in
3526          * shmem2 for sure
3527          */
3528         SHMEM2_WR(bp, drv_info_host_addr_lo,
3529                 U64_LO(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3530         SHMEM2_WR(bp, drv_info_host_addr_hi,
3531                 U64_HI(bnx2x_sp_mapping(bp, drv_info_to_mcp)));
3532
3533         bnx2x_fw_command(bp, DRV_MSG_CODE_DRV_INFO_ACK, 0);
3534
3535         /* Since possible management wants both this and get_driver_version
3536          * need to wait until management notifies us it finished utilizing
3537          * the buffer.
3538          */
3539         if (!SHMEM2_HAS(bp, mfw_drv_indication)) {
3540                 DP(BNX2X_MSG_MCP, "Management does not support indication\n");
3541         } else if (!bp->drv_info_mng_owner) {
3542                 u32 bit = MFW_DRV_IND_READ_DONE_OFFSET((BP_ABS_FUNC(bp) >> 1));
3543
3544                 for (wait = 0; wait < BNX2X_UPDATE_DRV_INFO_IND_COUNT; wait++) {
3545                         u32 indication = SHMEM2_RD(bp, mfw_drv_indication);
3546
3547                         /* Management is done; need to clear indication */
3548                         if (indication & bit) {
3549                                 SHMEM2_WR(bp, mfw_drv_indication,
3550                                           indication & ~bit);
3551                                 release = true;
3552                                 break;
3553                         }
3554
3555                         msleep(BNX2X_UPDATE_DRV_INFO_IND_LENGTH);
3556                 }
3557         }
3558         if (!release) {
3559                 DP(BNX2X_MSG_MCP, "Management did not release indication\n");
3560                 bp->drv_info_mng_owner = true;
3561         }
3562
3563 out:
3564         mutex_unlock(&bp->drv_info_mutex);
3565 }
3566
3567 static u32 bnx2x_update_mng_version_utility(u8 *version, bool bnx2x_format)
3568 {
3569         u8 vals[4];
3570         int i = 0;
3571
3572         if (bnx2x_format) {
3573                 i = sscanf(version, "1.%c%hhd.%hhd.%hhd",
3574                            &vals[0], &vals[1], &vals[2], &vals[3]);
3575                 if (i > 0)
3576                         vals[0] -= '0';
3577         } else {
3578                 i = sscanf(version, "%hhd.%hhd.%hhd.%hhd",
3579                            &vals[0], &vals[1], &vals[2], &vals[3]);
3580         }
3581
3582         while (i < 4)
3583                 vals[i++] = 0;
3584
3585         return (vals[0] << 24) | (vals[1] << 16) | (vals[2] << 8) | vals[3];
3586 }
3587
3588 void bnx2x_update_mng_version(struct bnx2x *bp)
3589 {
3590         u32 iscsiver = DRV_VER_NOT_LOADED;
3591         u32 fcoever = DRV_VER_NOT_LOADED;
3592         u32 ethver = DRV_VER_NOT_LOADED;
3593         int idx = BP_FW_MB_IDX(bp);
3594         u8 *version;
3595
3596         if (!SHMEM2_HAS(bp, func_os_drv_ver))
3597                 return;
3598
3599         mutex_lock(&bp->drv_info_mutex);
3600         /* Must not proceed when `bnx2x_handle_drv_info_req' is feasible */
3601         if (bp->drv_info_mng_owner)
3602                 goto out;
3603
3604         if (bp->state != BNX2X_STATE_OPEN)
3605                 goto out;
3606
3607         /* Parse ethernet driver version */
3608         ethver = bnx2x_update_mng_version_utility(DRV_MODULE_VERSION, true);
3609         if (!CNIC_LOADED(bp))
3610                 goto out;
3611
3612         /* Try getting storage driver version via cnic */
3613         memset(&bp->slowpath->drv_info_to_mcp, 0,
3614                sizeof(union drv_info_to_mcp));
3615         bnx2x_drv_info_iscsi_stat(bp);
3616         version = bp->slowpath->drv_info_to_mcp.iscsi_stat.version;
3617         iscsiver = bnx2x_update_mng_version_utility(version, false);
3618
3619         memset(&bp->slowpath->drv_info_to_mcp, 0,
3620                sizeof(union drv_info_to_mcp));
3621         bnx2x_drv_info_fcoe_stat(bp);
3622         version = bp->slowpath->drv_info_to_mcp.fcoe_stat.version;
3623         fcoever = bnx2x_update_mng_version_utility(version, false);
3624
3625 out:
3626         SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ETHERNET], ethver);
3627         SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_ISCSI], iscsiver);
3628         SHMEM2_WR(bp, func_os_drv_ver[idx].versions[DRV_PERS_FCOE], fcoever);
3629
3630         mutex_unlock(&bp->drv_info_mutex);
3631
3632         DP(BNX2X_MSG_MCP, "Setting driver version: ETH [%08x] iSCSI [%08x] FCoE [%08x]\n",
3633            ethver, iscsiver, fcoever);
3634 }
3635
3636 static void bnx2x_dcc_event(struct bnx2x *bp, u32 dcc_event)
3637 {
3638         DP(BNX2X_MSG_MCP, "dcc_event 0x%x\n", dcc_event);
3639
3640         if (dcc_event & DRV_STATUS_DCC_DISABLE_ENABLE_PF) {
3641
3642                 /*
3643                  * This is the only place besides the function initialization
3644                  * where the bp->flags can change so it is done without any
3645                  * locks
3646                  */
3647                 if (bp->mf_config[BP_VN(bp)] & FUNC_MF_CFG_FUNC_DISABLED) {
3648                         DP(BNX2X_MSG_MCP, "mf_cfg function disabled\n");
3649                         bp->flags |= MF_FUNC_DIS;
3650
3651                         bnx2x_e1h_disable(bp);
3652                 } else {
3653                         DP(BNX2X_MSG_MCP, "mf_cfg function enabled\n");
3654                         bp->flags &= ~MF_FUNC_DIS;
3655
3656                         bnx2x_e1h_enable(bp);
3657                 }
3658                 dcc_event &= ~DRV_STATUS_DCC_DISABLE_ENABLE_PF;
3659         }
3660         if (dcc_event & DRV_STATUS_DCC_BANDWIDTH_ALLOCATION) {
3661                 bnx2x_config_mf_bw(bp);
3662                 dcc_event &= ~DRV_STATUS_DCC_BANDWIDTH_ALLOCATION;
3663         }
3664
3665         /* Report results to MCP */
3666         if (dcc_event)
3667                 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_FAILURE, 0);
3668         else
3669                 bnx2x_fw_command(bp, DRV_MSG_CODE_DCC_OK, 0);
3670 }
3671
3672 /* must be called under the spq lock */
3673 static struct eth_spe *bnx2x_sp_get_next(struct bnx2x *bp)
3674 {
3675         struct eth_spe *next_spe = bp->spq_prod_bd;
3676
3677         if (bp->spq_prod_bd == bp->spq_last_bd) {
3678                 bp->spq_prod_bd = bp->spq;
3679                 bp->spq_prod_idx = 0;
3680                 DP(BNX2X_MSG_SP, "end of spq\n");
3681         } else {
3682                 bp->spq_prod_bd++;
3683                 bp->spq_prod_idx++;
3684         }
3685         return next_spe;
3686 }
3687
3688 /* must be called under the spq lock */
3689 static void bnx2x_sp_prod_update(struct bnx2x *bp)
3690 {
3691         int func = BP_FUNC(bp);
3692
3693         /*
3694          * Make sure that BD data is updated before writing the producer:
3695          * BD data is written to the memory, the producer is read from the
3696          * memory, thus we need a full memory barrier to ensure the ordering.
3697          */
3698         mb();
3699
3700         REG_WR16(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_PROD_OFFSET(func),
3701                  bp->spq_prod_idx);
3702         mmiowb();
3703 }
3704
3705 /**
3706  * bnx2x_is_contextless_ramrod - check if the current command ends on EQ
3707  *
3708  * @cmd:        command to check
3709  * @cmd_type:   command type
3710  */
3711 static bool bnx2x_is_contextless_ramrod(int cmd, int cmd_type)
3712 {
3713         if ((cmd_type == NONE_CONNECTION_TYPE) ||
3714             (cmd == RAMROD_CMD_ID_ETH_FORWARD_SETUP) ||
3715             (cmd == RAMROD_CMD_ID_ETH_CLASSIFICATION_RULES) ||
3716             (cmd == RAMROD_CMD_ID_ETH_FILTER_RULES) ||
3717             (cmd == RAMROD_CMD_ID_ETH_MULTICAST_RULES) ||
3718             (cmd == RAMROD_CMD_ID_ETH_SET_MAC) ||
3719             (cmd == RAMROD_CMD_ID_ETH_RSS_UPDATE))
3720                 return true;
3721         else
3722                 return false;
3723 }
3724
3725 /**
3726  * bnx2x_sp_post - place a single command on an SP ring
3727  *
3728  * @bp:         driver handle
3729  * @command:    command to place (e.g. SETUP, FILTER_RULES, etc.)
3730  * @cid:        SW CID the command is related to
3731  * @data_hi:    command private data address (high 32 bits)
3732  * @data_lo:    command private data address (low 32 bits)
3733  * @cmd_type:   command type (e.g. NONE, ETH)
3734  *
3735  * SP data is handled as if it's always an address pair, thus data fields are
3736  * not swapped to little endian in upper functions. Instead this function swaps
3737  * data as if it's two u32 fields.
3738  */
3739 int bnx2x_sp_post(struct bnx2x *bp, int command, int cid,
3740                   u32 data_hi, u32 data_lo, int cmd_type)
3741 {
3742         struct eth_spe *spe;
3743         u16 type;
3744         bool common = bnx2x_is_contextless_ramrod(command, cmd_type);
3745
3746 #ifdef BNX2X_STOP_ON_ERROR
3747         if (unlikely(bp->panic)) {
3748                 BNX2X_ERR("Can't post SP when there is panic\n");
3749                 return -EIO;
3750         }
3751 #endif
3752
3753         spin_lock_bh(&bp->spq_lock);
3754
3755         if (common) {
3756                 if (!atomic_read(&bp->eq_spq_left)) {
3757                         BNX2X_ERR("BUG! EQ ring full!\n");
3758                         spin_unlock_bh(&bp->spq_lock);
3759                         bnx2x_panic();
3760                         return -EBUSY;
3761                 }
3762         } else if (!atomic_read(&bp->cq_spq_left)) {
3763                         BNX2X_ERR("BUG! SPQ ring full!\n");
3764                         spin_unlock_bh(&bp->spq_lock);
3765                         bnx2x_panic();
3766                         return -EBUSY;
3767         }
3768
3769         spe = bnx2x_sp_get_next(bp);
3770
3771         /* CID needs port number to be encoded int it */
3772         spe->hdr.conn_and_cmd_data =
3773                         cpu_to_le32((command << SPE_HDR_CMD_ID_SHIFT) |
3774                                     HW_CID(bp, cid));
3775
3776         /* In some cases, type may already contain the func-id
3777          * mainly in SRIOV related use cases, so we add it here only
3778          * if it's not already set.
3779          */
3780         if (!(cmd_type & SPE_HDR_FUNCTION_ID)) {
3781                 type = (cmd_type << SPE_HDR_CONN_TYPE_SHIFT) &
3782                         SPE_HDR_CONN_TYPE;
3783                 type |= ((BP_FUNC(bp) << SPE_HDR_FUNCTION_ID_SHIFT) &
3784                          SPE_HDR_FUNCTION_ID);
3785         } else {
3786                 type = cmd_type;
3787         }
3788
3789         spe->hdr.type = cpu_to_le16(type);
3790
3791         spe->data.update_data_addr.hi = cpu_to_le32(data_hi);
3792         spe->data.update_data_addr.lo = cpu_to_le32(data_lo);
3793
3794         /*
3795          * It's ok if the actual decrement is issued towards the memory
3796          * somewhere between the spin_lock and spin_unlock. Thus no
3797          * more explicit memory barrier is needed.
3798          */
3799         if (common)
3800                 atomic_dec(&bp->eq_spq_left);
3801         else
3802                 atomic_dec(&bp->cq_spq_left);
3803
3804         DP(BNX2X_MSG_SP,
3805            "SPQE[%x] (%x:%x)  (cmd, common?) (%d,%d)  hw_cid %x  data (%x:%x) type(0x%x) left (CQ, EQ) (%x,%x)\n",
3806            bp->spq_prod_idx, (u32)U64_HI(bp->spq_mapping),
3807            (u32)(U64_LO(bp->spq_mapping) +
3808            (void *)bp->spq_prod_bd - (void *)bp->spq), command, common,
3809            HW_CID(bp, cid), data_hi, data_lo, type,
3810            atomic_read(&bp->cq_spq_left), atomic_read(&bp->eq_spq_left));
3811
3812         bnx2x_sp_prod_update(bp);
3813         spin_unlock_bh(&bp->spq_lock);
3814         return 0;
3815 }
3816
3817 /* acquire split MCP access lock register */
3818 static int bnx2x_acquire_alr(struct bnx2x *bp)
3819 {
3820         u32 j, val;
3821         int rc = 0;
3822
3823         might_sleep();
3824         for (j = 0; j < 1000; j++) {
3825                 REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, MCPR_ACCESS_LOCK_LOCK);
3826                 val = REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK);
3827                 if (val & MCPR_ACCESS_LOCK_LOCK)
3828                         break;
3829
3830                 usleep_range(5000, 10000);
3831         }
3832         if (!(val & MCPR_ACCESS_LOCK_LOCK)) {
3833                 BNX2X_ERR("Cannot acquire MCP access lock register\n");
3834                 rc = -EBUSY;
3835         }
3836
3837         return rc;
3838 }
3839
3840 /* release split MCP access lock register */
3841 static void bnx2x_release_alr(struct bnx2x *bp)
3842 {
3843         REG_WR(bp, MCP_REG_MCPR_ACCESS_LOCK, 0);
3844 }
3845
3846 #define BNX2X_DEF_SB_ATT_IDX    0x0001
3847 #define BNX2X_DEF_SB_IDX        0x0002
3848
3849 static u16 bnx2x_update_dsb_idx(struct bnx2x *bp)
3850 {
3851         struct host_sp_status_block *def_sb = bp->def_status_blk;
3852         u16 rc = 0;
3853
3854         barrier(); /* status block is written to by the chip */
3855         if (bp->def_att_idx != def_sb->atten_status_block.attn_bits_index) {
3856                 bp->def_att_idx = def_sb->atten_status_block.attn_bits_index;
3857                 rc |= BNX2X_DEF_SB_ATT_IDX;
3858         }
3859
3860         if (bp->def_idx != def_sb->sp_sb.running_index) {
3861                 bp->def_idx = def_sb->sp_sb.running_index;
3862                 rc |= BNX2X_DEF_SB_IDX;
3863         }
3864
3865         /* Do not reorder: indices reading should complete before handling */
3866         barrier();
3867         return rc;
3868 }
3869
3870 /*
3871  * slow path service functions
3872  */
3873
3874 static void bnx2x_attn_int_asserted(struct bnx2x *bp, u32 asserted)
3875 {
3876         int port = BP_PORT(bp);
3877         u32 aeu_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
3878                               MISC_REG_AEU_MASK_ATTN_FUNC_0;
3879         u32 nig_int_mask_addr = port ? NIG_REG_MASK_INTERRUPT_PORT1 :
3880                                        NIG_REG_MASK_INTERRUPT_PORT0;
3881         u32 aeu_mask;
3882         u32 nig_mask = 0;
3883         u32 reg_addr;
3884
3885         if (bp->attn_state & asserted)
3886                 BNX2X_ERR("IGU ERROR\n");
3887
3888         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3889         aeu_mask = REG_RD(bp, aeu_addr);
3890
3891         DP(NETIF_MSG_HW, "aeu_mask %x  newly asserted %x\n",
3892            aeu_mask, asserted);
3893         aeu_mask &= ~(asserted & 0x3ff);
3894         DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
3895
3896         REG_WR(bp, aeu_addr, aeu_mask);
3897         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
3898
3899         DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
3900         bp->attn_state |= asserted;
3901         DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
3902
3903         if (asserted & ATTN_HARD_WIRED_MASK) {
3904                 if (asserted & ATTN_NIG_FOR_FUNC) {
3905
3906                         bnx2x_acquire_phy_lock(bp);
3907
3908                         /* save nig interrupt mask */
3909                         nig_mask = REG_RD(bp, nig_int_mask_addr);
3910
3911                         /* If nig_mask is not set, no need to call the update
3912                          * function.
3913                          */
3914                         if (nig_mask) {
3915                                 REG_WR(bp, nig_int_mask_addr, 0);
3916
3917                                 bnx2x_link_attn(bp);
3918                         }
3919
3920                         /* handle unicore attn? */
3921                 }
3922                 if (asserted & ATTN_SW_TIMER_4_FUNC)
3923                         DP(NETIF_MSG_HW, "ATTN_SW_TIMER_4_FUNC!\n");
3924
3925                 if (asserted & GPIO_2_FUNC)
3926                         DP(NETIF_MSG_HW, "GPIO_2_FUNC!\n");
3927
3928                 if (asserted & GPIO_3_FUNC)
3929                         DP(NETIF_MSG_HW, "GPIO_3_FUNC!\n");
3930
3931                 if (asserted & GPIO_4_FUNC)
3932                         DP(NETIF_MSG_HW, "GPIO_4_FUNC!\n");
3933
3934                 if (port == 0) {
3935                         if (asserted & ATTN_GENERAL_ATTN_1) {
3936                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_1!\n");
3937                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_1, 0x0);
3938                         }
3939                         if (asserted & ATTN_GENERAL_ATTN_2) {
3940                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_2!\n");
3941                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_2, 0x0);
3942                         }
3943                         if (asserted & ATTN_GENERAL_ATTN_3) {
3944                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_3!\n");
3945                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_3, 0x0);
3946                         }
3947                 } else {
3948                         if (asserted & ATTN_GENERAL_ATTN_4) {
3949                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_4!\n");
3950                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_4, 0x0);
3951                         }
3952                         if (asserted & ATTN_GENERAL_ATTN_5) {
3953                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_5!\n");
3954                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_5, 0x0);
3955                         }
3956                         if (asserted & ATTN_GENERAL_ATTN_6) {
3957                                 DP(NETIF_MSG_HW, "ATTN_GENERAL_ATTN_6!\n");
3958                                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_6, 0x0);
3959                         }
3960                 }
3961
3962         } /* if hardwired */
3963
3964         if (bp->common.int_block == INT_BLOCK_HC)
3965                 reg_addr = (HC_REG_COMMAND_REG + port*32 +
3966                             COMMAND_REG_ATTN_BITS_SET);
3967         else
3968                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_SET_UPPER*8);
3969
3970         DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", asserted,
3971            (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
3972         REG_WR(bp, reg_addr, asserted);
3973
3974         /* now set back the mask */
3975         if (asserted & ATTN_NIG_FOR_FUNC) {
3976                 /* Verify that IGU ack through BAR was written before restoring
3977                  * NIG mask. This loop should exit after 2-3 iterations max.
3978                  */
3979                 if (bp->common.int_block != INT_BLOCK_HC) {
3980                         u32 cnt = 0, igu_acked;
3981                         do {
3982                                 igu_acked = REG_RD(bp,
3983                                                    IGU_REG_ATTENTION_ACK_BITS);
3984                         } while (((igu_acked & ATTN_NIG_FOR_FUNC) == 0) &&
3985                                  (++cnt < MAX_IGU_ATTN_ACK_TO));
3986                         if (!igu_acked)
3987                                 DP(NETIF_MSG_HW,
3988                                    "Failed to verify IGU ack on time\n");
3989                         barrier();
3990                 }
3991                 REG_WR(bp, nig_int_mask_addr, nig_mask);
3992                 bnx2x_release_phy_lock(bp);
3993         }
3994 }
3995
3996 static void bnx2x_fan_failure(struct bnx2x *bp)
3997 {
3998         int port = BP_PORT(bp);
3999         u32 ext_phy_config;
4000         /* mark the failure */
4001         ext_phy_config =
4002                 SHMEM_RD(bp,
4003                          dev_info.port_hw_config[port].external_phy_config);
4004
4005         ext_phy_config &= ~PORT_HW_CFG_XGXS_EXT_PHY_TYPE_MASK;
4006         ext_phy_config |= PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE;
4007         SHMEM_WR(bp, dev_info.port_hw_config[port].external_phy_config,
4008                  ext_phy_config);
4009
4010         /* log the failure */
4011         netdev_err(bp->dev, "Fan Failure on Network Controller has caused the driver to shutdown the card to prevent permanent damage.\n"
4012                             "Please contact OEM Support for assistance\n");
4013
4014         /* Schedule device reset (unload)
4015          * This is due to some boards consuming sufficient power when driver is
4016          * up to overheat if fan fails.
4017          */
4018         bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_FAN_FAILURE, 0);
4019 }
4020
4021 static void bnx2x_attn_int_deasserted0(struct bnx2x *bp, u32 attn)
4022 {
4023         int port = BP_PORT(bp);
4024         int reg_offset;
4025         u32 val;
4026
4027         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
4028                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
4029
4030         if (attn & AEU_INPUTS_ATTN_BITS_SPIO5) {
4031
4032                 val = REG_RD(bp, reg_offset);
4033                 val &= ~AEU_INPUTS_ATTN_BITS_SPIO5;
4034                 REG_WR(bp, reg_offset, val);
4035
4036                 BNX2X_ERR("SPIO5 hw attention\n");
4037
4038                 /* Fan failure attention */
4039                 bnx2x_hw_reset_phy(&bp->link_params);
4040                 bnx2x_fan_failure(bp);
4041         }
4042
4043         if ((attn & bp->link_vars.aeu_int_mask) && bp->port.pmf) {
4044                 bnx2x_acquire_phy_lock(bp);
4045                 bnx2x_handle_module_detect_int(&bp->link_params);
4046                 bnx2x_release_phy_lock(bp);
4047         }
4048
4049         if (attn & HW_INTERRUT_ASSERT_SET_0) {
4050
4051                 val = REG_RD(bp, reg_offset);
4052                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_0);
4053                 REG_WR(bp, reg_offset, val);
4054
4055                 BNX2X_ERR("FATAL HW block attention set0 0x%x\n",
4056                           (u32)(attn & HW_INTERRUT_ASSERT_SET_0));
4057                 bnx2x_panic();
4058         }
4059 }
4060
4061 static void bnx2x_attn_int_deasserted1(struct bnx2x *bp, u32 attn)
4062 {
4063         u32 val;
4064
4065         if (attn & AEU_INPUTS_ATTN_BITS_DOORBELLQ_HW_INTERRUPT) {
4066
4067                 val = REG_RD(bp, DORQ_REG_DORQ_INT_STS_CLR);
4068                 BNX2X_ERR("DB hw attention 0x%x\n", val);
4069                 /* DORQ discard attention */
4070                 if (val & 0x2)
4071                         BNX2X_ERR("FATAL error from DORQ\n");
4072         }
4073
4074         if (attn & HW_INTERRUT_ASSERT_SET_1) {
4075
4076                 int port = BP_PORT(bp);
4077                 int reg_offset;
4078
4079                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_1 :
4080                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_1);
4081
4082                 val = REG_RD(bp, reg_offset);
4083                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_1);
4084                 REG_WR(bp, reg_offset, val);
4085
4086                 BNX2X_ERR("FATAL HW block attention set1 0x%x\n",
4087                           (u32)(attn & HW_INTERRUT_ASSERT_SET_1));
4088                 bnx2x_panic();
4089         }
4090 }
4091
4092 static void bnx2x_attn_int_deasserted2(struct bnx2x *bp, u32 attn)
4093 {
4094         u32 val;
4095
4096         if (attn & AEU_INPUTS_ATTN_BITS_CFC_HW_INTERRUPT) {
4097
4098                 val = REG_RD(bp, CFC_REG_CFC_INT_STS_CLR);
4099                 BNX2X_ERR("CFC hw attention 0x%x\n", val);
4100                 /* CFC error attention */
4101                 if (val & 0x2)
4102                         BNX2X_ERR("FATAL error from CFC\n");
4103         }
4104
4105         if (attn & AEU_INPUTS_ATTN_BITS_PXP_HW_INTERRUPT) {
4106                 val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_0);
4107                 BNX2X_ERR("PXP hw attention-0 0x%x\n", val);
4108                 /* RQ_USDMDP_FIFO_OVERFLOW */
4109                 if (val & 0x18000)
4110                         BNX2X_ERR("FATAL error from PXP\n");
4111
4112                 if (!CHIP_IS_E1x(bp)) {
4113                         val = REG_RD(bp, PXP_REG_PXP_INT_STS_CLR_1);
4114                         BNX2X_ERR("PXP hw attention-1 0x%x\n", val);
4115                 }
4116         }
4117
4118         if (attn & HW_INTERRUT_ASSERT_SET_2) {
4119
4120                 int port = BP_PORT(bp);
4121                 int reg_offset;
4122
4123                 reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_2 :
4124                                      MISC_REG_AEU_ENABLE1_FUNC_0_OUT_2);
4125
4126                 val = REG_RD(bp, reg_offset);
4127                 val &= ~(attn & HW_INTERRUT_ASSERT_SET_2);
4128                 REG_WR(bp, reg_offset, val);
4129
4130                 BNX2X_ERR("FATAL HW block attention set2 0x%x\n",
4131                           (u32)(attn & HW_INTERRUT_ASSERT_SET_2));
4132                 bnx2x_panic();
4133         }
4134 }
4135
4136 static void bnx2x_attn_int_deasserted3(struct bnx2x *bp, u32 attn)
4137 {
4138         u32 val;
4139
4140         if (attn & EVEREST_GEN_ATTN_IN_USE_MASK) {
4141
4142                 if (attn & BNX2X_PMF_LINK_ASSERT) {
4143                         int func = BP_FUNC(bp);
4144
4145                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
4146                         bnx2x_read_mf_cfg(bp);
4147                         bp->mf_config[BP_VN(bp)] = MF_CFG_RD(bp,
4148                                         func_mf_config[BP_ABS_FUNC(bp)].config);
4149                         val = SHMEM_RD(bp,
4150                                        func_mb[BP_FW_MB_IDX(bp)].drv_status);
4151                         if (val & DRV_STATUS_DCC_EVENT_MASK)
4152                                 bnx2x_dcc_event(bp,
4153                                             (val & DRV_STATUS_DCC_EVENT_MASK));
4154
4155                         if (val & DRV_STATUS_SET_MF_BW)
4156                                 bnx2x_set_mf_bw(bp);
4157
4158                         if (val & DRV_STATUS_DRV_INFO_REQ)
4159                                 bnx2x_handle_drv_info_req(bp);
4160
4161                         if (val & DRV_STATUS_VF_DISABLED)
4162                                 bnx2x_schedule_iov_task(bp,
4163                                                         BNX2X_IOV_HANDLE_FLR);
4164
4165                         if ((bp->port.pmf == 0) && (val & DRV_STATUS_PMF))
4166                                 bnx2x_pmf_update(bp);
4167
4168                         if (bp->port.pmf &&
4169                             (val & DRV_STATUS_DCBX_NEGOTIATION_RESULTS) &&
4170                                 bp->dcbx_enabled > 0)
4171                                 /* start dcbx state machine */
4172                                 bnx2x_dcbx_set_params(bp,
4173                                         BNX2X_DCBX_STATE_NEG_RECEIVED);
4174                         if (val & DRV_STATUS_AFEX_EVENT_MASK)
4175                                 bnx2x_handle_afex_cmd(bp,
4176                                         val & DRV_STATUS_AFEX_EVENT_MASK);
4177                         if (val & DRV_STATUS_EEE_NEGOTIATION_RESULTS)
4178                                 bnx2x_handle_eee_event(bp);
4179                         if (bp->link_vars.periodic_flags &
4180                             PERIODIC_FLAGS_LINK_EVENT) {
4181                                 /*  sync with link */
4182                                 bnx2x_acquire_phy_lock(bp);
4183                                 bp->link_vars.periodic_flags &=
4184                                         ~PERIODIC_FLAGS_LINK_EVENT;
4185                                 bnx2x_release_phy_lock(bp);
4186                                 if (IS_MF(bp))
4187                                         bnx2x_link_sync_notify(bp);
4188                                 bnx2x_link_report(bp);
4189                         }
4190                         /* Always call it here: bnx2x_link_report() will
4191                          * prevent the link indication duplication.
4192                          */
4193                         bnx2x__link_status_update(bp);
4194                 } else if (attn & BNX2X_MC_ASSERT_BITS) {
4195
4196                         BNX2X_ERR("MC assert!\n");
4197                         bnx2x_mc_assert(bp);
4198                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_10, 0);
4199                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_9, 0);
4200                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_8, 0);
4201                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_7, 0);
4202                         bnx2x_panic();
4203
4204                 } else if (attn & BNX2X_MCP_ASSERT) {
4205
4206                         BNX2X_ERR("MCP assert!\n");
4207                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_11, 0);
4208                         bnx2x_fw_dump(bp);
4209
4210                 } else
4211                         BNX2X_ERR("Unknown HW assert! (attn 0x%x)\n", attn);
4212         }
4213
4214         if (attn & EVEREST_LATCHED_ATTN_IN_USE_MASK) {
4215                 BNX2X_ERR("LATCHED attention 0x%08x (masked)\n", attn);
4216                 if (attn & BNX2X_GRC_TIMEOUT) {
4217                         val = CHIP_IS_E1(bp) ? 0 :
4218                                         REG_RD(bp, MISC_REG_GRC_TIMEOUT_ATTN);
4219                         BNX2X_ERR("GRC time-out 0x%08x\n", val);
4220                 }
4221                 if (attn & BNX2X_GRC_RSV) {
4222                         val = CHIP_IS_E1(bp) ? 0 :
4223                                         REG_RD(bp, MISC_REG_GRC_RSV_ATTN);
4224                         BNX2X_ERR("GRC reserved 0x%08x\n", val);
4225                 }
4226                 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x7ff);
4227         }
4228 }
4229
4230 /*
4231  * Bits map:
4232  * 0-7   - Engine0 load counter.
4233  * 8-15  - Engine1 load counter.
4234  * 16    - Engine0 RESET_IN_PROGRESS bit.
4235  * 17    - Engine1 RESET_IN_PROGRESS bit.
4236  * 18    - Engine0 ONE_IS_LOADED. Set when there is at least one active function
4237  *         on the engine
4238  * 19    - Engine1 ONE_IS_LOADED.
4239  * 20    - Chip reset flow bit. When set none-leader must wait for both engines
4240  *         leader to complete (check for both RESET_IN_PROGRESS bits and not for
4241  *         just the one belonging to its engine).
4242  *
4243  */
4244 #define BNX2X_RECOVERY_GLOB_REG         MISC_REG_GENERIC_POR_1
4245
4246 #define BNX2X_PATH0_LOAD_CNT_MASK       0x000000ff
4247 #define BNX2X_PATH0_LOAD_CNT_SHIFT      0
4248 #define BNX2X_PATH1_LOAD_CNT_MASK       0x0000ff00
4249 #define BNX2X_PATH1_LOAD_CNT_SHIFT      8
4250 #define BNX2X_PATH0_RST_IN_PROG_BIT     0x00010000
4251 #define BNX2X_PATH1_RST_IN_PROG_BIT     0x00020000
4252 #define BNX2X_GLOBAL_RESET_BIT          0x00040000
4253
4254 /*
4255  * Set the GLOBAL_RESET bit.
4256  *
4257  * Should be run under rtnl lock
4258  */
4259 void bnx2x_set_reset_global(struct bnx2x *bp)
4260 {
4261         u32 val;
4262         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4263         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4264         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val | BNX2X_GLOBAL_RESET_BIT);
4265         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4266 }
4267
4268 /*
4269  * Clear the GLOBAL_RESET bit.
4270  *
4271  * Should be run under rtnl lock
4272  */
4273 static void bnx2x_clear_reset_global(struct bnx2x *bp)
4274 {
4275         u32 val;
4276         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4277         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4278         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val & (~BNX2X_GLOBAL_RESET_BIT));
4279         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4280 }
4281
4282 /*
4283  * Checks the GLOBAL_RESET bit.
4284  *
4285  * should be run under rtnl lock
4286  */
4287 static bool bnx2x_reset_is_global(struct bnx2x *bp)
4288 {
4289         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4290
4291         DP(NETIF_MSG_HW, "GEN_REG_VAL=0x%08x\n", val);
4292         return (val & BNX2X_GLOBAL_RESET_BIT) ? true : false;
4293 }
4294
4295 /*
4296  * Clear RESET_IN_PROGRESS bit for the current engine.
4297  *
4298  * Should be run under rtnl lock
4299  */
4300 static void bnx2x_set_reset_done(struct bnx2x *bp)
4301 {
4302         u32 val;
4303         u32 bit = BP_PATH(bp) ?
4304                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4305         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4306         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4307
4308         /* Clear the bit */
4309         val &= ~bit;
4310         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4311
4312         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4313 }
4314
4315 /*
4316  * Set RESET_IN_PROGRESS for the current engine.
4317  *
4318  * should be run under rtnl lock
4319  */
4320 void bnx2x_set_reset_in_progress(struct bnx2x *bp)
4321 {
4322         u32 val;
4323         u32 bit = BP_PATH(bp) ?
4324                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4325         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4326         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4327
4328         /* Set the bit */
4329         val |= bit;
4330         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4331         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4332 }
4333
4334 /*
4335  * Checks the RESET_IN_PROGRESS bit for the given engine.
4336  * should be run under rtnl lock
4337  */
4338 bool bnx2x_reset_is_done(struct bnx2x *bp, int engine)
4339 {
4340         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4341         u32 bit = engine ?
4342                 BNX2X_PATH1_RST_IN_PROG_BIT : BNX2X_PATH0_RST_IN_PROG_BIT;
4343
4344         /* return false if bit is set */
4345         return (val & bit) ? false : true;
4346 }
4347
4348 /*
4349  * set pf load for the current pf.
4350  *
4351  * should be run under rtnl lock
4352  */
4353 void bnx2x_set_pf_load(struct bnx2x *bp)
4354 {
4355         u32 val1, val;
4356         u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4357                              BNX2X_PATH0_LOAD_CNT_MASK;
4358         u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4359                              BNX2X_PATH0_LOAD_CNT_SHIFT;
4360
4361         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4362         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4363
4364         DP(NETIF_MSG_IFUP, "Old GEN_REG_VAL=0x%08x\n", val);
4365
4366         /* get the current counter value */
4367         val1 = (val & mask) >> shift;
4368
4369         /* set bit of that PF */
4370         val1 |= (1 << bp->pf_num);
4371
4372         /* clear the old value */
4373         val &= ~mask;
4374
4375         /* set the new one */
4376         val |= ((val1 << shift) & mask);
4377
4378         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4379         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4380 }
4381
4382 /**
4383  * bnx2x_clear_pf_load - clear pf load mark
4384  *
4385  * @bp:         driver handle
4386  *
4387  * Should be run under rtnl lock.
4388  * Decrements the load counter for the current engine. Returns
4389  * whether other functions are still loaded
4390  */
4391 bool bnx2x_clear_pf_load(struct bnx2x *bp)
4392 {
4393         u32 val1, val;
4394         u32 mask = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_MASK :
4395                              BNX2X_PATH0_LOAD_CNT_MASK;
4396         u32 shift = BP_PATH(bp) ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4397                              BNX2X_PATH0_LOAD_CNT_SHIFT;
4398
4399         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4400         val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4401         DP(NETIF_MSG_IFDOWN, "Old GEN_REG_VAL=0x%08x\n", val);
4402
4403         /* get the current counter value */
4404         val1 = (val & mask) >> shift;
4405
4406         /* clear bit of that PF */
4407         val1 &= ~(1 << bp->pf_num);
4408
4409         /* clear the old value */
4410         val &= ~mask;
4411
4412         /* set the new one */
4413         val |= ((val1 << shift) & mask);
4414
4415         REG_WR(bp, BNX2X_RECOVERY_GLOB_REG, val);
4416         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RECOVERY_REG);
4417         return val1 != 0;
4418 }
4419
4420 /*
4421  * Read the load status for the current engine.
4422  *
4423  * should be run under rtnl lock
4424  */
4425 static bool bnx2x_get_load_status(struct bnx2x *bp, int engine)
4426 {
4427         u32 mask = (engine ? BNX2X_PATH1_LOAD_CNT_MASK :
4428                              BNX2X_PATH0_LOAD_CNT_MASK);
4429         u32 shift = (engine ? BNX2X_PATH1_LOAD_CNT_SHIFT :
4430                              BNX2X_PATH0_LOAD_CNT_SHIFT);
4431         u32 val = REG_RD(bp, BNX2X_RECOVERY_GLOB_REG);
4432
4433         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "GLOB_REG=0x%08x\n", val);
4434
4435         val = (val & mask) >> shift;
4436
4437         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "load mask for engine %d = 0x%x\n",
4438            engine, val);
4439
4440         return val != 0;
4441 }
4442
4443 static void _print_parity(struct bnx2x *bp, u32 reg)
4444 {
4445         pr_cont(" [0x%08x] ", REG_RD(bp, reg));
4446 }
4447
4448 static void _print_next_block(int idx, const char *blk)
4449 {
4450         pr_cont("%s%s", idx ? ", " : "", blk);
4451 }
4452
4453 static bool bnx2x_check_blocks_with_parity0(struct bnx2x *bp, u32 sig,
4454                                             int *par_num, bool print)
4455 {
4456         u32 cur_bit;
4457         bool res;
4458         int i;
4459
4460         res = false;
4461
4462         for (i = 0; sig; i++) {
4463                 cur_bit = (0x1UL << i);
4464                 if (sig & cur_bit) {
4465                         res |= true; /* Each bit is real error! */
4466
4467                         if (print) {
4468                                 switch (cur_bit) {
4469                                 case AEU_INPUTS_ATTN_BITS_BRB_PARITY_ERROR:
4470                                         _print_next_block((*par_num)++, "BRB");
4471                                         _print_parity(bp,
4472                                                       BRB1_REG_BRB1_PRTY_STS);
4473                                         break;
4474                                 case AEU_INPUTS_ATTN_BITS_PARSER_PARITY_ERROR:
4475                                         _print_next_block((*par_num)++,
4476                                                           "PARSER");
4477                                         _print_parity(bp, PRS_REG_PRS_PRTY_STS);
4478                                         break;
4479                                 case AEU_INPUTS_ATTN_BITS_TSDM_PARITY_ERROR:
4480                                         _print_next_block((*par_num)++, "TSDM");
4481                                         _print_parity(bp,
4482                                                       TSDM_REG_TSDM_PRTY_STS);
4483                                         break;
4484                                 case AEU_INPUTS_ATTN_BITS_SEARCHER_PARITY_ERROR:
4485                                         _print_next_block((*par_num)++,
4486                                                           "SEARCHER");
4487                                         _print_parity(bp, SRC_REG_SRC_PRTY_STS);
4488                                         break;
4489                                 case AEU_INPUTS_ATTN_BITS_TCM_PARITY_ERROR:
4490                                         _print_next_block((*par_num)++, "TCM");
4491                                         _print_parity(bp, TCM_REG_TCM_PRTY_STS);
4492                                         break;
4493                                 case AEU_INPUTS_ATTN_BITS_TSEMI_PARITY_ERROR:
4494                                         _print_next_block((*par_num)++,
4495                                                           "TSEMI");
4496                                         _print_parity(bp,
4497                                                       TSEM_REG_TSEM_PRTY_STS_0);
4498                                         _print_parity(bp,
4499                                                       TSEM_REG_TSEM_PRTY_STS_1);
4500                                         break;
4501                                 case AEU_INPUTS_ATTN_BITS_PBCLIENT_PARITY_ERROR:
4502                                         _print_next_block((*par_num)++, "XPB");
4503                                         _print_parity(bp, GRCBASE_XPB +
4504                                                           PB_REG_PB_PRTY_STS);
4505                                         break;
4506                                 }
4507                         }
4508
4509                         /* Clear the bit */
4510                         sig &= ~cur_bit;
4511                 }
4512         }
4513
4514         return res;
4515 }
4516
4517 static bool bnx2x_check_blocks_with_parity1(struct bnx2x *bp, u32 sig,
4518                                             int *par_num, bool *global,
4519                                             bool print)
4520 {
4521         u32 cur_bit;
4522         bool res;
4523         int i;
4524
4525         res = false;
4526
4527         for (i = 0; sig; i++) {
4528                 cur_bit = (0x1UL << i);
4529                 if (sig & cur_bit) {
4530                         res |= true; /* Each bit is real error! */
4531                         switch (cur_bit) {
4532                         case AEU_INPUTS_ATTN_BITS_PBF_PARITY_ERROR:
4533                                 if (print) {
4534                                         _print_next_block((*par_num)++, "PBF");
4535                                         _print_parity(bp, PBF_REG_PBF_PRTY_STS);
4536                                 }
4537                                 break;
4538                         case AEU_INPUTS_ATTN_BITS_QM_PARITY_ERROR:
4539                                 if (print) {
4540                                         _print_next_block((*par_num)++, "QM");
4541                                         _print_parity(bp, QM_REG_QM_PRTY_STS);
4542                                 }
4543                                 break;
4544                         case AEU_INPUTS_ATTN_BITS_TIMERS_PARITY_ERROR:
4545                                 if (print) {
4546                                         _print_next_block((*par_num)++, "TM");
4547                                         _print_parity(bp, TM_REG_TM_PRTY_STS);
4548                                 }
4549                                 break;
4550                         case AEU_INPUTS_ATTN_BITS_XSDM_PARITY_ERROR:
4551                                 if (print) {
4552                                         _print_next_block((*par_num)++, "XSDM");
4553                                         _print_parity(bp,
4554                                                       XSDM_REG_XSDM_PRTY_STS);
4555                                 }
4556                                 break;
4557                         case AEU_INPUTS_ATTN_BITS_XCM_PARITY_ERROR:
4558                                 if (print) {
4559                                         _print_next_block((*par_num)++, "XCM");
4560                                         _print_parity(bp, XCM_REG_XCM_PRTY_STS);
4561                                 }
4562                                 break;
4563                         case AEU_INPUTS_ATTN_BITS_XSEMI_PARITY_ERROR:
4564                                 if (print) {
4565                                         _print_next_block((*par_num)++,
4566                                                           "XSEMI");
4567                                         _print_parity(bp,
4568                                                       XSEM_REG_XSEM_PRTY_STS_0);
4569                                         _print_parity(bp,
4570                                                       XSEM_REG_XSEM_PRTY_STS_1);
4571                                 }
4572                                 break;
4573                         case AEU_INPUTS_ATTN_BITS_DOORBELLQ_PARITY_ERROR:
4574                                 if (print) {
4575                                         _print_next_block((*par_num)++,
4576                                                           "DOORBELLQ");
4577                                         _print_parity(bp,
4578                                                       DORQ_REG_DORQ_PRTY_STS);
4579                                 }
4580                                 break;
4581                         case AEU_INPUTS_ATTN_BITS_NIG_PARITY_ERROR:
4582                                 if (print) {
4583                                         _print_next_block((*par_num)++, "NIG");
4584                                         if (CHIP_IS_E1x(bp)) {
4585                                                 _print_parity(bp,
4586                                                         NIG_REG_NIG_PRTY_STS);
4587                                         } else {
4588                                                 _print_parity(bp,
4589                                                         NIG_REG_NIG_PRTY_STS_0);
4590                                                 _print_parity(bp,
4591                                                         NIG_REG_NIG_PRTY_STS_1);
4592                                         }
4593                                 }
4594                                 break;
4595                         case AEU_INPUTS_ATTN_BITS_VAUX_PCI_CORE_PARITY_ERROR:
4596                                 if (print)
4597                                         _print_next_block((*par_num)++,
4598                                                           "VAUX PCI CORE");
4599                                 *global = true;
4600                                 break;
4601                         case AEU_INPUTS_ATTN_BITS_DEBUG_PARITY_ERROR:
4602                                 if (print) {
4603                                         _print_next_block((*par_num)++,
4604                                                           "DEBUG");
4605                                         _print_parity(bp, DBG_REG_DBG_PRTY_STS);
4606                                 }
4607                                 break;
4608                         case AEU_INPUTS_ATTN_BITS_USDM_PARITY_ERROR:
4609                                 if (print) {
4610                                         _print_next_block((*par_num)++, "USDM");
4611                                         _print_parity(bp,
4612                                                       USDM_REG_USDM_PRTY_STS);
4613                                 }
4614                                 break;
4615                         case AEU_INPUTS_ATTN_BITS_UCM_PARITY_ERROR:
4616                                 if (print) {
4617                                         _print_next_block((*par_num)++, "UCM");
4618                                         _print_parity(bp, UCM_REG_UCM_PRTY_STS);
4619                                 }
4620                                 break;
4621                         case AEU_INPUTS_ATTN_BITS_USEMI_PARITY_ERROR:
4622                                 if (print) {
4623                                         _print_next_block((*par_num)++,
4624                                                           "USEMI");
4625                                         _print_parity(bp,
4626                                                       USEM_REG_USEM_PRTY_STS_0);
4627                                         _print_parity(bp,
4628                                                       USEM_REG_USEM_PRTY_STS_1);
4629                                 }
4630                                 break;
4631                         case AEU_INPUTS_ATTN_BITS_UPB_PARITY_ERROR:
4632                                 if (print) {
4633                                         _print_next_block((*par_num)++, "UPB");
4634                                         _print_parity(bp, GRCBASE_UPB +
4635                                                           PB_REG_PB_PRTY_STS);
4636                                 }
4637                                 break;
4638                         case AEU_INPUTS_ATTN_BITS_CSDM_PARITY_ERROR:
4639                                 if (print) {
4640                                         _print_next_block((*par_num)++, "CSDM");
4641                                         _print_parity(bp,
4642                                                       CSDM_REG_CSDM_PRTY_STS);
4643                                 }
4644                                 break;
4645                         case AEU_INPUTS_ATTN_BITS_CCM_PARITY_ERROR:
4646                                 if (print) {
4647                                         _print_next_block((*par_num)++, "CCM");
4648                                         _print_parity(bp, CCM_REG_CCM_PRTY_STS);
4649                                 }
4650                                 break;
4651                         }
4652
4653                         /* Clear the bit */
4654                         sig &= ~cur_bit;
4655                 }
4656         }
4657
4658         return res;
4659 }
4660
4661 static bool bnx2x_check_blocks_with_parity2(struct bnx2x *bp, u32 sig,
4662                                             int *par_num, bool print)
4663 {
4664         u32 cur_bit;
4665         bool res;
4666         int i;
4667
4668         res = false;
4669
4670         for (i = 0; sig; i++) {
4671                 cur_bit = (0x1UL << i);
4672                 if (sig & cur_bit) {
4673                         res |= true; /* Each bit is real error! */
4674                         if (print) {
4675                                 switch (cur_bit) {
4676                                 case AEU_INPUTS_ATTN_BITS_CSEMI_PARITY_ERROR:
4677                                         _print_next_block((*par_num)++,
4678                                                           "CSEMI");
4679                                         _print_parity(bp,
4680                                                       CSEM_REG_CSEM_PRTY_STS_0);
4681                                         _print_parity(bp,
4682                                                       CSEM_REG_CSEM_PRTY_STS_1);
4683                                         break;
4684                                 case AEU_INPUTS_ATTN_BITS_PXP_PARITY_ERROR:
4685                                         _print_next_block((*par_num)++, "PXP");
4686                                         _print_parity(bp, PXP_REG_PXP_PRTY_STS);
4687                                         _print_parity(bp,
4688                                                       PXP2_REG_PXP2_PRTY_STS_0);
4689                                         _print_parity(bp,
4690                                                       PXP2_REG_PXP2_PRTY_STS_1);
4691                                         break;
4692                                 case AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR:
4693                                         _print_next_block((*par_num)++,
4694                                                           "PXPPCICLOCKCLIENT");
4695                                         break;
4696                                 case AEU_INPUTS_ATTN_BITS_CFC_PARITY_ERROR:
4697                                         _print_next_block((*par_num)++, "CFC");
4698                                         _print_parity(bp,
4699                                                       CFC_REG_CFC_PRTY_STS);
4700                                         break;
4701                                 case AEU_INPUTS_ATTN_BITS_CDU_PARITY_ERROR:
4702                                         _print_next_block((*par_num)++, "CDU");
4703                                         _print_parity(bp, CDU_REG_CDU_PRTY_STS);
4704                                         break;
4705                                 case AEU_INPUTS_ATTN_BITS_DMAE_PARITY_ERROR:
4706                                         _print_next_block((*par_num)++, "DMAE");
4707                                         _print_parity(bp,
4708                                                       DMAE_REG_DMAE_PRTY_STS);
4709                                         break;
4710                                 case AEU_INPUTS_ATTN_BITS_IGU_PARITY_ERROR:
4711                                         _print_next_block((*par_num)++, "IGU");
4712                                         if (CHIP_IS_E1x(bp))
4713                                                 _print_parity(bp,
4714                                                         HC_REG_HC_PRTY_STS);
4715                                         else
4716                                                 _print_parity(bp,
4717                                                         IGU_REG_IGU_PRTY_STS);
4718                                         break;
4719                                 case AEU_INPUTS_ATTN_BITS_MISC_PARITY_ERROR:
4720                                         _print_next_block((*par_num)++, "MISC");
4721                                         _print_parity(bp,
4722                                                       MISC_REG_MISC_PRTY_STS);
4723                                         break;
4724                                 }
4725                         }
4726
4727                         /* Clear the bit */
4728                         sig &= ~cur_bit;
4729                 }
4730         }
4731
4732         return res;
4733 }
4734
4735 static bool bnx2x_check_blocks_with_parity3(struct bnx2x *bp, u32 sig,
4736                                             int *par_num, bool *global,
4737                                             bool print)
4738 {
4739         bool res = false;
4740         u32 cur_bit;
4741         int i;
4742
4743         for (i = 0; sig; i++) {
4744                 cur_bit = (0x1UL << i);
4745                 if (sig & cur_bit) {
4746                         switch (cur_bit) {
4747                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY:
4748                                 if (print)
4749                                         _print_next_block((*par_num)++,
4750                                                           "MCP ROM");
4751                                 *global = true;
4752                                 res |= true;
4753                                 break;
4754                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY:
4755                                 if (print)
4756                                         _print_next_block((*par_num)++,
4757                                                           "MCP UMP RX");
4758                                 *global = true;
4759                                 res |= true;
4760                                 break;
4761                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY:
4762                                 if (print)
4763                                         _print_next_block((*par_num)++,
4764                                                           "MCP UMP TX");
4765                                 *global = true;
4766                                 res |= true;
4767                                 break;
4768                         case AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY:
4769                                 if (print)
4770                                         _print_next_block((*par_num)++,
4771                                                           "MCP SCPAD");
4772                                 /* clear latched SCPAD PATIRY from MCP */
4773                                 REG_WR(bp, MISC_REG_AEU_CLR_LATCH_SIGNAL,
4774                                        1UL << 10);
4775                                 break;
4776                         }
4777
4778                         /* Clear the bit */
4779                         sig &= ~cur_bit;
4780                 }
4781         }
4782
4783         return res;
4784 }
4785
4786 static bool bnx2x_check_blocks_with_parity4(struct bnx2x *bp, u32 sig,
4787                                             int *par_num, bool print)
4788 {
4789         u32 cur_bit;
4790         bool res;
4791         int i;
4792
4793         res = false;
4794
4795         for (i = 0; sig; i++) {
4796                 cur_bit = (0x1UL << i);
4797                 if (sig & cur_bit) {
4798                         res |= true; /* Each bit is real error! */
4799                         if (print) {
4800                                 switch (cur_bit) {
4801                                 case AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR:
4802                                         _print_next_block((*par_num)++,
4803                                                           "PGLUE_B");
4804                                         _print_parity(bp,
4805                                                       PGLUE_B_REG_PGLUE_B_PRTY_STS);
4806                                         break;
4807                                 case AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR:
4808                                         _print_next_block((*par_num)++, "ATC");
4809                                         _print_parity(bp,
4810                                                       ATC_REG_ATC_PRTY_STS);
4811                                         break;
4812                                 }
4813                         }
4814                         /* Clear the bit */
4815                         sig &= ~cur_bit;
4816                 }
4817         }
4818
4819         return res;
4820 }
4821
4822 static bool bnx2x_parity_attn(struct bnx2x *bp, bool *global, bool print,
4823                               u32 *sig)
4824 {
4825         bool res = false;
4826
4827         if ((sig[0] & HW_PRTY_ASSERT_SET_0) ||
4828             (sig[1] & HW_PRTY_ASSERT_SET_1) ||
4829             (sig[2] & HW_PRTY_ASSERT_SET_2) ||
4830             (sig[3] & HW_PRTY_ASSERT_SET_3) ||
4831             (sig[4] & HW_PRTY_ASSERT_SET_4)) {
4832                 int par_num = 0;
4833                 DP(NETIF_MSG_HW, "Was parity error: HW block parity attention:\n"
4834                                  "[0]:0x%08x [1]:0x%08x [2]:0x%08x [3]:0x%08x [4]:0x%08x\n",
4835                           sig[0] & HW_PRTY_ASSERT_SET_0,
4836                           sig[1] & HW_PRTY_ASSERT_SET_1,
4837                           sig[2] & HW_PRTY_ASSERT_SET_2,
4838                           sig[3] & HW_PRTY_ASSERT_SET_3,
4839                           sig[4] & HW_PRTY_ASSERT_SET_4);
4840                 if (print)
4841                         netdev_err(bp->dev,
4842                                    "Parity errors detected in blocks: ");
4843                 res |= bnx2x_check_blocks_with_parity0(bp,
4844                         sig[0] & HW_PRTY_ASSERT_SET_0, &par_num, print);
4845                 res |= bnx2x_check_blocks_with_parity1(bp,
4846                         sig[1] & HW_PRTY_ASSERT_SET_1, &par_num, global, print);
4847                 res |= bnx2x_check_blocks_with_parity2(bp,
4848                         sig[2] & HW_PRTY_ASSERT_SET_2, &par_num, print);
4849                 res |= bnx2x_check_blocks_with_parity3(bp,
4850                         sig[3] & HW_PRTY_ASSERT_SET_3, &par_num, global, print);
4851                 res |= bnx2x_check_blocks_with_parity4(bp,
4852                         sig[4] & HW_PRTY_ASSERT_SET_4, &par_num, print);
4853
4854                 if (print)
4855                         pr_cont("\n");
4856         }
4857
4858         return res;
4859 }
4860
4861 /**
4862  * bnx2x_chk_parity_attn - checks for parity attentions.
4863  *
4864  * @bp:         driver handle
4865  * @global:     true if there was a global attention
4866  * @print:      show parity attention in syslog
4867  */
4868 bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print)
4869 {
4870         struct attn_route attn = { {0} };
4871         int port = BP_PORT(bp);
4872
4873         attn.sig[0] = REG_RD(bp,
4874                 MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 +
4875                              port*4);
4876         attn.sig[1] = REG_RD(bp,
4877                 MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 +
4878                              port*4);
4879         attn.sig[2] = REG_RD(bp,
4880                 MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 +
4881                              port*4);
4882         attn.sig[3] = REG_RD(bp,
4883                 MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 +
4884                              port*4);
4885         /* Since MCP attentions can't be disabled inside the block, we need to
4886          * read AEU registers to see whether they're currently disabled
4887          */
4888         attn.sig[3] &= ((REG_RD(bp,
4889                                 !port ? MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0
4890                                       : MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0) &
4891                          MISC_AEU_ENABLE_MCP_PRTY_BITS) |
4892                         ~MISC_AEU_ENABLE_MCP_PRTY_BITS);
4893
4894         if (!CHIP_IS_E1x(bp))
4895                 attn.sig[4] = REG_RD(bp,
4896                         MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 +
4897                                      port*4);
4898
4899         return bnx2x_parity_attn(bp, global, print, attn.sig);
4900 }
4901
4902 static void bnx2x_attn_int_deasserted4(struct bnx2x *bp, u32 attn)
4903 {
4904         u32 val;
4905         if (attn & AEU_INPUTS_ATTN_BITS_PGLUE_HW_INTERRUPT) {
4906
4907                 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS_CLR);
4908                 BNX2X_ERR("PGLUE hw attention 0x%x\n", val);
4909                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR)
4910                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_ADDRESS_ERROR\n");
4911                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR)
4912                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_INCORRECT_RCV_BEHAVIOR\n");
4913                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN)
4914                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN\n");
4915                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN)
4916                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_LENGTH_VIOLATION_ATTN\n");
4917                 if (val &
4918                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN)
4919                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_GRC_SPACE_VIOLATION_ATTN\n");
4920                 if (val &
4921                     PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN)
4922                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_VF_MSIX_BAR_VIOLATION_ATTN\n");
4923                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN)
4924                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_ERROR_ATTN\n");
4925                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN)
4926                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_TCPL_IN_TWO_RCBS_ATTN\n");
4927                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW)
4928                         BNX2X_ERR("PGLUE_B_PGLUE_B_INT_STS_REG_CSSNOOP_FIFO_OVERFLOW\n");
4929         }
4930         if (attn & AEU_INPUTS_ATTN_BITS_ATC_HW_INTERRUPT) {
4931                 val = REG_RD(bp, ATC_REG_ATC_INT_STS_CLR);
4932                 BNX2X_ERR("ATC hw attention 0x%x\n", val);
4933                 if (val & ATC_ATC_INT_STS_REG_ADDRESS_ERROR)
4934                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ADDRESS_ERROR\n");
4935                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND)
4936                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_TO_NOT_PEND\n");
4937                 if (val & ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS)
4938                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_GPA_MULTIPLE_HITS\n");
4939                 if (val & ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT)
4940                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_RCPL_TO_EMPTY_CNT\n");
4941                 if (val & ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR)
4942                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_TCPL_ERROR\n");
4943                 if (val & ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU)
4944                         BNX2X_ERR("ATC_ATC_INT_STS_REG_ATC_IREQ_LESS_THAN_STU\n");
4945         }
4946
4947         if (attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4948                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)) {
4949                 BNX2X_ERR("FATAL parity attention set4 0x%x\n",
4950                 (u32)(attn & (AEU_INPUTS_ATTN_BITS_PGLUE_PARITY_ERROR |
4951                     AEU_INPUTS_ATTN_BITS_ATC_PARITY_ERROR)));
4952         }
4953 }
4954
4955 static void bnx2x_attn_int_deasserted(struct bnx2x *bp, u32 deasserted)
4956 {
4957         struct attn_route attn, *group_mask;
4958         int port = BP_PORT(bp);
4959         int index;
4960         u32 reg_addr;
4961         u32 val;
4962         u32 aeu_mask;
4963         bool global = false;
4964
4965         /* need to take HW lock because MCP or other port might also
4966            try to handle this event */
4967         bnx2x_acquire_alr(bp);
4968
4969         if (bnx2x_chk_parity_attn(bp, &global, true)) {
4970 #ifndef BNX2X_STOP_ON_ERROR
4971                 bp->recovery_state = BNX2X_RECOVERY_INIT;
4972                 schedule_delayed_work(&bp->sp_rtnl_task, 0);
4973                 /* Disable HW interrupts */
4974                 bnx2x_int_disable(bp);
4975                 /* In case of parity errors don't handle attentions so that
4976                  * other function would "see" parity errors.
4977                  */
4978 #else
4979                 bnx2x_panic();
4980 #endif
4981                 bnx2x_release_alr(bp);
4982                 return;
4983         }
4984
4985         attn.sig[0] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + port*4);
4986         attn.sig[1] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_2_FUNC_0 + port*4);
4987         attn.sig[2] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_3_FUNC_0 + port*4);
4988         attn.sig[3] = REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_4_FUNC_0 + port*4);
4989         if (!CHIP_IS_E1x(bp))
4990                 attn.sig[4] =
4991                       REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_5_FUNC_0 + port*4);
4992         else
4993                 attn.sig[4] = 0;
4994
4995         DP(NETIF_MSG_HW, "attn: %08x %08x %08x %08x %08x\n",
4996            attn.sig[0], attn.sig[1], attn.sig[2], attn.sig[3], attn.sig[4]);
4997
4998         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
4999                 if (deasserted & (1 << index)) {
5000                         group_mask = &bp->attn_group[index];
5001
5002                         DP(NETIF_MSG_HW, "group[%d]: %08x %08x %08x %08x %08x\n",
5003                            index,
5004                            group_mask->sig[0], group_mask->sig[1],
5005                            group_mask->sig[2], group_mask->sig[3],
5006                            group_mask->sig[4]);
5007
5008                         bnx2x_attn_int_deasserted4(bp,
5009                                         attn.sig[4] & group_mask->sig[4]);
5010                         bnx2x_attn_int_deasserted3(bp,
5011                                         attn.sig[3] & group_mask->sig[3]);
5012                         bnx2x_attn_int_deasserted1(bp,
5013                                         attn.sig[1] & group_mask->sig[1]);
5014                         bnx2x_attn_int_deasserted2(bp,
5015                                         attn.sig[2] & group_mask->sig[2]);
5016                         bnx2x_attn_int_deasserted0(bp,
5017                                         attn.sig[0] & group_mask->sig[0]);
5018                 }
5019         }
5020
5021         bnx2x_release_alr(bp);
5022
5023         if (bp->common.int_block == INT_BLOCK_HC)
5024                 reg_addr = (HC_REG_COMMAND_REG + port*32 +
5025                             COMMAND_REG_ATTN_BITS_CLR);
5026         else
5027                 reg_addr = (BAR_IGU_INTMEM + IGU_CMD_ATTN_BIT_CLR_UPPER*8);
5028
5029         val = ~deasserted;
5030         DP(NETIF_MSG_HW, "about to mask 0x%08x at %s addr 0x%x\n", val,
5031            (bp->common.int_block == INT_BLOCK_HC) ? "HC" : "IGU", reg_addr);
5032         REG_WR(bp, reg_addr, val);
5033
5034         if (~bp->attn_state & deasserted)
5035                 BNX2X_ERR("IGU ERROR\n");
5036
5037         reg_addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
5038                           MISC_REG_AEU_MASK_ATTN_FUNC_0;
5039
5040         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5041         aeu_mask = REG_RD(bp, reg_addr);
5042
5043         DP(NETIF_MSG_HW, "aeu_mask %x  newly deasserted %x\n",
5044            aeu_mask, deasserted);
5045         aeu_mask |= (deasserted & 0x3ff);
5046         DP(NETIF_MSG_HW, "new mask %x\n", aeu_mask);
5047
5048         REG_WR(bp, reg_addr, aeu_mask);
5049         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_PORT0_ATT_MASK + port);
5050
5051         DP(NETIF_MSG_HW, "attn_state %x\n", bp->attn_state);
5052         bp->attn_state &= ~deasserted;
5053         DP(NETIF_MSG_HW, "new state %x\n", bp->attn_state);
5054 }
5055
5056 static void bnx2x_attn_int(struct bnx2x *bp)
5057 {
5058         /* read local copy of bits */
5059         u32 attn_bits = le32_to_cpu(bp->def_status_blk->atten_status_block.
5060                                                                 attn_bits);
5061         u32 attn_ack = le32_to_cpu(bp->def_status_blk->atten_status_block.
5062                                                                 attn_bits_ack);
5063         u32 attn_state = bp->attn_state;
5064
5065         /* look for changed bits */
5066         u32 asserted   =  attn_bits & ~attn_ack & ~attn_state;
5067         u32 deasserted = ~attn_bits &  attn_ack &  attn_state;
5068
5069         DP(NETIF_MSG_HW,
5070            "attn_bits %x  attn_ack %x  asserted %x  deasserted %x\n",
5071            attn_bits, attn_ack, asserted, deasserted);
5072
5073         if (~(attn_bits ^ attn_ack) & (attn_bits ^ attn_state))
5074                 BNX2X_ERR("BAD attention state\n");
5075
5076         /* handle bits that were raised */
5077         if (asserted)
5078                 bnx2x_attn_int_asserted(bp, asserted);
5079
5080         if (deasserted)
5081                 bnx2x_attn_int_deasserted(bp, deasserted);
5082 }
5083
5084 void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment,
5085                       u16 index, u8 op, u8 update)
5086 {
5087         u32 igu_addr = bp->igu_base_addr;
5088         igu_addr += (IGU_CMD_INT_ACK_BASE + igu_sb_id)*8;
5089         bnx2x_igu_ack_sb_gen(bp, igu_sb_id, segment, index, op, update,
5090                              igu_addr);
5091 }
5092
5093 static void bnx2x_update_eq_prod(struct bnx2x *bp, u16 prod)
5094 {
5095         /* No memory barriers */
5096         storm_memset_eq_prod(bp, prod, BP_FUNC(bp));
5097         mmiowb(); /* keep prod updates ordered */
5098 }
5099
5100 static int  bnx2x_cnic_handle_cfc_del(struct bnx2x *bp, u32 cid,
5101                                       union event_ring_elem *elem)
5102 {
5103         u8 err = elem->message.error;
5104
5105         if (!bp->cnic_eth_dev.starting_cid  ||
5106             (cid < bp->cnic_eth_dev.starting_cid &&
5107             cid != bp->cnic_eth_dev.iscsi_l2_cid))
5108                 return 1;
5109
5110         DP(BNX2X_MSG_SP, "got delete ramrod for CNIC CID %d\n", cid);
5111
5112         if (unlikely(err)) {
5113
5114                 BNX2X_ERR("got delete ramrod for CNIC CID %d with error!\n",
5115                           cid);
5116                 bnx2x_panic_dump(bp, false);
5117         }
5118         bnx2x_cnic_cfc_comp(bp, cid, err);
5119         return 0;
5120 }
5121
5122 static void bnx2x_handle_mcast_eqe(struct bnx2x *bp)
5123 {
5124         struct bnx2x_mcast_ramrod_params rparam;
5125         int rc;
5126
5127         memset(&rparam, 0, sizeof(rparam));
5128
5129         rparam.mcast_obj = &bp->mcast_obj;
5130
5131         netif_addr_lock_bh(bp->dev);
5132
5133         /* Clear pending state for the last command */
5134         bp->mcast_obj.raw.clear_pending(&bp->mcast_obj.raw);
5135
5136         /* If there are pending mcast commands - send them */
5137         if (bp->mcast_obj.check_pending(&bp->mcast_obj)) {
5138                 rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
5139                 if (rc < 0)
5140                         BNX2X_ERR("Failed to send pending mcast commands: %d\n",
5141                                   rc);
5142         }
5143
5144         netif_addr_unlock_bh(bp->dev);
5145 }
5146
5147 static void bnx2x_handle_classification_eqe(struct bnx2x *bp,
5148                                             union event_ring_elem *elem)
5149 {
5150         unsigned long ramrod_flags = 0;
5151         int rc = 0;
5152         u32 cid = elem->message.data.eth_event.echo & BNX2X_SWCID_MASK;
5153         struct bnx2x_vlan_mac_obj *vlan_mac_obj;
5154
5155         /* Always push next commands out, don't wait here */
5156         __set_bit(RAMROD_CONT, &ramrod_flags);
5157
5158         switch (le32_to_cpu((__force __le32)elem->message.data.eth_event.echo)
5159                             >> BNX2X_SWCID_SHIFT) {
5160         case BNX2X_FILTER_MAC_PENDING:
5161                 DP(BNX2X_MSG_SP, "Got SETUP_MAC completions\n");
5162                 if (CNIC_LOADED(bp) && (cid == BNX2X_ISCSI_ETH_CID(bp)))
5163                         vlan_mac_obj = &bp->iscsi_l2_mac_obj;
5164                 else
5165                         vlan_mac_obj = &bp->sp_objs[cid].mac_obj;
5166
5167                 break;
5168         case BNX2X_FILTER_MCAST_PENDING:
5169                 DP(BNX2X_MSG_SP, "Got SETUP_MCAST completions\n");
5170                 /* This is only relevant for 57710 where multicast MACs are
5171                  * configured as unicast MACs using the same ramrod.
5172                  */
5173                 bnx2x_handle_mcast_eqe(bp);
5174                 return;
5175         default:
5176                 BNX2X_ERR("Unsupported classification command: %d\n",
5177                           elem->message.data.eth_event.echo);
5178                 return;
5179         }
5180
5181         rc = vlan_mac_obj->complete(bp, vlan_mac_obj, elem, &ramrod_flags);
5182
5183         if (rc < 0)
5184                 BNX2X_ERR("Failed to schedule new commands: %d\n", rc);
5185         else if (rc > 0)
5186                 DP(BNX2X_MSG_SP, "Scheduled next pending commands...\n");
5187 }
5188
5189 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start);
5190
5191 static void bnx2x_handle_rx_mode_eqe(struct bnx2x *bp)
5192 {
5193         netif_addr_lock_bh(bp->dev);
5194
5195         clear_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
5196
5197         /* Send rx_mode command again if was requested */
5198         if (test_and_clear_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state))
5199                 bnx2x_set_storm_rx_mode(bp);
5200         else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED,
5201                                     &bp->sp_state))
5202                 bnx2x_set_iscsi_eth_rx_mode(bp, true);
5203         else if (test_and_clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED,
5204                                     &bp->sp_state))
5205                 bnx2x_set_iscsi_eth_rx_mode(bp, false);
5206
5207         netif_addr_unlock_bh(bp->dev);
5208 }
5209
5210 static void bnx2x_after_afex_vif_lists(struct bnx2x *bp,
5211                                               union event_ring_elem *elem)
5212 {
5213         if (elem->message.data.vif_list_event.echo == VIF_LIST_RULE_GET) {
5214                 DP(BNX2X_MSG_SP,
5215                    "afex: ramrod completed VIF LIST_GET, addrs 0x%x\n",
5216                    elem->message.data.vif_list_event.func_bit_map);
5217                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTGET_ACK,
5218                         elem->message.data.vif_list_event.func_bit_map);
5219         } else if (elem->message.data.vif_list_event.echo ==
5220                    VIF_LIST_RULE_SET) {
5221                 DP(BNX2X_MSG_SP, "afex: ramrod completed VIF LIST_SET\n");
5222                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_LISTSET_ACK, 0);
5223         }
5224 }
5225
5226 /* called with rtnl_lock */
5227 static void bnx2x_after_function_update(struct bnx2x *bp)
5228 {
5229         int q, rc;
5230         struct bnx2x_fastpath *fp;
5231         struct bnx2x_queue_state_params queue_params = {NULL};
5232         struct bnx2x_queue_update_params *q_update_params =
5233                 &queue_params.params.update;
5234
5235         /* Send Q update command with afex vlan removal values for all Qs */
5236         queue_params.cmd = BNX2X_Q_CMD_UPDATE;
5237
5238         /* set silent vlan removal values according to vlan mode */
5239         __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM_CHNG,
5240                   &q_update_params->update_flags);
5241         __set_bit(BNX2X_Q_UPDATE_SILENT_VLAN_REM,
5242                   &q_update_params->update_flags);
5243         __set_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5244
5245         /* in access mode mark mask and value are 0 to strip all vlans */
5246         if (bp->afex_vlan_mode == FUNC_MF_CFG_AFEX_VLAN_ACCESS_MODE) {
5247                 q_update_params->silent_removal_value = 0;
5248                 q_update_params->silent_removal_mask = 0;
5249         } else {
5250                 q_update_params->silent_removal_value =
5251                         (bp->afex_def_vlan_tag & VLAN_VID_MASK);
5252                 q_update_params->silent_removal_mask = VLAN_VID_MASK;
5253         }
5254
5255         for_each_eth_queue(bp, q) {
5256                 /* Set the appropriate Queue object */
5257                 fp = &bp->fp[q];
5258                 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5259
5260                 /* send the ramrod */
5261                 rc = bnx2x_queue_state_change(bp, &queue_params);
5262                 if (rc < 0)
5263                         BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5264                                   q);
5265         }
5266
5267         if (!NO_FCOE(bp) && CNIC_ENABLED(bp)) {
5268                 fp = &bp->fp[FCOE_IDX(bp)];
5269                 queue_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
5270
5271                 /* clear pending completion bit */
5272                 __clear_bit(RAMROD_COMP_WAIT, &queue_params.ramrod_flags);
5273
5274                 /* mark latest Q bit */
5275                 smp_mb__before_clear_bit();
5276                 set_bit(BNX2X_AFEX_FCOE_Q_UPDATE_PENDING, &bp->sp_state);
5277                 smp_mb__after_clear_bit();
5278
5279                 /* send Q update ramrod for FCoE Q */
5280                 rc = bnx2x_queue_state_change(bp, &queue_params);
5281                 if (rc < 0)
5282                         BNX2X_ERR("Failed to config silent vlan rem for Q %d\n",
5283                                   q);
5284         } else {
5285                 /* If no FCoE ring - ACK MCP now */
5286                 bnx2x_link_report(bp);
5287                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5288         }
5289 }
5290
5291 static struct bnx2x_queue_sp_obj *bnx2x_cid_to_q_obj(
5292         struct bnx2x *bp, u32 cid)
5293 {
5294         DP(BNX2X_MSG_SP, "retrieving fp from cid %d\n", cid);
5295
5296         if (CNIC_LOADED(bp) && (cid == BNX2X_FCOE_ETH_CID(bp)))
5297                 return &bnx2x_fcoe_sp_obj(bp, q_obj);
5298         else
5299                 return &bp->sp_objs[CID_TO_FP(cid, bp)].q_obj;
5300 }
5301
5302 static void bnx2x_eq_int(struct bnx2x *bp)
5303 {
5304         u16 hw_cons, sw_cons, sw_prod;
5305         union event_ring_elem *elem;
5306         u8 echo;
5307         u32 cid;
5308         u8 opcode;
5309         int rc, spqe_cnt = 0;
5310         struct bnx2x_queue_sp_obj *q_obj;
5311         struct bnx2x_func_sp_obj *f_obj = &bp->func_obj;
5312         struct bnx2x_raw_obj *rss_raw = &bp->rss_conf_obj.raw;
5313
5314         hw_cons = le16_to_cpu(*bp->eq_cons_sb);
5315
5316         /* The hw_cos range is 1-255, 257 - the sw_cons range is 0-254, 256.
5317          * when we get the next-page we need to adjust so the loop
5318          * condition below will be met. The next element is the size of a
5319          * regular element and hence incrementing by 1
5320          */
5321         if ((hw_cons & EQ_DESC_MAX_PAGE) == EQ_DESC_MAX_PAGE)
5322                 hw_cons++;
5323
5324         /* This function may never run in parallel with itself for a
5325          * specific bp, thus there is no need in "paired" read memory
5326          * barrier here.
5327          */
5328         sw_cons = bp->eq_cons;
5329         sw_prod = bp->eq_prod;
5330
5331         DP(BNX2X_MSG_SP, "EQ:  hw_cons %u  sw_cons %u bp->eq_spq_left %x\n",
5332                         hw_cons, sw_cons, atomic_read(&bp->eq_spq_left));
5333
5334         for (; sw_cons != hw_cons;
5335               sw_prod = NEXT_EQ_IDX(sw_prod), sw_cons = NEXT_EQ_IDX(sw_cons)) {
5336
5337                 elem = &bp->eq_ring[EQ_DESC(sw_cons)];
5338
5339                 rc = bnx2x_iov_eq_sp_event(bp, elem);
5340                 if (!rc) {
5341                         DP(BNX2X_MSG_IOV, "bnx2x_iov_eq_sp_event returned %d\n",
5342                            rc);
5343                         goto next_spqe;
5344                 }
5345
5346                 /* elem CID originates from FW; actually LE */
5347                 cid = SW_CID((__force __le32)
5348                              elem->message.data.cfc_del_event.cid);
5349                 opcode = elem->message.opcode;
5350
5351                 /* handle eq element */
5352                 switch (opcode) {
5353                 case EVENT_RING_OPCODE_VF_PF_CHANNEL:
5354                         bnx2x_vf_mbx_schedule(bp,
5355                                               &elem->message.data.vf_pf_event);
5356                         continue;
5357
5358                 case EVENT_RING_OPCODE_STAT_QUERY:
5359                         DP_AND((BNX2X_MSG_SP | BNX2X_MSG_STATS),
5360                                "got statistics comp event %d\n",
5361                                bp->stats_comp++);
5362                         /* nothing to do with stats comp */
5363                         goto next_spqe;
5364
5365                 case EVENT_RING_OPCODE_CFC_DEL:
5366                         /* handle according to cid range */
5367                         /*
5368                          * we may want to verify here that the bp state is
5369                          * HALTING
5370                          */
5371                         DP(BNX2X_MSG_SP,
5372                            "got delete ramrod for MULTI[%d]\n", cid);
5373
5374                         if (CNIC_LOADED(bp) &&
5375                             !bnx2x_cnic_handle_cfc_del(bp, cid, elem))
5376                                 goto next_spqe;
5377
5378                         q_obj = bnx2x_cid_to_q_obj(bp, cid);
5379
5380                         if (q_obj->complete_cmd(bp, q_obj, BNX2X_Q_CMD_CFC_DEL))
5381                                 break;
5382
5383                         goto next_spqe;
5384
5385                 case EVENT_RING_OPCODE_STOP_TRAFFIC:
5386                         DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got STOP TRAFFIC\n");
5387                         bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_PAUSED);
5388                         if (f_obj->complete_cmd(bp, f_obj,
5389                                                 BNX2X_F_CMD_TX_STOP))
5390                                 break;
5391                         goto next_spqe;
5392
5393                 case EVENT_RING_OPCODE_START_TRAFFIC:
5394                         DP(BNX2X_MSG_SP | BNX2X_MSG_DCB, "got START TRAFFIC\n");
5395                         bnx2x_dcbx_set_params(bp, BNX2X_DCBX_STATE_TX_RELEASED);
5396                         if (f_obj->complete_cmd(bp, f_obj,
5397                                                 BNX2X_F_CMD_TX_START))
5398                                 break;
5399                         goto next_spqe;
5400
5401                 case EVENT_RING_OPCODE_FUNCTION_UPDATE:
5402                         echo = elem->message.data.function_update_event.echo;
5403                         if (echo == SWITCH_UPDATE) {
5404                                 DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5405                                    "got FUNC_SWITCH_UPDATE ramrod\n");
5406                                 if (f_obj->complete_cmd(
5407                                         bp, f_obj, BNX2X_F_CMD_SWITCH_UPDATE))
5408                                         break;
5409
5410                         } else {
5411                                 int cmd = BNX2X_SP_RTNL_AFEX_F_UPDATE;
5412
5413                                 DP(BNX2X_MSG_SP | BNX2X_MSG_MCP,
5414                                    "AFEX: ramrod completed FUNCTION_UPDATE\n");
5415                                 f_obj->complete_cmd(bp, f_obj,
5416                                                     BNX2X_F_CMD_AFEX_UPDATE);
5417
5418                                 /* We will perform the Queues update from
5419                                  * sp_rtnl task as all Queue SP operations
5420                                  * should run under rtnl_lock.
5421                                  */
5422                                 bnx2x_schedule_sp_rtnl(bp, cmd, 0);
5423                         }
5424
5425                         goto next_spqe;
5426
5427                 case EVENT_RING_OPCODE_AFEX_VIF_LISTS:
5428                         f_obj->complete_cmd(bp, f_obj,
5429                                             BNX2X_F_CMD_AFEX_VIFLISTS);
5430                         bnx2x_after_afex_vif_lists(bp, elem);
5431                         goto next_spqe;
5432                 case EVENT_RING_OPCODE_FUNCTION_START:
5433                         DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5434                            "got FUNC_START ramrod\n");
5435                         if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_START))
5436                                 break;
5437
5438                         goto next_spqe;
5439
5440                 case EVENT_RING_OPCODE_FUNCTION_STOP:
5441                         DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
5442                            "got FUNC_STOP ramrod\n");
5443                         if (f_obj->complete_cmd(bp, f_obj, BNX2X_F_CMD_STOP))
5444                                 break;
5445
5446                         goto next_spqe;
5447                 }
5448
5449                 switch (opcode | bp->state) {
5450                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5451                       BNX2X_STATE_OPEN):
5452                 case (EVENT_RING_OPCODE_RSS_UPDATE_RULES |
5453                       BNX2X_STATE_OPENING_WAIT4_PORT):
5454                         cid = elem->message.data.eth_event.echo &
5455                                 BNX2X_SWCID_MASK;
5456                         DP(BNX2X_MSG_SP, "got RSS_UPDATE ramrod. CID %d\n",
5457                            cid);
5458                         rss_raw->clear_pending(rss_raw);
5459                         break;
5460
5461                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_OPEN):
5462                 case (EVENT_RING_OPCODE_SET_MAC | BNX2X_STATE_DIAG):
5463                 case (EVENT_RING_OPCODE_SET_MAC |
5464                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5465                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5466                       BNX2X_STATE_OPEN):
5467                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5468                       BNX2X_STATE_DIAG):
5469                 case (EVENT_RING_OPCODE_CLASSIFICATION_RULES |
5470                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5471                         DP(BNX2X_MSG_SP, "got (un)set mac ramrod\n");
5472                         bnx2x_handle_classification_eqe(bp, elem);
5473                         break;
5474
5475                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5476                       BNX2X_STATE_OPEN):
5477                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5478                       BNX2X_STATE_DIAG):
5479                 case (EVENT_RING_OPCODE_MULTICAST_RULES |
5480                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5481                         DP(BNX2X_MSG_SP, "got mcast ramrod\n");
5482                         bnx2x_handle_mcast_eqe(bp);
5483                         break;
5484
5485                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5486                       BNX2X_STATE_OPEN):
5487                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5488                       BNX2X_STATE_DIAG):
5489                 case (EVENT_RING_OPCODE_FILTERS_RULES |
5490                       BNX2X_STATE_CLOSING_WAIT4_HALT):
5491                         DP(BNX2X_MSG_SP, "got rx_mode ramrod\n");
5492                         bnx2x_handle_rx_mode_eqe(bp);
5493                         break;
5494                 default:
5495                         /* unknown event log error and continue */
5496                         BNX2X_ERR("Unknown EQ event %d, bp->state 0x%x\n",
5497                                   elem->message.opcode, bp->state);
5498                 }
5499 next_spqe:
5500                 spqe_cnt++;
5501         } /* for */
5502
5503         smp_mb__before_atomic_inc();
5504         atomic_add(spqe_cnt, &bp->eq_spq_left);
5505
5506         bp->eq_cons = sw_cons;
5507         bp->eq_prod = sw_prod;
5508         /* Make sure that above mem writes were issued towards the memory */
5509         smp_wmb();
5510
5511         /* update producer */
5512         bnx2x_update_eq_prod(bp, bp->eq_prod);
5513 }
5514
5515 static void bnx2x_sp_task(struct work_struct *work)
5516 {
5517         struct bnx2x *bp = container_of(work, struct bnx2x, sp_task.work);
5518
5519         DP(BNX2X_MSG_SP, "sp task invoked\n");
5520
5521         /* make sure the atomic interrupt_occurred has been written */
5522         smp_rmb();
5523         if (atomic_read(&bp->interrupt_occurred)) {
5524
5525                 /* what work needs to be performed? */
5526                 u16 status = bnx2x_update_dsb_idx(bp);
5527
5528                 DP(BNX2X_MSG_SP, "status %x\n", status);
5529                 DP(BNX2X_MSG_SP, "setting interrupt_occurred to 0\n");
5530                 atomic_set(&bp->interrupt_occurred, 0);
5531
5532                 /* HW attentions */
5533                 if (status & BNX2X_DEF_SB_ATT_IDX) {
5534                         bnx2x_attn_int(bp);
5535                         status &= ~BNX2X_DEF_SB_ATT_IDX;
5536                 }
5537
5538                 /* SP events: STAT_QUERY and others */
5539                 if (status & BNX2X_DEF_SB_IDX) {
5540                         struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
5541
5542                 if (FCOE_INIT(bp) &&
5543                             (bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
5544                                 /* Prevent local bottom-halves from running as
5545                                  * we are going to change the local NAPI list.
5546                                  */
5547                                 local_bh_disable();
5548                                 napi_schedule(&bnx2x_fcoe(bp, napi));
5549                                 local_bh_enable();
5550                         }
5551
5552                         /* Handle EQ completions */
5553                         bnx2x_eq_int(bp);
5554                         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID,
5555                                      le16_to_cpu(bp->def_idx), IGU_INT_NOP, 1);
5556
5557                         status &= ~BNX2X_DEF_SB_IDX;
5558                 }
5559
5560                 /* if status is non zero then perhaps something went wrong */
5561                 if (unlikely(status))
5562                         DP(BNX2X_MSG_SP,
5563                            "got an unknown interrupt! (status 0x%x)\n", status);
5564
5565                 /* ack status block only if something was actually handled */
5566                 bnx2x_ack_sb(bp, bp->igu_dsb_id, ATTENTION_ID,
5567                              le16_to_cpu(bp->def_att_idx), IGU_INT_ENABLE, 1);
5568         }
5569
5570         /* afex - poll to check if VIFSET_ACK should be sent to MFW */
5571         if (test_and_clear_bit(BNX2X_AFEX_PENDING_VIFSET_MCP_ACK,
5572                                &bp->sp_state)) {
5573                 bnx2x_link_report(bp);
5574                 bnx2x_fw_command(bp, DRV_MSG_CODE_AFEX_VIFSET_ACK, 0);
5575         }
5576 }
5577
5578 irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance)
5579 {
5580         struct net_device *dev = dev_instance;
5581         struct bnx2x *bp = netdev_priv(dev);
5582
5583         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0,
5584                      IGU_INT_DISABLE, 0);
5585
5586 #ifdef BNX2X_STOP_ON_ERROR
5587         if (unlikely(bp->panic))
5588                 return IRQ_HANDLED;
5589 #endif
5590
5591         if (CNIC_LOADED(bp)) {
5592                 struct cnic_ops *c_ops;
5593
5594                 rcu_read_lock();
5595                 c_ops = rcu_dereference(bp->cnic_ops);
5596                 if (c_ops)
5597                         c_ops->cnic_handler(bp->cnic_data, NULL);
5598                 rcu_read_unlock();
5599         }
5600
5601         /* schedule sp task to perform default status block work, ack
5602          * attentions and enable interrupts.
5603          */
5604         bnx2x_schedule_sp_task(bp);
5605
5606         return IRQ_HANDLED;
5607 }
5608
5609 /* end of slow path */
5610
5611 void bnx2x_drv_pulse(struct bnx2x *bp)
5612 {
5613         SHMEM_WR(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb,
5614                  bp->fw_drv_pulse_wr_seq);
5615 }
5616
5617 static void bnx2x_timer(unsigned long data)
5618 {
5619         struct bnx2x *bp = (struct bnx2x *) data;
5620
5621         if (!netif_running(bp->dev))
5622                 return;
5623
5624         if (IS_PF(bp) &&
5625             !BP_NOMCP(bp)) {
5626                 int mb_idx = BP_FW_MB_IDX(bp);
5627                 u16 drv_pulse;
5628                 u16 mcp_pulse;
5629
5630                 ++bp->fw_drv_pulse_wr_seq;
5631                 bp->fw_drv_pulse_wr_seq &= DRV_PULSE_SEQ_MASK;
5632                 drv_pulse = bp->fw_drv_pulse_wr_seq;
5633                 bnx2x_drv_pulse(bp);
5634
5635                 mcp_pulse = (SHMEM_RD(bp, func_mb[mb_idx].mcp_pulse_mb) &
5636                              MCP_PULSE_SEQ_MASK);
5637                 /* The delta between driver pulse and mcp response
5638                  * should not get too big. If the MFW is more than 5 pulses
5639                  * behind, we should worry about it enough to generate an error
5640                  * log.
5641                  */
5642                 if (((drv_pulse - mcp_pulse) & MCP_PULSE_SEQ_MASK) > 5)
5643                         BNX2X_ERR("MFW seems hanged: drv_pulse (0x%x) != mcp_pulse (0x%x)\n",
5644                                   drv_pulse, mcp_pulse);
5645         }
5646
5647         if (bp->state == BNX2X_STATE_OPEN)
5648                 bnx2x_stats_handle(bp, STATS_EVENT_UPDATE);
5649
5650         /* sample pf vf bulletin board for new posts from pf */
5651         if (IS_VF(bp))
5652                 bnx2x_timer_sriov(bp);
5653
5654         mod_timer(&bp->timer, jiffies + bp->current_interval);
5655 }
5656
5657 /* end of Statistics */
5658
5659 /* nic init */
5660
5661 /*
5662  * nic init service functions
5663  */
5664
5665 static void bnx2x_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
5666 {
5667         u32 i;
5668         if (!(len%4) && !(addr%4))
5669                 for (i = 0; i < len; i += 4)
5670                         REG_WR(bp, addr + i, fill);
5671         else
5672                 for (i = 0; i < len; i++)
5673                         REG_WR8(bp, addr + i, fill);
5674 }
5675
5676 /* helper: writes FP SP data to FW - data_size in dwords */
5677 static void bnx2x_wr_fp_sb_data(struct bnx2x *bp,
5678                                 int fw_sb_id,
5679                                 u32 *sb_data_p,
5680                                 u32 data_size)
5681 {
5682         int index;
5683         for (index = 0; index < data_size; index++)
5684                 REG_WR(bp, BAR_CSTRORM_INTMEM +
5685                         CSTORM_STATUS_BLOCK_DATA_OFFSET(fw_sb_id) +
5686                         sizeof(u32)*index,
5687                         *(sb_data_p + index));
5688 }
5689
5690 static void bnx2x_zero_fp_sb(struct bnx2x *bp, int fw_sb_id)
5691 {
5692         u32 *sb_data_p;
5693         u32 data_size = 0;
5694         struct hc_status_block_data_e2 sb_data_e2;
5695         struct hc_status_block_data_e1x sb_data_e1x;
5696
5697         /* disable the function first */
5698         if (!CHIP_IS_E1x(bp)) {
5699                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5700                 sb_data_e2.common.state = SB_DISABLED;
5701                 sb_data_e2.common.p_func.vf_valid = false;
5702                 sb_data_p = (u32 *)&sb_data_e2;
5703                 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5704         } else {
5705                 memset(&sb_data_e1x, 0,
5706                        sizeof(struct hc_status_block_data_e1x));
5707                 sb_data_e1x.common.state = SB_DISABLED;
5708                 sb_data_e1x.common.p_func.vf_valid = false;
5709                 sb_data_p = (u32 *)&sb_data_e1x;
5710                 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5711         }
5712         bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5713
5714         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5715                         CSTORM_STATUS_BLOCK_OFFSET(fw_sb_id), 0,
5716                         CSTORM_STATUS_BLOCK_SIZE);
5717         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5718                         CSTORM_SYNC_BLOCK_OFFSET(fw_sb_id), 0,
5719                         CSTORM_SYNC_BLOCK_SIZE);
5720 }
5721
5722 /* helper:  writes SP SB data to FW */
5723 static void bnx2x_wr_sp_sb_data(struct bnx2x *bp,
5724                 struct hc_sp_status_block_data *sp_sb_data)
5725 {
5726         int func = BP_FUNC(bp);
5727         int i;
5728         for (i = 0; i < sizeof(struct hc_sp_status_block_data)/sizeof(u32); i++)
5729                 REG_WR(bp, BAR_CSTRORM_INTMEM +
5730                         CSTORM_SP_STATUS_BLOCK_DATA_OFFSET(func) +
5731                         i*sizeof(u32),
5732                         *((u32 *)sp_sb_data + i));
5733 }
5734
5735 static void bnx2x_zero_sp_sb(struct bnx2x *bp)
5736 {
5737         int func = BP_FUNC(bp);
5738         struct hc_sp_status_block_data sp_sb_data;
5739         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5740
5741         sp_sb_data.state = SB_DISABLED;
5742         sp_sb_data.p_func.vf_valid = false;
5743
5744         bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5745
5746         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5747                         CSTORM_SP_STATUS_BLOCK_OFFSET(func), 0,
5748                         CSTORM_SP_STATUS_BLOCK_SIZE);
5749         bnx2x_fill(bp, BAR_CSTRORM_INTMEM +
5750                         CSTORM_SP_SYNC_BLOCK_OFFSET(func), 0,
5751                         CSTORM_SP_SYNC_BLOCK_SIZE);
5752 }
5753
5754 static void bnx2x_setup_ndsb_state_machine(struct hc_status_block_sm *hc_sm,
5755                                            int igu_sb_id, int igu_seg_id)
5756 {
5757         hc_sm->igu_sb_id = igu_sb_id;
5758         hc_sm->igu_seg_id = igu_seg_id;
5759         hc_sm->timer_value = 0xFF;
5760         hc_sm->time_to_expire = 0xFFFFFFFF;
5761 }
5762
5763 /* allocates state machine ids. */
5764 static void bnx2x_map_sb_state_machines(struct hc_index_data *index_data)
5765 {
5766         /* zero out state machine indices */
5767         /* rx indices */
5768         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5769
5770         /* tx indices */
5771         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags &= ~HC_INDEX_DATA_SM_ID;
5772         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags &= ~HC_INDEX_DATA_SM_ID;
5773         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags &= ~HC_INDEX_DATA_SM_ID;
5774         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags &= ~HC_INDEX_DATA_SM_ID;
5775
5776         /* map indices */
5777         /* rx indices */
5778         index_data[HC_INDEX_ETH_RX_CQ_CONS].flags |=
5779                 SM_RX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5780
5781         /* tx indices */
5782         index_data[HC_INDEX_OOO_TX_CQ_CONS].flags |=
5783                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5784         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS0].flags |=
5785                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5786         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS1].flags |=
5787                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5788         index_data[HC_INDEX_ETH_TX_CQ_CONS_COS2].flags |=
5789                 SM_TX_ID << HC_INDEX_DATA_SM_ID_SHIFT;
5790 }
5791
5792 void bnx2x_init_sb(struct bnx2x *bp, dma_addr_t mapping, int vfid,
5793                           u8 vf_valid, int fw_sb_id, int igu_sb_id)
5794 {
5795         int igu_seg_id;
5796
5797         struct hc_status_block_data_e2 sb_data_e2;
5798         struct hc_status_block_data_e1x sb_data_e1x;
5799         struct hc_status_block_sm  *hc_sm_p;
5800         int data_size;
5801         u32 *sb_data_p;
5802
5803         if (CHIP_INT_MODE_IS_BC(bp))
5804                 igu_seg_id = HC_SEG_ACCESS_NORM;
5805         else
5806                 igu_seg_id = IGU_SEG_ACCESS_NORM;
5807
5808         bnx2x_zero_fp_sb(bp, fw_sb_id);
5809
5810         if (!CHIP_IS_E1x(bp)) {
5811                 memset(&sb_data_e2, 0, sizeof(struct hc_status_block_data_e2));
5812                 sb_data_e2.common.state = SB_ENABLED;
5813                 sb_data_e2.common.p_func.pf_id = BP_FUNC(bp);
5814                 sb_data_e2.common.p_func.vf_id = vfid;
5815                 sb_data_e2.common.p_func.vf_valid = vf_valid;
5816                 sb_data_e2.common.p_func.vnic_id = BP_VN(bp);
5817                 sb_data_e2.common.same_igu_sb_1b = true;
5818                 sb_data_e2.common.host_sb_addr.hi = U64_HI(mapping);
5819                 sb_data_e2.common.host_sb_addr.lo = U64_LO(mapping);
5820                 hc_sm_p = sb_data_e2.common.state_machine;
5821                 sb_data_p = (u32 *)&sb_data_e2;
5822                 data_size = sizeof(struct hc_status_block_data_e2)/sizeof(u32);
5823                 bnx2x_map_sb_state_machines(sb_data_e2.index_data);
5824         } else {
5825                 memset(&sb_data_e1x, 0,
5826                        sizeof(struct hc_status_block_data_e1x));
5827                 sb_data_e1x.common.state = SB_ENABLED;
5828                 sb_data_e1x.common.p_func.pf_id = BP_FUNC(bp);
5829                 sb_data_e1x.common.p_func.vf_id = 0xff;
5830                 sb_data_e1x.common.p_func.vf_valid = false;
5831                 sb_data_e1x.common.p_func.vnic_id = BP_VN(bp);
5832                 sb_data_e1x.common.same_igu_sb_1b = true;
5833                 sb_data_e1x.common.host_sb_addr.hi = U64_HI(mapping);
5834                 sb_data_e1x.common.host_sb_addr.lo = U64_LO(mapping);
5835                 hc_sm_p = sb_data_e1x.common.state_machine;
5836                 sb_data_p = (u32 *)&sb_data_e1x;
5837                 data_size = sizeof(struct hc_status_block_data_e1x)/sizeof(u32);
5838                 bnx2x_map_sb_state_machines(sb_data_e1x.index_data);
5839         }
5840
5841         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_RX_ID],
5842                                        igu_sb_id, igu_seg_id);
5843         bnx2x_setup_ndsb_state_machine(&hc_sm_p[SM_TX_ID],
5844                                        igu_sb_id, igu_seg_id);
5845
5846         DP(NETIF_MSG_IFUP, "Init FW SB %d\n", fw_sb_id);
5847
5848         /* write indices to HW - PCI guarantees endianity of regpairs */
5849         bnx2x_wr_fp_sb_data(bp, fw_sb_id, sb_data_p, data_size);
5850 }
5851
5852 static void bnx2x_update_coalesce_sb(struct bnx2x *bp, u8 fw_sb_id,
5853                                      u16 tx_usec, u16 rx_usec)
5854 {
5855         bnx2x_update_coalesce_sb_index(bp, fw_sb_id, HC_INDEX_ETH_RX_CQ_CONS,
5856                                     false, rx_usec);
5857         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5858                                        HC_INDEX_ETH_TX_CQ_CONS_COS0, false,
5859                                        tx_usec);
5860         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5861                                        HC_INDEX_ETH_TX_CQ_CONS_COS1, false,
5862                                        tx_usec);
5863         bnx2x_update_coalesce_sb_index(bp, fw_sb_id,
5864                                        HC_INDEX_ETH_TX_CQ_CONS_COS2, false,
5865                                        tx_usec);
5866 }
5867
5868 static void bnx2x_init_def_sb(struct bnx2x *bp)
5869 {
5870         struct host_sp_status_block *def_sb = bp->def_status_blk;
5871         dma_addr_t mapping = bp->def_status_blk_mapping;
5872         int igu_sp_sb_index;
5873         int igu_seg_id;
5874         int port = BP_PORT(bp);
5875         int func = BP_FUNC(bp);
5876         int reg_offset, reg_offset_en5;
5877         u64 section;
5878         int index;
5879         struct hc_sp_status_block_data sp_sb_data;
5880         memset(&sp_sb_data, 0, sizeof(struct hc_sp_status_block_data));
5881
5882         if (CHIP_INT_MODE_IS_BC(bp)) {
5883                 igu_sp_sb_index = DEF_SB_IGU_ID;
5884                 igu_seg_id = HC_SEG_ACCESS_DEF;
5885         } else {
5886                 igu_sp_sb_index = bp->igu_dsb_id;
5887                 igu_seg_id = IGU_SEG_ACCESS_DEF;
5888         }
5889
5890         /* ATTN */
5891         section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5892                                             atten_status_block);
5893         def_sb->atten_status_block.status_block_id = igu_sp_sb_index;
5894
5895         bp->attn_state = 0;
5896
5897         reg_offset = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
5898                              MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
5899         reg_offset_en5 = (port ? MISC_REG_AEU_ENABLE5_FUNC_1_OUT_0 :
5900                                  MISC_REG_AEU_ENABLE5_FUNC_0_OUT_0);
5901         for (index = 0; index < MAX_DYNAMIC_ATTN_GRPS; index++) {
5902                 int sindex;
5903                 /* take care of sig[0]..sig[4] */
5904                 for (sindex = 0; sindex < 4; sindex++)
5905                         bp->attn_group[index].sig[sindex] =
5906                            REG_RD(bp, reg_offset + sindex*0x4 + 0x10*index);
5907
5908                 if (!CHIP_IS_E1x(bp))
5909                         /*
5910                          * enable5 is separate from the rest of the registers,
5911                          * and therefore the address skip is 4
5912                          * and not 16 between the different groups
5913                          */
5914                         bp->attn_group[index].sig[4] = REG_RD(bp,
5915                                         reg_offset_en5 + 0x4*index);
5916                 else
5917                         bp->attn_group[index].sig[4] = 0;
5918         }
5919
5920         if (bp->common.int_block == INT_BLOCK_HC) {
5921                 reg_offset = (port ? HC_REG_ATTN_MSG1_ADDR_L :
5922                                      HC_REG_ATTN_MSG0_ADDR_L);
5923
5924                 REG_WR(bp, reg_offset, U64_LO(section));
5925                 REG_WR(bp, reg_offset + 4, U64_HI(section));
5926         } else if (!CHIP_IS_E1x(bp)) {
5927                 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_L, U64_LO(section));
5928                 REG_WR(bp, IGU_REG_ATTN_MSG_ADDR_H, U64_HI(section));
5929         }
5930
5931         section = ((u64)mapping) + offsetof(struct host_sp_status_block,
5932                                             sp_sb);
5933
5934         bnx2x_zero_sp_sb(bp);
5935
5936         /* PCI guarantees endianity of regpairs */
5937         sp_sb_data.state                = SB_ENABLED;
5938         sp_sb_data.host_sb_addr.lo      = U64_LO(section);
5939         sp_sb_data.host_sb_addr.hi      = U64_HI(section);
5940         sp_sb_data.igu_sb_id            = igu_sp_sb_index;
5941         sp_sb_data.igu_seg_id           = igu_seg_id;
5942         sp_sb_data.p_func.pf_id         = func;
5943         sp_sb_data.p_func.vnic_id       = BP_VN(bp);
5944         sp_sb_data.p_func.vf_id         = 0xff;
5945
5946         bnx2x_wr_sp_sb_data(bp, &sp_sb_data);
5947
5948         bnx2x_ack_sb(bp, bp->igu_dsb_id, USTORM_ID, 0, IGU_INT_ENABLE, 0);
5949 }
5950
5951 void bnx2x_update_coalesce(struct bnx2x *bp)
5952 {
5953         int i;
5954
5955         for_each_eth_queue(bp, i)
5956                 bnx2x_update_coalesce_sb(bp, bp->fp[i].fw_sb_id,
5957                                          bp->tx_ticks, bp->rx_ticks);
5958 }
5959
5960 static void bnx2x_init_sp_ring(struct bnx2x *bp)
5961 {
5962         spin_lock_init(&bp->spq_lock);
5963         atomic_set(&bp->cq_spq_left, MAX_SPQ_PENDING);
5964
5965         bp->spq_prod_idx = 0;
5966         bp->dsb_sp_prod = BNX2X_SP_DSB_INDEX;
5967         bp->spq_prod_bd = bp->spq;
5968         bp->spq_last_bd = bp->spq_prod_bd + MAX_SP_DESC_CNT;
5969 }
5970
5971 static void bnx2x_init_eq_ring(struct bnx2x *bp)
5972 {
5973         int i;
5974         for (i = 1; i <= NUM_EQ_PAGES; i++) {
5975                 union event_ring_elem *elem =
5976                         &bp->eq_ring[EQ_DESC_CNT_PAGE * i - 1];
5977
5978                 elem->next_page.addr.hi =
5979                         cpu_to_le32(U64_HI(bp->eq_mapping +
5980                                    BCM_PAGE_SIZE * (i % NUM_EQ_PAGES)));
5981                 elem->next_page.addr.lo =
5982                         cpu_to_le32(U64_LO(bp->eq_mapping +
5983                                    BCM_PAGE_SIZE*(i % NUM_EQ_PAGES)));
5984         }
5985         bp->eq_cons = 0;
5986         bp->eq_prod = NUM_EQ_DESC;
5987         bp->eq_cons_sb = BNX2X_EQ_INDEX;
5988         /* we want a warning message before it gets wrought... */
5989         atomic_set(&bp->eq_spq_left,
5990                 min_t(int, MAX_SP_DESC_CNT - MAX_SPQ_PENDING, NUM_EQ_DESC) - 1);
5991 }
5992
5993 /* called with netif_addr_lock_bh() */
5994 static int bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id,
5995                                unsigned long rx_mode_flags,
5996                                unsigned long rx_accept_flags,
5997                                unsigned long tx_accept_flags,
5998                                unsigned long ramrod_flags)
5999 {
6000         struct bnx2x_rx_mode_ramrod_params ramrod_param;
6001         int rc;
6002
6003         memset(&ramrod_param, 0, sizeof(ramrod_param));
6004
6005         /* Prepare ramrod parameters */
6006         ramrod_param.cid = 0;
6007         ramrod_param.cl_id = cl_id;
6008         ramrod_param.rx_mode_obj = &bp->rx_mode_obj;
6009         ramrod_param.func_id = BP_FUNC(bp);
6010
6011         ramrod_param.pstate = &bp->sp_state;
6012         ramrod_param.state = BNX2X_FILTER_RX_MODE_PENDING;
6013
6014         ramrod_param.rdata = bnx2x_sp(bp, rx_mode_rdata);
6015         ramrod_param.rdata_mapping = bnx2x_sp_mapping(bp, rx_mode_rdata);
6016
6017         set_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state);
6018
6019         ramrod_param.ramrod_flags = ramrod_flags;
6020         ramrod_param.rx_mode_flags = rx_mode_flags;
6021
6022         ramrod_param.rx_accept_flags = rx_accept_flags;
6023         ramrod_param.tx_accept_flags = tx_accept_flags;
6024
6025         rc = bnx2x_config_rx_mode(bp, &ramrod_param);
6026         if (rc < 0) {
6027                 BNX2X_ERR("Set rx_mode %d failed\n", bp->rx_mode);
6028                 return rc;
6029         }
6030
6031         return 0;
6032 }
6033
6034 static int bnx2x_fill_accept_flags(struct bnx2x *bp, u32 rx_mode,
6035                                    unsigned long *rx_accept_flags,
6036                                    unsigned long *tx_accept_flags)
6037 {
6038         /* Clear the flags first */
6039         *rx_accept_flags = 0;
6040         *tx_accept_flags = 0;
6041
6042         switch (rx_mode) {
6043         case BNX2X_RX_MODE_NONE:
6044                 /*
6045                  * 'drop all' supersedes any accept flags that may have been
6046                  * passed to the function.
6047                  */
6048                 break;
6049         case BNX2X_RX_MODE_NORMAL:
6050                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6051                 __set_bit(BNX2X_ACCEPT_MULTICAST, rx_accept_flags);
6052                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6053
6054                 /* internal switching mode */
6055                 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6056                 __set_bit(BNX2X_ACCEPT_MULTICAST, tx_accept_flags);
6057                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6058
6059                 break;
6060         case BNX2X_RX_MODE_ALLMULTI:
6061                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6062                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6063                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6064
6065                 /* internal switching mode */
6066                 __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6067                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6068                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6069
6070                 break;
6071         case BNX2X_RX_MODE_PROMISC:
6072                 /* According to definition of SI mode, iface in promisc mode
6073                  * should receive matched and unmatched (in resolution of port)
6074                  * unicast packets.
6075                  */
6076                 __set_bit(BNX2X_ACCEPT_UNMATCHED, rx_accept_flags);
6077                 __set_bit(BNX2X_ACCEPT_UNICAST, rx_accept_flags);
6078                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, rx_accept_flags);
6079                 __set_bit(BNX2X_ACCEPT_BROADCAST, rx_accept_flags);
6080
6081                 /* internal switching mode */
6082                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, tx_accept_flags);
6083                 __set_bit(BNX2X_ACCEPT_BROADCAST, tx_accept_flags);
6084
6085                 if (IS_MF_SI(bp))
6086                         __set_bit(BNX2X_ACCEPT_ALL_UNICAST, tx_accept_flags);
6087                 else
6088                         __set_bit(BNX2X_ACCEPT_UNICAST, tx_accept_flags);
6089
6090                 break;
6091         default:
6092                 BNX2X_ERR("Unknown rx_mode: %d\n", rx_mode);
6093                 return -EINVAL;
6094         }
6095
6096         /* Set ACCEPT_ANY_VLAN as we do not enable filtering by VLAN */
6097         if (bp->rx_mode != BNX2X_RX_MODE_NONE) {
6098                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, rx_accept_flags);
6099                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, tx_accept_flags);
6100         }
6101
6102         return 0;
6103 }
6104
6105 /* called with netif_addr_lock_bh() */
6106 static int bnx2x_set_storm_rx_mode(struct bnx2x *bp)
6107 {
6108         unsigned long rx_mode_flags = 0, ramrod_flags = 0;
6109         unsigned long rx_accept_flags = 0, tx_accept_flags = 0;
6110         int rc;
6111
6112         if (!NO_FCOE(bp))
6113                 /* Configure rx_mode of FCoE Queue */
6114                 __set_bit(BNX2X_RX_MODE_FCOE_ETH, &rx_mode_flags);
6115
6116         rc = bnx2x_fill_accept_flags(bp, bp->rx_mode, &rx_accept_flags,
6117                                      &tx_accept_flags);
6118         if (rc)
6119                 return rc;
6120
6121         __set_bit(RAMROD_RX, &ramrod_flags);
6122         __set_bit(RAMROD_TX, &ramrod_flags);
6123
6124         return bnx2x_set_q_rx_mode(bp, bp->fp->cl_id, rx_mode_flags,
6125                                    rx_accept_flags, tx_accept_flags,
6126                                    ramrod_flags);
6127 }
6128
6129 static void bnx2x_init_internal_common(struct bnx2x *bp)
6130 {
6131         int i;
6132
6133         /* Zero this manually as its initialization is
6134            currently missing in the initTool */
6135         for (i = 0; i < (USTORM_AGG_DATA_SIZE >> 2); i++)
6136                 REG_WR(bp, BAR_USTRORM_INTMEM +
6137                        USTORM_AGG_DATA_OFFSET + i * 4, 0);
6138         if (!CHIP_IS_E1x(bp)) {
6139                 REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_IGU_MODE_OFFSET,
6140                         CHIP_INT_MODE_IS_BC(bp) ?
6141                         HC_IGU_BC_MODE : HC_IGU_NBC_MODE);
6142         }
6143 }
6144
6145 static void bnx2x_init_internal(struct bnx2x *bp, u32 load_code)
6146 {
6147         switch (load_code) {
6148         case FW_MSG_CODE_DRV_LOAD_COMMON:
6149         case FW_MSG_CODE_DRV_LOAD_COMMON_CHIP:
6150                 bnx2x_init_internal_common(bp);
6151                 /* no break */
6152
6153         case FW_MSG_CODE_DRV_LOAD_PORT:
6154                 /* nothing to do */
6155                 /* no break */
6156
6157         case FW_MSG_CODE_DRV_LOAD_FUNCTION:
6158                 /* internal memory per function is
6159                    initialized inside bnx2x_pf_init */
6160                 break;
6161
6162         default:
6163                 BNX2X_ERR("Unknown load_code (0x%x) from MCP\n", load_code);
6164                 break;
6165         }
6166 }
6167
6168 static inline u8 bnx2x_fp_igu_sb_id(struct bnx2x_fastpath *fp)
6169 {
6170         return fp->bp->igu_base_sb + fp->index + CNIC_SUPPORT(fp->bp);
6171 }
6172
6173 static inline u8 bnx2x_fp_fw_sb_id(struct bnx2x_fastpath *fp)
6174 {
6175         return fp->bp->base_fw_ndsb + fp->index + CNIC_SUPPORT(fp->bp);
6176 }
6177
6178 static u8 bnx2x_fp_cl_id(struct bnx2x_fastpath *fp)
6179 {
6180         if (CHIP_IS_E1x(fp->bp))
6181                 return BP_L_ID(fp->bp) + fp->index;
6182         else    /* We want Client ID to be the same as IGU SB ID for 57712 */
6183                 return bnx2x_fp_igu_sb_id(fp);
6184 }
6185
6186 static void bnx2x_init_eth_fp(struct bnx2x *bp, int fp_idx)
6187 {
6188         struct bnx2x_fastpath *fp = &bp->fp[fp_idx];
6189         u8 cos;
6190         unsigned long q_type = 0;
6191         u32 cids[BNX2X_MULTI_TX_COS] = { 0 };
6192         fp->rx_queue = fp_idx;
6193         fp->cid = fp_idx;
6194         fp->cl_id = bnx2x_fp_cl_id(fp);
6195         fp->fw_sb_id = bnx2x_fp_fw_sb_id(fp);
6196         fp->igu_sb_id = bnx2x_fp_igu_sb_id(fp);
6197         /* qZone id equals to FW (per path) client id */
6198         fp->cl_qzone_id  = bnx2x_fp_qzone_id(fp);
6199
6200         /* init shortcut */
6201         fp->ustorm_rx_prods_offset = bnx2x_rx_ustorm_prods_offset(fp);
6202
6203         /* Setup SB indices */
6204         fp->rx_cons_sb = BNX2X_RX_SB_INDEX;
6205
6206         /* Configure Queue State object */
6207         __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6208         __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6209
6210         BUG_ON(fp->max_cos > BNX2X_MULTI_TX_COS);
6211
6212         /* init tx data */
6213         for_each_cos_in_tx_queue(fp, cos) {
6214                 bnx2x_init_txdata(bp, fp->txdata_ptr[cos],
6215                                   CID_COS_TO_TX_ONLY_CID(fp->cid, cos, bp),
6216                                   FP_COS_TO_TXQ(fp, cos, bp),
6217                                   BNX2X_TX_SB_INDEX_BASE + cos, fp);
6218                 cids[cos] = fp->txdata_ptr[cos]->cid;
6219         }
6220
6221         /* nothing more for vf to do here */
6222         if (IS_VF(bp))
6223                 return;
6224
6225         bnx2x_init_sb(bp, fp->status_blk_mapping, BNX2X_VF_ID_INVALID, false,
6226                       fp->fw_sb_id, fp->igu_sb_id);
6227         bnx2x_update_fpsb_idx(fp);
6228         bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id, cids,
6229                              fp->max_cos, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6230                              bnx2x_sp_mapping(bp, q_rdata), q_type);
6231
6232         /**
6233          * Configure classification DBs: Always enable Tx switching
6234          */
6235         bnx2x_init_vlan_mac_fp_objs(fp, BNX2X_OBJ_TYPE_RX_TX);
6236
6237         DP(NETIF_MSG_IFUP,
6238            "queue[%d]:  bnx2x_init_sb(%p,%p)  cl_id %d  fw_sb %d  igu_sb %d\n",
6239            fp_idx, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6240            fp->igu_sb_id);
6241 }
6242
6243 static void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata)
6244 {
6245         int i;
6246
6247         for (i = 1; i <= NUM_TX_RINGS; i++) {
6248                 struct eth_tx_next_bd *tx_next_bd =
6249                         &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd;
6250
6251                 tx_next_bd->addr_hi =
6252                         cpu_to_le32(U64_HI(txdata->tx_desc_mapping +
6253                                     BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6254                 tx_next_bd->addr_lo =
6255                         cpu_to_le32(U64_LO(txdata->tx_desc_mapping +
6256                                     BCM_PAGE_SIZE*(i % NUM_TX_RINGS)));
6257         }
6258
6259         *txdata->tx_cons_sb = cpu_to_le16(0);
6260
6261         SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1);
6262         txdata->tx_db.data.zero_fill1 = 0;
6263         txdata->tx_db.data.prod = 0;
6264
6265         txdata->tx_pkt_prod = 0;
6266         txdata->tx_pkt_cons = 0;
6267         txdata->tx_bd_prod = 0;
6268         txdata->tx_bd_cons = 0;
6269         txdata->tx_pkt = 0;
6270 }
6271
6272 static void bnx2x_init_tx_rings_cnic(struct bnx2x *bp)
6273 {
6274         int i;
6275
6276         for_each_tx_queue_cnic(bp, i)
6277                 bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[0]);
6278 }
6279
6280 static void bnx2x_init_tx_rings(struct bnx2x *bp)
6281 {
6282         int i;
6283         u8 cos;
6284
6285         for_each_eth_queue(bp, i)
6286                 for_each_cos_in_tx_queue(&bp->fp[i], cos)
6287                         bnx2x_init_tx_ring_one(bp->fp[i].txdata_ptr[cos]);
6288 }
6289
6290 static void bnx2x_init_fcoe_fp(struct bnx2x *bp)
6291 {
6292         struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp);
6293         unsigned long q_type = 0;
6294
6295         bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp);
6296         bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp,
6297                                                      BNX2X_FCOE_ETH_CL_ID_IDX);
6298         bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID(bp);
6299         bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID;
6300         bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id;
6301         bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX;
6302         bnx2x_init_txdata(bp, bnx2x_fcoe(bp, txdata_ptr[0]),
6303                           fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX,
6304                           fp);
6305
6306         DP(NETIF_MSG_IFUP, "created fcoe tx data (fp index %d)\n", fp->index);
6307
6308         /* qZone id equals to FW (per path) client id */
6309         bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp);
6310         /* init shortcut */
6311         bnx2x_fcoe(bp, ustorm_rx_prods_offset) =
6312                 bnx2x_rx_ustorm_prods_offset(fp);
6313
6314         /* Configure Queue State object */
6315         __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type);
6316         __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type);
6317
6318         /* No multi-CoS for FCoE L2 client */
6319         BUG_ON(fp->max_cos != 1);
6320
6321         bnx2x_init_queue_obj(bp, &bnx2x_sp_obj(bp, fp).q_obj, fp->cl_id,
6322                              &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata),
6323                              bnx2x_sp_mapping(bp, q_rdata), q_type);
6324
6325         DP(NETIF_MSG_IFUP,
6326            "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d igu_sb %d\n",
6327            fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id,
6328            fp->igu_sb_id);
6329 }
6330
6331 void bnx2x_nic_init_cnic(struct bnx2x *bp)
6332 {
6333         if (!NO_FCOE(bp))
6334                 bnx2x_init_fcoe_fp(bp);
6335
6336         bnx2x_init_sb(bp, bp->cnic_sb_mapping,
6337                       BNX2X_VF_ID_INVALID, false,
6338                       bnx2x_cnic_fw_sb_id(bp), bnx2x_cnic_igu_sb_id(bp));
6339
6340         /* ensure status block indices were read */
6341         rmb();
6342         bnx2x_init_rx_rings_cnic(bp);
6343         bnx2x_init_tx_rings_cnic(bp);
6344
6345         /* flush all */
6346         mb();
6347         mmiowb();
6348 }
6349
6350 void bnx2x_pre_irq_nic_init(struct bnx2x *bp)
6351 {
6352         int i;
6353
6354         /* Setup NIC internals and enable interrupts */
6355         for_each_eth_queue(bp, i)
6356                 bnx2x_init_eth_fp(bp, i);
6357
6358         /* ensure status block indices were read */
6359         rmb();
6360         bnx2x_init_rx_rings(bp);
6361         bnx2x_init_tx_rings(bp);
6362
6363         if (IS_PF(bp)) {
6364                 /* Initialize MOD_ABS interrupts */
6365                 bnx2x_init_mod_abs_int(bp, &bp->link_vars, bp->common.chip_id,
6366                                        bp->common.shmem_base,
6367                                        bp->common.shmem2_base, BP_PORT(bp));
6368
6369                 /* initialize the default status block and sp ring */
6370                 bnx2x_init_def_sb(bp);
6371                 bnx2x_update_dsb_idx(bp);
6372                 bnx2x_init_sp_ring(bp);
6373         } else {
6374                 bnx2x_memset_stats(bp);
6375         }
6376 }
6377
6378 void bnx2x_post_irq_nic_init(struct bnx2x *bp, u32 load_code)
6379 {
6380         bnx2x_init_eq_ring(bp);
6381         bnx2x_init_internal(bp, load_code);
6382         bnx2x_pf_init(bp);
6383         bnx2x_stats_init(bp);
6384
6385         /* flush all before enabling interrupts */
6386         mb();
6387         mmiowb();
6388
6389         bnx2x_int_enable(bp);
6390
6391         /* Check for SPIO5 */
6392         bnx2x_attn_int_deasserted0(bp,
6393                 REG_RD(bp, MISC_REG_AEU_AFTER_INVERT_1_FUNC_0 + BP_PORT(bp)*4) &
6394                                    AEU_INPUTS_ATTN_BITS_SPIO5);
6395 }
6396
6397 /* gzip service functions */
6398 static int bnx2x_gunzip_init(struct bnx2x *bp)
6399 {
6400         bp->gunzip_buf = dma_alloc_coherent(&bp->pdev->dev, FW_BUF_SIZE,
6401                                             &bp->gunzip_mapping, GFP_KERNEL);
6402         if (bp->gunzip_buf  == NULL)
6403                 goto gunzip_nomem1;
6404
6405         bp->strm = kmalloc(sizeof(*bp->strm), GFP_KERNEL);
6406         if (bp->strm  == NULL)
6407                 goto gunzip_nomem2;
6408
6409         bp->strm->workspace = vmalloc(zlib_inflate_workspacesize());
6410         if (bp->strm->workspace == NULL)
6411                 goto gunzip_nomem3;
6412
6413         return 0;
6414
6415 gunzip_nomem3:
6416         kfree(bp->strm);
6417         bp->strm = NULL;
6418
6419 gunzip_nomem2:
6420         dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6421                           bp->gunzip_mapping);
6422         bp->gunzip_buf = NULL;
6423
6424 gunzip_nomem1:
6425         BNX2X_ERR("Cannot allocate firmware buffer for un-compression\n");
6426         return -ENOMEM;
6427 }
6428
6429 static void bnx2x_gunzip_end(struct bnx2x *bp)
6430 {
6431         if (bp->strm) {
6432                 vfree(bp->strm->workspace);
6433                 kfree(bp->strm);
6434                 bp->strm = NULL;
6435         }
6436
6437         if (bp->gunzip_buf) {
6438                 dma_free_coherent(&bp->pdev->dev, FW_BUF_SIZE, bp->gunzip_buf,
6439                                   bp->gunzip_mapping);
6440                 bp->gunzip_buf = NULL;
6441         }
6442 }
6443
6444 static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len)
6445 {
6446         int n, rc;
6447
6448         /* check gzip header */
6449         if ((zbuf[0] != 0x1f) || (zbuf[1] != 0x8b) || (zbuf[2] != Z_DEFLATED)) {
6450                 BNX2X_ERR("Bad gzip header\n");
6451                 return -EINVAL;
6452         }
6453
6454         n = 10;
6455
6456 #define FNAME                           0x8
6457
6458         if (zbuf[3] & FNAME)
6459                 while ((zbuf[n++] != 0) && (n < len));
6460
6461         bp->strm->next_in = (typeof(bp->strm->next_in))zbuf + n;
6462         bp->strm->avail_in = len - n;
6463         bp->strm->next_out = bp->gunzip_buf;
6464         bp->strm->avail_out = FW_BUF_SIZE;
6465
6466         rc = zlib_inflateInit2(bp->strm, -MAX_WBITS);
6467         if (rc != Z_OK)
6468                 return rc;
6469
6470         rc = zlib_inflate(bp->strm, Z_FINISH);
6471         if ((rc != Z_OK) && (rc != Z_STREAM_END))
6472                 netdev_err(bp->dev, "Firmware decompression error: %s\n",
6473                            bp->strm->msg);
6474
6475         bp->gunzip_outlen = (FW_BUF_SIZE - bp->strm->avail_out);
6476         if (bp->gunzip_outlen & 0x3)
6477                 netdev_err(bp->dev,
6478                            "Firmware decompression error: gunzip_outlen (%d) not aligned\n",
6479                                 bp->gunzip_outlen);
6480         bp->gunzip_outlen >>= 2;
6481
6482         zlib_inflateEnd(bp->strm);
6483
6484         if (rc == Z_STREAM_END)
6485                 return 0;
6486
6487         return rc;
6488 }
6489
6490 /* nic load/unload */
6491
6492 /*
6493  * General service functions
6494  */
6495
6496 /* send a NIG loopback debug packet */
6497 static void bnx2x_lb_pckt(struct bnx2x *bp)
6498 {
6499         u32 wb_write[3];
6500
6501         /* Ethernet source and destination addresses */
6502         wb_write[0] = 0x55555555;
6503         wb_write[1] = 0x55555555;
6504         wb_write[2] = 0x20;             /* SOP */
6505         REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6506
6507         /* NON-IP protocol */
6508         wb_write[0] = 0x09000000;
6509         wb_write[1] = 0x55555555;
6510         wb_write[2] = 0x10;             /* EOP, eop_bvalid = 0 */
6511         REG_WR_DMAE(bp, NIG_REG_DEBUG_PACKET_LB, wb_write, 3);
6512 }
6513
6514 /* some of the internal memories
6515  * are not directly readable from the driver
6516  * to test them we send debug packets
6517  */
6518 static int bnx2x_int_mem_test(struct bnx2x *bp)
6519 {
6520         int factor;
6521         int count, i;
6522         u32 val = 0;
6523
6524         if (CHIP_REV_IS_FPGA(bp))
6525                 factor = 120;
6526         else if (CHIP_REV_IS_EMUL(bp))
6527                 factor = 200;
6528         else
6529                 factor = 1;
6530
6531         /* Disable inputs of parser neighbor blocks */
6532         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6533         REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6534         REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6535         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6536
6537         /*  Write 0 to parser credits for CFC search request */
6538         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6539
6540         /* send Ethernet packet */
6541         bnx2x_lb_pckt(bp);
6542
6543         /* TODO do i reset NIG statistic? */
6544         /* Wait until NIG register shows 1 packet of size 0x10 */
6545         count = 1000 * factor;
6546         while (count) {
6547
6548                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6549                 val = *bnx2x_sp(bp, wb_data[0]);
6550                 if (val == 0x10)
6551                         break;
6552
6553                 usleep_range(10000, 20000);
6554                 count--;
6555         }
6556         if (val != 0x10) {
6557                 BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6558                 return -1;
6559         }
6560
6561         /* Wait until PRS register shows 1 packet */
6562         count = 1000 * factor;
6563         while (count) {
6564                 val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6565                 if (val == 1)
6566                         break;
6567
6568                 usleep_range(10000, 20000);
6569                 count--;
6570         }
6571         if (val != 0x1) {
6572                 BNX2X_ERR("PRS timeout val = 0x%x\n", val);
6573                 return -2;
6574         }
6575
6576         /* Reset and init BRB, PRS */
6577         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6578         msleep(50);
6579         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6580         msleep(50);
6581         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6582         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6583
6584         DP(NETIF_MSG_HW, "part2\n");
6585
6586         /* Disable inputs of parser neighbor blocks */
6587         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x0);
6588         REG_WR(bp, TCM_REG_PRS_IFEN, 0x0);
6589         REG_WR(bp, CFC_REG_DEBUG0, 0x1);
6590         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x0);
6591
6592         /* Write 0 to parser credits for CFC search request */
6593         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x0);
6594
6595         /* send 10 Ethernet packets */
6596         for (i = 0; i < 10; i++)
6597                 bnx2x_lb_pckt(bp);
6598
6599         /* Wait until NIG register shows 10 + 1
6600            packets of size 11*0x10 = 0xb0 */
6601         count = 1000 * factor;
6602         while (count) {
6603
6604                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
6605                 val = *bnx2x_sp(bp, wb_data[0]);
6606                 if (val == 0xb0)
6607                         break;
6608
6609                 usleep_range(10000, 20000);
6610                 count--;
6611         }
6612         if (val != 0xb0) {
6613                 BNX2X_ERR("NIG timeout  val = 0x%x\n", val);
6614                 return -3;
6615         }
6616
6617         /* Wait until PRS register shows 2 packets */
6618         val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6619         if (val != 2)
6620                 BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6621
6622         /* Write 1 to parser credits for CFC search request */
6623         REG_WR(bp, PRS_REG_CFC_SEARCH_INITIAL_CREDIT, 0x1);
6624
6625         /* Wait until PRS register shows 3 packets */
6626         msleep(10 * factor);
6627         /* Wait until NIG register shows 1 packet of size 0x10 */
6628         val = REG_RD(bp, PRS_REG_NUM_OF_PACKETS);
6629         if (val != 3)
6630                 BNX2X_ERR("PRS timeout  val = 0x%x\n", val);
6631
6632         /* clear NIG EOP FIFO */
6633         for (i = 0; i < 11; i++)
6634                 REG_RD(bp, NIG_REG_INGRESS_EOP_LB_FIFO);
6635         val = REG_RD(bp, NIG_REG_INGRESS_EOP_LB_EMPTY);
6636         if (val != 1) {
6637                 BNX2X_ERR("clear of NIG failed\n");
6638                 return -4;
6639         }
6640
6641         /* Reset and init BRB, PRS, NIG */
6642         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR, 0x03);
6643         msleep(50);
6644         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0x03);
6645         msleep(50);
6646         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
6647         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
6648         if (!CNIC_SUPPORT(bp))
6649                 /* set NIC mode */
6650                 REG_WR(bp, PRS_REG_NIC_MODE, 1);
6651
6652         /* Enable inputs of parser neighbor blocks */
6653         REG_WR(bp, TSDM_REG_ENABLE_IN1, 0x7fffffff);
6654         REG_WR(bp, TCM_REG_PRS_IFEN, 0x1);
6655         REG_WR(bp, CFC_REG_DEBUG0, 0x0);
6656         REG_WR(bp, NIG_REG_PRS_REQ_IN_EN, 0x1);
6657
6658         DP(NETIF_MSG_HW, "done\n");
6659
6660         return 0; /* OK */
6661 }
6662
6663 static void bnx2x_enable_blocks_attention(struct bnx2x *bp)
6664 {
6665         u32 val;
6666
6667         REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6668         if (!CHIP_IS_E1x(bp))
6669                 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0x40);
6670         else
6671                 REG_WR(bp, PXP_REG_PXP_INT_MASK_1, 0);
6672         REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
6673         REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
6674         /*
6675          * mask read length error interrupts in brb for parser
6676          * (parsing unit and 'checksum and crc' unit)
6677          * these errors are legal (PU reads fixed length and CAC can cause
6678          * read length error on truncated packets)
6679          */
6680         REG_WR(bp, BRB1_REG_BRB1_INT_MASK, 0xFC00);
6681         REG_WR(bp, QM_REG_QM_INT_MASK, 0);
6682         REG_WR(bp, TM_REG_TM_INT_MASK, 0);
6683         REG_WR(bp, XSDM_REG_XSDM_INT_MASK_0, 0);
6684         REG_WR(bp, XSDM_REG_XSDM_INT_MASK_1, 0);
6685         REG_WR(bp, XCM_REG_XCM_INT_MASK, 0);
6686 /*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_0, 0); */
6687 /*      REG_WR(bp, XSEM_REG_XSEM_INT_MASK_1, 0); */
6688         REG_WR(bp, USDM_REG_USDM_INT_MASK_0, 0);
6689         REG_WR(bp, USDM_REG_USDM_INT_MASK_1, 0);
6690         REG_WR(bp, UCM_REG_UCM_INT_MASK, 0);
6691 /*      REG_WR(bp, USEM_REG_USEM_INT_MASK_0, 0); */
6692 /*      REG_WR(bp, USEM_REG_USEM_INT_MASK_1, 0); */
6693         REG_WR(bp, GRCBASE_UPB + PB_REG_PB_INT_MASK, 0);
6694         REG_WR(bp, CSDM_REG_CSDM_INT_MASK_0, 0);
6695         REG_WR(bp, CSDM_REG_CSDM_INT_MASK_1, 0);
6696         REG_WR(bp, CCM_REG_CCM_INT_MASK, 0);
6697 /*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_0, 0); */
6698 /*      REG_WR(bp, CSEM_REG_CSEM_INT_MASK_1, 0); */
6699
6700         val = PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_AFT  |
6701                 PXP2_PXP2_INT_MASK_0_REG_PGL_CPL_OF |
6702                 PXP2_PXP2_INT_MASK_0_REG_PGL_PCIE_ATTN;
6703         if (!CHIP_IS_E1x(bp))
6704                 val |= PXP2_PXP2_INT_MASK_0_REG_PGL_READ_BLOCKED |
6705                         PXP2_PXP2_INT_MASK_0_REG_PGL_WRITE_BLOCKED;
6706         REG_WR(bp, PXP2_REG_PXP2_INT_MASK_0, val);
6707
6708         REG_WR(bp, TSDM_REG_TSDM_INT_MASK_0, 0);
6709         REG_WR(bp, TSDM_REG_TSDM_INT_MASK_1, 0);
6710         REG_WR(bp, TCM_REG_TCM_INT_MASK, 0);
6711 /*      REG_WR(bp, TSEM_REG_TSEM_INT_MASK_0, 0); */
6712
6713         if (!CHIP_IS_E1x(bp))
6714                 /* enable VFC attentions: bits 11 and 12, bits 31:13 reserved */
6715                 REG_WR(bp, TSEM_REG_TSEM_INT_MASK_1, 0x07ff);
6716
6717         REG_WR(bp, CDU_REG_CDU_INT_MASK, 0);
6718         REG_WR(bp, DMAE_REG_DMAE_INT_MASK, 0);
6719 /*      REG_WR(bp, MISC_REG_MISC_INT_MASK, 0); */
6720         REG_WR(bp, PBF_REG_PBF_INT_MASK, 0x18);         /* bit 3,4 masked */
6721 }
6722
6723 static void bnx2x_reset_common(struct bnx2x *bp)
6724 {
6725         u32 val = 0x1400;
6726
6727         /* reset_common */
6728         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
6729                0xd3ffff7f);
6730
6731         if (CHIP_IS_E3(bp)) {
6732                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6733                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6734         }
6735
6736         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR, val);
6737 }
6738
6739 static void bnx2x_setup_dmae(struct bnx2x *bp)
6740 {
6741         bp->dmae_ready = 0;
6742         spin_lock_init(&bp->dmae_lock);
6743 }
6744
6745 static void bnx2x_init_pxp(struct bnx2x *bp)
6746 {
6747         u16 devctl;
6748         int r_order, w_order;
6749
6750         pcie_capability_read_word(bp->pdev, PCI_EXP_DEVCTL, &devctl);
6751         DP(NETIF_MSG_HW, "read 0x%x from devctl\n", devctl);
6752         w_order = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
6753         if (bp->mrrs == -1)
6754                 r_order = ((devctl & PCI_EXP_DEVCTL_READRQ) >> 12);
6755         else {
6756                 DP(NETIF_MSG_HW, "force read order to %d\n", bp->mrrs);
6757                 r_order = bp->mrrs;
6758         }
6759
6760         bnx2x_init_pxp_arb(bp, r_order, w_order);
6761 }
6762
6763 static void bnx2x_setup_fan_failure_detection(struct bnx2x *bp)
6764 {
6765         int is_required;
6766         u32 val;
6767         int port;
6768
6769         if (BP_NOMCP(bp))
6770                 return;
6771
6772         is_required = 0;
6773         val = SHMEM_RD(bp, dev_info.shared_hw_config.config2) &
6774               SHARED_HW_CFG_FAN_FAILURE_MASK;
6775
6776         if (val == SHARED_HW_CFG_FAN_FAILURE_ENABLED)
6777                 is_required = 1;
6778
6779         /*
6780          * The fan failure mechanism is usually related to the PHY type since
6781          * the power consumption of the board is affected by the PHY. Currently,
6782          * fan is required for most designs with SFX7101, BCM8727 and BCM8481.
6783          */
6784         else if (val == SHARED_HW_CFG_FAN_FAILURE_PHY_TYPE)
6785                 for (port = PORT_0; port < PORT_MAX; port++) {
6786                         is_required |=
6787                                 bnx2x_fan_failure_det_req(
6788                                         bp,
6789                                         bp->common.shmem_base,
6790                                         bp->common.shmem2_base,
6791                                         port);
6792                 }
6793
6794         DP(NETIF_MSG_HW, "fan detection setting: %d\n", is_required);
6795
6796         if (is_required == 0)
6797                 return;
6798
6799         /* Fan failure is indicated by SPIO 5 */
6800         bnx2x_set_spio(bp, MISC_SPIO_SPIO5, MISC_SPIO_INPUT_HI_Z);
6801
6802         /* set to active low mode */
6803         val = REG_RD(bp, MISC_REG_SPIO_INT);
6804         val |= (MISC_SPIO_SPIO5 << MISC_SPIO_INT_OLD_SET_POS);
6805         REG_WR(bp, MISC_REG_SPIO_INT, val);
6806
6807         /* enable interrupt to signal the IGU */
6808         val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
6809         val |= MISC_SPIO_SPIO5;
6810         REG_WR(bp, MISC_REG_SPIO_EVENT_EN, val);
6811 }
6812
6813 void bnx2x_pf_disable(struct bnx2x *bp)
6814 {
6815         u32 val = REG_RD(bp, IGU_REG_PF_CONFIGURATION);
6816         val &= ~IGU_PF_CONF_FUNC_EN;
6817
6818         REG_WR(bp, IGU_REG_PF_CONFIGURATION, val);
6819         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6820         REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 0);
6821 }
6822
6823 static void bnx2x__common_init_phy(struct bnx2x *bp)
6824 {
6825         u32 shmem_base[2], shmem2_base[2];
6826         /* Avoid common init in case MFW supports LFA */
6827         if (SHMEM2_RD(bp, size) >
6828             (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
6829                 return;
6830         shmem_base[0] =  bp->common.shmem_base;
6831         shmem2_base[0] = bp->common.shmem2_base;
6832         if (!CHIP_IS_E1x(bp)) {
6833                 shmem_base[1] =
6834                         SHMEM2_RD(bp, other_shmem_base_addr);
6835                 shmem2_base[1] =
6836                         SHMEM2_RD(bp, other_shmem2_base_addr);
6837         }
6838         bnx2x_acquire_phy_lock(bp);
6839         bnx2x_common_init_phy(bp, shmem_base, shmem2_base,
6840                               bp->common.chip_id);
6841         bnx2x_release_phy_lock(bp);
6842 }
6843
6844 /**
6845  * bnx2x_init_hw_common - initialize the HW at the COMMON phase.
6846  *
6847  * @bp:         driver handle
6848  */
6849 static int bnx2x_init_hw_common(struct bnx2x *bp)
6850 {
6851         u32 val;
6852
6853         DP(NETIF_MSG_HW, "starting common init  func %d\n", BP_ABS_FUNC(bp));
6854
6855         /*
6856          * take the RESET lock to protect undi_unload flow from accessing
6857          * registers while we're resetting the chip
6858          */
6859         bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6860
6861         bnx2x_reset_common(bp);
6862         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, 0xffffffff);
6863
6864         val = 0xfffc;
6865         if (CHIP_IS_E3(bp)) {
6866                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT0;
6867                 val |= MISC_REGISTERS_RESET_REG_2_MSTAT1;
6868         }
6869         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET, val);
6870
6871         bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
6872
6873         bnx2x_init_block(bp, BLOCK_MISC, PHASE_COMMON);
6874
6875         if (!CHIP_IS_E1x(bp)) {
6876                 u8 abs_func_id;
6877
6878                 /**
6879                  * 4-port mode or 2-port mode we need to turn of master-enable
6880                  * for everyone, after that, turn it back on for self.
6881                  * so, we disregard multi-function or not, and always disable
6882                  * for all functions on the given path, this means 0,2,4,6 for
6883                  * path 0 and 1,3,5,7 for path 1
6884                  */
6885                 for (abs_func_id = BP_PATH(bp);
6886                      abs_func_id < E2_FUNC_MAX*2; abs_func_id += 2) {
6887                         if (abs_func_id == BP_ABS_FUNC(bp)) {
6888                                 REG_WR(bp,
6889                                     PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER,
6890                                     1);
6891                                 continue;
6892                         }
6893
6894                         bnx2x_pretend_func(bp, abs_func_id);
6895                         /* clear pf enable */
6896                         bnx2x_pf_disable(bp);
6897                         bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
6898                 }
6899         }
6900
6901         bnx2x_init_block(bp, BLOCK_PXP, PHASE_COMMON);
6902         if (CHIP_IS_E1(bp)) {
6903                 /* enable HW interrupt from PXP on USDM overflow
6904                    bit 16 on INT_MASK_0 */
6905                 REG_WR(bp, PXP_REG_PXP_INT_MASK_0, 0);
6906         }
6907
6908         bnx2x_init_block(bp, BLOCK_PXP2, PHASE_COMMON);
6909         bnx2x_init_pxp(bp);
6910
6911 #ifdef __BIG_ENDIAN
6912         REG_WR(bp, PXP2_REG_RQ_QM_ENDIAN_M, 1);
6913         REG_WR(bp, PXP2_REG_RQ_TM_ENDIAN_M, 1);
6914         REG_WR(bp, PXP2_REG_RQ_SRC_ENDIAN_M, 1);
6915         REG_WR(bp, PXP2_REG_RQ_CDU_ENDIAN_M, 1);
6916         REG_WR(bp, PXP2_REG_RQ_DBG_ENDIAN_M, 1);
6917         /* make sure this value is 0 */
6918         REG_WR(bp, PXP2_REG_RQ_HC_ENDIAN_M, 0);
6919
6920 /*      REG_WR(bp, PXP2_REG_RD_PBF_SWAP_MODE, 1); */
6921         REG_WR(bp, PXP2_REG_RD_QM_SWAP_MODE, 1);
6922         REG_WR(bp, PXP2_REG_RD_TM_SWAP_MODE, 1);
6923         REG_WR(bp, PXP2_REG_RD_SRC_SWAP_MODE, 1);
6924         REG_WR(bp, PXP2_REG_RD_CDURD_SWAP_MODE, 1);
6925 #endif
6926
6927         bnx2x_ilt_init_page_size(bp, INITOP_SET);
6928
6929         if (CHIP_REV_IS_FPGA(bp) && CHIP_IS_E1H(bp))
6930                 REG_WR(bp, PXP2_REG_PGL_TAGS_LIMIT, 0x1);
6931
6932         /* let the HW do it's magic ... */
6933         msleep(100);
6934         /* finish PXP init */
6935         val = REG_RD(bp, PXP2_REG_RQ_CFG_DONE);
6936         if (val != 1) {
6937                 BNX2X_ERR("PXP2 CFG failed\n");
6938                 return -EBUSY;
6939         }
6940         val = REG_RD(bp, PXP2_REG_RD_INIT_DONE);
6941         if (val != 1) {
6942                 BNX2X_ERR("PXP2 RD_INIT failed\n");
6943                 return -EBUSY;
6944         }
6945
6946         /* Timers bug workaround E2 only. We need to set the entire ILT to
6947          * have entries with value "0" and valid bit on.
6948          * This needs to be done by the first PF that is loaded in a path
6949          * (i.e. common phase)
6950          */
6951         if (!CHIP_IS_E1x(bp)) {
6952 /* In E2 there is a bug in the timers block that can cause function 6 / 7
6953  * (i.e. vnic3) to start even if it is marked as "scan-off".
6954  * This occurs when a different function (func2,3) is being marked
6955  * as "scan-off". Real-life scenario for example: if a driver is being
6956  * load-unloaded while func6,7 are down. This will cause the timer to access
6957  * the ilt, translate to a logical address and send a request to read/write.
6958  * Since the ilt for the function that is down is not valid, this will cause
6959  * a translation error which is unrecoverable.
6960  * The Workaround is intended to make sure that when this happens nothing fatal
6961  * will occur. The workaround:
6962  *      1.  First PF driver which loads on a path will:
6963  *              a.  After taking the chip out of reset, by using pretend,
6964  *                  it will write "0" to the following registers of
6965  *                  the other vnics.
6966  *                  REG_WR(pdev, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
6967  *                  REG_WR(pdev, CFC_REG_WEAK_ENABLE_PF,0);
6968  *                  REG_WR(pdev, CFC_REG_STRONG_ENABLE_PF,0);
6969  *                  And for itself it will write '1' to
6970  *                  PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER to enable
6971  *                  dmae-operations (writing to pram for example.)
6972  *                  note: can be done for only function 6,7 but cleaner this
6973  *                        way.
6974  *              b.  Write zero+valid to the entire ILT.
6975  *              c.  Init the first_timers_ilt_entry, last_timers_ilt_entry of
6976  *                  VNIC3 (of that port). The range allocated will be the
6977  *                  entire ILT. This is needed to prevent  ILT range error.
6978  *      2.  Any PF driver load flow:
6979  *              a.  ILT update with the physical addresses of the allocated
6980  *                  logical pages.
6981  *              b.  Wait 20msec. - note that this timeout is needed to make
6982  *                  sure there are no requests in one of the PXP internal
6983  *                  queues with "old" ILT addresses.
6984  *              c.  PF enable in the PGLC.
6985  *              d.  Clear the was_error of the PF in the PGLC. (could have
6986  *                  occurred while driver was down)
6987  *              e.  PF enable in the CFC (WEAK + STRONG)
6988  *              f.  Timers scan enable
6989  *      3.  PF driver unload flow:
6990  *              a.  Clear the Timers scan_en.
6991  *              b.  Polling for scan_on=0 for that PF.
6992  *              c.  Clear the PF enable bit in the PXP.
6993  *              d.  Clear the PF enable in the CFC (WEAK + STRONG)
6994  *              e.  Write zero+valid to all ILT entries (The valid bit must
6995  *                  stay set)
6996  *              f.  If this is VNIC 3 of a port then also init
6997  *                  first_timers_ilt_entry to zero and last_timers_ilt_entry
6998  *                  to the last entry in the ILT.
6999  *
7000  *      Notes:
7001  *      Currently the PF error in the PGLC is non recoverable.
7002  *      In the future the there will be a recovery routine for this error.
7003  *      Currently attention is masked.
7004  *      Having an MCP lock on the load/unload process does not guarantee that
7005  *      there is no Timer disable during Func6/7 enable. This is because the
7006  *      Timers scan is currently being cleared by the MCP on FLR.
7007  *      Step 2.d can be done only for PF6/7 and the driver can also check if
7008  *      there is error before clearing it. But the flow above is simpler and
7009  *      more general.
7010  *      All ILT entries are written by zero+valid and not just PF6/7
7011  *      ILT entries since in the future the ILT entries allocation for
7012  *      PF-s might be dynamic.
7013  */
7014                 struct ilt_client_info ilt_cli;
7015                 struct bnx2x_ilt ilt;
7016                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
7017                 memset(&ilt, 0, sizeof(struct bnx2x_ilt));
7018
7019                 /* initialize dummy TM client */
7020                 ilt_cli.start = 0;
7021                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
7022                 ilt_cli.client_num = ILT_CLIENT_TM;
7023
7024                 /* Step 1: set zeroes to all ilt page entries with valid bit on
7025                  * Step 2: set the timers first/last ilt entry to point
7026                  * to the entire range to prevent ILT range error for 3rd/4th
7027                  * vnic (this code assumes existence of the vnic)
7028                  *
7029                  * both steps performed by call to bnx2x_ilt_client_init_op()
7030                  * with dummy TM client
7031                  *
7032                  * we must use pretend since PXP2_REG_RQ_##blk##_FIRST_ILT
7033                  * and his brother are split registers
7034                  */
7035                 bnx2x_pretend_func(bp, (BP_PATH(bp) + 6));
7036                 bnx2x_ilt_client_init_op_ilt(bp, &ilt, &ilt_cli, INITOP_CLEAR);
7037                 bnx2x_pretend_func(bp, BP_ABS_FUNC(bp));
7038
7039                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN, BNX2X_PXP_DRAM_ALIGN);
7040                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_RD, BNX2X_PXP_DRAM_ALIGN);
7041                 REG_WR(bp, PXP2_REG_RQ_DRAM_ALIGN_SEL, 1);
7042         }
7043
7044         REG_WR(bp, PXP2_REG_RQ_DISABLE_INPUTS, 0);
7045         REG_WR(bp, PXP2_REG_RD_DISABLE_INPUTS, 0);
7046
7047         if (!CHIP_IS_E1x(bp)) {
7048                 int factor = CHIP_REV_IS_EMUL(bp) ? 1000 :
7049                                 (CHIP_REV_IS_FPGA(bp) ? 400 : 0);
7050                 bnx2x_init_block(bp, BLOCK_PGLUE_B, PHASE_COMMON);
7051
7052                 bnx2x_init_block(bp, BLOCK_ATC, PHASE_COMMON);
7053
7054                 /* let the HW do it's magic ... */
7055                 do {
7056                         msleep(200);
7057                         val = REG_RD(bp, ATC_REG_ATC_INIT_DONE);
7058                 } while (factor-- && (val != 1));
7059
7060                 if (val != 1) {
7061                         BNX2X_ERR("ATC_INIT failed\n");
7062                         return -EBUSY;
7063                 }
7064         }
7065
7066         bnx2x_init_block(bp, BLOCK_DMAE, PHASE_COMMON);
7067
7068         bnx2x_iov_init_dmae(bp);
7069
7070         /* clean the DMAE memory */
7071         bp->dmae_ready = 1;
7072         bnx2x_init_fill(bp, TSEM_REG_PRAM, 0, 8, 1);
7073
7074         bnx2x_init_block(bp, BLOCK_TCM, PHASE_COMMON);
7075
7076         bnx2x_init_block(bp, BLOCK_UCM, PHASE_COMMON);
7077
7078         bnx2x_init_block(bp, BLOCK_CCM, PHASE_COMMON);
7079
7080         bnx2x_init_block(bp, BLOCK_XCM, PHASE_COMMON);
7081
7082         bnx2x_read_dmae(bp, XSEM_REG_PASSIVE_BUFFER, 3);
7083         bnx2x_read_dmae(bp, CSEM_REG_PASSIVE_BUFFER, 3);
7084         bnx2x_read_dmae(bp, TSEM_REG_PASSIVE_BUFFER, 3);
7085         bnx2x_read_dmae(bp, USEM_REG_PASSIVE_BUFFER, 3);
7086
7087         bnx2x_init_block(bp, BLOCK_QM, PHASE_COMMON);
7088
7089         /* QM queues pointers table */
7090         bnx2x_qm_init_ptr_table(bp, bp->qm_cid_count, INITOP_SET);
7091
7092         /* soft reset pulse */
7093         REG_WR(bp, QM_REG_SOFT_RESET, 1);
7094         REG_WR(bp, QM_REG_SOFT_RESET, 0);
7095
7096         if (CNIC_SUPPORT(bp))
7097                 bnx2x_init_block(bp, BLOCK_TM, PHASE_COMMON);
7098
7099         bnx2x_init_block(bp, BLOCK_DORQ, PHASE_COMMON);
7100
7101         if (!CHIP_REV_IS_SLOW(bp))
7102                 /* enable hw interrupt from doorbell Q */
7103                 REG_WR(bp, DORQ_REG_DORQ_INT_MASK, 0);
7104
7105         bnx2x_init_block(bp, BLOCK_BRB1, PHASE_COMMON);
7106
7107         bnx2x_init_block(bp, BLOCK_PRS, PHASE_COMMON);
7108         REG_WR(bp, PRS_REG_A_PRSU_20, 0xf);
7109
7110         if (!CHIP_IS_E1(bp))
7111                 REG_WR(bp, PRS_REG_E1HOV_MODE, bp->path_has_ovlan);
7112
7113         if (!CHIP_IS_E1x(bp) && !CHIP_IS_E3B0(bp)) {
7114                 if (IS_MF_AFEX(bp)) {
7115                         /* configure that VNTag and VLAN headers must be
7116                          * received in afex mode
7117                          */
7118                         REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC, 0xE);
7119                         REG_WR(bp, PRS_REG_MUST_HAVE_HDRS, 0xA);
7120                         REG_WR(bp, PRS_REG_HDRS_AFTER_TAG_0, 0x6);
7121                         REG_WR(bp, PRS_REG_TAG_ETHERTYPE_0, 0x8926);
7122                         REG_WR(bp, PRS_REG_TAG_LEN_0, 0x4);
7123                 } else {
7124                         /* Bit-map indicating which L2 hdrs may appear
7125                          * after the basic Ethernet header
7126                          */
7127                         REG_WR(bp, PRS_REG_HDRS_AFTER_BASIC,
7128                                bp->path_has_ovlan ? 7 : 6);
7129                 }
7130         }
7131
7132         bnx2x_init_block(bp, BLOCK_TSDM, PHASE_COMMON);
7133         bnx2x_init_block(bp, BLOCK_CSDM, PHASE_COMMON);
7134         bnx2x_init_block(bp, BLOCK_USDM, PHASE_COMMON);
7135         bnx2x_init_block(bp, BLOCK_XSDM, PHASE_COMMON);
7136
7137         if (!CHIP_IS_E1x(bp)) {
7138                 /* reset VFC memories */
7139                 REG_WR(bp, TSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7140                            VFC_MEMORIES_RST_REG_CAM_RST |
7141                            VFC_MEMORIES_RST_REG_RAM_RST);
7142                 REG_WR(bp, XSEM_REG_FAST_MEMORY + VFC_REG_MEMORIES_RST,
7143                            VFC_MEMORIES_RST_REG_CAM_RST |
7144                            VFC_MEMORIES_RST_REG_RAM_RST);
7145
7146                 msleep(20);
7147         }
7148
7149         bnx2x_init_block(bp, BLOCK_TSEM, PHASE_COMMON);
7150         bnx2x_init_block(bp, BLOCK_USEM, PHASE_COMMON);
7151         bnx2x_init_block(bp, BLOCK_CSEM, PHASE_COMMON);
7152         bnx2x_init_block(bp, BLOCK_XSEM, PHASE_COMMON);
7153
7154         /* sync semi rtc */
7155         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
7156                0x80000000);
7157         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET,
7158                0x80000000);
7159
7160         bnx2x_init_block(bp, BLOCK_UPB, PHASE_COMMON);
7161         bnx2x_init_block(bp, BLOCK_XPB, PHASE_COMMON);
7162         bnx2x_init_block(bp, BLOCK_PBF, PHASE_COMMON);
7163
7164         if (!CHIP_IS_E1x(bp)) {
7165                 if (IS_MF_AFEX(bp)) {
7166                         /* configure that VNTag and VLAN headers must be
7167                          * sent in afex mode
7168                          */
7169                         REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC, 0xE);
7170                         REG_WR(bp, PBF_REG_MUST_HAVE_HDRS, 0xA);
7171                         REG_WR(bp, PBF_REG_HDRS_AFTER_TAG_0, 0x6);
7172                         REG_WR(bp, PBF_REG_TAG_ETHERTYPE_0, 0x8926);
7173                         REG_WR(bp, PBF_REG_TAG_LEN_0, 0x4);
7174                 } else {
7175                         REG_WR(bp, PBF_REG_HDRS_AFTER_BASIC,
7176                                bp->path_has_ovlan ? 7 : 6);
7177                 }
7178         }
7179
7180         REG_WR(bp, SRC_REG_SOFT_RST, 1);
7181
7182         bnx2x_init_block(bp, BLOCK_SRC, PHASE_COMMON);
7183
7184         if (CNIC_SUPPORT(bp)) {
7185                 REG_WR(bp, SRC_REG_KEYSEARCH_0, 0x63285672);
7186                 REG_WR(bp, SRC_REG_KEYSEARCH_1, 0x24b8f2cc);
7187                 REG_WR(bp, SRC_REG_KEYSEARCH_2, 0x223aef9b);
7188                 REG_WR(bp, SRC_REG_KEYSEARCH_3, 0x26001e3a);
7189                 REG_WR(bp, SRC_REG_KEYSEARCH_4, 0x7ae91116);
7190                 REG_WR(bp, SRC_REG_KEYSEARCH_5, 0x5ce5230b);
7191                 REG_WR(bp, SRC_REG_KEYSEARCH_6, 0x298d8adf);
7192                 REG_WR(bp, SRC_REG_KEYSEARCH_7, 0x6eb0ff09);
7193                 REG_WR(bp, SRC_REG_KEYSEARCH_8, 0x1830f82f);
7194                 REG_WR(bp, SRC_REG_KEYSEARCH_9, 0x01e46be7);
7195         }
7196         REG_WR(bp, SRC_REG_SOFT_RST, 0);
7197
7198         if (sizeof(union cdu_context) != 1024)
7199                 /* we currently assume that a context is 1024 bytes */
7200                 dev_alert(&bp->pdev->dev,
7201                           "please adjust the size of cdu_context(%ld)\n",
7202                           (long)sizeof(union cdu_context));
7203
7204         bnx2x_init_block(bp, BLOCK_CDU, PHASE_COMMON);
7205         val = (4 << 24) + (0 << 12) + 1024;
7206         REG_WR(bp, CDU_REG_CDU_GLOBAL_PARAMS, val);
7207
7208         bnx2x_init_block(bp, BLOCK_CFC, PHASE_COMMON);
7209         REG_WR(bp, CFC_REG_INIT_REG, 0x7FF);
7210         /* enable context validation interrupt from CFC */
7211         REG_WR(bp, CFC_REG_CFC_INT_MASK, 0);
7212
7213         /* set the thresholds to prevent CFC/CDU race */
7214         REG_WR(bp, CFC_REG_DEBUG0, 0x20020000);
7215
7216         bnx2x_init_block(bp, BLOCK_HC, PHASE_COMMON);
7217
7218         if (!CHIP_IS_E1x(bp) && BP_NOMCP(bp))
7219                 REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x36);
7220
7221         bnx2x_init_block(bp, BLOCK_IGU, PHASE_COMMON);
7222         bnx2x_init_block(bp, BLOCK_MISC_AEU, PHASE_COMMON);
7223
7224         /* Reset PCIE errors for debug */
7225         REG_WR(bp, 0x2814, 0xffffffff);
7226         REG_WR(bp, 0x3820, 0xffffffff);
7227
7228         if (!CHIP_IS_E1x(bp)) {
7229                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_CONTROL_5,
7230                            (PXPCS_TL_CONTROL_5_ERR_UNSPPORT1 |
7231                                 PXPCS_TL_CONTROL_5_ERR_UNSPPORT));
7232                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC345_STAT,
7233                            (PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT4 |
7234                                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT3 |
7235                                 PXPCS_TL_FUNC345_STAT_ERR_UNSPPORT2));
7236                 REG_WR(bp, PCICFG_OFFSET + PXPCS_TL_FUNC678_STAT,
7237                            (PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT7 |
7238                                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT6 |
7239                                 PXPCS_TL_FUNC678_STAT_ERR_UNSPPORT5));
7240         }
7241
7242         bnx2x_init_block(bp, BLOCK_NIG, PHASE_COMMON);
7243         if (!CHIP_IS_E1(bp)) {
7244                 /* in E3 this done in per-port section */
7245                 if (!CHIP_IS_E3(bp))
7246                         REG_WR(bp, NIG_REG_LLH_MF_MODE, IS_MF(bp));
7247         }
7248         if (CHIP_IS_E1H(bp))
7249                 /* not applicable for E2 (and above ...) */
7250                 REG_WR(bp, NIG_REG_LLH_E1HOV_MODE, IS_MF_SD(bp));
7251
7252         if (CHIP_REV_IS_SLOW(bp))
7253                 msleep(200);
7254
7255         /* finish CFC init */
7256         val = reg_poll(bp, CFC_REG_LL_INIT_DONE, 1, 100, 10);
7257         if (val != 1) {
7258                 BNX2X_ERR("CFC LL_INIT failed\n");
7259                 return -EBUSY;
7260         }
7261         val = reg_poll(bp, CFC_REG_AC_INIT_DONE, 1, 100, 10);
7262         if (val != 1) {
7263                 BNX2X_ERR("CFC AC_INIT failed\n");
7264                 return -EBUSY;
7265         }
7266         val = reg_poll(bp, CFC_REG_CAM_INIT_DONE, 1, 100, 10);
7267         if (val != 1) {
7268                 BNX2X_ERR("CFC CAM_INIT failed\n");
7269                 return -EBUSY;
7270         }
7271         REG_WR(bp, CFC_REG_DEBUG0, 0);
7272
7273         if (CHIP_IS_E1(bp)) {
7274                 /* read NIG statistic
7275                    to see if this is our first up since powerup */
7276                 bnx2x_read_dmae(bp, NIG_REG_STAT2_BRB_OCTET, 2);
7277                 val = *bnx2x_sp(bp, wb_data[0]);
7278
7279                 /* do internal memory self test */
7280                 if ((val == 0) && bnx2x_int_mem_test(bp)) {
7281                         BNX2X_ERR("internal mem self test failed\n");
7282                         return -EBUSY;
7283                 }
7284         }
7285
7286         bnx2x_setup_fan_failure_detection(bp);
7287
7288         /* clear PXP2 attentions */
7289         REG_RD(bp, PXP2_REG_PXP2_INT_STS_CLR_0);
7290
7291         bnx2x_enable_blocks_attention(bp);
7292         bnx2x_enable_blocks_parity(bp);
7293
7294         if (!BP_NOMCP(bp)) {
7295                 if (CHIP_IS_E1x(bp))
7296                         bnx2x__common_init_phy(bp);
7297         } else
7298                 BNX2X_ERR("Bootcode is missing - can not initialize link\n");
7299
7300         return 0;
7301 }
7302
7303 /**
7304  * bnx2x_init_hw_common_chip - init HW at the COMMON_CHIP phase.
7305  *
7306  * @bp:         driver handle
7307  */
7308 static int bnx2x_init_hw_common_chip(struct bnx2x *bp)
7309 {
7310         int rc = bnx2x_init_hw_common(bp);
7311
7312         if (rc)
7313                 return rc;
7314
7315         /* In E2 2-PORT mode, same ext phy is used for the two paths */
7316         if (!BP_NOMCP(bp))
7317                 bnx2x__common_init_phy(bp);
7318
7319         return 0;
7320 }
7321
7322 static int bnx2x_init_hw_port(struct bnx2x *bp)
7323 {
7324         int port = BP_PORT(bp);
7325         int init_phase = port ? PHASE_PORT1 : PHASE_PORT0;
7326         u32 low, high;
7327         u32 val, reg;
7328
7329         DP(NETIF_MSG_HW, "starting port init  port %d\n", port);
7330
7331         REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
7332
7333         bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7334         bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7335         bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7336
7337         /* Timers bug workaround: disables the pf_master bit in pglue at
7338          * common phase, we need to enable it here before any dmae access are
7339          * attempted. Therefore we manually added the enable-master to the
7340          * port phase (it also happens in the function phase)
7341          */
7342         if (!CHIP_IS_E1x(bp))
7343                 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7344
7345         bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7346         bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7347         bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7348         bnx2x_init_block(bp, BLOCK_QM, init_phase);
7349
7350         bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7351         bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7352         bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7353         bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7354
7355         /* QM cid (connection) count */
7356         bnx2x_qm_init_cid_count(bp, bp->qm_cid_count, INITOP_SET);
7357
7358         if (CNIC_SUPPORT(bp)) {
7359                 bnx2x_init_block(bp, BLOCK_TM, init_phase);
7360                 REG_WR(bp, TM_REG_LIN0_SCAN_TIME + port*4, 20);
7361                 REG_WR(bp, TM_REG_LIN0_MAX_ACTIVE_CID + port*4, 31);
7362         }
7363
7364         bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7365
7366         bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7367
7368         if (CHIP_IS_E1(bp) || CHIP_IS_E1H(bp)) {
7369
7370                 if (IS_MF(bp))
7371                         low = ((bp->flags & ONE_PORT_FLAG) ? 160 : 246);
7372                 else if (bp->dev->mtu > 4096) {
7373                         if (bp->flags & ONE_PORT_FLAG)
7374                                 low = 160;
7375                         else {
7376                                 val = bp->dev->mtu;
7377                                 /* (24*1024 + val*4)/256 */
7378                                 low = 96 + (val/64) +
7379                                                 ((val % 64) ? 1 : 0);
7380                         }
7381                 } else
7382                         low = ((bp->flags & ONE_PORT_FLAG) ? 80 : 160);
7383                 high = low + 56;        /* 14*1024/256 */
7384                 REG_WR(bp, BRB1_REG_PAUSE_LOW_THRESHOLD_0 + port*4, low);
7385                 REG_WR(bp, BRB1_REG_PAUSE_HIGH_THRESHOLD_0 + port*4, high);
7386         }
7387
7388         if (CHIP_MODE_IS_4_PORT(bp))
7389                 REG_WR(bp, (BP_PORT(bp) ?
7390                             BRB1_REG_MAC_GUARANTIED_1 :
7391                             BRB1_REG_MAC_GUARANTIED_0), 40);
7392
7393         bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7394         if (CHIP_IS_E3B0(bp)) {
7395                 if (IS_MF_AFEX(bp)) {
7396                         /* configure headers for AFEX mode */
7397                         REG_WR(bp, BP_PORT(bp) ?
7398                                PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7399                                PRS_REG_HDRS_AFTER_BASIC_PORT_0, 0xE);
7400                         REG_WR(bp, BP_PORT(bp) ?
7401                                PRS_REG_HDRS_AFTER_TAG_0_PORT_1 :
7402                                PRS_REG_HDRS_AFTER_TAG_0_PORT_0, 0x6);
7403                         REG_WR(bp, BP_PORT(bp) ?
7404                                PRS_REG_MUST_HAVE_HDRS_PORT_1 :
7405                                PRS_REG_MUST_HAVE_HDRS_PORT_0, 0xA);
7406                 } else {
7407                         /* Ovlan exists only if we are in multi-function +
7408                          * switch-dependent mode, in switch-independent there
7409                          * is no ovlan headers
7410                          */
7411                         REG_WR(bp, BP_PORT(bp) ?
7412                                PRS_REG_HDRS_AFTER_BASIC_PORT_1 :
7413                                PRS_REG_HDRS_AFTER_BASIC_PORT_0,
7414                                (bp->path_has_ovlan ? 7 : 6));
7415                 }
7416         }
7417
7418         bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7419         bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7420         bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7421         bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7422
7423         bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7424         bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7425         bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7426         bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7427
7428         bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7429         bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7430
7431         bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7432
7433         if (CHIP_IS_E1x(bp)) {
7434                 /* configure PBF to work without PAUSE mtu 9000 */
7435                 REG_WR(bp, PBF_REG_P0_PAUSE_ENABLE + port*4, 0);
7436
7437                 /* update threshold */
7438                 REG_WR(bp, PBF_REG_P0_ARB_THRSH + port*4, (9040/16));
7439                 /* update init credit */
7440                 REG_WR(bp, PBF_REG_P0_INIT_CRD + port*4, (9040/16) + 553 - 22);
7441
7442                 /* probe changes */
7443                 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 1);
7444                 udelay(50);
7445                 REG_WR(bp, PBF_REG_INIT_P0 + port*4, 0);
7446         }
7447
7448         if (CNIC_SUPPORT(bp))
7449                 bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7450
7451         bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7452         bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7453
7454         if (CHIP_IS_E1(bp)) {
7455                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7456                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7457         }
7458         bnx2x_init_block(bp, BLOCK_HC, init_phase);
7459
7460         bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7461
7462         bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7463         /* init aeu_mask_attn_func_0/1:
7464          *  - SF mode: bits 3-7 are masked. Only bits 0-2 are in use
7465          *  - MF mode: bit 3 is masked. Bits 0-2 are in use as in SF
7466          *             bits 4-7 are used for "per vn group attention" */
7467         val = IS_MF(bp) ? 0xF7 : 0x7;
7468         /* Enable DCBX attention for all but E1 */
7469         val |= CHIP_IS_E1(bp) ? 0 : 0x10;
7470         REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, val);
7471
7472         /* SCPAD_PARITY should NOT trigger close the gates */
7473         reg = port ? MISC_REG_AEU_ENABLE4_NIG_1 : MISC_REG_AEU_ENABLE4_NIG_0;
7474         REG_WR(bp, reg,
7475                REG_RD(bp, reg) &
7476                ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7477
7478         reg = port ? MISC_REG_AEU_ENABLE4_PXP_1 : MISC_REG_AEU_ENABLE4_PXP_0;
7479         REG_WR(bp, reg,
7480                REG_RD(bp, reg) &
7481                ~AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY);
7482
7483         bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7484
7485         if (!CHIP_IS_E1x(bp)) {
7486                 /* Bit-map indicating which L2 hdrs may appear after the
7487                  * basic Ethernet header
7488                  */
7489                 if (IS_MF_AFEX(bp))
7490                         REG_WR(bp, BP_PORT(bp) ?
7491                                NIG_REG_P1_HDRS_AFTER_BASIC :
7492                                NIG_REG_P0_HDRS_AFTER_BASIC, 0xE);
7493                 else
7494                         REG_WR(bp, BP_PORT(bp) ?
7495                                NIG_REG_P1_HDRS_AFTER_BASIC :
7496                                NIG_REG_P0_HDRS_AFTER_BASIC,
7497                                IS_MF_SD(bp) ? 7 : 6);
7498
7499                 if (CHIP_IS_E3(bp))
7500                         REG_WR(bp, BP_PORT(bp) ?
7501                                    NIG_REG_LLH1_MF_MODE :
7502                                    NIG_REG_LLH_MF_MODE, IS_MF(bp));
7503         }
7504         if (!CHIP_IS_E3(bp))
7505                 REG_WR(bp, NIG_REG_XGXS_SERDES0_MODE_SEL + port*4, 1);
7506
7507         if (!CHIP_IS_E1(bp)) {
7508                 /* 0x2 disable mf_ov, 0x1 enable */
7509                 REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK_MF + port*4,
7510                        (IS_MF_SD(bp) ? 0x1 : 0x2));
7511
7512                 if (!CHIP_IS_E1x(bp)) {
7513                         val = 0;
7514                         switch (bp->mf_mode) {
7515                         case MULTI_FUNCTION_SD:
7516                                 val = 1;
7517                                 break;
7518                         case MULTI_FUNCTION_SI:
7519                         case MULTI_FUNCTION_AFEX:
7520                                 val = 2;
7521                                 break;
7522                         }
7523
7524                         REG_WR(bp, (BP_PORT(bp) ? NIG_REG_LLH1_CLS_TYPE :
7525                                                   NIG_REG_LLH0_CLS_TYPE), val);
7526                 }
7527                 {
7528                         REG_WR(bp, NIG_REG_LLFC_ENABLE_0 + port*4, 0);
7529                         REG_WR(bp, NIG_REG_LLFC_OUT_EN_0 + port*4, 0);
7530                         REG_WR(bp, NIG_REG_PAUSE_ENABLE_0 + port*4, 1);
7531                 }
7532         }
7533
7534         /* If SPIO5 is set to generate interrupts, enable it for this port */
7535         val = REG_RD(bp, MISC_REG_SPIO_EVENT_EN);
7536         if (val & MISC_SPIO_SPIO5) {
7537                 u32 reg_addr = (port ? MISC_REG_AEU_ENABLE1_FUNC_1_OUT_0 :
7538                                        MISC_REG_AEU_ENABLE1_FUNC_0_OUT_0);
7539                 val = REG_RD(bp, reg_addr);
7540                 val |= AEU_INPUTS_ATTN_BITS_SPIO5;
7541                 REG_WR(bp, reg_addr, val);
7542         }
7543
7544         return 0;
7545 }
7546
7547 static void bnx2x_ilt_wr(struct bnx2x *bp, u32 index, dma_addr_t addr)
7548 {
7549         int reg;
7550         u32 wb_write[2];
7551
7552         if (CHIP_IS_E1(bp))
7553                 reg = PXP2_REG_RQ_ONCHIP_AT + index*8;
7554         else
7555                 reg = PXP2_REG_RQ_ONCHIP_AT_B0 + index*8;
7556
7557         wb_write[0] = ONCHIP_ADDR1(addr);
7558         wb_write[1] = ONCHIP_ADDR2(addr);
7559         REG_WR_DMAE(bp, reg, wb_write, 2);
7560 }
7561
7562 void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_pf)
7563 {
7564         u32 data, ctl, cnt = 100;
7565         u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA;
7566         u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL;
7567         u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4;
7568         u32 sb_bit =  1 << (idu_sb_id%32);
7569         u32 func_encode = func | (is_pf ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT;
7570         u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id;
7571
7572         /* Not supported in BC mode */
7573         if (CHIP_INT_MODE_IS_BC(bp))
7574                 return;
7575
7576         data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup
7577                         << IGU_REGULAR_CLEANUP_TYPE_SHIFT)      |
7578                 IGU_REGULAR_CLEANUP_SET                         |
7579                 IGU_REGULAR_BCLEANUP;
7580
7581         ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT         |
7582               func_encode << IGU_CTRL_REG_FID_SHIFT             |
7583               IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT;
7584
7585         DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7586                          data, igu_addr_data);
7587         REG_WR(bp, igu_addr_data, data);
7588         mmiowb();
7589         barrier();
7590         DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n",
7591                           ctl, igu_addr_ctl);
7592         REG_WR(bp, igu_addr_ctl, ctl);
7593         mmiowb();
7594         barrier();
7595
7596         /* wait for clean up to finish */
7597         while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt)
7598                 msleep(20);
7599
7600         if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) {
7601                 DP(NETIF_MSG_HW,
7602                    "Unable to finish IGU cleanup: idu_sb_id %d offset %d bit %d (cnt %d)\n",
7603                           idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt);
7604         }
7605 }
7606
7607 static void bnx2x_igu_clear_sb(struct bnx2x *bp, u8 idu_sb_id)
7608 {
7609         bnx2x_igu_clear_sb_gen(bp, BP_FUNC(bp), idu_sb_id, true /*PF*/);
7610 }
7611
7612 static void bnx2x_clear_func_ilt(struct bnx2x *bp, u32 func)
7613 {
7614         u32 i, base = FUNC_ILT_BASE(func);
7615         for (i = base; i < base + ILT_PER_FUNC; i++)
7616                 bnx2x_ilt_wr(bp, i, 0);
7617 }
7618
7619 static void bnx2x_init_searcher(struct bnx2x *bp)
7620 {
7621         int port = BP_PORT(bp);
7622         bnx2x_src_init_t2(bp, bp->t2, bp->t2_mapping, SRC_CONN_NUM);
7623         /* T1 hash bits value determines the T1 number of entries */
7624         REG_WR(bp, SRC_REG_NUMBER_HASH_BITS0 + port*4, SRC_HASH_BITS);
7625 }
7626
7627 static inline int bnx2x_func_switch_update(struct bnx2x *bp, int suspend)
7628 {
7629         int rc;
7630         struct bnx2x_func_state_params func_params = {NULL};
7631         struct bnx2x_func_switch_update_params *switch_update_params =
7632                 &func_params.params.switch_update;
7633
7634         /* Prepare parameters for function state transitions */
7635         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
7636         __set_bit(RAMROD_RETRY, &func_params.ramrod_flags);
7637
7638         func_params.f_obj = &bp->func_obj;
7639         func_params.cmd = BNX2X_F_CMD_SWITCH_UPDATE;
7640
7641         /* Function parameters */
7642         switch_update_params->suspend = suspend;
7643
7644         rc = bnx2x_func_state_change(bp, &func_params);
7645
7646         return rc;
7647 }
7648
7649 static int bnx2x_reset_nic_mode(struct bnx2x *bp)
7650 {
7651         int rc, i, port = BP_PORT(bp);
7652         int vlan_en = 0, mac_en[NUM_MACS];
7653
7654         /* Close input from network */
7655         if (bp->mf_mode == SINGLE_FUNCTION) {
7656                 bnx2x_set_rx_filter(&bp->link_params, 0);
7657         } else {
7658                 vlan_en = REG_RD(bp, port ? NIG_REG_LLH1_FUNC_EN :
7659                                    NIG_REG_LLH0_FUNC_EN);
7660                 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7661                           NIG_REG_LLH0_FUNC_EN, 0);
7662                 for (i = 0; i < NUM_MACS; i++) {
7663                         mac_en[i] = REG_RD(bp, port ?
7664                                              (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7665                                               4 * i) :
7666                                              (NIG_REG_LLH0_FUNC_MEM_ENABLE +
7667                                               4 * i));
7668                         REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7669                                               4 * i) :
7670                                   (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i), 0);
7671                 }
7672         }
7673
7674         /* Close BMC to host */
7675         REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7676                NIG_REG_P1_TX_MNG_HOST_ENABLE, 0);
7677
7678         /* Suspend Tx switching to the PF. Completion of this ramrod
7679          * further guarantees that all the packets of that PF / child
7680          * VFs in BRB were processed by the Parser, so it is safe to
7681          * change the NIC_MODE register.
7682          */
7683         rc = bnx2x_func_switch_update(bp, 1);
7684         if (rc) {
7685                 BNX2X_ERR("Can't suspend tx-switching!\n");
7686                 return rc;
7687         }
7688
7689         /* Change NIC_MODE register */
7690         REG_WR(bp, PRS_REG_NIC_MODE, 0);
7691
7692         /* Open input from network */
7693         if (bp->mf_mode == SINGLE_FUNCTION) {
7694                 bnx2x_set_rx_filter(&bp->link_params, 1);
7695         } else {
7696                 REG_WR(bp, port ? NIG_REG_LLH1_FUNC_EN :
7697                           NIG_REG_LLH0_FUNC_EN, vlan_en);
7698                 for (i = 0; i < NUM_MACS; i++) {
7699                         REG_WR(bp, port ? (NIG_REG_LLH1_FUNC_MEM_ENABLE +
7700                                               4 * i) :
7701                                   (NIG_REG_LLH0_FUNC_MEM_ENABLE + 4 * i),
7702                                   mac_en[i]);
7703                 }
7704         }
7705
7706         /* Enable BMC to host */
7707         REG_WR(bp, port ? NIG_REG_P0_TX_MNG_HOST_ENABLE :
7708                NIG_REG_P1_TX_MNG_HOST_ENABLE, 1);
7709
7710         /* Resume Tx switching to the PF */
7711         rc = bnx2x_func_switch_update(bp, 0);
7712         if (rc) {
7713                 BNX2X_ERR("Can't resume tx-switching!\n");
7714                 return rc;
7715         }
7716
7717         DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7718         return 0;
7719 }
7720
7721 int bnx2x_init_hw_func_cnic(struct bnx2x *bp)
7722 {
7723         int rc;
7724
7725         bnx2x_ilt_init_op_cnic(bp, INITOP_SET);
7726
7727         if (CONFIGURE_NIC_MODE(bp)) {
7728                 /* Configure searcher as part of function hw init */
7729                 bnx2x_init_searcher(bp);
7730
7731                 /* Reset NIC mode */
7732                 rc = bnx2x_reset_nic_mode(bp);
7733                 if (rc)
7734                         BNX2X_ERR("Can't change NIC mode!\n");
7735                 return rc;
7736         }
7737
7738         return 0;
7739 }
7740
7741 static int bnx2x_init_hw_func(struct bnx2x *bp)
7742 {
7743         int port = BP_PORT(bp);
7744         int func = BP_FUNC(bp);
7745         int init_phase = PHASE_PF0 + func;
7746         struct bnx2x_ilt *ilt = BP_ILT(bp);
7747         u16 cdu_ilt_start;
7748         u32 addr, val;
7749         u32 main_mem_base, main_mem_size, main_mem_prty_clr;
7750         int i, main_mem_width, rc;
7751
7752         DP(NETIF_MSG_HW, "starting func init  func %d\n", func);
7753
7754         /* FLR cleanup - hmmm */
7755         if (!CHIP_IS_E1x(bp)) {
7756                 rc = bnx2x_pf_flr_clnup(bp);
7757                 if (rc) {
7758                         bnx2x_fw_dump(bp);
7759                         return rc;
7760                 }
7761         }
7762
7763         /* set MSI reconfigure capability */
7764         if (bp->common.int_block == INT_BLOCK_HC) {
7765                 addr = (port ? HC_REG_CONFIG_1 : HC_REG_CONFIG_0);
7766                 val = REG_RD(bp, addr);
7767                 val |= HC_CONFIG_0_REG_MSI_ATTN_EN_0;
7768                 REG_WR(bp, addr, val);
7769         }
7770
7771         bnx2x_init_block(bp, BLOCK_PXP, init_phase);
7772         bnx2x_init_block(bp, BLOCK_PXP2, init_phase);
7773
7774         ilt = BP_ILT(bp);
7775         cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7776
7777         if (IS_SRIOV(bp))
7778                 cdu_ilt_start += BNX2X_FIRST_VF_CID/ILT_PAGE_CIDS;
7779         cdu_ilt_start = bnx2x_iov_init_ilt(bp, cdu_ilt_start);
7780
7781         /* since BNX2X_FIRST_VF_CID > 0 the PF L2 cids precedes
7782          * those of the VFs, so start line should be reset
7783          */
7784         cdu_ilt_start = ilt->clients[ILT_CLIENT_CDU].start;
7785         for (i = 0; i < L2_ILT_LINES(bp); i++) {
7786                 ilt->lines[cdu_ilt_start + i].page = bp->context[i].vcxt;
7787                 ilt->lines[cdu_ilt_start + i].page_mapping =
7788                         bp->context[i].cxt_mapping;
7789                 ilt->lines[cdu_ilt_start + i].size = bp->context[i].size;
7790         }
7791
7792         bnx2x_ilt_init_op(bp, INITOP_SET);
7793
7794         if (!CONFIGURE_NIC_MODE(bp)) {
7795                 bnx2x_init_searcher(bp);
7796                 REG_WR(bp, PRS_REG_NIC_MODE, 0);
7797                 DP(NETIF_MSG_IFUP, "NIC MODE disabled\n");
7798         } else {
7799                 /* Set NIC mode */
7800                 REG_WR(bp, PRS_REG_NIC_MODE, 1);
7801                 DP(NETIF_MSG_IFUP, "NIC MODE configured\n");
7802         }
7803
7804         if (!CHIP_IS_E1x(bp)) {
7805                 u32 pf_conf = IGU_PF_CONF_FUNC_EN;
7806
7807                 /* Turn on a single ISR mode in IGU if driver is going to use
7808                  * INT#x or MSI
7809                  */
7810                 if (!(bp->flags & USING_MSIX_FLAG))
7811                         pf_conf |= IGU_PF_CONF_SINGLE_ISR_EN;
7812                 /*
7813                  * Timers workaround bug: function init part.
7814                  * Need to wait 20msec after initializing ILT,
7815                  * needed to make sure there are no requests in
7816                  * one of the PXP internal queues with "old" ILT addresses
7817                  */
7818                 msleep(20);
7819                 /*
7820                  * Master enable - Due to WB DMAE writes performed before this
7821                  * register is re-initialized as part of the regular function
7822                  * init
7823                  */
7824                 REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 1);
7825                 /* Enable the function in IGU */
7826                 REG_WR(bp, IGU_REG_PF_CONFIGURATION, pf_conf);
7827         }
7828
7829         bp->dmae_ready = 1;
7830
7831         bnx2x_init_block(bp, BLOCK_PGLUE_B, init_phase);
7832
7833         if (!CHIP_IS_E1x(bp))
7834                 REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR, func);
7835
7836         bnx2x_init_block(bp, BLOCK_ATC, init_phase);
7837         bnx2x_init_block(bp, BLOCK_DMAE, init_phase);
7838         bnx2x_init_block(bp, BLOCK_NIG, init_phase);
7839         bnx2x_init_block(bp, BLOCK_SRC, init_phase);
7840         bnx2x_init_block(bp, BLOCK_MISC, init_phase);
7841         bnx2x_init_block(bp, BLOCK_TCM, init_phase);
7842         bnx2x_init_block(bp, BLOCK_UCM, init_phase);
7843         bnx2x_init_block(bp, BLOCK_CCM, init_phase);
7844         bnx2x_init_block(bp, BLOCK_XCM, init_phase);
7845         bnx2x_init_block(bp, BLOCK_TSEM, init_phase);
7846         bnx2x_init_block(bp, BLOCK_USEM, init_phase);
7847         bnx2x_init_block(bp, BLOCK_CSEM, init_phase);
7848         bnx2x_init_block(bp, BLOCK_XSEM, init_phase);
7849
7850         if (!CHIP_IS_E1x(bp))
7851                 REG_WR(bp, QM_REG_PF_EN, 1);
7852
7853         if (!CHIP_IS_E1x(bp)) {
7854                 REG_WR(bp, TSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7855                 REG_WR(bp, USEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7856                 REG_WR(bp, CSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7857                 REG_WR(bp, XSEM_REG_VFPF_ERR_NUM, BNX2X_MAX_NUM_OF_VFS + func);
7858         }
7859         bnx2x_init_block(bp, BLOCK_QM, init_phase);
7860
7861         bnx2x_init_block(bp, BLOCK_TM, init_phase);
7862         bnx2x_init_block(bp, BLOCK_DORQ, init_phase);
7863         REG_WR(bp, DORQ_REG_MODE_ACT, 1); /* no dpm */
7864
7865         bnx2x_iov_init_dq(bp);
7866
7867         bnx2x_init_block(bp, BLOCK_BRB1, init_phase);
7868         bnx2x_init_block(bp, BLOCK_PRS, init_phase);
7869         bnx2x_init_block(bp, BLOCK_TSDM, init_phase);
7870         bnx2x_init_block(bp, BLOCK_CSDM, init_phase);
7871         bnx2x_init_block(bp, BLOCK_USDM, init_phase);
7872         bnx2x_init_block(bp, BLOCK_XSDM, init_phase);
7873         bnx2x_init_block(bp, BLOCK_UPB, init_phase);
7874         bnx2x_init_block(bp, BLOCK_XPB, init_phase);
7875         bnx2x_init_block(bp, BLOCK_PBF, init_phase);
7876         if (!CHIP_IS_E1x(bp))
7877                 REG_WR(bp, PBF_REG_DISABLE_PF, 0);
7878
7879         bnx2x_init_block(bp, BLOCK_CDU, init_phase);
7880
7881         bnx2x_init_block(bp, BLOCK_CFC, init_phase);
7882
7883         if (!CHIP_IS_E1x(bp))
7884                 REG_WR(bp, CFC_REG_WEAK_ENABLE_PF, 1);
7885
7886         if (IS_MF(bp)) {
7887                 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 1);
7888                 REG_WR(bp, NIG_REG_LLH0_FUNC_VLAN_ID + port*8, bp->mf_ov);
7889         }
7890
7891         bnx2x_init_block(bp, BLOCK_MISC_AEU, init_phase);
7892
7893         /* HC init per function */
7894         if (bp->common.int_block == INT_BLOCK_HC) {
7895                 if (CHIP_IS_E1H(bp)) {
7896                         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7897
7898                         REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
7899                         REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
7900                 }
7901                 bnx2x_init_block(bp, BLOCK_HC, init_phase);
7902
7903         } else {
7904                 int num_segs, sb_idx, prod_offset;
7905
7906                 REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + func*4, 0);
7907
7908                 if (!CHIP_IS_E1x(bp)) {
7909                         REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
7910                         REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
7911                 }
7912
7913                 bnx2x_init_block(bp, BLOCK_IGU, init_phase);
7914
7915                 if (!CHIP_IS_E1x(bp)) {
7916                         int dsb_idx = 0;
7917                         /**
7918                          * Producer memory:
7919                          * E2 mode: address 0-135 match to the mapping memory;
7920                          * 136 - PF0 default prod; 137 - PF1 default prod;
7921                          * 138 - PF2 default prod; 139 - PF3 default prod;
7922                          * 140 - PF0 attn prod;    141 - PF1 attn prod;
7923                          * 142 - PF2 attn prod;    143 - PF3 attn prod;
7924                          * 144-147 reserved.
7925                          *
7926                          * E1.5 mode - In backward compatible mode;
7927                          * for non default SB; each even line in the memory
7928                          * holds the U producer and each odd line hold
7929                          * the C producer. The first 128 producers are for
7930                          * NDSB (PF0 - 0-31; PF1 - 32-63 and so on). The last 20
7931                          * producers are for the DSB for each PF.
7932                          * Each PF has five segments: (the order inside each
7933                          * segment is PF0; PF1; PF2; PF3) - 128-131 U prods;
7934                          * 132-135 C prods; 136-139 X prods; 140-143 T prods;
7935                          * 144-147 attn prods;
7936                          */
7937                         /* non-default-status-blocks */
7938                         num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7939                                 IGU_BC_NDSB_NUM_SEGS : IGU_NORM_NDSB_NUM_SEGS;
7940                         for (sb_idx = 0; sb_idx < bp->igu_sb_cnt; sb_idx++) {
7941                                 prod_offset = (bp->igu_base_sb + sb_idx) *
7942                                         num_segs;
7943
7944                                 for (i = 0; i < num_segs; i++) {
7945                                         addr = IGU_REG_PROD_CONS_MEMORY +
7946                                                         (prod_offset + i) * 4;
7947                                         REG_WR(bp, addr, 0);
7948                                 }
7949                                 /* send consumer update with value 0 */
7950                                 bnx2x_ack_sb(bp, bp->igu_base_sb + sb_idx,
7951                                              USTORM_ID, 0, IGU_INT_NOP, 1);
7952                                 bnx2x_igu_clear_sb(bp,
7953                                                    bp->igu_base_sb + sb_idx);
7954                         }
7955
7956                         /* default-status-blocks */
7957                         num_segs = CHIP_INT_MODE_IS_BC(bp) ?
7958                                 IGU_BC_DSB_NUM_SEGS : IGU_NORM_DSB_NUM_SEGS;
7959
7960                         if (CHIP_MODE_IS_4_PORT(bp))
7961                                 dsb_idx = BP_FUNC(bp);
7962                         else
7963                                 dsb_idx = BP_VN(bp);
7964
7965                         prod_offset = (CHIP_INT_MODE_IS_BC(bp) ?
7966                                        IGU_BC_BASE_DSB_PROD + dsb_idx :
7967                                        IGU_NORM_BASE_DSB_PROD + dsb_idx);
7968
7969                         /*
7970                          * igu prods come in chunks of E1HVN_MAX (4) -
7971                          * does not matters what is the current chip mode
7972                          */
7973                         for (i = 0; i < (num_segs * E1HVN_MAX);
7974                              i += E1HVN_MAX) {
7975                                 addr = IGU_REG_PROD_CONS_MEMORY +
7976                                                         (prod_offset + i)*4;
7977                                 REG_WR(bp, addr, 0);
7978                         }
7979                         /* send consumer update with 0 */
7980                         if (CHIP_INT_MODE_IS_BC(bp)) {
7981                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7982                                              USTORM_ID, 0, IGU_INT_NOP, 1);
7983                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7984                                              CSTORM_ID, 0, IGU_INT_NOP, 1);
7985                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7986                                              XSTORM_ID, 0, IGU_INT_NOP, 1);
7987                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7988                                              TSTORM_ID, 0, IGU_INT_NOP, 1);
7989                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7990                                              ATTENTION_ID, 0, IGU_INT_NOP, 1);
7991                         } else {
7992                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7993                                              USTORM_ID, 0, IGU_INT_NOP, 1);
7994                                 bnx2x_ack_sb(bp, bp->igu_dsb_id,
7995                                              ATTENTION_ID, 0, IGU_INT_NOP, 1);
7996                         }
7997                         bnx2x_igu_clear_sb(bp, bp->igu_dsb_id);
7998
7999                         /* !!! These should become driver const once
8000                            rf-tool supports split-68 const */
8001                         REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_LSB, 0);
8002                         REG_WR(bp, IGU_REG_SB_INT_BEFORE_MASK_MSB, 0);
8003                         REG_WR(bp, IGU_REG_SB_MASK_LSB, 0);
8004                         REG_WR(bp, IGU_REG_SB_MASK_MSB, 0);
8005                         REG_WR(bp, IGU_REG_PBA_STATUS_LSB, 0);
8006                         REG_WR(bp, IGU_REG_PBA_STATUS_MSB, 0);
8007                 }
8008         }
8009
8010         /* Reset PCIE errors for debug */
8011         REG_WR(bp, 0x2114, 0xffffffff);
8012         REG_WR(bp, 0x2120, 0xffffffff);
8013
8014         if (CHIP_IS_E1x(bp)) {
8015                 main_mem_size = HC_REG_MAIN_MEMORY_SIZE / 2; /*dwords*/
8016                 main_mem_base = HC_REG_MAIN_MEMORY +
8017                                 BP_PORT(bp) * (main_mem_size * 4);
8018                 main_mem_prty_clr = HC_REG_HC_PRTY_STS_CLR;
8019                 main_mem_width = 8;
8020
8021                 val = REG_RD(bp, main_mem_prty_clr);
8022                 if (val)
8023                         DP(NETIF_MSG_HW,
8024                            "Hmmm... Parity errors in HC block during function init (0x%x)!\n",
8025                            val);
8026
8027                 /* Clear "false" parity errors in MSI-X table */
8028                 for (i = main_mem_base;
8029                      i < main_mem_base + main_mem_size * 4;
8030                      i += main_mem_width) {
8031                         bnx2x_read_dmae(bp, i, main_mem_width / 4);
8032                         bnx2x_write_dmae(bp, bnx2x_sp_mapping(bp, wb_data),
8033                                          i, main_mem_width / 4);
8034                 }
8035                 /* Clear HC parity attention */
8036                 REG_RD(bp, main_mem_prty_clr);
8037         }
8038
8039 #ifdef BNX2X_STOP_ON_ERROR
8040         /* Enable STORMs SP logging */
8041         REG_WR8(bp, BAR_USTRORM_INTMEM +
8042                USTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8043         REG_WR8(bp, BAR_TSTRORM_INTMEM +
8044                TSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8045         REG_WR8(bp, BAR_CSTRORM_INTMEM +
8046                CSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8047         REG_WR8(bp, BAR_XSTRORM_INTMEM +
8048                XSTORM_RECORD_SLOW_PATH_OFFSET(BP_FUNC(bp)), 1);
8049 #endif
8050
8051         bnx2x_phy_probe(&bp->link_params);
8052
8053         return 0;
8054 }
8055
8056 void bnx2x_free_mem_cnic(struct bnx2x *bp)
8057 {
8058         bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_FREE);
8059
8060         if (!CHIP_IS_E1x(bp))
8061                 BNX2X_PCI_FREE(bp->cnic_sb.e2_sb, bp->cnic_sb_mapping,
8062                                sizeof(struct host_hc_status_block_e2));
8063         else
8064                 BNX2X_PCI_FREE(bp->cnic_sb.e1x_sb, bp->cnic_sb_mapping,
8065                                sizeof(struct host_hc_status_block_e1x));
8066
8067         BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8068 }
8069
8070 void bnx2x_free_mem(struct bnx2x *bp)
8071 {
8072         int i;
8073
8074         BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
8075                        bp->fw_stats_data_sz + bp->fw_stats_req_sz);
8076
8077         if (IS_VF(bp))
8078                 return;
8079
8080         BNX2X_PCI_FREE(bp->def_status_blk, bp->def_status_blk_mapping,
8081                        sizeof(struct host_sp_status_block));
8082
8083         BNX2X_PCI_FREE(bp->slowpath, bp->slowpath_mapping,
8084                        sizeof(struct bnx2x_slowpath));
8085
8086         for (i = 0; i < L2_ILT_LINES(bp); i++)
8087                 BNX2X_PCI_FREE(bp->context[i].vcxt, bp->context[i].cxt_mapping,
8088                                bp->context[i].size);
8089         bnx2x_ilt_mem_op(bp, ILT_MEMOP_FREE);
8090
8091         BNX2X_FREE(bp->ilt->lines);
8092
8093         BNX2X_PCI_FREE(bp->spq, bp->spq_mapping, BCM_PAGE_SIZE);
8094
8095         BNX2X_PCI_FREE(bp->eq_ring, bp->eq_mapping,
8096                        BCM_PAGE_SIZE * NUM_EQ_PAGES);
8097
8098         BNX2X_PCI_FREE(bp->t2, bp->t2_mapping, SRC_T2_SZ);
8099
8100         bnx2x_iov_free_mem(bp);
8101 }
8102
8103 int bnx2x_alloc_mem_cnic(struct bnx2x *bp)
8104 {
8105         if (!CHIP_IS_E1x(bp)) {
8106                 /* size = the status block + ramrod buffers */
8107                 bp->cnic_sb.e2_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8108                                                     sizeof(struct host_hc_status_block_e2));
8109                 if (!bp->cnic_sb.e2_sb)
8110                         goto alloc_mem_err;
8111         } else {
8112                 bp->cnic_sb.e1x_sb = BNX2X_PCI_ALLOC(&bp->cnic_sb_mapping,
8113                                                      sizeof(struct host_hc_status_block_e1x));
8114                 if (!bp->cnic_sb.e1x_sb)
8115                         goto alloc_mem_err;
8116         }
8117
8118         if (CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8119                 /* allocate searcher T2 table, as it wasn't allocated before */
8120                 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8121                 if (!bp->t2)
8122                         goto alloc_mem_err;
8123         }
8124
8125         /* write address to which L5 should insert its values */
8126         bp->cnic_eth_dev.addr_drv_info_to_mcp =
8127                 &bp->slowpath->drv_info_to_mcp;
8128
8129         if (bnx2x_ilt_mem_op_cnic(bp, ILT_MEMOP_ALLOC))
8130                 goto alloc_mem_err;
8131
8132         return 0;
8133
8134 alloc_mem_err:
8135         bnx2x_free_mem_cnic(bp);
8136         BNX2X_ERR("Can't allocate memory\n");
8137         return -ENOMEM;
8138 }
8139
8140 int bnx2x_alloc_mem(struct bnx2x *bp)
8141 {
8142         int i, allocated, context_size;
8143
8144         if (!CONFIGURE_NIC_MODE(bp) && !bp->t2) {
8145                 /* allocate searcher T2 table */
8146                 bp->t2 = BNX2X_PCI_ALLOC(&bp->t2_mapping, SRC_T2_SZ);
8147                 if (!bp->t2)
8148                         goto alloc_mem_err;
8149         }
8150
8151         bp->def_status_blk = BNX2X_PCI_ALLOC(&bp->def_status_blk_mapping,
8152                                              sizeof(struct host_sp_status_block));
8153         if (!bp->def_status_blk)
8154                 goto alloc_mem_err;
8155
8156         bp->slowpath = BNX2X_PCI_ALLOC(&bp->slowpath_mapping,
8157                                        sizeof(struct bnx2x_slowpath));
8158         if (!bp->slowpath)
8159                 goto alloc_mem_err;
8160
8161         /* Allocate memory for CDU context:
8162          * This memory is allocated separately and not in the generic ILT
8163          * functions because CDU differs in few aspects:
8164          * 1. There are multiple entities allocating memory for context -
8165          * 'regular' driver, CNIC and SRIOV driver. Each separately controls
8166          * its own ILT lines.
8167          * 2. Since CDU page-size is not a single 4KB page (which is the case
8168          * for the other ILT clients), to be efficient we want to support
8169          * allocation of sub-page-size in the last entry.
8170          * 3. Context pointers are used by the driver to pass to FW / update
8171          * the context (for the other ILT clients the pointers are used just to
8172          * free the memory during unload).
8173          */
8174         context_size = sizeof(union cdu_context) * BNX2X_L2_CID_COUNT(bp);
8175
8176         for (i = 0, allocated = 0; allocated < context_size; i++) {
8177                 bp->context[i].size = min(CDU_ILT_PAGE_SZ,
8178                                           (context_size - allocated));
8179                 bp->context[i].vcxt = BNX2X_PCI_ALLOC(&bp->context[i].cxt_mapping,
8180                                                       bp->context[i].size);
8181                 if (!bp->context[i].vcxt)
8182                         goto alloc_mem_err;
8183                 allocated += bp->context[i].size;
8184         }
8185         bp->ilt->lines = kcalloc(ILT_MAX_LINES, sizeof(struct ilt_line),
8186                                  GFP_KERNEL);
8187         if (!bp->ilt->lines)
8188                 goto alloc_mem_err;
8189
8190         if (bnx2x_ilt_mem_op(bp, ILT_MEMOP_ALLOC))
8191                 goto alloc_mem_err;
8192
8193         if (bnx2x_iov_alloc_mem(bp))
8194                 goto alloc_mem_err;
8195
8196         /* Slow path ring */
8197         bp->spq = BNX2X_PCI_ALLOC(&bp->spq_mapping, BCM_PAGE_SIZE);
8198         if (!bp->spq)
8199                 goto alloc_mem_err;
8200
8201         /* EQ */
8202         bp->eq_ring = BNX2X_PCI_ALLOC(&bp->eq_mapping,
8203                                       BCM_PAGE_SIZE * NUM_EQ_PAGES);
8204         if (!bp->eq_ring)
8205                 goto alloc_mem_err;
8206
8207         return 0;
8208
8209 alloc_mem_err:
8210         bnx2x_free_mem(bp);
8211         BNX2X_ERR("Can't allocate memory\n");
8212         return -ENOMEM;
8213 }
8214
8215 /*
8216  * Init service functions
8217  */
8218
8219 int bnx2x_set_mac_one(struct bnx2x *bp, u8 *mac,
8220                       struct bnx2x_vlan_mac_obj *obj, bool set,
8221                       int mac_type, unsigned long *ramrod_flags)
8222 {
8223         int rc;
8224         struct bnx2x_vlan_mac_ramrod_params ramrod_param;
8225
8226         memset(&ramrod_param, 0, sizeof(ramrod_param));
8227
8228         /* Fill general parameters */
8229         ramrod_param.vlan_mac_obj = obj;
8230         ramrod_param.ramrod_flags = *ramrod_flags;
8231
8232         /* Fill a user request section if needed */
8233         if (!test_bit(RAMROD_CONT, ramrod_flags)) {
8234                 memcpy(ramrod_param.user_req.u.mac.mac, mac, ETH_ALEN);
8235
8236                 __set_bit(mac_type, &ramrod_param.user_req.vlan_mac_flags);
8237
8238                 /* Set the command: ADD or DEL */
8239                 if (set)
8240                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_ADD;
8241                 else
8242                         ramrod_param.user_req.cmd = BNX2X_VLAN_MAC_DEL;
8243         }
8244
8245         rc = bnx2x_config_vlan_mac(bp, &ramrod_param);
8246
8247         if (rc == -EEXIST) {
8248                 DP(BNX2X_MSG_SP, "Failed to schedule ADD operations: %d\n", rc);
8249                 /* do not treat adding same MAC as error */
8250                 rc = 0;
8251         } else if (rc < 0)
8252                 BNX2X_ERR("%s MAC failed\n", (set ? "Set" : "Del"));
8253
8254         return rc;
8255 }
8256
8257 int bnx2x_del_all_macs(struct bnx2x *bp,
8258                        struct bnx2x_vlan_mac_obj *mac_obj,
8259                        int mac_type, bool wait_for_comp)
8260 {
8261         int rc;
8262         unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
8263
8264         /* Wait for completion of requested */
8265         if (wait_for_comp)
8266                 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8267
8268         /* Set the mac type of addresses we want to clear */
8269         __set_bit(mac_type, &vlan_mac_flags);
8270
8271         rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags, &ramrod_flags);
8272         if (rc < 0)
8273                 BNX2X_ERR("Failed to delete MACs: %d\n", rc);
8274
8275         return rc;
8276 }
8277
8278 int bnx2x_set_eth_mac(struct bnx2x *bp, bool set)
8279 {
8280         if (is_zero_ether_addr(bp->dev->dev_addr) &&
8281             (IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp))) {
8282                 DP(NETIF_MSG_IFUP | NETIF_MSG_IFDOWN,
8283                    "Ignoring Zero MAC for STORAGE SD mode\n");
8284                 return 0;
8285         }
8286
8287         if (IS_PF(bp)) {
8288                 unsigned long ramrod_flags = 0;
8289
8290                 DP(NETIF_MSG_IFUP, "Adding Eth MAC\n");
8291                 __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
8292                 return bnx2x_set_mac_one(bp, bp->dev->dev_addr,
8293                                          &bp->sp_objs->mac_obj, set,
8294                                          BNX2X_ETH_MAC, &ramrod_flags);
8295         } else { /* vf */
8296                 return bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr,
8297                                              bp->fp->index, true);
8298         }
8299 }
8300
8301 int bnx2x_setup_leading(struct bnx2x *bp)
8302 {
8303         if (IS_PF(bp))
8304                 return bnx2x_setup_queue(bp, &bp->fp[0], true);
8305         else /* VF */
8306                 return bnx2x_vfpf_setup_q(bp, &bp->fp[0], true);
8307 }
8308
8309 /**
8310  * bnx2x_set_int_mode - configure interrupt mode
8311  *
8312  * @bp:         driver handle
8313  *
8314  * In case of MSI-X it will also try to enable MSI-X.
8315  */
8316 int bnx2x_set_int_mode(struct bnx2x *bp)
8317 {
8318         int rc = 0;
8319
8320         if (IS_VF(bp) && int_mode != BNX2X_INT_MODE_MSIX) {
8321                 BNX2X_ERR("VF not loaded since interrupt mode not msix\n");
8322                 return -EINVAL;
8323         }
8324
8325         switch (int_mode) {
8326         case BNX2X_INT_MODE_MSIX:
8327                 /* attempt to enable msix */
8328                 rc = bnx2x_enable_msix(bp);
8329
8330                 /* msix attained */
8331                 if (!rc)
8332                         return 0;
8333
8334                 /* vfs use only msix */
8335                 if (rc && IS_VF(bp))
8336                         return rc;
8337
8338                 /* failed to enable multiple MSI-X */
8339                 BNX2X_DEV_INFO("Failed to enable multiple MSI-X (%d), set number of queues to %d\n",
8340                                bp->num_queues,
8341                                1 + bp->num_cnic_queues);
8342
8343                 /* falling through... */
8344         case BNX2X_INT_MODE_MSI:
8345                 bnx2x_enable_msi(bp);
8346
8347                 /* falling through... */
8348         case BNX2X_INT_MODE_INTX:
8349                 bp->num_ethernet_queues = 1;
8350                 bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
8351                 BNX2X_DEV_INFO("set number of queues to 1\n");
8352                 break;
8353         default:
8354                 BNX2X_DEV_INFO("unknown value in int_mode module parameter\n");
8355                 return -EINVAL;
8356         }
8357         return 0;
8358 }
8359
8360 /* must be called prior to any HW initializations */
8361 static inline u16 bnx2x_cid_ilt_lines(struct bnx2x *bp)
8362 {
8363         if (IS_SRIOV(bp))
8364                 return (BNX2X_FIRST_VF_CID + BNX2X_VF_CIDS)/ILT_PAGE_CIDS;
8365         return L2_ILT_LINES(bp);
8366 }
8367
8368 void bnx2x_ilt_set_info(struct bnx2x *bp)
8369 {
8370         struct ilt_client_info *ilt_client;
8371         struct bnx2x_ilt *ilt = BP_ILT(bp);
8372         u16 line = 0;
8373
8374         ilt->start_line = FUNC_ILT_BASE(BP_FUNC(bp));
8375         DP(BNX2X_MSG_SP, "ilt starts at line %d\n", ilt->start_line);
8376
8377         /* CDU */
8378         ilt_client = &ilt->clients[ILT_CLIENT_CDU];
8379         ilt_client->client_num = ILT_CLIENT_CDU;
8380         ilt_client->page_size = CDU_ILT_PAGE_SZ;
8381         ilt_client->flags = ILT_CLIENT_SKIP_MEM;
8382         ilt_client->start = line;
8383         line += bnx2x_cid_ilt_lines(bp);
8384
8385         if (CNIC_SUPPORT(bp))
8386                 line += CNIC_ILT_LINES;
8387         ilt_client->end = line - 1;
8388
8389         DP(NETIF_MSG_IFUP, "ilt client[CDU]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8390            ilt_client->start,
8391            ilt_client->end,
8392            ilt_client->page_size,
8393            ilt_client->flags,
8394            ilog2(ilt_client->page_size >> 12));
8395
8396         /* QM */
8397         if (QM_INIT(bp->qm_cid_count)) {
8398                 ilt_client = &ilt->clients[ILT_CLIENT_QM];
8399                 ilt_client->client_num = ILT_CLIENT_QM;
8400                 ilt_client->page_size = QM_ILT_PAGE_SZ;
8401                 ilt_client->flags = 0;
8402                 ilt_client->start = line;
8403
8404                 /* 4 bytes for each cid */
8405                 line += DIV_ROUND_UP(bp->qm_cid_count * QM_QUEUES_PER_FUNC * 4,
8406                                                          QM_ILT_PAGE_SZ);
8407
8408                 ilt_client->end = line - 1;
8409
8410                 DP(NETIF_MSG_IFUP,
8411                    "ilt client[QM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8412                    ilt_client->start,
8413                    ilt_client->end,
8414                    ilt_client->page_size,
8415                    ilt_client->flags,
8416                    ilog2(ilt_client->page_size >> 12));
8417         }
8418
8419         if (CNIC_SUPPORT(bp)) {
8420                 /* SRC */
8421                 ilt_client = &ilt->clients[ILT_CLIENT_SRC];
8422                 ilt_client->client_num = ILT_CLIENT_SRC;
8423                 ilt_client->page_size = SRC_ILT_PAGE_SZ;
8424                 ilt_client->flags = 0;
8425                 ilt_client->start = line;
8426                 line += SRC_ILT_LINES;
8427                 ilt_client->end = line - 1;
8428
8429                 DP(NETIF_MSG_IFUP,
8430                    "ilt client[SRC]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8431                    ilt_client->start,
8432                    ilt_client->end,
8433                    ilt_client->page_size,
8434                    ilt_client->flags,
8435                    ilog2(ilt_client->page_size >> 12));
8436
8437                 /* TM */
8438                 ilt_client = &ilt->clients[ILT_CLIENT_TM];
8439                 ilt_client->client_num = ILT_CLIENT_TM;
8440                 ilt_client->page_size = TM_ILT_PAGE_SZ;
8441                 ilt_client->flags = 0;
8442                 ilt_client->start = line;
8443                 line += TM_ILT_LINES;
8444                 ilt_client->end = line - 1;
8445
8446                 DP(NETIF_MSG_IFUP,
8447                    "ilt client[TM]: start %d, end %d, psz 0x%x, flags 0x%x, hw psz %d\n",
8448                    ilt_client->start,
8449                    ilt_client->end,
8450                    ilt_client->page_size,
8451                    ilt_client->flags,
8452                    ilog2(ilt_client->page_size >> 12));
8453         }
8454
8455         BUG_ON(line > ILT_MAX_LINES);
8456 }
8457
8458 /**
8459  * bnx2x_pf_q_prep_init - prepare INIT transition parameters
8460  *
8461  * @bp:                 driver handle
8462  * @fp:                 pointer to fastpath
8463  * @init_params:        pointer to parameters structure
8464  *
8465  * parameters configured:
8466  *      - HC configuration
8467  *      - Queue's CDU context
8468  */
8469 static void bnx2x_pf_q_prep_init(struct bnx2x *bp,
8470         struct bnx2x_fastpath *fp, struct bnx2x_queue_init_params *init_params)
8471 {
8472         u8 cos;
8473         int cxt_index, cxt_offset;
8474
8475         /* FCoE Queue uses Default SB, thus has no HC capabilities */
8476         if (!IS_FCOE_FP(fp)) {
8477                 __set_bit(BNX2X_Q_FLG_HC, &init_params->rx.flags);
8478                 __set_bit(BNX2X_Q_FLG_HC, &init_params->tx.flags);
8479
8480                 /* If HC is supported, enable host coalescing in the transition
8481                  * to INIT state.
8482                  */
8483                 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->rx.flags);
8484                 __set_bit(BNX2X_Q_FLG_HC_EN, &init_params->tx.flags);
8485
8486                 /* HC rate */
8487                 init_params->rx.hc_rate = bp->rx_ticks ?
8488                         (1000000 / bp->rx_ticks) : 0;
8489                 init_params->tx.hc_rate = bp->tx_ticks ?
8490                         (1000000 / bp->tx_ticks) : 0;
8491
8492                 /* FW SB ID */
8493                 init_params->rx.fw_sb_id = init_params->tx.fw_sb_id =
8494                         fp->fw_sb_id;
8495
8496                 /*
8497                  * CQ index among the SB indices: FCoE clients uses the default
8498                  * SB, therefore it's different.
8499                  */
8500                 init_params->rx.sb_cq_index = HC_INDEX_ETH_RX_CQ_CONS;
8501                 init_params->tx.sb_cq_index = HC_INDEX_ETH_FIRST_TX_CQ_CONS;
8502         }
8503
8504         /* set maximum number of COSs supported by this queue */
8505         init_params->max_cos = fp->max_cos;
8506
8507         DP(NETIF_MSG_IFUP, "fp: %d setting queue params max cos to: %d\n",
8508             fp->index, init_params->max_cos);
8509
8510         /* set the context pointers queue object */
8511         for (cos = FIRST_TX_COS_INDEX; cos < init_params->max_cos; cos++) {
8512                 cxt_index = fp->txdata_ptr[cos]->cid / ILT_PAGE_CIDS;
8513                 cxt_offset = fp->txdata_ptr[cos]->cid - (cxt_index *
8514                                 ILT_PAGE_CIDS);
8515                 init_params->cxts[cos] =
8516                         &bp->context[cxt_index].vcxt[cxt_offset].eth;
8517         }
8518 }
8519
8520 static int bnx2x_setup_tx_only(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8521                         struct bnx2x_queue_state_params *q_params,
8522                         struct bnx2x_queue_setup_tx_only_params *tx_only_params,
8523                         int tx_index, bool leading)
8524 {
8525         memset(tx_only_params, 0, sizeof(*tx_only_params));
8526
8527         /* Set the command */
8528         q_params->cmd = BNX2X_Q_CMD_SETUP_TX_ONLY;
8529
8530         /* Set tx-only QUEUE flags: don't zero statistics */
8531         tx_only_params->flags = bnx2x_get_common_flags(bp, fp, false);
8532
8533         /* choose the index of the cid to send the slow path on */
8534         tx_only_params->cid_index = tx_index;
8535
8536         /* Set general TX_ONLY_SETUP parameters */
8537         bnx2x_pf_q_prep_general(bp, fp, &tx_only_params->gen_params, tx_index);
8538
8539         /* Set Tx TX_ONLY_SETUP parameters */
8540         bnx2x_pf_tx_q_prep(bp, fp, &tx_only_params->txq_params, tx_index);
8541
8542         DP(NETIF_MSG_IFUP,
8543            "preparing to send tx-only ramrod for connection: cos %d, primary cid %d, cid %d, client id %d, sp-client id %d, flags %lx\n",
8544            tx_index, q_params->q_obj->cids[FIRST_TX_COS_INDEX],
8545            q_params->q_obj->cids[tx_index], q_params->q_obj->cl_id,
8546            tx_only_params->gen_params.spcl_id, tx_only_params->flags);
8547
8548         /* send the ramrod */
8549         return bnx2x_queue_state_change(bp, q_params);
8550 }
8551
8552 /**
8553  * bnx2x_setup_queue - setup queue
8554  *
8555  * @bp:         driver handle
8556  * @fp:         pointer to fastpath
8557  * @leading:    is leading
8558  *
8559  * This function performs 2 steps in a Queue state machine
8560  *      actually: 1) RESET->INIT 2) INIT->SETUP
8561  */
8562
8563 int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp,
8564                        bool leading)
8565 {
8566         struct bnx2x_queue_state_params q_params = {NULL};
8567         struct bnx2x_queue_setup_params *setup_params =
8568                                                 &q_params.params.setup;
8569         struct bnx2x_queue_setup_tx_only_params *tx_only_params =
8570                                                 &q_params.params.tx_only;
8571         int rc;
8572         u8 tx_index;
8573
8574         DP(NETIF_MSG_IFUP, "setting up queue %d\n", fp->index);
8575
8576         /* reset IGU state skip FCoE L2 queue */
8577         if (!IS_FCOE_FP(fp))
8578                 bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0,
8579                              IGU_INT_ENABLE, 0);
8580
8581         q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8582         /* We want to wait for completion in this context */
8583         __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8584
8585         /* Prepare the INIT parameters */
8586         bnx2x_pf_q_prep_init(bp, fp, &q_params.params.init);
8587
8588         /* Set the command */
8589         q_params.cmd = BNX2X_Q_CMD_INIT;
8590
8591         /* Change the state to INIT */
8592         rc = bnx2x_queue_state_change(bp, &q_params);
8593         if (rc) {
8594                 BNX2X_ERR("Queue(%d) INIT failed\n", fp->index);
8595                 return rc;
8596         }
8597
8598         DP(NETIF_MSG_IFUP, "init complete\n");
8599
8600         /* Now move the Queue to the SETUP state... */
8601         memset(setup_params, 0, sizeof(*setup_params));
8602
8603         /* Set QUEUE flags */
8604         setup_params->flags = bnx2x_get_q_flags(bp, fp, leading);
8605
8606         /* Set general SETUP parameters */
8607         bnx2x_pf_q_prep_general(bp, fp, &setup_params->gen_params,
8608                                 FIRST_TX_COS_INDEX);
8609
8610         bnx2x_pf_rx_q_prep(bp, fp, &setup_params->pause_params,
8611                             &setup_params->rxq_params);
8612
8613         bnx2x_pf_tx_q_prep(bp, fp, &setup_params->txq_params,
8614                            FIRST_TX_COS_INDEX);
8615
8616         /* Set the command */
8617         q_params.cmd = BNX2X_Q_CMD_SETUP;
8618
8619         if (IS_FCOE_FP(fp))
8620                 bp->fcoe_init = true;
8621
8622         /* Change the state to SETUP */
8623         rc = bnx2x_queue_state_change(bp, &q_params);
8624         if (rc) {
8625                 BNX2X_ERR("Queue(%d) SETUP failed\n", fp->index);
8626                 return rc;
8627         }
8628
8629         /* loop through the relevant tx-only indices */
8630         for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8631               tx_index < fp->max_cos;
8632               tx_index++) {
8633
8634                 /* prepare and send tx-only ramrod*/
8635                 rc = bnx2x_setup_tx_only(bp, fp, &q_params,
8636                                           tx_only_params, tx_index, leading);
8637                 if (rc) {
8638                         BNX2X_ERR("Queue(%d.%d) TX_ONLY_SETUP failed\n",
8639                                   fp->index, tx_index);
8640                         return rc;
8641                 }
8642         }
8643
8644         return rc;
8645 }
8646
8647 static int bnx2x_stop_queue(struct bnx2x *bp, int index)
8648 {
8649         struct bnx2x_fastpath *fp = &bp->fp[index];
8650         struct bnx2x_fp_txdata *txdata;
8651         struct bnx2x_queue_state_params q_params = {NULL};
8652         int rc, tx_index;
8653
8654         DP(NETIF_MSG_IFDOWN, "stopping queue %d cid %d\n", index, fp->cid);
8655
8656         q_params.q_obj = &bnx2x_sp_obj(bp, fp).q_obj;
8657         /* We want to wait for completion in this context */
8658         __set_bit(RAMROD_COMP_WAIT, &q_params.ramrod_flags);
8659
8660         /* close tx-only connections */
8661         for (tx_index = FIRST_TX_ONLY_COS_INDEX;
8662              tx_index < fp->max_cos;
8663              tx_index++){
8664
8665                 /* ascertain this is a normal queue*/
8666                 txdata = fp->txdata_ptr[tx_index];
8667
8668                 DP(NETIF_MSG_IFDOWN, "stopping tx-only queue %d\n",
8669                                                         txdata->txq_index);
8670
8671                 /* send halt terminate on tx-only connection */
8672                 q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8673                 memset(&q_params.params.terminate, 0,
8674                        sizeof(q_params.params.terminate));
8675                 q_params.params.terminate.cid_index = tx_index;
8676
8677                 rc = bnx2x_queue_state_change(bp, &q_params);
8678                 if (rc)
8679                         return rc;
8680
8681                 /* send halt terminate on tx-only connection */
8682                 q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8683                 memset(&q_params.params.cfc_del, 0,
8684                        sizeof(q_params.params.cfc_del));
8685                 q_params.params.cfc_del.cid_index = tx_index;
8686                 rc = bnx2x_queue_state_change(bp, &q_params);
8687                 if (rc)
8688                         return rc;
8689         }
8690         /* Stop the primary connection: */
8691         /* ...halt the connection */
8692         q_params.cmd = BNX2X_Q_CMD_HALT;
8693         rc = bnx2x_queue_state_change(bp, &q_params);
8694         if (rc)
8695                 return rc;
8696
8697         /* ...terminate the connection */
8698         q_params.cmd = BNX2X_Q_CMD_TERMINATE;
8699         memset(&q_params.params.terminate, 0,
8700                sizeof(q_params.params.terminate));
8701         q_params.params.terminate.cid_index = FIRST_TX_COS_INDEX;
8702         rc = bnx2x_queue_state_change(bp, &q_params);
8703         if (rc)
8704                 return rc;
8705         /* ...delete cfc entry */
8706         q_params.cmd = BNX2X_Q_CMD_CFC_DEL;
8707         memset(&q_params.params.cfc_del, 0,
8708                sizeof(q_params.params.cfc_del));
8709         q_params.params.cfc_del.cid_index = FIRST_TX_COS_INDEX;
8710         return bnx2x_queue_state_change(bp, &q_params);
8711 }
8712
8713 static void bnx2x_reset_func(struct bnx2x *bp)
8714 {
8715         int port = BP_PORT(bp);
8716         int func = BP_FUNC(bp);
8717         int i;
8718
8719         /* Disable the function in the FW */
8720         REG_WR8(bp, BAR_XSTRORM_INTMEM + XSTORM_FUNC_EN_OFFSET(func), 0);
8721         REG_WR8(bp, BAR_CSTRORM_INTMEM + CSTORM_FUNC_EN_OFFSET(func), 0);
8722         REG_WR8(bp, BAR_TSTRORM_INTMEM + TSTORM_FUNC_EN_OFFSET(func), 0);
8723         REG_WR8(bp, BAR_USTRORM_INTMEM + USTORM_FUNC_EN_OFFSET(func), 0);
8724
8725         /* FP SBs */
8726         for_each_eth_queue(bp, i) {
8727                 struct bnx2x_fastpath *fp = &bp->fp[i];
8728                 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8729                            CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET(fp->fw_sb_id),
8730                            SB_DISABLED);
8731         }
8732
8733         if (CNIC_LOADED(bp))
8734                 /* CNIC SB */
8735                 REG_WR8(bp, BAR_CSTRORM_INTMEM +
8736                         CSTORM_STATUS_BLOCK_DATA_STATE_OFFSET
8737                         (bnx2x_cnic_fw_sb_id(bp)), SB_DISABLED);
8738
8739         /* SP SB */
8740         REG_WR8(bp, BAR_CSTRORM_INTMEM +
8741                 CSTORM_SP_STATUS_BLOCK_DATA_STATE_OFFSET(func),
8742                 SB_DISABLED);
8743
8744         for (i = 0; i < XSTORM_SPQ_DATA_SIZE / 4; i++)
8745                 REG_WR(bp, BAR_XSTRORM_INTMEM + XSTORM_SPQ_DATA_OFFSET(func),
8746                        0);
8747
8748         /* Configure IGU */
8749         if (bp->common.int_block == INT_BLOCK_HC) {
8750                 REG_WR(bp, HC_REG_LEADING_EDGE_0 + port*8, 0);
8751                 REG_WR(bp, HC_REG_TRAILING_EDGE_0 + port*8, 0);
8752         } else {
8753                 REG_WR(bp, IGU_REG_LEADING_EDGE_LATCH, 0);
8754                 REG_WR(bp, IGU_REG_TRAILING_EDGE_LATCH, 0);
8755         }
8756
8757         if (CNIC_LOADED(bp)) {
8758                 /* Disable Timer scan */
8759                 REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
8760                 /*
8761                  * Wait for at least 10ms and up to 2 second for the timers
8762                  * scan to complete
8763                  */
8764                 for (i = 0; i < 200; i++) {
8765                         usleep_range(10000, 20000);
8766                         if (!REG_RD(bp, TM_REG_LIN0_SCAN_ON + port*4))
8767                                 break;
8768                 }
8769         }
8770         /* Clear ILT */
8771         bnx2x_clear_func_ilt(bp, func);
8772
8773         /* Timers workaround bug for E2: if this is vnic-3,
8774          * we need to set the entire ilt range for this timers.
8775          */
8776         if (!CHIP_IS_E1x(bp) && BP_VN(bp) == 3) {
8777                 struct ilt_client_info ilt_cli;
8778                 /* use dummy TM client */
8779                 memset(&ilt_cli, 0, sizeof(struct ilt_client_info));
8780                 ilt_cli.start = 0;
8781                 ilt_cli.end = ILT_NUM_PAGE_ENTRIES - 1;
8782                 ilt_cli.client_num = ILT_CLIENT_TM;
8783
8784                 bnx2x_ilt_boundry_init_op(bp, &ilt_cli, 0, INITOP_CLEAR);
8785         }
8786
8787         /* this assumes that reset_port() called before reset_func()*/
8788         if (!CHIP_IS_E1x(bp))
8789                 bnx2x_pf_disable(bp);
8790
8791         bp->dmae_ready = 0;
8792 }
8793
8794 static void bnx2x_reset_port(struct bnx2x *bp)
8795 {
8796         int port = BP_PORT(bp);
8797         u32 val;
8798
8799         /* Reset physical Link */
8800         bnx2x__link_reset(bp);
8801
8802         REG_WR(bp, NIG_REG_MASK_INTERRUPT_PORT0 + port*4, 0);
8803
8804         /* Do not rcv packets to BRB */
8805         REG_WR(bp, NIG_REG_LLH0_BRB1_DRV_MASK + port*4, 0x0);
8806         /* Do not direct rcv packets that are not for MCP to the BRB */
8807         REG_WR(bp, (port ? NIG_REG_LLH1_BRB1_NOT_MCP :
8808                            NIG_REG_LLH0_BRB1_NOT_MCP), 0x0);
8809
8810         /* Configure AEU */
8811         REG_WR(bp, MISC_REG_AEU_MASK_ATTN_FUNC_0 + port*4, 0);
8812
8813         msleep(100);
8814         /* Check for BRB port occupancy */
8815         val = REG_RD(bp, BRB1_REG_PORT_NUM_OCC_BLOCKS_0 + port*4);
8816         if (val)
8817                 DP(NETIF_MSG_IFDOWN,
8818                    "BRB1 is not empty  %d blocks are occupied\n", val);
8819
8820         /* TODO: Close Doorbell port? */
8821 }
8822
8823 static int bnx2x_reset_hw(struct bnx2x *bp, u32 load_code)
8824 {
8825         struct bnx2x_func_state_params func_params = {NULL};
8826
8827         /* Prepare parameters for function state transitions */
8828         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8829
8830         func_params.f_obj = &bp->func_obj;
8831         func_params.cmd = BNX2X_F_CMD_HW_RESET;
8832
8833         func_params.params.hw_init.load_phase = load_code;
8834
8835         return bnx2x_func_state_change(bp, &func_params);
8836 }
8837
8838 static int bnx2x_func_stop(struct bnx2x *bp)
8839 {
8840         struct bnx2x_func_state_params func_params = {NULL};
8841         int rc;
8842
8843         /* Prepare parameters for function state transitions */
8844         __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
8845         func_params.f_obj = &bp->func_obj;
8846         func_params.cmd = BNX2X_F_CMD_STOP;
8847
8848         /*
8849          * Try to stop the function the 'good way'. If fails (in case
8850          * of a parity error during bnx2x_chip_cleanup()) and we are
8851          * not in a debug mode, perform a state transaction in order to
8852          * enable further HW_RESET transaction.
8853          */
8854         rc = bnx2x_func_state_change(bp, &func_params);
8855         if (rc) {
8856 #ifdef BNX2X_STOP_ON_ERROR
8857                 return rc;
8858 #else
8859                 BNX2X_ERR("FUNC_STOP ramrod failed. Running a dry transaction\n");
8860                 __set_bit(RAMROD_DRV_CLR_ONLY, &func_params.ramrod_flags);
8861                 return bnx2x_func_state_change(bp, &func_params);
8862 #endif
8863         }
8864
8865         return 0;
8866 }
8867
8868 /**
8869  * bnx2x_send_unload_req - request unload mode from the MCP.
8870  *
8871  * @bp:                 driver handle
8872  * @unload_mode:        requested function's unload mode
8873  *
8874  * Return unload mode returned by the MCP: COMMON, PORT or FUNC.
8875  */
8876 u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode)
8877 {
8878         u32 reset_code = 0;
8879         int port = BP_PORT(bp);
8880
8881         /* Select the UNLOAD request mode */
8882         if (unload_mode == UNLOAD_NORMAL)
8883                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8884
8885         else if (bp->flags & NO_WOL_FLAG)
8886                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP;
8887
8888         else if (bp->wol) {
8889                 u32 emac_base = port ? GRCBASE_EMAC1 : GRCBASE_EMAC0;
8890                 u8 *mac_addr = bp->dev->dev_addr;
8891                 struct pci_dev *pdev = bp->pdev;
8892                 u32 val;
8893                 u16 pmc;
8894
8895                 /* The mac address is written to entries 1-4 to
8896                  * preserve entry 0 which is used by the PMF
8897                  */
8898                 u8 entry = (BP_VN(bp) + 1)*8;
8899
8900                 val = (mac_addr[0] << 8) | mac_addr[1];
8901                 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry, val);
8902
8903                 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
8904                       (mac_addr[4] << 8) | mac_addr[5];
8905                 EMAC_WR(bp, EMAC_REG_EMAC_MAC_MATCH + entry + 4, val);
8906
8907                 /* Enable the PME and clear the status */
8908                 pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &pmc);
8909                 pmc |= PCI_PM_CTRL_PME_ENABLE | PCI_PM_CTRL_PME_STATUS;
8910                 pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, pmc);
8911
8912                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_EN;
8913
8914         } else
8915                 reset_code = DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS;
8916
8917         /* Send the request to the MCP */
8918         if (!BP_NOMCP(bp))
8919                 reset_code = bnx2x_fw_command(bp, reset_code, 0);
8920         else {
8921                 int path = BP_PATH(bp);
8922
8923                 DP(NETIF_MSG_IFDOWN, "NO MCP - load counts[%d]      %d, %d, %d\n",
8924                    path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
8925                    bnx2x_load_count[path][2]);
8926                 bnx2x_load_count[path][0]--;
8927                 bnx2x_load_count[path][1 + port]--;
8928                 DP(NETIF_MSG_IFDOWN, "NO MCP - new load counts[%d]  %d, %d, %d\n",
8929                    path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
8930                    bnx2x_load_count[path][2]);
8931                 if (bnx2x_load_count[path][0] == 0)
8932                         reset_code = FW_MSG_CODE_DRV_UNLOAD_COMMON;
8933                 else if (bnx2x_load_count[path][1 + port] == 0)
8934                         reset_code = FW_MSG_CODE_DRV_UNLOAD_PORT;
8935                 else
8936                         reset_code = FW_MSG_CODE_DRV_UNLOAD_FUNCTION;
8937         }
8938
8939         return reset_code;
8940 }
8941
8942 /**
8943  * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP.
8944  *
8945  * @bp:         driver handle
8946  * @keep_link:          true iff link should be kept up
8947  */
8948 void bnx2x_send_unload_done(struct bnx2x *bp, bool keep_link)
8949 {
8950         u32 reset_param = keep_link ? DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET : 0;
8951
8952         /* Report UNLOAD_DONE to MCP */
8953         if (!BP_NOMCP(bp))
8954                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, reset_param);
8955 }
8956
8957 static int bnx2x_func_wait_started(struct bnx2x *bp)
8958 {
8959         int tout = 50;
8960         int msix = (bp->flags & USING_MSIX_FLAG) ? 1 : 0;
8961
8962         if (!bp->port.pmf)
8963                 return 0;
8964
8965         /*
8966          * (assumption: No Attention from MCP at this stage)
8967          * PMF probably in the middle of TX disable/enable transaction
8968          * 1. Sync IRS for default SB
8969          * 2. Sync SP queue - this guarantees us that attention handling started
8970          * 3. Wait, that TX disable/enable transaction completes
8971          *
8972          * 1+2 guarantee that if DCBx attention was scheduled it already changed
8973          * pending bit of transaction from STARTED-->TX_STOPPED, if we already
8974          * received completion for the transaction the state is TX_STOPPED.
8975          * State will return to STARTED after completion of TX_STOPPED-->STARTED
8976          * transaction.
8977          */
8978
8979         /* make sure default SB ISR is done */
8980         if (msix)
8981                 synchronize_irq(bp->msix_table[0].vector);
8982         else
8983                 synchronize_irq(bp->pdev->irq);
8984
8985         flush_workqueue(bnx2x_wq);
8986         flush_workqueue(bnx2x_iov_wq);
8987
8988         while (bnx2x_func_get_state(bp, &bp->func_obj) !=
8989                                 BNX2X_F_STATE_STARTED && tout--)
8990                 msleep(20);
8991
8992         if (bnx2x_func_get_state(bp, &bp->func_obj) !=
8993                                                 BNX2X_F_STATE_STARTED) {
8994 #ifdef BNX2X_STOP_ON_ERROR
8995                 BNX2X_ERR("Wrong function state\n");
8996                 return -EBUSY;
8997 #else
8998                 /*
8999                  * Failed to complete the transaction in a "good way"
9000                  * Force both transactions with CLR bit
9001                  */
9002                 struct bnx2x_func_state_params func_params = {NULL};
9003
9004                 DP(NETIF_MSG_IFDOWN,
9005                    "Hmmm... Unexpected function state! Forcing STARTED-->TX_ST0PPED-->STARTED\n");
9006
9007                 func_params.f_obj = &bp->func_obj;
9008                 __set_bit(RAMROD_DRV_CLR_ONLY,
9009                                         &func_params.ramrod_flags);
9010
9011                 /* STARTED-->TX_ST0PPED */
9012                 func_params.cmd = BNX2X_F_CMD_TX_STOP;
9013                 bnx2x_func_state_change(bp, &func_params);
9014
9015                 /* TX_ST0PPED-->STARTED */
9016                 func_params.cmd = BNX2X_F_CMD_TX_START;
9017                 return bnx2x_func_state_change(bp, &func_params);
9018 #endif
9019         }
9020
9021         return 0;
9022 }
9023
9024 void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode, bool keep_link)
9025 {
9026         int port = BP_PORT(bp);
9027         int i, rc = 0;
9028         u8 cos;
9029         struct bnx2x_mcast_ramrod_params rparam = {NULL};
9030         u32 reset_code;
9031
9032         /* Wait until tx fastpath tasks complete */
9033         for_each_tx_queue(bp, i) {
9034                 struct bnx2x_fastpath *fp = &bp->fp[i];
9035
9036                 for_each_cos_in_tx_queue(fp, cos)
9037                         rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
9038 #ifdef BNX2X_STOP_ON_ERROR
9039                 if (rc)
9040                         return;
9041 #endif
9042         }
9043
9044         /* Give HW time to discard old tx messages */
9045         usleep_range(1000, 2000);
9046
9047         /* Clean all ETH MACs */
9048         rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_ETH_MAC,
9049                                 false);
9050         if (rc < 0)
9051                 BNX2X_ERR("Failed to delete all ETH macs: %d\n", rc);
9052
9053         /* Clean up UC list  */
9054         rc = bnx2x_del_all_macs(bp, &bp->sp_objs[0].mac_obj, BNX2X_UC_LIST_MAC,
9055                                 true);
9056         if (rc < 0)
9057                 BNX2X_ERR("Failed to schedule DEL commands for UC MACs list: %d\n",
9058                           rc);
9059
9060         /* Disable LLH */
9061         if (!CHIP_IS_E1(bp))
9062                 REG_WR(bp, NIG_REG_LLH0_FUNC_EN + port*8, 0);
9063
9064         /* Set "drop all" (stop Rx).
9065          * We need to take a netif_addr_lock() here in order to prevent
9066          * a race between the completion code and this code.
9067          */
9068         netif_addr_lock_bh(bp->dev);
9069         /* Schedule the rx_mode command */
9070         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
9071                 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
9072         else
9073                 bnx2x_set_storm_rx_mode(bp);
9074
9075         /* Cleanup multicast configuration */
9076         rparam.mcast_obj = &bp->mcast_obj;
9077         rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
9078         if (rc < 0)
9079                 BNX2X_ERR("Failed to send DEL multicast command: %d\n", rc);
9080
9081         netif_addr_unlock_bh(bp->dev);
9082
9083         bnx2x_iov_chip_cleanup(bp);
9084
9085         /*
9086          * Send the UNLOAD_REQUEST to the MCP. This will return if
9087          * this function should perform FUNC, PORT or COMMON HW
9088          * reset.
9089          */
9090         reset_code = bnx2x_send_unload_req(bp, unload_mode);
9091
9092         /*
9093          * (assumption: No Attention from MCP at this stage)
9094          * PMF probably in the middle of TX disable/enable transaction
9095          */
9096         rc = bnx2x_func_wait_started(bp);
9097         if (rc) {
9098                 BNX2X_ERR("bnx2x_func_wait_started failed\n");
9099 #ifdef BNX2X_STOP_ON_ERROR
9100                 return;
9101 #endif
9102         }
9103
9104         /* Close multi and leading connections
9105          * Completions for ramrods are collected in a synchronous way
9106          */
9107         for_each_eth_queue(bp, i)
9108                 if (bnx2x_stop_queue(bp, i))
9109 #ifdef BNX2X_STOP_ON_ERROR
9110                         return;
9111 #else
9112                         goto unload_error;
9113 #endif
9114
9115         if (CNIC_LOADED(bp)) {
9116                 for_each_cnic_queue(bp, i)
9117                         if (bnx2x_stop_queue(bp, i))
9118 #ifdef BNX2X_STOP_ON_ERROR
9119                                 return;
9120 #else
9121                                 goto unload_error;
9122 #endif
9123         }
9124
9125         /* If SP settings didn't get completed so far - something
9126          * very wrong has happen.
9127          */
9128         if (!bnx2x_wait_sp_comp(bp, ~0x0UL))
9129                 BNX2X_ERR("Hmmm... Common slow path ramrods got stuck!\n");
9130
9131 #ifndef BNX2X_STOP_ON_ERROR
9132 unload_error:
9133 #endif
9134         rc = bnx2x_func_stop(bp);
9135         if (rc) {
9136                 BNX2X_ERR("Function stop failed!\n");
9137 #ifdef BNX2X_STOP_ON_ERROR
9138                 return;
9139 #endif
9140         }
9141
9142         /* Disable HW interrupts, NAPI */
9143         bnx2x_netif_stop(bp, 1);
9144         /* Delete all NAPI objects */
9145         bnx2x_del_all_napi(bp);
9146         if (CNIC_LOADED(bp))
9147                 bnx2x_del_all_napi_cnic(bp);
9148
9149         /* Release IRQs */
9150         bnx2x_free_irq(bp);
9151
9152         /* Reset the chip */
9153         rc = bnx2x_reset_hw(bp, reset_code);
9154         if (rc)
9155                 BNX2X_ERR("HW_RESET failed\n");
9156
9157         /* Report UNLOAD_DONE to MCP */
9158         bnx2x_send_unload_done(bp, keep_link);
9159 }
9160
9161 void bnx2x_disable_close_the_gate(struct bnx2x *bp)
9162 {
9163         u32 val;
9164
9165         DP(NETIF_MSG_IFDOWN, "Disabling \"close the gates\"\n");
9166
9167         if (CHIP_IS_E1(bp)) {
9168                 int port = BP_PORT(bp);
9169                 u32 addr = port ? MISC_REG_AEU_MASK_ATTN_FUNC_1 :
9170                         MISC_REG_AEU_MASK_ATTN_FUNC_0;
9171
9172                 val = REG_RD(bp, addr);
9173                 val &= ~(0x300);
9174                 REG_WR(bp, addr, val);
9175         } else {
9176                 val = REG_RD(bp, MISC_REG_AEU_GENERAL_MASK);
9177                 val &= ~(MISC_AEU_GENERAL_MASK_REG_AEU_PXP_CLOSE_MASK |
9178                          MISC_AEU_GENERAL_MASK_REG_AEU_NIG_CLOSE_MASK);
9179                 REG_WR(bp, MISC_REG_AEU_GENERAL_MASK, val);
9180         }
9181 }
9182
9183 /* Close gates #2, #3 and #4: */
9184 static void bnx2x_set_234_gates(struct bnx2x *bp, bool close)
9185 {
9186         u32 val;
9187
9188         /* Gates #2 and #4a are closed/opened for "not E1" only */
9189         if (!CHIP_IS_E1(bp)) {
9190                 /* #4 */
9191                 REG_WR(bp, PXP_REG_HST_DISCARD_DOORBELLS, !!close);
9192                 /* #2 */
9193                 REG_WR(bp, PXP_REG_HST_DISCARD_INTERNAL_WRITES, !!close);
9194         }
9195
9196         /* #3 */
9197         if (CHIP_IS_E1x(bp)) {
9198                 /* Prevent interrupts from HC on both ports */
9199                 val = REG_RD(bp, HC_REG_CONFIG_1);
9200                 REG_WR(bp, HC_REG_CONFIG_1,
9201                        (!close) ? (val | HC_CONFIG_1_REG_BLOCK_DISABLE_1) :
9202                        (val & ~(u32)HC_CONFIG_1_REG_BLOCK_DISABLE_1));
9203
9204                 val = REG_RD(bp, HC_REG_CONFIG_0);
9205                 REG_WR(bp, HC_REG_CONFIG_0,
9206                        (!close) ? (val | HC_CONFIG_0_REG_BLOCK_DISABLE_0) :
9207                        (val & ~(u32)HC_CONFIG_0_REG_BLOCK_DISABLE_0));
9208         } else {
9209                 /* Prevent incoming interrupts in IGU */
9210                 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
9211
9212                 REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION,
9213                        (!close) ?
9214                        (val | IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE) :
9215                        (val & ~(u32)IGU_BLOCK_CONFIGURATION_REG_BLOCK_ENABLE));
9216         }
9217
9218         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "%s gates #2, #3 and #4\n",
9219                 close ? "closing" : "opening");
9220         mmiowb();
9221 }
9222
9223 #define SHARED_MF_CLP_MAGIC  0x80000000 /* `magic' bit */
9224
9225 static void bnx2x_clp_reset_prep(struct bnx2x *bp, u32 *magic_val)
9226 {
9227         /* Do some magic... */
9228         u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9229         *magic_val = val & SHARED_MF_CLP_MAGIC;
9230         MF_CFG_WR(bp, shared_mf_config.clp_mb, val | SHARED_MF_CLP_MAGIC);
9231 }
9232
9233 /**
9234  * bnx2x_clp_reset_done - restore the value of the `magic' bit.
9235  *
9236  * @bp:         driver handle
9237  * @magic_val:  old value of the `magic' bit.
9238  */
9239 static void bnx2x_clp_reset_done(struct bnx2x *bp, u32 magic_val)
9240 {
9241         /* Restore the `magic' bit value... */
9242         u32 val = MF_CFG_RD(bp, shared_mf_config.clp_mb);
9243         MF_CFG_WR(bp, shared_mf_config.clp_mb,
9244                 (val & (~SHARED_MF_CLP_MAGIC)) | magic_val);
9245 }
9246
9247 /**
9248  * bnx2x_reset_mcp_prep - prepare for MCP reset.
9249  *
9250  * @bp:         driver handle
9251  * @magic_val:  old value of 'magic' bit.
9252  *
9253  * Takes care of CLP configurations.
9254  */
9255 static void bnx2x_reset_mcp_prep(struct bnx2x *bp, u32 *magic_val)
9256 {
9257         u32 shmem;
9258         u32 validity_offset;
9259
9260         DP(NETIF_MSG_HW | NETIF_MSG_IFUP, "Starting\n");
9261
9262         /* Set `magic' bit in order to save MF config */
9263         if (!CHIP_IS_E1(bp))
9264                 bnx2x_clp_reset_prep(bp, magic_val);
9265
9266         /* Get shmem offset */
9267         shmem = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9268         validity_offset =
9269                 offsetof(struct shmem_region, validity_map[BP_PORT(bp)]);
9270
9271         /* Clear validity map flags */
9272         if (shmem > 0)
9273                 REG_WR(bp, shmem + validity_offset, 0);
9274 }
9275
9276 #define MCP_TIMEOUT      5000   /* 5 seconds (in ms) */
9277 #define MCP_ONE_TIMEOUT  100    /* 100 ms */
9278
9279 /**
9280  * bnx2x_mcp_wait_one - wait for MCP_ONE_TIMEOUT
9281  *
9282  * @bp: driver handle
9283  */
9284 static void bnx2x_mcp_wait_one(struct bnx2x *bp)
9285 {
9286         /* special handling for emulation and FPGA,
9287            wait 10 times longer */
9288         if (CHIP_REV_IS_SLOW(bp))
9289                 msleep(MCP_ONE_TIMEOUT*10);
9290         else
9291                 msleep(MCP_ONE_TIMEOUT);
9292 }
9293
9294 /*
9295  * initializes bp->common.shmem_base and waits for validity signature to appear
9296  */
9297 static int bnx2x_init_shmem(struct bnx2x *bp)
9298 {
9299         int cnt = 0;
9300         u32 val = 0;
9301
9302         do {
9303                 bp->common.shmem_base = REG_RD(bp, MISC_REG_SHARED_MEM_ADDR);
9304                 if (bp->common.shmem_base) {
9305                         val = SHMEM_RD(bp, validity_map[BP_PORT(bp)]);
9306                         if (val & SHR_MEM_VALIDITY_MB)
9307                                 return 0;
9308                 }
9309
9310                 bnx2x_mcp_wait_one(bp);
9311
9312         } while (cnt++ < (MCP_TIMEOUT / MCP_ONE_TIMEOUT));
9313
9314         BNX2X_ERR("BAD MCP validity signature\n");
9315
9316         return -ENODEV;
9317 }
9318
9319 static int bnx2x_reset_mcp_comp(struct bnx2x *bp, u32 magic_val)
9320 {
9321         int rc = bnx2x_init_shmem(bp);
9322
9323         /* Restore the `magic' bit value */
9324         if (!CHIP_IS_E1(bp))
9325                 bnx2x_clp_reset_done(bp, magic_val);
9326
9327         return rc;
9328 }
9329
9330 static void bnx2x_pxp_prep(struct bnx2x *bp)
9331 {
9332         if (!CHIP_IS_E1(bp)) {
9333                 REG_WR(bp, PXP2_REG_RD_START_INIT, 0);
9334                 REG_WR(bp, PXP2_REG_RQ_RBC_DONE, 0);
9335                 mmiowb();
9336         }
9337 }
9338
9339 /*
9340  * Reset the whole chip except for:
9341  *      - PCIE core
9342  *      - PCI Glue, PSWHST, PXP/PXP2 RF (all controlled by
9343  *              one reset bit)
9344  *      - IGU
9345  *      - MISC (including AEU)
9346  *      - GRC
9347  *      - RBCN, RBCP
9348  */
9349 static void bnx2x_process_kill_chip_reset(struct bnx2x *bp, bool global)
9350 {
9351         u32 not_reset_mask1, reset_mask1, not_reset_mask2, reset_mask2;
9352         u32 global_bits2, stay_reset2;
9353
9354         /*
9355          * Bits that have to be set in reset_mask2 if we want to reset 'global'
9356          * (per chip) blocks.
9357          */
9358         global_bits2 =
9359                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CPU |
9360                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_CMN_CORE;
9361
9362         /* Don't reset the following blocks.
9363          * Important: per port blocks (such as EMAC, BMAC, UMAC) can't be
9364          *            reset, as in 4 port device they might still be owned
9365          *            by the MCP (there is only one leader per path).
9366          */
9367         not_reset_mask1 =
9368                 MISC_REGISTERS_RESET_REG_1_RST_HC |
9369                 MISC_REGISTERS_RESET_REG_1_RST_PXPV |
9370                 MISC_REGISTERS_RESET_REG_1_RST_PXP;
9371
9372         not_reset_mask2 =
9373                 MISC_REGISTERS_RESET_REG_2_RST_PCI_MDIO |
9374                 MISC_REGISTERS_RESET_REG_2_RST_EMAC0_HARD_CORE |
9375                 MISC_REGISTERS_RESET_REG_2_RST_EMAC1_HARD_CORE |
9376                 MISC_REGISTERS_RESET_REG_2_RST_MISC_CORE |
9377                 MISC_REGISTERS_RESET_REG_2_RST_RBCN |
9378                 MISC_REGISTERS_RESET_REG_2_RST_GRC  |
9379                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_RESET_REG_HARD_CORE |
9380                 MISC_REGISTERS_RESET_REG_2_RST_MCP_N_HARD_CORE_RST_B |
9381                 MISC_REGISTERS_RESET_REG_2_RST_ATC |
9382                 MISC_REGISTERS_RESET_REG_2_PGLC |
9383                 MISC_REGISTERS_RESET_REG_2_RST_BMAC0 |
9384                 MISC_REGISTERS_RESET_REG_2_RST_BMAC1 |
9385                 MISC_REGISTERS_RESET_REG_2_RST_EMAC0 |
9386                 MISC_REGISTERS_RESET_REG_2_RST_EMAC1 |
9387                 MISC_REGISTERS_RESET_REG_2_UMAC0 |
9388                 MISC_REGISTERS_RESET_REG_2_UMAC1;
9389
9390         /*
9391          * Keep the following blocks in reset:
9392          *  - all xxMACs are handled by the bnx2x_link code.
9393          */
9394         stay_reset2 =
9395                 MISC_REGISTERS_RESET_REG_2_XMAC |
9396                 MISC_REGISTERS_RESET_REG_2_XMAC_SOFT;
9397
9398         /* Full reset masks according to the chip */
9399         reset_mask1 = 0xffffffff;
9400
9401         if (CHIP_IS_E1(bp))
9402                 reset_mask2 = 0xffff;
9403         else if (CHIP_IS_E1H(bp))
9404                 reset_mask2 = 0x1ffff;
9405         else if (CHIP_IS_E2(bp))
9406                 reset_mask2 = 0xfffff;
9407         else /* CHIP_IS_E3 */
9408                 reset_mask2 = 0x3ffffff;
9409
9410         /* Don't reset global blocks unless we need to */
9411         if (!global)
9412                 reset_mask2 &= ~global_bits2;
9413
9414         /*
9415          * In case of attention in the QM, we need to reset PXP
9416          * (MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR) before QM
9417          * because otherwise QM reset would release 'close the gates' shortly
9418          * before resetting the PXP, then the PSWRQ would send a write
9419          * request to PGLUE. Then when PXP is reset, PGLUE would try to
9420          * read the payload data from PSWWR, but PSWWR would not
9421          * respond. The write queue in PGLUE would stuck, dmae commands
9422          * would not return. Therefore it's important to reset the second
9423          * reset register (containing the
9424          * MISC_REGISTERS_RESET_REG_2_RST_PXP_RQ_RD_WR bit) before the
9425          * first one (containing the MISC_REGISTERS_RESET_REG_1_RST_QM
9426          * bit).
9427          */
9428         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_CLEAR,
9429                reset_mask2 & (~not_reset_mask2));
9430
9431         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_CLEAR,
9432                reset_mask1 & (~not_reset_mask1));
9433
9434         barrier();
9435         mmiowb();
9436
9437         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_2_SET,
9438                reset_mask2 & (~stay_reset2));
9439
9440         barrier();
9441         mmiowb();
9442
9443         REG_WR(bp, GRCBASE_MISC + MISC_REGISTERS_RESET_REG_1_SET, reset_mask1);
9444         mmiowb();
9445 }
9446
9447 /**
9448  * bnx2x_er_poll_igu_vq - poll for pending writes bit.
9449  * It should get cleared in no more than 1s.
9450  *
9451  * @bp: driver handle
9452  *
9453  * It should get cleared in no more than 1s. Returns 0 if
9454  * pending writes bit gets cleared.
9455  */
9456 static int bnx2x_er_poll_igu_vq(struct bnx2x *bp)
9457 {
9458         u32 cnt = 1000;
9459         u32 pend_bits = 0;
9460
9461         do {
9462                 pend_bits  = REG_RD(bp, IGU_REG_PENDING_BITS_STATUS);
9463
9464                 if (pend_bits == 0)
9465                         break;
9466
9467                 usleep_range(1000, 2000);
9468         } while (cnt-- > 0);
9469
9470         if (cnt <= 0) {
9471                 BNX2X_ERR("Still pending IGU requests pend_bits=%x!\n",
9472                           pend_bits);
9473                 return -EBUSY;
9474         }
9475
9476         return 0;
9477 }
9478
9479 static int bnx2x_process_kill(struct bnx2x *bp, bool global)
9480 {
9481         int cnt = 1000;
9482         u32 val = 0;
9483         u32 sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1, pgl_exp_rom2;
9484         u32 tags_63_32 = 0;
9485
9486         /* Empty the Tetris buffer, wait for 1s */
9487         do {
9488                 sr_cnt  = REG_RD(bp, PXP2_REG_RD_SR_CNT);
9489                 blk_cnt = REG_RD(bp, PXP2_REG_RD_BLK_CNT);
9490                 port_is_idle_0 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_0);
9491                 port_is_idle_1 = REG_RD(bp, PXP2_REG_RD_PORT_IS_IDLE_1);
9492                 pgl_exp_rom2 = REG_RD(bp, PXP2_REG_PGL_EXP_ROM2);
9493                 if (CHIP_IS_E3(bp))
9494                         tags_63_32 = REG_RD(bp, PGLUE_B_REG_TAGS_63_32);
9495
9496                 if ((sr_cnt == 0x7e) && (blk_cnt == 0xa0) &&
9497                     ((port_is_idle_0 & 0x1) == 0x1) &&
9498                     ((port_is_idle_1 & 0x1) == 0x1) &&
9499                     (pgl_exp_rom2 == 0xffffffff) &&
9500                     (!CHIP_IS_E3(bp) || (tags_63_32 == 0xffffffff)))
9501                         break;
9502                 usleep_range(1000, 2000);
9503         } while (cnt-- > 0);
9504
9505         if (cnt <= 0) {
9506                 BNX2X_ERR("Tetris buffer didn't get empty or there are still outstanding read requests after 1s!\n");
9507                 BNX2X_ERR("sr_cnt=0x%08x, blk_cnt=0x%08x, port_is_idle_0=0x%08x, port_is_idle_1=0x%08x, pgl_exp_rom2=0x%08x\n",
9508                           sr_cnt, blk_cnt, port_is_idle_0, port_is_idle_1,
9509                           pgl_exp_rom2);
9510                 return -EAGAIN;
9511         }
9512
9513         barrier();
9514
9515         /* Close gates #2, #3 and #4 */
9516         bnx2x_set_234_gates(bp, true);
9517
9518         /* Poll for IGU VQs for 57712 and newer chips */
9519         if (!CHIP_IS_E1x(bp) && bnx2x_er_poll_igu_vq(bp))
9520                 return -EAGAIN;
9521
9522         /* TBD: Indicate that "process kill" is in progress to MCP */
9523
9524         /* Clear "unprepared" bit */
9525         REG_WR(bp, MISC_REG_UNPREPARED, 0);
9526         barrier();
9527
9528         /* Make sure all is written to the chip before the reset */
9529         mmiowb();
9530
9531         /* Wait for 1ms to empty GLUE and PCI-E core queues,
9532          * PSWHST, GRC and PSWRD Tetris buffer.
9533          */
9534         usleep_range(1000, 2000);
9535
9536         /* Prepare to chip reset: */
9537         /* MCP */
9538         if (global)
9539                 bnx2x_reset_mcp_prep(bp, &val);
9540
9541         /* PXP */
9542         bnx2x_pxp_prep(bp);
9543         barrier();
9544
9545         /* reset the chip */
9546         bnx2x_process_kill_chip_reset(bp, global);
9547         barrier();
9548
9549         /* clear errors in PGB */
9550         if (!CHIP_IS_E1x(bp))
9551                 REG_WR(bp, PGLUE_B_REG_LATCHED_ERRORS_CLR, 0x7f);
9552
9553         /* Recover after reset: */
9554         /* MCP */
9555         if (global && bnx2x_reset_mcp_comp(bp, val))
9556                 return -EAGAIN;
9557
9558         /* TBD: Add resetting the NO_MCP mode DB here */
9559
9560         /* Open the gates #2, #3 and #4 */
9561         bnx2x_set_234_gates(bp, false);
9562
9563         /* TBD: IGU/AEU preparation bring back the AEU/IGU to a
9564          * reset state, re-enable attentions. */
9565
9566         return 0;
9567 }
9568
9569 static int bnx2x_leader_reset(struct bnx2x *bp)
9570 {
9571         int rc = 0;
9572         bool global = bnx2x_reset_is_global(bp);
9573         u32 load_code;
9574
9575         /* if not going to reset MCP - load "fake" driver to reset HW while
9576          * driver is owner of the HW
9577          */
9578         if (!global && !BP_NOMCP(bp)) {
9579                 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ,
9580                                              DRV_MSG_CODE_LOAD_REQ_WITH_LFA);
9581                 if (!load_code) {
9582                         BNX2X_ERR("MCP response failure, aborting\n");
9583                         rc = -EAGAIN;
9584                         goto exit_leader_reset;
9585                 }
9586                 if ((load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) &&
9587                     (load_code != FW_MSG_CODE_DRV_LOAD_COMMON)) {
9588                         BNX2X_ERR("MCP unexpected resp, aborting\n");
9589                         rc = -EAGAIN;
9590                         goto exit_leader_reset2;
9591                 }
9592                 load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
9593                 if (!load_code) {
9594                         BNX2X_ERR("MCP response failure, aborting\n");
9595                         rc = -EAGAIN;
9596                         goto exit_leader_reset2;
9597                 }
9598         }
9599
9600         /* Try to recover after the failure */
9601         if (bnx2x_process_kill(bp, global)) {
9602                 BNX2X_ERR("Something bad had happen on engine %d! Aii!\n",
9603                           BP_PATH(bp));
9604                 rc = -EAGAIN;
9605                 goto exit_leader_reset2;
9606         }
9607
9608         /*
9609          * Clear RESET_IN_PROGRES and RESET_GLOBAL bits and update the driver
9610          * state.
9611          */
9612         bnx2x_set_reset_done(bp);
9613         if (global)
9614                 bnx2x_clear_reset_global(bp);
9615
9616 exit_leader_reset2:
9617         /* unload "fake driver" if it was loaded */
9618         if (!global && !BP_NOMCP(bp)) {
9619                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
9620                 bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
9621         }
9622 exit_leader_reset:
9623         bp->is_leader = 0;
9624         bnx2x_release_leader_lock(bp);
9625         smp_mb();
9626         return rc;
9627 }
9628
9629 static void bnx2x_recovery_failed(struct bnx2x *bp)
9630 {
9631         netdev_err(bp->dev, "Recovery has failed. Power cycle is needed.\n");
9632
9633         /* Disconnect this device */
9634         netif_device_detach(bp->dev);
9635
9636         /*
9637          * Block ifup for all function on this engine until "process kill"
9638          * or power cycle.
9639          */
9640         bnx2x_set_reset_in_progress(bp);
9641
9642         /* Shut down the power */
9643         bnx2x_set_power_state(bp, PCI_D3hot);
9644
9645         bp->recovery_state = BNX2X_RECOVERY_FAILED;
9646
9647         smp_mb();
9648 }
9649
9650 /*
9651  * Assumption: runs under rtnl lock. This together with the fact
9652  * that it's called only from bnx2x_sp_rtnl() ensure that it
9653  * will never be called when netif_running(bp->dev) is false.
9654  */
9655 static void bnx2x_parity_recover(struct bnx2x *bp)
9656 {
9657         bool global = false;
9658         u32 error_recovered, error_unrecovered;
9659         bool is_parity;
9660
9661         DP(NETIF_MSG_HW, "Handling parity\n");
9662         while (1) {
9663                 switch (bp->recovery_state) {
9664                 case BNX2X_RECOVERY_INIT:
9665                         DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_INIT\n");
9666                         is_parity = bnx2x_chk_parity_attn(bp, &global, false);
9667                         WARN_ON(!is_parity);
9668
9669                         /* Try to get a LEADER_LOCK HW lock */
9670                         if (bnx2x_trylock_leader_lock(bp)) {
9671                                 bnx2x_set_reset_in_progress(bp);
9672                                 /*
9673                                  * Check if there is a global attention and if
9674                                  * there was a global attention, set the global
9675                                  * reset bit.
9676                                  */
9677
9678                                 if (global)
9679                                         bnx2x_set_reset_global(bp);
9680
9681                                 bp->is_leader = 1;
9682                         }
9683
9684                         /* Stop the driver */
9685                         /* If interface has been removed - break */
9686                         if (bnx2x_nic_unload(bp, UNLOAD_RECOVERY, false))
9687                                 return;
9688
9689                         bp->recovery_state = BNX2X_RECOVERY_WAIT;
9690
9691                         /* Ensure "is_leader", MCP command sequence and
9692                          * "recovery_state" update values are seen on other
9693                          * CPUs.
9694                          */
9695                         smp_mb();
9696                         break;
9697
9698                 case BNX2X_RECOVERY_WAIT:
9699                         DP(NETIF_MSG_HW, "State is BNX2X_RECOVERY_WAIT\n");
9700                         if (bp->is_leader) {
9701                                 int other_engine = BP_PATH(bp) ? 0 : 1;
9702                                 bool other_load_status =
9703                                         bnx2x_get_load_status(bp, other_engine);
9704                                 bool load_status =
9705                                         bnx2x_get_load_status(bp, BP_PATH(bp));
9706                                 global = bnx2x_reset_is_global(bp);
9707
9708                                 /*
9709                                  * In case of a parity in a global block, let
9710                                  * the first leader that performs a
9711                                  * leader_reset() reset the global blocks in
9712                                  * order to clear global attentions. Otherwise
9713                                  * the gates will remain closed for that
9714                                  * engine.
9715                                  */
9716                                 if (load_status ||
9717                                     (global && other_load_status)) {
9718                                         /* Wait until all other functions get
9719                                          * down.
9720                                          */
9721                                         schedule_delayed_work(&bp->sp_rtnl_task,
9722                                                                 HZ/10);
9723                                         return;
9724                                 } else {
9725                                         /* If all other functions got down -
9726                                          * try to bring the chip back to
9727                                          * normal. In any case it's an exit
9728                                          * point for a leader.
9729                                          */
9730                                         if (bnx2x_leader_reset(bp)) {
9731                                                 bnx2x_recovery_failed(bp);
9732                                                 return;
9733                                         }
9734
9735                                         /* If we are here, means that the
9736                                          * leader has succeeded and doesn't
9737                                          * want to be a leader any more. Try
9738                                          * to continue as a none-leader.
9739                                          */
9740                                         break;
9741                                 }
9742                         } else { /* non-leader */
9743                                 if (!bnx2x_reset_is_done(bp, BP_PATH(bp))) {
9744                                         /* Try to get a LEADER_LOCK HW lock as
9745                                          * long as a former leader may have
9746                                          * been unloaded by the user or
9747                                          * released a leadership by another
9748                                          * reason.
9749                                          */
9750                                         if (bnx2x_trylock_leader_lock(bp)) {
9751                                                 /* I'm a leader now! Restart a
9752                                                  * switch case.
9753                                                  */
9754                                                 bp->is_leader = 1;
9755                                                 break;
9756                                         }
9757
9758                                         schedule_delayed_work(&bp->sp_rtnl_task,
9759                                                                 HZ/10);
9760                                         return;
9761
9762                                 } else {
9763                                         /*
9764                                          * If there was a global attention, wait
9765                                          * for it to be cleared.
9766                                          */
9767                                         if (bnx2x_reset_is_global(bp)) {
9768                                                 schedule_delayed_work(
9769                                                         &bp->sp_rtnl_task,
9770                                                         HZ/10);
9771                                                 return;
9772                                         }
9773
9774                                         error_recovered =
9775                                           bp->eth_stats.recoverable_error;
9776                                         error_unrecovered =
9777                                           bp->eth_stats.unrecoverable_error;
9778                                         bp->recovery_state =
9779                                                 BNX2X_RECOVERY_NIC_LOADING;
9780                                         if (bnx2x_nic_load(bp, LOAD_NORMAL)) {
9781                                                 error_unrecovered++;
9782                                                 netdev_err(bp->dev,
9783                                                            "Recovery failed. Power cycle needed\n");
9784                                                 /* Disconnect this device */
9785                                                 netif_device_detach(bp->dev);
9786                                                 /* Shut down the power */
9787                                                 bnx2x_set_power_state(
9788                                                         bp, PCI_D3hot);
9789                                                 smp_mb();
9790                                         } else {
9791                                                 bp->recovery_state =
9792                                                         BNX2X_RECOVERY_DONE;
9793                                                 error_recovered++;
9794                                                 smp_mb();
9795                                         }
9796                                         bp->eth_stats.recoverable_error =
9797                                                 error_recovered;
9798                                         bp->eth_stats.unrecoverable_error =
9799                                                 error_unrecovered;
9800
9801                                         return;
9802                                 }
9803                         }
9804                 default:
9805                         return;
9806                 }
9807         }
9808 }
9809
9810 static int bnx2x_close(struct net_device *dev);
9811
9812 /* bnx2x_nic_unload() flushes the bnx2x_wq, thus reset task is
9813  * scheduled on a general queue in order to prevent a dead lock.
9814  */
9815 static void bnx2x_sp_rtnl_task(struct work_struct *work)
9816 {
9817         struct bnx2x *bp = container_of(work, struct bnx2x, sp_rtnl_task.work);
9818
9819         rtnl_lock();
9820
9821         if (!netif_running(bp->dev)) {
9822                 rtnl_unlock();
9823                 return;
9824         }
9825
9826         if (unlikely(bp->recovery_state != BNX2X_RECOVERY_DONE)) {
9827 #ifdef BNX2X_STOP_ON_ERROR
9828                 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9829                           "you will need to reboot when done\n");
9830                 goto sp_rtnl_not_reset;
9831 #endif
9832                 /*
9833                  * Clear all pending SP commands as we are going to reset the
9834                  * function anyway.
9835                  */
9836                 bp->sp_rtnl_state = 0;
9837                 smp_mb();
9838
9839                 bnx2x_parity_recover(bp);
9840
9841                 rtnl_unlock();
9842                 return;
9843         }
9844
9845         if (test_and_clear_bit(BNX2X_SP_RTNL_TX_TIMEOUT, &bp->sp_rtnl_state)) {
9846 #ifdef BNX2X_STOP_ON_ERROR
9847                 BNX2X_ERR("recovery flow called but STOP_ON_ERROR defined so reset not done to allow debug dump,\n"
9848                           "you will need to reboot when done\n");
9849                 goto sp_rtnl_not_reset;
9850 #endif
9851
9852                 /*
9853                  * Clear all pending SP commands as we are going to reset the
9854                  * function anyway.
9855                  */
9856                 bp->sp_rtnl_state = 0;
9857                 smp_mb();
9858
9859                 bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
9860                 bnx2x_nic_load(bp, LOAD_NORMAL);
9861
9862                 rtnl_unlock();
9863                 return;
9864         }
9865 #ifdef BNX2X_STOP_ON_ERROR
9866 sp_rtnl_not_reset:
9867 #endif
9868         if (test_and_clear_bit(BNX2X_SP_RTNL_SETUP_TC, &bp->sp_rtnl_state))
9869                 bnx2x_setup_tc(bp->dev, bp->dcbx_port_params.ets.num_of_cos);
9870         if (test_and_clear_bit(BNX2X_SP_RTNL_AFEX_F_UPDATE, &bp->sp_rtnl_state))
9871                 bnx2x_after_function_update(bp);
9872         /*
9873          * in case of fan failure we need to reset id if the "stop on error"
9874          * debug flag is set, since we trying to prevent permanent overheating
9875          * damage
9876          */
9877         if (test_and_clear_bit(BNX2X_SP_RTNL_FAN_FAILURE, &bp->sp_rtnl_state)) {
9878                 DP(NETIF_MSG_HW, "fan failure detected. Unloading driver\n");
9879                 netif_device_detach(bp->dev);
9880                 bnx2x_close(bp->dev);
9881                 rtnl_unlock();
9882                 return;
9883         }
9884
9885         if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_MCAST, &bp->sp_rtnl_state)) {
9886                 DP(BNX2X_MSG_SP,
9887                    "sending set mcast vf pf channel message from rtnl sp-task\n");
9888                 bnx2x_vfpf_set_mcast(bp->dev);
9889         }
9890         if (test_and_clear_bit(BNX2X_SP_RTNL_VFPF_CHANNEL_DOWN,
9891                                &bp->sp_rtnl_state)){
9892                 if (!test_bit(__LINK_STATE_NOCARRIER, &bp->dev->state)) {
9893                         bnx2x_tx_disable(bp);
9894                         BNX2X_ERR("PF indicated channel is not servicable anymore. This means this VF device is no longer operational\n");
9895                 }
9896         }
9897
9898         if (test_and_clear_bit(BNX2X_SP_RTNL_RX_MODE, &bp->sp_rtnl_state)) {
9899                 DP(BNX2X_MSG_SP, "Handling Rx Mode setting\n");
9900                 bnx2x_set_rx_mode_inner(bp);
9901         }
9902
9903         if (test_and_clear_bit(BNX2X_SP_RTNL_HYPERVISOR_VLAN,
9904                                &bp->sp_rtnl_state))
9905                 bnx2x_pf_set_vfs_vlan(bp);
9906
9907         if (test_and_clear_bit(BNX2X_SP_RTNL_TX_STOP, &bp->sp_rtnl_state)) {
9908                 bnx2x_dcbx_stop_hw_tx(bp);
9909                 bnx2x_dcbx_resume_hw_tx(bp);
9910         }
9911
9912         if (test_and_clear_bit(BNX2X_SP_RTNL_GET_DRV_VERSION,
9913                                &bp->sp_rtnl_state))
9914                 bnx2x_update_mng_version(bp);
9915
9916         /* work which needs rtnl lock not-taken (as it takes the lock itself and
9917          * can be called from other contexts as well)
9918          */
9919         rtnl_unlock();
9920
9921         /* enable SR-IOV if applicable */
9922         if (IS_SRIOV(bp) && test_and_clear_bit(BNX2X_SP_RTNL_ENABLE_SRIOV,
9923                                                &bp->sp_rtnl_state)) {
9924                 bnx2x_disable_sriov(bp);
9925                 bnx2x_enable_sriov(bp);
9926         }
9927 }
9928
9929 static void bnx2x_period_task(struct work_struct *work)
9930 {
9931         struct bnx2x *bp = container_of(work, struct bnx2x, period_task.work);
9932
9933         if (!netif_running(bp->dev))
9934                 goto period_task_exit;
9935
9936         if (CHIP_REV_IS_SLOW(bp)) {
9937                 BNX2X_ERR("period task called on emulation, ignoring\n");
9938                 goto period_task_exit;
9939         }
9940
9941         bnx2x_acquire_phy_lock(bp);
9942         /*
9943          * The barrier is needed to ensure the ordering between the writing to
9944          * the bp->port.pmf in the bnx2x_nic_load() or bnx2x_pmf_update() and
9945          * the reading here.
9946          */
9947         smp_mb();
9948         if (bp->port.pmf) {
9949                 bnx2x_period_func(&bp->link_params, &bp->link_vars);
9950
9951                 /* Re-queue task in 1 sec */
9952                 queue_delayed_work(bnx2x_wq, &bp->period_task, 1*HZ);
9953         }
9954
9955         bnx2x_release_phy_lock(bp);
9956 period_task_exit:
9957         return;
9958 }
9959
9960 /*
9961  * Init service functions
9962  */
9963
9964 static u32 bnx2x_get_pretend_reg(struct bnx2x *bp)
9965 {
9966         u32 base = PXP2_REG_PGL_PRETEND_FUNC_F0;
9967         u32 stride = PXP2_REG_PGL_PRETEND_FUNC_F1 - base;
9968         return base + (BP_ABS_FUNC(bp)) * stride;
9969 }
9970
9971 static void bnx2x_prev_unload_close_mac(struct bnx2x *bp,
9972                                         struct bnx2x_mac_vals *vals)
9973 {
9974         u32 val, base_addr, offset, mask, reset_reg;
9975         bool mac_stopped = false;
9976         u8 port = BP_PORT(bp);
9977
9978         /* reset addresses as they also mark which values were changed */
9979         vals->bmac_addr = 0;
9980         vals->umac_addr = 0;
9981         vals->xmac_addr = 0;
9982         vals->emac_addr = 0;
9983
9984         reset_reg = REG_RD(bp, MISC_REG_RESET_REG_2);
9985
9986         if (!CHIP_IS_E3(bp)) {
9987                 val = REG_RD(bp, NIG_REG_BMAC0_REGS_OUT_EN + port * 4);
9988                 mask = MISC_REGISTERS_RESET_REG_2_RST_BMAC0 << port;
9989                 if ((mask & reset_reg) && val) {
9990                         u32 wb_data[2];
9991                         BNX2X_DEV_INFO("Disable bmac Rx\n");
9992                         base_addr = BP_PORT(bp) ? NIG_REG_INGRESS_BMAC1_MEM
9993                                                 : NIG_REG_INGRESS_BMAC0_MEM;
9994                         offset = CHIP_IS_E2(bp) ? BIGMAC2_REGISTER_BMAC_CONTROL
9995                                                 : BIGMAC_REGISTER_BMAC_CONTROL;
9996
9997                         /*
9998                          * use rd/wr since we cannot use dmae. This is safe
9999                          * since MCP won't access the bus due to the request
10000                          * to unload, and no function on the path can be
10001                          * loaded at this time.
10002                          */
10003                         wb_data[0] = REG_RD(bp, base_addr + offset);
10004                         wb_data[1] = REG_RD(bp, base_addr + offset + 0x4);
10005                         vals->bmac_addr = base_addr + offset;
10006                         vals->bmac_val[0] = wb_data[0];
10007                         vals->bmac_val[1] = wb_data[1];
10008                         wb_data[0] &= ~BMAC_CONTROL_RX_ENABLE;
10009                         REG_WR(bp, vals->bmac_addr, wb_data[0]);
10010                         REG_WR(bp, vals->bmac_addr + 0x4, wb_data[1]);
10011                 }
10012                 BNX2X_DEV_INFO("Disable emac Rx\n");
10013                 vals->emac_addr = NIG_REG_NIG_EMAC0_EN + BP_PORT(bp)*4;
10014                 vals->emac_val = REG_RD(bp, vals->emac_addr);
10015                 REG_WR(bp, vals->emac_addr, 0);
10016                 mac_stopped = true;
10017         } else {
10018                 if (reset_reg & MISC_REGISTERS_RESET_REG_2_XMAC) {
10019                         BNX2X_DEV_INFO("Disable xmac Rx\n");
10020                         base_addr = BP_PORT(bp) ? GRCBASE_XMAC1 : GRCBASE_XMAC0;
10021                         val = REG_RD(bp, base_addr + XMAC_REG_PFC_CTRL_HI);
10022                         REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10023                                val & ~(1 << 1));
10024                         REG_WR(bp, base_addr + XMAC_REG_PFC_CTRL_HI,
10025                                val | (1 << 1));
10026                         vals->xmac_addr = base_addr + XMAC_REG_CTRL;
10027                         vals->xmac_val = REG_RD(bp, vals->xmac_addr);
10028                         REG_WR(bp, vals->xmac_addr, 0);
10029                         mac_stopped = true;
10030                 }
10031                 mask = MISC_REGISTERS_RESET_REG_2_UMAC0 << port;
10032                 if (mask & reset_reg) {
10033                         BNX2X_DEV_INFO("Disable umac Rx\n");
10034                         base_addr = BP_PORT(bp) ? GRCBASE_UMAC1 : GRCBASE_UMAC0;
10035                         vals->umac_addr = base_addr + UMAC_REG_COMMAND_CONFIG;
10036                         vals->umac_val = REG_RD(bp, vals->umac_addr);
10037                         REG_WR(bp, vals->umac_addr, 0);
10038                         mac_stopped = true;
10039                 }
10040         }
10041
10042         if (mac_stopped)
10043                 msleep(20);
10044 }
10045
10046 #define BNX2X_PREV_UNDI_PROD_ADDR(p) (BAR_TSTRORM_INTMEM + 0x1508 + ((p) << 4))
10047 #define BNX2X_PREV_UNDI_RCQ(val)        ((val) & 0xffff)
10048 #define BNX2X_PREV_UNDI_BD(val)         ((val) >> 16 & 0xffff)
10049 #define BNX2X_PREV_UNDI_PROD(rcq, bd)   ((bd) << 16 | (rcq))
10050
10051 #define BCM_5710_UNDI_FW_MF_MAJOR       (0x07)
10052 #define BCM_5710_UNDI_FW_MF_MINOR       (0x08)
10053 #define BCM_5710_UNDI_FW_MF_VERS        (0x05)
10054 #define BNX2X_PREV_UNDI_MF_PORT(p) (BAR_TSTRORM_INTMEM + 0x150c + ((p) << 4))
10055 #define BNX2X_PREV_UNDI_MF_FUNC(f) (BAR_TSTRORM_INTMEM + 0x184c + ((f) << 4))
10056 static bool bnx2x_prev_unload_undi_fw_supports_mf(struct bnx2x *bp)
10057 {
10058         u8 major, minor, version;
10059         u32 fw;
10060
10061         /* Must check that FW is loaded */
10062         if (!(REG_RD(bp, MISC_REG_RESET_REG_1) &
10063              MISC_REGISTERS_RESET_REG_1_RST_XSEM)) {
10064                 BNX2X_DEV_INFO("XSEM is reset - UNDI MF FW is not loaded\n");
10065                 return false;
10066         }
10067
10068         /* Read Currently loaded FW version */
10069         fw = REG_RD(bp, XSEM_REG_PRAM);
10070         major = fw & 0xff;
10071         minor = (fw >> 0x8) & 0xff;
10072         version = (fw >> 0x10) & 0xff;
10073         BNX2X_DEV_INFO("Loaded FW: 0x%08x: Major 0x%02x Minor 0x%02x Version 0x%02x\n",
10074                        fw, major, minor, version);
10075
10076         if (major > BCM_5710_UNDI_FW_MF_MAJOR)
10077                 return true;
10078
10079         if ((major == BCM_5710_UNDI_FW_MF_MAJOR) &&
10080             (minor > BCM_5710_UNDI_FW_MF_MINOR))
10081                 return true;
10082
10083         if ((major == BCM_5710_UNDI_FW_MF_MAJOR) &&
10084             (minor == BCM_5710_UNDI_FW_MF_MINOR) &&
10085             (version >= BCM_5710_UNDI_FW_MF_VERS))
10086                 return true;
10087
10088         return false;
10089 }
10090
10091 static void bnx2x_prev_unload_undi_mf(struct bnx2x *bp)
10092 {
10093         int i;
10094
10095         /* Due to legacy (FW) code, the first function on each engine has a
10096          * different offset macro from the rest of the functions.
10097          * Setting this for all 8 functions is harmless regardless of whether
10098          * this is actually a multi-function device.
10099          */
10100         for (i = 0; i < 2; i++)
10101                 REG_WR(bp, BNX2X_PREV_UNDI_MF_PORT(i), 1);
10102
10103         for (i = 2; i < 8; i++)
10104                 REG_WR(bp, BNX2X_PREV_UNDI_MF_FUNC(i - 2), 1);
10105
10106         BNX2X_DEV_INFO("UNDI FW (MF) set to discard\n");
10107 }
10108
10109 static void bnx2x_prev_unload_undi_inc(struct bnx2x *bp, u8 port, u8 inc)
10110 {
10111         u16 rcq, bd;
10112         u32 tmp_reg = REG_RD(bp, BNX2X_PREV_UNDI_PROD_ADDR(port));
10113
10114         rcq = BNX2X_PREV_UNDI_RCQ(tmp_reg) + inc;
10115         bd = BNX2X_PREV_UNDI_BD(tmp_reg) + inc;
10116
10117         tmp_reg = BNX2X_PREV_UNDI_PROD(rcq, bd);
10118         REG_WR(bp, BNX2X_PREV_UNDI_PROD_ADDR(port), tmp_reg);
10119
10120         BNX2X_DEV_INFO("UNDI producer [%d] rings bd -> 0x%04x, rcq -> 0x%04x\n",
10121                        port, bd, rcq);
10122 }
10123
10124 static int bnx2x_prev_mcp_done(struct bnx2x *bp)
10125 {
10126         u32 rc = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE,
10127                                   DRV_MSG_CODE_UNLOAD_SKIP_LINK_RESET);
10128         if (!rc) {
10129                 BNX2X_ERR("MCP response failure, aborting\n");
10130                 return -EBUSY;
10131         }
10132
10133         return 0;
10134 }
10135
10136 static struct bnx2x_prev_path_list *
10137                 bnx2x_prev_path_get_entry(struct bnx2x *bp)
10138 {
10139         struct bnx2x_prev_path_list *tmp_list;
10140
10141         list_for_each_entry(tmp_list, &bnx2x_prev_list, list)
10142                 if (PCI_SLOT(bp->pdev->devfn) == tmp_list->slot &&
10143                     bp->pdev->bus->number == tmp_list->bus &&
10144                     BP_PATH(bp) == tmp_list->path)
10145                         return tmp_list;
10146
10147         return NULL;
10148 }
10149
10150 static int bnx2x_prev_path_mark_eeh(struct bnx2x *bp)
10151 {
10152         struct bnx2x_prev_path_list *tmp_list;
10153         int rc;
10154
10155         rc = down_interruptible(&bnx2x_prev_sem);
10156         if (rc) {
10157                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10158                 return rc;
10159         }
10160
10161         tmp_list = bnx2x_prev_path_get_entry(bp);
10162         if (tmp_list) {
10163                 tmp_list->aer = 1;
10164                 rc = 0;
10165         } else {
10166                 BNX2X_ERR("path %d: Entry does not exist for eeh; Flow occurs before initial insmod is over ?\n",
10167                           BP_PATH(bp));
10168         }
10169
10170         up(&bnx2x_prev_sem);
10171
10172         return rc;
10173 }
10174
10175 static bool bnx2x_prev_is_path_marked(struct bnx2x *bp)
10176 {
10177         struct bnx2x_prev_path_list *tmp_list;
10178         bool rc = false;
10179
10180         if (down_trylock(&bnx2x_prev_sem))
10181                 return false;
10182
10183         tmp_list = bnx2x_prev_path_get_entry(bp);
10184         if (tmp_list) {
10185                 if (tmp_list->aer) {
10186                         DP(NETIF_MSG_HW, "Path %d was marked by AER\n",
10187                            BP_PATH(bp));
10188                 } else {
10189                         rc = true;
10190                         BNX2X_DEV_INFO("Path %d was already cleaned from previous drivers\n",
10191                                        BP_PATH(bp));
10192                 }
10193         }
10194
10195         up(&bnx2x_prev_sem);
10196
10197         return rc;
10198 }
10199
10200 bool bnx2x_port_after_undi(struct bnx2x *bp)
10201 {
10202         struct bnx2x_prev_path_list *entry;
10203         bool val;
10204
10205         down(&bnx2x_prev_sem);
10206
10207         entry = bnx2x_prev_path_get_entry(bp);
10208         val = !!(entry && (entry->undi & (1 << BP_PORT(bp))));
10209
10210         up(&bnx2x_prev_sem);
10211
10212         return val;
10213 }
10214
10215 static int bnx2x_prev_mark_path(struct bnx2x *bp, bool after_undi)
10216 {
10217         struct bnx2x_prev_path_list *tmp_list;
10218         int rc;
10219
10220         rc = down_interruptible(&bnx2x_prev_sem);
10221         if (rc) {
10222                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10223                 return rc;
10224         }
10225
10226         /* Check whether the entry for this path already exists */
10227         tmp_list = bnx2x_prev_path_get_entry(bp);
10228         if (tmp_list) {
10229                 if (!tmp_list->aer) {
10230                         BNX2X_ERR("Re-Marking the path.\n");
10231                 } else {
10232                         DP(NETIF_MSG_HW, "Removing AER indication from path %d\n",
10233                            BP_PATH(bp));
10234                         tmp_list->aer = 0;
10235                 }
10236                 up(&bnx2x_prev_sem);
10237                 return 0;
10238         }
10239         up(&bnx2x_prev_sem);
10240
10241         /* Create an entry for this path and add it */
10242         tmp_list = kmalloc(sizeof(struct bnx2x_prev_path_list), GFP_KERNEL);
10243         if (!tmp_list) {
10244                 BNX2X_ERR("Failed to allocate 'bnx2x_prev_path_list'\n");
10245                 return -ENOMEM;
10246         }
10247
10248         tmp_list->bus = bp->pdev->bus->number;
10249         tmp_list->slot = PCI_SLOT(bp->pdev->devfn);
10250         tmp_list->path = BP_PATH(bp);
10251         tmp_list->aer = 0;
10252         tmp_list->undi = after_undi ? (1 << BP_PORT(bp)) : 0;
10253
10254         rc = down_interruptible(&bnx2x_prev_sem);
10255         if (rc) {
10256                 BNX2X_ERR("Received %d when tried to take lock\n", rc);
10257                 kfree(tmp_list);
10258         } else {
10259                 DP(NETIF_MSG_HW, "Marked path [%d] - finished previous unload\n",
10260                    BP_PATH(bp));
10261                 list_add(&tmp_list->list, &bnx2x_prev_list);
10262                 up(&bnx2x_prev_sem);
10263         }
10264
10265         return rc;
10266 }
10267
10268 static int bnx2x_do_flr(struct bnx2x *bp)
10269 {
10270         struct pci_dev *dev = bp->pdev;
10271
10272         if (CHIP_IS_E1x(bp)) {
10273                 BNX2X_DEV_INFO("FLR not supported in E1/E1H\n");
10274                 return -EINVAL;
10275         }
10276
10277         /* only bootcode REQ_BC_VER_4_INITIATE_FLR and onwards support flr */
10278         if (bp->common.bc_ver < REQ_BC_VER_4_INITIATE_FLR) {
10279                 BNX2X_ERR("FLR not supported by BC_VER: 0x%x\n",
10280                           bp->common.bc_ver);
10281                 return -EINVAL;
10282         }
10283
10284         if (!pci_wait_for_pending_transaction(dev))
10285                 dev_err(&dev->dev, "transaction is not cleared; proceeding with reset anyway\n");
10286
10287         BNX2X_DEV_INFO("Initiating FLR\n");
10288         bnx2x_fw_command(bp, DRV_MSG_CODE_INITIATE_FLR, 0);
10289
10290         return 0;
10291 }
10292
10293 static int bnx2x_prev_unload_uncommon(struct bnx2x *bp)
10294 {
10295         int rc;
10296
10297         BNX2X_DEV_INFO("Uncommon unload Flow\n");
10298
10299         /* Test if previous unload process was already finished for this path */
10300         if (bnx2x_prev_is_path_marked(bp))
10301                 return bnx2x_prev_mcp_done(bp);
10302
10303         BNX2X_DEV_INFO("Path is unmarked\n");
10304
10305         /* If function has FLR capabilities, and existing FW version matches
10306          * the one required, then FLR will be sufficient to clean any residue
10307          * left by previous driver
10308          */
10309         rc = bnx2x_compare_fw_ver(bp, FW_MSG_CODE_DRV_LOAD_FUNCTION, false);
10310
10311         if (!rc) {
10312                 /* fw version is good */
10313                 BNX2X_DEV_INFO("FW version matches our own. Attempting FLR\n");
10314                 rc = bnx2x_do_flr(bp);
10315         }
10316
10317         if (!rc) {
10318                 /* FLR was performed */
10319                 BNX2X_DEV_INFO("FLR successful\n");
10320                 return 0;
10321         }
10322
10323         BNX2X_DEV_INFO("Could not FLR\n");
10324
10325         /* Close the MCP request, return failure*/
10326         rc = bnx2x_prev_mcp_done(bp);
10327         if (!rc)
10328                 rc = BNX2X_PREV_WAIT_NEEDED;
10329
10330         return rc;
10331 }
10332
10333 static int bnx2x_prev_unload_common(struct bnx2x *bp)
10334 {
10335         u32 reset_reg, tmp_reg = 0, rc;
10336         bool prev_undi = false;
10337         struct bnx2x_mac_vals mac_vals;
10338
10339         /* It is possible a previous function received 'common' answer,
10340          * but hasn't loaded yet, therefore creating a scenario of
10341          * multiple functions receiving 'common' on the same path.
10342          */
10343         BNX2X_DEV_INFO("Common unload Flow\n");
10344
10345         memset(&mac_vals, 0, sizeof(mac_vals));
10346
10347         if (bnx2x_prev_is_path_marked(bp))
10348                 return bnx2x_prev_mcp_done(bp);
10349
10350         reset_reg = REG_RD(bp, MISC_REG_RESET_REG_1);
10351
10352         /* Reset should be performed after BRB is emptied */
10353         if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_BRB1) {
10354                 u32 timer_count = 1000;
10355                 bool need_write = true;
10356
10357                 /* Close the MAC Rx to prevent BRB from filling up */
10358                 bnx2x_prev_unload_close_mac(bp, &mac_vals);
10359
10360                 /* close LLH filters towards the BRB */
10361                 bnx2x_set_rx_filter(&bp->link_params, 0);
10362
10363                 /* Check if the UNDI driver was previously loaded
10364                  * UNDI driver initializes CID offset for normal bell to 0x7
10365                  */
10366                 if (reset_reg & MISC_REGISTERS_RESET_REG_1_RST_DORQ) {
10367                         tmp_reg = REG_RD(bp, DORQ_REG_NORM_CID_OFST);
10368                         if (tmp_reg == 0x7) {
10369                                 BNX2X_DEV_INFO("UNDI previously loaded\n");
10370                                 prev_undi = true;
10371                                 /* clear the UNDI indication */
10372                                 REG_WR(bp, DORQ_REG_NORM_CID_OFST, 0);
10373                                 /* clear possible idle check errors */
10374                                 REG_RD(bp, NIG_REG_NIG_INT_STS_CLR_0);
10375                         }
10376                 }
10377                 if (!CHIP_IS_E1x(bp))
10378                         /* block FW from writing to host */
10379                         REG_WR(bp, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, 0);
10380
10381                 /* wait until BRB is empty */
10382                 tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10383                 while (timer_count) {
10384                         u32 prev_brb = tmp_reg;
10385
10386                         tmp_reg = REG_RD(bp, BRB1_REG_NUM_OF_FULL_BLOCKS);
10387                         if (!tmp_reg)
10388                                 break;
10389
10390                         BNX2X_DEV_INFO("BRB still has 0x%08x\n", tmp_reg);
10391
10392                         /* reset timer as long as BRB actually gets emptied */
10393                         if (prev_brb > tmp_reg)
10394                                 timer_count = 1000;
10395                         else
10396                                 timer_count--;
10397
10398                         /* New UNDI FW supports MF and contains better
10399                          * cleaning methods - might be redundant but harmless.
10400                          */
10401                         if (bnx2x_prev_unload_undi_fw_supports_mf(bp)) {
10402                                 if (need_write) {
10403                                         bnx2x_prev_unload_undi_mf(bp);
10404                                         need_write = false;
10405                                 }
10406                         } else if (prev_undi) {
10407                                 /* If UNDI resides in memory,
10408                                  * manually increment it
10409                                  */
10410                                 bnx2x_prev_unload_undi_inc(bp, BP_PORT(bp), 1);
10411                         }
10412                         udelay(10);
10413                 }
10414
10415                 if (!timer_count)
10416                         BNX2X_ERR("Failed to empty BRB, hope for the best\n");
10417         }
10418
10419         /* No packets are in the pipeline, path is ready for reset */
10420         bnx2x_reset_common(bp);
10421
10422         if (mac_vals.xmac_addr)
10423                 REG_WR(bp, mac_vals.xmac_addr, mac_vals.xmac_val);
10424         if (mac_vals.umac_addr)
10425                 REG_WR(bp, mac_vals.umac_addr, mac_vals.umac_val);
10426         if (mac_vals.emac_addr)
10427                 REG_WR(bp, mac_vals.emac_addr, mac_vals.emac_val);
10428         if (mac_vals.bmac_addr) {
10429                 REG_WR(bp, mac_vals.bmac_addr, mac_vals.bmac_val[0]);
10430                 REG_WR(bp, mac_vals.bmac_addr + 4, mac_vals.bmac_val[1]);
10431         }
10432
10433         rc = bnx2x_prev_mark_path(bp, prev_undi);
10434         if (rc) {
10435                 bnx2x_prev_mcp_done(bp);
10436                 return rc;
10437         }
10438
10439         return bnx2x_prev_mcp_done(bp);
10440 }
10441
10442 /* previous driver DMAE transaction may have occurred when pre-boot stage ended
10443  * and boot began, or when kdump kernel was loaded. Either case would invalidate
10444  * the addresses of the transaction, resulting in was-error bit set in the pci
10445  * causing all hw-to-host pcie transactions to timeout. If this happened we want
10446  * to clear the interrupt which detected this from the pglueb and the was done
10447  * bit
10448  */
10449 static void bnx2x_prev_interrupted_dmae(struct bnx2x *bp)
10450 {
10451         if (!CHIP_IS_E1x(bp)) {
10452                 u32 val = REG_RD(bp, PGLUE_B_REG_PGLUE_B_INT_STS);
10453                 if (val & PGLUE_B_PGLUE_B_INT_STS_REG_WAS_ERROR_ATTN) {
10454                         DP(BNX2X_MSG_SP,
10455                            "'was error' bit was found to be set in pglueb upon startup. Clearing\n");
10456                         REG_WR(bp, PGLUE_B_REG_WAS_ERROR_PF_7_0_CLR,
10457                                1 << BP_FUNC(bp));
10458                 }
10459         }
10460 }
10461
10462 static int bnx2x_prev_unload(struct bnx2x *bp)
10463 {
10464         int time_counter = 10;
10465         u32 rc, fw, hw_lock_reg, hw_lock_val;
10466         BNX2X_DEV_INFO("Entering Previous Unload Flow\n");
10467
10468         /* clear hw from errors which may have resulted from an interrupted
10469          * dmae transaction.
10470          */
10471         bnx2x_prev_interrupted_dmae(bp);
10472
10473         /* Release previously held locks */
10474         hw_lock_reg = (BP_FUNC(bp) <= 5) ?
10475                       (MISC_REG_DRIVER_CONTROL_1 + BP_FUNC(bp) * 8) :
10476                       (MISC_REG_DRIVER_CONTROL_7 + (BP_FUNC(bp) - 6) * 8);
10477
10478         hw_lock_val = REG_RD(bp, hw_lock_reg);
10479         if (hw_lock_val) {
10480                 if (hw_lock_val & HW_LOCK_RESOURCE_NVRAM) {
10481                         BNX2X_DEV_INFO("Release Previously held NVRAM lock\n");
10482                         REG_WR(bp, MCP_REG_MCPR_NVM_SW_ARB,
10483                                (MCPR_NVM_SW_ARB_ARB_REQ_CLR1 << BP_PORT(bp)));
10484                 }
10485
10486                 BNX2X_DEV_INFO("Release Previously held hw lock\n");
10487                 REG_WR(bp, hw_lock_reg, 0xffffffff);
10488         } else
10489                 BNX2X_DEV_INFO("No need to release hw/nvram locks\n");
10490
10491         if (MCPR_ACCESS_LOCK_LOCK & REG_RD(bp, MCP_REG_MCPR_ACCESS_LOCK)) {
10492                 BNX2X_DEV_INFO("Release previously held alr\n");
10493                 bnx2x_release_alr(bp);
10494         }
10495
10496         do {
10497                 int aer = 0;
10498                 /* Lock MCP using an unload request */
10499                 fw = bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_DIS, 0);
10500                 if (!fw) {
10501                         BNX2X_ERR("MCP response failure, aborting\n");
10502                         rc = -EBUSY;
10503                         break;
10504                 }
10505
10506                 rc = down_interruptible(&bnx2x_prev_sem);
10507                 if (rc) {
10508                         BNX2X_ERR("Cannot check for AER; Received %d when tried to take lock\n",
10509                                   rc);
10510                 } else {
10511                         /* If Path is marked by EEH, ignore unload status */
10512                         aer = !!(bnx2x_prev_path_get_entry(bp) &&
10513                                  bnx2x_prev_path_get_entry(bp)->aer);
10514                         up(&bnx2x_prev_sem);
10515                 }
10516
10517                 if (fw == FW_MSG_CODE_DRV_UNLOAD_COMMON || aer) {
10518                         rc = bnx2x_prev_unload_common(bp);
10519                         break;
10520                 }
10521
10522                 /* non-common reply from MCP might require looping */
10523                 rc = bnx2x_prev_unload_uncommon(bp);
10524                 if (rc != BNX2X_PREV_WAIT_NEEDED)
10525                         break;
10526
10527                 msleep(20);
10528         } while (--time_counter);
10529
10530         if (!time_counter || rc) {
10531                 BNX2X_DEV_INFO("Unloading previous driver did not occur, Possibly due to MF UNDI\n");
10532                 rc = -EPROBE_DEFER;
10533         }
10534
10535         /* Mark function if its port was used to boot from SAN */
10536         if (bnx2x_port_after_undi(bp))
10537                 bp->link_params.feature_config_flags |=
10538                         FEATURE_CONFIG_BOOT_FROM_SAN;
10539
10540         BNX2X_DEV_INFO("Finished Previous Unload Flow [%d]\n", rc);
10541
10542         return rc;
10543 }
10544
10545 static void bnx2x_get_common_hwinfo(struct bnx2x *bp)
10546 {
10547         u32 val, val2, val3, val4, id, boot_mode;
10548         u16 pmc;
10549
10550         /* Get the chip revision id and number. */
10551         /* chip num:16-31, rev:12-15, metal:4-11, bond_id:0-3 */
10552         val = REG_RD(bp, MISC_REG_CHIP_NUM);
10553         id = ((val & 0xffff) << 16);
10554         val = REG_RD(bp, MISC_REG_CHIP_REV);
10555         id |= ((val & 0xf) << 12);
10556
10557         /* Metal is read from PCI regs, but we can't access >=0x400 from
10558          * the configuration space (so we need to reg_rd)
10559          */
10560         val = REG_RD(bp, PCICFG_OFFSET + PCI_ID_VAL3);
10561         id |= (((val >> 24) & 0xf) << 4);
10562         val = REG_RD(bp, MISC_REG_BOND_ID);
10563         id |= (val & 0xf);
10564         bp->common.chip_id = id;
10565
10566         /* force 57811 according to MISC register */
10567         if (REG_RD(bp, MISC_REG_CHIP_TYPE) & MISC_REG_CHIP_TYPE_57811_MASK) {
10568                 if (CHIP_IS_57810(bp))
10569                         bp->common.chip_id = (CHIP_NUM_57811 << 16) |
10570                                 (bp->common.chip_id & 0x0000FFFF);
10571                 else if (CHIP_IS_57810_MF(bp))
10572                         bp->common.chip_id = (CHIP_NUM_57811_MF << 16) |
10573                                 (bp->common.chip_id & 0x0000FFFF);
10574                 bp->common.chip_id |= 0x1;
10575         }
10576
10577         /* Set doorbell size */
10578         bp->db_size = (1 << BNX2X_DB_SHIFT);
10579
10580         if (!CHIP_IS_E1x(bp)) {
10581                 val = REG_RD(bp, MISC_REG_PORT4MODE_EN_OVWR);
10582                 if ((val & 1) == 0)
10583                         val = REG_RD(bp, MISC_REG_PORT4MODE_EN);
10584                 else
10585                         val = (val >> 1) & 1;
10586                 BNX2X_DEV_INFO("chip is in %s\n", val ? "4_PORT_MODE" :
10587                                                        "2_PORT_MODE");
10588                 bp->common.chip_port_mode = val ? CHIP_4_PORT_MODE :
10589                                                  CHIP_2_PORT_MODE;
10590
10591                 if (CHIP_MODE_IS_4_PORT(bp))
10592                         bp->pfid = (bp->pf_num >> 1);   /* 0..3 */
10593                 else
10594                         bp->pfid = (bp->pf_num & 0x6);  /* 0, 2, 4, 6 */
10595         } else {
10596                 bp->common.chip_port_mode = CHIP_PORT_MODE_NONE; /* N/A */
10597                 bp->pfid = bp->pf_num;                  /* 0..7 */
10598         }
10599
10600         BNX2X_DEV_INFO("pf_id: %x", bp->pfid);
10601
10602         bp->link_params.chip_id = bp->common.chip_id;
10603         BNX2X_DEV_INFO("chip ID is 0x%x\n", id);
10604
10605         val = (REG_RD(bp, 0x2874) & 0x55);
10606         if ((bp->common.chip_id & 0x1) ||
10607             (CHIP_IS_E1(bp) && val) || (CHIP_IS_E1H(bp) && (val == 0x55))) {
10608                 bp->flags |= ONE_PORT_FLAG;
10609                 BNX2X_DEV_INFO("single port device\n");
10610         }
10611
10612         val = REG_RD(bp, MCP_REG_MCPR_NVM_CFG4);
10613         bp->common.flash_size = (BNX2X_NVRAM_1MB_SIZE <<
10614                                  (val & MCPR_NVM_CFG4_FLASH_SIZE));
10615         BNX2X_DEV_INFO("flash_size 0x%x (%d)\n",
10616                        bp->common.flash_size, bp->common.flash_size);
10617
10618         bnx2x_init_shmem(bp);
10619
10620         bp->common.shmem2_base = REG_RD(bp, (BP_PATH(bp) ?
10621                                         MISC_REG_GENERIC_CR_1 :
10622                                         MISC_REG_GENERIC_CR_0));
10623
10624         bp->link_params.shmem_base = bp->common.shmem_base;
10625         bp->link_params.shmem2_base = bp->common.shmem2_base;
10626         if (SHMEM2_RD(bp, size) >
10627             (u32)offsetof(struct shmem2_region, lfa_host_addr[BP_PORT(bp)]))
10628                 bp->link_params.lfa_base =
10629                 REG_RD(bp, bp->common.shmem2_base +
10630                        (u32)offsetof(struct shmem2_region,
10631                                      lfa_host_addr[BP_PORT(bp)]));
10632         else
10633                 bp->link_params.lfa_base = 0;
10634         BNX2X_DEV_INFO("shmem offset 0x%x  shmem2 offset 0x%x\n",
10635                        bp->common.shmem_base, bp->common.shmem2_base);
10636
10637         if (!bp->common.shmem_base) {
10638                 BNX2X_DEV_INFO("MCP not active\n");
10639                 bp->flags |= NO_MCP_FLAG;
10640                 return;
10641         }
10642
10643         bp->common.hw_config = SHMEM_RD(bp, dev_info.shared_hw_config.config);
10644         BNX2X_DEV_INFO("hw_config 0x%08x\n", bp->common.hw_config);
10645
10646         bp->link_params.hw_led_mode = ((bp->common.hw_config &
10647                                         SHARED_HW_CFG_LED_MODE_MASK) >>
10648                                        SHARED_HW_CFG_LED_MODE_SHIFT);
10649
10650         bp->link_params.feature_config_flags = 0;
10651         val = SHMEM_RD(bp, dev_info.shared_feature_config.config);
10652         if (val & SHARED_FEAT_CFG_OVERRIDE_PREEMPHASIS_CFG_ENABLED)
10653                 bp->link_params.feature_config_flags |=
10654                                 FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10655         else
10656                 bp->link_params.feature_config_flags &=
10657                                 ~FEATURE_CONFIG_OVERRIDE_PREEMPHASIS_ENABLED;
10658
10659         val = SHMEM_RD(bp, dev_info.bc_rev) >> 8;
10660         bp->common.bc_ver = val;
10661         BNX2X_DEV_INFO("bc_ver %X\n", val);
10662         if (val < BNX2X_BC_VER) {
10663                 /* for now only warn
10664                  * later we might need to enforce this */
10665                 BNX2X_ERR("This driver needs bc_ver %X but found %X, please upgrade BC\n",
10666                           BNX2X_BC_VER, val);
10667         }
10668         bp->link_params.feature_config_flags |=
10669                                 (val >= REQ_BC_VER_4_VRFY_FIRST_PHY_OPT_MDL) ?
10670                                 FEATURE_CONFIG_BC_SUPPORTS_OPT_MDL_VRFY : 0;
10671
10672         bp->link_params.feature_config_flags |=
10673                 (val >= REQ_BC_VER_4_VRFY_SPECIFIC_PHY_OPT_MDL) ?
10674                 FEATURE_CONFIG_BC_SUPPORTS_DUAL_PHY_OPT_MDL_VRFY : 0;
10675         bp->link_params.feature_config_flags |=
10676                 (val >= REQ_BC_VER_4_VRFY_AFEX_SUPPORTED) ?
10677                 FEATURE_CONFIG_BC_SUPPORTS_AFEX : 0;
10678         bp->link_params.feature_config_flags |=
10679                 (val >= REQ_BC_VER_4_SFP_TX_DISABLE_SUPPORTED) ?
10680                 FEATURE_CONFIG_BC_SUPPORTS_SFP_TX_DISABLED : 0;
10681
10682         bp->link_params.feature_config_flags |=
10683                 (val >= REQ_BC_VER_4_MT_SUPPORTED) ?
10684                 FEATURE_CONFIG_MT_SUPPORT : 0;
10685
10686         bp->flags |= (val >= REQ_BC_VER_4_PFC_STATS_SUPPORTED) ?
10687                         BC_SUPPORTS_PFC_STATS : 0;
10688
10689         bp->flags |= (val >= REQ_BC_VER_4_FCOE_FEATURES) ?
10690                         BC_SUPPORTS_FCOE_FEATURES : 0;
10691
10692         bp->flags |= (val >= REQ_BC_VER_4_DCBX_ADMIN_MSG_NON_PMF) ?
10693                         BC_SUPPORTS_DCBX_MSG_NON_PMF : 0;
10694
10695         bp->flags |= (val >= REQ_BC_VER_4_RMMOD_CMD) ?
10696                         BC_SUPPORTS_RMMOD_CMD : 0;
10697
10698         boot_mode = SHMEM_RD(bp,
10699                         dev_info.port_feature_config[BP_PORT(bp)].mba_config) &
10700                         PORT_FEATURE_MBA_BOOT_AGENT_TYPE_MASK;
10701         switch (boot_mode) {
10702         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_PXE:
10703                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_PXE;
10704                 break;
10705         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_ISCSIB:
10706                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_ISCSI;
10707                 break;
10708         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_FCOE_BOOT:
10709                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_FCOE;
10710                 break;
10711         case PORT_FEATURE_MBA_BOOT_AGENT_TYPE_NONE:
10712                 bp->common.boot_mode = FEATURE_ETH_BOOTMODE_NONE;
10713                 break;
10714         }
10715
10716         pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_PMC, &pmc);
10717         bp->flags |= (pmc & PCI_PM_CAP_PME_D3cold) ? 0 : NO_WOL_FLAG;
10718
10719         BNX2X_DEV_INFO("%sWoL capable\n",
10720                        (bp->flags & NO_WOL_FLAG) ? "not " : "");
10721
10722         val = SHMEM_RD(bp, dev_info.shared_hw_config.part_num);
10723         val2 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[4]);
10724         val3 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[8]);
10725         val4 = SHMEM_RD(bp, dev_info.shared_hw_config.part_num[12]);
10726
10727         dev_info(&bp->pdev->dev, "part number %X-%X-%X-%X\n",
10728                  val, val2, val3, val4);
10729 }
10730
10731 #define IGU_FID(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_FID)
10732 #define IGU_VEC(val)    GET_FIELD((val), IGU_REG_MAPPING_MEMORY_VECTOR)
10733
10734 static int bnx2x_get_igu_cam_info(struct bnx2x *bp)
10735 {
10736         int pfid = BP_FUNC(bp);
10737         int igu_sb_id;
10738         u32 val;
10739         u8 fid, igu_sb_cnt = 0;
10740
10741         bp->igu_base_sb = 0xff;
10742         if (CHIP_INT_MODE_IS_BC(bp)) {
10743                 int vn = BP_VN(bp);
10744                 igu_sb_cnt = bp->igu_sb_cnt;
10745                 bp->igu_base_sb = (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn) *
10746                         FP_SB_MAX_E1x;
10747
10748                 bp->igu_dsb_id =  E1HVN_MAX * FP_SB_MAX_E1x +
10749                         (CHIP_MODE_IS_4_PORT(bp) ? pfid : vn);
10750
10751                 return 0;
10752         }
10753
10754         /* IGU in normal mode - read CAM */
10755         for (igu_sb_id = 0; igu_sb_id < IGU_REG_MAPPING_MEMORY_SIZE;
10756              igu_sb_id++) {
10757                 val = REG_RD(bp, IGU_REG_MAPPING_MEMORY + igu_sb_id * 4);
10758                 if (!(val & IGU_REG_MAPPING_MEMORY_VALID))
10759                         continue;
10760                 fid = IGU_FID(val);
10761                 if ((fid & IGU_FID_ENCODE_IS_PF)) {
10762                         if ((fid & IGU_FID_PF_NUM_MASK) != pfid)
10763                                 continue;
10764                         if (IGU_VEC(val) == 0)
10765                                 /* default status block */
10766                                 bp->igu_dsb_id = igu_sb_id;
10767                         else {
10768                                 if (bp->igu_base_sb == 0xff)
10769                                         bp->igu_base_sb = igu_sb_id;
10770                                 igu_sb_cnt++;
10771                         }
10772                 }
10773         }
10774
10775 #ifdef CONFIG_PCI_MSI
10776         /* Due to new PF resource allocation by MFW T7.4 and above, it's
10777          * optional that number of CAM entries will not be equal to the value
10778          * advertised in PCI.
10779          * Driver should use the minimal value of both as the actual status
10780          * block count
10781          */
10782         bp->igu_sb_cnt = min_t(int, bp->igu_sb_cnt, igu_sb_cnt);
10783 #endif
10784
10785         if (igu_sb_cnt == 0) {
10786                 BNX2X_ERR("CAM configuration error\n");
10787                 return -EINVAL;
10788         }
10789
10790         return 0;
10791 }
10792
10793 static void bnx2x_link_settings_supported(struct bnx2x *bp, u32 switch_cfg)
10794 {
10795         int cfg_size = 0, idx, port = BP_PORT(bp);
10796
10797         /* Aggregation of supported attributes of all external phys */
10798         bp->port.supported[0] = 0;
10799         bp->port.supported[1] = 0;
10800         switch (bp->link_params.num_phys) {
10801         case 1:
10802                 bp->port.supported[0] = bp->link_params.phy[INT_PHY].supported;
10803                 cfg_size = 1;
10804                 break;
10805         case 2:
10806                 bp->port.supported[0] = bp->link_params.phy[EXT_PHY1].supported;
10807                 cfg_size = 1;
10808                 break;
10809         case 3:
10810                 if (bp->link_params.multi_phy_config &
10811                     PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
10812                         bp->port.supported[1] =
10813                                 bp->link_params.phy[EXT_PHY1].supported;
10814                         bp->port.supported[0] =
10815                                 bp->link_params.phy[EXT_PHY2].supported;
10816                 } else {
10817                         bp->port.supported[0] =
10818                                 bp->link_params.phy[EXT_PHY1].supported;
10819                         bp->port.supported[1] =
10820                                 bp->link_params.phy[EXT_PHY2].supported;
10821                 }
10822                 cfg_size = 2;
10823                 break;
10824         }
10825
10826         if (!(bp->port.supported[0] || bp->port.supported[1])) {
10827                 BNX2X_ERR("NVRAM config error. BAD phy config. PHY1 config 0x%x, PHY2 config 0x%x\n",
10828                            SHMEM_RD(bp,
10829                            dev_info.port_hw_config[port].external_phy_config),
10830                            SHMEM_RD(bp,
10831                            dev_info.port_hw_config[port].external_phy_config2));
10832                         return;
10833         }
10834
10835         if (CHIP_IS_E3(bp))
10836                 bp->port.phy_addr = REG_RD(bp, MISC_REG_WC0_CTRL_PHY_ADDR);
10837         else {
10838                 switch (switch_cfg) {
10839                 case SWITCH_CFG_1G:
10840                         bp->port.phy_addr = REG_RD(
10841                                 bp, NIG_REG_SERDES0_CTRL_PHY_ADDR + port*0x10);
10842                         break;
10843                 case SWITCH_CFG_10G:
10844                         bp->port.phy_addr = REG_RD(
10845                                 bp, NIG_REG_XGXS0_CTRL_PHY_ADDR + port*0x18);
10846                         break;
10847                 default:
10848                         BNX2X_ERR("BAD switch_cfg link_config 0x%x\n",
10849                                   bp->port.link_config[0]);
10850                         return;
10851                 }
10852         }
10853         BNX2X_DEV_INFO("phy_addr 0x%x\n", bp->port.phy_addr);
10854         /* mask what we support according to speed_cap_mask per configuration */
10855         for (idx = 0; idx < cfg_size; idx++) {
10856                 if (!(bp->link_params.speed_cap_mask[idx] &
10857                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_HALF))
10858                         bp->port.supported[idx] &= ~SUPPORTED_10baseT_Half;
10859
10860                 if (!(bp->link_params.speed_cap_mask[idx] &
10861                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_10M_FULL))
10862                         bp->port.supported[idx] &= ~SUPPORTED_10baseT_Full;
10863
10864                 if (!(bp->link_params.speed_cap_mask[idx] &
10865                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_HALF))
10866                         bp->port.supported[idx] &= ~SUPPORTED_100baseT_Half;
10867
10868                 if (!(bp->link_params.speed_cap_mask[idx] &
10869                                 PORT_HW_CFG_SPEED_CAPABILITY_D0_100M_FULL))
10870                         bp->port.supported[idx] &= ~SUPPORTED_100baseT_Full;
10871
10872                 if (!(bp->link_params.speed_cap_mask[idx] &
10873                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_1G))
10874                         bp->port.supported[idx] &= ~(SUPPORTED_1000baseT_Half |
10875                                                      SUPPORTED_1000baseT_Full);
10876
10877                 if (!(bp->link_params.speed_cap_mask[idx] &
10878                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_2_5G))
10879                         bp->port.supported[idx] &= ~SUPPORTED_2500baseX_Full;
10880
10881                 if (!(bp->link_params.speed_cap_mask[idx] &
10882                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_10G))
10883                         bp->port.supported[idx] &= ~SUPPORTED_10000baseT_Full;
10884
10885                 if (!(bp->link_params.speed_cap_mask[idx] &
10886                                         PORT_HW_CFG_SPEED_CAPABILITY_D0_20G))
10887                         bp->port.supported[idx] &= ~SUPPORTED_20000baseKR2_Full;
10888         }
10889
10890         BNX2X_DEV_INFO("supported 0x%x 0x%x\n", bp->port.supported[0],
10891                        bp->port.supported[1]);
10892 }
10893
10894 static void bnx2x_link_settings_requested(struct bnx2x *bp)
10895 {
10896         u32 link_config, idx, cfg_size = 0;
10897         bp->port.advertising[0] = 0;
10898         bp->port.advertising[1] = 0;
10899         switch (bp->link_params.num_phys) {
10900         case 1:
10901         case 2:
10902                 cfg_size = 1;
10903                 break;
10904         case 3:
10905                 cfg_size = 2;
10906                 break;
10907         }
10908         for (idx = 0; idx < cfg_size; idx++) {
10909                 bp->link_params.req_duplex[idx] = DUPLEX_FULL;
10910                 link_config = bp->port.link_config[idx];
10911                 switch (link_config & PORT_FEATURE_LINK_SPEED_MASK) {
10912                 case PORT_FEATURE_LINK_SPEED_AUTO:
10913                         if (bp->port.supported[idx] & SUPPORTED_Autoneg) {
10914                                 bp->link_params.req_line_speed[idx] =
10915                                         SPEED_AUTO_NEG;
10916                                 bp->port.advertising[idx] |=
10917                                         bp->port.supported[idx];
10918                                 if (bp->link_params.phy[EXT_PHY1].type ==
10919                                     PORT_HW_CFG_XGXS_EXT_PHY_TYPE_BCM84833)
10920                                         bp->port.advertising[idx] |=
10921                                         (SUPPORTED_100baseT_Half |
10922                                          SUPPORTED_100baseT_Full);
10923                         } else {
10924                                 /* force 10G, no AN */
10925                                 bp->link_params.req_line_speed[idx] =
10926                                         SPEED_10000;
10927                                 bp->port.advertising[idx] |=
10928                                         (ADVERTISED_10000baseT_Full |
10929                                          ADVERTISED_FIBRE);
10930                                 continue;
10931                         }
10932                         break;
10933
10934                 case PORT_FEATURE_LINK_SPEED_10M_FULL:
10935                         if (bp->port.supported[idx] & SUPPORTED_10baseT_Full) {
10936                                 bp->link_params.req_line_speed[idx] =
10937                                         SPEED_10;
10938                                 bp->port.advertising[idx] |=
10939                                         (ADVERTISED_10baseT_Full |
10940                                          ADVERTISED_TP);
10941                         } else {
10942                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10943                                             link_config,
10944                                     bp->link_params.speed_cap_mask[idx]);
10945                                 return;
10946                         }
10947                         break;
10948
10949                 case PORT_FEATURE_LINK_SPEED_10M_HALF:
10950                         if (bp->port.supported[idx] & SUPPORTED_10baseT_Half) {
10951                                 bp->link_params.req_line_speed[idx] =
10952                                         SPEED_10;
10953                                 bp->link_params.req_duplex[idx] =
10954                                         DUPLEX_HALF;
10955                                 bp->port.advertising[idx] |=
10956                                         (ADVERTISED_10baseT_Half |
10957                                          ADVERTISED_TP);
10958                         } else {
10959                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10960                                             link_config,
10961                                           bp->link_params.speed_cap_mask[idx]);
10962                                 return;
10963                         }
10964                         break;
10965
10966                 case PORT_FEATURE_LINK_SPEED_100M_FULL:
10967                         if (bp->port.supported[idx] &
10968                             SUPPORTED_100baseT_Full) {
10969                                 bp->link_params.req_line_speed[idx] =
10970                                         SPEED_100;
10971                                 bp->port.advertising[idx] |=
10972                                         (ADVERTISED_100baseT_Full |
10973                                          ADVERTISED_TP);
10974                         } else {
10975                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10976                                             link_config,
10977                                           bp->link_params.speed_cap_mask[idx]);
10978                                 return;
10979                         }
10980                         break;
10981
10982                 case PORT_FEATURE_LINK_SPEED_100M_HALF:
10983                         if (bp->port.supported[idx] &
10984                             SUPPORTED_100baseT_Half) {
10985                                 bp->link_params.req_line_speed[idx] =
10986                                                                 SPEED_100;
10987                                 bp->link_params.req_duplex[idx] =
10988                                                                 DUPLEX_HALF;
10989                                 bp->port.advertising[idx] |=
10990                                         (ADVERTISED_100baseT_Half |
10991                                          ADVERTISED_TP);
10992                         } else {
10993                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
10994                                     link_config,
10995                                     bp->link_params.speed_cap_mask[idx]);
10996                                 return;
10997                         }
10998                         break;
10999
11000                 case PORT_FEATURE_LINK_SPEED_1G:
11001                         if (bp->port.supported[idx] &
11002                             SUPPORTED_1000baseT_Full) {
11003                                 bp->link_params.req_line_speed[idx] =
11004                                         SPEED_1000;
11005                                 bp->port.advertising[idx] |=
11006                                         (ADVERTISED_1000baseT_Full |
11007                                          ADVERTISED_TP);
11008                         } else {
11009                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11010                                     link_config,
11011                                     bp->link_params.speed_cap_mask[idx]);
11012                                 return;
11013                         }
11014                         break;
11015
11016                 case PORT_FEATURE_LINK_SPEED_2_5G:
11017                         if (bp->port.supported[idx] &
11018                             SUPPORTED_2500baseX_Full) {
11019                                 bp->link_params.req_line_speed[idx] =
11020                                         SPEED_2500;
11021                                 bp->port.advertising[idx] |=
11022                                         (ADVERTISED_2500baseX_Full |
11023                                                 ADVERTISED_TP);
11024                         } else {
11025                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11026                                     link_config,
11027                                     bp->link_params.speed_cap_mask[idx]);
11028                                 return;
11029                         }
11030                         break;
11031
11032                 case PORT_FEATURE_LINK_SPEED_10G_CX4:
11033                         if (bp->port.supported[idx] &
11034                             SUPPORTED_10000baseT_Full) {
11035                                 bp->link_params.req_line_speed[idx] =
11036                                         SPEED_10000;
11037                                 bp->port.advertising[idx] |=
11038                                         (ADVERTISED_10000baseT_Full |
11039                                                 ADVERTISED_FIBRE);
11040                         } else {
11041                                 BNX2X_ERR("NVRAM config error. Invalid link_config 0x%x  speed_cap_mask 0x%x\n",
11042                                     link_config,
11043                                     bp->link_params.speed_cap_mask[idx]);
11044                                 return;
11045                         }
11046                         break;
11047                 case PORT_FEATURE_LINK_SPEED_20G:
11048                         bp->link_params.req_line_speed[idx] = SPEED_20000;
11049
11050                         break;
11051                 default:
11052                         BNX2X_ERR("NVRAM config error. BAD link speed link_config 0x%x\n",
11053                                   link_config);
11054                                 bp->link_params.req_line_speed[idx] =
11055                                                         SPEED_AUTO_NEG;
11056                                 bp->port.advertising[idx] =
11057                                                 bp->port.supported[idx];
11058                         break;
11059                 }
11060
11061                 bp->link_params.req_flow_ctrl[idx] = (link_config &
11062                                          PORT_FEATURE_FLOW_CONTROL_MASK);
11063                 if (bp->link_params.req_flow_ctrl[idx] ==
11064                     BNX2X_FLOW_CTRL_AUTO) {
11065                         if (!(bp->port.supported[idx] & SUPPORTED_Autoneg))
11066                                 bp->link_params.req_flow_ctrl[idx] =
11067                                                         BNX2X_FLOW_CTRL_NONE;
11068                         else
11069                                 bnx2x_set_requested_fc(bp);
11070                 }
11071
11072                 BNX2X_DEV_INFO("req_line_speed %d  req_duplex %d req_flow_ctrl 0x%x advertising 0x%x\n",
11073                                bp->link_params.req_line_speed[idx],
11074                                bp->link_params.req_duplex[idx],
11075                                bp->link_params.req_flow_ctrl[idx],
11076                                bp->port.advertising[idx]);
11077         }
11078 }
11079
11080 static void bnx2x_set_mac_buf(u8 *mac_buf, u32 mac_lo, u16 mac_hi)
11081 {
11082         __be16 mac_hi_be = cpu_to_be16(mac_hi);
11083         __be32 mac_lo_be = cpu_to_be32(mac_lo);
11084         memcpy(mac_buf, &mac_hi_be, sizeof(mac_hi_be));
11085         memcpy(mac_buf + sizeof(mac_hi_be), &mac_lo_be, sizeof(mac_lo_be));
11086 }
11087
11088 static void bnx2x_get_port_hwinfo(struct bnx2x *bp)
11089 {
11090         int port = BP_PORT(bp);
11091         u32 config;
11092         u32 ext_phy_type, ext_phy_config, eee_mode;
11093
11094         bp->link_params.bp = bp;
11095         bp->link_params.port = port;
11096
11097         bp->link_params.lane_config =
11098                 SHMEM_RD(bp, dev_info.port_hw_config[port].lane_config);
11099
11100         bp->link_params.speed_cap_mask[0] =
11101                 SHMEM_RD(bp,
11102                          dev_info.port_hw_config[port].speed_capability_mask) &
11103                 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11104         bp->link_params.speed_cap_mask[1] =
11105                 SHMEM_RD(bp,
11106                          dev_info.port_hw_config[port].speed_capability_mask2) &
11107                 PORT_HW_CFG_SPEED_CAPABILITY_D0_MASK;
11108         bp->port.link_config[0] =
11109                 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config);
11110
11111         bp->port.link_config[1] =
11112                 SHMEM_RD(bp, dev_info.port_feature_config[port].link_config2);
11113
11114         bp->link_params.multi_phy_config =
11115                 SHMEM_RD(bp, dev_info.port_hw_config[port].multi_phy_config);
11116         /* If the device is capable of WoL, set the default state according
11117          * to the HW
11118          */
11119         config = SHMEM_RD(bp, dev_info.port_feature_config[port].config);
11120         bp->wol = (!(bp->flags & NO_WOL_FLAG) &&
11121                    (config & PORT_FEATURE_WOL_ENABLED));
11122
11123         if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11124             PORT_FEAT_CFG_STORAGE_PERSONALITY_FCOE && !IS_MF(bp))
11125                 bp->flags |= NO_ISCSI_FLAG;
11126         if ((config & PORT_FEAT_CFG_STORAGE_PERSONALITY_MASK) ==
11127             PORT_FEAT_CFG_STORAGE_PERSONALITY_ISCSI && !(IS_MF(bp)))
11128                 bp->flags |= NO_FCOE_FLAG;
11129
11130         BNX2X_DEV_INFO("lane_config 0x%08x  speed_cap_mask0 0x%08x  link_config0 0x%08x\n",
11131                        bp->link_params.lane_config,
11132                        bp->link_params.speed_cap_mask[0],
11133                        bp->port.link_config[0]);
11134
11135         bp->link_params.switch_cfg = (bp->port.link_config[0] &
11136                                       PORT_FEATURE_CONNECTED_SWITCH_MASK);
11137         bnx2x_phy_probe(&bp->link_params);
11138         bnx2x_link_settings_supported(bp, bp->link_params.switch_cfg);
11139
11140         bnx2x_link_settings_requested(bp);
11141
11142         /*
11143          * If connected directly, work with the internal PHY, otherwise, work
11144          * with the external PHY
11145          */
11146         ext_phy_config =
11147                 SHMEM_RD(bp,
11148                          dev_info.port_hw_config[port].external_phy_config);
11149         ext_phy_type = XGXS_EXT_PHY_TYPE(ext_phy_config);
11150         if (ext_phy_type == PORT_HW_CFG_XGXS_EXT_PHY_TYPE_DIRECT)
11151                 bp->mdio.prtad = bp->port.phy_addr;
11152
11153         else if ((ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_FAILURE) &&
11154                  (ext_phy_type != PORT_HW_CFG_XGXS_EXT_PHY_TYPE_NOT_CONN))
11155                 bp->mdio.prtad =
11156                         XGXS_EXT_PHY_ADDR(ext_phy_config);
11157
11158         /* Configure link feature according to nvram value */
11159         eee_mode = (((SHMEM_RD(bp, dev_info.
11160                       port_feature_config[port].eee_power_mode)) &
11161                      PORT_FEAT_CFG_EEE_POWER_MODE_MASK) >>
11162                     PORT_FEAT_CFG_EEE_POWER_MODE_SHIFT);
11163         if (eee_mode != PORT_FEAT_CFG_EEE_POWER_MODE_DISABLED) {
11164                 bp->link_params.eee_mode = EEE_MODE_ADV_LPI |
11165                                            EEE_MODE_ENABLE_LPI |
11166                                            EEE_MODE_OUTPUT_TIME;
11167         } else {
11168                 bp->link_params.eee_mode = 0;
11169         }
11170 }
11171
11172 void bnx2x_get_iscsi_info(struct bnx2x *bp)
11173 {
11174         u32 no_flags = NO_ISCSI_FLAG;
11175         int port = BP_PORT(bp);
11176         u32 max_iscsi_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11177                                 drv_lic_key[port].max_iscsi_conn);
11178
11179         if (!CNIC_SUPPORT(bp)) {
11180                 bp->flags |= no_flags;
11181                 return;
11182         }
11183
11184         /* Get the number of maximum allowed iSCSI connections */
11185         bp->cnic_eth_dev.max_iscsi_conn =
11186                 (max_iscsi_conn & BNX2X_MAX_ISCSI_INIT_CONN_MASK) >>
11187                 BNX2X_MAX_ISCSI_INIT_CONN_SHIFT;
11188
11189         BNX2X_DEV_INFO("max_iscsi_conn 0x%x\n",
11190                        bp->cnic_eth_dev.max_iscsi_conn);
11191
11192         /*
11193          * If maximum allowed number of connections is zero -
11194          * disable the feature.
11195          */
11196         if (!bp->cnic_eth_dev.max_iscsi_conn)
11197                 bp->flags |= no_flags;
11198 }
11199
11200 static void bnx2x_get_ext_wwn_info(struct bnx2x *bp, int func)
11201 {
11202         /* Port info */
11203         bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11204                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_upper);
11205         bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11206                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_port_name_lower);
11207
11208         /* Node info */
11209         bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11210                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_upper);
11211         bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11212                 MF_CFG_RD(bp, func_ext_config[func].fcoe_wwn_node_name_lower);
11213 }
11214
11215 static int bnx2x_shared_fcoe_funcs(struct bnx2x *bp)
11216 {
11217         u8 count = 0;
11218
11219         if (IS_MF(bp)) {
11220                 u8 fid;
11221
11222                 /* iterate over absolute function ids for this path: */
11223                 for (fid = BP_PATH(bp); fid < E2_FUNC_MAX * 2; fid += 2) {
11224                         if (IS_MF_SD(bp)) {
11225                                 u32 cfg = MF_CFG_RD(bp,
11226                                                     func_mf_config[fid].config);
11227
11228                                 if (!(cfg & FUNC_MF_CFG_FUNC_HIDE) &&
11229                                     ((cfg & FUNC_MF_CFG_PROTOCOL_MASK) ==
11230                                             FUNC_MF_CFG_PROTOCOL_FCOE))
11231                                         count++;
11232                         } else {
11233                                 u32 cfg = MF_CFG_RD(bp,
11234                                                     func_ext_config[fid].
11235                                                                       func_cfg);
11236
11237                                 if ((cfg & MACP_FUNC_CFG_FLAGS_ENABLED) &&
11238                                     (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD))
11239                                         count++;
11240                         }
11241                 }
11242         } else { /* SF */
11243                 int port, port_cnt = CHIP_MODE_IS_4_PORT(bp) ? 2 : 1;
11244
11245                 for (port = 0; port < port_cnt; port++) {
11246                         u32 lic = SHMEM_RD(bp,
11247                                            drv_lic_key[port].max_fcoe_conn) ^
11248                                   FW_ENCODE_32BIT_PATTERN;
11249                         if (lic)
11250                                 count++;
11251                 }
11252         }
11253
11254         return count;
11255 }
11256
11257 static void bnx2x_get_fcoe_info(struct bnx2x *bp)
11258 {
11259         int port = BP_PORT(bp);
11260         int func = BP_ABS_FUNC(bp);
11261         u32 max_fcoe_conn = FW_ENCODE_32BIT_PATTERN ^ SHMEM_RD(bp,
11262                                 drv_lic_key[port].max_fcoe_conn);
11263         u8 num_fcoe_func = bnx2x_shared_fcoe_funcs(bp);
11264
11265         if (!CNIC_SUPPORT(bp)) {
11266                 bp->flags |= NO_FCOE_FLAG;
11267                 return;
11268         }
11269
11270         /* Get the number of maximum allowed FCoE connections */
11271         bp->cnic_eth_dev.max_fcoe_conn =
11272                 (max_fcoe_conn & BNX2X_MAX_FCOE_INIT_CONN_MASK) >>
11273                 BNX2X_MAX_FCOE_INIT_CONN_SHIFT;
11274
11275         /* Calculate the number of maximum allowed FCoE tasks */
11276         bp->cnic_eth_dev.max_fcoe_exchanges = MAX_NUM_FCOE_TASKS_PER_ENGINE;
11277
11278         /* check if FCoE resources must be shared between different functions */
11279         if (num_fcoe_func)
11280                 bp->cnic_eth_dev.max_fcoe_exchanges /= num_fcoe_func;
11281
11282         /* Read the WWN: */
11283         if (!IS_MF(bp)) {
11284                 /* Port info */
11285                 bp->cnic_eth_dev.fcoe_wwn_port_name_hi =
11286                         SHMEM_RD(bp,
11287                                  dev_info.port_hw_config[port].
11288                                  fcoe_wwn_port_name_upper);
11289                 bp->cnic_eth_dev.fcoe_wwn_port_name_lo =
11290                         SHMEM_RD(bp,
11291                                  dev_info.port_hw_config[port].
11292                                  fcoe_wwn_port_name_lower);
11293
11294                 /* Node info */
11295                 bp->cnic_eth_dev.fcoe_wwn_node_name_hi =
11296                         SHMEM_RD(bp,
11297                                  dev_info.port_hw_config[port].
11298                                  fcoe_wwn_node_name_upper);
11299                 bp->cnic_eth_dev.fcoe_wwn_node_name_lo =
11300                         SHMEM_RD(bp,
11301                                  dev_info.port_hw_config[port].
11302                                  fcoe_wwn_node_name_lower);
11303         } else if (!IS_MF_SD(bp)) {
11304                 /*
11305                  * Read the WWN info only if the FCoE feature is enabled for
11306                  * this function.
11307                  */
11308                 if (BNX2X_MF_EXT_PROTOCOL_FCOE(bp) && !CHIP_IS_E1x(bp))
11309                         bnx2x_get_ext_wwn_info(bp, func);
11310
11311         } else if (IS_MF_FCOE_SD(bp) && !CHIP_IS_E1x(bp)) {
11312                 bnx2x_get_ext_wwn_info(bp, func);
11313         }
11314
11315         BNX2X_DEV_INFO("max_fcoe_conn 0x%x\n", bp->cnic_eth_dev.max_fcoe_conn);
11316
11317         /*
11318          * If maximum allowed number of connections is zero -
11319          * disable the feature.
11320          */
11321         if (!bp->cnic_eth_dev.max_fcoe_conn)
11322                 bp->flags |= NO_FCOE_FLAG;
11323 }
11324
11325 static void bnx2x_get_cnic_info(struct bnx2x *bp)
11326 {
11327         /*
11328          * iSCSI may be dynamically disabled but reading
11329          * info here we will decrease memory usage by driver
11330          * if the feature is disabled for good
11331          */
11332         bnx2x_get_iscsi_info(bp);
11333         bnx2x_get_fcoe_info(bp);
11334 }
11335
11336 static void bnx2x_get_cnic_mac_hwinfo(struct bnx2x *bp)
11337 {
11338         u32 val, val2;
11339         int func = BP_ABS_FUNC(bp);
11340         int port = BP_PORT(bp);
11341         u8 *iscsi_mac = bp->cnic_eth_dev.iscsi_mac;
11342         u8 *fip_mac = bp->fip_mac;
11343
11344         if (IS_MF(bp)) {
11345                 /* iSCSI and FCoE NPAR MACs: if there is no either iSCSI or
11346                  * FCoE MAC then the appropriate feature should be disabled.
11347                  * In non SD mode features configuration comes from struct
11348                  * func_ext_config.
11349                  */
11350                 if (!IS_MF_SD(bp) && !CHIP_IS_E1x(bp)) {
11351                         u32 cfg = MF_CFG_RD(bp, func_ext_config[func].func_cfg);
11352                         if (cfg & MACP_FUNC_CFG_FLAGS_ISCSI_OFFLOAD) {
11353                                 val2 = MF_CFG_RD(bp, func_ext_config[func].
11354                                                  iscsi_mac_addr_upper);
11355                                 val = MF_CFG_RD(bp, func_ext_config[func].
11356                                                 iscsi_mac_addr_lower);
11357                                 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11358                                 BNX2X_DEV_INFO
11359                                         ("Read iSCSI MAC: %pM\n", iscsi_mac);
11360                         } else {
11361                                 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11362                         }
11363
11364                         if (cfg & MACP_FUNC_CFG_FLAGS_FCOE_OFFLOAD) {
11365                                 val2 = MF_CFG_RD(bp, func_ext_config[func].
11366                                                  fcoe_mac_addr_upper);
11367                                 val = MF_CFG_RD(bp, func_ext_config[func].
11368                                                 fcoe_mac_addr_lower);
11369                                 bnx2x_set_mac_buf(fip_mac, val, val2);
11370                                 BNX2X_DEV_INFO
11371                                         ("Read FCoE L2 MAC: %pM\n", fip_mac);
11372                         } else {
11373                                 bp->flags |= NO_FCOE_FLAG;
11374                         }
11375
11376                         bp->mf_ext_config = cfg;
11377
11378                 } else { /* SD MODE */
11379                         if (BNX2X_IS_MF_SD_PROTOCOL_ISCSI(bp)) {
11380                                 /* use primary mac as iscsi mac */
11381                                 memcpy(iscsi_mac, bp->dev->dev_addr, ETH_ALEN);
11382
11383                                 BNX2X_DEV_INFO("SD ISCSI MODE\n");
11384                                 BNX2X_DEV_INFO
11385                                         ("Read iSCSI MAC: %pM\n", iscsi_mac);
11386                         } else if (BNX2X_IS_MF_SD_PROTOCOL_FCOE(bp)) {
11387                                 /* use primary mac as fip mac */
11388                                 memcpy(fip_mac, bp->dev->dev_addr, ETH_ALEN);
11389                                 BNX2X_DEV_INFO("SD FCoE MODE\n");
11390                                 BNX2X_DEV_INFO
11391                                         ("Read FIP MAC: %pM\n", fip_mac);
11392                         }
11393                 }
11394
11395                 /* If this is a storage-only interface, use SAN mac as
11396                  * primary MAC. Notice that for SD this is already the case,
11397                  * as the SAN mac was copied from the primary MAC.
11398                  */
11399                 if (IS_MF_FCOE_AFEX(bp))
11400                         memcpy(bp->dev->dev_addr, fip_mac, ETH_ALEN);
11401         } else {
11402                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11403                                 iscsi_mac_upper);
11404                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11405                                iscsi_mac_lower);
11406                 bnx2x_set_mac_buf(iscsi_mac, val, val2);
11407
11408                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].
11409                                 fcoe_fip_mac_upper);
11410                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].
11411                                fcoe_fip_mac_lower);
11412                 bnx2x_set_mac_buf(fip_mac, val, val2);
11413         }
11414
11415         /* Disable iSCSI OOO if MAC configuration is invalid. */
11416         if (!is_valid_ether_addr(iscsi_mac)) {
11417                 bp->flags |= NO_ISCSI_OOO_FLAG | NO_ISCSI_FLAG;
11418                 memset(iscsi_mac, 0, ETH_ALEN);
11419         }
11420
11421         /* Disable FCoE if MAC configuration is invalid. */
11422         if (!is_valid_ether_addr(fip_mac)) {
11423                 bp->flags |= NO_FCOE_FLAG;
11424                 memset(bp->fip_mac, 0, ETH_ALEN);
11425         }
11426 }
11427
11428 static void bnx2x_get_mac_hwinfo(struct bnx2x *bp)
11429 {
11430         u32 val, val2;
11431         int func = BP_ABS_FUNC(bp);
11432         int port = BP_PORT(bp);
11433
11434         /* Zero primary MAC configuration */
11435         memset(bp->dev->dev_addr, 0, ETH_ALEN);
11436
11437         if (BP_NOMCP(bp)) {
11438                 BNX2X_ERROR("warning: random MAC workaround active\n");
11439                 eth_hw_addr_random(bp->dev);
11440         } else if (IS_MF(bp)) {
11441                 val2 = MF_CFG_RD(bp, func_mf_config[func].mac_upper);
11442                 val = MF_CFG_RD(bp, func_mf_config[func].mac_lower);
11443                 if ((val2 != FUNC_MF_CFG_UPPERMAC_DEFAULT) &&
11444                     (val != FUNC_MF_CFG_LOWERMAC_DEFAULT))
11445                         bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11446
11447                 if (CNIC_SUPPORT(bp))
11448                         bnx2x_get_cnic_mac_hwinfo(bp);
11449         } else {
11450                 /* in SF read MACs from port configuration */
11451                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11452                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11453                 bnx2x_set_mac_buf(bp->dev->dev_addr, val, val2);
11454
11455                 if (CNIC_SUPPORT(bp))
11456                         bnx2x_get_cnic_mac_hwinfo(bp);
11457         }
11458
11459         if (!BP_NOMCP(bp)) {
11460                 /* Read physical port identifier from shmem */
11461                 val2 = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_upper);
11462                 val = SHMEM_RD(bp, dev_info.port_hw_config[port].mac_lower);
11463                 bnx2x_set_mac_buf(bp->phys_port_id, val, val2);
11464                 bp->flags |= HAS_PHYS_PORT_ID;
11465         }
11466
11467         memcpy(bp->link_params.mac_addr, bp->dev->dev_addr, ETH_ALEN);
11468
11469         if (!bnx2x_is_valid_ether_addr(bp, bp->dev->dev_addr))
11470                 dev_err(&bp->pdev->dev,
11471                         "bad Ethernet MAC address configuration: %pM\n"
11472                         "change it manually before bringing up the appropriate network interface\n",
11473                         bp->dev->dev_addr);
11474 }
11475
11476 static bool bnx2x_get_dropless_info(struct bnx2x *bp)
11477 {
11478         int tmp;
11479         u32 cfg;
11480
11481         if (IS_VF(bp))
11482                 return 0;
11483
11484         if (IS_MF(bp) && !CHIP_IS_E1x(bp)) {
11485                 /* Take function: tmp = func */
11486                 tmp = BP_ABS_FUNC(bp);
11487                 cfg = MF_CFG_RD(bp, func_ext_config[tmp].func_cfg);
11488                 cfg = !!(cfg & MACP_FUNC_CFG_PAUSE_ON_HOST_RING);
11489         } else {
11490                 /* Take port: tmp = port */
11491                 tmp = BP_PORT(bp);
11492                 cfg = SHMEM_RD(bp,
11493                                dev_info.port_hw_config[tmp].generic_features);
11494                 cfg = !!(cfg & PORT_HW_CFG_PAUSE_ON_HOST_RING_ENABLED);
11495         }
11496         return cfg;
11497 }
11498
11499 static int bnx2x_get_hwinfo(struct bnx2x *bp)
11500 {
11501         int /*abs*/func = BP_ABS_FUNC(bp);
11502         int vn;
11503         u32 val = 0;
11504         int rc = 0;
11505
11506         bnx2x_get_common_hwinfo(bp);
11507
11508         /*
11509          * initialize IGU parameters
11510          */
11511         if (CHIP_IS_E1x(bp)) {
11512                 bp->common.int_block = INT_BLOCK_HC;
11513
11514                 bp->igu_dsb_id = DEF_SB_IGU_ID;
11515                 bp->igu_base_sb = 0;
11516         } else {
11517                 bp->common.int_block = INT_BLOCK_IGU;
11518
11519                 /* do not allow device reset during IGU info processing */
11520                 bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11521
11522                 val = REG_RD(bp, IGU_REG_BLOCK_CONFIGURATION);
11523
11524                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11525                         int tout = 5000;
11526
11527                         BNX2X_DEV_INFO("FORCING Normal Mode\n");
11528
11529                         val &= ~(IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN);
11530                         REG_WR(bp, IGU_REG_BLOCK_CONFIGURATION, val);
11531                         REG_WR(bp, IGU_REG_RESET_MEMORIES, 0x7f);
11532
11533                         while (tout && REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11534                                 tout--;
11535                                 usleep_range(1000, 2000);
11536                         }
11537
11538                         if (REG_RD(bp, IGU_REG_RESET_MEMORIES)) {
11539                                 dev_err(&bp->pdev->dev,
11540                                         "FORCING Normal Mode failed!!!\n");
11541                                 bnx2x_release_hw_lock(bp,
11542                                                       HW_LOCK_RESOURCE_RESET);
11543                                 return -EPERM;
11544                         }
11545                 }
11546
11547                 if (val & IGU_BLOCK_CONFIGURATION_REG_BACKWARD_COMP_EN) {
11548                         BNX2X_DEV_INFO("IGU Backward Compatible Mode\n");
11549                         bp->common.int_block |= INT_BLOCK_MODE_BW_COMP;
11550                 } else
11551                         BNX2X_DEV_INFO("IGU Normal Mode\n");
11552
11553                 rc = bnx2x_get_igu_cam_info(bp);
11554                 bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESET);
11555                 if (rc)
11556                         return rc;
11557         }
11558
11559         /*
11560          * set base FW non-default (fast path) status block id, this value is
11561          * used to initialize the fw_sb_id saved on the fp/queue structure to
11562          * determine the id used by the FW.
11563          */
11564         if (CHIP_IS_E1x(bp))
11565                 bp->base_fw_ndsb = BP_PORT(bp) * FP_SB_MAX_E1x + BP_L_ID(bp);
11566         else /*
11567               * 57712 - we currently use one FW SB per IGU SB (Rx and Tx of
11568               * the same queue are indicated on the same IGU SB). So we prefer
11569               * FW and IGU SBs to be the same value.
11570               */
11571                 bp->base_fw_ndsb = bp->igu_base_sb;
11572
11573         BNX2X_DEV_INFO("igu_dsb_id %d  igu_base_sb %d  igu_sb_cnt %d\n"
11574                        "base_fw_ndsb %d\n", bp->igu_dsb_id, bp->igu_base_sb,
11575                        bp->igu_sb_cnt, bp->base_fw_ndsb);
11576
11577         /*
11578          * Initialize MF configuration
11579          */
11580
11581         bp->mf_ov = 0;
11582         bp->mf_mode = 0;
11583         vn = BP_VN(bp);
11584
11585         if (!CHIP_IS_E1(bp) && !BP_NOMCP(bp)) {
11586                 BNX2X_DEV_INFO("shmem2base 0x%x, size %d, mfcfg offset %d\n",
11587                                bp->common.shmem2_base, SHMEM2_RD(bp, size),
11588                               (u32)offsetof(struct shmem2_region, mf_cfg_addr));
11589
11590                 if (SHMEM2_HAS(bp, mf_cfg_addr))
11591                         bp->common.mf_cfg_base = SHMEM2_RD(bp, mf_cfg_addr);
11592                 else
11593                         bp->common.mf_cfg_base = bp->common.shmem_base +
11594                                 offsetof(struct shmem_region, func_mb) +
11595                                 E1H_FUNC_MAX * sizeof(struct drv_func_mb);
11596                 /*
11597                  * get mf configuration:
11598                  * 1. Existence of MF configuration
11599                  * 2. MAC address must be legal (check only upper bytes)
11600                  *    for  Switch-Independent mode;
11601                  *    OVLAN must be legal for Switch-Dependent mode
11602                  * 3. SF_MODE configures specific MF mode
11603                  */
11604                 if (bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11605                         /* get mf configuration */
11606                         val = SHMEM_RD(bp,
11607                                        dev_info.shared_feature_config.config);
11608                         val &= SHARED_FEAT_CFG_FORCE_SF_MODE_MASK;
11609
11610                         switch (val) {
11611                         case SHARED_FEAT_CFG_FORCE_SF_MODE_SWITCH_INDEPT:
11612                                 val = MF_CFG_RD(bp, func_mf_config[func].
11613                                                 mac_upper);
11614                                 /* check for legal mac (upper bytes)*/
11615                                 if (val != 0xffff) {
11616                                         bp->mf_mode = MULTI_FUNCTION_SI;
11617                                         bp->mf_config[vn] = MF_CFG_RD(bp,
11618                                                    func_mf_config[func].config);
11619                                 } else
11620                                         BNX2X_DEV_INFO("illegal MAC address for SI\n");
11621                                 break;
11622                         case SHARED_FEAT_CFG_FORCE_SF_MODE_AFEX_MODE:
11623                                 if ((!CHIP_IS_E1x(bp)) &&
11624                                     (MF_CFG_RD(bp, func_mf_config[func].
11625                                                mac_upper) != 0xffff) &&
11626                                     (SHMEM2_HAS(bp,
11627                                                 afex_driver_support))) {
11628                                         bp->mf_mode = MULTI_FUNCTION_AFEX;
11629                                         bp->mf_config[vn] = MF_CFG_RD(bp,
11630                                                 func_mf_config[func].config);
11631                                 } else {
11632                                         BNX2X_DEV_INFO("can not configure afex mode\n");
11633                                 }
11634                                 break;
11635                         case SHARED_FEAT_CFG_FORCE_SF_MODE_MF_ALLOWED:
11636                                 /* get OV configuration */
11637                                 val = MF_CFG_RD(bp,
11638                                         func_mf_config[FUNC_0].e1hov_tag);
11639                                 val &= FUNC_MF_CFG_E1HOV_TAG_MASK;
11640
11641                                 if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11642                                         bp->mf_mode = MULTI_FUNCTION_SD;
11643                                         bp->mf_config[vn] = MF_CFG_RD(bp,
11644                                                 func_mf_config[func].config);
11645                                 } else
11646                                         BNX2X_DEV_INFO("illegal OV for SD\n");
11647                                 break;
11648                         case SHARED_FEAT_CFG_FORCE_SF_MODE_FORCED_SF:
11649                                 bp->mf_config[vn] = 0;
11650                                 break;
11651                         default:
11652                                 /* Unknown configuration: reset mf_config */
11653                                 bp->mf_config[vn] = 0;
11654                                 BNX2X_DEV_INFO("unknown MF mode 0x%x\n", val);
11655                         }
11656                 }
11657
11658                 BNX2X_DEV_INFO("%s function mode\n",
11659                                IS_MF(bp) ? "multi" : "single");
11660
11661                 switch (bp->mf_mode) {
11662                 case MULTI_FUNCTION_SD:
11663                         val = MF_CFG_RD(bp, func_mf_config[func].e1hov_tag) &
11664                               FUNC_MF_CFG_E1HOV_TAG_MASK;
11665                         if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT) {
11666                                 bp->mf_ov = val;
11667                                 bp->path_has_ovlan = true;
11668
11669                                 BNX2X_DEV_INFO("MF OV for func %d is %d (0x%04x)\n",
11670                                                func, bp->mf_ov, bp->mf_ov);
11671                         } else {
11672                                 dev_err(&bp->pdev->dev,
11673                                         "No valid MF OV for func %d, aborting\n",
11674                                         func);
11675                                 return -EPERM;
11676                         }
11677                         break;
11678                 case MULTI_FUNCTION_AFEX:
11679                         BNX2X_DEV_INFO("func %d is in MF afex mode\n", func);
11680                         break;
11681                 case MULTI_FUNCTION_SI:
11682                         BNX2X_DEV_INFO("func %d is in MF switch-independent mode\n",
11683                                        func);
11684                         break;
11685                 default:
11686                         if (vn) {
11687                                 dev_err(&bp->pdev->dev,
11688                                         "VN %d is in a single function mode, aborting\n",
11689                                         vn);
11690                                 return -EPERM;
11691                         }
11692                         break;
11693                 }
11694
11695                 /* check if other port on the path needs ovlan:
11696                  * Since MF configuration is shared between ports
11697                  * Possible mixed modes are only
11698                  * {SF, SI} {SF, SD} {SD, SF} {SI, SF}
11699                  */
11700                 if (CHIP_MODE_IS_4_PORT(bp) &&
11701                     !bp->path_has_ovlan &&
11702                     !IS_MF(bp) &&
11703                     bp->common.mf_cfg_base != SHMEM_MF_CFG_ADDR_NONE) {
11704                         u8 other_port = !BP_PORT(bp);
11705                         u8 other_func = BP_PATH(bp) + 2*other_port;
11706                         val = MF_CFG_RD(bp,
11707                                         func_mf_config[other_func].e1hov_tag);
11708                         if (val != FUNC_MF_CFG_E1HOV_TAG_DEFAULT)
11709                                 bp->path_has_ovlan = true;
11710                 }
11711         }
11712
11713         /* adjust igu_sb_cnt to MF for E1H */
11714         if (CHIP_IS_E1H(bp) && IS_MF(bp))
11715                 bp->igu_sb_cnt = min_t(u8, bp->igu_sb_cnt, E1H_MAX_MF_SB_COUNT);
11716
11717         /* port info */
11718         bnx2x_get_port_hwinfo(bp);
11719
11720         /* Get MAC addresses */
11721         bnx2x_get_mac_hwinfo(bp);
11722
11723         bnx2x_get_cnic_info(bp);
11724
11725         return rc;
11726 }
11727
11728 static void bnx2x_read_fwinfo(struct bnx2x *bp)
11729 {
11730         int cnt, i, block_end, rodi;
11731         char vpd_start[BNX2X_VPD_LEN+1];
11732         char str_id_reg[VENDOR_ID_LEN+1];
11733         char str_id_cap[VENDOR_ID_LEN+1];
11734         char *vpd_data;
11735         char *vpd_extended_data = NULL;
11736         u8 len;
11737
11738         cnt = pci_read_vpd(bp->pdev, 0, BNX2X_VPD_LEN, vpd_start);
11739         memset(bp->fw_ver, 0, sizeof(bp->fw_ver));
11740
11741         if (cnt < BNX2X_VPD_LEN)
11742                 goto out_not_found;
11743
11744         /* VPD RO tag should be first tag after identifier string, hence
11745          * we should be able to find it in first BNX2X_VPD_LEN chars
11746          */
11747         i = pci_vpd_find_tag(vpd_start, 0, BNX2X_VPD_LEN,
11748                              PCI_VPD_LRDT_RO_DATA);
11749         if (i < 0)
11750                 goto out_not_found;
11751
11752         block_end = i + PCI_VPD_LRDT_TAG_SIZE +
11753                     pci_vpd_lrdt_size(&vpd_start[i]);
11754
11755         i += PCI_VPD_LRDT_TAG_SIZE;
11756
11757         if (block_end > BNX2X_VPD_LEN) {
11758                 vpd_extended_data = kmalloc(block_end, GFP_KERNEL);
11759                 if (vpd_extended_data  == NULL)
11760                         goto out_not_found;
11761
11762                 /* read rest of vpd image into vpd_extended_data */
11763                 memcpy(vpd_extended_data, vpd_start, BNX2X_VPD_LEN);
11764                 cnt = pci_read_vpd(bp->pdev, BNX2X_VPD_LEN,
11765                                    block_end - BNX2X_VPD_LEN,
11766                                    vpd_extended_data + BNX2X_VPD_LEN);
11767                 if (cnt < (block_end - BNX2X_VPD_LEN))
11768                         goto out_not_found;
11769                 vpd_data = vpd_extended_data;
11770         } else
11771                 vpd_data = vpd_start;
11772
11773         /* now vpd_data holds full vpd content in both cases */
11774
11775         rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11776                                    PCI_VPD_RO_KEYWORD_MFR_ID);
11777         if (rodi < 0)
11778                 goto out_not_found;
11779
11780         len = pci_vpd_info_field_size(&vpd_data[rodi]);
11781
11782         if (len != VENDOR_ID_LEN)
11783                 goto out_not_found;
11784
11785         rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11786
11787         /* vendor specific info */
11788         snprintf(str_id_reg, VENDOR_ID_LEN + 1, "%04x", PCI_VENDOR_ID_DELL);
11789         snprintf(str_id_cap, VENDOR_ID_LEN + 1, "%04X", PCI_VENDOR_ID_DELL);
11790         if (!strncmp(str_id_reg, &vpd_data[rodi], VENDOR_ID_LEN) ||
11791             !strncmp(str_id_cap, &vpd_data[rodi], VENDOR_ID_LEN)) {
11792
11793                 rodi = pci_vpd_find_info_keyword(vpd_data, i, block_end,
11794                                                 PCI_VPD_RO_KEYWORD_VENDOR0);
11795                 if (rodi >= 0) {
11796                         len = pci_vpd_info_field_size(&vpd_data[rodi]);
11797
11798                         rodi += PCI_VPD_INFO_FLD_HDR_SIZE;
11799
11800                         if (len < 32 && (len + rodi) <= BNX2X_VPD_LEN) {
11801                                 memcpy(bp->fw_ver, &vpd_data[rodi], len);
11802                                 bp->fw_ver[len] = ' ';
11803                         }
11804                 }
11805                 kfree(vpd_extended_data);
11806                 return;
11807         }
11808 out_not_found:
11809         kfree(vpd_extended_data);
11810         return;
11811 }
11812
11813 static void bnx2x_set_modes_bitmap(struct bnx2x *bp)
11814 {
11815         u32 flags = 0;
11816
11817         if (CHIP_REV_IS_FPGA(bp))
11818                 SET_FLAGS(flags, MODE_FPGA);
11819         else if (CHIP_REV_IS_EMUL(bp))
11820                 SET_FLAGS(flags, MODE_EMUL);
11821         else
11822                 SET_FLAGS(flags, MODE_ASIC);
11823
11824         if (CHIP_MODE_IS_4_PORT(bp))
11825                 SET_FLAGS(flags, MODE_PORT4);
11826         else
11827                 SET_FLAGS(flags, MODE_PORT2);
11828
11829         if (CHIP_IS_E2(bp))
11830                 SET_FLAGS(flags, MODE_E2);
11831         else if (CHIP_IS_E3(bp)) {
11832                 SET_FLAGS(flags, MODE_E3);
11833                 if (CHIP_REV(bp) == CHIP_REV_Ax)
11834                         SET_FLAGS(flags, MODE_E3_A0);
11835                 else /*if (CHIP_REV(bp) == CHIP_REV_Bx)*/
11836                         SET_FLAGS(flags, MODE_E3_B0 | MODE_COS3);
11837         }
11838
11839         if (IS_MF(bp)) {
11840                 SET_FLAGS(flags, MODE_MF);
11841                 switch (bp->mf_mode) {
11842                 case MULTI_FUNCTION_SD:
11843                         SET_FLAGS(flags, MODE_MF_SD);
11844                         break;
11845                 case MULTI_FUNCTION_SI:
11846                         SET_FLAGS(flags, MODE_MF_SI);
11847                         break;
11848                 case MULTI_FUNCTION_AFEX:
11849                         SET_FLAGS(flags, MODE_MF_AFEX);
11850                         break;
11851                 }
11852         } else
11853                 SET_FLAGS(flags, MODE_SF);
11854
11855 #if defined(__LITTLE_ENDIAN)
11856         SET_FLAGS(flags, MODE_LITTLE_ENDIAN);
11857 #else /*(__BIG_ENDIAN)*/
11858         SET_FLAGS(flags, MODE_BIG_ENDIAN);
11859 #endif
11860         INIT_MODE_FLAGS(bp) = flags;
11861 }
11862
11863 static int bnx2x_init_bp(struct bnx2x *bp)
11864 {
11865         int func;
11866         int rc;
11867
11868         mutex_init(&bp->port.phy_mutex);
11869         mutex_init(&bp->fw_mb_mutex);
11870         mutex_init(&bp->drv_info_mutex);
11871         bp->drv_info_mng_owner = false;
11872         spin_lock_init(&bp->stats_lock);
11873         sema_init(&bp->stats_sema, 1);
11874
11875         INIT_DELAYED_WORK(&bp->sp_task, bnx2x_sp_task);
11876         INIT_DELAYED_WORK(&bp->sp_rtnl_task, bnx2x_sp_rtnl_task);
11877         INIT_DELAYED_WORK(&bp->period_task, bnx2x_period_task);
11878         INIT_DELAYED_WORK(&bp->iov_task, bnx2x_iov_task);
11879         if (IS_PF(bp)) {
11880                 rc = bnx2x_get_hwinfo(bp);
11881                 if (rc)
11882                         return rc;
11883         } else {
11884                 eth_zero_addr(bp->dev->dev_addr);
11885         }
11886
11887         bnx2x_set_modes_bitmap(bp);
11888
11889         rc = bnx2x_alloc_mem_bp(bp);
11890         if (rc)
11891                 return rc;
11892
11893         bnx2x_read_fwinfo(bp);
11894
11895         func = BP_FUNC(bp);
11896
11897         /* need to reset chip if undi was active */
11898         if (IS_PF(bp) && !BP_NOMCP(bp)) {
11899                 /* init fw_seq */
11900                 bp->fw_seq =
11901                         SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
11902                                                         DRV_MSG_SEQ_NUMBER_MASK;
11903                 BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
11904
11905                 rc = bnx2x_prev_unload(bp);
11906                 if (rc) {
11907                         bnx2x_free_mem_bp(bp);
11908                         return rc;
11909                 }
11910         }
11911
11912         if (CHIP_REV_IS_FPGA(bp))
11913                 dev_err(&bp->pdev->dev, "FPGA detected\n");
11914
11915         if (BP_NOMCP(bp) && (func == 0))
11916                 dev_err(&bp->pdev->dev, "MCP disabled, must load devices in order!\n");
11917
11918         bp->disable_tpa = disable_tpa;
11919         bp->disable_tpa |= IS_MF_STORAGE_SD(bp) || IS_MF_FCOE_AFEX(bp);
11920         /* Reduce memory usage in kdump environment by disabling TPA */
11921         bp->disable_tpa |= reset_devices;
11922
11923         /* Set TPA flags */
11924         if (bp->disable_tpa) {
11925                 bp->flags &= ~(TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11926                 bp->dev->features &= ~NETIF_F_LRO;
11927         } else {
11928                 bp->flags |= (TPA_ENABLE_FLAG | GRO_ENABLE_FLAG);
11929                 bp->dev->features |= NETIF_F_LRO;
11930         }
11931
11932         if (CHIP_IS_E1(bp))
11933                 bp->dropless_fc = 0;
11934         else
11935                 bp->dropless_fc = dropless_fc | bnx2x_get_dropless_info(bp);
11936
11937         bp->mrrs = mrrs;
11938
11939         bp->tx_ring_size = IS_MF_FCOE_AFEX(bp) ? 0 : MAX_TX_AVAIL;
11940         if (IS_VF(bp))
11941                 bp->rx_ring_size = MAX_RX_AVAIL;
11942
11943         /* make sure that the numbers are in the right granularity */
11944         bp->tx_ticks = (50 / BNX2X_BTR) * BNX2X_BTR;
11945         bp->rx_ticks = (25 / BNX2X_BTR) * BNX2X_BTR;
11946
11947         bp->current_interval = CHIP_REV_IS_SLOW(bp) ? 5*HZ : HZ;
11948
11949         init_timer(&bp->timer);
11950         bp->timer.expires = jiffies + bp->current_interval;
11951         bp->timer.data = (unsigned long) bp;
11952         bp->timer.function = bnx2x_timer;
11953
11954         if (SHMEM2_HAS(bp, dcbx_lldp_params_offset) &&
11955             SHMEM2_HAS(bp, dcbx_lldp_dcbx_stat_offset) &&
11956             SHMEM2_RD(bp, dcbx_lldp_params_offset) &&
11957             SHMEM2_RD(bp, dcbx_lldp_dcbx_stat_offset)) {
11958                 bnx2x_dcbx_set_state(bp, true, BNX2X_DCBX_ENABLED_ON_NEG_ON);
11959                 bnx2x_dcbx_init_params(bp);
11960         } else {
11961                 bnx2x_dcbx_set_state(bp, false, BNX2X_DCBX_ENABLED_OFF);
11962         }
11963
11964         if (CHIP_IS_E1x(bp))
11965                 bp->cnic_base_cl_id = FP_SB_MAX_E1x;
11966         else
11967                 bp->cnic_base_cl_id = FP_SB_MAX_E2;
11968
11969         /* multiple tx priority */
11970         if (IS_VF(bp))
11971                 bp->max_cos = 1;
11972         else if (CHIP_IS_E1x(bp))
11973                 bp->max_cos = BNX2X_MULTI_TX_COS_E1X;
11974         else if (CHIP_IS_E2(bp) || CHIP_IS_E3A0(bp))
11975                 bp->max_cos = BNX2X_MULTI_TX_COS_E2_E3A0;
11976         else if (CHIP_IS_E3B0(bp))
11977                 bp->max_cos = BNX2X_MULTI_TX_COS_E3B0;
11978         else
11979                 BNX2X_ERR("unknown chip %x revision %x\n",
11980                           CHIP_NUM(bp), CHIP_REV(bp));
11981         BNX2X_DEV_INFO("set bp->max_cos to %d\n", bp->max_cos);
11982
11983         /* We need at least one default status block for slow-path events,
11984          * second status block for the L2 queue, and a third status block for
11985          * CNIC if supported.
11986          */
11987         if (IS_VF(bp))
11988                 bp->min_msix_vec_cnt = 1;
11989         else if (CNIC_SUPPORT(bp))
11990                 bp->min_msix_vec_cnt = 3;
11991         else /* PF w/o cnic */
11992                 bp->min_msix_vec_cnt = 2;
11993         BNX2X_DEV_INFO("bp->min_msix_vec_cnt %d", bp->min_msix_vec_cnt);
11994
11995         bp->dump_preset_idx = 1;
11996
11997         return rc;
11998 }
11999
12000 /****************************************************************************
12001 * General service functions
12002 ****************************************************************************/
12003
12004 /*
12005  * net_device service functions
12006  */
12007
12008 /* called with rtnl_lock */
12009 static int bnx2x_open(struct net_device *dev)
12010 {
12011         struct bnx2x *bp = netdev_priv(dev);
12012         int rc;
12013
12014         bp->stats_init = true;
12015
12016         netif_carrier_off(dev);
12017
12018         bnx2x_set_power_state(bp, PCI_D0);
12019
12020         /* If parity had happen during the unload, then attentions
12021          * and/or RECOVERY_IN_PROGRES may still be set. In this case we
12022          * want the first function loaded on the current engine to
12023          * complete the recovery.
12024          * Parity recovery is only relevant for PF driver.
12025          */
12026         if (IS_PF(bp)) {
12027                 int other_engine = BP_PATH(bp) ? 0 : 1;
12028                 bool other_load_status, load_status;
12029                 bool global = false;
12030
12031                 other_load_status = bnx2x_get_load_status(bp, other_engine);
12032                 load_status = bnx2x_get_load_status(bp, BP_PATH(bp));
12033                 if (!bnx2x_reset_is_done(bp, BP_PATH(bp)) ||
12034                     bnx2x_chk_parity_attn(bp, &global, true)) {
12035                         do {
12036                                 /* If there are attentions and they are in a
12037                                  * global blocks, set the GLOBAL_RESET bit
12038                                  * regardless whether it will be this function
12039                                  * that will complete the recovery or not.
12040                                  */
12041                                 if (global)
12042                                         bnx2x_set_reset_global(bp);
12043
12044                                 /* Only the first function on the current
12045                                  * engine should try to recover in open. In case
12046                                  * of attentions in global blocks only the first
12047                                  * in the chip should try to recover.
12048                                  */
12049                                 if ((!load_status &&
12050                                      (!global || !other_load_status)) &&
12051                                       bnx2x_trylock_leader_lock(bp) &&
12052                                       !bnx2x_leader_reset(bp)) {
12053                                         netdev_info(bp->dev,
12054                                                     "Recovered in open\n");
12055                                         break;
12056                                 }
12057
12058                                 /* recovery has failed... */
12059                                 bnx2x_set_power_state(bp, PCI_D3hot);
12060                                 bp->recovery_state = BNX2X_RECOVERY_FAILED;
12061
12062                                 BNX2X_ERR("Recovery flow hasn't been properly completed yet. Try again later.\n"
12063                                           "If you still see this message after a few retries then power cycle is required.\n");
12064
12065                                 return -EAGAIN;
12066                         } while (0);
12067                 }
12068         }
12069
12070         bp->recovery_state = BNX2X_RECOVERY_DONE;
12071         rc = bnx2x_nic_load(bp, LOAD_OPEN);
12072         if (rc)
12073                 return rc;
12074         return 0;
12075 }
12076
12077 /* called with rtnl_lock */
12078 static int bnx2x_close(struct net_device *dev)
12079 {
12080         struct bnx2x *bp = netdev_priv(dev);
12081
12082         /* Unload the driver, release IRQs */
12083         bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
12084
12085         return 0;
12086 }
12087
12088 static int bnx2x_init_mcast_macs_list(struct bnx2x *bp,
12089                                       struct bnx2x_mcast_ramrod_params *p)
12090 {
12091         int mc_count = netdev_mc_count(bp->dev);
12092         struct bnx2x_mcast_list_elem *mc_mac =
12093                 kcalloc(mc_count, sizeof(*mc_mac), GFP_ATOMIC);
12094         struct netdev_hw_addr *ha;
12095
12096         if (!mc_mac)
12097                 return -ENOMEM;
12098
12099         INIT_LIST_HEAD(&p->mcast_list);
12100
12101         netdev_for_each_mc_addr(ha, bp->dev) {
12102                 mc_mac->mac = bnx2x_mc_addr(ha);
12103                 list_add_tail(&mc_mac->link, &p->mcast_list);
12104                 mc_mac++;
12105         }
12106
12107         p->mcast_list_len = mc_count;
12108
12109         return 0;
12110 }
12111
12112 static void bnx2x_free_mcast_macs_list(
12113         struct bnx2x_mcast_ramrod_params *p)
12114 {
12115         struct bnx2x_mcast_list_elem *mc_mac =
12116                 list_first_entry(&p->mcast_list, struct bnx2x_mcast_list_elem,
12117                                  link);
12118
12119         WARN_ON(!mc_mac);
12120         kfree(mc_mac);
12121 }
12122
12123 /**
12124  * bnx2x_set_uc_list - configure a new unicast MACs list.
12125  *
12126  * @bp: driver handle
12127  *
12128  * We will use zero (0) as a MAC type for these MACs.
12129  */
12130 static int bnx2x_set_uc_list(struct bnx2x *bp)
12131 {
12132         int rc;
12133         struct net_device *dev = bp->dev;
12134         struct netdev_hw_addr *ha;
12135         struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
12136         unsigned long ramrod_flags = 0;
12137
12138         /* First schedule a cleanup up of old configuration */
12139         rc = bnx2x_del_all_macs(bp, mac_obj, BNX2X_UC_LIST_MAC, false);
12140         if (rc < 0) {
12141                 BNX2X_ERR("Failed to schedule DELETE operations: %d\n", rc);
12142                 return rc;
12143         }
12144
12145         netdev_for_each_uc_addr(ha, dev) {
12146                 rc = bnx2x_set_mac_one(bp, bnx2x_uc_addr(ha), mac_obj, true,
12147                                        BNX2X_UC_LIST_MAC, &ramrod_flags);
12148                 if (rc == -EEXIST) {
12149                         DP(BNX2X_MSG_SP,
12150                            "Failed to schedule ADD operations: %d\n", rc);
12151                         /* do not treat adding same MAC as error */
12152                         rc = 0;
12153
12154                 } else if (rc < 0) {
12155
12156                         BNX2X_ERR("Failed to schedule ADD operations: %d\n",
12157                                   rc);
12158                         return rc;
12159                 }
12160         }
12161
12162         /* Execute the pending commands */
12163         __set_bit(RAMROD_CONT, &ramrod_flags);
12164         return bnx2x_set_mac_one(bp, NULL, mac_obj, false /* don't care */,
12165                                  BNX2X_UC_LIST_MAC, &ramrod_flags);
12166 }
12167
12168 static int bnx2x_set_mc_list(struct bnx2x *bp)
12169 {
12170         struct net_device *dev = bp->dev;
12171         struct bnx2x_mcast_ramrod_params rparam = {NULL};
12172         int rc = 0;
12173
12174         rparam.mcast_obj = &bp->mcast_obj;
12175
12176         /* first, clear all configured multicast MACs */
12177         rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
12178         if (rc < 0) {
12179                 BNX2X_ERR("Failed to clear multicast configuration: %d\n", rc);
12180                 return rc;
12181         }
12182
12183         /* then, configure a new MACs list */
12184         if (netdev_mc_count(dev)) {
12185                 rc = bnx2x_init_mcast_macs_list(bp, &rparam);
12186                 if (rc) {
12187                         BNX2X_ERR("Failed to create multicast MACs list: %d\n",
12188                                   rc);
12189                         return rc;
12190                 }
12191
12192                 /* Now add the new MACs */
12193                 rc = bnx2x_config_mcast(bp, &rparam,
12194                                         BNX2X_MCAST_CMD_ADD);
12195                 if (rc < 0)
12196                         BNX2X_ERR("Failed to set a new multicast configuration: %d\n",
12197                                   rc);
12198
12199                 bnx2x_free_mcast_macs_list(&rparam);
12200         }
12201
12202         return rc;
12203 }
12204
12205 /* If bp->state is OPEN, should be called with netif_addr_lock_bh() */
12206 static void bnx2x_set_rx_mode(struct net_device *dev)
12207 {
12208         struct bnx2x *bp = netdev_priv(dev);
12209
12210         if (bp->state != BNX2X_STATE_OPEN) {
12211                 DP(NETIF_MSG_IFUP, "state is %x, returning\n", bp->state);
12212                 return;
12213         } else {
12214                 /* Schedule an SP task to handle rest of change */
12215                 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_RX_MODE,
12216                                        NETIF_MSG_IFUP);
12217         }
12218 }
12219
12220 void bnx2x_set_rx_mode_inner(struct bnx2x *bp)
12221 {
12222         u32 rx_mode = BNX2X_RX_MODE_NORMAL;
12223
12224         DP(NETIF_MSG_IFUP, "dev->flags = %x\n", bp->dev->flags);
12225
12226         netif_addr_lock_bh(bp->dev);
12227
12228         if (bp->dev->flags & IFF_PROMISC) {
12229                 rx_mode = BNX2X_RX_MODE_PROMISC;
12230         } else if ((bp->dev->flags & IFF_ALLMULTI) ||
12231                    ((netdev_mc_count(bp->dev) > BNX2X_MAX_MULTICAST) &&
12232                     CHIP_IS_E1(bp))) {
12233                 rx_mode = BNX2X_RX_MODE_ALLMULTI;
12234         } else {
12235                 if (IS_PF(bp)) {
12236                         /* some multicasts */
12237                         if (bnx2x_set_mc_list(bp) < 0)
12238                                 rx_mode = BNX2X_RX_MODE_ALLMULTI;
12239
12240                         /* release bh lock, as bnx2x_set_uc_list might sleep */
12241                         netif_addr_unlock_bh(bp->dev);
12242                         if (bnx2x_set_uc_list(bp) < 0)
12243                                 rx_mode = BNX2X_RX_MODE_PROMISC;
12244                         netif_addr_lock_bh(bp->dev);
12245                 } else {
12246                         /* configuring mcast to a vf involves sleeping (when we
12247                          * wait for the pf's response).
12248                          */
12249                         bnx2x_schedule_sp_rtnl(bp,
12250                                                BNX2X_SP_RTNL_VFPF_MCAST, 0);
12251                 }
12252         }
12253
12254         bp->rx_mode = rx_mode;
12255         /* handle ISCSI SD mode */
12256         if (IS_MF_ISCSI_SD(bp))
12257                 bp->rx_mode = BNX2X_RX_MODE_NONE;
12258
12259         /* Schedule the rx_mode command */
12260         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state)) {
12261                 set_bit(BNX2X_FILTER_RX_MODE_SCHED, &bp->sp_state);
12262                 netif_addr_unlock_bh(bp->dev);
12263                 return;
12264         }
12265
12266         if (IS_PF(bp)) {
12267                 bnx2x_set_storm_rx_mode(bp);
12268                 netif_addr_unlock_bh(bp->dev);
12269         } else {
12270                 /* VF will need to request the PF to make this change, and so
12271                  * the VF needs to release the bottom-half lock prior to the
12272                  * request (as it will likely require sleep on the VF side)
12273                  */
12274                 netif_addr_unlock_bh(bp->dev);
12275                 bnx2x_vfpf_storm_rx_mode(bp);
12276         }
12277 }
12278
12279 /* called with rtnl_lock */
12280 static int bnx2x_mdio_read(struct net_device *netdev, int prtad,
12281                            int devad, u16 addr)
12282 {
12283         struct bnx2x *bp = netdev_priv(netdev);
12284         u16 value;
12285         int rc;
12286
12287         DP(NETIF_MSG_LINK, "mdio_read: prtad 0x%x, devad 0x%x, addr 0x%x\n",
12288            prtad, devad, addr);
12289
12290         /* The HW expects different devad if CL22 is used */
12291         devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12292
12293         bnx2x_acquire_phy_lock(bp);
12294         rc = bnx2x_phy_read(&bp->link_params, prtad, devad, addr, &value);
12295         bnx2x_release_phy_lock(bp);
12296         DP(NETIF_MSG_LINK, "mdio_read_val 0x%x rc = 0x%x\n", value, rc);
12297
12298         if (!rc)
12299                 rc = value;
12300         return rc;
12301 }
12302
12303 /* called with rtnl_lock */
12304 static int bnx2x_mdio_write(struct net_device *netdev, int prtad, int devad,
12305                             u16 addr, u16 value)
12306 {
12307         struct bnx2x *bp = netdev_priv(netdev);
12308         int rc;
12309
12310         DP(NETIF_MSG_LINK,
12311            "mdio_write: prtad 0x%x, devad 0x%x, addr 0x%x, value 0x%x\n",
12312            prtad, devad, addr, value);
12313
12314         /* The HW expects different devad if CL22 is used */
12315         devad = (devad == MDIO_DEVAD_NONE) ? DEFAULT_PHY_DEV_ADDR : devad;
12316
12317         bnx2x_acquire_phy_lock(bp);
12318         rc = bnx2x_phy_write(&bp->link_params, prtad, devad, addr, value);
12319         bnx2x_release_phy_lock(bp);
12320         return rc;
12321 }
12322
12323 /* called with rtnl_lock */
12324 static int bnx2x_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
12325 {
12326         struct bnx2x *bp = netdev_priv(dev);
12327         struct mii_ioctl_data *mdio = if_mii(ifr);
12328
12329         DP(NETIF_MSG_LINK, "ioctl: phy id 0x%x, reg 0x%x, val_in 0x%x\n",
12330            mdio->phy_id, mdio->reg_num, mdio->val_in);
12331
12332         if (!netif_running(dev))
12333                 return -EAGAIN;
12334
12335         return mdio_mii_ioctl(&bp->mdio, mdio, cmd);
12336 }
12337
12338 #ifdef CONFIG_NET_POLL_CONTROLLER
12339 static void poll_bnx2x(struct net_device *dev)
12340 {
12341         struct bnx2x *bp = netdev_priv(dev);
12342         int i;
12343
12344         for_each_eth_queue(bp, i) {
12345                 struct bnx2x_fastpath *fp = &bp->fp[i];
12346                 napi_schedule(&bnx2x_fp(bp, fp->index, napi));
12347         }
12348 }
12349 #endif
12350
12351 static int bnx2x_validate_addr(struct net_device *dev)
12352 {
12353         struct bnx2x *bp = netdev_priv(dev);
12354
12355         /* query the bulletin board for mac address configured by the PF */
12356         if (IS_VF(bp))
12357                 bnx2x_sample_bulletin(bp);
12358
12359         if (!bnx2x_is_valid_ether_addr(bp, dev->dev_addr)) {
12360                 BNX2X_ERR("Non-valid Ethernet address\n");
12361                 return -EADDRNOTAVAIL;
12362         }
12363         return 0;
12364 }
12365
12366 static int bnx2x_get_phys_port_id(struct net_device *netdev,
12367                                   struct netdev_phys_port_id *ppid)
12368 {
12369         struct bnx2x *bp = netdev_priv(netdev);
12370
12371         if (!(bp->flags & HAS_PHYS_PORT_ID))
12372                 return -EOPNOTSUPP;
12373
12374         ppid->id_len = sizeof(bp->phys_port_id);
12375         memcpy(ppid->id, bp->phys_port_id, ppid->id_len);
12376
12377         return 0;
12378 }
12379
12380 static const struct net_device_ops bnx2x_netdev_ops = {
12381         .ndo_open               = bnx2x_open,
12382         .ndo_stop               = bnx2x_close,
12383         .ndo_start_xmit         = bnx2x_start_xmit,
12384         .ndo_select_queue       = bnx2x_select_queue,
12385         .ndo_set_rx_mode        = bnx2x_set_rx_mode,
12386         .ndo_set_mac_address    = bnx2x_change_mac_addr,
12387         .ndo_validate_addr      = bnx2x_validate_addr,
12388         .ndo_do_ioctl           = bnx2x_ioctl,
12389         .ndo_change_mtu         = bnx2x_change_mtu,
12390         .ndo_fix_features       = bnx2x_fix_features,
12391         .ndo_set_features       = bnx2x_set_features,
12392         .ndo_tx_timeout         = bnx2x_tx_timeout,
12393 #ifdef CONFIG_NET_POLL_CONTROLLER
12394         .ndo_poll_controller    = poll_bnx2x,
12395 #endif
12396         .ndo_setup_tc           = bnx2x_setup_tc,
12397 #ifdef CONFIG_BNX2X_SRIOV
12398         .ndo_set_vf_mac         = bnx2x_set_vf_mac,
12399         .ndo_set_vf_vlan        = bnx2x_set_vf_vlan,
12400         .ndo_get_vf_config      = bnx2x_get_vf_config,
12401 #endif
12402 #ifdef NETDEV_FCOE_WWNN
12403         .ndo_fcoe_get_wwn       = bnx2x_fcoe_get_wwn,
12404 #endif
12405
12406 #ifdef CONFIG_NET_RX_BUSY_POLL
12407         .ndo_busy_poll          = bnx2x_low_latency_recv,
12408 #endif
12409         .ndo_get_phys_port_id   = bnx2x_get_phys_port_id,
12410 };
12411
12412 static int bnx2x_set_coherency_mask(struct bnx2x *bp)
12413 {
12414         struct device *dev = &bp->pdev->dev;
12415
12416         if (dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)) != 0 &&
12417             dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)) != 0) {
12418                 dev_err(dev, "System does not support DMA, aborting\n");
12419                 return -EIO;
12420         }
12421
12422         return 0;
12423 }
12424
12425 static void bnx2x_disable_pcie_error_reporting(struct bnx2x *bp)
12426 {
12427         if (bp->flags & AER_ENABLED) {
12428                 pci_disable_pcie_error_reporting(bp->pdev);
12429                 bp->flags &= ~AER_ENABLED;
12430         }
12431 }
12432
12433 static int bnx2x_init_dev(struct bnx2x *bp, struct pci_dev *pdev,
12434                           struct net_device *dev, unsigned long board_type)
12435 {
12436         int rc;
12437         u32 pci_cfg_dword;
12438         bool chip_is_e1x = (board_type == BCM57710 ||
12439                             board_type == BCM57711 ||
12440                             board_type == BCM57711E);
12441
12442         SET_NETDEV_DEV(dev, &pdev->dev);
12443
12444         bp->dev = dev;
12445         bp->pdev = pdev;
12446
12447         rc = pci_enable_device(pdev);
12448         if (rc) {
12449                 dev_err(&bp->pdev->dev,
12450                         "Cannot enable PCI device, aborting\n");
12451                 goto err_out;
12452         }
12453
12454         if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
12455                 dev_err(&bp->pdev->dev,
12456                         "Cannot find PCI device base address, aborting\n");
12457                 rc = -ENODEV;
12458                 goto err_out_disable;
12459         }
12460
12461         if (IS_PF(bp) && !(pci_resource_flags(pdev, 2) & IORESOURCE_MEM)) {
12462                 dev_err(&bp->pdev->dev, "Cannot find second PCI device base address, aborting\n");
12463                 rc = -ENODEV;
12464                 goto err_out_disable;
12465         }
12466
12467         pci_read_config_dword(pdev, PCICFG_REVISION_ID_OFFSET, &pci_cfg_dword);
12468         if ((pci_cfg_dword & PCICFG_REVESION_ID_MASK) ==
12469             PCICFG_REVESION_ID_ERROR_VAL) {
12470                 pr_err("PCI device error, probably due to fan failure, aborting\n");
12471                 rc = -ENODEV;
12472                 goto err_out_disable;
12473         }
12474
12475         if (atomic_read(&pdev->enable_cnt) == 1) {
12476                 rc = pci_request_regions(pdev, DRV_MODULE_NAME);
12477                 if (rc) {
12478                         dev_err(&bp->pdev->dev,
12479                                 "Cannot obtain PCI resources, aborting\n");
12480                         goto err_out_disable;
12481                 }
12482
12483                 pci_set_master(pdev);
12484                 pci_save_state(pdev);
12485         }
12486
12487         if (IS_PF(bp)) {
12488                 if (!pdev->pm_cap) {
12489                         dev_err(&bp->pdev->dev,
12490                                 "Cannot find power management capability, aborting\n");
12491                         rc = -EIO;
12492                         goto err_out_release;
12493                 }
12494         }
12495
12496         if (!pci_is_pcie(pdev)) {
12497                 dev_err(&bp->pdev->dev, "Not PCI Express, aborting\n");
12498                 rc = -EIO;
12499                 goto err_out_release;
12500         }
12501
12502         rc = bnx2x_set_coherency_mask(bp);
12503         if (rc)
12504                 goto err_out_release;
12505
12506         dev->mem_start = pci_resource_start(pdev, 0);
12507         dev->base_addr = dev->mem_start;
12508         dev->mem_end = pci_resource_end(pdev, 0);
12509
12510         dev->irq = pdev->irq;
12511
12512         bp->regview = pci_ioremap_bar(pdev, 0);
12513         if (!bp->regview) {
12514                 dev_err(&bp->pdev->dev,
12515                         "Cannot map register space, aborting\n");
12516                 rc = -ENOMEM;
12517                 goto err_out_release;
12518         }
12519
12520         /* In E1/E1H use pci device function given by kernel.
12521          * In E2/E3 read physical function from ME register since these chips
12522          * support Physical Device Assignment where kernel BDF maybe arbitrary
12523          * (depending on hypervisor).
12524          */
12525         if (chip_is_e1x) {
12526                 bp->pf_num = PCI_FUNC(pdev->devfn);
12527         } else {
12528                 /* chip is E2/3*/
12529                 pci_read_config_dword(bp->pdev,
12530                                       PCICFG_ME_REGISTER, &pci_cfg_dword);
12531                 bp->pf_num = (u8)((pci_cfg_dword & ME_REG_ABS_PF_NUM) >>
12532                                   ME_REG_ABS_PF_NUM_SHIFT);
12533         }
12534         BNX2X_DEV_INFO("me reg PF num: %d\n", bp->pf_num);
12535
12536         /* clean indirect addresses */
12537         pci_write_config_dword(bp->pdev, PCICFG_GRC_ADDRESS,
12538                                PCICFG_VENDOR_ID_OFFSET);
12539
12540         /* AER (Advanced Error reporting) configuration */
12541         rc = pci_enable_pcie_error_reporting(pdev);
12542         if (!rc)
12543                 bp->flags |= AER_ENABLED;
12544         else
12545                 BNX2X_DEV_INFO("Failed To configure PCIe AER [%d]\n", rc);
12546
12547         /*
12548          * Clean the following indirect addresses for all functions since it
12549          * is not used by the driver.
12550          */
12551         if (IS_PF(bp)) {
12552                 REG_WR(bp, PXP2_REG_PGL_ADDR_88_F0, 0);
12553                 REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F0, 0);
12554                 REG_WR(bp, PXP2_REG_PGL_ADDR_90_F0, 0);
12555                 REG_WR(bp, PXP2_REG_PGL_ADDR_94_F0, 0);
12556
12557                 if (chip_is_e1x) {
12558                         REG_WR(bp, PXP2_REG_PGL_ADDR_88_F1, 0);
12559                         REG_WR(bp, PXP2_REG_PGL_ADDR_8C_F1, 0);
12560                         REG_WR(bp, PXP2_REG_PGL_ADDR_90_F1, 0);
12561                         REG_WR(bp, PXP2_REG_PGL_ADDR_94_F1, 0);
12562                 }
12563
12564                 /* Enable internal target-read (in case we are probed after PF
12565                  * FLR). Must be done prior to any BAR read access. Only for
12566                  * 57712 and up
12567                  */
12568                 if (!chip_is_e1x)
12569                         REG_WR(bp,
12570                                PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
12571         }
12572
12573         dev->watchdog_timeo = TX_TIMEOUT;
12574
12575         dev->netdev_ops = &bnx2x_netdev_ops;
12576         bnx2x_set_ethtool_ops(bp, dev);
12577
12578         dev->priv_flags |= IFF_UNICAST_FLT;
12579
12580         dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12581                 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12582                 NETIF_F_RXCSUM | NETIF_F_LRO | NETIF_F_GRO |
12583                 NETIF_F_RXHASH | NETIF_F_HW_VLAN_CTAG_TX;
12584         if (!CHIP_IS_E1x(bp)) {
12585                 dev->hw_features |= NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL |
12586                                     NETIF_F_GSO_IPIP | NETIF_F_GSO_SIT;
12587                 dev->hw_enc_features =
12588                         NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG |
12589                         NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 |
12590                         NETIF_F_GSO_IPIP |
12591                         NETIF_F_GSO_SIT |
12592                         NETIF_F_GSO_GRE | NETIF_F_GSO_UDP_TUNNEL;
12593         }
12594
12595         dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
12596                 NETIF_F_TSO | NETIF_F_TSO_ECN | NETIF_F_TSO6 | NETIF_F_HIGHDMA;
12597
12598         dev->features |= dev->hw_features | NETIF_F_HW_VLAN_CTAG_RX;
12599         dev->features |= NETIF_F_HIGHDMA;
12600
12601         /* Add Loopback capability to the device */
12602         dev->hw_features |= NETIF_F_LOOPBACK;
12603
12604 #ifdef BCM_DCBNL
12605         dev->dcbnl_ops = &bnx2x_dcbnl_ops;
12606 #endif
12607
12608         /* get_port_hwinfo() will set prtad and mmds properly */
12609         bp->mdio.prtad = MDIO_PRTAD_NONE;
12610         bp->mdio.mmds = 0;
12611         bp->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
12612         bp->mdio.dev = dev;
12613         bp->mdio.mdio_read = bnx2x_mdio_read;
12614         bp->mdio.mdio_write = bnx2x_mdio_write;
12615
12616         return 0;
12617
12618 err_out_release:
12619         if (atomic_read(&pdev->enable_cnt) == 1)
12620                 pci_release_regions(pdev);
12621
12622 err_out_disable:
12623         pci_disable_device(pdev);
12624
12625 err_out:
12626         return rc;
12627 }
12628
12629 static int bnx2x_check_firmware(struct bnx2x *bp)
12630 {
12631         const struct firmware *firmware = bp->firmware;
12632         struct bnx2x_fw_file_hdr *fw_hdr;
12633         struct bnx2x_fw_file_section *sections;
12634         u32 offset, len, num_ops;
12635         __be16 *ops_offsets;
12636         int i;
12637         const u8 *fw_ver;
12638
12639         if (firmware->size < sizeof(struct bnx2x_fw_file_hdr)) {
12640                 BNX2X_ERR("Wrong FW size\n");
12641                 return -EINVAL;
12642         }
12643
12644         fw_hdr = (struct bnx2x_fw_file_hdr *)firmware->data;
12645         sections = (struct bnx2x_fw_file_section *)fw_hdr;
12646
12647         /* Make sure none of the offsets and sizes make us read beyond
12648          * the end of the firmware data */
12649         for (i = 0; i < sizeof(*fw_hdr) / sizeof(*sections); i++) {
12650                 offset = be32_to_cpu(sections[i].offset);
12651                 len = be32_to_cpu(sections[i].len);
12652                 if (offset + len > firmware->size) {
12653                         BNX2X_ERR("Section %d length is out of bounds\n", i);
12654                         return -EINVAL;
12655                 }
12656         }
12657
12658         /* Likewise for the init_ops offsets */
12659         offset = be32_to_cpu(fw_hdr->init_ops_offsets.offset);
12660         ops_offsets = (__force __be16 *)(firmware->data + offset);
12661         num_ops = be32_to_cpu(fw_hdr->init_ops.len) / sizeof(struct raw_op);
12662
12663         for (i = 0; i < be32_to_cpu(fw_hdr->init_ops_offsets.len) / 2; i++) {
12664                 if (be16_to_cpu(ops_offsets[i]) > num_ops) {
12665                         BNX2X_ERR("Section offset %d is out of bounds\n", i);
12666                         return -EINVAL;
12667                 }
12668         }
12669
12670         /* Check FW version */
12671         offset = be32_to_cpu(fw_hdr->fw_version.offset);
12672         fw_ver = firmware->data + offset;
12673         if ((fw_ver[0] != BCM_5710_FW_MAJOR_VERSION) ||
12674             (fw_ver[1] != BCM_5710_FW_MINOR_VERSION) ||
12675             (fw_ver[2] != BCM_5710_FW_REVISION_VERSION) ||
12676             (fw_ver[3] != BCM_5710_FW_ENGINEERING_VERSION)) {
12677                 BNX2X_ERR("Bad FW version:%d.%d.%d.%d. Should be %d.%d.%d.%d\n",
12678                        fw_ver[0], fw_ver[1], fw_ver[2], fw_ver[3],
12679                        BCM_5710_FW_MAJOR_VERSION,
12680                        BCM_5710_FW_MINOR_VERSION,
12681                        BCM_5710_FW_REVISION_VERSION,
12682                        BCM_5710_FW_ENGINEERING_VERSION);
12683                 return -EINVAL;
12684         }
12685
12686         return 0;
12687 }
12688
12689 static void be32_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12690 {
12691         const __be32 *source = (const __be32 *)_source;
12692         u32 *target = (u32 *)_target;
12693         u32 i;
12694
12695         for (i = 0; i < n/4; i++)
12696                 target[i] = be32_to_cpu(source[i]);
12697 }
12698
12699 /*
12700    Ops array is stored in the following format:
12701    {op(8bit), offset(24bit, big endian), data(32bit, big endian)}
12702  */
12703 static void bnx2x_prep_ops(const u8 *_source, u8 *_target, u32 n)
12704 {
12705         const __be32 *source = (const __be32 *)_source;
12706         struct raw_op *target = (struct raw_op *)_target;
12707         u32 i, j, tmp;
12708
12709         for (i = 0, j = 0; i < n/8; i++, j += 2) {
12710                 tmp = be32_to_cpu(source[j]);
12711                 target[i].op = (tmp >> 24) & 0xff;
12712                 target[i].offset = tmp & 0xffffff;
12713                 target[i].raw_data = be32_to_cpu(source[j + 1]);
12714         }
12715 }
12716
12717 /* IRO array is stored in the following format:
12718  * {base(24bit), m1(16bit), m2(16bit), m3(16bit), size(16bit) }
12719  */
12720 static void bnx2x_prep_iro(const u8 *_source, u8 *_target, u32 n)
12721 {
12722         const __be32 *source = (const __be32 *)_source;
12723         struct iro *target = (struct iro *)_target;
12724         u32 i, j, tmp;
12725
12726         for (i = 0, j = 0; i < n/sizeof(struct iro); i++) {
12727                 target[i].base = be32_to_cpu(source[j]);
12728                 j++;
12729                 tmp = be32_to_cpu(source[j]);
12730                 target[i].m1 = (tmp >> 16) & 0xffff;
12731                 target[i].m2 = tmp & 0xffff;
12732                 j++;
12733                 tmp = be32_to_cpu(source[j]);
12734                 target[i].m3 = (tmp >> 16) & 0xffff;
12735                 target[i].size = tmp & 0xffff;
12736                 j++;
12737         }
12738 }
12739
12740 static void be16_to_cpu_n(const u8 *_source, u8 *_target, u32 n)
12741 {
12742         const __be16 *source = (const __be16 *)_source;
12743         u16 *target = (u16 *)_target;
12744         u32 i;
12745
12746         for (i = 0; i < n/2; i++)
12747                 target[i] = be16_to_cpu(source[i]);
12748 }
12749
12750 #define BNX2X_ALLOC_AND_SET(arr, lbl, func)                             \
12751 do {                                                                    \
12752         u32 len = be32_to_cpu(fw_hdr->arr.len);                         \
12753         bp->arr = kmalloc(len, GFP_KERNEL);                             \
12754         if (!bp->arr)                                                   \
12755                 goto lbl;                                               \
12756         func(bp->firmware->data + be32_to_cpu(fw_hdr->arr.offset),      \
12757              (u8 *)bp->arr, len);                                       \
12758 } while (0)
12759
12760 static int bnx2x_init_firmware(struct bnx2x *bp)
12761 {
12762         const char *fw_file_name;
12763         struct bnx2x_fw_file_hdr *fw_hdr;
12764         int rc;
12765
12766         if (bp->firmware)
12767                 return 0;
12768
12769         if (CHIP_IS_E1(bp))
12770                 fw_file_name = FW_FILE_NAME_E1;
12771         else if (CHIP_IS_E1H(bp))
12772                 fw_file_name = FW_FILE_NAME_E1H;
12773         else if (!CHIP_IS_E1x(bp))
12774                 fw_file_name = FW_FILE_NAME_E2;
12775         else {
12776                 BNX2X_ERR("Unsupported chip revision\n");
12777                 return -EINVAL;
12778         }
12779         BNX2X_DEV_INFO("Loading %s\n", fw_file_name);
12780
12781         rc = request_firmware(&bp->firmware, fw_file_name, &bp->pdev->dev);
12782         if (rc) {
12783                 BNX2X_ERR("Can't load firmware file %s\n",
12784                           fw_file_name);
12785                 goto request_firmware_exit;
12786         }
12787
12788         rc = bnx2x_check_firmware(bp);
12789         if (rc) {
12790                 BNX2X_ERR("Corrupt firmware file %s\n", fw_file_name);
12791                 goto request_firmware_exit;
12792         }
12793
12794         fw_hdr = (struct bnx2x_fw_file_hdr *)bp->firmware->data;
12795
12796         /* Initialize the pointers to the init arrays */
12797         /* Blob */
12798         BNX2X_ALLOC_AND_SET(init_data, request_firmware_exit, be32_to_cpu_n);
12799
12800         /* Opcodes */
12801         BNX2X_ALLOC_AND_SET(init_ops, init_ops_alloc_err, bnx2x_prep_ops);
12802
12803         /* Offsets */
12804         BNX2X_ALLOC_AND_SET(init_ops_offsets, init_offsets_alloc_err,
12805                             be16_to_cpu_n);
12806
12807         /* STORMs firmware */
12808         INIT_TSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12809                         be32_to_cpu(fw_hdr->tsem_int_table_data.offset);
12810         INIT_TSEM_PRAM_DATA(bp)      = bp->firmware->data +
12811                         be32_to_cpu(fw_hdr->tsem_pram_data.offset);
12812         INIT_USEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12813                         be32_to_cpu(fw_hdr->usem_int_table_data.offset);
12814         INIT_USEM_PRAM_DATA(bp)      = bp->firmware->data +
12815                         be32_to_cpu(fw_hdr->usem_pram_data.offset);
12816         INIT_XSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12817                         be32_to_cpu(fw_hdr->xsem_int_table_data.offset);
12818         INIT_XSEM_PRAM_DATA(bp)      = bp->firmware->data +
12819                         be32_to_cpu(fw_hdr->xsem_pram_data.offset);
12820         INIT_CSEM_INT_TABLE_DATA(bp) = bp->firmware->data +
12821                         be32_to_cpu(fw_hdr->csem_int_table_data.offset);
12822         INIT_CSEM_PRAM_DATA(bp)      = bp->firmware->data +
12823                         be32_to_cpu(fw_hdr->csem_pram_data.offset);
12824         /* IRO */
12825         BNX2X_ALLOC_AND_SET(iro_arr, iro_alloc_err, bnx2x_prep_iro);
12826
12827         return 0;
12828
12829 iro_alloc_err:
12830         kfree(bp->init_ops_offsets);
12831 init_offsets_alloc_err:
12832         kfree(bp->init_ops);
12833 init_ops_alloc_err:
12834         kfree(bp->init_data);
12835 request_firmware_exit:
12836         release_firmware(bp->firmware);
12837         bp->firmware = NULL;
12838
12839         return rc;
12840 }
12841
12842 static void bnx2x_release_firmware(struct bnx2x *bp)
12843 {
12844         kfree(bp->init_ops_offsets);
12845         kfree(bp->init_ops);
12846         kfree(bp->init_data);
12847         release_firmware(bp->firmware);
12848         bp->firmware = NULL;
12849 }
12850
12851 static struct bnx2x_func_sp_drv_ops bnx2x_func_sp_drv = {
12852         .init_hw_cmn_chip = bnx2x_init_hw_common_chip,
12853         .init_hw_cmn      = bnx2x_init_hw_common,
12854         .init_hw_port     = bnx2x_init_hw_port,
12855         .init_hw_func     = bnx2x_init_hw_func,
12856
12857         .reset_hw_cmn     = bnx2x_reset_common,
12858         .reset_hw_port    = bnx2x_reset_port,
12859         .reset_hw_func    = bnx2x_reset_func,
12860
12861         .gunzip_init      = bnx2x_gunzip_init,
12862         .gunzip_end       = bnx2x_gunzip_end,
12863
12864         .init_fw          = bnx2x_init_firmware,
12865         .release_fw       = bnx2x_release_firmware,
12866 };
12867
12868 void bnx2x__init_func_obj(struct bnx2x *bp)
12869 {
12870         /* Prepare DMAE related driver resources */
12871         bnx2x_setup_dmae(bp);
12872
12873         bnx2x_init_func_obj(bp, &bp->func_obj,
12874                             bnx2x_sp(bp, func_rdata),
12875                             bnx2x_sp_mapping(bp, func_rdata),
12876                             bnx2x_sp(bp, func_afex_rdata),
12877                             bnx2x_sp_mapping(bp, func_afex_rdata),
12878                             &bnx2x_func_sp_drv);
12879 }
12880
12881 /* must be called after sriov-enable */
12882 static int bnx2x_set_qm_cid_count(struct bnx2x *bp)
12883 {
12884         int cid_count = BNX2X_L2_MAX_CID(bp);
12885
12886         if (IS_SRIOV(bp))
12887                 cid_count += BNX2X_VF_CIDS;
12888
12889         if (CNIC_SUPPORT(bp))
12890                 cid_count += CNIC_CID_MAX;
12891
12892         return roundup(cid_count, QM_CID_ROUND);
12893 }
12894
12895 /**
12896  * bnx2x_get_num_none_def_sbs - return the number of none default SBs
12897  *
12898  * @dev:        pci device
12899  *
12900  */
12901 static int bnx2x_get_num_non_def_sbs(struct pci_dev *pdev, int cnic_cnt)
12902 {
12903         int index;
12904         u16 control = 0;
12905
12906         /*
12907          * If MSI-X is not supported - return number of SBs needed to support
12908          * one fast path queue: one FP queue + SB for CNIC
12909          */
12910         if (!pdev->msix_cap) {
12911                 dev_info(&pdev->dev, "no msix capability found\n");
12912                 return 1 + cnic_cnt;
12913         }
12914         dev_info(&pdev->dev, "msix capability found\n");
12915
12916         /*
12917          * The value in the PCI configuration space is the index of the last
12918          * entry, namely one less than the actual size of the table, which is
12919          * exactly what we want to return from this function: number of all SBs
12920          * without the default SB.
12921          * For VFs there is no default SB, then we return (index+1).
12922          */
12923         pci_read_config_word(pdev, pdev->msix_cap + PCI_MSI_FLAGS, &control);
12924
12925         index = control & PCI_MSIX_FLAGS_QSIZE;
12926
12927         return index;
12928 }
12929
12930 static int set_max_cos_est(int chip_id)
12931 {
12932         switch (chip_id) {
12933         case BCM57710:
12934         case BCM57711:
12935         case BCM57711E:
12936                 return BNX2X_MULTI_TX_COS_E1X;
12937         case BCM57712:
12938         case BCM57712_MF:
12939                 return BNX2X_MULTI_TX_COS_E2_E3A0;
12940         case BCM57800:
12941         case BCM57800_MF:
12942         case BCM57810:
12943         case BCM57810_MF:
12944         case BCM57840_4_10:
12945         case BCM57840_2_20:
12946         case BCM57840_O:
12947         case BCM57840_MFO:
12948         case BCM57840_MF:
12949         case BCM57811:
12950         case BCM57811_MF:
12951                 return BNX2X_MULTI_TX_COS_E3B0;
12952         case BCM57712_VF:
12953         case BCM57800_VF:
12954         case BCM57810_VF:
12955         case BCM57840_VF:
12956         case BCM57811_VF:
12957                 return 1;
12958         default:
12959                 pr_err("Unknown board_type (%d), aborting\n", chip_id);
12960                 return -ENODEV;
12961         }
12962 }
12963
12964 static int set_is_vf(int chip_id)
12965 {
12966         switch (chip_id) {
12967         case BCM57712_VF:
12968         case BCM57800_VF:
12969         case BCM57810_VF:
12970         case BCM57840_VF:
12971         case BCM57811_VF:
12972                 return true;
12973         default:
12974                 return false;
12975         }
12976 }
12977
12978 static int bnx2x_init_one(struct pci_dev *pdev,
12979                                     const struct pci_device_id *ent)
12980 {
12981         struct net_device *dev = NULL;
12982         struct bnx2x *bp;
12983         enum pcie_link_width pcie_width;
12984         enum pci_bus_speed pcie_speed;
12985         int rc, max_non_def_sbs;
12986         int rx_count, tx_count, rss_count, doorbell_size;
12987         int max_cos_est;
12988         bool is_vf;
12989         int cnic_cnt;
12990
12991         /* An estimated maximum supported CoS number according to the chip
12992          * version.
12993          * We will try to roughly estimate the maximum number of CoSes this chip
12994          * may support in order to minimize the memory allocated for Tx
12995          * netdev_queue's. This number will be accurately calculated during the
12996          * initialization of bp->max_cos based on the chip versions AND chip
12997          * revision in the bnx2x_init_bp().
12998          */
12999         max_cos_est = set_max_cos_est(ent->driver_data);
13000         if (max_cos_est < 0)
13001                 return max_cos_est;
13002         is_vf = set_is_vf(ent->driver_data);
13003         cnic_cnt = is_vf ? 0 : 1;
13004
13005         max_non_def_sbs = bnx2x_get_num_non_def_sbs(pdev, cnic_cnt);
13006
13007         /* add another SB for VF as it has no default SB */
13008         max_non_def_sbs += is_vf ? 1 : 0;
13009
13010         /* Maximum number of RSS queues: one IGU SB goes to CNIC */
13011         rss_count = max_non_def_sbs - cnic_cnt;
13012
13013         if (rss_count < 1)
13014                 return -EINVAL;
13015
13016         /* Maximum number of netdev Rx queues: RSS + FCoE L2 */
13017         rx_count = rss_count + cnic_cnt;
13018
13019         /* Maximum number of netdev Tx queues:
13020          * Maximum TSS queues * Maximum supported number of CoS  + FCoE L2
13021          */
13022         tx_count = rss_count * max_cos_est + cnic_cnt;
13023
13024         /* dev zeroed in init_etherdev */
13025         dev = alloc_etherdev_mqs(sizeof(*bp), tx_count, rx_count);
13026         if (!dev)
13027                 return -ENOMEM;
13028
13029         bp = netdev_priv(dev);
13030
13031         bp->flags = 0;
13032         if (is_vf)
13033                 bp->flags |= IS_VF_FLAG;
13034
13035         bp->igu_sb_cnt = max_non_def_sbs;
13036         bp->igu_base_addr = IS_VF(bp) ? PXP_VF_ADDR_IGU_START : BAR_IGU_INTMEM;
13037         bp->msg_enable = debug;
13038         bp->cnic_support = cnic_cnt;
13039         bp->cnic_probe = bnx2x_cnic_probe;
13040
13041         pci_set_drvdata(pdev, dev);
13042
13043         rc = bnx2x_init_dev(bp, pdev, dev, ent->driver_data);
13044         if (rc < 0) {
13045                 free_netdev(dev);
13046                 return rc;
13047         }
13048
13049         BNX2X_DEV_INFO("This is a %s function\n",
13050                        IS_PF(bp) ? "physical" : "virtual");
13051         BNX2X_DEV_INFO("Cnic support is %s\n", CNIC_SUPPORT(bp) ? "on" : "off");
13052         BNX2X_DEV_INFO("Max num of status blocks %d\n", max_non_def_sbs);
13053         BNX2X_DEV_INFO("Allocated netdev with %d tx and %d rx queues\n",
13054                        tx_count, rx_count);
13055
13056         rc = bnx2x_init_bp(bp);
13057         if (rc)
13058                 goto init_one_exit;
13059
13060         /* Map doorbells here as we need the real value of bp->max_cos which
13061          * is initialized in bnx2x_init_bp() to determine the number of
13062          * l2 connections.
13063          */
13064         if (IS_VF(bp)) {
13065                 bp->doorbells = bnx2x_vf_doorbells(bp);
13066                 rc = bnx2x_vf_pci_alloc(bp);
13067                 if (rc)
13068                         goto init_one_exit;
13069         } else {
13070                 doorbell_size = BNX2X_L2_MAX_CID(bp) * (1 << BNX2X_DB_SHIFT);
13071                 if (doorbell_size > pci_resource_len(pdev, 2)) {
13072                         dev_err(&bp->pdev->dev,
13073                                 "Cannot map doorbells, bar size too small, aborting\n");
13074                         rc = -ENOMEM;
13075                         goto init_one_exit;
13076                 }
13077                 bp->doorbells = ioremap_nocache(pci_resource_start(pdev, 2),
13078                                                 doorbell_size);
13079         }
13080         if (!bp->doorbells) {
13081                 dev_err(&bp->pdev->dev,
13082                         "Cannot map doorbell space, aborting\n");
13083                 rc = -ENOMEM;
13084                 goto init_one_exit;
13085         }
13086
13087         if (IS_VF(bp)) {
13088                 rc = bnx2x_vfpf_acquire(bp, tx_count, rx_count);
13089                 if (rc)
13090                         goto init_one_exit;
13091         }
13092
13093         /* Enable SRIOV if capability found in configuration space */
13094         rc = bnx2x_iov_init_one(bp, int_mode, BNX2X_MAX_NUM_OF_VFS);
13095         if (rc)
13096                 goto init_one_exit;
13097
13098         /* calc qm_cid_count */
13099         bp->qm_cid_count = bnx2x_set_qm_cid_count(bp);
13100         BNX2X_DEV_INFO("qm_cid_count %d\n", bp->qm_cid_count);
13101
13102         /* disable FCOE L2 queue for E1x*/
13103         if (CHIP_IS_E1x(bp))
13104                 bp->flags |= NO_FCOE_FLAG;
13105
13106         /* Set bp->num_queues for MSI-X mode*/
13107         bnx2x_set_num_queues(bp);
13108
13109         /* Configure interrupt mode: try to enable MSI-X/MSI if
13110          * needed.
13111          */
13112         rc = bnx2x_set_int_mode(bp);
13113         if (rc) {
13114                 dev_err(&pdev->dev, "Cannot set interrupts\n");
13115                 goto init_one_exit;
13116         }
13117         BNX2X_DEV_INFO("set interrupts successfully\n");
13118
13119         /* register the net device */
13120         rc = register_netdev(dev);
13121         if (rc) {
13122                 dev_err(&pdev->dev, "Cannot register net device\n");
13123                 goto init_one_exit;
13124         }
13125         BNX2X_DEV_INFO("device name after netdev register %s\n", dev->name);
13126
13127         if (!NO_FCOE(bp)) {
13128                 /* Add storage MAC address */
13129                 rtnl_lock();
13130                 dev_addr_add(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
13131                 rtnl_unlock();
13132         }
13133         if (pcie_get_minimum_link(bp->pdev, &pcie_speed, &pcie_width) ||
13134             pcie_speed == PCI_SPEED_UNKNOWN ||
13135             pcie_width == PCIE_LNK_WIDTH_UNKNOWN)
13136                 BNX2X_DEV_INFO("Failed to determine PCI Express Bandwidth\n");
13137         else
13138                 BNX2X_DEV_INFO(
13139                        "%s (%c%d) PCI-E x%d %s found at mem %lx, IRQ %d, node addr %pM\n",
13140                        board_info[ent->driver_data].name,
13141                        (CHIP_REV(bp) >> 12) + 'A', (CHIP_METAL(bp) >> 4),
13142                        pcie_width,
13143                        pcie_speed == PCIE_SPEED_2_5GT ? "2.5GHz" :
13144                        pcie_speed == PCIE_SPEED_5_0GT ? "5.0GHz" :
13145                        pcie_speed == PCIE_SPEED_8_0GT ? "8.0GHz" :
13146                        "Unknown",
13147                        dev->base_addr, bp->pdev->irq, dev->dev_addr);
13148
13149         return 0;
13150
13151 init_one_exit:
13152         bnx2x_disable_pcie_error_reporting(bp);
13153
13154         if (bp->regview)
13155                 iounmap(bp->regview);
13156
13157         if (IS_PF(bp) && bp->doorbells)
13158                 iounmap(bp->doorbells);
13159
13160         free_netdev(dev);
13161
13162         if (atomic_read(&pdev->enable_cnt) == 1)
13163                 pci_release_regions(pdev);
13164
13165         pci_disable_device(pdev);
13166
13167         return rc;
13168 }
13169
13170 static void __bnx2x_remove(struct pci_dev *pdev,
13171                            struct net_device *dev,
13172                            struct bnx2x *bp,
13173                            bool remove_netdev)
13174 {
13175         /* Delete storage MAC address */
13176         if (!NO_FCOE(bp)) {
13177                 rtnl_lock();
13178                 dev_addr_del(bp->dev, bp->fip_mac, NETDEV_HW_ADDR_T_SAN);
13179                 rtnl_unlock();
13180         }
13181
13182 #ifdef BCM_DCBNL
13183         /* Delete app tlvs from dcbnl */
13184         bnx2x_dcbnl_update_applist(bp, true);
13185 #endif
13186
13187         if (IS_PF(bp) &&
13188             !BP_NOMCP(bp) &&
13189             (bp->flags & BC_SUPPORTS_RMMOD_CMD))
13190                 bnx2x_fw_command(bp, DRV_MSG_CODE_RMMOD, 0);
13191
13192         /* Close the interface - either directly or implicitly */
13193         if (remove_netdev) {
13194                 unregister_netdev(dev);
13195         } else {
13196                 rtnl_lock();
13197                 dev_close(dev);
13198                 rtnl_unlock();
13199         }
13200
13201         bnx2x_iov_remove_one(bp);
13202
13203         /* Power on: we can't let PCI layer write to us while we are in D3 */
13204         if (IS_PF(bp))
13205                 bnx2x_set_power_state(bp, PCI_D0);
13206
13207         /* Disable MSI/MSI-X */
13208         bnx2x_disable_msi(bp);
13209
13210         /* Power off */
13211         if (IS_PF(bp))
13212                 bnx2x_set_power_state(bp, PCI_D3hot);
13213
13214         /* Make sure RESET task is not scheduled before continuing */
13215         cancel_delayed_work_sync(&bp->sp_rtnl_task);
13216
13217         /* send message via vfpf channel to release the resources of this vf */
13218         if (IS_VF(bp))
13219                 bnx2x_vfpf_release(bp);
13220
13221         /* Assumes no further PCIe PM changes will occur */
13222         if (system_state == SYSTEM_POWER_OFF) {
13223                 pci_wake_from_d3(pdev, bp->wol);
13224                 pci_set_power_state(pdev, PCI_D3hot);
13225         }
13226
13227         bnx2x_disable_pcie_error_reporting(bp);
13228         if (remove_netdev) {
13229                 if (bp->regview)
13230                         iounmap(bp->regview);
13231
13232                 /* For vfs, doorbells are part of the regview and were unmapped
13233                  * along with it. FW is only loaded by PF.
13234                  */
13235                 if (IS_PF(bp)) {
13236                         if (bp->doorbells)
13237                                 iounmap(bp->doorbells);
13238
13239                         bnx2x_release_firmware(bp);
13240                 } else {
13241                         bnx2x_vf_pci_dealloc(bp);
13242                 }
13243                 bnx2x_free_mem_bp(bp);
13244
13245                 free_netdev(dev);
13246
13247                 if (atomic_read(&pdev->enable_cnt) == 1)
13248                         pci_release_regions(pdev);
13249
13250                 pci_disable_device(pdev);
13251         }
13252 }
13253
13254 static void bnx2x_remove_one(struct pci_dev *pdev)
13255 {
13256         struct net_device *dev = pci_get_drvdata(pdev);
13257         struct bnx2x *bp;
13258
13259         if (!dev) {
13260                 dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
13261                 return;
13262         }
13263         bp = netdev_priv(dev);
13264
13265         __bnx2x_remove(pdev, dev, bp, true);
13266 }
13267
13268 static int bnx2x_eeh_nic_unload(struct bnx2x *bp)
13269 {
13270         bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
13271
13272         bp->rx_mode = BNX2X_RX_MODE_NONE;
13273
13274         if (CNIC_LOADED(bp))
13275                 bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
13276
13277         /* Stop Tx */
13278         bnx2x_tx_disable(bp);
13279         /* Delete all NAPI objects */
13280         bnx2x_del_all_napi(bp);
13281         if (CNIC_LOADED(bp))
13282                 bnx2x_del_all_napi_cnic(bp);
13283         netdev_reset_tc(bp->dev);
13284
13285         del_timer_sync(&bp->timer);
13286         cancel_delayed_work_sync(&bp->sp_task);
13287         cancel_delayed_work_sync(&bp->period_task);
13288
13289         spin_lock_bh(&bp->stats_lock);
13290         bp->stats_state = STATS_STATE_DISABLED;
13291         spin_unlock_bh(&bp->stats_lock);
13292
13293         bnx2x_save_statistics(bp);
13294
13295         netif_carrier_off(bp->dev);
13296
13297         return 0;
13298 }
13299
13300 /**
13301  * bnx2x_io_error_detected - called when PCI error is detected
13302  * @pdev: Pointer to PCI device
13303  * @state: The current pci connection state
13304  *
13305  * This function is called after a PCI bus error affecting
13306  * this device has been detected.
13307  */
13308 static pci_ers_result_t bnx2x_io_error_detected(struct pci_dev *pdev,
13309                                                 pci_channel_state_t state)
13310 {
13311         struct net_device *dev = pci_get_drvdata(pdev);
13312         struct bnx2x *bp = netdev_priv(dev);
13313
13314         rtnl_lock();
13315
13316         BNX2X_ERR("IO error detected\n");
13317
13318         netif_device_detach(dev);
13319
13320         if (state == pci_channel_io_perm_failure) {
13321                 rtnl_unlock();
13322                 return PCI_ERS_RESULT_DISCONNECT;
13323         }
13324
13325         if (netif_running(dev))
13326                 bnx2x_eeh_nic_unload(bp);
13327
13328         bnx2x_prev_path_mark_eeh(bp);
13329
13330         pci_disable_device(pdev);
13331
13332         rtnl_unlock();
13333
13334         /* Request a slot reset */
13335         return PCI_ERS_RESULT_NEED_RESET;
13336 }
13337
13338 /**
13339  * bnx2x_io_slot_reset - called after the PCI bus has been reset
13340  * @pdev: Pointer to PCI device
13341  *
13342  * Restart the card from scratch, as if from a cold-boot.
13343  */
13344 static pci_ers_result_t bnx2x_io_slot_reset(struct pci_dev *pdev)
13345 {
13346         struct net_device *dev = pci_get_drvdata(pdev);
13347         struct bnx2x *bp = netdev_priv(dev);
13348         int i;
13349
13350         rtnl_lock();
13351         BNX2X_ERR("IO slot reset initializing...\n");
13352         if (pci_enable_device(pdev)) {
13353                 dev_err(&pdev->dev,
13354                         "Cannot re-enable PCI device after reset\n");
13355                 rtnl_unlock();
13356                 return PCI_ERS_RESULT_DISCONNECT;
13357         }
13358
13359         pci_set_master(pdev);
13360         pci_restore_state(pdev);
13361         pci_save_state(pdev);
13362
13363         if (netif_running(dev))
13364                 bnx2x_set_power_state(bp, PCI_D0);
13365
13366         if (netif_running(dev)) {
13367                 BNX2X_ERR("IO slot reset --> driver unload\n");
13368
13369                 /* MCP should have been reset; Need to wait for validity */
13370                 bnx2x_init_shmem(bp);
13371
13372                 if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
13373                         u32 v;
13374
13375                         v = SHMEM2_RD(bp,
13376                                       drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
13377                         SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
13378                                   v & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
13379                 }
13380                 bnx2x_drain_tx_queues(bp);
13381                 bnx2x_send_unload_req(bp, UNLOAD_RECOVERY);
13382                 bnx2x_netif_stop(bp, 1);
13383                 bnx2x_free_irq(bp);
13384
13385                 /* Report UNLOAD_DONE to MCP */
13386                 bnx2x_send_unload_done(bp, true);
13387
13388                 bp->sp_state = 0;
13389                 bp->port.pmf = 0;
13390
13391                 bnx2x_prev_unload(bp);
13392
13393                 /* We should have reseted the engine, so It's fair to
13394                  * assume the FW will no longer write to the bnx2x driver.
13395                  */
13396                 bnx2x_squeeze_objects(bp);
13397                 bnx2x_free_skbs(bp);
13398                 for_each_rx_queue(bp, i)
13399                         bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
13400                 bnx2x_free_fp_mem(bp);
13401                 bnx2x_free_mem(bp);
13402
13403                 bp->state = BNX2X_STATE_CLOSED;
13404         }
13405
13406         rtnl_unlock();
13407
13408         /* If AER, perform cleanup of the PCIe registers */
13409         if (bp->flags & AER_ENABLED) {
13410                 if (pci_cleanup_aer_uncorrect_error_status(pdev))
13411                         BNX2X_ERR("pci_cleanup_aer_uncorrect_error_status failed\n");
13412                 else
13413                         DP(NETIF_MSG_HW, "pci_cleanup_aer_uncorrect_error_status succeeded\n");
13414         }
13415
13416         return PCI_ERS_RESULT_RECOVERED;
13417 }
13418
13419 /**
13420  * bnx2x_io_resume - called when traffic can start flowing again
13421  * @pdev: Pointer to PCI device
13422  *
13423  * This callback is called when the error recovery driver tells us that
13424  * its OK to resume normal operation.
13425  */
13426 static void bnx2x_io_resume(struct pci_dev *pdev)
13427 {
13428         struct net_device *dev = pci_get_drvdata(pdev);
13429         struct bnx2x *bp = netdev_priv(dev);
13430
13431         if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
13432                 netdev_err(bp->dev, "Handling parity error recovery. Try again later\n");
13433                 return;
13434         }
13435
13436         rtnl_lock();
13437
13438         bp->fw_seq = SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
13439                                                         DRV_MSG_SEQ_NUMBER_MASK;
13440
13441         if (netif_running(dev))
13442                 bnx2x_nic_load(bp, LOAD_NORMAL);
13443
13444         netif_device_attach(dev);
13445
13446         rtnl_unlock();
13447 }
13448
13449 static const struct pci_error_handlers bnx2x_err_handler = {
13450         .error_detected = bnx2x_io_error_detected,
13451         .slot_reset     = bnx2x_io_slot_reset,
13452         .resume         = bnx2x_io_resume,
13453 };
13454
13455 static void bnx2x_shutdown(struct pci_dev *pdev)
13456 {
13457         struct net_device *dev = pci_get_drvdata(pdev);
13458         struct bnx2x *bp;
13459
13460         if (!dev)
13461                 return;
13462
13463         bp = netdev_priv(dev);
13464         if (!bp)
13465                 return;
13466
13467         rtnl_lock();
13468         netif_device_detach(dev);
13469         rtnl_unlock();
13470
13471         /* Don't remove the netdevice, as there are scenarios which will cause
13472          * the kernel to hang, e.g., when trying to remove bnx2i while the
13473          * rootfs is mounted from SAN.
13474          */
13475         __bnx2x_remove(pdev, dev, bp, false);
13476 }
13477
13478 static struct pci_driver bnx2x_pci_driver = {
13479         .name        = DRV_MODULE_NAME,
13480         .id_table    = bnx2x_pci_tbl,
13481         .probe       = bnx2x_init_one,
13482         .remove      = bnx2x_remove_one,
13483         .suspend     = bnx2x_suspend,
13484         .resume      = bnx2x_resume,
13485         .err_handler = &bnx2x_err_handler,
13486 #ifdef CONFIG_BNX2X_SRIOV
13487         .sriov_configure = bnx2x_sriov_configure,
13488 #endif
13489         .shutdown    = bnx2x_shutdown,
13490 };
13491
13492 static int __init bnx2x_init(void)
13493 {
13494         int ret;
13495
13496         pr_info("%s", version);
13497
13498         bnx2x_wq = create_singlethread_workqueue("bnx2x");
13499         if (bnx2x_wq == NULL) {
13500                 pr_err("Cannot create workqueue\n");
13501                 return -ENOMEM;
13502         }
13503         bnx2x_iov_wq = create_singlethread_workqueue("bnx2x_iov");
13504         if (!bnx2x_iov_wq) {
13505                 pr_err("Cannot create iov workqueue\n");
13506                 destroy_workqueue(bnx2x_wq);
13507                 return -ENOMEM;
13508         }
13509
13510         ret = pci_register_driver(&bnx2x_pci_driver);
13511         if (ret) {
13512                 pr_err("Cannot register driver\n");
13513                 destroy_workqueue(bnx2x_wq);
13514                 destroy_workqueue(bnx2x_iov_wq);
13515         }
13516         return ret;
13517 }
13518
13519 static void __exit bnx2x_cleanup(void)
13520 {
13521         struct list_head *pos, *q;
13522
13523         pci_unregister_driver(&bnx2x_pci_driver);
13524
13525         destroy_workqueue(bnx2x_wq);
13526         destroy_workqueue(bnx2x_iov_wq);
13527
13528         /* Free globally allocated resources */
13529         list_for_each_safe(pos, q, &bnx2x_prev_list) {
13530                 struct bnx2x_prev_path_list *tmp =
13531                         list_entry(pos, struct bnx2x_prev_path_list, list);
13532                 list_del(pos);
13533                 kfree(tmp);
13534         }
13535 }
13536
13537 void bnx2x_notify_link_changed(struct bnx2x *bp)
13538 {
13539         REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_12 + BP_FUNC(bp)*sizeof(u32), 1);
13540 }
13541
13542 module_init(bnx2x_init);
13543 module_exit(bnx2x_cleanup);
13544
13545 /**
13546  * bnx2x_set_iscsi_eth_mac_addr - set iSCSI MAC(s).
13547  *
13548  * @bp:         driver handle
13549  * @set:        set or clear the CAM entry
13550  *
13551  * This function will wait until the ramrod completion returns.
13552  * Return 0 if success, -ENODEV if ramrod doesn't return.
13553  */
13554 static int bnx2x_set_iscsi_eth_mac_addr(struct bnx2x *bp)
13555 {
13556         unsigned long ramrod_flags = 0;
13557
13558         __set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
13559         return bnx2x_set_mac_one(bp, bp->cnic_eth_dev.iscsi_mac,
13560                                  &bp->iscsi_l2_mac_obj, true,
13561                                  BNX2X_ISCSI_ETH_MAC, &ramrod_flags);
13562 }
13563
13564 /* count denotes the number of new completions we have seen */
13565 static void bnx2x_cnic_sp_post(struct bnx2x *bp, int count)
13566 {
13567         struct eth_spe *spe;
13568         int cxt_index, cxt_offset;
13569
13570 #ifdef BNX2X_STOP_ON_ERROR
13571         if (unlikely(bp->panic))
13572                 return;
13573 #endif
13574
13575         spin_lock_bh(&bp->spq_lock);
13576         BUG_ON(bp->cnic_spq_pending < count);
13577         bp->cnic_spq_pending -= count;
13578
13579         for (; bp->cnic_kwq_pending; bp->cnic_kwq_pending--) {
13580                 u16 type =  (le16_to_cpu(bp->cnic_kwq_cons->hdr.type)
13581                                 & SPE_HDR_CONN_TYPE) >>
13582                                 SPE_HDR_CONN_TYPE_SHIFT;
13583                 u8 cmd = (le32_to_cpu(bp->cnic_kwq_cons->hdr.conn_and_cmd_data)
13584                                 >> SPE_HDR_CMD_ID_SHIFT) & 0xff;
13585
13586                 /* Set validation for iSCSI L2 client before sending SETUP
13587                  *  ramrod
13588                  */
13589                 if (type == ETH_CONNECTION_TYPE) {
13590                         if (cmd == RAMROD_CMD_ID_ETH_CLIENT_SETUP) {
13591                                 cxt_index = BNX2X_ISCSI_ETH_CID(bp) /
13592                                         ILT_PAGE_CIDS;
13593                                 cxt_offset = BNX2X_ISCSI_ETH_CID(bp) -
13594                                         (cxt_index * ILT_PAGE_CIDS);
13595                                 bnx2x_set_ctx_validation(bp,
13596                                         &bp->context[cxt_index].
13597                                                          vcxt[cxt_offset].eth,
13598                                         BNX2X_ISCSI_ETH_CID(bp));
13599                         }
13600                 }
13601
13602                 /*
13603                  * There may be not more than 8 L2, not more than 8 L5 SPEs
13604                  * and in the air. We also check that number of outstanding
13605                  * COMMON ramrods is not more than the EQ and SPQ can
13606                  * accommodate.
13607                  */
13608                 if (type == ETH_CONNECTION_TYPE) {
13609                         if (!atomic_read(&bp->cq_spq_left))
13610                                 break;
13611                         else
13612                                 atomic_dec(&bp->cq_spq_left);
13613                 } else if (type == NONE_CONNECTION_TYPE) {
13614                         if (!atomic_read(&bp->eq_spq_left))
13615                                 break;
13616                         else
13617                                 atomic_dec(&bp->eq_spq_left);
13618                 } else if ((type == ISCSI_CONNECTION_TYPE) ||
13619                            (type == FCOE_CONNECTION_TYPE)) {
13620                         if (bp->cnic_spq_pending >=
13621                             bp->cnic_eth_dev.max_kwqe_pending)
13622                                 break;
13623                         else
13624                                 bp->cnic_spq_pending++;
13625                 } else {
13626                         BNX2X_ERR("Unknown SPE type: %d\n", type);
13627                         bnx2x_panic();
13628                         break;
13629                 }
13630
13631                 spe = bnx2x_sp_get_next(bp);
13632                 *spe = *bp->cnic_kwq_cons;
13633
13634                 DP(BNX2X_MSG_SP, "pending on SPQ %d, on KWQ %d count %d\n",
13635                    bp->cnic_spq_pending, bp->cnic_kwq_pending, count);
13636
13637                 if (bp->cnic_kwq_cons == bp->cnic_kwq_last)
13638                         bp->cnic_kwq_cons = bp->cnic_kwq;
13639                 else
13640                         bp->cnic_kwq_cons++;
13641         }
13642         bnx2x_sp_prod_update(bp);
13643         spin_unlock_bh(&bp->spq_lock);
13644 }
13645
13646 static int bnx2x_cnic_sp_queue(struct net_device *dev,
13647                                struct kwqe_16 *kwqes[], u32 count)
13648 {
13649         struct bnx2x *bp = netdev_priv(dev);
13650         int i;
13651
13652 #ifdef BNX2X_STOP_ON_ERROR
13653         if (unlikely(bp->panic)) {
13654                 BNX2X_ERR("Can't post to SP queue while panic\n");
13655                 return -EIO;
13656         }
13657 #endif
13658
13659         if ((bp->recovery_state != BNX2X_RECOVERY_DONE) &&
13660             (bp->recovery_state != BNX2X_RECOVERY_NIC_LOADING)) {
13661                 BNX2X_ERR("Handling parity error recovery. Try again later\n");
13662                 return -EAGAIN;
13663         }
13664
13665         spin_lock_bh(&bp->spq_lock);
13666
13667         for (i = 0; i < count; i++) {
13668                 struct eth_spe *spe = (struct eth_spe *)kwqes[i];
13669
13670                 if (bp->cnic_kwq_pending == MAX_SP_DESC_CNT)
13671                         break;
13672
13673                 *bp->cnic_kwq_prod = *spe;
13674
13675                 bp->cnic_kwq_pending++;
13676
13677                 DP(BNX2X_MSG_SP, "L5 SPQE %x %x %x:%x pos %d\n",
13678                    spe->hdr.conn_and_cmd_data, spe->hdr.type,
13679                    spe->data.update_data_addr.hi,
13680                    spe->data.update_data_addr.lo,
13681                    bp->cnic_kwq_pending);
13682
13683                 if (bp->cnic_kwq_prod == bp->cnic_kwq_last)
13684                         bp->cnic_kwq_prod = bp->cnic_kwq;
13685                 else
13686                         bp->cnic_kwq_prod++;
13687         }
13688
13689         spin_unlock_bh(&bp->spq_lock);
13690
13691         if (bp->cnic_spq_pending < bp->cnic_eth_dev.max_kwqe_pending)
13692                 bnx2x_cnic_sp_post(bp, 0);
13693
13694         return i;
13695 }
13696
13697 static int bnx2x_cnic_ctl_send(struct bnx2x *bp, struct cnic_ctl_info *ctl)
13698 {
13699         struct cnic_ops *c_ops;
13700         int rc = 0;
13701
13702         mutex_lock(&bp->cnic_mutex);
13703         c_ops = rcu_dereference_protected(bp->cnic_ops,
13704                                           lockdep_is_held(&bp->cnic_mutex));
13705         if (c_ops)
13706                 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
13707         mutex_unlock(&bp->cnic_mutex);
13708
13709         return rc;
13710 }
13711
13712 static int bnx2x_cnic_ctl_send_bh(struct bnx2x *bp, struct cnic_ctl_info *ctl)
13713 {
13714         struct cnic_ops *c_ops;
13715         int rc = 0;
13716
13717         rcu_read_lock();
13718         c_ops = rcu_dereference(bp->cnic_ops);
13719         if (c_ops)
13720                 rc = c_ops->cnic_ctl(bp->cnic_data, ctl);
13721         rcu_read_unlock();
13722
13723         return rc;
13724 }
13725
13726 /*
13727  * for commands that have no data
13728  */
13729 int bnx2x_cnic_notify(struct bnx2x *bp, int cmd)
13730 {
13731         struct cnic_ctl_info ctl = {0};
13732
13733         ctl.cmd = cmd;
13734
13735         return bnx2x_cnic_ctl_send(bp, &ctl);
13736 }
13737
13738 static void bnx2x_cnic_cfc_comp(struct bnx2x *bp, int cid, u8 err)
13739 {
13740         struct cnic_ctl_info ctl = {0};
13741
13742         /* first we tell CNIC and only then we count this as a completion */
13743         ctl.cmd = CNIC_CTL_COMPLETION_CMD;
13744         ctl.data.comp.cid = cid;
13745         ctl.data.comp.error = err;
13746
13747         bnx2x_cnic_ctl_send_bh(bp, &ctl);
13748         bnx2x_cnic_sp_post(bp, 0);
13749 }
13750
13751 /* Called with netif_addr_lock_bh() taken.
13752  * Sets an rx_mode config for an iSCSI ETH client.
13753  * Doesn't block.
13754  * Completion should be checked outside.
13755  */
13756 static void bnx2x_set_iscsi_eth_rx_mode(struct bnx2x *bp, bool start)
13757 {
13758         unsigned long accept_flags = 0, ramrod_flags = 0;
13759         u8 cl_id = bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
13760         int sched_state = BNX2X_FILTER_ISCSI_ETH_STOP_SCHED;
13761
13762         if (start) {
13763                 /* Start accepting on iSCSI L2 ring. Accept all multicasts
13764                  * because it's the only way for UIO Queue to accept
13765                  * multicasts (in non-promiscuous mode only one Queue per
13766                  * function will receive multicast packets (leading in our
13767                  * case).
13768                  */
13769                 __set_bit(BNX2X_ACCEPT_UNICAST, &accept_flags);
13770                 __set_bit(BNX2X_ACCEPT_ALL_MULTICAST, &accept_flags);
13771                 __set_bit(BNX2X_ACCEPT_BROADCAST, &accept_flags);
13772                 __set_bit(BNX2X_ACCEPT_ANY_VLAN, &accept_flags);
13773
13774                 /* Clear STOP_PENDING bit if START is requested */
13775                 clear_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &bp->sp_state);
13776
13777                 sched_state = BNX2X_FILTER_ISCSI_ETH_START_SCHED;
13778         } else
13779                 /* Clear START_PENDING bit if STOP is requested */
13780                 clear_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &bp->sp_state);
13781
13782         if (test_bit(BNX2X_FILTER_RX_MODE_PENDING, &bp->sp_state))
13783                 set_bit(sched_state, &bp->sp_state);
13784         else {
13785                 __set_bit(RAMROD_RX, &ramrod_flags);
13786                 bnx2x_set_q_rx_mode(bp, cl_id, 0, accept_flags, 0,
13787                                     ramrod_flags);
13788         }
13789 }
13790
13791 static int bnx2x_drv_ctl(struct net_device *dev, struct drv_ctl_info *ctl)
13792 {
13793         struct bnx2x *bp = netdev_priv(dev);
13794         int rc = 0;
13795
13796         switch (ctl->cmd) {
13797         case DRV_CTL_CTXTBL_WR_CMD: {
13798                 u32 index = ctl->data.io.offset;
13799                 dma_addr_t addr = ctl->data.io.dma_addr;
13800
13801                 bnx2x_ilt_wr(bp, index, addr);
13802                 break;
13803         }
13804
13805         case DRV_CTL_RET_L5_SPQ_CREDIT_CMD: {
13806                 int count = ctl->data.credit.credit_count;
13807
13808                 bnx2x_cnic_sp_post(bp, count);
13809                 break;
13810         }
13811
13812         /* rtnl_lock is held.  */
13813         case DRV_CTL_START_L2_CMD: {
13814                 struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13815                 unsigned long sp_bits = 0;
13816
13817                 /* Configure the iSCSI classification object */
13818                 bnx2x_init_mac_obj(bp, &bp->iscsi_l2_mac_obj,
13819                                    cp->iscsi_l2_client_id,
13820                                    cp->iscsi_l2_cid, BP_FUNC(bp),
13821                                    bnx2x_sp(bp, mac_rdata),
13822                                    bnx2x_sp_mapping(bp, mac_rdata),
13823                                    BNX2X_FILTER_MAC_PENDING,
13824                                    &bp->sp_state, BNX2X_OBJ_TYPE_RX,
13825                                    &bp->macs_pool);
13826
13827                 /* Set iSCSI MAC address */
13828                 rc = bnx2x_set_iscsi_eth_mac_addr(bp);
13829                 if (rc)
13830                         break;
13831
13832                 mmiowb();
13833                 barrier();
13834
13835                 /* Start accepting on iSCSI L2 ring */
13836
13837                 netif_addr_lock_bh(dev);
13838                 bnx2x_set_iscsi_eth_rx_mode(bp, true);
13839                 netif_addr_unlock_bh(dev);
13840
13841                 /* bits to wait on */
13842                 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
13843                 __set_bit(BNX2X_FILTER_ISCSI_ETH_START_SCHED, &sp_bits);
13844
13845                 if (!bnx2x_wait_sp_comp(bp, sp_bits))
13846                         BNX2X_ERR("rx_mode completion timed out!\n");
13847
13848                 break;
13849         }
13850
13851         /* rtnl_lock is held.  */
13852         case DRV_CTL_STOP_L2_CMD: {
13853                 unsigned long sp_bits = 0;
13854
13855                 /* Stop accepting on iSCSI L2 ring */
13856                 netif_addr_lock_bh(dev);
13857                 bnx2x_set_iscsi_eth_rx_mode(bp, false);
13858                 netif_addr_unlock_bh(dev);
13859
13860                 /* bits to wait on */
13861                 __set_bit(BNX2X_FILTER_RX_MODE_PENDING, &sp_bits);
13862                 __set_bit(BNX2X_FILTER_ISCSI_ETH_STOP_SCHED, &sp_bits);
13863
13864                 if (!bnx2x_wait_sp_comp(bp, sp_bits))
13865                         BNX2X_ERR("rx_mode completion timed out!\n");
13866
13867                 mmiowb();
13868                 barrier();
13869
13870                 /* Unset iSCSI L2 MAC */
13871                 rc = bnx2x_del_all_macs(bp, &bp->iscsi_l2_mac_obj,
13872                                         BNX2X_ISCSI_ETH_MAC, true);
13873                 break;
13874         }
13875         case DRV_CTL_RET_L2_SPQ_CREDIT_CMD: {
13876                 int count = ctl->data.credit.credit_count;
13877
13878                 smp_mb__before_atomic_inc();
13879                 atomic_add(count, &bp->cq_spq_left);
13880                 smp_mb__after_atomic_inc();
13881                 break;
13882         }
13883         case DRV_CTL_ULP_REGISTER_CMD: {
13884                 int ulp_type = ctl->data.register_data.ulp_type;
13885
13886                 if (CHIP_IS_E3(bp)) {
13887                         int idx = BP_FW_MB_IDX(bp);
13888                         u32 cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13889                         int path = BP_PATH(bp);
13890                         int port = BP_PORT(bp);
13891                         int i;
13892                         u32 scratch_offset;
13893                         u32 *host_addr;
13894
13895                         /* first write capability to shmem2 */
13896                         if (ulp_type == CNIC_ULP_ISCSI)
13897                                 cap |= DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13898                         else if (ulp_type == CNIC_ULP_FCOE)
13899                                 cap |= DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13900                         SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13901
13902                         if ((ulp_type != CNIC_ULP_FCOE) ||
13903                             (!SHMEM2_HAS(bp, ncsi_oem_data_addr)) ||
13904                             (!(bp->flags &  BC_SUPPORTS_FCOE_FEATURES)))
13905                                 break;
13906
13907                         /* if reached here - should write fcoe capabilities */
13908                         scratch_offset = SHMEM2_RD(bp, ncsi_oem_data_addr);
13909                         if (!scratch_offset)
13910                                 break;
13911                         scratch_offset += offsetof(struct glob_ncsi_oem_data,
13912                                                    fcoe_features[path][port]);
13913                         host_addr = (u32 *) &(ctl->data.register_data.
13914                                               fcoe_features);
13915                         for (i = 0; i < sizeof(struct fcoe_capabilities);
13916                              i += 4)
13917                                 REG_WR(bp, scratch_offset + i,
13918                                        *(host_addr + i/4));
13919                 }
13920                 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
13921                 break;
13922         }
13923
13924         case DRV_CTL_ULP_UNREGISTER_CMD: {
13925                 int ulp_type = ctl->data.ulp_type;
13926
13927                 if (CHIP_IS_E3(bp)) {
13928                         int idx = BP_FW_MB_IDX(bp);
13929                         u32 cap;
13930
13931                         cap = SHMEM2_RD(bp, drv_capabilities_flag[idx]);
13932                         if (ulp_type == CNIC_ULP_ISCSI)
13933                                 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_ISCSI;
13934                         else if (ulp_type == CNIC_ULP_FCOE)
13935                                 cap &= ~DRV_FLAGS_CAPABILITIES_LOADED_FCOE;
13936                         SHMEM2_WR(bp, drv_capabilities_flag[idx], cap);
13937                 }
13938                 bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
13939                 break;
13940         }
13941
13942         default:
13943                 BNX2X_ERR("unknown command %x\n", ctl->cmd);
13944                 rc = -EINVAL;
13945         }
13946
13947         return rc;
13948 }
13949
13950 void bnx2x_setup_cnic_irq_info(struct bnx2x *bp)
13951 {
13952         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13953
13954         if (bp->flags & USING_MSIX_FLAG) {
13955                 cp->drv_state |= CNIC_DRV_STATE_USING_MSIX;
13956                 cp->irq_arr[0].irq_flags |= CNIC_IRQ_FL_MSIX;
13957                 cp->irq_arr[0].vector = bp->msix_table[1].vector;
13958         } else {
13959                 cp->drv_state &= ~CNIC_DRV_STATE_USING_MSIX;
13960                 cp->irq_arr[0].irq_flags &= ~CNIC_IRQ_FL_MSIX;
13961         }
13962         if (!CHIP_IS_E1x(bp))
13963                 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e2_sb;
13964         else
13965                 cp->irq_arr[0].status_blk = (void *)bp->cnic_sb.e1x_sb;
13966
13967         cp->irq_arr[0].status_blk_num =  bnx2x_cnic_fw_sb_id(bp);
13968         cp->irq_arr[0].status_blk_num2 = bnx2x_cnic_igu_sb_id(bp);
13969         cp->irq_arr[1].status_blk = bp->def_status_blk;
13970         cp->irq_arr[1].status_blk_num = DEF_SB_ID;
13971         cp->irq_arr[1].status_blk_num2 = DEF_SB_IGU_ID;
13972
13973         cp->num_irq = 2;
13974 }
13975
13976 void bnx2x_setup_cnic_info(struct bnx2x *bp)
13977 {
13978         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13979
13980         cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
13981                              bnx2x_cid_ilt_lines(bp);
13982         cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
13983         cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
13984         cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
13985
13986         DP(NETIF_MSG_IFUP, "BNX2X_1st_NON_L2_ETH_CID(bp) %x, cp->starting_cid %x, cp->fcoe_init_cid %x, cp->iscsi_l2_cid %x\n",
13987            BNX2X_1st_NON_L2_ETH_CID(bp), cp->starting_cid, cp->fcoe_init_cid,
13988            cp->iscsi_l2_cid);
13989
13990         if (NO_ISCSI_OOO(bp))
13991                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
13992 }
13993
13994 static int bnx2x_register_cnic(struct net_device *dev, struct cnic_ops *ops,
13995                                void *data)
13996 {
13997         struct bnx2x *bp = netdev_priv(dev);
13998         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
13999         int rc;
14000
14001         DP(NETIF_MSG_IFUP, "Register_cnic called\n");
14002
14003         if (ops == NULL) {
14004                 BNX2X_ERR("NULL ops received\n");
14005                 return -EINVAL;
14006         }
14007
14008         if (!CNIC_SUPPORT(bp)) {
14009                 BNX2X_ERR("Can't register CNIC when not supported\n");
14010                 return -EOPNOTSUPP;
14011         }
14012
14013         if (!CNIC_LOADED(bp)) {
14014                 rc = bnx2x_load_cnic(bp);
14015                 if (rc) {
14016                         BNX2X_ERR("CNIC-related load failed\n");
14017                         return rc;
14018                 }
14019         }
14020
14021         bp->cnic_enabled = true;
14022
14023         bp->cnic_kwq = kzalloc(PAGE_SIZE, GFP_KERNEL);
14024         if (!bp->cnic_kwq)
14025                 return -ENOMEM;
14026
14027         bp->cnic_kwq_cons = bp->cnic_kwq;
14028         bp->cnic_kwq_prod = bp->cnic_kwq;
14029         bp->cnic_kwq_last = bp->cnic_kwq + MAX_SP_DESC_CNT;
14030
14031         bp->cnic_spq_pending = 0;
14032         bp->cnic_kwq_pending = 0;
14033
14034         bp->cnic_data = data;
14035
14036         cp->num_irq = 0;
14037         cp->drv_state |= CNIC_DRV_STATE_REGD;
14038         cp->iro_arr = bp->iro_arr;
14039
14040         bnx2x_setup_cnic_irq_info(bp);
14041
14042         rcu_assign_pointer(bp->cnic_ops, ops);
14043
14044         /* Schedule driver to read CNIC driver versions */
14045         bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
14046
14047         return 0;
14048 }
14049
14050 static int bnx2x_unregister_cnic(struct net_device *dev)
14051 {
14052         struct bnx2x *bp = netdev_priv(dev);
14053         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14054
14055         mutex_lock(&bp->cnic_mutex);
14056         cp->drv_state = 0;
14057         RCU_INIT_POINTER(bp->cnic_ops, NULL);
14058         mutex_unlock(&bp->cnic_mutex);
14059         synchronize_rcu();
14060         bp->cnic_enabled = false;
14061         kfree(bp->cnic_kwq);
14062         bp->cnic_kwq = NULL;
14063
14064         return 0;
14065 }
14066
14067 static struct cnic_eth_dev *bnx2x_cnic_probe(struct net_device *dev)
14068 {
14069         struct bnx2x *bp = netdev_priv(dev);
14070         struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
14071
14072         /* If both iSCSI and FCoE are disabled - return NULL in
14073          * order to indicate CNIC that it should not try to work
14074          * with this device.
14075          */
14076         if (NO_ISCSI(bp) && NO_FCOE(bp))
14077                 return NULL;
14078
14079         cp->drv_owner = THIS_MODULE;
14080         cp->chip_id = CHIP_ID(bp);
14081         cp->pdev = bp->pdev;
14082         cp->io_base = bp->regview;
14083         cp->io_base2 = bp->doorbells;
14084         cp->max_kwqe_pending = 8;
14085         cp->ctx_blk_size = CDU_ILT_PAGE_SZ;
14086         cp->ctx_tbl_offset = FUNC_ILT_BASE(BP_FUNC(bp)) +
14087                              bnx2x_cid_ilt_lines(bp);
14088         cp->ctx_tbl_len = CNIC_ILT_LINES;
14089         cp->starting_cid = bnx2x_cid_ilt_lines(bp) * ILT_PAGE_CIDS;
14090         cp->drv_submit_kwqes_16 = bnx2x_cnic_sp_queue;
14091         cp->drv_ctl = bnx2x_drv_ctl;
14092         cp->drv_register_cnic = bnx2x_register_cnic;
14093         cp->drv_unregister_cnic = bnx2x_unregister_cnic;
14094         cp->fcoe_init_cid = BNX2X_FCOE_ETH_CID(bp);
14095         cp->iscsi_l2_client_id =
14096                 bnx2x_cnic_eth_cl_id(bp, BNX2X_ISCSI_ETH_CL_ID_IDX);
14097         cp->iscsi_l2_cid = BNX2X_ISCSI_ETH_CID(bp);
14098
14099         if (NO_ISCSI_OOO(bp))
14100                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI_OOO;
14101
14102         if (NO_ISCSI(bp))
14103                 cp->drv_state |= CNIC_DRV_STATE_NO_ISCSI;
14104
14105         if (NO_FCOE(bp))
14106                 cp->drv_state |= CNIC_DRV_STATE_NO_FCOE;
14107
14108         BNX2X_DEV_INFO(
14109                 "page_size %d, tbl_offset %d, tbl_lines %d, starting cid %d\n",
14110            cp->ctx_blk_size,
14111            cp->ctx_tbl_offset,
14112            cp->ctx_tbl_len,
14113            cp->starting_cid);
14114         return cp;
14115 }
14116
14117 static u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp)
14118 {
14119         struct bnx2x *bp = fp->bp;
14120         u32 offset = BAR_USTRORM_INTMEM;
14121
14122         if (IS_VF(bp))
14123                 return bnx2x_vf_ustorm_prods_offset(bp, fp);
14124         else if (!CHIP_IS_E1x(bp))
14125                 offset += USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id);
14126         else
14127                 offset += USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id);
14128
14129         return offset;
14130 }
14131
14132 /* called only on E1H or E2.
14133  * When pretending to be PF, the pretend value is the function number 0...7
14134  * When pretending to be VF, the pretend val is the PF-num:VF-valid:ABS-VFID
14135  * combination
14136  */
14137 int bnx2x_pretend_func(struct bnx2x *bp, u16 pretend_func_val)
14138 {
14139         u32 pretend_reg;
14140
14141         if (CHIP_IS_E1H(bp) && pretend_func_val >= E1H_FUNC_MAX)
14142                 return -1;
14143
14144         /* get my own pretend register */
14145         pretend_reg = bnx2x_get_pretend_reg(bp);
14146         REG_WR(bp, pretend_reg, pretend_func_val);
14147         REG_RD(bp, pretend_reg);
14148         return 0;
14149 }