10e17cf6485e51ee136f1dee054ba06d4aed8728
[pandora-kernel.git] / drivers / net / e1000e / es2lan.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2008 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 /*
30  * 80003ES2LAN Gigabit Ethernet Controller (Copper)
31  * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
32  */
33
34 #include <linux/netdevice.h>
35 #include <linux/ethtool.h>
36 #include <linux/delay.h>
37 #include <linux/pci.h>
38
39 #include "e1000.h"
40
41 #define E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL       0x00
42 #define E1000_KMRNCTRLSTA_OFFSET_INB_CTRL        0x02
43 #define E1000_KMRNCTRLSTA_OFFSET_HD_CTRL         0x10
44
45 #define E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS    0x0008
46 #define E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS    0x0800
47 #define E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING   0x0010
48
49 #define E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT 0x0004
50 #define E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT   0x0000
51
52 #define E1000_TCTL_EXT_GCEX_MASK 0x000FFC00 /* Gigabit Carry Extend Padding */
53 #define DEFAULT_TCTL_EXT_GCEX_80003ES2LAN        0x00010000
54
55 #define DEFAULT_TIPG_IPGT_1000_80003ES2LAN       0x8
56 #define DEFAULT_TIPG_IPGT_10_100_80003ES2LAN     0x9
57
58 /* GG82563 PHY Specific Status Register (Page 0, Register 16 */
59 #define GG82563_PSCR_POLARITY_REVERSAL_DISABLE   0x0002 /* 1=Reversal Disab. */
60 #define GG82563_PSCR_CROSSOVER_MODE_MASK         0x0060
61 #define GG82563_PSCR_CROSSOVER_MODE_MDI          0x0000 /* 00=Manual MDI */
62 #define GG82563_PSCR_CROSSOVER_MODE_MDIX         0x0020 /* 01=Manual MDIX */
63 #define GG82563_PSCR_CROSSOVER_MODE_AUTO         0x0060 /* 11=Auto crossover */
64
65 /* PHY Specific Control Register 2 (Page 0, Register 26) */
66 #define GG82563_PSCR2_REVERSE_AUTO_NEG           0x2000
67                                                 /* 1=Reverse Auto-Negotiation */
68
69 /* MAC Specific Control Register (Page 2, Register 21) */
70 /* Tx clock speed for Link Down and 1000BASE-T for the following speeds */
71 #define GG82563_MSCR_TX_CLK_MASK                 0x0007
72 #define GG82563_MSCR_TX_CLK_10MBPS_2_5           0x0004
73 #define GG82563_MSCR_TX_CLK_100MBPS_25           0x0005
74 #define GG82563_MSCR_TX_CLK_1000MBPS_25          0x0007
75
76 #define GG82563_MSCR_ASSERT_CRS_ON_TX            0x0010 /* 1=Assert */
77
78 /* DSP Distance Register (Page 5, Register 26) */
79 #define GG82563_DSPD_CABLE_LENGTH                0x0007 /* 0 = <50M
80                                                            1 = 50-80M
81                                                            2 = 80-110M
82                                                            3 = 110-140M
83                                                            4 = >140M */
84
85 /* Kumeran Mode Control Register (Page 193, Register 16) */
86 #define GG82563_KMCR_PASS_FALSE_CARRIER          0x0800
87
88 /* Power Management Control Register (Page 193, Register 20) */
89 #define GG82563_PMCR_ENABLE_ELECTRICAL_IDLE      0x0001
90                                            /* 1=Enable SERDES Electrical Idle */
91
92 /* In-Band Control Register (Page 194, Register 18) */
93 #define GG82563_ICR_DIS_PADDING                  0x0010 /* Disable Padding */
94
95 /*
96  * A table for the GG82563 cable length where the range is defined
97  * with a lower bound at "index" and the upper bound at
98  * "index + 5".
99  */
100 static const u16 e1000_gg82563_cable_length_table[] =
101          { 0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF };
102
103 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
104 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
105 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
106 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
107 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
108 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
109 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
110
111 /**
112  *  e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
113  *  @hw: pointer to the HW structure
114  *
115  *  This is a function pointer entry point called by the api module.
116  **/
117 static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
118 {
119         struct e1000_phy_info *phy = &hw->phy;
120         s32 ret_val;
121
122         if (hw->phy.media_type != e1000_media_type_copper) {
123                 phy->type       = e1000_phy_none;
124                 return 0;
125         }
126
127         phy->addr               = 1;
128         phy->autoneg_mask       = AUTONEG_ADVERTISE_SPEED_DEFAULT;
129         phy->reset_delay_us      = 100;
130         phy->type               = e1000_phy_gg82563;
131
132         /* This can only be done after all function pointers are setup. */
133         ret_val = e1000e_get_phy_id(hw);
134
135         /* Verify phy id */
136         if (phy->id != GG82563_E_PHY_ID)
137                 return -E1000_ERR_PHY;
138
139         return ret_val;
140 }
141
142 /**
143  *  e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
144  *  @hw: pointer to the HW structure
145  *
146  *  This is a function pointer entry point called by the api module.
147  **/
148 static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
149 {
150         struct e1000_nvm_info *nvm = &hw->nvm;
151         u32 eecd = er32(EECD);
152         u16 size;
153
154         nvm->opcode_bits        = 8;
155         nvm->delay_usec  = 1;
156         switch (nvm->override) {
157         case e1000_nvm_override_spi_large:
158                 nvm->page_size    = 32;
159                 nvm->address_bits = 16;
160                 break;
161         case e1000_nvm_override_spi_small:
162                 nvm->page_size    = 8;
163                 nvm->address_bits = 8;
164                 break;
165         default:
166                 nvm->page_size    = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
167                 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
168                 break;
169         }
170
171         nvm->type = e1000_nvm_eeprom_spi;
172
173         size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
174                           E1000_EECD_SIZE_EX_SHIFT);
175
176         /*
177          * Added to a constant, "size" becomes the left-shift value
178          * for setting word_size.
179          */
180         size += NVM_WORD_SIZE_BASE_SHIFT;
181
182         /* EEPROM access above 16k is unsupported */
183         if (size > 14)
184                 size = 14;
185         nvm->word_size  = 1 << size;
186
187         return 0;
188 }
189
190 /**
191  *  e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
192  *  @hw: pointer to the HW structure
193  *
194  *  This is a function pointer entry point called by the api module.
195  **/
196 static s32 e1000_init_mac_params_80003es2lan(struct e1000_adapter *adapter)
197 {
198         struct e1000_hw *hw = &adapter->hw;
199         struct e1000_mac_info *mac = &hw->mac;
200         struct e1000_mac_operations *func = &mac->ops;
201
202         /* Set media type */
203         switch (adapter->pdev->device) {
204         case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
205                 hw->phy.media_type = e1000_media_type_internal_serdes;
206                 break;
207         default:
208                 hw->phy.media_type = e1000_media_type_copper;
209                 break;
210         }
211
212         /* Set mta register count */
213         mac->mta_reg_count = 128;
214         /* Set rar entry count */
215         mac->rar_entry_count = E1000_RAR_ENTRIES;
216         /* Set if manageability features are enabled. */
217         mac->arc_subsystem_valid = (er32(FWSM) & E1000_FWSM_MODE_MASK) ? 1 : 0;
218
219         /* check for link */
220         switch (hw->phy.media_type) {
221         case e1000_media_type_copper:
222                 func->setup_physical_interface = e1000_setup_copper_link_80003es2lan;
223                 func->check_for_link = e1000e_check_for_copper_link;
224                 break;
225         case e1000_media_type_fiber:
226                 func->setup_physical_interface = e1000e_setup_fiber_serdes_link;
227                 func->check_for_link = e1000e_check_for_fiber_link;
228                 break;
229         case e1000_media_type_internal_serdes:
230                 func->setup_physical_interface = e1000e_setup_fiber_serdes_link;
231                 func->check_for_link = e1000e_check_for_serdes_link;
232                 break;
233         default:
234                 return -E1000_ERR_CONFIG;
235                 break;
236         }
237
238         return 0;
239 }
240
241 static s32 e1000_get_invariants_80003es2lan(struct e1000_adapter *adapter)
242 {
243         struct e1000_hw *hw = &adapter->hw;
244         s32 rc;
245
246         rc = e1000_init_mac_params_80003es2lan(adapter);
247         if (rc)
248                 return rc;
249
250         rc = e1000_init_nvm_params_80003es2lan(hw);
251         if (rc)
252                 return rc;
253
254         rc = e1000_init_phy_params_80003es2lan(hw);
255         if (rc)
256                 return rc;
257
258         return 0;
259 }
260
261 /**
262  *  e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
263  *  @hw: pointer to the HW structure
264  *
265  *  A wrapper to acquire access rights to the correct PHY.  This is a
266  *  function pointer entry point called by the api module.
267  **/
268 static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
269 {
270         u16 mask;
271
272         mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
273
274         return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
275 }
276
277 /**
278  *  e1000_release_phy_80003es2lan - Release rights to access PHY
279  *  @hw: pointer to the HW structure
280  *
281  *  A wrapper to release access rights to the correct PHY.  This is a
282  *  function pointer entry point called by the api module.
283  **/
284 static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
285 {
286         u16 mask;
287
288         mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
289         e1000_release_swfw_sync_80003es2lan(hw, mask);
290 }
291
292 /**
293  *  e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
294  *  @hw: pointer to the HW structure
295  *
296  *  Acquire the semaphore to access the EEPROM.  This is a function
297  *  pointer entry point called by the api module.
298  **/
299 static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
300 {
301         s32 ret_val;
302
303         ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
304         if (ret_val)
305                 return ret_val;
306
307         ret_val = e1000e_acquire_nvm(hw);
308
309         if (ret_val)
310                 e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
311
312         return ret_val;
313 }
314
315 /**
316  *  e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
317  *  @hw: pointer to the HW structure
318  *
319  *  Release the semaphore used to access the EEPROM.  This is a
320  *  function pointer entry point called by the api module.
321  **/
322 static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
323 {
324         e1000e_release_nvm(hw);
325         e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
326 }
327
328 /**
329  *  e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
330  *  @hw: pointer to the HW structure
331  *  @mask: specifies which semaphore to acquire
332  *
333  *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
334  *  will also specify which port we're acquiring the lock for.
335  **/
336 static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
337 {
338         u32 swfw_sync;
339         u32 swmask = mask;
340         u32 fwmask = mask << 16;
341         s32 i = 0;
342         s32 timeout = 200;
343
344         while (i < timeout) {
345                 if (e1000e_get_hw_semaphore(hw))
346                         return -E1000_ERR_SWFW_SYNC;
347
348                 swfw_sync = er32(SW_FW_SYNC);
349                 if (!(swfw_sync & (fwmask | swmask)))
350                         break;
351
352                 /*
353                  * Firmware currently using resource (fwmask)
354                  * or other software thread using resource (swmask)
355                  */
356                 e1000e_put_hw_semaphore(hw);
357                 mdelay(5);
358                 i++;
359         }
360
361         if (i == timeout) {
362                 hw_dbg(hw,
363                        "Driver can't access resource, SW_FW_SYNC timeout.\n");
364                 return -E1000_ERR_SWFW_SYNC;
365         }
366
367         swfw_sync |= swmask;
368         ew32(SW_FW_SYNC, swfw_sync);
369
370         e1000e_put_hw_semaphore(hw);
371
372         return 0;
373 }
374
375 /**
376  *  e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
377  *  @hw: pointer to the HW structure
378  *  @mask: specifies which semaphore to acquire
379  *
380  *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
381  *  will also specify which port we're releasing the lock for.
382  **/
383 static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
384 {
385         u32 swfw_sync;
386
387         while (e1000e_get_hw_semaphore(hw) != 0);
388         /* Empty */
389
390         swfw_sync = er32(SW_FW_SYNC);
391         swfw_sync &= ~mask;
392         ew32(SW_FW_SYNC, swfw_sync);
393
394         e1000e_put_hw_semaphore(hw);
395 }
396
397 /**
398  *  e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
399  *  @hw: pointer to the HW structure
400  *  @offset: offset of the register to read
401  *  @data: pointer to the data returned from the operation
402  *
403  *  Read the GG82563 PHY register.  This is a function pointer entry
404  *  point called by the api module.
405  **/
406 static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
407                                                   u32 offset, u16 *data)
408 {
409         s32 ret_val;
410         u32 page_select;
411         u16 temp;
412
413         /* Select Configuration Page */
414         if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG)
415                 page_select = GG82563_PHY_PAGE_SELECT;
416         else
417                 /*
418                  * Use Alternative Page Select register to access
419                  * registers 30 and 31
420                  */
421                 page_select = GG82563_PHY_PAGE_SELECT_ALT;
422
423         temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
424         ret_val = e1000e_write_phy_reg_m88(hw, page_select, temp);
425         if (ret_val)
426                 return ret_val;
427
428         /*
429          * The "ready" bit in the MDIC register may be incorrectly set
430          * before the device has completed the "Page Select" MDI
431          * transaction.  So we wait 200us after each MDI command...
432          */
433         udelay(200);
434
435         /* ...and verify the command was successful. */
436         ret_val = e1000e_read_phy_reg_m88(hw, page_select, &temp);
437
438         if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
439                 ret_val = -E1000_ERR_PHY;
440                 return ret_val;
441         }
442
443         udelay(200);
444
445         ret_val = e1000e_read_phy_reg_m88(hw,
446                                          MAX_PHY_REG_ADDRESS & offset,
447                                          data);
448
449         udelay(200);
450
451         return ret_val;
452 }
453
454 /**
455  *  e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
456  *  @hw: pointer to the HW structure
457  *  @offset: offset of the register to read
458  *  @data: value to write to the register
459  *
460  *  Write to the GG82563 PHY register.  This is a function pointer entry
461  *  point called by the api module.
462  **/
463 static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
464                                                    u32 offset, u16 data)
465 {
466         s32 ret_val;
467         u32 page_select;
468         u16 temp;
469
470         /* Select Configuration Page */
471         if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG)
472                 page_select = GG82563_PHY_PAGE_SELECT;
473         else
474                 /*
475                  * Use Alternative Page Select register to access
476                  * registers 30 and 31
477                  */
478                 page_select = GG82563_PHY_PAGE_SELECT_ALT;
479
480         temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
481         ret_val = e1000e_write_phy_reg_m88(hw, page_select, temp);
482         if (ret_val)
483                 return ret_val;
484
485
486         /*
487          * The "ready" bit in the MDIC register may be incorrectly set
488          * before the device has completed the "Page Select" MDI
489          * transaction.  So we wait 200us after each MDI command...
490          */
491         udelay(200);
492
493         /* ...and verify the command was successful. */
494         ret_val = e1000e_read_phy_reg_m88(hw, page_select, &temp);
495
496         if (((u16)offset >> GG82563_PAGE_SHIFT) != temp)
497                 return -E1000_ERR_PHY;
498
499         udelay(200);
500
501         ret_val = e1000e_write_phy_reg_m88(hw,
502                                           MAX_PHY_REG_ADDRESS & offset,
503                                           data);
504
505         udelay(200);
506
507         return ret_val;
508 }
509
510 /**
511  *  e1000_write_nvm_80003es2lan - Write to ESB2 NVM
512  *  @hw: pointer to the HW structure
513  *  @offset: offset of the register to read
514  *  @words: number of words to write
515  *  @data: buffer of data to write to the NVM
516  *
517  *  Write "words" of data to the ESB2 NVM.  This is a function
518  *  pointer entry point called by the api module.
519  **/
520 static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
521                                        u16 words, u16 *data)
522 {
523         return e1000e_write_nvm_spi(hw, offset, words, data);
524 }
525
526 /**
527  *  e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
528  *  @hw: pointer to the HW structure
529  *
530  *  Wait a specific amount of time for manageability processes to complete.
531  *  This is a function pointer entry point called by the phy module.
532  **/
533 static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
534 {
535         s32 timeout = PHY_CFG_TIMEOUT;
536         u32 mask = E1000_NVM_CFG_DONE_PORT_0;
537
538         if (hw->bus.func == 1)
539                 mask = E1000_NVM_CFG_DONE_PORT_1;
540
541         while (timeout) {
542                 if (er32(EEMNGCTL) & mask)
543                         break;
544                 msleep(1);
545                 timeout--;
546         }
547         if (!timeout) {
548                 hw_dbg(hw, "MNG configuration cycle has not completed.\n");
549                 return -E1000_ERR_RESET;
550         }
551
552         return 0;
553 }
554
555 /**
556  *  e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
557  *  @hw: pointer to the HW structure
558  *
559  *  Force the speed and duplex settings onto the PHY.  This is a
560  *  function pointer entry point called by the phy module.
561  **/
562 static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
563 {
564         s32 ret_val;
565         u16 phy_data;
566         bool link;
567
568         /*
569          * Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
570          * forced whenever speed and duplex are forced.
571          */
572         ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
573         if (ret_val)
574                 return ret_val;
575
576         phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
577         ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
578         if (ret_val)
579                 return ret_val;
580
581         hw_dbg(hw, "GG82563 PSCR: %X\n", phy_data);
582
583         ret_val = e1e_rphy(hw, PHY_CONTROL, &phy_data);
584         if (ret_val)
585                 return ret_val;
586
587         e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
588
589         /* Reset the phy to commit changes. */
590         phy_data |= MII_CR_RESET;
591
592         ret_val = e1e_wphy(hw, PHY_CONTROL, phy_data);
593         if (ret_val)
594                 return ret_val;
595
596         udelay(1);
597
598         if (hw->phy.autoneg_wait_to_complete) {
599                 hw_dbg(hw, "Waiting for forced speed/duplex link "
600                          "on GG82563 phy.\n");
601
602                 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
603                                                      100000, &link);
604                 if (ret_val)
605                         return ret_val;
606
607                 if (!link) {
608                         /*
609                          * We didn't get link.
610                          * Reset the DSP and cross our fingers.
611                          */
612                         ret_val = e1000e_phy_reset_dsp(hw);
613                         if (ret_val)
614                                 return ret_val;
615                 }
616
617                 /* Try once more */
618                 ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
619                                                      100000, &link);
620                 if (ret_val)
621                         return ret_val;
622         }
623
624         ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
625         if (ret_val)
626                 return ret_val;
627
628         /*
629          * Resetting the phy means we need to verify the TX_CLK corresponds
630          * to the link speed.  10Mbps -> 2.5MHz, else 25MHz.
631          */
632         phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
633         if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
634                 phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
635         else
636                 phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
637
638         /*
639          * In addition, we must re-enable CRS on Tx for both half and full
640          * duplex.
641          */
642         phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
643         ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
644
645         return ret_val;
646 }
647
648 /**
649  *  e1000_get_cable_length_80003es2lan - Set approximate cable length
650  *  @hw: pointer to the HW structure
651  *
652  *  Find the approximate cable length as measured by the GG82563 PHY.
653  *  This is a function pointer entry point called by the phy module.
654  **/
655 static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
656 {
657         struct e1000_phy_info *phy = &hw->phy;
658         s32 ret_val;
659         u16 phy_data;
660         u16 index;
661
662         ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
663         if (ret_val)
664                 return ret_val;
665
666         index = phy_data & GG82563_DSPD_CABLE_LENGTH;
667         phy->min_cable_length = e1000_gg82563_cable_length_table[index];
668         phy->max_cable_length = e1000_gg82563_cable_length_table[index+5];
669
670         phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
671
672         return 0;
673 }
674
675 /**
676  *  e1000_get_link_up_info_80003es2lan - Report speed and duplex
677  *  @hw: pointer to the HW structure
678  *  @speed: pointer to speed buffer
679  *  @duplex: pointer to duplex buffer
680  *
681  *  Retrieve the current speed and duplex configuration.
682  *  This is a function pointer entry point called by the api module.
683  **/
684 static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
685                                               u16 *duplex)
686 {
687         s32 ret_val;
688
689         if (hw->phy.media_type == e1000_media_type_copper) {
690                 ret_val = e1000e_get_speed_and_duplex_copper(hw,
691                                                                     speed,
692                                                                     duplex);
693                 if (ret_val)
694                         return ret_val;
695                 if (*speed == SPEED_1000)
696                         ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
697                 else
698                         ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw,
699                                                               *duplex);
700         } else {
701                 ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
702                                                                   speed,
703                                                                   duplex);
704         }
705
706         return ret_val;
707 }
708
709 /**
710  *  e1000_reset_hw_80003es2lan - Reset the ESB2 controller
711  *  @hw: pointer to the HW structure
712  *
713  *  Perform a global reset to the ESB2 controller.
714  *  This is a function pointer entry point called by the api module.
715  **/
716 static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
717 {
718         u32 ctrl;
719         u32 icr;
720         s32 ret_val;
721
722         /*
723          * Prevent the PCI-E bus from sticking if there is no TLP connection
724          * on the last TLP read/write transaction when MAC is reset.
725          */
726         ret_val = e1000e_disable_pcie_master(hw);
727         if (ret_val)
728                 hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
729
730         hw_dbg(hw, "Masking off all interrupts\n");
731         ew32(IMC, 0xffffffff);
732
733         ew32(RCTL, 0);
734         ew32(TCTL, E1000_TCTL_PSP);
735         e1e_flush();
736
737         msleep(10);
738
739         ctrl = er32(CTRL);
740
741         hw_dbg(hw, "Issuing a global reset to MAC\n");
742         ew32(CTRL, ctrl | E1000_CTRL_RST);
743
744         ret_val = e1000e_get_auto_rd_done(hw);
745         if (ret_val)
746                 /* We don't want to continue accessing MAC registers. */
747                 return ret_val;
748
749         /* Clear any pending interrupt events. */
750         ew32(IMC, 0xffffffff);
751         icr = er32(ICR);
752
753         return 0;
754 }
755
756 /**
757  *  e1000_init_hw_80003es2lan - Initialize the ESB2 controller
758  *  @hw: pointer to the HW structure
759  *
760  *  Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
761  *  This is a function pointer entry point called by the api module.
762  **/
763 static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
764 {
765         struct e1000_mac_info *mac = &hw->mac;
766         u32 reg_data;
767         s32 ret_val;
768         u16 i;
769
770         e1000_initialize_hw_bits_80003es2lan(hw);
771
772         /* Initialize identification LED */
773         ret_val = e1000e_id_led_init(hw);
774         if (ret_val) {
775                 hw_dbg(hw, "Error initializing identification LED\n");
776                 return ret_val;
777         }
778
779         /* Disabling VLAN filtering */
780         hw_dbg(hw, "Initializing the IEEE VLAN\n");
781         e1000e_clear_vfta(hw);
782
783         /* Setup the receive address. */
784         e1000e_init_rx_addrs(hw, mac->rar_entry_count);
785
786         /* Zero out the Multicast HASH table */
787         hw_dbg(hw, "Zeroing the MTA\n");
788         for (i = 0; i < mac->mta_reg_count; i++)
789                 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
790
791         /* Setup link and flow control */
792         ret_val = e1000e_setup_link(hw);
793
794         /* Set the transmit descriptor write-back policy */
795         reg_data = er32(TXDCTL(0));
796         reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
797                    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
798         ew32(TXDCTL(0), reg_data);
799
800         /* ...for both queues. */
801         reg_data = er32(TXDCTL(1));
802         reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
803                    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC;
804         ew32(TXDCTL(1), reg_data);
805
806         /* Enable retransmit on late collisions */
807         reg_data = er32(TCTL);
808         reg_data |= E1000_TCTL_RTLC;
809         ew32(TCTL, reg_data);
810
811         /* Configure Gigabit Carry Extend Padding */
812         reg_data = er32(TCTL_EXT);
813         reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
814         reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
815         ew32(TCTL_EXT, reg_data);
816
817         /* Configure Transmit Inter-Packet Gap */
818         reg_data = er32(TIPG);
819         reg_data &= ~E1000_TIPG_IPGT_MASK;
820         reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
821         ew32(TIPG, reg_data);
822
823         reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
824         reg_data &= ~0x00100000;
825         E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
826
827         /*
828          * Clear all of the statistics registers (clear on read).  It is
829          * important that we do this after we have tried to establish link
830          * because the symbol error count will increment wildly if there
831          * is no link.
832          */
833         e1000_clear_hw_cntrs_80003es2lan(hw);
834
835         return ret_val;
836 }
837
838 /**
839  *  e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
840  *  @hw: pointer to the HW structure
841  *
842  *  Initializes required hardware-dependent bits needed for normal operation.
843  **/
844 static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
845 {
846         u32 reg;
847
848         /* Transmit Descriptor Control 0 */
849         reg = er32(TXDCTL(0));
850         reg |= (1 << 22);
851         ew32(TXDCTL(0), reg);
852
853         /* Transmit Descriptor Control 1 */
854         reg = er32(TXDCTL(1));
855         reg |= (1 << 22);
856         ew32(TXDCTL(1), reg);
857
858         /* Transmit Arbitration Control 0 */
859         reg = er32(TARC(0));
860         reg &= ~(0xF << 27); /* 30:27 */
861         if (hw->phy.media_type != e1000_media_type_copper)
862                 reg &= ~(1 << 20);
863         ew32(TARC(0), reg);
864
865         /* Transmit Arbitration Control 1 */
866         reg = er32(TARC(1));
867         if (er32(TCTL) & E1000_TCTL_MULR)
868                 reg &= ~(1 << 28);
869         else
870                 reg |= (1 << 28);
871         ew32(TARC(1), reg);
872 }
873
874 /**
875  *  e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
876  *  @hw: pointer to the HW structure
877  *
878  *  Setup some GG82563 PHY registers for obtaining link
879  **/
880 static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
881 {
882         struct e1000_phy_info *phy = &hw->phy;
883         s32 ret_val;
884         u32 ctrl_ext;
885         u16 data;
886
887         ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL,
888                                      &data);
889         if (ret_val)
890                 return ret_val;
891
892         data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
893         /* Use 25MHz for both link down and 1000Base-T for Tx clock. */
894         data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
895
896         ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL,
897                                       data);
898         if (ret_val)
899                 return ret_val;
900
901         /*
902          * Options:
903          *   MDI/MDI-X = 0 (default)
904          *   0 - Auto for all speeds
905          *   1 - MDI mode
906          *   2 - MDI-X mode
907          *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
908          */
909         ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
910         if (ret_val)
911                 return ret_val;
912
913         data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
914
915         switch (phy->mdix) {
916         case 1:
917                 data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
918                 break;
919         case 2:
920                 data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
921                 break;
922         case 0:
923         default:
924                 data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
925                 break;
926         }
927
928         /*
929          * Options:
930          *   disable_polarity_correction = 0 (default)
931          *       Automatic Correction for Reversed Cable Polarity
932          *   0 - Disabled
933          *   1 - Enabled
934          */
935         data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
936         if (phy->disable_polarity_correction)
937                 data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
938
939         ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
940         if (ret_val)
941                 return ret_val;
942
943         /* SW Reset the PHY so all changes take effect */
944         ret_val = e1000e_commit_phy(hw);
945         if (ret_val) {
946                 hw_dbg(hw, "Error Resetting the PHY\n");
947                 return ret_val;
948         }
949
950         /* Bypass Rx and Tx FIFO's */
951         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL,
952                                         E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
953                                         E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
954         if (ret_val)
955                 return ret_val;
956
957         ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
958         if (ret_val)
959                 return ret_val;
960
961         data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
962         ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
963         if (ret_val)
964                 return ret_val;
965
966         ctrl_ext = er32(CTRL_EXT);
967         ctrl_ext &= ~(E1000_CTRL_EXT_LINK_MODE_MASK);
968         ew32(CTRL_EXT, ctrl_ext);
969
970         ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
971         if (ret_val)
972                 return ret_val;
973
974         /*
975          * Do not init these registers when the HW is in IAMT mode, since the
976          * firmware will have already initialized them.  We only initialize
977          * them if the HW is not in IAMT mode.
978          */
979         if (!e1000e_check_mng_mode(hw)) {
980                 /* Enable Electrical Idle on the PHY */
981                 data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
982                 ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
983                 if (ret_val)
984                         return ret_val;
985
986                 ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
987                 if (ret_val)
988                         return ret_val;
989
990                 data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
991                 ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
992                 if (ret_val)
993                         return ret_val;
994         }
995
996         /*
997          * Workaround: Disable padding in Kumeran interface in the MAC
998          * and in the PHY to avoid CRC errors.
999          */
1000         ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
1001         if (ret_val)
1002                 return ret_val;
1003
1004         data |= GG82563_ICR_DIS_PADDING;
1005         ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
1006         if (ret_val)
1007                 return ret_val;
1008
1009         return 0;
1010 }
1011
1012 /**
1013  *  e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
1014  *  @hw: pointer to the HW structure
1015  *
1016  *  Essentially a wrapper for setting up all things "copper" related.
1017  *  This is a function pointer entry point called by the mac module.
1018  **/
1019 static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
1020 {
1021         u32 ctrl;
1022         s32 ret_val;
1023         u16 reg_data;
1024
1025         ctrl = er32(CTRL);
1026         ctrl |= E1000_CTRL_SLU;
1027         ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1028         ew32(CTRL, ctrl);
1029
1030         /*
1031          * Set the mac to wait the maximum time between each
1032          * iteration and increase the max iterations when
1033          * polling the phy; this fixes erroneous timeouts at 10Mbps.
1034          */
1035         ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF);
1036         if (ret_val)
1037                 return ret_val;
1038         ret_val = e1000e_read_kmrn_reg(hw, GG82563_REG(0x34, 9), &reg_data);
1039         if (ret_val)
1040                 return ret_val;
1041         reg_data |= 0x3F;
1042         ret_val = e1000e_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data);
1043         if (ret_val)
1044                 return ret_val;
1045         ret_val = e1000e_read_kmrn_reg(hw,
1046                                       E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1047                                       &reg_data);
1048         if (ret_val)
1049                 return ret_val;
1050         reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
1051         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1052                                         reg_data);
1053         if (ret_val)
1054                 return ret_val;
1055
1056         ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
1057         if (ret_val)
1058                 return ret_val;
1059
1060         ret_val = e1000e_setup_copper_link(hw);
1061
1062         return 0;
1063 }
1064
1065 /**
1066  *  e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
1067  *  @hw: pointer to the HW structure
1068  *  @duplex: current duplex setting
1069  *
1070  *  Configure the KMRN interface by applying last minute quirks for
1071  *  10/100 operation.
1072  **/
1073 static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
1074 {
1075         s32 ret_val;
1076         u32 tipg;
1077         u16 reg_data;
1078
1079         reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
1080         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1081                                         reg_data);
1082         if (ret_val)
1083                 return ret_val;
1084
1085         /* Configure Transmit Inter-Packet Gap */
1086         tipg = er32(TIPG);
1087         tipg &= ~E1000_TIPG_IPGT_MASK;
1088         tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
1089         ew32(TIPG, tipg);
1090
1091         ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1092         if (ret_val)
1093                 return ret_val;
1094
1095         if (duplex == HALF_DUPLEX)
1096                 reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
1097         else
1098                 reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1099
1100         ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1101
1102         return 0;
1103 }
1104
1105 /**
1106  *  e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
1107  *  @hw: pointer to the HW structure
1108  *
1109  *  Configure the KMRN interface by applying last minute quirks for
1110  *  gigabit operation.
1111  **/
1112 static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
1113 {
1114         s32 ret_val;
1115         u16 reg_data;
1116         u32 tipg;
1117
1118         reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
1119         ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1120                                         reg_data);
1121         if (ret_val)
1122                 return ret_val;
1123
1124         /* Configure Transmit Inter-Packet Gap */
1125         tipg = er32(TIPG);
1126         tipg &= ~E1000_TIPG_IPGT_MASK;
1127         tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
1128         ew32(TIPG, tipg);
1129
1130         ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1131         if (ret_val)
1132                 return ret_val;
1133
1134         reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1135         ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1136
1137         return ret_val;
1138 }
1139
1140 /**
1141  *  e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
1142  *  @hw: pointer to the HW structure
1143  *
1144  *  Clears the hardware counters by reading the counter registers.
1145  **/
1146 static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
1147 {
1148         u32 temp;
1149
1150         e1000e_clear_hw_cntrs_base(hw);
1151
1152         temp = er32(PRC64);
1153         temp = er32(PRC127);
1154         temp = er32(PRC255);
1155         temp = er32(PRC511);
1156         temp = er32(PRC1023);
1157         temp = er32(PRC1522);
1158         temp = er32(PTC64);
1159         temp = er32(PTC127);
1160         temp = er32(PTC255);
1161         temp = er32(PTC511);
1162         temp = er32(PTC1023);
1163         temp = er32(PTC1522);
1164
1165         temp = er32(ALGNERRC);
1166         temp = er32(RXERRC);
1167         temp = er32(TNCRS);
1168         temp = er32(CEXTERR);
1169         temp = er32(TSCTC);
1170         temp = er32(TSCTFC);
1171
1172         temp = er32(MGTPRC);
1173         temp = er32(MGTPDC);
1174         temp = er32(MGTPTC);
1175
1176         temp = er32(IAC);
1177         temp = er32(ICRXOC);
1178
1179         temp = er32(ICRXPTC);
1180         temp = er32(ICRXATC);
1181         temp = er32(ICTXPTC);
1182         temp = er32(ICTXATC);
1183         temp = er32(ICTXQEC);
1184         temp = er32(ICTXQMTC);
1185         temp = er32(ICRXDMTC);
1186 }
1187
1188 static struct e1000_mac_operations es2_mac_ops = {
1189         .mng_mode_enab          = E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT,
1190         /* check_for_link dependent on media type */
1191         .cleanup_led            = e1000e_cleanup_led_generic,
1192         .clear_hw_cntrs         = e1000_clear_hw_cntrs_80003es2lan,
1193         .get_bus_info           = e1000e_get_bus_info_pcie,
1194         .get_link_up_info       = e1000_get_link_up_info_80003es2lan,
1195         .led_on                 = e1000e_led_on_generic,
1196         .led_off                = e1000e_led_off_generic,
1197         .update_mc_addr_list    = e1000e_update_mc_addr_list_generic,
1198         .reset_hw               = e1000_reset_hw_80003es2lan,
1199         .init_hw                = e1000_init_hw_80003es2lan,
1200         .setup_link             = e1000e_setup_link,
1201         /* setup_physical_interface dependent on media type */
1202 };
1203
1204 static struct e1000_phy_operations es2_phy_ops = {
1205         .acquire_phy            = e1000_acquire_phy_80003es2lan,
1206         .check_reset_block      = e1000e_check_reset_block_generic,
1207         .commit_phy             = e1000e_phy_sw_reset,
1208         .force_speed_duplex     = e1000_phy_force_speed_duplex_80003es2lan,
1209         .get_cfg_done           = e1000_get_cfg_done_80003es2lan,
1210         .get_cable_length       = e1000_get_cable_length_80003es2lan,
1211         .get_phy_info           = e1000e_get_phy_info_m88,
1212         .read_phy_reg           = e1000_read_phy_reg_gg82563_80003es2lan,
1213         .release_phy            = e1000_release_phy_80003es2lan,
1214         .reset_phy              = e1000e_phy_hw_reset_generic,
1215         .set_d0_lplu_state      = NULL,
1216         .set_d3_lplu_state      = e1000e_set_d3_lplu_state,
1217         .write_phy_reg          = e1000_write_phy_reg_gg82563_80003es2lan,
1218 };
1219
1220 static struct e1000_nvm_operations es2_nvm_ops = {
1221         .acquire_nvm            = e1000_acquire_nvm_80003es2lan,
1222         .read_nvm               = e1000e_read_nvm_eerd,
1223         .release_nvm            = e1000_release_nvm_80003es2lan,
1224         .update_nvm             = e1000e_update_nvm_checksum_generic,
1225         .valid_led_default      = e1000e_valid_led_default,
1226         .validate_nvm           = e1000e_validate_nvm_checksum_generic,
1227         .write_nvm              = e1000_write_nvm_80003es2lan,
1228 };
1229
1230 struct e1000_info e1000_es2_info = {
1231         .mac                    = e1000_80003es2lan,
1232         .flags                  = FLAG_HAS_HW_VLAN_FILTER
1233                                   | FLAG_HAS_JUMBO_FRAMES
1234                                   | FLAG_HAS_STATS_PTC_PRC
1235                                   | FLAG_HAS_WOL
1236                                   | FLAG_APME_IN_CTRL3
1237                                   | FLAG_RX_CSUM_ENABLED
1238                                   | FLAG_HAS_CTRLEXT_ON_LOAD
1239                                   | FLAG_HAS_STATS_ICR_ICT
1240                                   | FLAG_RX_NEEDS_RESTART /* errata */
1241                                   | FLAG_TARC_SET_BIT_ZERO /* errata */
1242                                   | FLAG_APME_CHECK_PORT_B
1243                                   | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
1244                                   | FLAG_TIPG_MEDIUM_FOR_80003ESLAN,
1245         .pba                    = 38,
1246         .get_invariants         = e1000_get_invariants_80003es2lan,
1247         .mac_ops                = &es2_mac_ops,
1248         .phy_ops                = &es2_phy_ops,
1249         .nvm_ops                = &es2_nvm_ops,
1250 };
1251