5098dd7df7cd0f93aaa62152183d93356bdfc21f
[pandora-kernel.git] / drivers / net / e1000 / e1000_main.c
1 /*******************************************************************************
2
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2006 Intel Corporation.
5
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27 *******************************************************************************/
28
29 #include "e1000.h"
30
31 char e1000_driver_name[] = "e1000";
32 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
33 #ifndef CONFIG_E1000_NAPI
34 #define DRIVERNAPI
35 #else
36 #define DRIVERNAPI "-NAPI"
37 #endif
38 #define DRV_VERSION "7.2.7-k2"DRIVERNAPI
39 char e1000_driver_version[] = DRV_VERSION;
40 static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
41
42 /* e1000_pci_tbl - PCI Device ID Table
43  *
44  * Last entry must be all 0s
45  *
46  * Macro expands to...
47  *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
48  */
49 static struct pci_device_id e1000_pci_tbl[] = {
50         INTEL_E1000_ETHERNET_DEVICE(0x1000),
51         INTEL_E1000_ETHERNET_DEVICE(0x1001),
52         INTEL_E1000_ETHERNET_DEVICE(0x1004),
53         INTEL_E1000_ETHERNET_DEVICE(0x1008),
54         INTEL_E1000_ETHERNET_DEVICE(0x1009),
55         INTEL_E1000_ETHERNET_DEVICE(0x100C),
56         INTEL_E1000_ETHERNET_DEVICE(0x100D),
57         INTEL_E1000_ETHERNET_DEVICE(0x100E),
58         INTEL_E1000_ETHERNET_DEVICE(0x100F),
59         INTEL_E1000_ETHERNET_DEVICE(0x1010),
60         INTEL_E1000_ETHERNET_DEVICE(0x1011),
61         INTEL_E1000_ETHERNET_DEVICE(0x1012),
62         INTEL_E1000_ETHERNET_DEVICE(0x1013),
63         INTEL_E1000_ETHERNET_DEVICE(0x1014),
64         INTEL_E1000_ETHERNET_DEVICE(0x1015),
65         INTEL_E1000_ETHERNET_DEVICE(0x1016),
66         INTEL_E1000_ETHERNET_DEVICE(0x1017),
67         INTEL_E1000_ETHERNET_DEVICE(0x1018),
68         INTEL_E1000_ETHERNET_DEVICE(0x1019),
69         INTEL_E1000_ETHERNET_DEVICE(0x101A),
70         INTEL_E1000_ETHERNET_DEVICE(0x101D),
71         INTEL_E1000_ETHERNET_DEVICE(0x101E),
72         INTEL_E1000_ETHERNET_DEVICE(0x1026),
73         INTEL_E1000_ETHERNET_DEVICE(0x1027),
74         INTEL_E1000_ETHERNET_DEVICE(0x1028),
75         INTEL_E1000_ETHERNET_DEVICE(0x1049),
76         INTEL_E1000_ETHERNET_DEVICE(0x104A),
77         INTEL_E1000_ETHERNET_DEVICE(0x104B),
78         INTEL_E1000_ETHERNET_DEVICE(0x104C),
79         INTEL_E1000_ETHERNET_DEVICE(0x104D),
80         INTEL_E1000_ETHERNET_DEVICE(0x105E),
81         INTEL_E1000_ETHERNET_DEVICE(0x105F),
82         INTEL_E1000_ETHERNET_DEVICE(0x1060),
83         INTEL_E1000_ETHERNET_DEVICE(0x1075),
84         INTEL_E1000_ETHERNET_DEVICE(0x1076),
85         INTEL_E1000_ETHERNET_DEVICE(0x1077),
86         INTEL_E1000_ETHERNET_DEVICE(0x1078),
87         INTEL_E1000_ETHERNET_DEVICE(0x1079),
88         INTEL_E1000_ETHERNET_DEVICE(0x107A),
89         INTEL_E1000_ETHERNET_DEVICE(0x107B),
90         INTEL_E1000_ETHERNET_DEVICE(0x107C),
91         INTEL_E1000_ETHERNET_DEVICE(0x107D),
92         INTEL_E1000_ETHERNET_DEVICE(0x107E),
93         INTEL_E1000_ETHERNET_DEVICE(0x107F),
94         INTEL_E1000_ETHERNET_DEVICE(0x108A),
95         INTEL_E1000_ETHERNET_DEVICE(0x108B),
96         INTEL_E1000_ETHERNET_DEVICE(0x108C),
97         INTEL_E1000_ETHERNET_DEVICE(0x1096),
98         INTEL_E1000_ETHERNET_DEVICE(0x1098),
99         INTEL_E1000_ETHERNET_DEVICE(0x1099),
100         INTEL_E1000_ETHERNET_DEVICE(0x109A),
101         INTEL_E1000_ETHERNET_DEVICE(0x10A4),
102         INTEL_E1000_ETHERNET_DEVICE(0x10B5),
103         INTEL_E1000_ETHERNET_DEVICE(0x10B9),
104         INTEL_E1000_ETHERNET_DEVICE(0x10BA),
105         INTEL_E1000_ETHERNET_DEVICE(0x10BB),
106         /* required last entry */
107         {0,}
108 };
109
110 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
111
112 int e1000_up(struct e1000_adapter *adapter);
113 void e1000_down(struct e1000_adapter *adapter);
114 void e1000_reinit_locked(struct e1000_adapter *adapter);
115 void e1000_reset(struct e1000_adapter *adapter);
116 int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
117 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
118 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
119 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
120 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
121 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
122                              struct e1000_tx_ring *txdr);
123 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
124                              struct e1000_rx_ring *rxdr);
125 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
126                              struct e1000_tx_ring *tx_ring);
127 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
128                              struct e1000_rx_ring *rx_ring);
129 void e1000_update_stats(struct e1000_adapter *adapter);
130
131 static int e1000_init_module(void);
132 static void e1000_exit_module(void);
133 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
134 static void __devexit e1000_remove(struct pci_dev *pdev);
135 static int e1000_alloc_queues(struct e1000_adapter *adapter);
136 static int e1000_sw_init(struct e1000_adapter *adapter);
137 static int e1000_open(struct net_device *netdev);
138 static int e1000_close(struct net_device *netdev);
139 static void e1000_configure_tx(struct e1000_adapter *adapter);
140 static void e1000_configure_rx(struct e1000_adapter *adapter);
141 static void e1000_setup_rctl(struct e1000_adapter *adapter);
142 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
143 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
144 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
145                                 struct e1000_tx_ring *tx_ring);
146 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
147                                 struct e1000_rx_ring *rx_ring);
148 static void e1000_set_multi(struct net_device *netdev);
149 static void e1000_update_phy_info(unsigned long data);
150 static void e1000_watchdog(unsigned long data);
151 static void e1000_82547_tx_fifo_stall(unsigned long data);
152 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
153 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
154 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
155 static int e1000_set_mac(struct net_device *netdev, void *p);
156 static irqreturn_t e1000_intr(int irq, void *data, struct pt_regs *regs);
157 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
158                                     struct e1000_tx_ring *tx_ring);
159 #ifdef CONFIG_E1000_NAPI
160 static int e1000_clean(struct net_device *poll_dev, int *budget);
161 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
162                                     struct e1000_rx_ring *rx_ring,
163                                     int *work_done, int work_to_do);
164 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
165                                        struct e1000_rx_ring *rx_ring,
166                                        int *work_done, int work_to_do);
167 #else
168 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
169                                     struct e1000_rx_ring *rx_ring);
170 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
171                                        struct e1000_rx_ring *rx_ring);
172 #endif
173 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
174                                    struct e1000_rx_ring *rx_ring,
175                                    int cleaned_count);
176 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
177                                       struct e1000_rx_ring *rx_ring,
178                                       int cleaned_count);
179 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
180 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
181                            int cmd);
182 void e1000_set_ethtool_ops(struct net_device *netdev);
183 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
184 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
185 static void e1000_tx_timeout(struct net_device *dev);
186 static void e1000_reset_task(struct net_device *dev);
187 static void e1000_smartspeed(struct e1000_adapter *adapter);
188 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
189                                        struct sk_buff *skb);
190
191 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
192 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
193 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
194 static void e1000_restore_vlan(struct e1000_adapter *adapter);
195
196 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
197 #ifdef CONFIG_PM
198 static int e1000_resume(struct pci_dev *pdev);
199 #endif
200 static void e1000_shutdown(struct pci_dev *pdev);
201
202 #ifdef CONFIG_NET_POLL_CONTROLLER
203 /* for netdump / net console */
204 static void e1000_netpoll (struct net_device *netdev);
205 #endif
206
207 extern void e1000_check_options(struct e1000_adapter *adapter);
208
209 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
210                      pci_channel_state_t state);
211 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
212 static void e1000_io_resume(struct pci_dev *pdev);
213
214 static struct pci_error_handlers e1000_err_handler = {
215         .error_detected = e1000_io_error_detected,
216         .slot_reset = e1000_io_slot_reset,
217         .resume = e1000_io_resume,
218 };
219
220 static struct pci_driver e1000_driver = {
221         .name     = e1000_driver_name,
222         .id_table = e1000_pci_tbl,
223         .probe    = e1000_probe,
224         .remove   = __devexit_p(e1000_remove),
225 #ifdef CONFIG_PM
226         /* Power Managment Hooks */
227         .suspend  = e1000_suspend,
228         .resume   = e1000_resume,
229 #endif
230         .shutdown = e1000_shutdown,
231         .err_handler = &e1000_err_handler
232 };
233
234 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
235 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
236 MODULE_LICENSE("GPL");
237 MODULE_VERSION(DRV_VERSION);
238
239 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
240 module_param(debug, int, 0);
241 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
242
243 /**
244  * e1000_init_module - Driver Registration Routine
245  *
246  * e1000_init_module is the first routine called when the driver is
247  * loaded. All it does is register with the PCI subsystem.
248  **/
249
250 static int __init
251 e1000_init_module(void)
252 {
253         int ret;
254         printk(KERN_INFO "%s - version %s\n",
255                e1000_driver_string, e1000_driver_version);
256
257         printk(KERN_INFO "%s\n", e1000_copyright);
258
259         ret = pci_register_driver(&e1000_driver);
260
261         return ret;
262 }
263
264 module_init(e1000_init_module);
265
266 /**
267  * e1000_exit_module - Driver Exit Cleanup Routine
268  *
269  * e1000_exit_module is called just before the driver is removed
270  * from memory.
271  **/
272
273 static void __exit
274 e1000_exit_module(void)
275 {
276         pci_unregister_driver(&e1000_driver);
277 }
278
279 module_exit(e1000_exit_module);
280
281 static int e1000_request_irq(struct e1000_adapter *adapter)
282 {
283         struct net_device *netdev = adapter->netdev;
284         int flags, err = 0;
285
286         flags = IRQF_SHARED;
287 #ifdef CONFIG_PCI_MSI
288         if (adapter->hw.mac_type > e1000_82547_rev_2) {
289                 adapter->have_msi = TRUE;
290                 if ((err = pci_enable_msi(adapter->pdev))) {
291                         DPRINTK(PROBE, ERR,
292                          "Unable to allocate MSI interrupt Error: %d\n", err);
293                         adapter->have_msi = FALSE;
294                 }
295         }
296         if (adapter->have_msi)
297                 flags &= ~IRQF_SHARED;
298 #endif
299         if ((err = request_irq(adapter->pdev->irq, &e1000_intr, flags,
300                                netdev->name, netdev)))
301                 DPRINTK(PROBE, ERR,
302                         "Unable to allocate interrupt Error: %d\n", err);
303
304         return err;
305 }
306
307 static void e1000_free_irq(struct e1000_adapter *adapter)
308 {
309         struct net_device *netdev = adapter->netdev;
310
311         free_irq(adapter->pdev->irq, netdev);
312
313 #ifdef CONFIG_PCI_MSI
314         if (adapter->have_msi)
315                 pci_disable_msi(adapter->pdev);
316 #endif
317 }
318
319 /**
320  * e1000_irq_disable - Mask off interrupt generation on the NIC
321  * @adapter: board private structure
322  **/
323
324 static void
325 e1000_irq_disable(struct e1000_adapter *adapter)
326 {
327         atomic_inc(&adapter->irq_sem);
328         E1000_WRITE_REG(&adapter->hw, IMC, ~0);
329         E1000_WRITE_FLUSH(&adapter->hw);
330         synchronize_irq(adapter->pdev->irq);
331 }
332
333 /**
334  * e1000_irq_enable - Enable default interrupt generation settings
335  * @adapter: board private structure
336  **/
337
338 static void
339 e1000_irq_enable(struct e1000_adapter *adapter)
340 {
341         if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
342                 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
343                 E1000_WRITE_FLUSH(&adapter->hw);
344         }
345 }
346
347 static void
348 e1000_update_mng_vlan(struct e1000_adapter *adapter)
349 {
350         struct net_device *netdev = adapter->netdev;
351         uint16_t vid = adapter->hw.mng_cookie.vlan_id;
352         uint16_t old_vid = adapter->mng_vlan_id;
353         if (adapter->vlgrp) {
354                 if (!adapter->vlgrp->vlan_devices[vid]) {
355                         if (adapter->hw.mng_cookie.status &
356                                 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
357                                 e1000_vlan_rx_add_vid(netdev, vid);
358                                 adapter->mng_vlan_id = vid;
359                         } else
360                                 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
361
362                         if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
363                                         (vid != old_vid) &&
364                                         !adapter->vlgrp->vlan_devices[old_vid])
365                                 e1000_vlan_rx_kill_vid(netdev, old_vid);
366                 } else
367                         adapter->mng_vlan_id = vid;
368         }
369 }
370
371 /**
372  * e1000_release_hw_control - release control of the h/w to f/w
373  * @adapter: address of board private structure
374  *
375  * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
376  * For ASF and Pass Through versions of f/w this means that the
377  * driver is no longer loaded. For AMT version (only with 82573) i
378  * of the f/w this means that the netowrk i/f is closed.
379  *
380  **/
381
382 static void
383 e1000_release_hw_control(struct e1000_adapter *adapter)
384 {
385         uint32_t ctrl_ext;
386         uint32_t swsm;
387         uint32_t extcnf;
388
389         /* Let firmware taken over control of h/w */
390         switch (adapter->hw.mac_type) {
391         case e1000_82571:
392         case e1000_82572:
393         case e1000_80003es2lan:
394                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
395                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
396                                 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
397                 break;
398         case e1000_82573:
399                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
400                 E1000_WRITE_REG(&adapter->hw, SWSM,
401                                 swsm & ~E1000_SWSM_DRV_LOAD);
402         case e1000_ich8lan:
403                 extcnf = E1000_READ_REG(&adapter->hw, CTRL_EXT);
404                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
405                                 extcnf & ~E1000_CTRL_EXT_DRV_LOAD);
406                 break;
407         default:
408                 break;
409         }
410 }
411
412 /**
413  * e1000_get_hw_control - get control of the h/w from f/w
414  * @adapter: address of board private structure
415  *
416  * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
417  * For ASF and Pass Through versions of f/w this means that
418  * the driver is loaded. For AMT version (only with 82573)
419  * of the f/w this means that the netowrk i/f is open.
420  *
421  **/
422
423 static void
424 e1000_get_hw_control(struct e1000_adapter *adapter)
425 {
426         uint32_t ctrl_ext;
427         uint32_t swsm;
428         uint32_t extcnf;
429         /* Let firmware know the driver has taken over */
430         switch (adapter->hw.mac_type) {
431         case e1000_82571:
432         case e1000_82572:
433         case e1000_80003es2lan:
434                 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
435                 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
436                                 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
437                 break;
438         case e1000_82573:
439                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
440                 E1000_WRITE_REG(&adapter->hw, SWSM,
441                                 swsm | E1000_SWSM_DRV_LOAD);
442                 break;
443         case e1000_ich8lan:
444                 extcnf = E1000_READ_REG(&adapter->hw, EXTCNF_CTRL);
445                 E1000_WRITE_REG(&adapter->hw, EXTCNF_CTRL,
446                                 extcnf | E1000_EXTCNF_CTRL_SWFLAG);
447                 break;
448         default:
449                 break;
450         }
451 }
452
453 int
454 e1000_up(struct e1000_adapter *adapter)
455 {
456         struct net_device *netdev = adapter->netdev;
457         int i;
458
459         /* hardware has been reset, we need to reload some things */
460
461         e1000_set_multi(netdev);
462
463         e1000_restore_vlan(adapter);
464
465         e1000_configure_tx(adapter);
466         e1000_setup_rctl(adapter);
467         e1000_configure_rx(adapter);
468         /* call E1000_DESC_UNUSED which always leaves
469          * at least 1 descriptor unused to make sure
470          * next_to_use != next_to_clean */
471         for (i = 0; i < adapter->num_rx_queues; i++) {
472                 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
473                 adapter->alloc_rx_buf(adapter, ring,
474                                       E1000_DESC_UNUSED(ring));
475         }
476
477         adapter->tx_queue_len = netdev->tx_queue_len;
478
479 #ifdef CONFIG_E1000_NAPI
480         netif_poll_enable(netdev);
481 #endif
482         e1000_irq_enable(adapter);
483
484         clear_bit(__E1000_DOWN, &adapter->flags);
485
486         mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
487         return 0;
488 }
489
490 /**
491  * e1000_power_up_phy - restore link in case the phy was powered down
492  * @adapter: address of board private structure
493  *
494  * The phy may be powered down to save power and turn off link when the
495  * driver is unloaded and wake on lan is not enabled (among others)
496  * *** this routine MUST be followed by a call to e1000_reset ***
497  *
498  **/
499
500 void e1000_power_up_phy(struct e1000_adapter *adapter)
501 {
502         uint16_t mii_reg = 0;
503
504         /* Just clear the power down bit to wake the phy back up */
505         if (adapter->hw.media_type == e1000_media_type_copper) {
506                 /* according to the manual, the phy will retain its
507                  * settings across a power-down/up cycle */
508                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
509                 mii_reg &= ~MII_CR_POWER_DOWN;
510                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
511         }
512 }
513
514 static void e1000_power_down_phy(struct e1000_adapter *adapter)
515 {
516         /* Power down the PHY so no link is implied when interface is down *
517          * The PHY cannot be powered down if any of the following is TRUE *
518          * (a) WoL is enabled
519          * (b) AMT is active
520          * (c) SoL/IDER session is active */
521         if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
522            adapter->hw.media_type == e1000_media_type_copper) {
523                 uint16_t mii_reg = 0;
524
525                 switch (adapter->hw.mac_type) {
526                 case e1000_82540:
527                 case e1000_82545:
528                 case e1000_82545_rev_3:
529                 case e1000_82546:
530                 case e1000_82546_rev_3:
531                 case e1000_82541:
532                 case e1000_82541_rev_2:
533                 case e1000_82547:
534                 case e1000_82547_rev_2:
535                         if (E1000_READ_REG(&adapter->hw, MANC) &
536                             E1000_MANC_SMBUS_EN)
537                                 goto out;
538                         break;
539                 case e1000_82571:
540                 case e1000_82572:
541                 case e1000_82573:
542                 case e1000_80003es2lan:
543                 case e1000_ich8lan:
544                         if (e1000_check_mng_mode(&adapter->hw) ||
545                             e1000_check_phy_reset_block(&adapter->hw))
546                                 goto out;
547                         break;
548                 default:
549                         goto out;
550                 }
551                 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
552                 mii_reg |= MII_CR_POWER_DOWN;
553                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
554                 mdelay(1);
555         }
556 out:
557         return;
558 }
559
560 void
561 e1000_down(struct e1000_adapter *adapter)
562 {
563         struct net_device *netdev = adapter->netdev;
564
565         /* signal that we're down so the interrupt handler does not
566          * reschedule our watchdog timer */
567         set_bit(__E1000_DOWN, &adapter->flags);
568
569         e1000_irq_disable(adapter);
570
571         del_timer_sync(&adapter->tx_fifo_stall_timer);
572         del_timer_sync(&adapter->watchdog_timer);
573         del_timer_sync(&adapter->phy_info_timer);
574
575 #ifdef CONFIG_E1000_NAPI
576         netif_poll_disable(netdev);
577 #endif
578         netdev->tx_queue_len = adapter->tx_queue_len;
579         adapter->link_speed = 0;
580         adapter->link_duplex = 0;
581         netif_carrier_off(netdev);
582         netif_stop_queue(netdev);
583
584         e1000_reset(adapter);
585         e1000_clean_all_tx_rings(adapter);
586         e1000_clean_all_rx_rings(adapter);
587 }
588
589 void
590 e1000_reinit_locked(struct e1000_adapter *adapter)
591 {
592         WARN_ON(in_interrupt());
593         while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
594                 msleep(1);
595         e1000_down(adapter);
596         e1000_up(adapter);
597         clear_bit(__E1000_RESETTING, &adapter->flags);
598 }
599
600 void
601 e1000_reset(struct e1000_adapter *adapter)
602 {
603         uint32_t pba, manc;
604 #ifdef DISABLE_MULR
605         uint32_t tctl;
606 #endif
607         uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
608
609         /* Repartition Pba for greater than 9k mtu
610          * To take effect CTRL.RST is required.
611          */
612
613         switch (adapter->hw.mac_type) {
614         case e1000_82547:
615         case e1000_82547_rev_2:
616                 pba = E1000_PBA_30K;
617                 break;
618         case e1000_82571:
619         case e1000_82572:
620         case e1000_80003es2lan:
621                 pba = E1000_PBA_38K;
622                 break;
623         case e1000_82573:
624                 pba = E1000_PBA_12K;
625                 break;
626         case e1000_ich8lan:
627                 pba = E1000_PBA_8K;
628                 break;
629         default:
630                 pba = E1000_PBA_48K;
631                 break;
632         }
633
634         if ((adapter->hw.mac_type != e1000_82573) &&
635            (adapter->netdev->mtu > E1000_RXBUFFER_8192))
636                 pba -= 8; /* allocate more FIFO for Tx */
637
638
639         if (adapter->hw.mac_type == e1000_82547) {
640                 adapter->tx_fifo_head = 0;
641                 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
642                 adapter->tx_fifo_size =
643                         (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
644                 atomic_set(&adapter->tx_fifo_stall, 0);
645         }
646
647         E1000_WRITE_REG(&adapter->hw, PBA, pba);
648
649         /* flow control settings */
650         /* Set the FC high water mark to 90% of the FIFO size.
651          * Required to clear last 3 LSB */
652         fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
653         /* We can't use 90% on small FIFOs because the remainder
654          * would be less than 1 full frame.  In this case, we size
655          * it to allow at least a full frame above the high water
656          *  mark. */
657         if (pba < E1000_PBA_16K)
658                 fc_high_water_mark = (pba * 1024) - 1600;
659
660         adapter->hw.fc_high_water = fc_high_water_mark;
661         adapter->hw.fc_low_water = fc_high_water_mark - 8;
662         if (adapter->hw.mac_type == e1000_80003es2lan)
663                 adapter->hw.fc_pause_time = 0xFFFF;
664         else
665                 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
666         adapter->hw.fc_send_xon = 1;
667         adapter->hw.fc = adapter->hw.original_fc;
668
669         /* Allow time for pending master requests to run */
670         e1000_reset_hw(&adapter->hw);
671         if (adapter->hw.mac_type >= e1000_82544)
672                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
673 #ifdef DISABLE_MULR
674         /* disable Multiple Reads in Transmit Control Register for debugging */
675         tctl = E1000_READ_REG(hw, TCTL);
676         E1000_WRITE_REG(hw, TCTL, tctl & ~E1000_TCTL_MULR);
677
678 #endif
679         if (e1000_init_hw(&adapter->hw))
680                 DPRINTK(PROBE, ERR, "Hardware Error\n");
681         e1000_update_mng_vlan(adapter);
682         /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
683         E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
684
685         e1000_reset_adaptive(&adapter->hw);
686         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
687
688         if (!adapter->smart_power_down &&
689             (adapter->hw.mac_type == e1000_82571 ||
690              adapter->hw.mac_type == e1000_82572)) {
691                 uint16_t phy_data = 0;
692                 /* speed up time to link by disabling smart power down, ignore
693                  * the return value of this function because there is nothing
694                  * different we would do if it failed */
695                 e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
696                                    &phy_data);
697                 phy_data &= ~IGP02E1000_PM_SPD;
698                 e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
699                                     phy_data);
700         }
701
702         if ((adapter->en_mng_pt) && (adapter->hw.mac_type < e1000_82571)) {
703                 manc = E1000_READ_REG(&adapter->hw, MANC);
704                 manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
705                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
706         }
707 }
708
709 /**
710  * e1000_probe - Device Initialization Routine
711  * @pdev: PCI device information struct
712  * @ent: entry in e1000_pci_tbl
713  *
714  * Returns 0 on success, negative on failure
715  *
716  * e1000_probe initializes an adapter identified by a pci_dev structure.
717  * The OS initialization, configuring of the adapter private structure,
718  * and a hardware reset occur.
719  **/
720
721 static int __devinit
722 e1000_probe(struct pci_dev *pdev,
723             const struct pci_device_id *ent)
724 {
725         struct net_device *netdev;
726         struct e1000_adapter *adapter;
727         unsigned long mmio_start, mmio_len;
728         unsigned long flash_start, flash_len;
729
730         static int cards_found = 0;
731         static int global_quad_port_a = 0; /* global ksp3 port a indication */
732         int i, err, pci_using_dac;
733         uint16_t eeprom_data = 0;
734         uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
735         if ((err = pci_enable_device(pdev)))
736                 return err;
737
738         if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
739             !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
740                 pci_using_dac = 1;
741         } else {
742                 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) &&
743                     (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
744                         E1000_ERR("No usable DMA configuration, aborting\n");
745                         goto err_dma;
746                 }
747                 pci_using_dac = 0;
748         }
749
750         if ((err = pci_request_regions(pdev, e1000_driver_name)))
751                 goto err_pci_reg;
752
753         pci_set_master(pdev);
754
755         err = -ENOMEM;
756         netdev = alloc_etherdev(sizeof(struct e1000_adapter));
757         if (!netdev)
758                 goto err_alloc_etherdev;
759
760         SET_MODULE_OWNER(netdev);
761         SET_NETDEV_DEV(netdev, &pdev->dev);
762
763         pci_set_drvdata(pdev, netdev);
764         adapter = netdev_priv(netdev);
765         adapter->netdev = netdev;
766         adapter->pdev = pdev;
767         adapter->hw.back = adapter;
768         adapter->msg_enable = (1 << debug) - 1;
769
770         mmio_start = pci_resource_start(pdev, BAR_0);
771         mmio_len = pci_resource_len(pdev, BAR_0);
772
773         err = -EIO;
774         adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
775         if (!adapter->hw.hw_addr)
776                 goto err_ioremap;
777
778         for (i = BAR_1; i <= BAR_5; i++) {
779                 if (pci_resource_len(pdev, i) == 0)
780                         continue;
781                 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
782                         adapter->hw.io_base = pci_resource_start(pdev, i);
783                         break;
784                 }
785         }
786
787         netdev->open = &e1000_open;
788         netdev->stop = &e1000_close;
789         netdev->hard_start_xmit = &e1000_xmit_frame;
790         netdev->get_stats = &e1000_get_stats;
791         netdev->set_multicast_list = &e1000_set_multi;
792         netdev->set_mac_address = &e1000_set_mac;
793         netdev->change_mtu = &e1000_change_mtu;
794         netdev->do_ioctl = &e1000_ioctl;
795         e1000_set_ethtool_ops(netdev);
796         netdev->tx_timeout = &e1000_tx_timeout;
797         netdev->watchdog_timeo = 5 * HZ;
798 #ifdef CONFIG_E1000_NAPI
799         netdev->poll = &e1000_clean;
800         netdev->weight = 64;
801 #endif
802         netdev->vlan_rx_register = e1000_vlan_rx_register;
803         netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
804         netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
805 #ifdef CONFIG_NET_POLL_CONTROLLER
806         netdev->poll_controller = e1000_netpoll;
807 #endif
808         strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
809
810         netdev->mem_start = mmio_start;
811         netdev->mem_end = mmio_start + mmio_len;
812         netdev->base_addr = adapter->hw.io_base;
813
814         adapter->bd_number = cards_found;
815
816         /* setup the private structure */
817
818         if ((err = e1000_sw_init(adapter)))
819                 goto err_sw_init;
820
821         err = -EIO;
822         /* Flash BAR mapping must happen after e1000_sw_init
823          * because it depends on mac_type */
824         if ((adapter->hw.mac_type == e1000_ich8lan) &&
825            (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
826                 flash_start = pci_resource_start(pdev, 1);
827                 flash_len = pci_resource_len(pdev, 1);
828                 adapter->hw.flash_address = ioremap(flash_start, flash_len);
829                 if (!adapter->hw.flash_address)
830                         goto err_flashmap;
831         }
832
833         if (e1000_check_phy_reset_block(&adapter->hw))
834                 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
835
836         if (adapter->hw.mac_type >= e1000_82543) {
837                 netdev->features = NETIF_F_SG |
838                                    NETIF_F_HW_CSUM |
839                                    NETIF_F_HW_VLAN_TX |
840                                    NETIF_F_HW_VLAN_RX |
841                                    NETIF_F_HW_VLAN_FILTER;
842                 if (adapter->hw.mac_type == e1000_ich8lan)
843                         netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
844         }
845
846 #ifdef NETIF_F_TSO
847         if ((adapter->hw.mac_type >= e1000_82544) &&
848            (adapter->hw.mac_type != e1000_82547))
849                 netdev->features |= NETIF_F_TSO;
850
851 #ifdef NETIF_F_TSO_IPV6
852         if (adapter->hw.mac_type > e1000_82547_rev_2)
853                 netdev->features |= NETIF_F_TSO_IPV6;
854 #endif
855 #endif
856         if (pci_using_dac)
857                 netdev->features |= NETIF_F_HIGHDMA;
858
859         netdev->features |= NETIF_F_LLTX;
860
861         adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
862
863         /* initialize eeprom parameters */
864
865         if (e1000_init_eeprom_params(&adapter->hw)) {
866                 E1000_ERR("EEPROM initialization failed\n");
867                 goto err_eeprom;
868         }
869
870         /* before reading the EEPROM, reset the controller to
871          * put the device in a known good starting state */
872
873         e1000_reset_hw(&adapter->hw);
874
875         /* make sure the EEPROM is good */
876
877         if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
878                 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
879                 goto err_eeprom;
880         }
881
882         /* copy the MAC address out of the EEPROM */
883
884         if (e1000_read_mac_addr(&adapter->hw))
885                 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
886         memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
887         memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
888
889         if (!is_valid_ether_addr(netdev->perm_addr)) {
890                 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
891                 goto err_eeprom;
892         }
893
894         e1000_get_bus_info(&adapter->hw);
895
896         init_timer(&adapter->tx_fifo_stall_timer);
897         adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
898         adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
899
900         init_timer(&adapter->watchdog_timer);
901         adapter->watchdog_timer.function = &e1000_watchdog;
902         adapter->watchdog_timer.data = (unsigned long) adapter;
903
904         init_timer(&adapter->phy_info_timer);
905         adapter->phy_info_timer.function = &e1000_update_phy_info;
906         adapter->phy_info_timer.data = (unsigned long) adapter;
907
908         INIT_WORK(&adapter->reset_task,
909                 (void (*)(void *))e1000_reset_task, netdev);
910
911         e1000_check_options(adapter);
912
913         /* Initial Wake on LAN setting
914          * If APM wake is enabled in the EEPROM,
915          * enable the ACPI Magic Packet filter
916          */
917
918         switch (adapter->hw.mac_type) {
919         case e1000_82542_rev2_0:
920         case e1000_82542_rev2_1:
921         case e1000_82543:
922                 break;
923         case e1000_82544:
924                 e1000_read_eeprom(&adapter->hw,
925                         EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
926                 eeprom_apme_mask = E1000_EEPROM_82544_APM;
927                 break;
928         case e1000_ich8lan:
929                 e1000_read_eeprom(&adapter->hw,
930                         EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
931                 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
932                 break;
933         case e1000_82546:
934         case e1000_82546_rev_3:
935         case e1000_82571:
936         case e1000_80003es2lan:
937                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
938                         e1000_read_eeprom(&adapter->hw,
939                                 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
940                         break;
941                 }
942                 /* Fall Through */
943         default:
944                 e1000_read_eeprom(&adapter->hw,
945                         EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
946                 break;
947         }
948         if (eeprom_data & eeprom_apme_mask)
949                 adapter->eeprom_wol |= E1000_WUFC_MAG;
950
951         /* now that we have the eeprom settings, apply the special cases
952          * where the eeprom may be wrong or the board simply won't support
953          * wake on lan on a particular port */
954         switch (pdev->device) {
955         case E1000_DEV_ID_82546GB_PCIE:
956                 adapter->eeprom_wol = 0;
957                 break;
958         case E1000_DEV_ID_82546EB_FIBER:
959         case E1000_DEV_ID_82546GB_FIBER:
960         case E1000_DEV_ID_82571EB_FIBER:
961                 /* Wake events only supported on port A for dual fiber
962                  * regardless of eeprom setting */
963                 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
964                         adapter->eeprom_wol = 0;
965                 break;
966         case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
967         case E1000_DEV_ID_82571EB_QUAD_COPPER:
968                 /* if quad port adapter, disable WoL on all but port A */
969                 if (global_quad_port_a != 0)
970                         adapter->eeprom_wol = 0;
971                 else
972                         adapter->quad_port_a = 1;
973                 /* Reset for multiple quad port adapters */
974                 if (++global_quad_port_a == 4)
975                         global_quad_port_a = 0;
976                 break;
977         }
978
979         /* initialize the wol settings based on the eeprom settings */
980         adapter->wol = adapter->eeprom_wol;
981
982         /* print bus type/speed/width info */
983         {
984         struct e1000_hw *hw = &adapter->hw;
985         DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
986                 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
987                  (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
988                 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
989                  (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
990                  (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
991                  (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
992                  (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
993                 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
994                  (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
995                  (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
996                  "32-bit"));
997         }
998
999         for (i = 0; i < 6; i++)
1000                 printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
1001
1002         /* reset the hardware with the new settings */
1003         e1000_reset(adapter);
1004
1005         /* If the controller is 82573 and f/w is AMT, do not set
1006          * DRV_LOAD until the interface is up.  For all other cases,
1007          * let the f/w know that the h/w is now under the control
1008          * of the driver. */
1009         if (adapter->hw.mac_type != e1000_82573 ||
1010             !e1000_check_mng_mode(&adapter->hw))
1011                 e1000_get_hw_control(adapter);
1012
1013         strcpy(netdev->name, "eth%d");
1014         if ((err = register_netdev(netdev)))
1015                 goto err_register;
1016
1017         /* tell the stack to leave us alone until e1000_open() is called */
1018         netif_carrier_off(netdev);
1019         netif_stop_queue(netdev);
1020
1021         DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1022
1023         cards_found++;
1024         return 0;
1025
1026 err_register:
1027         e1000_release_hw_control(adapter);
1028 err_eeprom:
1029         if (!e1000_check_phy_reset_block(&adapter->hw))
1030                 e1000_phy_hw_reset(&adapter->hw);
1031
1032         if (adapter->hw.flash_address)
1033                 iounmap(adapter->hw.flash_address);
1034 err_flashmap:
1035 #ifdef CONFIG_E1000_NAPI
1036         for (i = 0; i < adapter->num_rx_queues; i++)
1037                 dev_put(&adapter->polling_netdev[i]);
1038 #endif
1039
1040         kfree(adapter->tx_ring);
1041         kfree(adapter->rx_ring);
1042 #ifdef CONFIG_E1000_NAPI
1043         kfree(adapter->polling_netdev);
1044 #endif
1045 err_sw_init:
1046         iounmap(adapter->hw.hw_addr);
1047 err_ioremap:
1048         free_netdev(netdev);
1049 err_alloc_etherdev:
1050         pci_release_regions(pdev);
1051 err_pci_reg:
1052 err_dma:
1053         pci_disable_device(pdev);
1054         return err;
1055 }
1056
1057 /**
1058  * e1000_remove - Device Removal Routine
1059  * @pdev: PCI device information struct
1060  *
1061  * e1000_remove is called by the PCI subsystem to alert the driver
1062  * that it should release a PCI device.  The could be caused by a
1063  * Hot-Plug event, or because the driver is going to be removed from
1064  * memory.
1065  **/
1066
1067 static void __devexit
1068 e1000_remove(struct pci_dev *pdev)
1069 {
1070         struct net_device *netdev = pci_get_drvdata(pdev);
1071         struct e1000_adapter *adapter = netdev_priv(netdev);
1072         uint32_t manc;
1073 #ifdef CONFIG_E1000_NAPI
1074         int i;
1075 #endif
1076
1077         flush_scheduled_work();
1078
1079         if (adapter->hw.mac_type < e1000_82571 &&
1080            adapter->hw.media_type == e1000_media_type_copper) {
1081                 manc = E1000_READ_REG(&adapter->hw, MANC);
1082                 if (manc & E1000_MANC_SMBUS_EN) {
1083                         manc |= E1000_MANC_ARP_EN;
1084                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
1085                 }
1086         }
1087
1088         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
1089          * would have already happened in close and is redundant. */
1090         e1000_release_hw_control(adapter);
1091
1092         unregister_netdev(netdev);
1093 #ifdef CONFIG_E1000_NAPI
1094         for (i = 0; i < adapter->num_rx_queues; i++)
1095                 dev_put(&adapter->polling_netdev[i]);
1096 #endif
1097
1098         if (!e1000_check_phy_reset_block(&adapter->hw))
1099                 e1000_phy_hw_reset(&adapter->hw);
1100
1101         kfree(adapter->tx_ring);
1102         kfree(adapter->rx_ring);
1103 #ifdef CONFIG_E1000_NAPI
1104         kfree(adapter->polling_netdev);
1105 #endif
1106
1107         iounmap(adapter->hw.hw_addr);
1108         if (adapter->hw.flash_address)
1109                 iounmap(adapter->hw.flash_address);
1110         pci_release_regions(pdev);
1111
1112         free_netdev(netdev);
1113
1114         pci_disable_device(pdev);
1115 }
1116
1117 /**
1118  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1119  * @adapter: board private structure to initialize
1120  *
1121  * e1000_sw_init initializes the Adapter private data structure.
1122  * Fields are initialized based on PCI device information and
1123  * OS network device settings (MTU size).
1124  **/
1125
1126 static int __devinit
1127 e1000_sw_init(struct e1000_adapter *adapter)
1128 {
1129         struct e1000_hw *hw = &adapter->hw;
1130         struct net_device *netdev = adapter->netdev;
1131         struct pci_dev *pdev = adapter->pdev;
1132 #ifdef CONFIG_E1000_NAPI
1133         int i;
1134 #endif
1135
1136         /* PCI config space info */
1137
1138         hw->vendor_id = pdev->vendor;
1139         hw->device_id = pdev->device;
1140         hw->subsystem_vendor_id = pdev->subsystem_vendor;
1141         hw->subsystem_id = pdev->subsystem_device;
1142
1143         pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
1144
1145         pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1146
1147         adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1148         adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
1149         hw->max_frame_size = netdev->mtu +
1150                              ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1151         hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1152
1153         /* identify the MAC */
1154
1155         if (e1000_set_mac_type(hw)) {
1156                 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1157                 return -EIO;
1158         }
1159
1160         switch (hw->mac_type) {
1161         default:
1162                 break;
1163         case e1000_82541:
1164         case e1000_82547:
1165         case e1000_82541_rev_2:
1166         case e1000_82547_rev_2:
1167                 hw->phy_init_script = 1;
1168                 break;
1169         }
1170
1171         e1000_set_media_type(hw);
1172
1173         hw->wait_autoneg_complete = FALSE;
1174         hw->tbi_compatibility_en = TRUE;
1175         hw->adaptive_ifs = TRUE;
1176
1177         /* Copper options */
1178
1179         if (hw->media_type == e1000_media_type_copper) {
1180                 hw->mdix = AUTO_ALL_MODES;
1181                 hw->disable_polarity_correction = FALSE;
1182                 hw->master_slave = E1000_MASTER_SLAVE;
1183         }
1184
1185         adapter->num_tx_queues = 1;
1186         adapter->num_rx_queues = 1;
1187
1188         if (e1000_alloc_queues(adapter)) {
1189                 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1190                 return -ENOMEM;
1191         }
1192
1193 #ifdef CONFIG_E1000_NAPI
1194         for (i = 0; i < adapter->num_rx_queues; i++) {
1195                 adapter->polling_netdev[i].priv = adapter;
1196                 adapter->polling_netdev[i].poll = &e1000_clean;
1197                 adapter->polling_netdev[i].weight = 64;
1198                 dev_hold(&adapter->polling_netdev[i]);
1199                 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1200         }
1201         spin_lock_init(&adapter->tx_queue_lock);
1202 #endif
1203
1204         atomic_set(&adapter->irq_sem, 1);
1205         spin_lock_init(&adapter->stats_lock);
1206
1207         set_bit(__E1000_DOWN, &adapter->flags);
1208
1209         return 0;
1210 }
1211
1212 /**
1213  * e1000_alloc_queues - Allocate memory for all rings
1214  * @adapter: board private structure to initialize
1215  *
1216  * We allocate one ring per queue at run-time since we don't know the
1217  * number of queues at compile-time.  The polling_netdev array is
1218  * intended for Multiqueue, but should work fine with a single queue.
1219  **/
1220
1221 static int __devinit
1222 e1000_alloc_queues(struct e1000_adapter *adapter)
1223 {
1224         int size;
1225
1226         size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
1227         adapter->tx_ring = kmalloc(size, GFP_KERNEL);
1228         if (!adapter->tx_ring)
1229                 return -ENOMEM;
1230         memset(adapter->tx_ring, 0, size);
1231
1232         size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
1233         adapter->rx_ring = kmalloc(size, GFP_KERNEL);
1234         if (!adapter->rx_ring) {
1235                 kfree(adapter->tx_ring);
1236                 return -ENOMEM;
1237         }
1238         memset(adapter->rx_ring, 0, size);
1239
1240 #ifdef CONFIG_E1000_NAPI
1241         size = sizeof(struct net_device) * adapter->num_rx_queues;
1242         adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
1243         if (!adapter->polling_netdev) {
1244                 kfree(adapter->tx_ring);
1245                 kfree(adapter->rx_ring);
1246                 return -ENOMEM;
1247         }
1248         memset(adapter->polling_netdev, 0, size);
1249 #endif
1250
1251         return E1000_SUCCESS;
1252 }
1253
1254 /**
1255  * e1000_open - Called when a network interface is made active
1256  * @netdev: network interface device structure
1257  *
1258  * Returns 0 on success, negative value on failure
1259  *
1260  * The open entry point is called when a network interface is made
1261  * active by the system (IFF_UP).  At this point all resources needed
1262  * for transmit and receive operations are allocated, the interrupt
1263  * handler is registered with the OS, the watchdog timer is started,
1264  * and the stack is notified that the interface is ready.
1265  **/
1266
1267 static int
1268 e1000_open(struct net_device *netdev)
1269 {
1270         struct e1000_adapter *adapter = netdev_priv(netdev);
1271         int err;
1272
1273         /* disallow open during test */
1274         if (test_bit(__E1000_TESTING, &adapter->flags))
1275                 return -EBUSY;
1276
1277         /* allocate transmit descriptors */
1278
1279         if ((err = e1000_setup_all_tx_resources(adapter)))
1280                 goto err_setup_tx;
1281
1282         /* allocate receive descriptors */
1283
1284         if ((err = e1000_setup_all_rx_resources(adapter)))
1285                 goto err_setup_rx;
1286
1287         err = e1000_request_irq(adapter);
1288         if (err)
1289                 goto err_req_irq;
1290
1291         e1000_power_up_phy(adapter);
1292
1293         if ((err = e1000_up(adapter)))
1294                 goto err_up;
1295         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1296         if ((adapter->hw.mng_cookie.status &
1297                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1298                 e1000_update_mng_vlan(adapter);
1299         }
1300
1301         /* If AMT is enabled, let the firmware know that the network
1302          * interface is now open */
1303         if (adapter->hw.mac_type == e1000_82573 &&
1304             e1000_check_mng_mode(&adapter->hw))
1305                 e1000_get_hw_control(adapter);
1306
1307         return E1000_SUCCESS;
1308
1309 err_up:
1310         e1000_power_down_phy(adapter);
1311         e1000_free_irq(adapter);
1312 err_req_irq:
1313         e1000_free_all_rx_resources(adapter);
1314 err_setup_rx:
1315         e1000_free_all_tx_resources(adapter);
1316 err_setup_tx:
1317         e1000_reset(adapter);
1318
1319         return err;
1320 }
1321
1322 /**
1323  * e1000_close - Disables a network interface
1324  * @netdev: network interface device structure
1325  *
1326  * Returns 0, this is not allowed to fail
1327  *
1328  * The close entry point is called when an interface is de-activated
1329  * by the OS.  The hardware is still under the drivers control, but
1330  * needs to be disabled.  A global MAC reset is issued to stop the
1331  * hardware, and all transmit and receive resources are freed.
1332  **/
1333
1334 static int
1335 e1000_close(struct net_device *netdev)
1336 {
1337         struct e1000_adapter *adapter = netdev_priv(netdev);
1338
1339         WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1340         e1000_down(adapter);
1341         e1000_power_down_phy(adapter);
1342         e1000_free_irq(adapter);
1343
1344         e1000_free_all_tx_resources(adapter);
1345         e1000_free_all_rx_resources(adapter);
1346
1347         if ((adapter->hw.mng_cookie.status &
1348                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1349                 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1350         }
1351
1352         /* If AMT is enabled, let the firmware know that the network
1353          * interface is now closed */
1354         if (adapter->hw.mac_type == e1000_82573 &&
1355             e1000_check_mng_mode(&adapter->hw))
1356                 e1000_release_hw_control(adapter);
1357
1358         return 0;
1359 }
1360
1361 /**
1362  * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1363  * @adapter: address of board private structure
1364  * @start: address of beginning of memory
1365  * @len: length of memory
1366  **/
1367 static boolean_t
1368 e1000_check_64k_bound(struct e1000_adapter *adapter,
1369                       void *start, unsigned long len)
1370 {
1371         unsigned long begin = (unsigned long) start;
1372         unsigned long end = begin + len;
1373
1374         /* First rev 82545 and 82546 need to not allow any memory
1375          * write location to cross 64k boundary due to errata 23 */
1376         if (adapter->hw.mac_type == e1000_82545 ||
1377             adapter->hw.mac_type == e1000_82546) {
1378                 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1379         }
1380
1381         return TRUE;
1382 }
1383
1384 /**
1385  * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1386  * @adapter: board private structure
1387  * @txdr:    tx descriptor ring (for a specific queue) to setup
1388  *
1389  * Return 0 on success, negative on failure
1390  **/
1391
1392 static int
1393 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1394                          struct e1000_tx_ring *txdr)
1395 {
1396         struct pci_dev *pdev = adapter->pdev;
1397         int size;
1398
1399         size = sizeof(struct e1000_buffer) * txdr->count;
1400         txdr->buffer_info = vmalloc(size);
1401         if (!txdr->buffer_info) {
1402                 DPRINTK(PROBE, ERR,
1403                 "Unable to allocate memory for the transmit descriptor ring\n");
1404                 return -ENOMEM;
1405         }
1406         memset(txdr->buffer_info, 0, size);
1407
1408         /* round up to nearest 4K */
1409
1410         txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1411         E1000_ROUNDUP(txdr->size, 4096);
1412
1413         txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1414         if (!txdr->desc) {
1415 setup_tx_desc_die:
1416                 vfree(txdr->buffer_info);
1417                 DPRINTK(PROBE, ERR,
1418                 "Unable to allocate memory for the transmit descriptor ring\n");
1419                 return -ENOMEM;
1420         }
1421
1422         /* Fix for errata 23, can't cross 64kB boundary */
1423         if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1424                 void *olddesc = txdr->desc;
1425                 dma_addr_t olddma = txdr->dma;
1426                 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1427                                      "at %p\n", txdr->size, txdr->desc);
1428                 /* Try again, without freeing the previous */
1429                 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1430                 /* Failed allocation, critical failure */
1431                 if (!txdr->desc) {
1432                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1433                         goto setup_tx_desc_die;
1434                 }
1435
1436                 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1437                         /* give up */
1438                         pci_free_consistent(pdev, txdr->size, txdr->desc,
1439                                             txdr->dma);
1440                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1441                         DPRINTK(PROBE, ERR,
1442                                 "Unable to allocate aligned memory "
1443                                 "for the transmit descriptor ring\n");
1444                         vfree(txdr->buffer_info);
1445                         return -ENOMEM;
1446                 } else {
1447                         /* Free old allocation, new allocation was successful */
1448                         pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1449                 }
1450         }
1451         memset(txdr->desc, 0, txdr->size);
1452
1453         txdr->next_to_use = 0;
1454         txdr->next_to_clean = 0;
1455         spin_lock_init(&txdr->tx_lock);
1456
1457         return 0;
1458 }
1459
1460 /**
1461  * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1462  *                                (Descriptors) for all queues
1463  * @adapter: board private structure
1464  *
1465  * Return 0 on success, negative on failure
1466  **/
1467
1468 int
1469 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1470 {
1471         int i, err = 0;
1472
1473         for (i = 0; i < adapter->num_tx_queues; i++) {
1474                 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1475                 if (err) {
1476                         DPRINTK(PROBE, ERR,
1477                                 "Allocation for Tx Queue %u failed\n", i);
1478                         for (i-- ; i >= 0; i--)
1479                                 e1000_free_tx_resources(adapter,
1480                                                         &adapter->tx_ring[i]);
1481                         break;
1482                 }
1483         }
1484
1485         return err;
1486 }
1487
1488 /**
1489  * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1490  * @adapter: board private structure
1491  *
1492  * Configure the Tx unit of the MAC after a reset.
1493  **/
1494
1495 static void
1496 e1000_configure_tx(struct e1000_adapter *adapter)
1497 {
1498         uint64_t tdba;
1499         struct e1000_hw *hw = &adapter->hw;
1500         uint32_t tdlen, tctl, tipg, tarc;
1501         uint32_t ipgr1, ipgr2;
1502
1503         /* Setup the HW Tx Head and Tail descriptor pointers */
1504
1505         switch (adapter->num_tx_queues) {
1506         case 1:
1507         default:
1508                 tdba = adapter->tx_ring[0].dma;
1509                 tdlen = adapter->tx_ring[0].count *
1510                         sizeof(struct e1000_tx_desc);
1511                 E1000_WRITE_REG(hw, TDLEN, tdlen);
1512                 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1513                 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1514                 E1000_WRITE_REG(hw, TDT, 0);
1515                 E1000_WRITE_REG(hw, TDH, 0);
1516                 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1517                 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1518                 break;
1519         }
1520
1521         /* Set the default values for the Tx Inter Packet Gap timer */
1522
1523         if (hw->media_type == e1000_media_type_fiber ||
1524             hw->media_type == e1000_media_type_internal_serdes)
1525                 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1526         else
1527                 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1528
1529         switch (hw->mac_type) {
1530         case e1000_82542_rev2_0:
1531         case e1000_82542_rev2_1:
1532                 tipg = DEFAULT_82542_TIPG_IPGT;
1533                 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1534                 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1535                 break;
1536         case e1000_80003es2lan:
1537                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1538                 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1539                 break;
1540         default:
1541                 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1542                 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1543                 break;
1544         }
1545         tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1546         tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1547         E1000_WRITE_REG(hw, TIPG, tipg);
1548
1549         /* Set the Tx Interrupt Delay register */
1550
1551         E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1552         if (hw->mac_type >= e1000_82540)
1553                 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1554
1555         /* Program the Transmit Control Register */
1556
1557         tctl = E1000_READ_REG(hw, TCTL);
1558         tctl &= ~E1000_TCTL_CT;
1559         tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1560                 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1561
1562         if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1563                 tarc = E1000_READ_REG(hw, TARC0);
1564                 tarc |= (1 << 21);
1565                 E1000_WRITE_REG(hw, TARC0, tarc);
1566         } else if (hw->mac_type == e1000_80003es2lan) {
1567                 tarc = E1000_READ_REG(hw, TARC0);
1568                 tarc |= 1;
1569                 E1000_WRITE_REG(hw, TARC0, tarc);
1570                 tarc = E1000_READ_REG(hw, TARC1);
1571                 tarc |= 1;
1572                 E1000_WRITE_REG(hw, TARC1, tarc);
1573         }
1574
1575         e1000_config_collision_dist(hw);
1576
1577         /* Setup Transmit Descriptor Settings for eop descriptor */
1578         adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
1579                 E1000_TXD_CMD_IFCS;
1580
1581         if (hw->mac_type < e1000_82543)
1582                 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1583         else
1584                 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1585
1586         /* Cache if we're 82544 running in PCI-X because we'll
1587          * need this to apply a workaround later in the send path. */
1588         if (hw->mac_type == e1000_82544 &&
1589             hw->bus_type == e1000_bus_type_pcix)
1590                 adapter->pcix_82544 = 1;
1591
1592         E1000_WRITE_REG(hw, TCTL, tctl);
1593
1594 }
1595
1596 /**
1597  * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1598  * @adapter: board private structure
1599  * @rxdr:    rx descriptor ring (for a specific queue) to setup
1600  *
1601  * Returns 0 on success, negative on failure
1602  **/
1603
1604 static int
1605 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1606                          struct e1000_rx_ring *rxdr)
1607 {
1608         struct pci_dev *pdev = adapter->pdev;
1609         int size, desc_len;
1610
1611         size = sizeof(struct e1000_buffer) * rxdr->count;
1612         rxdr->buffer_info = vmalloc(size);
1613         if (!rxdr->buffer_info) {
1614                 DPRINTK(PROBE, ERR,
1615                 "Unable to allocate memory for the receive descriptor ring\n");
1616                 return -ENOMEM;
1617         }
1618         memset(rxdr->buffer_info, 0, size);
1619
1620         size = sizeof(struct e1000_ps_page) * rxdr->count;
1621         rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1622         if (!rxdr->ps_page) {
1623                 vfree(rxdr->buffer_info);
1624                 DPRINTK(PROBE, ERR,
1625                 "Unable to allocate memory for the receive descriptor ring\n");
1626                 return -ENOMEM;
1627         }
1628         memset(rxdr->ps_page, 0, size);
1629
1630         size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1631         rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1632         if (!rxdr->ps_page_dma) {
1633                 vfree(rxdr->buffer_info);
1634                 kfree(rxdr->ps_page);
1635                 DPRINTK(PROBE, ERR,
1636                 "Unable to allocate memory for the receive descriptor ring\n");
1637                 return -ENOMEM;
1638         }
1639         memset(rxdr->ps_page_dma, 0, size);
1640
1641         if (adapter->hw.mac_type <= e1000_82547_rev_2)
1642                 desc_len = sizeof(struct e1000_rx_desc);
1643         else
1644                 desc_len = sizeof(union e1000_rx_desc_packet_split);
1645
1646         /* Round up to nearest 4K */
1647
1648         rxdr->size = rxdr->count * desc_len;
1649         E1000_ROUNDUP(rxdr->size, 4096);
1650
1651         rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1652
1653         if (!rxdr->desc) {
1654                 DPRINTK(PROBE, ERR,
1655                 "Unable to allocate memory for the receive descriptor ring\n");
1656 setup_rx_desc_die:
1657                 vfree(rxdr->buffer_info);
1658                 kfree(rxdr->ps_page);
1659                 kfree(rxdr->ps_page_dma);
1660                 return -ENOMEM;
1661         }
1662
1663         /* Fix for errata 23, can't cross 64kB boundary */
1664         if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1665                 void *olddesc = rxdr->desc;
1666                 dma_addr_t olddma = rxdr->dma;
1667                 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1668                                      "at %p\n", rxdr->size, rxdr->desc);
1669                 /* Try again, without freeing the previous */
1670                 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1671                 /* Failed allocation, critical failure */
1672                 if (!rxdr->desc) {
1673                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1674                         DPRINTK(PROBE, ERR,
1675                                 "Unable to allocate memory "
1676                                 "for the receive descriptor ring\n");
1677                         goto setup_rx_desc_die;
1678                 }
1679
1680                 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1681                         /* give up */
1682                         pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1683                                             rxdr->dma);
1684                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1685                         DPRINTK(PROBE, ERR,
1686                                 "Unable to allocate aligned memory "
1687                                 "for the receive descriptor ring\n");
1688                         goto setup_rx_desc_die;
1689                 } else {
1690                         /* Free old allocation, new allocation was successful */
1691                         pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1692                 }
1693         }
1694         memset(rxdr->desc, 0, rxdr->size);
1695
1696         rxdr->next_to_clean = 0;
1697         rxdr->next_to_use = 0;
1698
1699         return 0;
1700 }
1701
1702 /**
1703  * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1704  *                                (Descriptors) for all queues
1705  * @adapter: board private structure
1706  *
1707  * Return 0 on success, negative on failure
1708  **/
1709
1710 int
1711 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1712 {
1713         int i, err = 0;
1714
1715         for (i = 0; i < adapter->num_rx_queues; i++) {
1716                 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1717                 if (err) {
1718                         DPRINTK(PROBE, ERR,
1719                                 "Allocation for Rx Queue %u failed\n", i);
1720                         for (i-- ; i >= 0; i--)
1721                                 e1000_free_rx_resources(adapter,
1722                                                         &adapter->rx_ring[i]);
1723                         break;
1724                 }
1725         }
1726
1727         return err;
1728 }
1729
1730 /**
1731  * e1000_setup_rctl - configure the receive control registers
1732  * @adapter: Board private structure
1733  **/
1734 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1735                         (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1736 static void
1737 e1000_setup_rctl(struct e1000_adapter *adapter)
1738 {
1739         uint32_t rctl, rfctl;
1740         uint32_t psrctl = 0;
1741 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1742         uint32_t pages = 0;
1743 #endif
1744
1745         rctl = E1000_READ_REG(&adapter->hw, RCTL);
1746
1747         rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1748
1749         rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1750                 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1751                 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1752
1753         if (adapter->hw.tbi_compatibility_on == 1)
1754                 rctl |= E1000_RCTL_SBP;
1755         else
1756                 rctl &= ~E1000_RCTL_SBP;
1757
1758         if (adapter->netdev->mtu <= ETH_DATA_LEN)
1759                 rctl &= ~E1000_RCTL_LPE;
1760         else
1761                 rctl |= E1000_RCTL_LPE;
1762
1763         /* Setup buffer sizes */
1764         rctl &= ~E1000_RCTL_SZ_4096;
1765         rctl |= E1000_RCTL_BSEX;
1766         switch (adapter->rx_buffer_len) {
1767                 case E1000_RXBUFFER_256:
1768                         rctl |= E1000_RCTL_SZ_256;
1769                         rctl &= ~E1000_RCTL_BSEX;
1770                         break;
1771                 case E1000_RXBUFFER_512:
1772                         rctl |= E1000_RCTL_SZ_512;
1773                         rctl &= ~E1000_RCTL_BSEX;
1774                         break;
1775                 case E1000_RXBUFFER_1024:
1776                         rctl |= E1000_RCTL_SZ_1024;
1777                         rctl &= ~E1000_RCTL_BSEX;
1778                         break;
1779                 case E1000_RXBUFFER_2048:
1780                 default:
1781                         rctl |= E1000_RCTL_SZ_2048;
1782                         rctl &= ~E1000_RCTL_BSEX;
1783                         break;
1784                 case E1000_RXBUFFER_4096:
1785                         rctl |= E1000_RCTL_SZ_4096;
1786                         break;
1787                 case E1000_RXBUFFER_8192:
1788                         rctl |= E1000_RCTL_SZ_8192;
1789                         break;
1790                 case E1000_RXBUFFER_16384:
1791                         rctl |= E1000_RCTL_SZ_16384;
1792                         break;
1793         }
1794
1795 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1796         /* 82571 and greater support packet-split where the protocol
1797          * header is placed in skb->data and the packet data is
1798          * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1799          * In the case of a non-split, skb->data is linearly filled,
1800          * followed by the page buffers.  Therefore, skb->data is
1801          * sized to hold the largest protocol header.
1802          */
1803         pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1804         if ((adapter->hw.mac_type > e1000_82547_rev_2) && (pages <= 3) &&
1805             PAGE_SIZE <= 16384)
1806                 adapter->rx_ps_pages = pages;
1807         else
1808                 adapter->rx_ps_pages = 0;
1809 #endif
1810         if (adapter->rx_ps_pages) {
1811                 /* Configure extra packet-split registers */
1812                 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1813                 rfctl |= E1000_RFCTL_EXTEN;
1814                 /* disable IPv6 packet split support */
1815                 rfctl |= E1000_RFCTL_IPV6_DIS;
1816                 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1817
1818                 rctl |= E1000_RCTL_DTYP_PS;
1819
1820                 psrctl |= adapter->rx_ps_bsize0 >>
1821                         E1000_PSRCTL_BSIZE0_SHIFT;
1822
1823                 switch (adapter->rx_ps_pages) {
1824                 case 3:
1825                         psrctl |= PAGE_SIZE <<
1826                                 E1000_PSRCTL_BSIZE3_SHIFT;
1827                 case 2:
1828                         psrctl |= PAGE_SIZE <<
1829                                 E1000_PSRCTL_BSIZE2_SHIFT;
1830                 case 1:
1831                         psrctl |= PAGE_SIZE >>
1832                                 E1000_PSRCTL_BSIZE1_SHIFT;
1833                         break;
1834                 }
1835
1836                 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1837         }
1838
1839         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1840 }
1841
1842 /**
1843  * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1844  * @adapter: board private structure
1845  *
1846  * Configure the Rx unit of the MAC after a reset.
1847  **/
1848
1849 static void
1850 e1000_configure_rx(struct e1000_adapter *adapter)
1851 {
1852         uint64_t rdba;
1853         struct e1000_hw *hw = &adapter->hw;
1854         uint32_t rdlen, rctl, rxcsum, ctrl_ext;
1855
1856         if (adapter->rx_ps_pages) {
1857                 /* this is a 32 byte descriptor */
1858                 rdlen = adapter->rx_ring[0].count *
1859                         sizeof(union e1000_rx_desc_packet_split);
1860                 adapter->clean_rx = e1000_clean_rx_irq_ps;
1861                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1862         } else {
1863                 rdlen = adapter->rx_ring[0].count *
1864                         sizeof(struct e1000_rx_desc);
1865                 adapter->clean_rx = e1000_clean_rx_irq;
1866                 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1867         }
1868
1869         /* disable receives while setting up the descriptors */
1870         rctl = E1000_READ_REG(hw, RCTL);
1871         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
1872
1873         /* set the Receive Delay Timer Register */
1874         E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
1875
1876         if (hw->mac_type >= e1000_82540) {
1877                 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
1878                 if (adapter->itr > 1)
1879                         E1000_WRITE_REG(hw, ITR,
1880                                 1000000000 / (adapter->itr * 256));
1881         }
1882
1883         if (hw->mac_type >= e1000_82571) {
1884                 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1885                 /* Reset delay timers after every interrupt */
1886                 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1887 #ifdef CONFIG_E1000_NAPI
1888                 /* Auto-Mask interrupts upon ICR read. */
1889                 ctrl_ext |= E1000_CTRL_EXT_IAME;
1890 #endif
1891                 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1892                 E1000_WRITE_REG(hw, IAM, ~0);
1893                 E1000_WRITE_FLUSH(hw);
1894         }
1895
1896         /* Setup the HW Rx Head and Tail Descriptor Pointers and
1897          * the Base and Length of the Rx Descriptor Ring */
1898         switch (adapter->num_rx_queues) {
1899         case 1:
1900         default:
1901                 rdba = adapter->rx_ring[0].dma;
1902                 E1000_WRITE_REG(hw, RDLEN, rdlen);
1903                 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
1904                 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1905                 E1000_WRITE_REG(hw, RDT, 0);
1906                 E1000_WRITE_REG(hw, RDH, 0);
1907                 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1908                 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1909                 break;
1910         }
1911
1912         /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1913         if (hw->mac_type >= e1000_82543) {
1914                 rxcsum = E1000_READ_REG(hw, RXCSUM);
1915                 if (adapter->rx_csum == TRUE) {
1916                         rxcsum |= E1000_RXCSUM_TUOFL;
1917
1918                         /* Enable 82571 IPv4 payload checksum for UDP fragments
1919                          * Must be used in conjunction with packet-split. */
1920                         if ((hw->mac_type >= e1000_82571) &&
1921                             (adapter->rx_ps_pages)) {
1922                                 rxcsum |= E1000_RXCSUM_IPPCSE;
1923                         }
1924                 } else {
1925                         rxcsum &= ~E1000_RXCSUM_TUOFL;
1926                         /* don't need to clear IPPCSE as it defaults to 0 */
1927                 }
1928                 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
1929         }
1930
1931         /* Enable Receives */
1932         E1000_WRITE_REG(hw, RCTL, rctl);
1933 }
1934
1935 /**
1936  * e1000_free_tx_resources - Free Tx Resources per Queue
1937  * @adapter: board private structure
1938  * @tx_ring: Tx descriptor ring for a specific queue
1939  *
1940  * Free all transmit software resources
1941  **/
1942
1943 static void
1944 e1000_free_tx_resources(struct e1000_adapter *adapter,
1945                         struct e1000_tx_ring *tx_ring)
1946 {
1947         struct pci_dev *pdev = adapter->pdev;
1948
1949         e1000_clean_tx_ring(adapter, tx_ring);
1950
1951         vfree(tx_ring->buffer_info);
1952         tx_ring->buffer_info = NULL;
1953
1954         pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1955
1956         tx_ring->desc = NULL;
1957 }
1958
1959 /**
1960  * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1961  * @adapter: board private structure
1962  *
1963  * Free all transmit software resources
1964  **/
1965
1966 void
1967 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1968 {
1969         int i;
1970
1971         for (i = 0; i < adapter->num_tx_queues; i++)
1972                 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1973 }
1974
1975 static void
1976 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1977                         struct e1000_buffer *buffer_info)
1978 {
1979         if (buffer_info->dma) {
1980                 pci_unmap_page(adapter->pdev,
1981                                 buffer_info->dma,
1982                                 buffer_info->length,
1983                                 PCI_DMA_TODEVICE);
1984         }
1985         if (buffer_info->skb)
1986                 dev_kfree_skb_any(buffer_info->skb);
1987         memset(buffer_info, 0, sizeof(struct e1000_buffer));
1988 }
1989
1990 /**
1991  * e1000_clean_tx_ring - Free Tx Buffers
1992  * @adapter: board private structure
1993  * @tx_ring: ring to be cleaned
1994  **/
1995
1996 static void
1997 e1000_clean_tx_ring(struct e1000_adapter *adapter,
1998                     struct e1000_tx_ring *tx_ring)
1999 {
2000         struct e1000_buffer *buffer_info;
2001         unsigned long size;
2002         unsigned int i;
2003
2004         /* Free all the Tx ring sk_buffs */
2005
2006         for (i = 0; i < tx_ring->count; i++) {
2007                 buffer_info = &tx_ring->buffer_info[i];
2008                 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2009         }
2010
2011         size = sizeof(struct e1000_buffer) * tx_ring->count;
2012         memset(tx_ring->buffer_info, 0, size);
2013
2014         /* Zero out the descriptor ring */
2015
2016         memset(tx_ring->desc, 0, tx_ring->size);
2017
2018         tx_ring->next_to_use = 0;
2019         tx_ring->next_to_clean = 0;
2020         tx_ring->last_tx_tso = 0;
2021
2022         writel(0, adapter->hw.hw_addr + tx_ring->tdh);
2023         writel(0, adapter->hw.hw_addr + tx_ring->tdt);
2024 }
2025
2026 /**
2027  * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2028  * @adapter: board private structure
2029  **/
2030
2031 static void
2032 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2033 {
2034         int i;
2035
2036         for (i = 0; i < adapter->num_tx_queues; i++)
2037                 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2038 }
2039
2040 /**
2041  * e1000_free_rx_resources - Free Rx Resources
2042  * @adapter: board private structure
2043  * @rx_ring: ring to clean the resources from
2044  *
2045  * Free all receive software resources
2046  **/
2047
2048 static void
2049 e1000_free_rx_resources(struct e1000_adapter *adapter,
2050                         struct e1000_rx_ring *rx_ring)
2051 {
2052         struct pci_dev *pdev = adapter->pdev;
2053
2054         e1000_clean_rx_ring(adapter, rx_ring);
2055
2056         vfree(rx_ring->buffer_info);
2057         rx_ring->buffer_info = NULL;
2058         kfree(rx_ring->ps_page);
2059         rx_ring->ps_page = NULL;
2060         kfree(rx_ring->ps_page_dma);
2061         rx_ring->ps_page_dma = NULL;
2062
2063         pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2064
2065         rx_ring->desc = NULL;
2066 }
2067
2068 /**
2069  * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2070  * @adapter: board private structure
2071  *
2072  * Free all receive software resources
2073  **/
2074
2075 void
2076 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2077 {
2078         int i;
2079
2080         for (i = 0; i < adapter->num_rx_queues; i++)
2081                 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2082 }
2083
2084 /**
2085  * e1000_clean_rx_ring - Free Rx Buffers per Queue
2086  * @adapter: board private structure
2087  * @rx_ring: ring to free buffers from
2088  **/
2089
2090 static void
2091 e1000_clean_rx_ring(struct e1000_adapter *adapter,
2092                     struct e1000_rx_ring *rx_ring)
2093 {
2094         struct e1000_buffer *buffer_info;
2095         struct e1000_ps_page *ps_page;
2096         struct e1000_ps_page_dma *ps_page_dma;
2097         struct pci_dev *pdev = adapter->pdev;
2098         unsigned long size;
2099         unsigned int i, j;
2100
2101         /* Free all the Rx ring sk_buffs */
2102         for (i = 0; i < rx_ring->count; i++) {
2103                 buffer_info = &rx_ring->buffer_info[i];
2104                 if (buffer_info->skb) {
2105                         pci_unmap_single(pdev,
2106                                          buffer_info->dma,
2107                                          buffer_info->length,
2108                                          PCI_DMA_FROMDEVICE);
2109
2110                         dev_kfree_skb(buffer_info->skb);
2111                         buffer_info->skb = NULL;
2112                 }
2113                 ps_page = &rx_ring->ps_page[i];
2114                 ps_page_dma = &rx_ring->ps_page_dma[i];
2115                 for (j = 0; j < adapter->rx_ps_pages; j++) {
2116                         if (!ps_page->ps_page[j]) break;
2117                         pci_unmap_page(pdev,
2118                                        ps_page_dma->ps_page_dma[j],
2119                                        PAGE_SIZE, PCI_DMA_FROMDEVICE);
2120                         ps_page_dma->ps_page_dma[j] = 0;
2121                         put_page(ps_page->ps_page[j]);
2122                         ps_page->ps_page[j] = NULL;
2123                 }
2124         }
2125
2126         size = sizeof(struct e1000_buffer) * rx_ring->count;
2127         memset(rx_ring->buffer_info, 0, size);
2128         size = sizeof(struct e1000_ps_page) * rx_ring->count;
2129         memset(rx_ring->ps_page, 0, size);
2130         size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
2131         memset(rx_ring->ps_page_dma, 0, size);
2132
2133         /* Zero out the descriptor ring */
2134
2135         memset(rx_ring->desc, 0, rx_ring->size);
2136
2137         rx_ring->next_to_clean = 0;
2138         rx_ring->next_to_use = 0;
2139
2140         writel(0, adapter->hw.hw_addr + rx_ring->rdh);
2141         writel(0, adapter->hw.hw_addr + rx_ring->rdt);
2142 }
2143
2144 /**
2145  * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2146  * @adapter: board private structure
2147  **/
2148
2149 static void
2150 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2151 {
2152         int i;
2153
2154         for (i = 0; i < adapter->num_rx_queues; i++)
2155                 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2156 }
2157
2158 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2159  * and memory write and invalidate disabled for certain operations
2160  */
2161 static void
2162 e1000_enter_82542_rst(struct e1000_adapter *adapter)
2163 {
2164         struct net_device *netdev = adapter->netdev;
2165         uint32_t rctl;
2166
2167         e1000_pci_clear_mwi(&adapter->hw);
2168
2169         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2170         rctl |= E1000_RCTL_RST;
2171         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2172         E1000_WRITE_FLUSH(&adapter->hw);
2173         mdelay(5);
2174
2175         if (netif_running(netdev))
2176                 e1000_clean_all_rx_rings(adapter);
2177 }
2178
2179 static void
2180 e1000_leave_82542_rst(struct e1000_adapter *adapter)
2181 {
2182         struct net_device *netdev = adapter->netdev;
2183         uint32_t rctl;
2184
2185         rctl = E1000_READ_REG(&adapter->hw, RCTL);
2186         rctl &= ~E1000_RCTL_RST;
2187         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2188         E1000_WRITE_FLUSH(&adapter->hw);
2189         mdelay(5);
2190
2191         if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2192                 e1000_pci_set_mwi(&adapter->hw);
2193
2194         if (netif_running(netdev)) {
2195                 /* No need to loop, because 82542 supports only 1 queue */
2196                 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2197                 e1000_configure_rx(adapter);
2198                 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2199         }
2200 }
2201
2202 /**
2203  * e1000_set_mac - Change the Ethernet Address of the NIC
2204  * @netdev: network interface device structure
2205  * @p: pointer to an address structure
2206  *
2207  * Returns 0 on success, negative on failure
2208  **/
2209
2210 static int
2211 e1000_set_mac(struct net_device *netdev, void *p)
2212 {
2213         struct e1000_adapter *adapter = netdev_priv(netdev);
2214         struct sockaddr *addr = p;
2215
2216         if (!is_valid_ether_addr(addr->sa_data))
2217                 return -EADDRNOTAVAIL;
2218
2219         /* 82542 2.0 needs to be in reset to write receive address registers */
2220
2221         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2222                 e1000_enter_82542_rst(adapter);
2223
2224         memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2225         memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2226
2227         e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2228
2229         /* With 82571 controllers, LAA may be overwritten (with the default)
2230          * due to controller reset from the other port. */
2231         if (adapter->hw.mac_type == e1000_82571) {
2232                 /* activate the work around */
2233                 adapter->hw.laa_is_present = 1;
2234
2235                 /* Hold a copy of the LAA in RAR[14] This is done so that
2236                  * between the time RAR[0] gets clobbered  and the time it
2237                  * gets fixed (in e1000_watchdog), the actual LAA is in one
2238                  * of the RARs and no incoming packets directed to this port
2239                  * are dropped. Eventaully the LAA will be in RAR[0] and
2240                  * RAR[14] */
2241                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2242                                         E1000_RAR_ENTRIES - 1);
2243         }
2244
2245         if (adapter->hw.mac_type == e1000_82542_rev2_0)
2246                 e1000_leave_82542_rst(adapter);
2247
2248         return 0;
2249 }
2250
2251 /**
2252  * e1000_set_multi - Multicast and Promiscuous mode set
2253  * @netdev: network interface device structure
2254  *
2255  * The set_multi entry point is called whenever the multicast address
2256  * list or the network interface flags are updated.  This routine is
2257  * responsible for configuring the hardware for proper multicast,
2258  * promiscuous mode, and all-multi behavior.
2259  **/
2260
2261 static void
2262 e1000_set_multi(struct net_device *netdev)
2263 {
2264         struct e1000_adapter *adapter = netdev_priv(netdev);
2265         struct e1000_hw *hw = &adapter->hw;
2266         struct dev_mc_list *mc_ptr;
2267         uint32_t rctl;
2268         uint32_t hash_value;
2269         int i, rar_entries = E1000_RAR_ENTRIES;
2270         int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2271                                 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2272                                 E1000_NUM_MTA_REGISTERS;
2273
2274         if (adapter->hw.mac_type == e1000_ich8lan)
2275                 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2276
2277         /* reserve RAR[14] for LAA over-write work-around */
2278         if (adapter->hw.mac_type == e1000_82571)
2279                 rar_entries--;
2280
2281         /* Check for Promiscuous and All Multicast modes */
2282
2283         rctl = E1000_READ_REG(hw, RCTL);
2284
2285         if (netdev->flags & IFF_PROMISC) {
2286                 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2287         } else if (netdev->flags & IFF_ALLMULTI) {
2288                 rctl |= E1000_RCTL_MPE;
2289                 rctl &= ~E1000_RCTL_UPE;
2290         } else {
2291                 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2292         }
2293
2294         E1000_WRITE_REG(hw, RCTL, rctl);
2295
2296         /* 82542 2.0 needs to be in reset to write receive address registers */
2297
2298         if (hw->mac_type == e1000_82542_rev2_0)
2299                 e1000_enter_82542_rst(adapter);
2300
2301         /* load the first 14 multicast address into the exact filters 1-14
2302          * RAR 0 is used for the station MAC adddress
2303          * if there are not 14 addresses, go ahead and clear the filters
2304          * -- with 82571 controllers only 0-13 entries are filled here
2305          */
2306         mc_ptr = netdev->mc_list;
2307
2308         for (i = 1; i < rar_entries; i++) {
2309                 if (mc_ptr) {
2310                         e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2311                         mc_ptr = mc_ptr->next;
2312                 } else {
2313                         E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2314                         E1000_WRITE_FLUSH(hw);
2315                         E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2316                         E1000_WRITE_FLUSH(hw);
2317                 }
2318         }
2319
2320         /* clear the old settings from the multicast hash table */
2321
2322         for (i = 0; i < mta_reg_count; i++) {
2323                 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2324                 E1000_WRITE_FLUSH(hw);
2325         }
2326
2327         /* load any remaining addresses into the hash table */
2328
2329         for (; mc_ptr; mc_ptr = mc_ptr->next) {
2330                 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2331                 e1000_mta_set(hw, hash_value);
2332         }
2333
2334         if (hw->mac_type == e1000_82542_rev2_0)
2335                 e1000_leave_82542_rst(adapter);
2336 }
2337
2338 /* Need to wait a few seconds after link up to get diagnostic information from
2339  * the phy */
2340
2341 static void
2342 e1000_update_phy_info(unsigned long data)
2343 {
2344         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2345         e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2346 }
2347
2348 /**
2349  * e1000_82547_tx_fifo_stall - Timer Call-back
2350  * @data: pointer to adapter cast into an unsigned long
2351  **/
2352
2353 static void
2354 e1000_82547_tx_fifo_stall(unsigned long data)
2355 {
2356         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2357         struct net_device *netdev = adapter->netdev;
2358         uint32_t tctl;
2359
2360         if (atomic_read(&adapter->tx_fifo_stall)) {
2361                 if ((E1000_READ_REG(&adapter->hw, TDT) ==
2362                     E1000_READ_REG(&adapter->hw, TDH)) &&
2363                    (E1000_READ_REG(&adapter->hw, TDFT) ==
2364                     E1000_READ_REG(&adapter->hw, TDFH)) &&
2365                    (E1000_READ_REG(&adapter->hw, TDFTS) ==
2366                     E1000_READ_REG(&adapter->hw, TDFHS))) {
2367                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2368                         E1000_WRITE_REG(&adapter->hw, TCTL,
2369                                         tctl & ~E1000_TCTL_EN);
2370                         E1000_WRITE_REG(&adapter->hw, TDFT,
2371                                         adapter->tx_head_addr);
2372                         E1000_WRITE_REG(&adapter->hw, TDFH,
2373                                         adapter->tx_head_addr);
2374                         E1000_WRITE_REG(&adapter->hw, TDFTS,
2375                                         adapter->tx_head_addr);
2376                         E1000_WRITE_REG(&adapter->hw, TDFHS,
2377                                         adapter->tx_head_addr);
2378                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2379                         E1000_WRITE_FLUSH(&adapter->hw);
2380
2381                         adapter->tx_fifo_head = 0;
2382                         atomic_set(&adapter->tx_fifo_stall, 0);
2383                         netif_wake_queue(netdev);
2384                 } else {
2385                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2386                 }
2387         }
2388 }
2389
2390 /**
2391  * e1000_watchdog - Timer Call-back
2392  * @data: pointer to adapter cast into an unsigned long
2393  **/
2394 static void
2395 e1000_watchdog(unsigned long data)
2396 {
2397         struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2398         struct net_device *netdev = adapter->netdev;
2399         struct e1000_tx_ring *txdr = adapter->tx_ring;
2400         uint32_t link, tctl;
2401         int32_t ret_val;
2402
2403         ret_val = e1000_check_for_link(&adapter->hw);
2404         if ((ret_val == E1000_ERR_PHY) &&
2405             (adapter->hw.phy_type == e1000_phy_igp_3) &&
2406             (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2407                 /* See e1000_kumeran_lock_loss_workaround() */
2408                 DPRINTK(LINK, INFO,
2409                         "Gigabit has been disabled, downgrading speed\n");
2410         }
2411         if (adapter->hw.mac_type == e1000_82573) {
2412                 e1000_enable_tx_pkt_filtering(&adapter->hw);
2413                 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2414                         e1000_update_mng_vlan(adapter);
2415         }
2416
2417         if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2418            !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2419                 link = !adapter->hw.serdes_link_down;
2420         else
2421                 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2422
2423         if (link) {
2424                 if (!netif_carrier_ok(netdev)) {
2425                         boolean_t txb2b = 1;
2426                         e1000_get_speed_and_duplex(&adapter->hw,
2427                                                    &adapter->link_speed,
2428                                                    &adapter->link_duplex);
2429
2430                         DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
2431                                adapter->link_speed,
2432                                adapter->link_duplex == FULL_DUPLEX ?
2433                                "Full Duplex" : "Half Duplex");
2434
2435                         /* tweak tx_queue_len according to speed/duplex
2436                          * and adjust the timeout factor */
2437                         netdev->tx_queue_len = adapter->tx_queue_len;
2438                         adapter->tx_timeout_factor = 1;
2439                         switch (adapter->link_speed) {
2440                         case SPEED_10:
2441                                 txb2b = 0;
2442                                 netdev->tx_queue_len = 10;
2443                                 adapter->tx_timeout_factor = 8;
2444                                 break;
2445                         case SPEED_100:
2446                                 txb2b = 0;
2447                                 netdev->tx_queue_len = 100;
2448                                 /* maybe add some timeout factor ? */
2449                                 break;
2450                         }
2451
2452                         if ((adapter->hw.mac_type == e1000_82571 ||
2453                              adapter->hw.mac_type == e1000_82572) &&
2454                             txb2b == 0) {
2455 #define SPEED_MODE_BIT (1 << 21)
2456                                 uint32_t tarc0;
2457                                 tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
2458                                 tarc0 &= ~SPEED_MODE_BIT;
2459                                 E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
2460                         }
2461                                 
2462 #ifdef NETIF_F_TSO
2463                         /* disable TSO for pcie and 10/100 speeds, to avoid
2464                          * some hardware issues */
2465                         if (!adapter->tso_force &&
2466                             adapter->hw.bus_type == e1000_bus_type_pci_express){
2467                                 switch (adapter->link_speed) {
2468                                 case SPEED_10:
2469                                 case SPEED_100:
2470                                         DPRINTK(PROBE,INFO,
2471                                         "10/100 speed: disabling TSO\n");
2472                                         netdev->features &= ~NETIF_F_TSO;
2473                                         break;
2474                                 case SPEED_1000:
2475                                         netdev->features |= NETIF_F_TSO;
2476                                         break;
2477                                 default:
2478                                         /* oops */
2479                                         break;
2480                                 }
2481                         }
2482 #endif
2483
2484                         /* enable transmits in the hardware, need to do this
2485                          * after setting TARC0 */
2486                         tctl = E1000_READ_REG(&adapter->hw, TCTL);
2487                         tctl |= E1000_TCTL_EN;
2488                         E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2489
2490                         netif_carrier_on(netdev);
2491                         netif_wake_queue(netdev);
2492                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2493                         adapter->smartspeed = 0;
2494                 }
2495         } else {
2496                 if (netif_carrier_ok(netdev)) {
2497                         adapter->link_speed = 0;
2498                         adapter->link_duplex = 0;
2499                         DPRINTK(LINK, INFO, "NIC Link is Down\n");
2500                         netif_carrier_off(netdev);
2501                         netif_stop_queue(netdev);
2502                         mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2503
2504                         /* 80003ES2LAN workaround--
2505                          * For packet buffer work-around on link down event;
2506                          * disable receives in the ISR and
2507                          * reset device here in the watchdog
2508                          */
2509                         if (adapter->hw.mac_type == e1000_80003es2lan)
2510                                 /* reset device */
2511                                 schedule_work(&adapter->reset_task);
2512                 }
2513
2514                 e1000_smartspeed(adapter);
2515         }
2516
2517         e1000_update_stats(adapter);
2518
2519         adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2520         adapter->tpt_old = adapter->stats.tpt;
2521         adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2522         adapter->colc_old = adapter->stats.colc;
2523
2524         adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2525         adapter->gorcl_old = adapter->stats.gorcl;
2526         adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2527         adapter->gotcl_old = adapter->stats.gotcl;
2528
2529         e1000_update_adaptive(&adapter->hw);
2530
2531         if (!netif_carrier_ok(netdev)) {
2532                 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2533                         /* We've lost link, so the controller stops DMA,
2534                          * but we've got queued Tx work that's never going
2535                          * to get done, so reset controller to flush Tx.
2536                          * (Do the reset outside of interrupt context). */
2537                         adapter->tx_timeout_count++;
2538                         schedule_work(&adapter->reset_task);
2539                 }
2540         }
2541
2542         /* Dynamic mode for Interrupt Throttle Rate (ITR) */
2543         if (adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
2544                 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
2545                  * asymmetrical Tx or Rx gets ITR=8000; everyone
2546                  * else is between 2000-8000. */
2547                 uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
2548                 uint32_t dif = (adapter->gotcl > adapter->gorcl ?
2549                         adapter->gotcl - adapter->gorcl :
2550                         adapter->gorcl - adapter->gotcl) / 10000;
2551                 uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2552                 E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
2553         }
2554
2555         /* Cause software interrupt to ensure rx ring is cleaned */
2556         E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2557
2558         /* Force detection of hung controller every watchdog period */
2559         adapter->detect_tx_hung = TRUE;
2560
2561         /* With 82571 controllers, LAA may be overwritten due to controller
2562          * reset from the other port. Set the appropriate LAA in RAR[0] */
2563         if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2564                 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2565
2566         /* Reset the timer */
2567         mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2568 }
2569
2570 #define E1000_TX_FLAGS_CSUM             0x00000001
2571 #define E1000_TX_FLAGS_VLAN             0x00000002
2572 #define E1000_TX_FLAGS_TSO              0x00000004
2573 #define E1000_TX_FLAGS_IPV4             0x00000008
2574 #define E1000_TX_FLAGS_VLAN_MASK        0xffff0000
2575 #define E1000_TX_FLAGS_VLAN_SHIFT       16
2576
2577 static int
2578 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2579           struct sk_buff *skb)
2580 {
2581 #ifdef NETIF_F_TSO
2582         struct e1000_context_desc *context_desc;
2583         struct e1000_buffer *buffer_info;
2584         unsigned int i;
2585         uint32_t cmd_length = 0;
2586         uint16_t ipcse = 0, tucse, mss;
2587         uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2588         int err;
2589
2590         if (skb_is_gso(skb)) {
2591                 if (skb_header_cloned(skb)) {
2592                         err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2593                         if (err)
2594                                 return err;
2595                 }
2596
2597                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2598                 mss = skb_shinfo(skb)->gso_size;
2599                 if (skb->protocol == htons(ETH_P_IP)) {
2600                         skb->nh.iph->tot_len = 0;
2601                         skb->nh.iph->check = 0;
2602                         skb->h.th->check =
2603                                 ~csum_tcpudp_magic(skb->nh.iph->saddr,
2604                                                    skb->nh.iph->daddr,
2605                                                    0,
2606                                                    IPPROTO_TCP,
2607                                                    0);
2608                         cmd_length = E1000_TXD_CMD_IP;
2609                         ipcse = skb->h.raw - skb->data - 1;
2610 #ifdef NETIF_F_TSO_IPV6
2611                 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2612                         skb->nh.ipv6h->payload_len = 0;
2613                         skb->h.th->check =
2614                                 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
2615                                                  &skb->nh.ipv6h->daddr,
2616                                                  0,
2617                                                  IPPROTO_TCP,
2618                                                  0);
2619                         ipcse = 0;
2620 #endif
2621                 }
2622                 ipcss = skb->nh.raw - skb->data;
2623                 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
2624                 tucss = skb->h.raw - skb->data;
2625                 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
2626                 tucse = 0;
2627
2628                 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2629                                E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2630
2631                 i = tx_ring->next_to_use;
2632                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2633                 buffer_info = &tx_ring->buffer_info[i];
2634
2635                 context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2636                 context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2637                 context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2638                 context_desc->upper_setup.tcp_fields.tucss = tucss;
2639                 context_desc->upper_setup.tcp_fields.tucso = tucso;
2640                 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2641                 context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2642                 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2643                 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2644
2645                 buffer_info->time_stamp = jiffies;
2646
2647                 if (++i == tx_ring->count) i = 0;
2648                 tx_ring->next_to_use = i;
2649
2650                 return TRUE;
2651         }
2652 #endif
2653
2654         return FALSE;
2655 }
2656
2657 static boolean_t
2658 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2659               struct sk_buff *skb)
2660 {
2661         struct e1000_context_desc *context_desc;
2662         struct e1000_buffer *buffer_info;
2663         unsigned int i;
2664         uint8_t css;
2665
2666         if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2667                 css = skb->h.raw - skb->data;
2668
2669                 i = tx_ring->next_to_use;
2670                 buffer_info = &tx_ring->buffer_info[i];
2671                 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2672
2673                 context_desc->upper_setup.tcp_fields.tucss = css;
2674                 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
2675                 context_desc->upper_setup.tcp_fields.tucse = 0;
2676                 context_desc->tcp_seg_setup.data = 0;
2677                 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2678
2679                 buffer_info->time_stamp = jiffies;
2680
2681                 if (unlikely(++i == tx_ring->count)) i = 0;
2682                 tx_ring->next_to_use = i;
2683
2684                 return TRUE;
2685         }
2686
2687         return FALSE;
2688 }
2689
2690 #define E1000_MAX_TXD_PWR       12
2691 #define E1000_MAX_DATA_PER_TXD  (1<<E1000_MAX_TXD_PWR)
2692
2693 static int
2694 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2695              struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2696              unsigned int nr_frags, unsigned int mss)
2697 {
2698         struct e1000_buffer *buffer_info;
2699         unsigned int len = skb->len;
2700         unsigned int offset = 0, size, count = 0, i;
2701         unsigned int f;
2702         len -= skb->data_len;
2703
2704         i = tx_ring->next_to_use;
2705
2706         while (len) {
2707                 buffer_info = &tx_ring->buffer_info[i];
2708                 size = min(len, max_per_txd);
2709 #ifdef NETIF_F_TSO
2710                 /* Workaround for Controller erratum --
2711                  * descriptor for non-tso packet in a linear SKB that follows a
2712                  * tso gets written back prematurely before the data is fully
2713                  * DMA'd to the controller */
2714                 if (!skb->data_len && tx_ring->last_tx_tso &&
2715                     !skb_is_gso(skb)) {
2716                         tx_ring->last_tx_tso = 0;
2717                         size -= 4;
2718                 }
2719
2720                 /* Workaround for premature desc write-backs
2721                  * in TSO mode.  Append 4-byte sentinel desc */
2722                 if (unlikely(mss && !nr_frags && size == len && size > 8))
2723                         size -= 4;
2724 #endif
2725                 /* work-around for errata 10 and it applies
2726                  * to all controllers in PCI-X mode
2727                  * The fix is to make sure that the first descriptor of a
2728                  * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2729                  */
2730                 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2731                                 (size > 2015) && count == 0))
2732                         size = 2015;
2733
2734                 /* Workaround for potential 82544 hang in PCI-X.  Avoid
2735                  * terminating buffers within evenly-aligned dwords. */
2736                 if (unlikely(adapter->pcix_82544 &&
2737                    !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2738                    size > 4))
2739                         size -= 4;
2740
2741                 buffer_info->length = size;
2742                 buffer_info->dma =
2743                         pci_map_single(adapter->pdev,
2744                                 skb->data + offset,
2745                                 size,
2746                                 PCI_DMA_TODEVICE);
2747                 buffer_info->time_stamp = jiffies;
2748
2749                 len -= size;
2750                 offset += size;
2751                 count++;
2752                 if (unlikely(++i == tx_ring->count)) i = 0;
2753         }
2754
2755         for (f = 0; f < nr_frags; f++) {
2756                 struct skb_frag_struct *frag;
2757
2758                 frag = &skb_shinfo(skb)->frags[f];
2759                 len = frag->size;
2760                 offset = frag->page_offset;
2761
2762                 while (len) {
2763                         buffer_info = &tx_ring->buffer_info[i];
2764                         size = min(len, max_per_txd);
2765 #ifdef NETIF_F_TSO
2766                         /* Workaround for premature desc write-backs
2767                          * in TSO mode.  Append 4-byte sentinel desc */
2768                         if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2769                                 size -= 4;
2770 #endif
2771                         /* Workaround for potential 82544 hang in PCI-X.
2772                          * Avoid terminating buffers within evenly-aligned
2773                          * dwords. */
2774                         if (unlikely(adapter->pcix_82544 &&
2775                            !((unsigned long)(frag->page+offset+size-1) & 4) &&
2776                            size > 4))
2777                                 size -= 4;
2778
2779                         buffer_info->length = size;
2780                         buffer_info->dma =
2781                                 pci_map_page(adapter->pdev,
2782                                         frag->page,
2783                                         offset,
2784                                         size,
2785                                         PCI_DMA_TODEVICE);
2786                         buffer_info->time_stamp = jiffies;
2787
2788                         len -= size;
2789                         offset += size;
2790                         count++;
2791                         if (unlikely(++i == tx_ring->count)) i = 0;
2792                 }
2793         }
2794
2795         i = (i == 0) ? tx_ring->count - 1 : i - 1;
2796         tx_ring->buffer_info[i].skb = skb;
2797         tx_ring->buffer_info[first].next_to_watch = i;
2798
2799         return count;
2800 }
2801
2802 static void
2803 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2804                int tx_flags, int count)
2805 {
2806         struct e1000_tx_desc *tx_desc = NULL;
2807         struct e1000_buffer *buffer_info;
2808         uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2809         unsigned int i;
2810
2811         if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2812                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2813                              E1000_TXD_CMD_TSE;
2814                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2815
2816                 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2817                         txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2818         }
2819
2820         if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2821                 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2822                 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2823         }
2824
2825         if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2826                 txd_lower |= E1000_TXD_CMD_VLE;
2827                 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2828         }
2829
2830         i = tx_ring->next_to_use;
2831
2832         while (count--) {
2833                 buffer_info = &tx_ring->buffer_info[i];
2834                 tx_desc = E1000_TX_DESC(*tx_ring, i);
2835                 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2836                 tx_desc->lower.data =
2837                         cpu_to_le32(txd_lower | buffer_info->length);
2838                 tx_desc->upper.data = cpu_to_le32(txd_upper);
2839                 if (unlikely(++i == tx_ring->count)) i = 0;
2840         }
2841
2842         tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2843
2844         /* Force memory writes to complete before letting h/w
2845          * know there are new descriptors to fetch.  (Only
2846          * applicable for weak-ordered memory model archs,
2847          * such as IA-64). */
2848         wmb();
2849
2850         tx_ring->next_to_use = i;
2851         writel(i, adapter->hw.hw_addr + tx_ring->tdt);
2852 }
2853
2854 /**
2855  * 82547 workaround to avoid controller hang in half-duplex environment.
2856  * The workaround is to avoid queuing a large packet that would span
2857  * the internal Tx FIFO ring boundary by notifying the stack to resend
2858  * the packet at a later time.  This gives the Tx FIFO an opportunity to
2859  * flush all packets.  When that occurs, we reset the Tx FIFO pointers
2860  * to the beginning of the Tx FIFO.
2861  **/
2862
2863 #define E1000_FIFO_HDR                  0x10
2864 #define E1000_82547_PAD_LEN             0x3E0
2865
2866 static int
2867 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
2868 {
2869         uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2870         uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
2871
2872         E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
2873
2874         if (adapter->link_duplex != HALF_DUPLEX)
2875                 goto no_fifo_stall_required;
2876
2877         if (atomic_read(&adapter->tx_fifo_stall))
2878                 return 1;
2879
2880         if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2881                 atomic_set(&adapter->tx_fifo_stall, 1);
2882                 return 1;
2883         }
2884
2885 no_fifo_stall_required:
2886         adapter->tx_fifo_head += skb_fifo_len;
2887         if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
2888                 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2889         return 0;
2890 }
2891
2892 #define MINIMUM_DHCP_PACKET_SIZE 282
2893 static int
2894 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
2895 {
2896         struct e1000_hw *hw =  &adapter->hw;
2897         uint16_t length, offset;
2898         if (vlan_tx_tag_present(skb)) {
2899                 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
2900                         ( adapter->hw.mng_cookie.status &
2901                           E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
2902                         return 0;
2903         }
2904         if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
2905                 struct ethhdr *eth = (struct ethhdr *) skb->data;
2906                 if ((htons(ETH_P_IP) == eth->h_proto)) {
2907                         const struct iphdr *ip =
2908                                 (struct iphdr *)((uint8_t *)skb->data+14);
2909                         if (IPPROTO_UDP == ip->protocol) {
2910                                 struct udphdr *udp =
2911                                         (struct udphdr *)((uint8_t *)ip +
2912                                                 (ip->ihl << 2));
2913                                 if (ntohs(udp->dest) == 67) {
2914                                         offset = (uint8_t *)udp + 8 - skb->data;
2915                                         length = skb->len - offset;
2916
2917                                         return e1000_mng_write_dhcp_info(hw,
2918                                                         (uint8_t *)udp + 8,
2919                                                         length);
2920                                 }
2921                         }
2922                 }
2923         }
2924         return 0;
2925 }
2926
2927 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
2928 {
2929         struct e1000_adapter *adapter = netdev_priv(netdev);
2930         struct e1000_tx_ring *tx_ring = adapter->tx_ring;
2931
2932         netif_stop_queue(netdev);
2933         /* Herbert's original patch had:
2934          *  smp_mb__after_netif_stop_queue();
2935          * but since that doesn't exist yet, just open code it. */
2936         smp_mb();
2937
2938         /* We need to check again in a case another CPU has just
2939          * made room available. */
2940         if (likely(E1000_DESC_UNUSED(tx_ring) < size))
2941                 return -EBUSY;
2942
2943         /* A reprieve! */
2944         netif_start_queue(netdev);
2945         return 0;
2946 }
2947
2948 static int e1000_maybe_stop_tx(struct net_device *netdev,
2949                                struct e1000_tx_ring *tx_ring, int size)
2950 {
2951         if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
2952                 return 0;
2953         return __e1000_maybe_stop_tx(netdev, size);
2954 }
2955
2956 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2957 static int
2958 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2959 {
2960         struct e1000_adapter *adapter = netdev_priv(netdev);
2961         struct e1000_tx_ring *tx_ring;
2962         unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2963         unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2964         unsigned int tx_flags = 0;
2965         unsigned int len = skb->len;
2966         unsigned long flags;
2967         unsigned int nr_frags = 0;
2968         unsigned int mss = 0;
2969         int count = 0;
2970         int tso;
2971         unsigned int f;
2972         len -= skb->data_len;
2973
2974         /* This goes back to the question of how to logically map a tx queue
2975          * to a flow.  Right now, performance is impacted slightly negatively
2976          * if using multiple tx queues.  If the stack breaks away from a
2977          * single qdisc implementation, we can look at this again. */
2978         tx_ring = adapter->tx_ring;
2979
2980         if (unlikely(skb->len <= 0)) {
2981                 dev_kfree_skb_any(skb);
2982                 return NETDEV_TX_OK;
2983         }
2984
2985 #ifdef NETIF_F_TSO
2986         mss = skb_shinfo(skb)->gso_size;
2987         /* The controller does a simple calculation to
2988          * make sure there is enough room in the FIFO before
2989          * initiating the DMA for each buffer.  The calc is:
2990          * 4 = ceil(buffer len/mss).  To make sure we don't
2991          * overrun the FIFO, adjust the max buffer len if mss
2992          * drops. */
2993         if (mss) {
2994                 uint8_t hdr_len;
2995                 max_per_txd = min(mss << 2, max_per_txd);
2996                 max_txd_pwr = fls(max_per_txd) - 1;
2997
2998         /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
2999          * points to just header, pull a few bytes of payload from
3000          * frags into skb->data */
3001                 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
3002                 if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) {
3003                         switch (adapter->hw.mac_type) {
3004                                 unsigned int pull_size;
3005                         case e1000_82571:
3006                         case e1000_82572:
3007                         case e1000_82573:
3008                         case e1000_ich8lan:
3009                                 pull_size = min((unsigned int)4, skb->data_len);
3010                                 if (!__pskb_pull_tail(skb, pull_size)) {
3011                                         DPRINTK(DRV, ERR,
3012                                                 "__pskb_pull_tail failed.\n");
3013                                         dev_kfree_skb_any(skb);
3014                                         return NETDEV_TX_OK;
3015                                 }
3016                                 len = skb->len - skb->data_len;
3017                                 break;
3018                         default:
3019                                 /* do nothing */
3020                                 break;
3021                         }
3022                 }
3023         }
3024
3025         /* reserve a descriptor for the offload context */
3026         if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3027                 count++;
3028         count++;
3029 #else
3030         if (skb->ip_summed == CHECKSUM_PARTIAL)
3031                 count++;
3032 #endif
3033
3034 #ifdef NETIF_F_TSO
3035         /* Controller Erratum workaround */
3036         if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3037                 count++;
3038 #endif
3039
3040         count += TXD_USE_COUNT(len, max_txd_pwr);
3041
3042         if (adapter->pcix_82544)
3043                 count++;
3044
3045         /* work-around for errata 10 and it applies to all controllers
3046          * in PCI-X mode, so add one more descriptor to the count
3047          */
3048         if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
3049                         (len > 2015)))
3050                 count++;
3051
3052         nr_frags = skb_shinfo(skb)->nr_frags;
3053         for (f = 0; f < nr_frags; f++)
3054                 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3055                                        max_txd_pwr);
3056         if (adapter->pcix_82544)
3057                 count += nr_frags;
3058
3059
3060         if (adapter->hw.tx_pkt_filtering &&
3061             (adapter->hw.mac_type == e1000_82573))
3062                 e1000_transfer_dhcp_info(adapter, skb);
3063
3064         local_irq_save(flags);
3065         if (!spin_trylock(&tx_ring->tx_lock)) {
3066                 /* Collision - tell upper layer to requeue */
3067                 local_irq_restore(flags);
3068                 return NETDEV_TX_LOCKED;
3069         }
3070
3071         /* need: count + 2 desc gap to keep tail from touching
3072          * head, otherwise try next time */
3073         if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) {
3074                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3075                 return NETDEV_TX_BUSY;
3076         }
3077
3078         if (unlikely(adapter->hw.mac_type == e1000_82547)) {
3079                 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3080                         netif_stop_queue(netdev);
3081                         mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
3082                         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3083                         return NETDEV_TX_BUSY;
3084                 }
3085         }
3086
3087         if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3088                 tx_flags |= E1000_TX_FLAGS_VLAN;
3089                 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3090         }
3091
3092         first = tx_ring->next_to_use;
3093
3094         tso = e1000_tso(adapter, tx_ring, skb);
3095         if (tso < 0) {
3096                 dev_kfree_skb_any(skb);
3097                 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3098                 return NETDEV_TX_OK;
3099         }
3100
3101         if (likely(tso)) {
3102                 tx_ring->last_tx_tso = 1;
3103                 tx_flags |= E1000_TX_FLAGS_TSO;
3104         } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3105                 tx_flags |= E1000_TX_FLAGS_CSUM;
3106
3107         /* Old method was to assume IPv4 packet by default if TSO was enabled.
3108          * 82571 hardware supports TSO capabilities for IPv6 as well...
3109          * no longer assume, we must. */
3110         if (likely(skb->protocol == htons(ETH_P_IP)))
3111                 tx_flags |= E1000_TX_FLAGS_IPV4;
3112
3113         e1000_tx_queue(adapter, tx_ring, tx_flags,
3114                        e1000_tx_map(adapter, tx_ring, skb, first,
3115                                     max_per_txd, nr_frags, mss));
3116
3117         netdev->trans_start = jiffies;
3118
3119         /* Make sure there is space in the ring for the next send. */
3120         e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3121
3122         spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3123         return NETDEV_TX_OK;
3124 }
3125
3126 /**
3127  * e1000_tx_timeout - Respond to a Tx Hang
3128  * @netdev: network interface device structure
3129  **/
3130
3131 static void
3132 e1000_tx_timeout(struct net_device *netdev)
3133 {
3134         struct e1000_adapter *adapter = netdev_priv(netdev);
3135
3136         /* Do the reset outside of interrupt context */
3137         adapter->tx_timeout_count++;
3138         schedule_work(&adapter->reset_task);
3139 }
3140
3141 static void
3142 e1000_reset_task(struct net_device *netdev)
3143 {
3144         struct e1000_adapter *adapter = netdev_priv(netdev);
3145
3146         e1000_reinit_locked(adapter);
3147 }
3148
3149 /**
3150  * e1000_get_stats - Get System Network Statistics
3151  * @netdev: network interface device structure
3152  *
3153  * Returns the address of the device statistics structure.
3154  * The statistics are actually updated from the timer callback.
3155  **/
3156
3157 static struct net_device_stats *
3158 e1000_get_stats(struct net_device *netdev)
3159 {
3160         struct e1000_adapter *adapter = netdev_priv(netdev);
3161
3162         /* only return the current stats */
3163         return &adapter->net_stats;
3164 }
3165
3166 /**
3167  * e1000_change_mtu - Change the Maximum Transfer Unit
3168  * @netdev: network interface device structure
3169  * @new_mtu: new value for maximum frame size
3170  *
3171  * Returns 0 on success, negative on failure
3172  **/
3173
3174 static int
3175 e1000_change_mtu(struct net_device *netdev, int new_mtu)
3176 {
3177         struct e1000_adapter *adapter = netdev_priv(netdev);
3178         int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3179         uint16_t eeprom_data = 0;
3180
3181         if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3182             (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3183                 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3184                 return -EINVAL;
3185         }
3186
3187         /* Adapter-specific max frame size limits. */
3188         switch (adapter->hw.mac_type) {
3189         case e1000_undefined ... e1000_82542_rev2_1:
3190         case e1000_ich8lan:
3191                 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3192                         DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3193                         return -EINVAL;
3194                 }
3195                 break;
3196         case e1000_82573:
3197                 /* Jumbo Frames not supported if:
3198                  * - this is not an 82573L device
3199                  * - ASPM is enabled in any way (0x1A bits 3:2) */
3200                 e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
3201                                   &eeprom_data);
3202                 if ((adapter->hw.device_id != E1000_DEV_ID_82573L) ||
3203                     (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
3204                         if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3205                                 DPRINTK(PROBE, ERR,
3206                                         "Jumbo Frames not supported.\n");
3207                                 return -EINVAL;
3208                         }
3209                         break;
3210                 }
3211                 /* ERT will be enabled later to enable wire speed receives */
3212
3213                 /* fall through to get support */
3214         case e1000_82571:
3215         case e1000_82572:
3216         case e1000_80003es2lan:
3217 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3218                 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3219                         DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3220                         return -EINVAL;
3221                 }
3222                 break;
3223         default:
3224                 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3225                 break;
3226         }
3227
3228         /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3229          * means we reserve 2 more, this pushes us to allocate from the next
3230          * larger slab size
3231          * i.e. RXBUFFER_2048 --> size-4096 slab */
3232
3233         if (max_frame <= E1000_RXBUFFER_256)
3234                 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3235         else if (max_frame <= E1000_RXBUFFER_512)
3236                 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3237         else if (max_frame <= E1000_RXBUFFER_1024)
3238                 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3239         else if (max_frame <= E1000_RXBUFFER_2048)
3240                 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3241         else if (max_frame <= E1000_RXBUFFER_4096)
3242                 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3243         else if (max_frame <= E1000_RXBUFFER_8192)
3244                 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3245         else if (max_frame <= E1000_RXBUFFER_16384)
3246                 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3247
3248         /* adjust allocation if LPE protects us, and we aren't using SBP */
3249         if (!adapter->hw.tbi_compatibility_on &&
3250             ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3251              (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3252                 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3253
3254         netdev->mtu = new_mtu;
3255
3256         if (netif_running(netdev))
3257                 e1000_reinit_locked(adapter);
3258
3259         adapter->hw.max_frame_size = max_frame;
3260
3261         return 0;
3262 }
3263
3264 /**
3265  * e1000_update_stats - Update the board statistics counters
3266  * @adapter: board private structure
3267  **/
3268
3269 void
3270 e1000_update_stats(struct e1000_adapter *adapter)
3271 {
3272         struct e1000_hw *hw = &adapter->hw;
3273         struct pci_dev *pdev = adapter->pdev;
3274         unsigned long flags;
3275         uint16_t phy_tmp;
3276
3277 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3278
3279         /*
3280          * Prevent stats update while adapter is being reset, or if the pci
3281          * connection is down.
3282          */
3283         if (adapter->link_speed == 0)
3284                 return;
3285         if (pdev->error_state && pdev->error_state != pci_channel_io_normal)
3286                 return;
3287
3288         spin_lock_irqsave(&adapter->stats_lock, flags);
3289
3290         /* these counters are modified from e1000_adjust_tbi_stats,
3291          * called from the interrupt context, so they must only
3292          * be written while holding adapter->stats_lock
3293          */
3294
3295         adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3296         adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3297         adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3298         adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3299         adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3300         adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3301         adapter->stats.roc += E1000_READ_REG(hw, ROC);
3302
3303         if (adapter->hw.mac_type != e1000_ich8lan) {
3304         adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3305         adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3306         adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3307         adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3308         adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3309         adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3310         }
3311
3312         adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3313         adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3314         adapter->stats.scc += E1000_READ_REG(hw, SCC);
3315         adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3316         adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3317         adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3318         adapter->stats.dc += E1000_READ_REG(hw, DC);
3319         adapter->stats.sec += E1000_READ_REG(hw, SEC);
3320         adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3321         adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3322         adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3323         adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3324         adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3325         adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3326         adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3327         adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3328         adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3329         adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3330         adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3331         adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3332         adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3333         adapter->stats.torl += E1000_READ_REG(hw, TORL);
3334         adapter->stats.torh += E1000_READ_REG(hw, TORH);
3335         adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3336         adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3337         adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3338
3339         if (adapter->hw.mac_type != e1000_ich8lan) {
3340         adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3341         adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3342         adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3343         adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3344         adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3345         adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3346         }
3347
3348         adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3349         adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3350
3351         /* used for adaptive IFS */
3352
3353         hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3354         adapter->stats.tpt += hw->tx_packet_delta;
3355         hw->collision_delta = E1000_READ_REG(hw, COLC);
3356         adapter->stats.colc += hw->collision_delta;
3357
3358         if (hw->mac_type >= e1000_82543) {
3359                 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3360                 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3361                 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3362                 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3363                 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3364                 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3365         }
3366         if (hw->mac_type > e1000_82547_rev_2) {
3367                 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3368                 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3369
3370                 if (adapter->hw.mac_type != e1000_ich8lan) {
3371                 adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3372                 adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3373                 adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3374                 adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3375                 adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3376                 adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3377                 adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3378                 }
3379         }
3380
3381         /* Fill out the OS statistics structure */
3382
3383         adapter->net_stats.rx_packets = adapter->stats.gprc;
3384         adapter->net_stats.tx_packets = adapter->stats.gptc;
3385         adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3386         adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3387         adapter->net_stats.multicast = adapter->stats.mprc;
3388         adapter->net_stats.collisions = adapter->stats.colc;
3389
3390         /* Rx Errors */
3391
3392         /* RLEC on some newer hardware can be incorrect so build
3393         * our own version based on RUC and ROC */
3394         adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3395                 adapter->stats.crcerrs + adapter->stats.algnerrc +
3396                 adapter->stats.ruc + adapter->stats.roc +
3397                 adapter->stats.cexterr;
3398         adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3399         adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
3400         adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3401         adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3402         adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3403
3404         /* Tx Errors */
3405         adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3406         adapter->net_stats.tx_errors = adapter->stats.txerrc;
3407         adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3408         adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3409         adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3410
3411         /* Tx Dropped needs to be maintained elsewhere */
3412
3413         /* Phy Stats */
3414
3415         if (hw->media_type == e1000_media_type_copper) {
3416                 if ((adapter->link_speed == SPEED_1000) &&
3417                    (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3418                         phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3419                         adapter->phy_stats.idle_errors += phy_tmp;
3420                 }
3421
3422                 if ((hw->mac_type <= e1000_82546) &&
3423                    (hw->phy_type == e1000_phy_m88) &&
3424                    !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3425                         adapter->phy_stats.receive_errors += phy_tmp;
3426         }
3427
3428         spin_unlock_irqrestore(&adapter->stats_lock, flags);
3429 }
3430
3431 /**
3432  * e1000_intr - Interrupt Handler
3433  * @irq: interrupt number
3434  * @data: pointer to a network interface device structure
3435  * @pt_regs: CPU registers structure
3436  **/
3437
3438 static irqreturn_t
3439 e1000_intr(int irq, void *data, struct pt_regs *regs)
3440 {
3441         struct net_device *netdev = data;
3442         struct e1000_adapter *adapter = netdev_priv(netdev);
3443         struct e1000_hw *hw = &adapter->hw;
3444         uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
3445 #ifndef CONFIG_E1000_NAPI
3446         int i;
3447 #else
3448         /* Interrupt Auto-Mask...upon reading ICR,
3449          * interrupts are masked.  No need for the
3450          * IMC write, but it does mean we should
3451          * account for it ASAP. */
3452         if (likely(hw->mac_type >= e1000_82571))
3453                 atomic_inc(&adapter->irq_sem);
3454 #endif
3455
3456         if (unlikely(!icr)) {
3457 #ifdef CONFIG_E1000_NAPI
3458                 if (hw->mac_type >= e1000_82571)
3459                         e1000_irq_enable(adapter);
3460 #endif
3461                 return IRQ_NONE;  /* Not our interrupt */
3462         }
3463
3464         if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3465                 hw->get_link_status = 1;
3466                 /* 80003ES2LAN workaround--
3467                  * For packet buffer work-around on link down event;
3468                  * disable receives here in the ISR and
3469                  * reset adapter in watchdog
3470                  */
3471                 if (netif_carrier_ok(netdev) &&
3472                     (adapter->hw.mac_type == e1000_80003es2lan)) {
3473                         /* disable receives */
3474                         rctl = E1000_READ_REG(hw, RCTL);
3475                         E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3476                 }
3477                 /* guard against interrupt when we're going down */
3478                 if (!test_bit(__E1000_DOWN, &adapter->flags))
3479                         mod_timer(&adapter->watchdog_timer, jiffies + 1);
3480         }
3481
3482 #ifdef CONFIG_E1000_NAPI
3483         if (unlikely(hw->mac_type < e1000_82571)) {
3484                 atomic_inc(&adapter->irq_sem);
3485                 E1000_WRITE_REG(hw, IMC, ~0);
3486                 E1000_WRITE_FLUSH(hw);
3487         }
3488         if (likely(netif_rx_schedule_prep(netdev)))
3489                 __netif_rx_schedule(netdev);
3490         else
3491                 e1000_irq_enable(adapter);
3492 #else
3493         /* Writing IMC and IMS is needed for 82547.
3494          * Due to Hub Link bus being occupied, an interrupt
3495          * de-assertion message is not able to be sent.
3496          * When an interrupt assertion message is generated later,
3497          * two messages are re-ordered and sent out.
3498          * That causes APIC to think 82547 is in de-assertion
3499          * state, while 82547 is in assertion state, resulting
3500          * in dead lock. Writing IMC forces 82547 into
3501          * de-assertion state.
3502          */
3503         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
3504                 atomic_inc(&adapter->irq_sem);
3505                 E1000_WRITE_REG(hw, IMC, ~0);
3506         }
3507
3508         for (i = 0; i < E1000_MAX_INTR; i++)
3509                 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3510                    !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3511                         break;
3512
3513         if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3514                 e1000_irq_enable(adapter);
3515
3516 #endif
3517
3518         return IRQ_HANDLED;
3519 }
3520
3521 #ifdef CONFIG_E1000_NAPI
3522 /**
3523  * e1000_clean - NAPI Rx polling callback
3524  * @adapter: board private structure
3525  **/
3526
3527 static int
3528 e1000_clean(struct net_device *poll_dev, int *budget)
3529 {
3530         struct e1000_adapter *adapter;
3531         int work_to_do = min(*budget, poll_dev->quota);
3532         int tx_cleaned = 0, work_done = 0;
3533
3534         /* Must NOT use netdev_priv macro here. */
3535         adapter = poll_dev->priv;
3536
3537         /* Keep link state information with original netdev */
3538         if (!netif_carrier_ok(poll_dev))
3539                 goto quit_polling;
3540
3541         /* e1000_clean is called per-cpu.  This lock protects
3542          * tx_ring[0] from being cleaned by multiple cpus
3543          * simultaneously.  A failure obtaining the lock means
3544          * tx_ring[0] is currently being cleaned anyway. */
3545         if (spin_trylock(&adapter->tx_queue_lock)) {
3546                 tx_cleaned = e1000_clean_tx_irq(adapter,
3547                                                 &adapter->tx_ring[0]);
3548                 spin_unlock(&adapter->tx_queue_lock);
3549         }
3550
3551         adapter->clean_rx(adapter, &adapter->rx_ring[0],
3552                           &work_done, work_to_do);
3553
3554         *budget -= work_done;
3555         poll_dev->quota -= work_done;
3556
3557         /* If no Tx and not enough Rx work done, exit the polling mode */
3558         if ((!tx_cleaned && (work_done == 0)) ||
3559            !netif_running(poll_dev)) {
3560 quit_polling:
3561                 netif_rx_complete(poll_dev);
3562                 e1000_irq_enable(adapter);
3563                 return 0;
3564         }
3565
3566         return 1;
3567 }
3568
3569 #endif
3570 /**
3571  * e1000_clean_tx_irq - Reclaim resources after transmit completes
3572  * @adapter: board private structure
3573  **/
3574
3575 static boolean_t
3576 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3577                    struct e1000_tx_ring *tx_ring)
3578 {
3579         struct net_device *netdev = adapter->netdev;
3580         struct e1000_tx_desc *tx_desc, *eop_desc;
3581         struct e1000_buffer *buffer_info;
3582         unsigned int i, eop;
3583 #ifdef CONFIG_E1000_NAPI
3584         unsigned int count = 0;
3585 #endif
3586         boolean_t cleaned = FALSE;
3587
3588         i = tx_ring->next_to_clean;
3589         eop = tx_ring->buffer_info[i].next_to_watch;
3590         eop_desc = E1000_TX_DESC(*tx_ring, eop);
3591
3592         while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3593                 for (cleaned = FALSE; !cleaned; ) {
3594                         tx_desc = E1000_TX_DESC(*tx_ring, i);
3595                         buffer_info = &tx_ring->buffer_info[i];
3596                         cleaned = (i == eop);
3597
3598                         e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3599                         memset(tx_desc, 0, sizeof(struct e1000_tx_desc));
3600
3601                         if (unlikely(++i == tx_ring->count)) i = 0;
3602                 }
3603
3604
3605                 eop = tx_ring->buffer_info[i].next_to_watch;
3606                 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3607 #ifdef CONFIG_E1000_NAPI
3608 #define E1000_TX_WEIGHT 64
3609                 /* weight of a sort for tx, to avoid endless transmit cleanup */
3610                 if (count++ == E1000_TX_WEIGHT) break;
3611 #endif
3612         }
3613
3614         tx_ring->next_to_clean = i;
3615
3616 #define TX_WAKE_THRESHOLD 32
3617         if (unlikely(cleaned && netif_carrier_ok(netdev) &&
3618                      E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3619                 /* Make sure that anybody stopping the queue after this
3620                  * sees the new next_to_clean.
3621                  */
3622                 smp_mb();
3623                 if (netif_queue_stopped(netdev))
3624                         netif_wake_queue(netdev);
3625         }
3626
3627         if (adapter->detect_tx_hung) {
3628                 /* Detect a transmit hang in hardware, this serializes the
3629                  * check with the clearing of time_stamp and movement of i */
3630                 adapter->detect_tx_hung = FALSE;
3631                 if (tx_ring->buffer_info[eop].dma &&
3632                     time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3633                                (adapter->tx_timeout_factor * HZ))
3634                     && !(E1000_READ_REG(&adapter->hw, STATUS) &
3635                          E1000_STATUS_TXOFF)) {
3636
3637                         /* detected Tx unit hang */
3638                         DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3639                                         "  Tx Queue             <%lu>\n"
3640                                         "  TDH                  <%x>\n"
3641                                         "  TDT                  <%x>\n"
3642                                         "  next_to_use          <%x>\n"
3643                                         "  next_to_clean        <%x>\n"
3644                                         "buffer_info[next_to_clean]\n"
3645                                         "  time_stamp           <%lx>\n"
3646                                         "  next_to_watch        <%x>\n"
3647                                         "  jiffies              <%lx>\n"
3648                                         "  next_to_watch.status <%x>\n",
3649                                 (unsigned long)((tx_ring - adapter->tx_ring) /
3650                                         sizeof(struct e1000_tx_ring)),
3651                                 readl(adapter->hw.hw_addr + tx_ring->tdh),
3652                                 readl(adapter->hw.hw_addr + tx_ring->tdt),
3653                                 tx_ring->next_to_use,
3654                                 tx_ring->next_to_clean,
3655                                 tx_ring->buffer_info[eop].time_stamp,
3656                                 eop,
3657                                 jiffies,
3658                                 eop_desc->upper.fields.status);
3659                         netif_stop_queue(netdev);
3660                 }
3661         }
3662         return cleaned;
3663 }
3664
3665 /**
3666  * e1000_rx_checksum - Receive Checksum Offload for 82543
3667  * @adapter:     board private structure
3668  * @status_err:  receive descriptor status and error fields
3669  * @csum:        receive descriptor csum field
3670  * @sk_buff:     socket buffer with received data
3671  **/
3672
3673 static void
3674 e1000_rx_checksum(struct e1000_adapter *adapter,
3675                   uint32_t status_err, uint32_t csum,
3676                   struct sk_buff *skb)
3677 {
3678         uint16_t status = (uint16_t)status_err;
3679         uint8_t errors = (uint8_t)(status_err >> 24);
3680         skb->ip_summed = CHECKSUM_NONE;
3681
3682         /* 82543 or newer only */
3683         if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
3684         /* Ignore Checksum bit is set */
3685         if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3686         /* TCP/UDP checksum error bit is set */
3687         if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3688                 /* let the stack verify checksum errors */
3689                 adapter->hw_csum_err++;
3690                 return;
3691         }
3692         /* TCP/UDP Checksum has not been calculated */
3693         if (adapter->hw.mac_type <= e1000_82547_rev_2) {
3694                 if (!(status & E1000_RXD_STAT_TCPCS))
3695                         return;
3696         } else {
3697                 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3698                         return;
3699         }
3700         /* It must be a TCP or UDP packet with a valid checksum */
3701         if (likely(status & E1000_RXD_STAT_TCPCS)) {
3702                 /* TCP checksum is good */
3703                 skb->ip_summed = CHECKSUM_UNNECESSARY;
3704         } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
3705                 /* IP fragment with UDP payload */
3706                 /* Hardware complements the payload checksum, so we undo it
3707                  * and then put the value in host order for further stack use.
3708                  */
3709                 csum = ntohl(csum ^ 0xFFFF);
3710                 skb->csum = csum;
3711                 skb->ip_summed = CHECKSUM_COMPLETE;
3712         }
3713         adapter->hw_csum_good++;
3714 }
3715
3716 /**
3717  * e1000_clean_rx_irq - Send received data up the network stack; legacy
3718  * @adapter: board private structure
3719  **/
3720
3721 static boolean_t
3722 #ifdef CONFIG_E1000_NAPI
3723 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3724                    struct e1000_rx_ring *rx_ring,
3725                    int *work_done, int work_to_do)
3726 #else
3727 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3728                    struct e1000_rx_ring *rx_ring)
3729 #endif
3730 {
3731         struct net_device *netdev = adapter->netdev;
3732         struct pci_dev *pdev = adapter->pdev;
3733         struct e1000_rx_desc *rx_desc, *next_rxd;
3734         struct e1000_buffer *buffer_info, *next_buffer;
3735         unsigned long flags;
3736         uint32_t length;
3737         uint8_t last_byte;
3738         unsigned int i;
3739         int cleaned_count = 0;
3740         boolean_t cleaned = FALSE;
3741
3742         i = rx_ring->next_to_clean;
3743         rx_desc = E1000_RX_DESC(*rx_ring, i);
3744         buffer_info = &rx_ring->buffer_info[i];
3745
3746         while (rx_desc->status & E1000_RXD_STAT_DD) {
3747                 struct sk_buff *skb;
3748                 u8 status;
3749 #ifdef CONFIG_E1000_NAPI
3750                 if (*work_done >= work_to_do)
3751                         break;
3752                 (*work_done)++;
3753 #endif
3754                 status = rx_desc->status;
3755                 skb = buffer_info->skb;
3756                 buffer_info->skb = NULL;
3757
3758                 prefetch(skb->data - NET_IP_ALIGN);
3759
3760                 if (++i == rx_ring->count) i = 0;
3761                 next_rxd = E1000_RX_DESC(*rx_ring, i);
3762                 prefetch(next_rxd);
3763
3764                 next_buffer = &rx_ring->buffer_info[i];
3765
3766                 cleaned = TRUE;
3767                 cleaned_count++;
3768                 pci_unmap_single(pdev,
3769                                  buffer_info->dma,
3770                                  buffer_info->length,
3771                                  PCI_DMA_FROMDEVICE);
3772
3773                 length = le16_to_cpu(rx_desc->length);
3774
3775                 /* adjust length to remove Ethernet CRC */
3776                 length -= 4;
3777
3778                 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
3779                         /* All receives must fit into a single buffer */
3780                         E1000_DBG("%s: Receive packet consumed multiple"
3781                                   " buffers\n", netdev->name);
3782                         /* recycle */
3783                         buffer_info->skb = skb;
3784                         goto next_desc;
3785                 }
3786
3787                 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3788                         last_byte = *(skb->data + length - 1);
3789                         if (TBI_ACCEPT(&adapter->hw, status,
3790                                       rx_desc->errors, length, last_byte)) {
3791                                 spin_lock_irqsave(&adapter->stats_lock, flags);
3792                                 e1000_tbi_adjust_stats(&adapter->hw,
3793                                                        &adapter->stats,
3794                                                        length, skb->data);
3795                                 spin_unlock_irqrestore(&adapter->stats_lock,
3796                                                        flags);
3797                                 length--;
3798                         } else {
3799                                 /* recycle */
3800                                 buffer_info->skb = skb;
3801                                 goto next_desc;
3802                         }
3803                 }
3804
3805                 /* code added for copybreak, this should improve
3806                  * performance for small packets with large amounts
3807                  * of reassembly being done in the stack */
3808 #define E1000_CB_LENGTH 256
3809                 if (length < E1000_CB_LENGTH) {
3810                         struct sk_buff *new_skb =
3811                             netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
3812                         if (new_skb) {
3813                                 skb_reserve(new_skb, NET_IP_ALIGN);
3814                                 memcpy(new_skb->data - NET_IP_ALIGN,
3815                                        skb->data - NET_IP_ALIGN,
3816                                        length + NET_IP_ALIGN);
3817                                 /* save the skb in buffer_info as good */
3818                                 buffer_info->skb = skb;
3819                                 skb = new_skb;
3820                                 skb_put(skb, length);
3821                         }
3822                 } else
3823                         skb_put(skb, length);
3824
3825                 /* end copybreak code */
3826
3827                 /* Receive Checksum Offload */
3828                 e1000_rx_checksum(adapter,
3829                                   (uint32_t)(status) |
3830                                   ((uint32_t)(rx_desc->errors) << 24),
3831                                   le16_to_cpu(rx_desc->csum), skb);
3832
3833                 skb->protocol = eth_type_trans(skb, netdev);
3834 #ifdef CONFIG_E1000_NAPI
3835                 if (unlikely(adapter->vlgrp &&
3836                             (status & E1000_RXD_STAT_VP))) {
3837                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3838                                                  le16_to_cpu(rx_desc->special) &
3839                                                  E1000_RXD_SPC_VLAN_MASK);
3840                 } else {
3841                         netif_receive_skb(skb);
3842                 }
3843 #else /* CONFIG_E1000_NAPI */
3844                 if (unlikely(adapter->vlgrp &&
3845                             (status & E1000_RXD_STAT_VP))) {
3846                         vlan_hwaccel_rx(skb, adapter->vlgrp,
3847                                         le16_to_cpu(rx_desc->special) &
3848                                         E1000_RXD_SPC_VLAN_MASK);
3849                 } else {
3850                         netif_rx(skb);
3851                 }
3852 #endif /* CONFIG_E1000_NAPI */
3853                 netdev->last_rx = jiffies;
3854
3855 next_desc:
3856                 rx_desc->status = 0;
3857
3858                 /* return some buffers to hardware, one at a time is too slow */
3859                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3860                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3861                         cleaned_count = 0;
3862                 }
3863
3864                 /* use prefetched values */
3865                 rx_desc = next_rxd;
3866                 buffer_info = next_buffer;
3867         }
3868         rx_ring->next_to_clean = i;
3869
3870         cleaned_count = E1000_DESC_UNUSED(rx_ring);
3871         if (cleaned_count)
3872                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3873
3874         return cleaned;
3875 }
3876
3877 /**
3878  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
3879  * @adapter: board private structure
3880  **/
3881
3882 static boolean_t
3883 #ifdef CONFIG_E1000_NAPI
3884 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3885                       struct e1000_rx_ring *rx_ring,
3886                       int *work_done, int work_to_do)
3887 #else
3888 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3889                       struct e1000_rx_ring *rx_ring)
3890 #endif
3891 {
3892         union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
3893         struct net_device *netdev = adapter->netdev;
3894         struct pci_dev *pdev = adapter->pdev;
3895         struct e1000_buffer *buffer_info, *next_buffer;
3896         struct e1000_ps_page *ps_page;
3897         struct e1000_ps_page_dma *ps_page_dma;
3898         struct sk_buff *skb;
3899         unsigned int i, j;
3900         uint32_t length, staterr;
3901         int cleaned_count = 0;
3902         boolean_t cleaned = FALSE;
3903
3904         i = rx_ring->next_to_clean;
3905         rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3906         staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3907         buffer_info = &rx_ring->buffer_info[i];
3908
3909         while (staterr & E1000_RXD_STAT_DD) {
3910                 ps_page = &rx_ring->ps_page[i];
3911                 ps_page_dma = &rx_ring->ps_page_dma[i];
3912 #ifdef CONFIG_E1000_NAPI
3913                 if (unlikely(*work_done >= work_to_do))
3914                         break;
3915                 (*work_done)++;
3916 #endif
3917                 skb = buffer_info->skb;
3918
3919                 /* in the packet split case this is header only */
3920                 prefetch(skb->data - NET_IP_ALIGN);
3921
3922                 if (++i == rx_ring->count) i = 0;
3923                 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
3924                 prefetch(next_rxd);
3925
3926                 next_buffer = &rx_ring->buffer_info[i];
3927
3928                 cleaned = TRUE;
3929                 cleaned_count++;
3930                 pci_unmap_single(pdev, buffer_info->dma,
3931                                  buffer_info->length,
3932                                  PCI_DMA_FROMDEVICE);
3933
3934                 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
3935                         E1000_DBG("%s: Packet Split buffers didn't pick up"
3936                                   " the full packet\n", netdev->name);
3937                         dev_kfree_skb_irq(skb);
3938                         goto next_desc;
3939                 }
3940
3941                 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3942                         dev_kfree_skb_irq(skb);
3943                         goto next_desc;
3944                 }
3945
3946                 length = le16_to_cpu(rx_desc->wb.middle.length0);
3947
3948                 if (unlikely(!length)) {
3949                         E1000_DBG("%s: Last part of the packet spanning"
3950                                   " multiple descriptors\n", netdev->name);
3951                         dev_kfree_skb_irq(skb);
3952                         goto next_desc;
3953                 }
3954
3955                 /* Good Receive */
3956                 skb_put(skb, length);
3957
3958                 {
3959                 /* this looks ugly, but it seems compiler issues make it
3960                    more efficient than reusing j */
3961                 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
3962
3963                 /* page alloc/put takes too long and effects small packet
3964                  * throughput, so unsplit small packets and save the alloc/put*/
3965                 if (l1 && ((length + l1) <= adapter->rx_ps_bsize0)) {
3966                         u8 *vaddr;
3967                         /* there is no documentation about how to call
3968                          * kmap_atomic, so we can't hold the mapping
3969                          * very long */
3970                         pci_dma_sync_single_for_cpu(pdev,
3971                                 ps_page_dma->ps_page_dma[0],
3972                                 PAGE_SIZE,
3973                                 PCI_DMA_FROMDEVICE);
3974                         vaddr = kmap_atomic(ps_page->ps_page[0],
3975                                             KM_SKB_DATA_SOFTIRQ);
3976                         memcpy(skb->tail, vaddr, l1);
3977                         kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
3978                         pci_dma_sync_single_for_device(pdev,
3979                                 ps_page_dma->ps_page_dma[0],
3980                                 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3981                         /* remove the CRC */
3982                         l1 -= 4;
3983                         skb_put(skb, l1);
3984                         goto copydone;
3985                 } /* if */
3986                 }
3987                 
3988                 for (j = 0; j < adapter->rx_ps_pages; j++) {
3989                         if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
3990                                 break;
3991                         pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
3992                                         PAGE_SIZE, PCI_DMA_FROMDEVICE);
3993                         ps_page_dma->ps_page_dma[j] = 0;
3994                         skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
3995                                            length);
3996                         ps_page->ps_page[j] = NULL;
3997                         skb->len += length;
3998                         skb->data_len += length;
3999                         skb->truesize += length;
4000                 }
4001
4002                 /* strip the ethernet crc, problem is we're using pages now so
4003                  * this whole operation can get a little cpu intensive */
4004                 pskb_trim(skb, skb->len - 4);
4005
4006 copydone:
4007                 e1000_rx_checksum(adapter, staterr,
4008                                   le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
4009                 skb->protocol = eth_type_trans(skb, netdev);
4010
4011                 if (likely(rx_desc->wb.upper.header_status &
4012                            cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
4013                         adapter->rx_hdr_split++;
4014 #ifdef CONFIG_E1000_NAPI
4015                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4016                         vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4017                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
4018                                 E1000_RXD_SPC_VLAN_MASK);
4019                 } else {
4020                         netif_receive_skb(skb);
4021                 }
4022 #else /* CONFIG_E1000_NAPI */
4023                 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4024                         vlan_hwaccel_rx(skb, adapter->vlgrp,
4025                                 le16_to_cpu(rx_desc->wb.middle.vlan) &
4026                                 E1000_RXD_SPC_VLAN_MASK);
4027                 } else {
4028                         netif_rx(skb);
4029                 }
4030 #endif /* CONFIG_E1000_NAPI */
4031                 netdev->last_rx = jiffies;
4032
4033 next_desc:
4034                 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
4035                 buffer_info->skb = NULL;
4036
4037                 /* return some buffers to hardware, one at a time is too slow */
4038                 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4039                         adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4040                         cleaned_count = 0;
4041                 }
4042
4043                 /* use prefetched values */
4044                 rx_desc = next_rxd;
4045                 buffer_info = next_buffer;
4046
4047                 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4048         }
4049         rx_ring->next_to_clean = i;
4050
4051         cleaned_count = E1000_DESC_UNUSED(rx_ring);
4052         if (cleaned_count)
4053                 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4054
4055         return cleaned;
4056 }
4057
4058 /**
4059  * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4060  * @adapter: address of board private structure
4061  **/
4062
4063 static void
4064 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4065                        struct e1000_rx_ring *rx_ring,
4066                        int cleaned_count)
4067 {
4068         struct net_device *netdev = adapter->netdev;
4069         struct pci_dev *pdev = adapter->pdev;
4070         struct e1000_rx_desc *rx_desc;
4071         struct e1000_buffer *buffer_info;
4072         struct sk_buff *skb;
4073         unsigned int i;
4074         unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4075
4076         i = rx_ring->next_to_use;
4077         buffer_info = &rx_ring->buffer_info[i];
4078
4079         while (cleaned_count--) {
4080                 skb = buffer_info->skb;
4081                 if (skb) {
4082                         skb_trim(skb, 0);
4083                         goto map_skb;
4084                 }
4085
4086                 skb = netdev_alloc_skb(netdev, bufsz);
4087                 if (unlikely(!skb)) {
4088                         /* Better luck next round */
4089                         adapter->alloc_rx_buff_failed++;
4090                         break;
4091                 }
4092
4093                 /* Fix for errata 23, can't cross 64kB boundary */
4094                 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4095                         struct sk_buff *oldskb = skb;
4096                         DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4097                                              "at %p\n", bufsz, skb->data);
4098                         /* Try again, without freeing the previous */
4099                         skb = netdev_alloc_skb(netdev, bufsz);
4100                         /* Failed allocation, critical failure */
4101                         if (!skb) {
4102                                 dev_kfree_skb(oldskb);
4103                                 break;
4104                         }
4105
4106                         if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4107                                 /* give up */
4108                                 dev_kfree_skb(skb);
4109                                 dev_kfree_skb(oldskb);
4110                                 break; /* while !buffer_info->skb */
4111                         }
4112
4113                         /* Use new allocation */
4114                         dev_kfree_skb(oldskb);
4115                 }
4116                 /* Make buffer alignment 2 beyond a 16 byte boundary
4117                  * this will result in a 16 byte aligned IP header after
4118                  * the 14 byte MAC header is removed
4119                  */
4120                 skb_reserve(skb, NET_IP_ALIGN);
4121
4122                 buffer_info->skb = skb;
4123                 buffer_info->length = adapter->rx_buffer_len;
4124 map_skb:
4125                 buffer_info->dma = pci_map_single(pdev,
4126                                                   skb->data,
4127                                                   adapter->rx_buffer_len,
4128                                                   PCI_DMA_FROMDEVICE);
4129
4130                 /* Fix for errata 23, can't cross 64kB boundary */
4131                 if (!e1000_check_64k_bound(adapter,
4132                                         (void *)(unsigned long)buffer_info->dma,
4133                                         adapter->rx_buffer_len)) {
4134                         DPRINTK(RX_ERR, ERR,
4135                                 "dma align check failed: %u bytes at %p\n",
4136                                 adapter->rx_buffer_len,
4137                                 (void *)(unsigned long)buffer_info->dma);
4138                         dev_kfree_skb(skb);
4139                         buffer_info->skb = NULL;
4140
4141                         pci_unmap_single(pdev, buffer_info->dma,
4142                                          adapter->rx_buffer_len,
4143                                          PCI_DMA_FROMDEVICE);
4144
4145                         break; /* while !buffer_info->skb */
4146                 }
4147                 rx_desc = E1000_RX_DESC(*rx_ring, i);
4148                 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4149
4150                 if (unlikely(++i == rx_ring->count))
4151                         i = 0;
4152                 buffer_info = &rx_ring->buffer_info[i];
4153         }
4154
4155         if (likely(rx_ring->next_to_use != i)) {
4156                 rx_ring->next_to_use = i;
4157                 if (unlikely(i-- == 0))
4158                         i = (rx_ring->count - 1);
4159
4160                 /* Force memory writes to complete before letting h/w
4161                  * know there are new descriptors to fetch.  (Only
4162                  * applicable for weak-ordered memory model archs,
4163                  * such as IA-64). */
4164                 wmb();
4165                 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4166         }
4167 }
4168
4169 /**
4170  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
4171  * @adapter: address of board private structure
4172  **/
4173
4174 static void
4175 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
4176                           struct e1000_rx_ring *rx_ring,
4177                           int cleaned_count)
4178 {
4179         struct net_device *netdev = adapter->netdev;
4180         struct pci_dev *pdev = adapter->pdev;
4181         union e1000_rx_desc_packet_split *rx_desc;
4182         struct e1000_buffer *buffer_info;
4183         struct e1000_ps_page *ps_page;
4184         struct e1000_ps_page_dma *ps_page_dma;
4185         struct sk_buff *skb;
4186         unsigned int i, j;
4187
4188         i = rx_ring->next_to_use;
4189         buffer_info = &rx_ring->buffer_info[i];
4190         ps_page = &rx_ring->ps_page[i];
4191         ps_page_dma = &rx_ring->ps_page_dma[i];
4192
4193         while (cleaned_count--) {
4194                 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4195
4196                 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
4197                         if (j < adapter->rx_ps_pages) {
4198                                 if (likely(!ps_page->ps_page[j])) {
4199                                         ps_page->ps_page[j] =
4200                                                 alloc_page(GFP_ATOMIC);
4201                                         if (unlikely(!ps_page->ps_page[j])) {
4202                                                 adapter->alloc_rx_buff_failed++;
4203                                                 goto no_buffers;
4204                                         }
4205                                         ps_page_dma->ps_page_dma[j] =
4206                                                 pci_map_page(pdev,
4207                                                             ps_page->ps_page[j],
4208                                                             0, PAGE_SIZE,
4209                                                             PCI_DMA_FROMDEVICE);
4210                                 }
4211                                 /* Refresh the desc even if buffer_addrs didn't
4212                                  * change because each write-back erases
4213                                  * this info.
4214                                  */
4215                                 rx_desc->read.buffer_addr[j+1] =
4216                                      cpu_to_le64(ps_page_dma->ps_page_dma[j]);
4217                         } else
4218                                 rx_desc->read.buffer_addr[j+1] = ~0;
4219                 }
4220
4221                 skb = netdev_alloc_skb(netdev,
4222                                        adapter->rx_ps_bsize0 + NET_IP_ALIGN);
4223
4224                 if (unlikely(!skb)) {
4225                         adapter->alloc_rx_buff_failed++;
4226                         break;
4227                 }
4228
4229                 /* Make buffer alignment 2 beyond a 16 byte boundary
4230                  * this will result in a 16 byte aligned IP header after
4231                  * the 14 byte MAC header is removed
4232                  */
4233                 skb_reserve(skb, NET_IP_ALIGN);
4234
4235                 buffer_info->skb = skb;
4236                 buffer_info->length = adapter->rx_ps_bsize0;
4237                 buffer_info->dma = pci_map_single(pdev, skb->data,
4238                                                   adapter->rx_ps_bsize0,
4239                                                   PCI_DMA_FROMDEVICE);
4240
4241                 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
4242
4243                 if (unlikely(++i == rx_ring->count)) i = 0;
4244                 buffer_info = &rx_ring->buffer_info[i];
4245                 ps_page = &rx_ring->ps_page[i];
4246                 ps_page_dma = &rx_ring->ps_page_dma[i];
4247         }
4248
4249 no_buffers:
4250         if (likely(rx_ring->next_to_use != i)) {
4251                 rx_ring->next_to_use = i;
4252                 if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
4253
4254                 /* Force memory writes to complete before letting h/w
4255                  * know there are new descriptors to fetch.  (Only
4256                  * applicable for weak-ordered memory model archs,
4257                  * such as IA-64). */
4258                 wmb();
4259                 /* Hardware increments by 16 bytes, but packet split
4260                  * descriptors are 32 bytes...so we increment tail
4261                  * twice as much.
4262                  */
4263                 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
4264         }
4265 }
4266
4267 /**
4268  * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4269  * @adapter:
4270  **/
4271
4272 static void
4273 e1000_smartspeed(struct e1000_adapter *adapter)
4274 {
4275         uint16_t phy_status;
4276         uint16_t phy_ctrl;
4277
4278         if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
4279            !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
4280                 return;
4281
4282         if (adapter->smartspeed == 0) {
4283                 /* If Master/Slave config fault is asserted twice,
4284                  * we assume back-to-back */
4285                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4286                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4287                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4288                 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4289                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4290                 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4291                         phy_ctrl &= ~CR_1000T_MS_ENABLE;
4292                         e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
4293                                             phy_ctrl);
4294                         adapter->smartspeed++;
4295                         if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4296                            !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
4297                                                &phy_ctrl)) {
4298                                 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4299                                              MII_CR_RESTART_AUTO_NEG);
4300                                 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
4301                                                     phy_ctrl);
4302                         }
4303                 }
4304                 return;
4305         } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4306                 /* If still no link, perhaps using 2/3 pair cable */
4307                 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4308                 phy_ctrl |= CR_1000T_MS_ENABLE;
4309                 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
4310                 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4311                    !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
4312                         phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4313                                      MII_CR_RESTART_AUTO_NEG);
4314                         e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
4315                 }
4316         }
4317         /* Restart process after E1000_SMARTSPEED_MAX iterations */
4318         if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4319                 adapter->smartspeed = 0;
4320 }
4321
4322 /**
4323  * e1000_ioctl -
4324  * @netdev:
4325  * @ifreq:
4326  * @cmd:
4327  **/
4328
4329 static int
4330 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4331 {
4332         switch (cmd) {
4333         case SIOCGMIIPHY:
4334         case SIOCGMIIREG:
4335         case SIOCSMIIREG:
4336                 return e1000_mii_ioctl(netdev, ifr, cmd);
4337         default:
4338                 return -EOPNOTSUPP;
4339         }
4340 }
4341
4342 /**
4343  * e1000_mii_ioctl -
4344  * @netdev:
4345  * @ifreq:
4346  * @cmd:
4347  **/
4348
4349 static int
4350 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4351 {
4352         struct e1000_adapter *adapter = netdev_priv(netdev);
4353         struct mii_ioctl_data *data = if_mii(ifr);
4354         int retval;
4355         uint16_t mii_reg;
4356         uint16_t spddplx;
4357         unsigned long flags;
4358
4359         if (adapter->hw.media_type != e1000_media_type_copper)
4360                 return -EOPNOTSUPP;
4361
4362         switch (cmd) {
4363         case SIOCGMIIPHY:
4364                 data->phy_id = adapter->hw.phy_addr;
4365                 break;
4366         case SIOCGMIIREG:
4367                 if (!capable(CAP_NET_ADMIN))
4368                         return -EPERM;
4369                 spin_lock_irqsave(&adapter->stats_lock, flags);
4370                 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4371                                    &data->val_out)) {
4372                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4373                         return -EIO;
4374                 }
4375                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4376                 break;
4377         case SIOCSMIIREG:
4378                 if (!capable(CAP_NET_ADMIN))
4379                         return -EPERM;
4380                 if (data->reg_num & ~(0x1F))
4381                         return -EFAULT;
4382                 mii_reg = data->val_in;
4383                 spin_lock_irqsave(&adapter->stats_lock, flags);
4384                 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
4385                                         mii_reg)) {
4386                         spin_unlock_irqrestore(&adapter->stats_lock, flags);
4387                         return -EIO;
4388                 }
4389                 if (adapter->hw.media_type == e1000_media_type_copper) {
4390                         switch (data->reg_num) {
4391                         case PHY_CTRL:
4392                                 if (mii_reg & MII_CR_POWER_DOWN)
4393                                         break;
4394                                 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4395                                         adapter->hw.autoneg = 1;
4396                                         adapter->hw.autoneg_advertised = 0x2F;
4397                                 } else {
4398                                         if (mii_reg & 0x40)
4399                                                 spddplx = SPEED_1000;
4400                                         else if (mii_reg & 0x2000)
4401                                                 spddplx = SPEED_100;
4402                                         else
4403                                                 spddplx = SPEED_10;
4404                                         spddplx += (mii_reg & 0x100)
4405                                                    ? DUPLEX_FULL :
4406                                                    DUPLEX_HALF;
4407                                         retval = e1000_set_spd_dplx(adapter,
4408                                                                     spddplx);
4409                                         if (retval) {
4410                                                 spin_unlock_irqrestore(
4411                                                         &adapter->stats_lock,
4412                                                         flags);
4413                                                 return retval;
4414                                         }
4415                                 }
4416                                 if (netif_running(adapter->netdev))
4417                                         e1000_reinit_locked(adapter);
4418                                 else
4419                                         e1000_reset(adapter);
4420                                 break;
4421                         case M88E1000_PHY_SPEC_CTRL:
4422                         case M88E1000_EXT_PHY_SPEC_CTRL:
4423                                 if (e1000_phy_reset(&adapter->hw)) {
4424                                         spin_unlock_irqrestore(
4425                                                 &adapter->stats_lock, flags);
4426                                         return -EIO;
4427                                 }
4428                                 break;
4429                         }
4430                 } else {
4431                         switch (data->reg_num) {
4432                         case PHY_CTRL:
4433                                 if (mii_reg & MII_CR_POWER_DOWN)
4434                                         break;
4435                                 if (netif_running(adapter->netdev))
4436                                         e1000_reinit_locked(adapter);
4437                                 else
4438                                         e1000_reset(adapter);
4439                                 break;
4440                         }
4441                 }
4442                 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4443                 break;
4444         default:
4445                 return -EOPNOTSUPP;
4446         }
4447         return E1000_SUCCESS;
4448 }
4449
4450 void
4451 e1000_pci_set_mwi(struct e1000_hw *hw)
4452 {
4453         struct e1000_adapter *adapter = hw->back;
4454         int ret_val = pci_set_mwi(adapter->pdev);
4455
4456         if (ret_val)
4457                 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4458 }
4459
4460 void
4461 e1000_pci_clear_mwi(struct e1000_hw *hw)
4462 {
4463         struct e1000_adapter *adapter = hw->back;
4464
4465         pci_clear_mwi(adapter->pdev);
4466 }
4467
4468 void
4469 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4470 {
4471         struct e1000_adapter *adapter = hw->back;
4472
4473         pci_read_config_word(adapter->pdev, reg, value);
4474 }
4475
4476 void
4477 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4478 {
4479         struct e1000_adapter *adapter = hw->back;
4480
4481         pci_write_config_word(adapter->pdev, reg, *value);
4482 }
4483
4484 int32_t
4485 e1000_read_pcie_cap_reg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4486 {
4487     struct e1000_adapter *adapter = hw->back;
4488     uint16_t cap_offset;
4489
4490     cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
4491     if (!cap_offset)
4492         return -E1000_ERR_CONFIG;
4493
4494     pci_read_config_word(adapter->pdev, cap_offset + reg, value);
4495
4496     return E1000_SUCCESS;
4497 }
4498
4499
4500 void
4501 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4502 {
4503         outl(value, port);
4504 }
4505
4506 static void
4507 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4508 {
4509         struct e1000_adapter *adapter = netdev_priv(netdev);
4510         uint32_t ctrl, rctl;
4511
4512         e1000_irq_disable(adapter);
4513         adapter->vlgrp = grp;
4514
4515         if (grp) {
4516                 /* enable VLAN tag insert/strip */
4517                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4518                 ctrl |= E1000_CTRL_VME;
4519                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4520
4521                 if (adapter->hw.mac_type != e1000_ich8lan) {
4522                 /* enable VLAN receive filtering */
4523                 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4524                 rctl |= E1000_RCTL_VFE;
4525                 rctl &= ~E1000_RCTL_CFIEN;
4526                 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4527                 e1000_update_mng_vlan(adapter);
4528                 }
4529         } else {
4530                 /* disable VLAN tag insert/strip */
4531                 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4532                 ctrl &= ~E1000_CTRL_VME;
4533                 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4534
4535                 if (adapter->hw.mac_type != e1000_ich8lan) {
4536                 /* disable VLAN filtering */
4537                 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4538                 rctl &= ~E1000_RCTL_VFE;
4539                 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4540                 if (adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) {
4541                         e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4542                         adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4543                 }
4544                 }
4545         }
4546
4547         e1000_irq_enable(adapter);
4548 }
4549
4550 static void
4551 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4552 {
4553         struct e1000_adapter *adapter = netdev_priv(netdev);
4554         uint32_t vfta, index;
4555
4556         if ((adapter->hw.mng_cookie.status &
4557              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4558             (vid == adapter->mng_vlan_id))
4559                 return;
4560         /* add VID to filter table */
4561         index = (vid >> 5) & 0x7F;
4562         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4563         vfta |= (1 << (vid & 0x1F));
4564         e1000_write_vfta(&adapter->hw, index, vfta);
4565 }
4566
4567 static void
4568 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
4569 {
4570         struct e1000_adapter *adapter = netdev_priv(netdev);
4571         uint32_t vfta, index;
4572
4573         e1000_irq_disable(adapter);
4574
4575         if (adapter->vlgrp)
4576                 adapter->vlgrp->vlan_devices[vid] = NULL;
4577
4578         e1000_irq_enable(adapter);
4579
4580         if ((adapter->hw.mng_cookie.status &
4581              E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4582             (vid == adapter->mng_vlan_id)) {
4583                 /* release control to f/w */
4584                 e1000_release_hw_control(adapter);
4585                 return;
4586         }
4587
4588         /* remove VID from filter table */
4589         index = (vid >> 5) & 0x7F;
4590         vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4591         vfta &= ~(1 << (vid & 0x1F));
4592         e1000_write_vfta(&adapter->hw, index, vfta);
4593 }
4594
4595 static void
4596 e1000_restore_vlan(struct e1000_adapter *adapter)
4597 {
4598         e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4599
4600         if (adapter->vlgrp) {
4601                 uint16_t vid;
4602                 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4603                         if (!adapter->vlgrp->vlan_devices[vid])
4604                                 continue;
4605                         e1000_vlan_rx_add_vid(adapter->netdev, vid);
4606                 }
4607         }
4608 }
4609
4610 int
4611 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
4612 {
4613         adapter->hw.autoneg = 0;
4614
4615         /* Fiber NICs only allow 1000 gbps Full duplex */
4616         if ((adapter->hw.media_type == e1000_media_type_fiber) &&
4617                 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4618                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4619                 return -EINVAL;
4620         }
4621
4622         switch (spddplx) {
4623         case SPEED_10 + DUPLEX_HALF:
4624                 adapter->hw.forced_speed_duplex = e1000_10_half;
4625                 break;
4626         case SPEED_10 + DUPLEX_FULL:
4627                 adapter->hw.forced_speed_duplex = e1000_10_full;
4628                 break;
4629         case SPEED_100 + DUPLEX_HALF:
4630                 adapter->hw.forced_speed_duplex = e1000_100_half;
4631                 break;
4632         case SPEED_100 + DUPLEX_FULL:
4633                 adapter->hw.forced_speed_duplex = e1000_100_full;
4634                 break;
4635         case SPEED_1000 + DUPLEX_FULL:
4636                 adapter->hw.autoneg = 1;
4637                 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
4638                 break;
4639         case SPEED_1000 + DUPLEX_HALF: /* not supported */
4640         default:
4641                 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4642                 return -EINVAL;
4643         }
4644         return 0;
4645 }
4646
4647 #ifdef CONFIG_PM
4648 /* Save/restore 16 or 64 dwords of PCI config space depending on which
4649  * bus we're on (PCI(X) vs. PCI-E)
4650  */
4651 #define PCIE_CONFIG_SPACE_LEN 256
4652 #define PCI_CONFIG_SPACE_LEN 64
4653 static int
4654 e1000_pci_save_state(struct e1000_adapter *adapter)
4655 {
4656         struct pci_dev *dev = adapter->pdev;
4657         int size;
4658         int i;
4659
4660         if (adapter->hw.mac_type >= e1000_82571)
4661                 size = PCIE_CONFIG_SPACE_LEN;
4662         else
4663                 size = PCI_CONFIG_SPACE_LEN;
4664
4665         WARN_ON(adapter->config_space != NULL);
4666
4667         adapter->config_space = kmalloc(size, GFP_KERNEL);
4668         if (!adapter->config_space) {
4669                 DPRINTK(PROBE, ERR, "unable to allocate %d bytes\n", size);
4670                 return -ENOMEM;
4671         }
4672         for (i = 0; i < (size / 4); i++)
4673                 pci_read_config_dword(dev, i * 4, &adapter->config_space[i]);
4674         return 0;
4675 }
4676
4677 static void
4678 e1000_pci_restore_state(struct e1000_adapter *adapter)
4679 {
4680         struct pci_dev *dev = adapter->pdev;
4681         int size;
4682         int i;
4683
4684         if (adapter->config_space == NULL)
4685                 return;
4686
4687         if (adapter->hw.mac_type >= e1000_82571)
4688                 size = PCIE_CONFIG_SPACE_LEN;
4689         else
4690                 size = PCI_CONFIG_SPACE_LEN;
4691         for (i = 0; i < (size / 4); i++)
4692                 pci_write_config_dword(dev, i * 4, adapter->config_space[i]);
4693         kfree(adapter->config_space);
4694         adapter->config_space = NULL;
4695         return;
4696 }
4697 #endif /* CONFIG_PM */
4698
4699 static int
4700 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4701 {
4702         struct net_device *netdev = pci_get_drvdata(pdev);
4703         struct e1000_adapter *adapter = netdev_priv(netdev);
4704         uint32_t ctrl, ctrl_ext, rctl, manc, status;
4705         uint32_t wufc = adapter->wol;
4706 #ifdef CONFIG_PM
4707         int retval = 0;
4708 #endif
4709
4710         netif_device_detach(netdev);
4711
4712         if (netif_running(netdev)) {
4713                 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4714                 e1000_down(adapter);
4715         }
4716
4717 #ifdef CONFIG_PM
4718         /* Implement our own version of pci_save_state(pdev) because pci-
4719          * express adapters have 256-byte config spaces. */
4720         retval = e1000_pci_save_state(adapter);
4721         if (retval)
4722                 return retval;
4723 #endif
4724
4725         status = E1000_READ_REG(&adapter->hw, STATUS);
4726         if (status & E1000_STATUS_LU)
4727                 wufc &= ~E1000_WUFC_LNKC;
4728
4729         if (wufc) {
4730                 e1000_setup_rctl(adapter);
4731                 e1000_set_multi(netdev);
4732
4733                 /* turn on all-multi mode if wake on multicast is enabled */
4734                 if (wufc & E1000_WUFC_MC) {
4735                         rctl = E1000_READ_REG(&adapter->hw, RCTL);
4736                         rctl |= E1000_RCTL_MPE;
4737                         E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4738                 }
4739
4740                 if (adapter->hw.mac_type >= e1000_82540) {
4741                         ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4742                         /* advertise wake from D3Cold */
4743                         #define E1000_CTRL_ADVD3WUC 0x00100000
4744                         /* phy power management enable */
4745                         #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4746                         ctrl |= E1000_CTRL_ADVD3WUC |
4747                                 E1000_CTRL_EN_PHY_PWR_MGMT;
4748                         E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4749                 }
4750
4751                 if (adapter->hw.media_type == e1000_media_type_fiber ||
4752                    adapter->hw.media_type == e1000_media_type_internal_serdes) {
4753                         /* keep the laser running in D3 */
4754                         ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
4755                         ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4756                         E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
4757                 }
4758
4759                 /* Allow time for pending master requests to run */
4760                 e1000_disable_pciex_master(&adapter->hw);
4761
4762                 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
4763                 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
4764                 pci_enable_wake(pdev, PCI_D3hot, 1);
4765                 pci_enable_wake(pdev, PCI_D3cold, 1);
4766         } else {
4767                 E1000_WRITE_REG(&adapter->hw, WUC, 0);
4768                 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
4769                 pci_enable_wake(pdev, PCI_D3hot, 0);
4770                 pci_enable_wake(pdev, PCI_D3cold, 0);
4771         }
4772
4773         if (adapter->hw.mac_type < e1000_82571 &&
4774            adapter->hw.media_type == e1000_media_type_copper) {
4775                 manc = E1000_READ_REG(&adapter->hw, MANC);
4776                 if (manc & E1000_MANC_SMBUS_EN) {
4777                         manc |= E1000_MANC_ARP_EN;
4778                         E1000_WRITE_REG(&adapter->hw, MANC, manc);
4779                         pci_enable_wake(pdev, PCI_D3hot, 1);
4780                         pci_enable_wake(pdev, PCI_D3cold, 1);
4781                 }
4782         }
4783
4784         if (adapter->hw.phy_type == e1000_phy_igp_3)
4785                 e1000_phy_powerdown_workaround(&adapter->hw);
4786
4787         /* Release control of h/w to f/w.  If f/w is AMT enabled, this
4788          * would have already happened in close and is redundant. */
4789         e1000_release_hw_control(adapter);
4790
4791         pci_disable_device(pdev);
4792
4793         pci_set_power_state(pdev, pci_choose_state(pdev, state));
4794
4795         return 0;
4796 }
4797
4798 #ifdef CONFIG_PM
4799 static int
4800 e1000_resume(struct pci_dev *pdev)
4801 {
4802         struct net_device *netdev = pci_get_drvdata(pdev);
4803         struct e1000_adapter *adapter = netdev_priv(netdev);
4804         uint32_t manc, err;
4805
4806         pci_set_power_state(pdev, PCI_D0);
4807         e1000_pci_restore_state(adapter);
4808         if ((err = pci_enable_device(pdev))) {
4809                 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
4810                 return err;
4811         }
4812         pci_set_master(pdev);
4813
4814         pci_enable_wake(pdev, PCI_D3hot, 0);
4815         pci_enable_wake(pdev, PCI_D3cold, 0);
4816
4817         e1000_reset(adapter);
4818         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4819
4820         if (netif_running(netdev))
4821                 e1000_up(adapter);
4822
4823         netif_device_attach(netdev);
4824
4825         if (adapter->hw.mac_type < e1000_82571 &&
4826            adapter->hw.media_type == e1000_media_type_copper) {
4827                 manc = E1000_READ_REG(&adapter->hw, MANC);
4828                 manc &= ~(E1000_MANC_ARP_EN);
4829                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4830         }
4831
4832         /* If the controller is 82573 and f/w is AMT, do not set
4833          * DRV_LOAD until the interface is up.  For all other cases,
4834          * let the f/w know that the h/w is now under the control
4835          * of the driver. */
4836         if (adapter->hw.mac_type != e1000_82573 ||
4837             !e1000_check_mng_mode(&adapter->hw))
4838                 e1000_get_hw_control(adapter);
4839
4840         return 0;
4841 }
4842 #endif
4843
4844 static void e1000_shutdown(struct pci_dev *pdev)
4845 {
4846         e1000_suspend(pdev, PMSG_SUSPEND);
4847 }
4848
4849 #ifdef CONFIG_NET_POLL_CONTROLLER
4850 /*
4851  * Polling 'interrupt' - used by things like netconsole to send skbs
4852  * without having to re-enable interrupts. It's not called while
4853  * the interrupt routine is executing.
4854  */
4855 static void
4856 e1000_netpoll(struct net_device *netdev)
4857 {
4858         struct e1000_adapter *adapter = netdev_priv(netdev);
4859
4860         disable_irq(adapter->pdev->irq);
4861         e1000_intr(adapter->pdev->irq, netdev, NULL);
4862         e1000_clean_tx_irq(adapter, adapter->tx_ring);
4863 #ifndef CONFIG_E1000_NAPI
4864         adapter->clean_rx(adapter, adapter->rx_ring);
4865 #endif
4866         enable_irq(adapter->pdev->irq);
4867 }
4868 #endif
4869
4870 /**
4871  * e1000_io_error_detected - called when PCI error is detected
4872  * @pdev: Pointer to PCI device
4873  * @state: The current pci conneection state
4874  *
4875  * This function is called after a PCI bus error affecting
4876  * this device has been detected.
4877  */
4878 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
4879 {
4880         struct net_device *netdev = pci_get_drvdata(pdev);
4881         struct e1000_adapter *adapter = netdev->priv;
4882
4883         netif_device_detach(netdev);
4884
4885         if (netif_running(netdev))
4886                 e1000_down(adapter);
4887         pci_disable_device(pdev);
4888
4889         /* Request a slot slot reset. */
4890         return PCI_ERS_RESULT_NEED_RESET;
4891 }
4892
4893 /**
4894  * e1000_io_slot_reset - called after the pci bus has been reset.
4895  * @pdev: Pointer to PCI device
4896  *
4897  * Restart the card from scratch, as if from a cold-boot. Implementation
4898  * resembles the first-half of the e1000_resume routine.
4899  */
4900 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4901 {
4902         struct net_device *netdev = pci_get_drvdata(pdev);
4903         struct e1000_adapter *adapter = netdev->priv;
4904
4905         if (pci_enable_device(pdev)) {
4906                 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
4907                 return PCI_ERS_RESULT_DISCONNECT;
4908         }
4909         pci_set_master(pdev);
4910
4911         pci_enable_wake(pdev, 3, 0);
4912         pci_enable_wake(pdev, 4, 0); /* 4 == D3 cold */
4913
4914         /* Perform card reset only on one instance of the card */
4915         if (PCI_FUNC (pdev->devfn) != 0)
4916                 return PCI_ERS_RESULT_RECOVERED;
4917
4918         e1000_reset(adapter);
4919         E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4920
4921         return PCI_ERS_RESULT_RECOVERED;
4922 }
4923
4924 /**
4925  * e1000_io_resume - called when traffic can start flowing again.
4926  * @pdev: Pointer to PCI device
4927  *
4928  * This callback is called when the error recovery driver tells us that
4929  * its OK to resume normal operation. Implementation resembles the
4930  * second-half of the e1000_resume routine.
4931  */
4932 static void e1000_io_resume(struct pci_dev *pdev)
4933 {
4934         struct net_device *netdev = pci_get_drvdata(pdev);
4935         struct e1000_adapter *adapter = netdev->priv;
4936         uint32_t manc, swsm;
4937
4938         if (netif_running(netdev)) {
4939                 if (e1000_up(adapter)) {
4940                         printk("e1000: can't bring device back up after reset\n");
4941                         return;
4942                 }
4943         }
4944
4945         netif_device_attach(netdev);
4946
4947         if (adapter->hw.mac_type >= e1000_82540 &&
4948             adapter->hw.media_type == e1000_media_type_copper) {
4949                 manc = E1000_READ_REG(&adapter->hw, MANC);
4950                 manc &= ~(E1000_MANC_ARP_EN);
4951                 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4952         }
4953
4954         switch (adapter->hw.mac_type) {
4955         case e1000_82573:
4956                 swsm = E1000_READ_REG(&adapter->hw, SWSM);
4957                 E1000_WRITE_REG(&adapter->hw, SWSM,
4958                                 swsm | E1000_SWSM_DRV_LOAD);
4959                 break;
4960         default:
4961                 break;
4962         }
4963
4964         if (netif_running(netdev))
4965                 mod_timer(&adapter->watchdog_timer, jiffies);
4966 }
4967
4968 /* e1000_main.c */