65b26d5a5c0d391cf72559f6d6f38eadb7b089a1
[pandora-kernel.git] / drivers / mtd / nand / mxc_nand.c
1 /*
2  * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
3  * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version 2
8  * of the License, or (at your option) any later version.
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
17  * MA 02110-1301, USA.
18  */
19
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/mtd/mtd.h>
25 #include <linux/mtd/nand.h>
26 #include <linux/mtd/partitions.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/platform_device.h>
30 #include <linux/clk.h>
31 #include <linux/err.h>
32 #include <linux/io.h>
33
34 #include <asm/mach/flash.h>
35 #include <mach/mxc_nand.h>
36
37 #define DRIVER_NAME "mxc_nand"
38
39 /* Addresses for NFC registers */
40 #define NFC_BUF_SIZE            0xE00
41 #define NFC_BUF_ADDR            0xE04
42 #define NFC_FLASH_ADDR          0xE06
43 #define NFC_FLASH_CMD           0xE08
44 #define NFC_CONFIG              0xE0A
45 #define NFC_ECC_STATUS_RESULT   0xE0C
46 #define NFC_RSLTMAIN_AREA       0xE0E
47 #define NFC_RSLTSPARE_AREA      0xE10
48 #define NFC_WRPROT              0xE12
49 #define NFC_UNLOCKSTART_BLKADDR 0xE14
50 #define NFC_UNLOCKEND_BLKADDR   0xE16
51 #define NFC_NF_WRPRST           0xE18
52 #define NFC_CONFIG1             0xE1A
53 #define NFC_CONFIG2             0xE1C
54
55 /* Addresses for NFC RAM BUFFER Main area 0 */
56 #define MAIN_AREA0              0x000
57 #define MAIN_AREA1              0x200
58 #define MAIN_AREA2              0x400
59 #define MAIN_AREA3              0x600
60
61 /* Addresses for NFC SPARE BUFFER Spare area 0 */
62 #define SPARE_AREA0             0x800
63 #define SPARE_AREA1             0x810
64 #define SPARE_AREA2             0x820
65 #define SPARE_AREA3             0x830
66
67 /* Set INT to 0, FCMD to 1, rest to 0 in NFC_CONFIG2 Register
68  * for Command operation */
69 #define NFC_CMD            0x1
70
71 /* Set INT to 0, FADD to 1, rest to 0 in NFC_CONFIG2 Register
72  * for Address operation */
73 #define NFC_ADDR           0x2
74
75 /* Set INT to 0, FDI to 1, rest to 0 in NFC_CONFIG2 Register
76  * for Input operation */
77 #define NFC_INPUT          0x4
78
79 /* Set INT to 0, FDO to 001, rest to 0 in NFC_CONFIG2 Register
80  * for Data Output operation */
81 #define NFC_OUTPUT         0x8
82
83 /* Set INT to 0, FD0 to 010, rest to 0 in NFC_CONFIG2 Register
84  * for Read ID operation */
85 #define NFC_ID             0x10
86
87 /* Set INT to 0, FDO to 100, rest to 0 in NFC_CONFIG2 Register
88  * for Read Status operation */
89 #define NFC_STATUS         0x20
90
91 /* Set INT to 1, rest to 0 in NFC_CONFIG2 Register for Read
92  * Status operation */
93 #define NFC_INT            0x8000
94
95 #define NFC_SP_EN           (1 << 2)
96 #define NFC_ECC_EN          (1 << 3)
97 #define NFC_INT_MSK         (1 << 4)
98 #define NFC_BIG             (1 << 5)
99 #define NFC_RST             (1 << 6)
100 #define NFC_CE              (1 << 7)
101 #define NFC_ONE_CYCLE       (1 << 8)
102
103 struct mxc_nand_host {
104         struct mtd_info         mtd;
105         struct nand_chip        nand;
106         struct mtd_partition    *parts;
107         struct device           *dev;
108
109         void __iomem            *regs;
110         int                     spare_only;
111         int                     status_request;
112         int                     pagesize_2k;
113         uint16_t                col_addr;
114         struct clk              *clk;
115         int                     clk_act;
116         int                     irq;
117
118         wait_queue_head_t       irq_waitq;
119 };
120
121 /* Define delays in microsec for NAND device operations */
122 #define TROP_US_DELAY   2000
123 /* Macros to get byte and bit positions of ECC */
124 #define COLPOS(x)  ((x) >> 3)
125 #define BITPOS(x) ((x) & 0xf)
126
127 /* Define single bit Error positions in Main & Spare area */
128 #define MAIN_SINGLEBIT_ERROR 0x4
129 #define SPARE_SINGLEBIT_ERROR 0x1
130
131 /* OOB placement block for use with hardware ecc generation */
132 static struct nand_ecclayout nand_hw_eccoob_8 = {
133         .eccbytes = 5,
134         .eccpos = {6, 7, 8, 9, 10},
135         .oobfree = {{0, 5}, {11, 5}, }
136 };
137
138 static struct nand_ecclayout nand_hw_eccoob_16 = {
139         .eccbytes = 5,
140         .eccpos = {6, 7, 8, 9, 10},
141         .oobfree = {{0, 5}, {11, 5}, }
142 };
143
144 static struct nand_ecclayout nand_hw_eccoob_64 = {
145         .eccbytes = 20,
146         .eccpos = {6, 7, 8, 9, 10, 22, 23, 24, 25, 26,
147                    38, 39, 40, 41, 42, 54, 55, 56, 57, 58},
148         .oobfree = {{2, 4}, {11, 10}, {27, 10}, {43, 10}, {59, 5}, }
149 };
150
151 #ifdef CONFIG_MTD_PARTITIONS
152 static const char *part_probes[] = { "RedBoot", "cmdlinepart", NULL };
153 #endif
154
155 static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
156 {
157         struct mxc_nand_host *host = dev_id;
158
159         uint16_t tmp;
160
161         tmp = readw(host->regs + NFC_CONFIG1);
162         tmp |= NFC_INT_MSK; /* Disable interrupt */
163         writew(tmp, host->regs + NFC_CONFIG1);
164
165         wake_up(&host->irq_waitq);
166
167         return IRQ_HANDLED;
168 }
169
170 /* This function polls the NANDFC to wait for the basic operation to
171  * complete by checking the INT bit of config2 register.
172  */
173 static void wait_op_done(struct mxc_nand_host *host, int max_retries,
174                                 uint16_t param, int useirq)
175 {
176         uint32_t tmp;
177
178         if (useirq) {
179                 if ((readw(host->regs + NFC_CONFIG2) & NFC_INT) == 0) {
180
181                         tmp = readw(host->regs + NFC_CONFIG1);
182                         tmp  &= ~NFC_INT_MSK;   /* Enable interrupt */
183                         writew(tmp, host->regs + NFC_CONFIG1);
184
185                         wait_event(host->irq_waitq,
186                                 readw(host->regs + NFC_CONFIG2) & NFC_INT);
187
188                         tmp = readw(host->regs + NFC_CONFIG2);
189                         tmp  &= ~NFC_INT;
190                         writew(tmp, host->regs + NFC_CONFIG2);
191                 }
192         } else {
193                 while (max_retries-- > 0) {
194                         if (readw(host->regs + NFC_CONFIG2) & NFC_INT) {
195                                 tmp = readw(host->regs + NFC_CONFIG2);
196                                 tmp  &= ~NFC_INT;
197                                 writew(tmp, host->regs + NFC_CONFIG2);
198                                 break;
199                         }
200                         udelay(1);
201                 }
202                 if (max_retries < 0)
203                         DEBUG(MTD_DEBUG_LEVEL0, "%s(%d): INT not set\n",
204                               __func__, param);
205         }
206 }
207
208 /* This function issues the specified command to the NAND device and
209  * waits for completion. */
210 static void send_cmd(struct mxc_nand_host *host, uint16_t cmd, int useirq)
211 {
212         DEBUG(MTD_DEBUG_LEVEL3, "send_cmd(host, 0x%x, %d)\n", cmd, useirq);
213
214         writew(cmd, host->regs + NFC_FLASH_CMD);
215         writew(NFC_CMD, host->regs + NFC_CONFIG2);
216
217         /* Wait for operation to complete */
218         wait_op_done(host, TROP_US_DELAY, cmd, useirq);
219 }
220
221 /* This function sends an address (or partial address) to the
222  * NAND device. The address is used to select the source/destination for
223  * a NAND command. */
224 static void send_addr(struct mxc_nand_host *host, uint16_t addr, int islast)
225 {
226         DEBUG(MTD_DEBUG_LEVEL3, "send_addr(host, 0x%x %d)\n", addr, islast);
227
228         writew(addr, host->regs + NFC_FLASH_ADDR);
229         writew(NFC_ADDR, host->regs + NFC_CONFIG2);
230
231         /* Wait for operation to complete */
232         wait_op_done(host, TROP_US_DELAY, addr, islast);
233 }
234
235 /* This function requests the NANDFC to initate the transfer
236  * of data currently in the NANDFC RAM buffer to the NAND device. */
237 static void send_prog_page(struct mxc_nand_host *host, uint8_t buf_id,
238                         int spare_only)
239 {
240         DEBUG(MTD_DEBUG_LEVEL3, "send_prog_page (%d)\n", spare_only);
241
242         /* NANDFC buffer 0 is used for page read/write */
243         writew(buf_id, host->regs + NFC_BUF_ADDR);
244
245         /* Configure spare or page+spare access */
246         if (!host->pagesize_2k) {
247                 uint16_t config1 = readw(host->regs + NFC_CONFIG1);
248                 if (spare_only)
249                         config1 |= NFC_SP_EN;
250                 else
251                         config1 &= ~(NFC_SP_EN);
252                 writew(config1, host->regs + NFC_CONFIG1);
253         }
254
255         writew(NFC_INPUT, host->regs + NFC_CONFIG2);
256
257         /* Wait for operation to complete */
258         wait_op_done(host, TROP_US_DELAY, spare_only, true);
259 }
260
261 /* Requests NANDFC to initated the transfer of data from the
262  * NAND device into in the NANDFC ram buffer. */
263 static void send_read_page(struct mxc_nand_host *host, uint8_t buf_id,
264                 int spare_only)
265 {
266         DEBUG(MTD_DEBUG_LEVEL3, "send_read_page (%d)\n", spare_only);
267
268         /* NANDFC buffer 0 is used for page read/write */
269         writew(buf_id, host->regs + NFC_BUF_ADDR);
270
271         /* Configure spare or page+spare access */
272         if (!host->pagesize_2k) {
273                 uint32_t config1 = readw(host->regs + NFC_CONFIG1);
274                 if (spare_only)
275                         config1 |= NFC_SP_EN;
276                 else
277                         config1 &= ~NFC_SP_EN;
278                 writew(config1, host->regs + NFC_CONFIG1);
279         }
280
281         writew(NFC_OUTPUT, host->regs + NFC_CONFIG2);
282
283         /* Wait for operation to complete */
284         wait_op_done(host, TROP_US_DELAY, spare_only, true);
285 }
286
287 /* Request the NANDFC to perform a read of the NAND device ID. */
288 static void send_read_id(struct mxc_nand_host *host)
289 {
290         struct nand_chip *this = &host->nand;
291         uint16_t tmp;
292
293         /* NANDFC buffer 0 is used for device ID output */
294         writew(0x0, host->regs + NFC_BUF_ADDR);
295
296         /* Read ID into main buffer */
297         tmp = readw(host->regs + NFC_CONFIG1);
298         tmp &= ~NFC_SP_EN;
299         writew(tmp, host->regs + NFC_CONFIG1);
300
301         writew(NFC_ID, host->regs + NFC_CONFIG2);
302
303         /* Wait for operation to complete */
304         wait_op_done(host, TROP_US_DELAY, 0, true);
305
306         if (this->options & NAND_BUSWIDTH_16) {
307                 void __iomem *main_buf = host->regs + MAIN_AREA0;
308                 /* compress the ID info */
309                 writeb(readb(main_buf + 2), main_buf + 1);
310                 writeb(readb(main_buf + 4), main_buf + 2);
311                 writeb(readb(main_buf + 6), main_buf + 3);
312                 writeb(readb(main_buf + 8), main_buf + 4);
313                 writeb(readb(main_buf + 10), main_buf + 5);
314         }
315 }
316
317 /* This function requests the NANDFC to perform a read of the
318  * NAND device status and returns the current status. */
319 static uint16_t get_dev_status(struct mxc_nand_host *host)
320 {
321         void __iomem *main_buf = host->regs + MAIN_AREA1;
322         uint32_t store;
323         uint16_t ret, tmp;
324         /* Issue status request to NAND device */
325
326         /* store the main area1 first word, later do recovery */
327         store = readl(main_buf);
328         /* NANDFC buffer 1 is used for device status to prevent
329          * corruption of read/write buffer on status requests. */
330         writew(1, host->regs + NFC_BUF_ADDR);
331
332         /* Read status into main buffer */
333         tmp = readw(host->regs + NFC_CONFIG1);
334         tmp &= ~NFC_SP_EN;
335         writew(tmp, host->regs + NFC_CONFIG1);
336
337         writew(NFC_STATUS, host->regs + NFC_CONFIG2);
338
339         /* Wait for operation to complete */
340         wait_op_done(host, TROP_US_DELAY, 0, true);
341
342         /* Status is placed in first word of main buffer */
343         /* get status, then recovery area 1 data */
344         ret = readw(main_buf);
345         writel(store, main_buf);
346
347         return ret;
348 }
349
350 /* This functions is used by upper layer to checks if device is ready */
351 static int mxc_nand_dev_ready(struct mtd_info *mtd)
352 {
353         /*
354          * NFC handles R/B internally. Therefore, this function
355          * always returns status as ready.
356          */
357         return 1;
358 }
359
360 static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
361 {
362         /*
363          * If HW ECC is enabled, we turn it on during init. There is
364          * no need to enable again here.
365          */
366 }
367
368 static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat,
369                                  u_char *read_ecc, u_char *calc_ecc)
370 {
371         struct nand_chip *nand_chip = mtd->priv;
372         struct mxc_nand_host *host = nand_chip->priv;
373
374         /*
375          * 1-Bit errors are automatically corrected in HW.  No need for
376          * additional correction.  2-Bit errors cannot be corrected by
377          * HW ECC, so we need to return failure
378          */
379         uint16_t ecc_status = readw(host->regs + NFC_ECC_STATUS_RESULT);
380
381         if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
382                 DEBUG(MTD_DEBUG_LEVEL0,
383                       "MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
384                 return -1;
385         }
386
387         return 0;
388 }
389
390 static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
391                                   u_char *ecc_code)
392 {
393         return 0;
394 }
395
396 static u_char mxc_nand_read_byte(struct mtd_info *mtd)
397 {
398         struct nand_chip *nand_chip = mtd->priv;
399         struct mxc_nand_host *host = nand_chip->priv;
400         uint8_t ret = 0;
401         uint16_t col, rd_word;
402         uint16_t __iomem *main_buf = host->regs + MAIN_AREA0;
403         uint16_t __iomem *spare_buf = host->regs + SPARE_AREA0;
404
405         /* Check for status request */
406         if (host->status_request)
407                 return get_dev_status(host) & 0xFF;
408
409         /* Get column for 16-bit access */
410         col = host->col_addr >> 1;
411
412         /* If we are accessing the spare region */
413         if (host->spare_only)
414                 rd_word = readw(&spare_buf[col]);
415         else
416                 rd_word = readw(&main_buf[col]);
417
418         /* Pick upper/lower byte of word from RAM buffer */
419         if (host->col_addr & 0x1)
420                 ret = (rd_word >> 8) & 0xFF;
421         else
422                 ret = rd_word & 0xFF;
423
424         /* Update saved column address */
425         host->col_addr++;
426
427         return ret;
428 }
429
430 static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
431 {
432         struct nand_chip *nand_chip = mtd->priv;
433         struct mxc_nand_host *host = nand_chip->priv;
434         uint16_t col, rd_word, ret;
435         uint16_t __iomem *p;
436
437         DEBUG(MTD_DEBUG_LEVEL3,
438               "mxc_nand_read_word(col = %d)\n", host->col_addr);
439
440         col = host->col_addr;
441         /* Adjust saved column address */
442         if (col < mtd->writesize && host->spare_only)
443                 col += mtd->writesize;
444
445         if (col < mtd->writesize)
446                 p = (host->regs + MAIN_AREA0) + (col >> 1);
447         else
448                 p = (host->regs + SPARE_AREA0) + ((col - mtd->writesize) >> 1);
449
450         if (col & 1) {
451                 rd_word = readw(p);
452                 ret = (rd_word >> 8) & 0xff;
453                 rd_word = readw(&p[1]);
454                 ret |= (rd_word << 8) & 0xff00;
455
456         } else
457                 ret = readw(p);
458
459         /* Update saved column address */
460         host->col_addr = col + 2;
461
462         return ret;
463 }
464
465 /* Write data of length len to buffer buf. The data to be
466  * written on NAND Flash is first copied to RAMbuffer. After the Data Input
467  * Operation by the NFC, the data is written to NAND Flash */
468 static void mxc_nand_write_buf(struct mtd_info *mtd,
469                                 const u_char *buf, int len)
470 {
471         struct nand_chip *nand_chip = mtd->priv;
472         struct mxc_nand_host *host = nand_chip->priv;
473         int n, col, i = 0;
474
475         DEBUG(MTD_DEBUG_LEVEL3,
476               "mxc_nand_write_buf(col = %d, len = %d)\n", host->col_addr,
477               len);
478
479         col = host->col_addr;
480
481         /* Adjust saved column address */
482         if (col < mtd->writesize && host->spare_only)
483                 col += mtd->writesize;
484
485         n = mtd->writesize + mtd->oobsize - col;
486         n = min(len, n);
487
488         DEBUG(MTD_DEBUG_LEVEL3,
489               "%s:%d: col = %d, n = %d\n", __func__, __LINE__, col, n);
490
491         while (n) {
492                 void __iomem *p;
493
494                 if (col < mtd->writesize)
495                         p = host->regs + MAIN_AREA0 + (col & ~3);
496                 else
497                         p = host->regs + SPARE_AREA0 -
498                                                 mtd->writesize + (col & ~3);
499
500                 DEBUG(MTD_DEBUG_LEVEL3, "%s:%d: p = %p\n", __func__,
501                       __LINE__, p);
502
503                 if (((col | (int)&buf[i]) & 3) || n < 16) {
504                         uint32_t data = 0;
505
506                         if (col & 3 || n < 4)
507                                 data = readl(p);
508
509                         switch (col & 3) {
510                         case 0:
511                                 if (n) {
512                                         data = (data & 0xffffff00) |
513                                             (buf[i++] << 0);
514                                         n--;
515                                         col++;
516                                 }
517                         case 1:
518                                 if (n) {
519                                         data = (data & 0xffff00ff) |
520                                             (buf[i++] << 8);
521                                         n--;
522                                         col++;
523                                 }
524                         case 2:
525                                 if (n) {
526                                         data = (data & 0xff00ffff) |
527                                             (buf[i++] << 16);
528                                         n--;
529                                         col++;
530                                 }
531                         case 3:
532                                 if (n) {
533                                         data = (data & 0x00ffffff) |
534                                             (buf[i++] << 24);
535                                         n--;
536                                         col++;
537                                 }
538                         }
539
540                         writel(data, p);
541                 } else {
542                         int m = mtd->writesize - col;
543
544                         if (col >= mtd->writesize)
545                                 m += mtd->oobsize;
546
547                         m = min(n, m) & ~3;
548
549                         DEBUG(MTD_DEBUG_LEVEL3,
550                               "%s:%d: n = %d, m = %d, i = %d, col = %d\n",
551                               __func__,  __LINE__, n, m, i, col);
552
553                         memcpy(p, &buf[i], m);
554                         col += m;
555                         i += m;
556                         n -= m;
557                 }
558         }
559         /* Update saved column address */
560         host->col_addr = col;
561 }
562
563 /* Read the data buffer from the NAND Flash. To read the data from NAND
564  * Flash first the data output cycle is initiated by the NFC, which copies
565  * the data to RAMbuffer. This data of length len is then copied to buffer buf.
566  */
567 static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
568 {
569         struct nand_chip *nand_chip = mtd->priv;
570         struct mxc_nand_host *host = nand_chip->priv;
571         int n, col, i = 0;
572
573         DEBUG(MTD_DEBUG_LEVEL3,
574               "mxc_nand_read_buf(col = %d, len = %d)\n", host->col_addr, len);
575
576         col = host->col_addr;
577
578         /* Adjust saved column address */
579         if (col < mtd->writesize && host->spare_only)
580                 col += mtd->writesize;
581
582         n = mtd->writesize + mtd->oobsize - col;
583         n = min(len, n);
584
585         while (n) {
586                 void __iomem *p;
587
588                 if (col < mtd->writesize)
589                         p = host->regs + MAIN_AREA0 + (col & ~3);
590                 else
591                         p = host->regs + SPARE_AREA0 -
592                                         mtd->writesize + (col & ~3);
593
594                 if (((col | (int)&buf[i]) & 3) || n < 16) {
595                         uint32_t data;
596
597                         data = readl(p);
598                         switch (col & 3) {
599                         case 0:
600                                 if (n) {
601                                         buf[i++] = (uint8_t) (data);
602                                         n--;
603                                         col++;
604                                 }
605                         case 1:
606                                 if (n) {
607                                         buf[i++] = (uint8_t) (data >> 8);
608                                         n--;
609                                         col++;
610                                 }
611                         case 2:
612                                 if (n) {
613                                         buf[i++] = (uint8_t) (data >> 16);
614                                         n--;
615                                         col++;
616                                 }
617                         case 3:
618                                 if (n) {
619                                         buf[i++] = (uint8_t) (data >> 24);
620                                         n--;
621                                         col++;
622                                 }
623                         }
624                 } else {
625                         int m = mtd->writesize - col;
626
627                         if (col >= mtd->writesize)
628                                 m += mtd->oobsize;
629
630                         m = min(n, m) & ~3;
631                         memcpy(&buf[i], p, m);
632                         col += m;
633                         i += m;
634                         n -= m;
635                 }
636         }
637         /* Update saved column address */
638         host->col_addr = col;
639
640 }
641
642 /* Used by the upper layer to verify the data in NAND Flash
643  * with the data in the buf. */
644 static int mxc_nand_verify_buf(struct mtd_info *mtd,
645                                 const u_char *buf, int len)
646 {
647         return -EFAULT;
648 }
649
650 /* This function is used by upper layer for select and
651  * deselect of the NAND chip */
652 static void mxc_nand_select_chip(struct mtd_info *mtd, int chip)
653 {
654         struct nand_chip *nand_chip = mtd->priv;
655         struct mxc_nand_host *host = nand_chip->priv;
656
657 #ifdef CONFIG_MTD_NAND_MXC_FORCE_CE
658         if (chip > 0) {
659                 DEBUG(MTD_DEBUG_LEVEL0,
660                       "ERROR:  Illegal chip select (chip = %d)\n", chip);
661                 return;
662         }
663
664         if (chip == -1) {
665                 writew(readw(host->regs + NFC_CONFIG1) & ~NFC_CE,
666                                 host->regs + NFC_CONFIG1);
667                 return;
668         }
669
670         writew(readw(host->regs + NFC_CONFIG1) | NFC_CE,
671                         host->regs + NFC_CONFIG1);
672 #endif
673
674         switch (chip) {
675         case -1:
676                 /* Disable the NFC clock */
677                 if (host->clk_act) {
678                         clk_disable(host->clk);
679                         host->clk_act = 0;
680                 }
681                 break;
682         case 0:
683                 /* Enable the NFC clock */
684                 if (!host->clk_act) {
685                         clk_enable(host->clk);
686                         host->clk_act = 1;
687                 }
688                 break;
689
690         default:
691                 break;
692         }
693 }
694
695 /* Used by the upper layer to write command to NAND Flash for
696  * different operations to be carried out on NAND Flash */
697 static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
698                                 int column, int page_addr)
699 {
700         struct nand_chip *nand_chip = mtd->priv;
701         struct mxc_nand_host *host = nand_chip->priv;
702         int useirq = true;
703
704         DEBUG(MTD_DEBUG_LEVEL3,
705               "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
706               command, column, page_addr);
707
708         /* Reset command state information */
709         host->status_request = false;
710
711         /* Command pre-processing step */
712         switch (command) {
713
714         case NAND_CMD_STATUS:
715                 host->col_addr = 0;
716                 host->status_request = true;
717                 break;
718
719         case NAND_CMD_READ0:
720                 host->col_addr = column;
721                 host->spare_only = false;
722                 useirq = false;
723                 break;
724
725         case NAND_CMD_READOOB:
726                 host->col_addr = column;
727                 host->spare_only = true;
728                 useirq = false;
729                 if (host->pagesize_2k)
730                         command = NAND_CMD_READ0; /* only READ0 is valid */
731                 break;
732
733         case NAND_CMD_SEQIN:
734                 if (column >= mtd->writesize) {
735                         /*
736                          * FIXME: before send SEQIN command for write OOB,
737                          * We must read one page out.
738                          * For K9F1GXX has no READ1 command to set current HW
739                          * pointer to spare area, we must write the whole page
740                          * including OOB together.
741                          */
742                         if (host->pagesize_2k)
743                                 /* call ourself to read a page */
744                                 mxc_nand_command(mtd, NAND_CMD_READ0, 0,
745                                                 page_addr);
746
747                         host->col_addr = column - mtd->writesize;
748                         host->spare_only = true;
749
750                         /* Set program pointer to spare region */
751                         if (!host->pagesize_2k)
752                                 send_cmd(host, NAND_CMD_READOOB, false);
753                 } else {
754                         host->spare_only = false;
755                         host->col_addr = column;
756
757                         /* Set program pointer to page start */
758                         if (!host->pagesize_2k)
759                                 send_cmd(host, NAND_CMD_READ0, false);
760                 }
761                 useirq = false;
762                 break;
763
764         case NAND_CMD_PAGEPROG:
765                 send_prog_page(host, 0, host->spare_only);
766
767                 if (host->pagesize_2k) {
768                         /* data in 4 areas datas */
769                         send_prog_page(host, 1, host->spare_only);
770                         send_prog_page(host, 2, host->spare_only);
771                         send_prog_page(host, 3, host->spare_only);
772                 }
773
774                 break;
775
776         case NAND_CMD_ERASE1:
777                 useirq = false;
778                 break;
779         }
780
781         /* Write out the command to the device. */
782         send_cmd(host, command, useirq);
783
784         /* Write out column address, if necessary */
785         if (column != -1) {
786                 /*
787                  * MXC NANDFC can only perform full page+spare or
788                  * spare-only read/write.  When the upper layers
789                  * layers perform a read/write buf operation,
790                  * we will used the saved column adress to index into
791                  * the full page.
792                  */
793                 send_addr(host, 0, page_addr == -1);
794                 if (host->pagesize_2k)
795                         /* another col addr cycle for 2k page */
796                         send_addr(host, 0, false);
797         }
798
799         /* Write out page address, if necessary */
800         if (page_addr != -1) {
801                 /* paddr_0 - p_addr_7 */
802                 send_addr(host, (page_addr & 0xff), false);
803
804                 if (host->pagesize_2k) {
805                         if (mtd->size >= 0x10000000) {
806                                 /* paddr_8 - paddr_15 */
807                                 send_addr(host, (page_addr >> 8) & 0xff, false);
808                                 send_addr(host, (page_addr >> 16) & 0xff, true);
809                         } else
810                                 /* paddr_8 - paddr_15 */
811                                 send_addr(host, (page_addr >> 8) & 0xff, true);
812                 } else {
813                         /* One more address cycle for higher density devices */
814                         if (mtd->size >= 0x4000000) {
815                                 /* paddr_8 - paddr_15 */
816                                 send_addr(host, (page_addr >> 8) & 0xff, false);
817                                 send_addr(host, (page_addr >> 16) & 0xff, true);
818                         } else
819                                 /* paddr_8 - paddr_15 */
820                                 send_addr(host, (page_addr >> 8) & 0xff, true);
821                 }
822         }
823
824         /* Command post-processing step */
825         switch (command) {
826
827         case NAND_CMD_RESET:
828                 break;
829
830         case NAND_CMD_READOOB:
831         case NAND_CMD_READ0:
832                 if (host->pagesize_2k) {
833                         /* send read confirm command */
834                         send_cmd(host, NAND_CMD_READSTART, true);
835                         /* read for each AREA */
836                         send_read_page(host, 0, host->spare_only);
837                         send_read_page(host, 1, host->spare_only);
838                         send_read_page(host, 2, host->spare_only);
839                         send_read_page(host, 3, host->spare_only);
840                 } else
841                         send_read_page(host, 0, host->spare_only);
842                 break;
843
844         case NAND_CMD_READID:
845                 host->col_addr = 0;
846                 send_read_id(host);
847                 break;
848
849         case NAND_CMD_PAGEPROG:
850                 break;
851
852         case NAND_CMD_STATUS:
853                 break;
854
855         case NAND_CMD_ERASE2:
856                 break;
857         }
858 }
859
860 /* Define some generic bad / good block scan pattern which are used
861  * while scanning a device for factory marked good / bad blocks. */
862 static uint8_t scan_ff_pattern[] = { 0xff, 0xff };
863
864 static struct nand_bbt_descr smallpage_memorybased = {
865         .options = NAND_BBT_SCAN2NDPAGE,
866         .offs = 5,
867         .len = 1,
868         .pattern = scan_ff_pattern
869 };
870
871 static int __init mxcnd_probe(struct platform_device *pdev)
872 {
873         struct nand_chip *this;
874         struct mtd_info *mtd;
875         struct mxc_nand_platform_data *pdata = pdev->dev.platform_data;
876         struct mxc_nand_host *host;
877         struct resource *res;
878         uint16_t tmp;
879         int err = 0, nr_parts = 0;
880
881         /* Allocate memory for MTD device structure and private data */
882         host = kzalloc(sizeof(struct mxc_nand_host), GFP_KERNEL);
883         if (!host)
884                 return -ENOMEM;
885
886         host->dev = &pdev->dev;
887         /* structures must be linked */
888         this = &host->nand;
889         mtd = &host->mtd;
890         mtd->priv = this;
891         mtd->owner = THIS_MODULE;
892         mtd->dev.parent = &pdev->dev;
893         mtd->name = "mxc_nand";
894
895         /* 50 us command delay time */
896         this->chip_delay = 5;
897
898         this->priv = host;
899         this->dev_ready = mxc_nand_dev_ready;
900         this->cmdfunc = mxc_nand_command;
901         this->select_chip = mxc_nand_select_chip;
902         this->read_byte = mxc_nand_read_byte;
903         this->read_word = mxc_nand_read_word;
904         this->write_buf = mxc_nand_write_buf;
905         this->read_buf = mxc_nand_read_buf;
906         this->verify_buf = mxc_nand_verify_buf;
907
908         host->clk = clk_get(&pdev->dev, "nfc");
909         if (IS_ERR(host->clk)) {
910                 err = PTR_ERR(host->clk);
911                 goto eclk;
912         }
913
914         clk_enable(host->clk);
915         host->clk_act = 1;
916
917         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
918         if (!res) {
919                 err = -ENODEV;
920                 goto eres;
921         }
922
923         host->regs = ioremap(res->start, res->end - res->start + 1);
924         if (!host->regs) {
925                 err = -ENOMEM;
926                 goto eres;
927         }
928
929         tmp = readw(host->regs + NFC_CONFIG1);
930         tmp |= NFC_INT_MSK;
931         writew(tmp, host->regs + NFC_CONFIG1);
932
933         init_waitqueue_head(&host->irq_waitq);
934
935         host->irq = platform_get_irq(pdev, 0);
936
937         err = request_irq(host->irq, mxc_nfc_irq, 0, "mxc_nd", host);
938         if (err)
939                 goto eirq;
940
941         if (pdata->hw_ecc) {
942                 this->ecc.calculate = mxc_nand_calculate_ecc;
943                 this->ecc.hwctl = mxc_nand_enable_hwecc;
944                 this->ecc.correct = mxc_nand_correct_data;
945                 this->ecc.mode = NAND_ECC_HW;
946                 this->ecc.size = 512;
947                 this->ecc.bytes = 3;
948                 tmp = readw(host->regs + NFC_CONFIG1);
949                 tmp |= NFC_ECC_EN;
950                 writew(tmp, host->regs + NFC_CONFIG1);
951         } else {
952                 this->ecc.size = 512;
953                 this->ecc.bytes = 3;
954                 this->ecc.layout = &nand_hw_eccoob_8;
955                 this->ecc.mode = NAND_ECC_SOFT;
956                 tmp = readw(host->regs + NFC_CONFIG1);
957                 tmp &= ~NFC_ECC_EN;
958                 writew(tmp, host->regs + NFC_CONFIG1);
959         }
960
961         /* Reset NAND */
962         this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
963
964         /* preset operation */
965         /* Unlock the internal RAM Buffer */
966         writew(0x2, host->regs + NFC_CONFIG);
967
968         /* Blocks to be unlocked */
969         writew(0x0, host->regs + NFC_UNLOCKSTART_BLKADDR);
970         writew(0x4000, host->regs + NFC_UNLOCKEND_BLKADDR);
971
972         /* Unlock Block Command for given address range */
973         writew(0x4, host->regs + NFC_WRPROT);
974
975         /* NAND bus width determines access funtions used by upper layer */
976         if (pdata->width == 2) {
977                 this->options |= NAND_BUSWIDTH_16;
978                 this->ecc.layout = &nand_hw_eccoob_16;
979         }
980
981         /* first scan to find the device and get the page size */
982         if (nand_scan_ident(mtd, 1)) {
983                 err = -ENXIO;
984                 goto escan;
985         }
986
987         if (mtd->writesize == 2048) {
988                 host->pagesize_2k = 1;
989                 this->badblock_pattern = &smallpage_memorybased;
990         }
991
992         if (this->ecc.mode == NAND_ECC_HW) {
993                 switch (mtd->oobsize) {
994                 case 8:
995                         this->ecc.layout = &nand_hw_eccoob_8;
996                         break;
997                 case 16:
998                         this->ecc.layout = &nand_hw_eccoob_16;
999                         break;
1000                 case 64:
1001                         this->ecc.layout = &nand_hw_eccoob_64;
1002                         break;
1003                 default:
1004                         /* page size not handled by HW ECC */
1005                         /* switching back to soft ECC */
1006                         this->ecc.size = 512;
1007                         this->ecc.bytes = 3;
1008                         this->ecc.layout = &nand_hw_eccoob_8;
1009                         this->ecc.mode = NAND_ECC_SOFT;
1010                         this->ecc.calculate = NULL;
1011                         this->ecc.correct = NULL;
1012                         this->ecc.hwctl = NULL;
1013                         tmp = readw(host->regs + NFC_CONFIG1);
1014                         tmp &= ~NFC_ECC_EN;
1015                         writew(tmp, host->regs + NFC_CONFIG1);
1016                         break;
1017                 }
1018         }
1019
1020         /* second phase scan */
1021         if (nand_scan_tail(mtd)) {
1022                 err = -ENXIO;
1023                 goto escan;
1024         }
1025
1026         /* Register the partitions */
1027 #ifdef CONFIG_MTD_PARTITIONS
1028         nr_parts =
1029             parse_mtd_partitions(mtd, part_probes, &host->parts, 0);
1030         if (nr_parts > 0)
1031                 add_mtd_partitions(mtd, host->parts, nr_parts);
1032         else
1033 #endif
1034         {
1035                 pr_info("Registering %s as whole device\n", mtd->name);
1036                 add_mtd_device(mtd);
1037         }
1038
1039         platform_set_drvdata(pdev, host);
1040
1041         return 0;
1042
1043 escan:
1044         free_irq(host->irq, host);
1045 eirq:
1046         iounmap(host->regs);
1047 eres:
1048         clk_put(host->clk);
1049 eclk:
1050         kfree(host);
1051
1052         return err;
1053 }
1054
1055 static int __devexit mxcnd_remove(struct platform_device *pdev)
1056 {
1057         struct mxc_nand_host *host = platform_get_drvdata(pdev);
1058
1059         clk_put(host->clk);
1060
1061         platform_set_drvdata(pdev, NULL);
1062
1063         nand_release(&host->mtd);
1064         free_irq(host->irq, host);
1065         iounmap(host->regs);
1066         kfree(host);
1067
1068         return 0;
1069 }
1070
1071 #ifdef CONFIG_PM
1072 static int mxcnd_suspend(struct platform_device *pdev, pm_message_t state)
1073 {
1074         struct mtd_info *mtd = platform_get_drvdata(pdev);
1075         struct nand_chip *nand_chip = mtd->priv;
1076         struct mxc_nand_host *host = nand_chip->priv;
1077         int ret = 0;
1078
1079         DEBUG(MTD_DEBUG_LEVEL0, "MXC_ND : NAND suspend\n");
1080         if (mtd) {
1081                 ret = mtd->suspend(mtd);
1082                 /* Disable the NFC clock */
1083                 clk_disable(host->clk);
1084         }
1085
1086         return ret;
1087 }
1088
1089 static int mxcnd_resume(struct platform_device *pdev)
1090 {
1091         struct mtd_info *mtd = platform_get_drvdata(pdev);
1092         struct nand_chip *nand_chip = mtd->priv;
1093         struct mxc_nand_host *host = nand_chip->priv;
1094         int ret = 0;
1095
1096         DEBUG(MTD_DEBUG_LEVEL0, "MXC_ND : NAND resume\n");
1097
1098         if (mtd) {
1099                 /* Enable the NFC clock */
1100                 clk_enable(host->clk);
1101                 mtd->resume(mtd);
1102         }
1103
1104         return ret;
1105 }
1106
1107 #else
1108 # define mxcnd_suspend   NULL
1109 # define mxcnd_resume    NULL
1110 #endif                          /* CONFIG_PM */
1111
1112 static struct platform_driver mxcnd_driver = {
1113         .driver = {
1114                    .name = DRIVER_NAME,
1115                    },
1116         .remove = __exit_p(mxcnd_remove),
1117         .suspend = mxcnd_suspend,
1118         .resume = mxcnd_resume,
1119 };
1120
1121 static int __init mxc_nd_init(void)
1122 {
1123         return platform_driver_probe(&mxcnd_driver, mxcnd_probe);
1124 }
1125
1126 static void __exit mxc_nd_cleanup(void)
1127 {
1128         /* Unregister the device structure */
1129         platform_driver_unregister(&mxcnd_driver);
1130 }
1131
1132 module_init(mxc_nd_init);
1133 module_exit(mxc_nd_cleanup);
1134
1135 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1136 MODULE_DESCRIPTION("MXC NAND MTD driver");
1137 MODULE_LICENSE("GPL");