74dcf19cfe68ccde20ce786338b64dbeecf7683c
[pandora-kernel.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include "md.h"
57 #include "raid5.h"
58 #include "raid0.h"
59 #include "bitmap.h"
60
61 /*
62  * Stripe cache
63  */
64
65 #define NR_STRIPES              256
66 #define STRIPE_SIZE             PAGE_SIZE
67 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
68 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
69 #define IO_THRESHOLD            1
70 #define BYPASS_THRESHOLD        1
71 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
72 #define HASH_MASK               (NR_HASH - 1)
73
74 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
75 {
76         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
77         return &conf->stripe_hashtbl[hash];
78 }
79
80 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
81  * order without overlap.  There may be several bio's per stripe+device, and
82  * a bio could span several devices.
83  * When walking this list for a particular stripe+device, we must never proceed
84  * beyond a bio that extends past this device, as the next bio might no longer
85  * be valid.
86  * This function is used to determine the 'next' bio in the list, given the sector
87  * of the current stripe+device
88  */
89 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
90 {
91         int sectors = bio->bi_size >> 9;
92         if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
93                 return bio->bi_next;
94         else
95                 return NULL;
96 }
97
98 /*
99  * We maintain a biased count of active stripes in the bottom 16 bits of
100  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
101  */
102 static inline int raid5_bi_processed_stripes(struct bio *bio)
103 {
104         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
105         return (atomic_read(segments) >> 16) & 0xffff;
106 }
107
108 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
109 {
110         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
111         return atomic_sub_return(1, segments) & 0xffff;
112 }
113
114 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
115 {
116         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
117         atomic_inc(segments);
118 }
119
120 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
121         unsigned int cnt)
122 {
123         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
124         int old, new;
125
126         do {
127                 old = atomic_read(segments);
128                 new = (old & 0xffff) | (cnt << 16);
129         } while (atomic_cmpxchg(segments, old, new) != old);
130 }
131
132 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
133 {
134         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
135         atomic_set(segments, cnt);
136 }
137
138 /* Find first data disk in a raid6 stripe */
139 static inline int raid6_d0(struct stripe_head *sh)
140 {
141         if (sh->ddf_layout)
142                 /* ddf always start from first device */
143                 return 0;
144         /* md starts just after Q block */
145         if (sh->qd_idx == sh->disks - 1)
146                 return 0;
147         else
148                 return sh->qd_idx + 1;
149 }
150 static inline int raid6_next_disk(int disk, int raid_disks)
151 {
152         disk++;
153         return (disk < raid_disks) ? disk : 0;
154 }
155
156 /* When walking through the disks in a raid5, starting at raid6_d0,
157  * We need to map each disk to a 'slot', where the data disks are slot
158  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
159  * is raid_disks-1.  This help does that mapping.
160  */
161 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
162                              int *count, int syndrome_disks)
163 {
164         int slot = *count;
165
166         if (sh->ddf_layout)
167                 (*count)++;
168         if (idx == sh->pd_idx)
169                 return syndrome_disks;
170         if (idx == sh->qd_idx)
171                 return syndrome_disks + 1;
172         if (!sh->ddf_layout)
173                 (*count)++;
174         return slot;
175 }
176
177 static void return_io(struct bio *return_bi)
178 {
179         struct bio *bi = return_bi;
180         while (bi) {
181
182                 return_bi = bi->bi_next;
183                 bi->bi_next = NULL;
184                 bi->bi_size = 0;
185                 bio_endio(bi, 0);
186                 bi = return_bi;
187         }
188 }
189
190 static void print_raid5_conf (struct r5conf *conf);
191
192 static int stripe_operations_active(struct stripe_head *sh)
193 {
194         return sh->check_state || sh->reconstruct_state ||
195                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
196                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
197 }
198
199 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh)
200 {
201         BUG_ON(!list_empty(&sh->lru));
202         BUG_ON(atomic_read(&conf->active_stripes)==0);
203         if (test_bit(STRIPE_HANDLE, &sh->state)) {
204                 if (test_bit(STRIPE_DELAYED, &sh->state) &&
205                     !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
206                         list_add_tail(&sh->lru, &conf->delayed_list);
207                 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
208                            sh->bm_seq - conf->seq_write > 0)
209                         list_add_tail(&sh->lru, &conf->bitmap_list);
210                 else {
211                         clear_bit(STRIPE_DELAYED, &sh->state);
212                         clear_bit(STRIPE_BIT_DELAY, &sh->state);
213                         list_add_tail(&sh->lru, &conf->handle_list);
214                 }
215                 md_wakeup_thread(conf->mddev->thread);
216         } else {
217                 BUG_ON(stripe_operations_active(sh));
218                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
219                         if (atomic_dec_return(&conf->preread_active_stripes)
220                             < IO_THRESHOLD)
221                                 md_wakeup_thread(conf->mddev->thread);
222                 atomic_dec(&conf->active_stripes);
223                 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
224                         list_add_tail(&sh->lru, &conf->inactive_list);
225                         wake_up(&conf->wait_for_stripe);
226                         if (conf->retry_read_aligned)
227                                 md_wakeup_thread(conf->mddev->thread);
228                 }
229         }
230 }
231
232 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
233 {
234         if (atomic_dec_and_test(&sh->count))
235                 do_release_stripe(conf, sh);
236 }
237
238 static void release_stripe(struct stripe_head *sh)
239 {
240         struct r5conf *conf = sh->raid_conf;
241         unsigned long flags;
242
243         local_irq_save(flags);
244         if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
245                 do_release_stripe(conf, sh);
246                 spin_unlock(&conf->device_lock);
247         }
248         local_irq_restore(flags);
249 }
250
251 static inline void remove_hash(struct stripe_head *sh)
252 {
253         pr_debug("remove_hash(), stripe %llu\n",
254                 (unsigned long long)sh->sector);
255
256         hlist_del_init(&sh->hash);
257 }
258
259 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
260 {
261         struct hlist_head *hp = stripe_hash(conf, sh->sector);
262
263         pr_debug("insert_hash(), stripe %llu\n",
264                 (unsigned long long)sh->sector);
265
266         hlist_add_head(&sh->hash, hp);
267 }
268
269
270 /* find an idle stripe, make sure it is unhashed, and return it. */
271 static struct stripe_head *get_free_stripe(struct r5conf *conf)
272 {
273         struct stripe_head *sh = NULL;
274         struct list_head *first;
275
276         if (list_empty(&conf->inactive_list))
277                 goto out;
278         first = conf->inactive_list.next;
279         sh = list_entry(first, struct stripe_head, lru);
280         list_del_init(first);
281         remove_hash(sh);
282         atomic_inc(&conf->active_stripes);
283 out:
284         return sh;
285 }
286
287 static void shrink_buffers(struct stripe_head *sh)
288 {
289         struct page *p;
290         int i;
291         int num = sh->raid_conf->pool_size;
292
293         for (i = 0; i < num ; i++) {
294                 p = sh->dev[i].page;
295                 if (!p)
296                         continue;
297                 sh->dev[i].page = NULL;
298                 put_page(p);
299         }
300 }
301
302 static int grow_buffers(struct stripe_head *sh)
303 {
304         int i;
305         int num = sh->raid_conf->pool_size;
306
307         for (i = 0; i < num; i++) {
308                 struct page *page;
309
310                 if (!(page = alloc_page(GFP_KERNEL))) {
311                         return 1;
312                 }
313                 sh->dev[i].page = page;
314         }
315         return 0;
316 }
317
318 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
319 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
320                             struct stripe_head *sh);
321
322 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
323 {
324         struct r5conf *conf = sh->raid_conf;
325         int i;
326
327         BUG_ON(atomic_read(&sh->count) != 0);
328         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
329         BUG_ON(stripe_operations_active(sh));
330
331         pr_debug("init_stripe called, stripe %llu\n",
332                 (unsigned long long)sh->sector);
333
334         remove_hash(sh);
335
336         sh->generation = conf->generation - previous;
337         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
338         sh->sector = sector;
339         stripe_set_idx(sector, conf, previous, sh);
340         sh->state = 0;
341
342
343         for (i = sh->disks; i--; ) {
344                 struct r5dev *dev = &sh->dev[i];
345
346                 if (dev->toread || dev->read || dev->towrite || dev->written ||
347                     test_bit(R5_LOCKED, &dev->flags)) {
348                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
349                                (unsigned long long)sh->sector, i, dev->toread,
350                                dev->read, dev->towrite, dev->written,
351                                test_bit(R5_LOCKED, &dev->flags));
352                         WARN_ON(1);
353                 }
354                 dev->flags = 0;
355                 raid5_build_block(sh, i, previous);
356         }
357         insert_hash(conf, sh);
358 }
359
360 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
361                                          short generation)
362 {
363         struct stripe_head *sh;
364         struct hlist_node *hn;
365
366         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
367         hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
368                 if (sh->sector == sector && sh->generation == generation)
369                         return sh;
370         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
371         return NULL;
372 }
373
374 /*
375  * Need to check if array has failed when deciding whether to:
376  *  - start an array
377  *  - remove non-faulty devices
378  *  - add a spare
379  *  - allow a reshape
380  * This determination is simple when no reshape is happening.
381  * However if there is a reshape, we need to carefully check
382  * both the before and after sections.
383  * This is because some failed devices may only affect one
384  * of the two sections, and some non-in_sync devices may
385  * be insync in the section most affected by failed devices.
386  */
387 static int calc_degraded(struct r5conf *conf)
388 {
389         int degraded, degraded2;
390         int i;
391
392         rcu_read_lock();
393         degraded = 0;
394         for (i = 0; i < conf->previous_raid_disks; i++) {
395                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
396                 if (!rdev || test_bit(Faulty, &rdev->flags))
397                         degraded++;
398                 else if (test_bit(In_sync, &rdev->flags))
399                         ;
400                 else
401                         /* not in-sync or faulty.
402                          * If the reshape increases the number of devices,
403                          * this is being recovered by the reshape, so
404                          * this 'previous' section is not in_sync.
405                          * If the number of devices is being reduced however,
406                          * the device can only be part of the array if
407                          * we are reverting a reshape, so this section will
408                          * be in-sync.
409                          */
410                         if (conf->raid_disks >= conf->previous_raid_disks)
411                                 degraded++;
412         }
413         rcu_read_unlock();
414         if (conf->raid_disks == conf->previous_raid_disks)
415                 return degraded;
416         rcu_read_lock();
417         degraded2 = 0;
418         for (i = 0; i < conf->raid_disks; i++) {
419                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
420                 if (!rdev || test_bit(Faulty, &rdev->flags))
421                         degraded2++;
422                 else if (test_bit(In_sync, &rdev->flags))
423                         ;
424                 else
425                         /* not in-sync or faulty.
426                          * If reshape increases the number of devices, this
427                          * section has already been recovered, else it
428                          * almost certainly hasn't.
429                          */
430                         if (conf->raid_disks <= conf->previous_raid_disks)
431                                 degraded2++;
432         }
433         rcu_read_unlock();
434         if (degraded2 > degraded)
435                 return degraded2;
436         return degraded;
437 }
438
439 static int has_failed(struct r5conf *conf)
440 {
441         int degraded;
442
443         if (conf->mddev->reshape_position == MaxSector)
444                 return conf->mddev->degraded > conf->max_degraded;
445
446         degraded = calc_degraded(conf);
447         if (degraded > conf->max_degraded)
448                 return 1;
449         return 0;
450 }
451
452 static struct stripe_head *
453 get_active_stripe(struct r5conf *conf, sector_t sector,
454                   int previous, int noblock, int noquiesce)
455 {
456         struct stripe_head *sh;
457
458         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
459
460         spin_lock_irq(&conf->device_lock);
461
462         do {
463                 wait_event_lock_irq(conf->wait_for_stripe,
464                                     conf->quiesce == 0 || noquiesce,
465                                     conf->device_lock, /* nothing */);
466                 sh = __find_stripe(conf, sector, conf->generation - previous);
467                 if (!sh) {
468                         if (!conf->inactive_blocked)
469                                 sh = get_free_stripe(conf);
470                         if (noblock && sh == NULL)
471                                 break;
472                         if (!sh) {
473                                 conf->inactive_blocked = 1;
474                                 wait_event_lock_irq(conf->wait_for_stripe,
475                                                     !list_empty(&conf->inactive_list) &&
476                                                     (atomic_read(&conf->active_stripes)
477                                                      < (conf->max_nr_stripes *3/4)
478                                                      || !conf->inactive_blocked),
479                                                     conf->device_lock,
480                                                     );
481                                 conf->inactive_blocked = 0;
482                         } else
483                                 init_stripe(sh, sector, previous);
484                 } else {
485                         if (atomic_read(&sh->count)) {
486                                 BUG_ON(!list_empty(&sh->lru)
487                                     && !test_bit(STRIPE_EXPANDING, &sh->state)
488                                     && !test_bit(STRIPE_ON_UNPLUG_LIST, &sh->state));
489                         } else {
490                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
491                                         atomic_inc(&conf->active_stripes);
492                                 if (list_empty(&sh->lru) &&
493                                     !test_bit(STRIPE_EXPANDING, &sh->state))
494                                         BUG();
495                                 list_del_init(&sh->lru);
496                         }
497                 }
498         } while (sh == NULL);
499
500         if (sh)
501                 atomic_inc(&sh->count);
502
503         spin_unlock_irq(&conf->device_lock);
504         return sh;
505 }
506
507 /* Determine if 'data_offset' or 'new_data_offset' should be used
508  * in this stripe_head.
509  */
510 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
511 {
512         sector_t progress = conf->reshape_progress;
513         /* Need a memory barrier to make sure we see the value
514          * of conf->generation, or ->data_offset that was set before
515          * reshape_progress was updated.
516          */
517         smp_rmb();
518         if (progress == MaxSector)
519                 return 0;
520         if (sh->generation == conf->generation - 1)
521                 return 0;
522         /* We are in a reshape, and this is a new-generation stripe,
523          * so use new_data_offset.
524          */
525         return 1;
526 }
527
528 static void
529 raid5_end_read_request(struct bio *bi, int error);
530 static void
531 raid5_end_write_request(struct bio *bi, int error);
532
533 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
534 {
535         struct r5conf *conf = sh->raid_conf;
536         int i, disks = sh->disks;
537
538         might_sleep();
539
540         for (i = disks; i--; ) {
541                 int rw;
542                 int replace_only = 0;
543                 struct bio *bi, *rbi;
544                 struct md_rdev *rdev, *rrdev = NULL;
545                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
546                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
547                                 rw = WRITE_FUA;
548                         else
549                                 rw = WRITE;
550                         if (test_and_clear_bit(R5_Discard, &sh->dev[i].flags))
551                                 rw |= REQ_DISCARD;
552                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
553                         rw = READ;
554                 else if (test_and_clear_bit(R5_WantReplace,
555                                             &sh->dev[i].flags)) {
556                         rw = WRITE;
557                         replace_only = 1;
558                 } else
559                         continue;
560                 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
561                         rw |= REQ_SYNC;
562
563                 bi = &sh->dev[i].req;
564                 rbi = &sh->dev[i].rreq; /* For writing to replacement */
565
566                 bi->bi_rw = rw;
567                 rbi->bi_rw = rw;
568                 if (rw & WRITE) {
569                         bi->bi_end_io = raid5_end_write_request;
570                         rbi->bi_end_io = raid5_end_write_request;
571                 } else
572                         bi->bi_end_io = raid5_end_read_request;
573
574                 rcu_read_lock();
575                 rrdev = rcu_dereference(conf->disks[i].replacement);
576                 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
577                 rdev = rcu_dereference(conf->disks[i].rdev);
578                 if (!rdev) {
579                         rdev = rrdev;
580                         rrdev = NULL;
581                 }
582                 if (rw & WRITE) {
583                         if (replace_only)
584                                 rdev = NULL;
585                         if (rdev == rrdev)
586                                 /* We raced and saw duplicates */
587                                 rrdev = NULL;
588                 } else {
589                         if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
590                                 rdev = rrdev;
591                         rrdev = NULL;
592                 }
593
594                 if (rdev && test_bit(Faulty, &rdev->flags))
595                         rdev = NULL;
596                 if (rdev)
597                         atomic_inc(&rdev->nr_pending);
598                 if (rrdev && test_bit(Faulty, &rrdev->flags))
599                         rrdev = NULL;
600                 if (rrdev)
601                         atomic_inc(&rrdev->nr_pending);
602                 rcu_read_unlock();
603
604                 /* We have already checked bad blocks for reads.  Now
605                  * need to check for writes.  We never accept write errors
606                  * on the replacement, so we don't to check rrdev.
607                  */
608                 while ((rw & WRITE) && rdev &&
609                        test_bit(WriteErrorSeen, &rdev->flags)) {
610                         sector_t first_bad;
611                         int bad_sectors;
612                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
613                                               &first_bad, &bad_sectors);
614                         if (!bad)
615                                 break;
616
617                         if (bad < 0) {
618                                 set_bit(BlockedBadBlocks, &rdev->flags);
619                                 if (!conf->mddev->external &&
620                                     conf->mddev->flags) {
621                                         /* It is very unlikely, but we might
622                                          * still need to write out the
623                                          * bad block log - better give it
624                                          * a chance*/
625                                         md_check_recovery(conf->mddev);
626                                 }
627                                 /*
628                                  * Because md_wait_for_blocked_rdev
629                                  * will dec nr_pending, we must
630                                  * increment it first.
631                                  */
632                                 atomic_inc(&rdev->nr_pending);
633                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
634                         } else {
635                                 /* Acknowledged bad block - skip the write */
636                                 rdev_dec_pending(rdev, conf->mddev);
637                                 rdev = NULL;
638                         }
639                 }
640
641                 if (rdev) {
642                         if (s->syncing || s->expanding || s->expanded
643                             || s->replacing)
644                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
645
646                         set_bit(STRIPE_IO_STARTED, &sh->state);
647
648                         bi->bi_bdev = rdev->bdev;
649                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
650                                 __func__, (unsigned long long)sh->sector,
651                                 bi->bi_rw, i);
652                         atomic_inc(&sh->count);
653                         if (use_new_offset(conf, sh))
654                                 bi->bi_sector = (sh->sector
655                                                  + rdev->new_data_offset);
656                         else
657                                 bi->bi_sector = (sh->sector
658                                                  + rdev->data_offset);
659                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
660                                 bi->bi_rw |= REQ_FLUSH;
661
662                         bi->bi_flags = 1 << BIO_UPTODATE;
663                         bi->bi_idx = 0;
664                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
665                         bi->bi_io_vec[0].bv_offset = 0;
666                         bi->bi_size = STRIPE_SIZE;
667                         bi->bi_next = NULL;
668                         if (rrdev)
669                                 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
670                         generic_make_request(bi);
671                 }
672                 if (rrdev) {
673                         if (s->syncing || s->expanding || s->expanded
674                             || s->replacing)
675                                 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
676
677                         set_bit(STRIPE_IO_STARTED, &sh->state);
678
679                         rbi->bi_bdev = rrdev->bdev;
680                         pr_debug("%s: for %llu schedule op %ld on "
681                                  "replacement disc %d\n",
682                                 __func__, (unsigned long long)sh->sector,
683                                 rbi->bi_rw, i);
684                         atomic_inc(&sh->count);
685                         if (use_new_offset(conf, sh))
686                                 rbi->bi_sector = (sh->sector
687                                                   + rrdev->new_data_offset);
688                         else
689                                 rbi->bi_sector = (sh->sector
690                                                   + rrdev->data_offset);
691                         rbi->bi_flags = 1 << BIO_UPTODATE;
692                         rbi->bi_idx = 0;
693                         rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
694                         rbi->bi_io_vec[0].bv_offset = 0;
695                         rbi->bi_size = STRIPE_SIZE;
696                         rbi->bi_next = NULL;
697                         generic_make_request(rbi);
698                 }
699                 if (!rdev && !rrdev) {
700                         if (rw & WRITE)
701                                 set_bit(STRIPE_DEGRADED, &sh->state);
702                         pr_debug("skip op %ld on disc %d for sector %llu\n",
703                                 bi->bi_rw, i, (unsigned long long)sh->sector);
704                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
705                         set_bit(STRIPE_HANDLE, &sh->state);
706                 }
707         }
708 }
709
710 static struct dma_async_tx_descriptor *
711 async_copy_data(int frombio, struct bio *bio, struct page *page,
712         sector_t sector, struct dma_async_tx_descriptor *tx)
713 {
714         struct bio_vec *bvl;
715         struct page *bio_page;
716         int i;
717         int page_offset;
718         struct async_submit_ctl submit;
719         enum async_tx_flags flags = 0;
720
721         if (bio->bi_sector >= sector)
722                 page_offset = (signed)(bio->bi_sector - sector) * 512;
723         else
724                 page_offset = (signed)(sector - bio->bi_sector) * -512;
725
726         if (frombio)
727                 flags |= ASYNC_TX_FENCE;
728         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
729
730         bio_for_each_segment(bvl, bio, i) {
731                 int len = bvl->bv_len;
732                 int clen;
733                 int b_offset = 0;
734
735                 if (page_offset < 0) {
736                         b_offset = -page_offset;
737                         page_offset += b_offset;
738                         len -= b_offset;
739                 }
740
741                 if (len > 0 && page_offset + len > STRIPE_SIZE)
742                         clen = STRIPE_SIZE - page_offset;
743                 else
744                         clen = len;
745
746                 if (clen > 0) {
747                         b_offset += bvl->bv_offset;
748                         bio_page = bvl->bv_page;
749                         if (frombio)
750                                 tx = async_memcpy(page, bio_page, page_offset,
751                                                   b_offset, clen, &submit);
752                         else
753                                 tx = async_memcpy(bio_page, page, b_offset,
754                                                   page_offset, clen, &submit);
755                 }
756                 /* chain the operations */
757                 submit.depend_tx = tx;
758
759                 if (clen < len) /* hit end of page */
760                         break;
761                 page_offset +=  len;
762         }
763
764         return tx;
765 }
766
767 static void ops_complete_biofill(void *stripe_head_ref)
768 {
769         struct stripe_head *sh = stripe_head_ref;
770         struct bio *return_bi = NULL;
771         int i;
772
773         pr_debug("%s: stripe %llu\n", __func__,
774                 (unsigned long long)sh->sector);
775
776         /* clear completed biofills */
777         for (i = sh->disks; i--; ) {
778                 struct r5dev *dev = &sh->dev[i];
779
780                 /* acknowledge completion of a biofill operation */
781                 /* and check if we need to reply to a read request,
782                  * new R5_Wantfill requests are held off until
783                  * !STRIPE_BIOFILL_RUN
784                  */
785                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
786                         struct bio *rbi, *rbi2;
787
788                         BUG_ON(!dev->read);
789                         rbi = dev->read;
790                         dev->read = NULL;
791                         while (rbi && rbi->bi_sector <
792                                 dev->sector + STRIPE_SECTORS) {
793                                 rbi2 = r5_next_bio(rbi, dev->sector);
794                                 if (!raid5_dec_bi_active_stripes(rbi)) {
795                                         rbi->bi_next = return_bi;
796                                         return_bi = rbi;
797                                 }
798                                 rbi = rbi2;
799                         }
800                 }
801         }
802         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
803
804         return_io(return_bi);
805
806         set_bit(STRIPE_HANDLE, &sh->state);
807         release_stripe(sh);
808 }
809
810 static void ops_run_biofill(struct stripe_head *sh)
811 {
812         struct dma_async_tx_descriptor *tx = NULL;
813         struct async_submit_ctl submit;
814         int i;
815
816         pr_debug("%s: stripe %llu\n", __func__,
817                 (unsigned long long)sh->sector);
818
819         for (i = sh->disks; i--; ) {
820                 struct r5dev *dev = &sh->dev[i];
821                 if (test_bit(R5_Wantfill, &dev->flags)) {
822                         struct bio *rbi;
823                         spin_lock_irq(&sh->stripe_lock);
824                         dev->read = rbi = dev->toread;
825                         dev->toread = NULL;
826                         spin_unlock_irq(&sh->stripe_lock);
827                         while (rbi && rbi->bi_sector <
828                                 dev->sector + STRIPE_SECTORS) {
829                                 tx = async_copy_data(0, rbi, dev->page,
830                                         dev->sector, tx);
831                                 rbi = r5_next_bio(rbi, dev->sector);
832                         }
833                 }
834         }
835
836         atomic_inc(&sh->count);
837         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
838         async_trigger_callback(&submit);
839 }
840
841 static void mark_target_uptodate(struct stripe_head *sh, int target)
842 {
843         struct r5dev *tgt;
844
845         if (target < 0)
846                 return;
847
848         tgt = &sh->dev[target];
849         set_bit(R5_UPTODATE, &tgt->flags);
850         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
851         clear_bit(R5_Wantcompute, &tgt->flags);
852 }
853
854 static void ops_complete_compute(void *stripe_head_ref)
855 {
856         struct stripe_head *sh = stripe_head_ref;
857
858         pr_debug("%s: stripe %llu\n", __func__,
859                 (unsigned long long)sh->sector);
860
861         /* mark the computed target(s) as uptodate */
862         mark_target_uptodate(sh, sh->ops.target);
863         mark_target_uptodate(sh, sh->ops.target2);
864
865         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
866         if (sh->check_state == check_state_compute_run)
867                 sh->check_state = check_state_compute_result;
868         set_bit(STRIPE_HANDLE, &sh->state);
869         release_stripe(sh);
870 }
871
872 /* return a pointer to the address conversion region of the scribble buffer */
873 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
874                                  struct raid5_percpu *percpu)
875 {
876         return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
877 }
878
879 static struct dma_async_tx_descriptor *
880 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
881 {
882         int disks = sh->disks;
883         struct page **xor_srcs = percpu->scribble;
884         int target = sh->ops.target;
885         struct r5dev *tgt = &sh->dev[target];
886         struct page *xor_dest = tgt->page;
887         int count = 0;
888         struct dma_async_tx_descriptor *tx;
889         struct async_submit_ctl submit;
890         int i;
891
892         pr_debug("%s: stripe %llu block: %d\n",
893                 __func__, (unsigned long long)sh->sector, target);
894         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
895
896         for (i = disks; i--; )
897                 if (i != target)
898                         xor_srcs[count++] = sh->dev[i].page;
899
900         atomic_inc(&sh->count);
901
902         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
903                           ops_complete_compute, sh, to_addr_conv(sh, percpu));
904         if (unlikely(count == 1))
905                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
906         else
907                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
908
909         return tx;
910 }
911
912 /* set_syndrome_sources - populate source buffers for gen_syndrome
913  * @srcs - (struct page *) array of size sh->disks
914  * @sh - stripe_head to parse
915  *
916  * Populates srcs in proper layout order for the stripe and returns the
917  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
918  * destination buffer is recorded in srcs[count] and the Q destination
919  * is recorded in srcs[count+1]].
920  */
921 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
922 {
923         int disks = sh->disks;
924         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
925         int d0_idx = raid6_d0(sh);
926         int count;
927         int i;
928
929         for (i = 0; i < disks; i++)
930                 srcs[i] = NULL;
931
932         count = 0;
933         i = d0_idx;
934         do {
935                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
936
937                 srcs[slot] = sh->dev[i].page;
938                 i = raid6_next_disk(i, disks);
939         } while (i != d0_idx);
940
941         return syndrome_disks;
942 }
943
944 static struct dma_async_tx_descriptor *
945 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
946 {
947         int disks = sh->disks;
948         struct page **blocks = percpu->scribble;
949         int target;
950         int qd_idx = sh->qd_idx;
951         struct dma_async_tx_descriptor *tx;
952         struct async_submit_ctl submit;
953         struct r5dev *tgt;
954         struct page *dest;
955         int i;
956         int count;
957
958         if (sh->ops.target < 0)
959                 target = sh->ops.target2;
960         else if (sh->ops.target2 < 0)
961                 target = sh->ops.target;
962         else
963                 /* we should only have one valid target */
964                 BUG();
965         BUG_ON(target < 0);
966         pr_debug("%s: stripe %llu block: %d\n",
967                 __func__, (unsigned long long)sh->sector, target);
968
969         tgt = &sh->dev[target];
970         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
971         dest = tgt->page;
972
973         atomic_inc(&sh->count);
974
975         if (target == qd_idx) {
976                 count = set_syndrome_sources(blocks, sh);
977                 blocks[count] = NULL; /* regenerating p is not necessary */
978                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
979                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
980                                   ops_complete_compute, sh,
981                                   to_addr_conv(sh, percpu));
982                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
983         } else {
984                 /* Compute any data- or p-drive using XOR */
985                 count = 0;
986                 for (i = disks; i-- ; ) {
987                         if (i == target || i == qd_idx)
988                                 continue;
989                         blocks[count++] = sh->dev[i].page;
990                 }
991
992                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
993                                   NULL, ops_complete_compute, sh,
994                                   to_addr_conv(sh, percpu));
995                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
996         }
997
998         return tx;
999 }
1000
1001 static struct dma_async_tx_descriptor *
1002 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1003 {
1004         int i, count, disks = sh->disks;
1005         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1006         int d0_idx = raid6_d0(sh);
1007         int faila = -1, failb = -1;
1008         int target = sh->ops.target;
1009         int target2 = sh->ops.target2;
1010         struct r5dev *tgt = &sh->dev[target];
1011         struct r5dev *tgt2 = &sh->dev[target2];
1012         struct dma_async_tx_descriptor *tx;
1013         struct page **blocks = percpu->scribble;
1014         struct async_submit_ctl submit;
1015
1016         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1017                  __func__, (unsigned long long)sh->sector, target, target2);
1018         BUG_ON(target < 0 || target2 < 0);
1019         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1020         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1021
1022         /* we need to open-code set_syndrome_sources to handle the
1023          * slot number conversion for 'faila' and 'failb'
1024          */
1025         for (i = 0; i < disks ; i++)
1026                 blocks[i] = NULL;
1027         count = 0;
1028         i = d0_idx;
1029         do {
1030                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1031
1032                 blocks[slot] = sh->dev[i].page;
1033
1034                 if (i == target)
1035                         faila = slot;
1036                 if (i == target2)
1037                         failb = slot;
1038                 i = raid6_next_disk(i, disks);
1039         } while (i != d0_idx);
1040
1041         BUG_ON(faila == failb);
1042         if (failb < faila)
1043                 swap(faila, failb);
1044         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1045                  __func__, (unsigned long long)sh->sector, faila, failb);
1046
1047         atomic_inc(&sh->count);
1048
1049         if (failb == syndrome_disks+1) {
1050                 /* Q disk is one of the missing disks */
1051                 if (faila == syndrome_disks) {
1052                         /* Missing P+Q, just recompute */
1053                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1054                                           ops_complete_compute, sh,
1055                                           to_addr_conv(sh, percpu));
1056                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1057                                                   STRIPE_SIZE, &submit);
1058                 } else {
1059                         struct page *dest;
1060                         int data_target;
1061                         int qd_idx = sh->qd_idx;
1062
1063                         /* Missing D+Q: recompute D from P, then recompute Q */
1064                         if (target == qd_idx)
1065                                 data_target = target2;
1066                         else
1067                                 data_target = target;
1068
1069                         count = 0;
1070                         for (i = disks; i-- ; ) {
1071                                 if (i == data_target || i == qd_idx)
1072                                         continue;
1073                                 blocks[count++] = sh->dev[i].page;
1074                         }
1075                         dest = sh->dev[data_target].page;
1076                         init_async_submit(&submit,
1077                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1078                                           NULL, NULL, NULL,
1079                                           to_addr_conv(sh, percpu));
1080                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1081                                        &submit);
1082
1083                         count = set_syndrome_sources(blocks, sh);
1084                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1085                                           ops_complete_compute, sh,
1086                                           to_addr_conv(sh, percpu));
1087                         return async_gen_syndrome(blocks, 0, count+2,
1088                                                   STRIPE_SIZE, &submit);
1089                 }
1090         } else {
1091                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1092                                   ops_complete_compute, sh,
1093                                   to_addr_conv(sh, percpu));
1094                 if (failb == syndrome_disks) {
1095                         /* We're missing D+P. */
1096                         return async_raid6_datap_recov(syndrome_disks+2,
1097                                                        STRIPE_SIZE, faila,
1098                                                        blocks, &submit);
1099                 } else {
1100                         /* We're missing D+D. */
1101                         return async_raid6_2data_recov(syndrome_disks+2,
1102                                                        STRIPE_SIZE, faila, failb,
1103                                                        blocks, &submit);
1104                 }
1105         }
1106 }
1107
1108
1109 static void ops_complete_prexor(void *stripe_head_ref)
1110 {
1111         struct stripe_head *sh = stripe_head_ref;
1112
1113         pr_debug("%s: stripe %llu\n", __func__,
1114                 (unsigned long long)sh->sector);
1115 }
1116
1117 static struct dma_async_tx_descriptor *
1118 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1119                struct dma_async_tx_descriptor *tx)
1120 {
1121         int disks = sh->disks;
1122         struct page **xor_srcs = percpu->scribble;
1123         int count = 0, pd_idx = sh->pd_idx, i;
1124         struct async_submit_ctl submit;
1125
1126         /* existing parity data subtracted */
1127         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1128
1129         pr_debug("%s: stripe %llu\n", __func__,
1130                 (unsigned long long)sh->sector);
1131
1132         for (i = disks; i--; ) {
1133                 struct r5dev *dev = &sh->dev[i];
1134                 /* Only process blocks that are known to be uptodate */
1135                 if (test_bit(R5_Wantdrain, &dev->flags))
1136                         xor_srcs[count++] = dev->page;
1137         }
1138
1139         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1140                           ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1141         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1142
1143         return tx;
1144 }
1145
1146 static struct dma_async_tx_descriptor *
1147 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1148 {
1149         int disks = sh->disks;
1150         int i;
1151
1152         pr_debug("%s: stripe %llu\n", __func__,
1153                 (unsigned long long)sh->sector);
1154
1155         for (i = disks; i--; ) {
1156                 struct r5dev *dev = &sh->dev[i];
1157                 struct bio *chosen;
1158
1159                 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1160                         struct bio *wbi;
1161
1162                         spin_lock_irq(&sh->stripe_lock);
1163                         chosen = dev->towrite;
1164                         dev->towrite = NULL;
1165                         BUG_ON(dev->written);
1166                         wbi = dev->written = chosen;
1167                         spin_unlock_irq(&sh->stripe_lock);
1168
1169                         while (wbi && wbi->bi_sector <
1170                                 dev->sector + STRIPE_SECTORS) {
1171                                 if (wbi->bi_rw & REQ_FUA)
1172                                         set_bit(R5_WantFUA, &dev->flags);
1173                                 if (wbi->bi_rw & REQ_SYNC)
1174                                         set_bit(R5_SyncIO, &dev->flags);
1175                                 if (wbi->bi_rw & REQ_DISCARD) {
1176                                         memset(page_address(dev->page), 0,
1177                                                 STRIPE_SECTORS << 9);
1178                                         set_bit(R5_Discard, &dev->flags);
1179                                 } else
1180                                         tx = async_copy_data(1, wbi, dev->page,
1181                                                 dev->sector, tx);
1182                                 wbi = r5_next_bio(wbi, dev->sector);
1183                         }
1184                 }
1185         }
1186
1187         return tx;
1188 }
1189
1190 static void ops_complete_reconstruct(void *stripe_head_ref)
1191 {
1192         struct stripe_head *sh = stripe_head_ref;
1193         int disks = sh->disks;
1194         int pd_idx = sh->pd_idx;
1195         int qd_idx = sh->qd_idx;
1196         int i;
1197         bool fua = false, sync = false;
1198
1199         pr_debug("%s: stripe %llu\n", __func__,
1200                 (unsigned long long)sh->sector);
1201
1202         for (i = disks; i--; ) {
1203                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1204                 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1205         }
1206
1207         for (i = disks; i--; ) {
1208                 struct r5dev *dev = &sh->dev[i];
1209
1210                 if (dev->written || i == pd_idx || i == qd_idx) {
1211                         set_bit(R5_UPTODATE, &dev->flags);
1212                         if (fua)
1213                                 set_bit(R5_WantFUA, &dev->flags);
1214                         if (sync)
1215                                 set_bit(R5_SyncIO, &dev->flags);
1216                 }
1217         }
1218
1219         if (sh->reconstruct_state == reconstruct_state_drain_run)
1220                 sh->reconstruct_state = reconstruct_state_drain_result;
1221         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1222                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1223         else {
1224                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1225                 sh->reconstruct_state = reconstruct_state_result;
1226         }
1227
1228         set_bit(STRIPE_HANDLE, &sh->state);
1229         release_stripe(sh);
1230 }
1231
1232 static void
1233 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1234                      struct dma_async_tx_descriptor *tx)
1235 {
1236         int disks = sh->disks;
1237         struct page **xor_srcs = percpu->scribble;
1238         struct async_submit_ctl submit;
1239         int count = 0, pd_idx = sh->pd_idx, i;
1240         struct page *xor_dest;
1241         int prexor = 0;
1242         unsigned long flags;
1243
1244         pr_debug("%s: stripe %llu\n", __func__,
1245                 (unsigned long long)sh->sector);
1246
1247         for (i = 0; i < sh->disks; i++) {
1248                 if (pd_idx == i)
1249                         continue;
1250                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1251                         break;
1252         }
1253         if (i >= sh->disks) {
1254                 atomic_inc(&sh->count);
1255                 memset(page_address(sh->dev[pd_idx].page), 0,
1256                         STRIPE_SECTORS << 9);
1257                 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1258                 ops_complete_reconstruct(sh);
1259                 return;
1260         }
1261         /* check if prexor is active which means only process blocks
1262          * that are part of a read-modify-write (written)
1263          */
1264         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1265                 prexor = 1;
1266                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1267                 for (i = disks; i--; ) {
1268                         struct r5dev *dev = &sh->dev[i];
1269                         if (dev->written)
1270                                 xor_srcs[count++] = dev->page;
1271                 }
1272         } else {
1273                 xor_dest = sh->dev[pd_idx].page;
1274                 for (i = disks; i--; ) {
1275                         struct r5dev *dev = &sh->dev[i];
1276                         if (i != pd_idx)
1277                                 xor_srcs[count++] = dev->page;
1278                 }
1279         }
1280
1281         /* 1/ if we prexor'd then the dest is reused as a source
1282          * 2/ if we did not prexor then we are redoing the parity
1283          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1284          * for the synchronous xor case
1285          */
1286         flags = ASYNC_TX_ACK |
1287                 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1288
1289         atomic_inc(&sh->count);
1290
1291         init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1292                           to_addr_conv(sh, percpu));
1293         if (unlikely(count == 1))
1294                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1295         else
1296                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1297 }
1298
1299 static void
1300 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1301                      struct dma_async_tx_descriptor *tx)
1302 {
1303         struct async_submit_ctl submit;
1304         struct page **blocks = percpu->scribble;
1305         int count, i;
1306
1307         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1308
1309         for (i = 0; i < sh->disks; i++) {
1310                 if (sh->pd_idx == i || sh->qd_idx == i)
1311                         continue;
1312                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1313                         break;
1314         }
1315         if (i >= sh->disks) {
1316                 atomic_inc(&sh->count);
1317                 memset(page_address(sh->dev[sh->pd_idx].page), 0,
1318                         STRIPE_SECTORS << 9);
1319                 memset(page_address(sh->dev[sh->qd_idx].page), 0,
1320                         STRIPE_SECTORS << 9);
1321                 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1322                 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1323                 ops_complete_reconstruct(sh);
1324                 return;
1325         }
1326
1327         count = set_syndrome_sources(blocks, sh);
1328
1329         atomic_inc(&sh->count);
1330
1331         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1332                           sh, to_addr_conv(sh, percpu));
1333         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1334 }
1335
1336 static void ops_complete_check(void *stripe_head_ref)
1337 {
1338         struct stripe_head *sh = stripe_head_ref;
1339
1340         pr_debug("%s: stripe %llu\n", __func__,
1341                 (unsigned long long)sh->sector);
1342
1343         sh->check_state = check_state_check_result;
1344         set_bit(STRIPE_HANDLE, &sh->state);
1345         release_stripe(sh);
1346 }
1347
1348 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1349 {
1350         int disks = sh->disks;
1351         int pd_idx = sh->pd_idx;
1352         int qd_idx = sh->qd_idx;
1353         struct page *xor_dest;
1354         struct page **xor_srcs = percpu->scribble;
1355         struct dma_async_tx_descriptor *tx;
1356         struct async_submit_ctl submit;
1357         int count;
1358         int i;
1359
1360         pr_debug("%s: stripe %llu\n", __func__,
1361                 (unsigned long long)sh->sector);
1362
1363         count = 0;
1364         xor_dest = sh->dev[pd_idx].page;
1365         xor_srcs[count++] = xor_dest;
1366         for (i = disks; i--; ) {
1367                 if (i == pd_idx || i == qd_idx)
1368                         continue;
1369                 xor_srcs[count++] = sh->dev[i].page;
1370         }
1371
1372         init_async_submit(&submit, 0, NULL, NULL, NULL,
1373                           to_addr_conv(sh, percpu));
1374         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1375                            &sh->ops.zero_sum_result, &submit);
1376
1377         atomic_inc(&sh->count);
1378         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1379         tx = async_trigger_callback(&submit);
1380 }
1381
1382 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1383 {
1384         struct page **srcs = percpu->scribble;
1385         struct async_submit_ctl submit;
1386         int count;
1387
1388         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1389                 (unsigned long long)sh->sector, checkp);
1390
1391         count = set_syndrome_sources(srcs, sh);
1392         if (!checkp)
1393                 srcs[count] = NULL;
1394
1395         atomic_inc(&sh->count);
1396         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1397                           sh, to_addr_conv(sh, percpu));
1398         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1399                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1400 }
1401
1402 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1403 {
1404         int overlap_clear = 0, i, disks = sh->disks;
1405         struct dma_async_tx_descriptor *tx = NULL;
1406         struct r5conf *conf = sh->raid_conf;
1407         int level = conf->level;
1408         struct raid5_percpu *percpu;
1409         unsigned long cpu;
1410
1411         cpu = get_cpu();
1412         percpu = per_cpu_ptr(conf->percpu, cpu);
1413         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1414                 ops_run_biofill(sh);
1415                 overlap_clear++;
1416         }
1417
1418         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1419                 if (level < 6)
1420                         tx = ops_run_compute5(sh, percpu);
1421                 else {
1422                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1423                                 tx = ops_run_compute6_1(sh, percpu);
1424                         else
1425                                 tx = ops_run_compute6_2(sh, percpu);
1426                 }
1427                 /* terminate the chain if reconstruct is not set to be run */
1428                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1429                         async_tx_ack(tx);
1430         }
1431
1432         if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1433                 tx = ops_run_prexor(sh, percpu, tx);
1434
1435         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1436                 tx = ops_run_biodrain(sh, tx);
1437                 overlap_clear++;
1438         }
1439
1440         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1441                 if (level < 6)
1442                         ops_run_reconstruct5(sh, percpu, tx);
1443                 else
1444                         ops_run_reconstruct6(sh, percpu, tx);
1445         }
1446
1447         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1448                 if (sh->check_state == check_state_run)
1449                         ops_run_check_p(sh, percpu);
1450                 else if (sh->check_state == check_state_run_q)
1451                         ops_run_check_pq(sh, percpu, 0);
1452                 else if (sh->check_state == check_state_run_pq)
1453                         ops_run_check_pq(sh, percpu, 1);
1454                 else
1455                         BUG();
1456         }
1457
1458         if (overlap_clear)
1459                 for (i = disks; i--; ) {
1460                         struct r5dev *dev = &sh->dev[i];
1461                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1462                                 wake_up(&sh->raid_conf->wait_for_overlap);
1463                 }
1464         put_cpu();
1465 }
1466
1467 #ifdef CONFIG_MULTICORE_RAID456
1468 static void async_run_ops(void *param, async_cookie_t cookie)
1469 {
1470         struct stripe_head *sh = param;
1471         unsigned long ops_request = sh->ops.request;
1472
1473         clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1474         wake_up(&sh->ops.wait_for_ops);
1475
1476         __raid_run_ops(sh, ops_request);
1477         release_stripe(sh);
1478 }
1479
1480 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1481 {
1482         /* since handle_stripe can be called outside of raid5d context
1483          * we need to ensure sh->ops.request is de-staged before another
1484          * request arrives
1485          */
1486         wait_event(sh->ops.wait_for_ops,
1487                    !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1488         sh->ops.request = ops_request;
1489
1490         atomic_inc(&sh->count);
1491         async_schedule(async_run_ops, sh);
1492 }
1493 #else
1494 #define raid_run_ops __raid_run_ops
1495 #endif
1496
1497 static int grow_one_stripe(struct r5conf *conf)
1498 {
1499         struct stripe_head *sh;
1500         sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1501         if (!sh)
1502                 return 0;
1503
1504         sh->raid_conf = conf;
1505         #ifdef CONFIG_MULTICORE_RAID456
1506         init_waitqueue_head(&sh->ops.wait_for_ops);
1507         #endif
1508
1509         spin_lock_init(&sh->stripe_lock);
1510
1511         if (grow_buffers(sh)) {
1512                 shrink_buffers(sh);
1513                 kmem_cache_free(conf->slab_cache, sh);
1514                 return 0;
1515         }
1516         /* we just created an active stripe so... */
1517         atomic_set(&sh->count, 1);
1518         atomic_inc(&conf->active_stripes);
1519         INIT_LIST_HEAD(&sh->lru);
1520         release_stripe(sh);
1521         return 1;
1522 }
1523
1524 static int grow_stripes(struct r5conf *conf, int num)
1525 {
1526         struct kmem_cache *sc;
1527         int devs = max(conf->raid_disks, conf->previous_raid_disks);
1528
1529         if (conf->mddev->gendisk)
1530                 sprintf(conf->cache_name[0],
1531                         "raid%d-%s", conf->level, mdname(conf->mddev));
1532         else
1533                 sprintf(conf->cache_name[0],
1534                         "raid%d-%p", conf->level, conf->mddev);
1535         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1536
1537         conf->active_name = 0;
1538         sc = kmem_cache_create(conf->cache_name[conf->active_name],
1539                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1540                                0, 0, NULL);
1541         if (!sc)
1542                 return 1;
1543         conf->slab_cache = sc;
1544         conf->pool_size = devs;
1545         while (num--)
1546                 if (!grow_one_stripe(conf))
1547                         return 1;
1548         return 0;
1549 }
1550
1551 /**
1552  * scribble_len - return the required size of the scribble region
1553  * @num - total number of disks in the array
1554  *
1555  * The size must be enough to contain:
1556  * 1/ a struct page pointer for each device in the array +2
1557  * 2/ room to convert each entry in (1) to its corresponding dma
1558  *    (dma_map_page()) or page (page_address()) address.
1559  *
1560  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1561  * calculate over all devices (not just the data blocks), using zeros in place
1562  * of the P and Q blocks.
1563  */
1564 static size_t scribble_len(int num)
1565 {
1566         size_t len;
1567
1568         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1569
1570         return len;
1571 }
1572
1573 static int resize_stripes(struct r5conf *conf, int newsize)
1574 {
1575         /* Make all the stripes able to hold 'newsize' devices.
1576          * New slots in each stripe get 'page' set to a new page.
1577          *
1578          * This happens in stages:
1579          * 1/ create a new kmem_cache and allocate the required number of
1580          *    stripe_heads.
1581          * 2/ gather all the old stripe_heads and tranfer the pages across
1582          *    to the new stripe_heads.  This will have the side effect of
1583          *    freezing the array as once all stripe_heads have been collected,
1584          *    no IO will be possible.  Old stripe heads are freed once their
1585          *    pages have been transferred over, and the old kmem_cache is
1586          *    freed when all stripes are done.
1587          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
1588          *    we simple return a failre status - no need to clean anything up.
1589          * 4/ allocate new pages for the new slots in the new stripe_heads.
1590          *    If this fails, we don't bother trying the shrink the
1591          *    stripe_heads down again, we just leave them as they are.
1592          *    As each stripe_head is processed the new one is released into
1593          *    active service.
1594          *
1595          * Once step2 is started, we cannot afford to wait for a write,
1596          * so we use GFP_NOIO allocations.
1597          */
1598         struct stripe_head *osh, *nsh;
1599         LIST_HEAD(newstripes);
1600         struct disk_info *ndisks;
1601         unsigned long cpu;
1602         int err;
1603         struct kmem_cache *sc;
1604         int i;
1605
1606         if (newsize <= conf->pool_size)
1607                 return 0; /* never bother to shrink */
1608
1609         err = md_allow_write(conf->mddev);
1610         if (err)
1611                 return err;
1612
1613         /* Step 1 */
1614         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1615                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1616                                0, 0, NULL);
1617         if (!sc)
1618                 return -ENOMEM;
1619
1620         for (i = conf->max_nr_stripes; i; i--) {
1621                 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1622                 if (!nsh)
1623                         break;
1624
1625                 nsh->raid_conf = conf;
1626                 #ifdef CONFIG_MULTICORE_RAID456
1627                 init_waitqueue_head(&nsh->ops.wait_for_ops);
1628                 #endif
1629
1630                 list_add(&nsh->lru, &newstripes);
1631         }
1632         if (i) {
1633                 /* didn't get enough, give up */
1634                 while (!list_empty(&newstripes)) {
1635                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
1636                         list_del(&nsh->lru);
1637                         kmem_cache_free(sc, nsh);
1638                 }
1639                 kmem_cache_destroy(sc);
1640                 return -ENOMEM;
1641         }
1642         /* Step 2 - Must use GFP_NOIO now.
1643          * OK, we have enough stripes, start collecting inactive
1644          * stripes and copying them over
1645          */
1646         list_for_each_entry(nsh, &newstripes, lru) {
1647                 spin_lock_irq(&conf->device_lock);
1648                 wait_event_lock_irq(conf->wait_for_stripe,
1649                                     !list_empty(&conf->inactive_list),
1650                                     conf->device_lock,
1651                                     );
1652                 osh = get_free_stripe(conf);
1653                 spin_unlock_irq(&conf->device_lock);
1654                 atomic_set(&nsh->count, 1);
1655                 for(i=0; i<conf->pool_size; i++)
1656                         nsh->dev[i].page = osh->dev[i].page;
1657                 for( ; i<newsize; i++)
1658                         nsh->dev[i].page = NULL;
1659                 kmem_cache_free(conf->slab_cache, osh);
1660         }
1661         kmem_cache_destroy(conf->slab_cache);
1662
1663         /* Step 3.
1664          * At this point, we are holding all the stripes so the array
1665          * is completely stalled, so now is a good time to resize
1666          * conf->disks and the scribble region
1667          */
1668         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1669         if (ndisks) {
1670                 for (i=0; i<conf->raid_disks; i++)
1671                         ndisks[i] = conf->disks[i];
1672                 kfree(conf->disks);
1673                 conf->disks = ndisks;
1674         } else
1675                 err = -ENOMEM;
1676
1677         get_online_cpus();
1678         conf->scribble_len = scribble_len(newsize);
1679         for_each_present_cpu(cpu) {
1680                 struct raid5_percpu *percpu;
1681                 void *scribble;
1682
1683                 percpu = per_cpu_ptr(conf->percpu, cpu);
1684                 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1685
1686                 if (scribble) {
1687                         kfree(percpu->scribble);
1688                         percpu->scribble = scribble;
1689                 } else {
1690                         err = -ENOMEM;
1691                         break;
1692                 }
1693         }
1694         put_online_cpus();
1695
1696         /* Step 4, return new stripes to service */
1697         while(!list_empty(&newstripes)) {
1698                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1699                 list_del_init(&nsh->lru);
1700
1701                 for (i=conf->raid_disks; i < newsize; i++)
1702                         if (nsh->dev[i].page == NULL) {
1703                                 struct page *p = alloc_page(GFP_NOIO);
1704                                 nsh->dev[i].page = p;
1705                                 if (!p)
1706                                         err = -ENOMEM;
1707                         }
1708                 release_stripe(nsh);
1709         }
1710         /* critical section pass, GFP_NOIO no longer needed */
1711
1712         conf->slab_cache = sc;
1713         conf->active_name = 1-conf->active_name;
1714         conf->pool_size = newsize;
1715         return err;
1716 }
1717
1718 static int drop_one_stripe(struct r5conf *conf)
1719 {
1720         struct stripe_head *sh;
1721
1722         spin_lock_irq(&conf->device_lock);
1723         sh = get_free_stripe(conf);
1724         spin_unlock_irq(&conf->device_lock);
1725         if (!sh)
1726                 return 0;
1727         BUG_ON(atomic_read(&sh->count));
1728         shrink_buffers(sh);
1729         kmem_cache_free(conf->slab_cache, sh);
1730         atomic_dec(&conf->active_stripes);
1731         return 1;
1732 }
1733
1734 static void shrink_stripes(struct r5conf *conf)
1735 {
1736         while (drop_one_stripe(conf))
1737                 ;
1738
1739         if (conf->slab_cache)
1740                 kmem_cache_destroy(conf->slab_cache);
1741         conf->slab_cache = NULL;
1742 }
1743
1744 static void raid5_end_read_request(struct bio * bi, int error)
1745 {
1746         struct stripe_head *sh = bi->bi_private;
1747         struct r5conf *conf = sh->raid_conf;
1748         int disks = sh->disks, i;
1749         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1750         char b[BDEVNAME_SIZE];
1751         struct md_rdev *rdev = NULL;
1752         sector_t s;
1753
1754         for (i=0 ; i<disks; i++)
1755                 if (bi == &sh->dev[i].req)
1756                         break;
1757
1758         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1759                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1760                 uptodate);
1761         if (i == disks) {
1762                 BUG();
1763                 return;
1764         }
1765         if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1766                 /* If replacement finished while this request was outstanding,
1767                  * 'replacement' might be NULL already.
1768                  * In that case it moved down to 'rdev'.
1769                  * rdev is not removed until all requests are finished.
1770                  */
1771                 rdev = conf->disks[i].replacement;
1772         if (!rdev)
1773                 rdev = conf->disks[i].rdev;
1774
1775         if (use_new_offset(conf, sh))
1776                 s = sh->sector + rdev->new_data_offset;
1777         else
1778                 s = sh->sector + rdev->data_offset;
1779         if (uptodate) {
1780                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1781                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1782                         /* Note that this cannot happen on a
1783                          * replacement device.  We just fail those on
1784                          * any error
1785                          */
1786                         printk_ratelimited(
1787                                 KERN_INFO
1788                                 "md/raid:%s: read error corrected"
1789                                 " (%lu sectors at %llu on %s)\n",
1790                                 mdname(conf->mddev), STRIPE_SECTORS,
1791                                 (unsigned long long)s,
1792                                 bdevname(rdev->bdev, b));
1793                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1794                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1795                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1796                 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
1797                         clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1798
1799                 if (atomic_read(&rdev->read_errors))
1800                         atomic_set(&rdev->read_errors, 0);
1801         } else {
1802                 const char *bdn = bdevname(rdev->bdev, b);
1803                 int retry = 0;
1804                 int set_bad = 0;
1805
1806                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1807                 atomic_inc(&rdev->read_errors);
1808                 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1809                         printk_ratelimited(
1810                                 KERN_WARNING
1811                                 "md/raid:%s: read error on replacement device "
1812                                 "(sector %llu on %s).\n",
1813                                 mdname(conf->mddev),
1814                                 (unsigned long long)s,
1815                                 bdn);
1816                 else if (conf->mddev->degraded >= conf->max_degraded) {
1817                         set_bad = 1;
1818                         printk_ratelimited(
1819                                 KERN_WARNING
1820                                 "md/raid:%s: read error not correctable "
1821                                 "(sector %llu on %s).\n",
1822                                 mdname(conf->mddev),
1823                                 (unsigned long long)s,
1824                                 bdn);
1825                 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
1826                         /* Oh, no!!! */
1827                         set_bad = 1;
1828                         printk_ratelimited(
1829                                 KERN_WARNING
1830                                 "md/raid:%s: read error NOT corrected!! "
1831                                 "(sector %llu on %s).\n",
1832                                 mdname(conf->mddev),
1833                                 (unsigned long long)s,
1834                                 bdn);
1835                 } else if (atomic_read(&rdev->read_errors)
1836                          > conf->max_nr_stripes)
1837                         printk(KERN_WARNING
1838                                "md/raid:%s: Too many read errors, failing device %s.\n",
1839                                mdname(conf->mddev), bdn);
1840                 else
1841                         retry = 1;
1842                 if (retry)
1843                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
1844                                 set_bit(R5_ReadError, &sh->dev[i].flags);
1845                                 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1846                         } else
1847                                 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1848                 else {
1849                         clear_bit(R5_ReadError, &sh->dev[i].flags);
1850                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
1851                         if (!(set_bad
1852                               && test_bit(In_sync, &rdev->flags)
1853                               && rdev_set_badblocks(
1854                                       rdev, sh->sector, STRIPE_SECTORS, 0)))
1855                                 md_error(conf->mddev, rdev);
1856                 }
1857         }
1858         rdev_dec_pending(rdev, conf->mddev);
1859         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1860         set_bit(STRIPE_HANDLE, &sh->state);
1861         release_stripe(sh);
1862 }
1863
1864 static void raid5_end_write_request(struct bio *bi, int error)
1865 {
1866         struct stripe_head *sh = bi->bi_private;
1867         struct r5conf *conf = sh->raid_conf;
1868         int disks = sh->disks, i;
1869         struct md_rdev *uninitialized_var(rdev);
1870         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1871         sector_t first_bad;
1872         int bad_sectors;
1873         int replacement = 0;
1874
1875         for (i = 0 ; i < disks; i++) {
1876                 if (bi == &sh->dev[i].req) {
1877                         rdev = conf->disks[i].rdev;
1878                         break;
1879                 }
1880                 if (bi == &sh->dev[i].rreq) {
1881                         rdev = conf->disks[i].replacement;
1882                         if (rdev)
1883                                 replacement = 1;
1884                         else
1885                                 /* rdev was removed and 'replacement'
1886                                  * replaced it.  rdev is not removed
1887                                  * until all requests are finished.
1888                                  */
1889                                 rdev = conf->disks[i].rdev;
1890                         break;
1891                 }
1892         }
1893         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1894                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1895                 uptodate);
1896         if (i == disks) {
1897                 BUG();
1898                 return;
1899         }
1900
1901         if (replacement) {
1902                 if (!uptodate)
1903                         md_error(conf->mddev, rdev);
1904                 else if (is_badblock(rdev, sh->sector,
1905                                      STRIPE_SECTORS,
1906                                      &first_bad, &bad_sectors))
1907                         set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
1908         } else {
1909                 if (!uptodate) {
1910                         set_bit(WriteErrorSeen, &rdev->flags);
1911                         set_bit(R5_WriteError, &sh->dev[i].flags);
1912                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
1913                                 set_bit(MD_RECOVERY_NEEDED,
1914                                         &rdev->mddev->recovery);
1915                 } else if (is_badblock(rdev, sh->sector,
1916                                        STRIPE_SECTORS,
1917                                        &first_bad, &bad_sectors))
1918                         set_bit(R5_MadeGood, &sh->dev[i].flags);
1919         }
1920         rdev_dec_pending(rdev, conf->mddev);
1921
1922         if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
1923                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1924         set_bit(STRIPE_HANDLE, &sh->state);
1925         release_stripe(sh);
1926 }
1927
1928 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1929         
1930 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1931 {
1932         struct r5dev *dev = &sh->dev[i];
1933
1934         bio_init(&dev->req);
1935         dev->req.bi_io_vec = &dev->vec;
1936         dev->req.bi_vcnt++;
1937         dev->req.bi_max_vecs++;
1938         dev->req.bi_private = sh;
1939         dev->vec.bv_page = dev->page;
1940
1941         bio_init(&dev->rreq);
1942         dev->rreq.bi_io_vec = &dev->rvec;
1943         dev->rreq.bi_vcnt++;
1944         dev->rreq.bi_max_vecs++;
1945         dev->rreq.bi_private = sh;
1946         dev->rvec.bv_page = dev->page;
1947
1948         dev->flags = 0;
1949         dev->sector = compute_blocknr(sh, i, previous);
1950 }
1951
1952 static void error(struct mddev *mddev, struct md_rdev *rdev)
1953 {
1954         char b[BDEVNAME_SIZE];
1955         struct r5conf *conf = mddev->private;
1956         unsigned long flags;
1957         pr_debug("raid456: error called\n");
1958
1959         spin_lock_irqsave(&conf->device_lock, flags);
1960         clear_bit(In_sync, &rdev->flags);
1961         mddev->degraded = calc_degraded(conf);
1962         spin_unlock_irqrestore(&conf->device_lock, flags);
1963         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1964
1965         set_bit(Blocked, &rdev->flags);
1966         set_bit(Faulty, &rdev->flags);
1967         set_bit(MD_CHANGE_DEVS, &mddev->flags);
1968         printk(KERN_ALERT
1969                "md/raid:%s: Disk failure on %s, disabling device.\n"
1970                "md/raid:%s: Operation continuing on %d devices.\n",
1971                mdname(mddev),
1972                bdevname(rdev->bdev, b),
1973                mdname(mddev),
1974                conf->raid_disks - mddev->degraded);
1975 }
1976
1977 /*
1978  * Input: a 'big' sector number,
1979  * Output: index of the data and parity disk, and the sector # in them.
1980  */
1981 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
1982                                      int previous, int *dd_idx,
1983                                      struct stripe_head *sh)
1984 {
1985         sector_t stripe, stripe2;
1986         sector_t chunk_number;
1987         unsigned int chunk_offset;
1988         int pd_idx, qd_idx;
1989         int ddf_layout = 0;
1990         sector_t new_sector;
1991         int algorithm = previous ? conf->prev_algo
1992                                  : conf->algorithm;
1993         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1994                                          : conf->chunk_sectors;
1995         int raid_disks = previous ? conf->previous_raid_disks
1996                                   : conf->raid_disks;
1997         int data_disks = raid_disks - conf->max_degraded;
1998
1999         /* First compute the information on this sector */
2000
2001         /*
2002          * Compute the chunk number and the sector offset inside the chunk
2003          */
2004         chunk_offset = sector_div(r_sector, sectors_per_chunk);
2005         chunk_number = r_sector;
2006
2007         /*
2008          * Compute the stripe number
2009          */
2010         stripe = chunk_number;
2011         *dd_idx = sector_div(stripe, data_disks);
2012         stripe2 = stripe;
2013         /*
2014          * Select the parity disk based on the user selected algorithm.
2015          */
2016         pd_idx = qd_idx = -1;
2017         switch(conf->level) {
2018         case 4:
2019                 pd_idx = data_disks;
2020                 break;
2021         case 5:
2022                 switch (algorithm) {
2023                 case ALGORITHM_LEFT_ASYMMETRIC:
2024                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2025                         if (*dd_idx >= pd_idx)
2026                                 (*dd_idx)++;
2027                         break;
2028                 case ALGORITHM_RIGHT_ASYMMETRIC:
2029                         pd_idx = sector_div(stripe2, raid_disks);
2030                         if (*dd_idx >= pd_idx)
2031                                 (*dd_idx)++;
2032                         break;
2033                 case ALGORITHM_LEFT_SYMMETRIC:
2034                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2035                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2036                         break;
2037                 case ALGORITHM_RIGHT_SYMMETRIC:
2038                         pd_idx = sector_div(stripe2, raid_disks);
2039                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2040                         break;
2041                 case ALGORITHM_PARITY_0:
2042                         pd_idx = 0;
2043                         (*dd_idx)++;
2044                         break;
2045                 case ALGORITHM_PARITY_N:
2046                         pd_idx = data_disks;
2047                         break;
2048                 default:
2049                         BUG();
2050                 }
2051                 break;
2052         case 6:
2053
2054                 switch (algorithm) {
2055                 case ALGORITHM_LEFT_ASYMMETRIC:
2056                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2057                         qd_idx = pd_idx + 1;
2058                         if (pd_idx == raid_disks-1) {
2059                                 (*dd_idx)++;    /* Q D D D P */
2060                                 qd_idx = 0;
2061                         } else if (*dd_idx >= pd_idx)
2062                                 (*dd_idx) += 2; /* D D P Q D */
2063                         break;
2064                 case ALGORITHM_RIGHT_ASYMMETRIC:
2065                         pd_idx = sector_div(stripe2, raid_disks);
2066                         qd_idx = pd_idx + 1;
2067                         if (pd_idx == raid_disks-1) {
2068                                 (*dd_idx)++;    /* Q D D D P */
2069                                 qd_idx = 0;
2070                         } else if (*dd_idx >= pd_idx)
2071                                 (*dd_idx) += 2; /* D D P Q D */
2072                         break;
2073                 case ALGORITHM_LEFT_SYMMETRIC:
2074                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2075                         qd_idx = (pd_idx + 1) % raid_disks;
2076                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2077                         break;
2078                 case ALGORITHM_RIGHT_SYMMETRIC:
2079                         pd_idx = sector_div(stripe2, raid_disks);
2080                         qd_idx = (pd_idx + 1) % raid_disks;
2081                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2082                         break;
2083
2084                 case ALGORITHM_PARITY_0:
2085                         pd_idx = 0;
2086                         qd_idx = 1;
2087                         (*dd_idx) += 2;
2088                         break;
2089                 case ALGORITHM_PARITY_N:
2090                         pd_idx = data_disks;
2091                         qd_idx = data_disks + 1;
2092                         break;
2093
2094                 case ALGORITHM_ROTATING_ZERO_RESTART:
2095                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
2096                          * of blocks for computing Q is different.
2097                          */
2098                         pd_idx = sector_div(stripe2, raid_disks);
2099                         qd_idx = pd_idx + 1;
2100                         if (pd_idx == raid_disks-1) {
2101                                 (*dd_idx)++;    /* Q D D D P */
2102                                 qd_idx = 0;
2103                         } else if (*dd_idx >= pd_idx)
2104                                 (*dd_idx) += 2; /* D D P Q D */
2105                         ddf_layout = 1;
2106                         break;
2107
2108                 case ALGORITHM_ROTATING_N_RESTART:
2109                         /* Same a left_asymmetric, by first stripe is
2110                          * D D D P Q  rather than
2111                          * Q D D D P
2112                          */
2113                         stripe2 += 1;
2114                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2115                         qd_idx = pd_idx + 1;
2116                         if (pd_idx == raid_disks-1) {
2117                                 (*dd_idx)++;    /* Q D D D P */
2118                                 qd_idx = 0;
2119                         } else if (*dd_idx >= pd_idx)
2120                                 (*dd_idx) += 2; /* D D P Q D */
2121                         ddf_layout = 1;
2122                         break;
2123
2124                 case ALGORITHM_ROTATING_N_CONTINUE:
2125                         /* Same as left_symmetric but Q is before P */
2126                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2127                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2128                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2129                         ddf_layout = 1;
2130                         break;
2131
2132                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2133                         /* RAID5 left_asymmetric, with Q on last device */
2134                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2135                         if (*dd_idx >= pd_idx)
2136                                 (*dd_idx)++;
2137                         qd_idx = raid_disks - 1;
2138                         break;
2139
2140                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2141                         pd_idx = sector_div(stripe2, raid_disks-1);
2142                         if (*dd_idx >= pd_idx)
2143                                 (*dd_idx)++;
2144                         qd_idx = raid_disks - 1;
2145                         break;
2146
2147                 case ALGORITHM_LEFT_SYMMETRIC_6:
2148                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2149                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2150                         qd_idx = raid_disks - 1;
2151                         break;
2152
2153                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2154                         pd_idx = sector_div(stripe2, raid_disks-1);
2155                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2156                         qd_idx = raid_disks - 1;
2157                         break;
2158
2159                 case ALGORITHM_PARITY_0_6:
2160                         pd_idx = 0;
2161                         (*dd_idx)++;
2162                         qd_idx = raid_disks - 1;
2163                         break;
2164
2165                 default:
2166                         BUG();
2167                 }
2168                 break;
2169         }
2170
2171         if (sh) {
2172                 sh->pd_idx = pd_idx;
2173                 sh->qd_idx = qd_idx;
2174                 sh->ddf_layout = ddf_layout;
2175         }
2176         /*
2177          * Finally, compute the new sector number
2178          */
2179         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2180         return new_sector;
2181 }
2182
2183
2184 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2185 {
2186         struct r5conf *conf = sh->raid_conf;
2187         int raid_disks = sh->disks;
2188         int data_disks = raid_disks - conf->max_degraded;
2189         sector_t new_sector = sh->sector, check;
2190         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2191                                          : conf->chunk_sectors;
2192         int algorithm = previous ? conf->prev_algo
2193                                  : conf->algorithm;
2194         sector_t stripe;
2195         int chunk_offset;
2196         sector_t chunk_number;
2197         int dummy1, dd_idx = i;
2198         sector_t r_sector;
2199         struct stripe_head sh2;
2200
2201
2202         chunk_offset = sector_div(new_sector, sectors_per_chunk);
2203         stripe = new_sector;
2204
2205         if (i == sh->pd_idx)
2206                 return 0;
2207         switch(conf->level) {
2208         case 4: break;
2209         case 5:
2210                 switch (algorithm) {
2211                 case ALGORITHM_LEFT_ASYMMETRIC:
2212                 case ALGORITHM_RIGHT_ASYMMETRIC:
2213                         if (i > sh->pd_idx)
2214                                 i--;
2215                         break;
2216                 case ALGORITHM_LEFT_SYMMETRIC:
2217                 case ALGORITHM_RIGHT_SYMMETRIC:
2218                         if (i < sh->pd_idx)
2219                                 i += raid_disks;
2220                         i -= (sh->pd_idx + 1);
2221                         break;
2222                 case ALGORITHM_PARITY_0:
2223                         i -= 1;
2224                         break;
2225                 case ALGORITHM_PARITY_N:
2226                         break;
2227                 default:
2228                         BUG();
2229                 }
2230                 break;
2231         case 6:
2232                 if (i == sh->qd_idx)
2233                         return 0; /* It is the Q disk */
2234                 switch (algorithm) {
2235                 case ALGORITHM_LEFT_ASYMMETRIC:
2236                 case ALGORITHM_RIGHT_ASYMMETRIC:
2237                 case ALGORITHM_ROTATING_ZERO_RESTART:
2238                 case ALGORITHM_ROTATING_N_RESTART:
2239                         if (sh->pd_idx == raid_disks-1)
2240                                 i--;    /* Q D D D P */
2241                         else if (i > sh->pd_idx)
2242                                 i -= 2; /* D D P Q D */
2243                         break;
2244                 case ALGORITHM_LEFT_SYMMETRIC:
2245                 case ALGORITHM_RIGHT_SYMMETRIC:
2246                         if (sh->pd_idx == raid_disks-1)
2247                                 i--; /* Q D D D P */
2248                         else {
2249                                 /* D D P Q D */
2250                                 if (i < sh->pd_idx)
2251                                         i += raid_disks;
2252                                 i -= (sh->pd_idx + 2);
2253                         }
2254                         break;
2255                 case ALGORITHM_PARITY_0:
2256                         i -= 2;
2257                         break;
2258                 case ALGORITHM_PARITY_N:
2259                         break;
2260                 case ALGORITHM_ROTATING_N_CONTINUE:
2261                         /* Like left_symmetric, but P is before Q */
2262                         if (sh->pd_idx == 0)
2263                                 i--;    /* P D D D Q */
2264                         else {
2265                                 /* D D Q P D */
2266                                 if (i < sh->pd_idx)
2267                                         i += raid_disks;
2268                                 i -= (sh->pd_idx + 1);
2269                         }
2270                         break;
2271                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2272                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2273                         if (i > sh->pd_idx)
2274                                 i--;
2275                         break;
2276                 case ALGORITHM_LEFT_SYMMETRIC_6:
2277                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2278                         if (i < sh->pd_idx)
2279                                 i += data_disks + 1;
2280                         i -= (sh->pd_idx + 1);
2281                         break;
2282                 case ALGORITHM_PARITY_0_6:
2283                         i -= 1;
2284                         break;
2285                 default:
2286                         BUG();
2287                 }
2288                 break;
2289         }
2290
2291         chunk_number = stripe * data_disks + i;
2292         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2293
2294         check = raid5_compute_sector(conf, r_sector,
2295                                      previous, &dummy1, &sh2);
2296         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2297                 || sh2.qd_idx != sh->qd_idx) {
2298                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2299                        mdname(conf->mddev));
2300                 return 0;
2301         }
2302         return r_sector;
2303 }
2304
2305
2306 static void
2307 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2308                          int rcw, int expand)
2309 {
2310         int i, pd_idx = sh->pd_idx, disks = sh->disks;
2311         struct r5conf *conf = sh->raid_conf;
2312         int level = conf->level;
2313
2314         if (rcw) {
2315                 /* if we are not expanding this is a proper write request, and
2316                  * there will be bios with new data to be drained into the
2317                  * stripe cache
2318                  */
2319                 if (!expand) {
2320                         sh->reconstruct_state = reconstruct_state_drain_run;
2321                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2322                 } else
2323                         sh->reconstruct_state = reconstruct_state_run;
2324
2325                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2326
2327                 for (i = disks; i--; ) {
2328                         struct r5dev *dev = &sh->dev[i];
2329
2330                         if (dev->towrite) {
2331                                 set_bit(R5_LOCKED, &dev->flags);
2332                                 set_bit(R5_Wantdrain, &dev->flags);
2333                                 if (!expand)
2334                                         clear_bit(R5_UPTODATE, &dev->flags);
2335                                 s->locked++;
2336                         }
2337                 }
2338                 if (s->locked + conf->max_degraded == disks)
2339                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2340                                 atomic_inc(&conf->pending_full_writes);
2341         } else {
2342                 BUG_ON(level == 6);
2343                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2344                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2345
2346                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2347                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2348                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2349                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2350
2351                 for (i = disks; i--; ) {
2352                         struct r5dev *dev = &sh->dev[i];
2353                         if (i == pd_idx)
2354                                 continue;
2355
2356                         if (dev->towrite &&
2357                             (test_bit(R5_UPTODATE, &dev->flags) ||
2358                              test_bit(R5_Wantcompute, &dev->flags))) {
2359                                 set_bit(R5_Wantdrain, &dev->flags);
2360                                 set_bit(R5_LOCKED, &dev->flags);
2361                                 clear_bit(R5_UPTODATE, &dev->flags);
2362                                 s->locked++;
2363                         }
2364                 }
2365         }
2366
2367         /* keep the parity disk(s) locked while asynchronous operations
2368          * are in flight
2369          */
2370         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2371         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2372         s->locked++;
2373
2374         if (level == 6) {
2375                 int qd_idx = sh->qd_idx;
2376                 struct r5dev *dev = &sh->dev[qd_idx];
2377
2378                 set_bit(R5_LOCKED, &dev->flags);
2379                 clear_bit(R5_UPTODATE, &dev->flags);
2380                 s->locked++;
2381         }
2382
2383         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2384                 __func__, (unsigned long long)sh->sector,
2385                 s->locked, s->ops_request);
2386 }
2387
2388 /*
2389  * Each stripe/dev can have one or more bion attached.
2390  * toread/towrite point to the first in a chain.
2391  * The bi_next chain must be in order.
2392  */
2393 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2394 {
2395         struct bio **bip;
2396         struct r5conf *conf = sh->raid_conf;
2397         int firstwrite=0;
2398
2399         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2400                 (unsigned long long)bi->bi_sector,
2401                 (unsigned long long)sh->sector);
2402
2403         /*
2404          * If several bio share a stripe. The bio bi_phys_segments acts as a
2405          * reference count to avoid race. The reference count should already be
2406          * increased before this function is called (for example, in
2407          * make_request()), so other bio sharing this stripe will not free the
2408          * stripe. If a stripe is owned by one stripe, the stripe lock will
2409          * protect it.
2410          */
2411         spin_lock_irq(&sh->stripe_lock);
2412         if (forwrite) {
2413                 bip = &sh->dev[dd_idx].towrite;
2414                 if (*bip == NULL)
2415                         firstwrite = 1;
2416         } else
2417                 bip = &sh->dev[dd_idx].toread;
2418         while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2419                 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2420                         goto overlap;
2421                 bip = & (*bip)->bi_next;
2422         }
2423         if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2424                 goto overlap;
2425
2426         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2427         if (*bip)
2428                 bi->bi_next = *bip;
2429         *bip = bi;
2430         raid5_inc_bi_active_stripes(bi);
2431
2432         if (forwrite) {
2433                 /* check if page is covered */
2434                 sector_t sector = sh->dev[dd_idx].sector;
2435                 for (bi=sh->dev[dd_idx].towrite;
2436                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2437                              bi && bi->bi_sector <= sector;
2438                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2439                         if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2440                                 sector = bi->bi_sector + (bi->bi_size>>9);
2441                 }
2442                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2443                         set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2444         }
2445         spin_unlock_irq(&sh->stripe_lock);
2446
2447         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2448                 (unsigned long long)(*bip)->bi_sector,
2449                 (unsigned long long)sh->sector, dd_idx);
2450
2451         if (conf->mddev->bitmap && firstwrite) {
2452                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2453                                   STRIPE_SECTORS, 0);
2454                 sh->bm_seq = conf->seq_flush+1;
2455                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2456         }
2457         return 1;
2458
2459  overlap:
2460         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2461         spin_unlock_irq(&sh->stripe_lock);
2462         return 0;
2463 }
2464
2465 static void end_reshape(struct r5conf *conf);
2466
2467 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
2468                             struct stripe_head *sh)
2469 {
2470         int sectors_per_chunk =
2471                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2472         int dd_idx;
2473         int chunk_offset = sector_div(stripe, sectors_per_chunk);
2474         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2475
2476         raid5_compute_sector(conf,
2477                              stripe * (disks - conf->max_degraded)
2478                              *sectors_per_chunk + chunk_offset,
2479                              previous,
2480                              &dd_idx, sh);
2481 }
2482
2483 static void
2484 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
2485                                 struct stripe_head_state *s, int disks,
2486                                 struct bio **return_bi)
2487 {
2488         int i;
2489         for (i = disks; i--; ) {
2490                 struct bio *bi;
2491                 int bitmap_end = 0;
2492
2493                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2494                         struct md_rdev *rdev;
2495                         rcu_read_lock();
2496                         rdev = rcu_dereference(conf->disks[i].rdev);
2497                         if (rdev && test_bit(In_sync, &rdev->flags))
2498                                 atomic_inc(&rdev->nr_pending);
2499                         else
2500                                 rdev = NULL;
2501                         rcu_read_unlock();
2502                         if (rdev) {
2503                                 if (!rdev_set_badblocks(
2504                                             rdev,
2505                                             sh->sector,
2506                                             STRIPE_SECTORS, 0))
2507                                         md_error(conf->mddev, rdev);
2508                                 rdev_dec_pending(rdev, conf->mddev);
2509                         }
2510                 }
2511                 spin_lock_irq(&sh->stripe_lock);
2512                 /* fail all writes first */
2513                 bi = sh->dev[i].towrite;
2514                 sh->dev[i].towrite = NULL;
2515                 spin_unlock_irq(&sh->stripe_lock);
2516                 if (bi) {
2517                         s->to_write--;
2518                         bitmap_end = 1;
2519                 }
2520
2521                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2522                         wake_up(&conf->wait_for_overlap);
2523
2524                 while (bi && bi->bi_sector <
2525                         sh->dev[i].sector + STRIPE_SECTORS) {
2526                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2527                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2528                         if (!raid5_dec_bi_active_stripes(bi)) {
2529                                 md_write_end(conf->mddev);
2530                                 bi->bi_next = *return_bi;
2531                                 *return_bi = bi;
2532                         }
2533                         bi = nextbi;
2534                 }
2535                 if (bitmap_end)
2536                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2537                                 STRIPE_SECTORS, 0, 0);
2538                 bitmap_end = 0;
2539                 /* and fail all 'written' */
2540                 bi = sh->dev[i].written;
2541                 sh->dev[i].written = NULL;
2542                 if (bi) bitmap_end = 1;
2543                 while (bi && bi->bi_sector <
2544                        sh->dev[i].sector + STRIPE_SECTORS) {
2545                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2546                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
2547                         if (!raid5_dec_bi_active_stripes(bi)) {
2548                                 md_write_end(conf->mddev);
2549                                 bi->bi_next = *return_bi;
2550                                 *return_bi = bi;
2551                         }
2552                         bi = bi2;
2553                 }
2554
2555                 /* fail any reads if this device is non-operational and
2556                  * the data has not reached the cache yet.
2557                  */
2558                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2559                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2560                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
2561                         bi = sh->dev[i].toread;
2562                         sh->dev[i].toread = NULL;
2563                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2564                                 wake_up(&conf->wait_for_overlap);
2565                         if (bi) s->to_read--;
2566                         while (bi && bi->bi_sector <
2567                                sh->dev[i].sector + STRIPE_SECTORS) {
2568                                 struct bio *nextbi =
2569                                         r5_next_bio(bi, sh->dev[i].sector);
2570                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2571                                 if (!raid5_dec_bi_active_stripes(bi)) {
2572                                         bi->bi_next = *return_bi;
2573                                         *return_bi = bi;
2574                                 }
2575                                 bi = nextbi;
2576                         }
2577                 }
2578                 if (bitmap_end)
2579                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2580                                         STRIPE_SECTORS, 0, 0);
2581                 /* If we were in the middle of a write the parity block might
2582                  * still be locked - so just clear all R5_LOCKED flags
2583                  */
2584                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2585         }
2586
2587         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2588                 if (atomic_dec_and_test(&conf->pending_full_writes))
2589                         md_wakeup_thread(conf->mddev->thread);
2590 }
2591
2592 static void
2593 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
2594                    struct stripe_head_state *s)
2595 {
2596         int abort = 0;
2597         int i;
2598
2599         clear_bit(STRIPE_SYNCING, &sh->state);
2600         s->syncing = 0;
2601         s->replacing = 0;
2602         /* There is nothing more to do for sync/check/repair.
2603          * Don't even need to abort as that is handled elsewhere
2604          * if needed, and not always wanted e.g. if there is a known
2605          * bad block here.
2606          * For recover/replace we need to record a bad block on all
2607          * non-sync devices, or abort the recovery
2608          */
2609         if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2610                 /* During recovery devices cannot be removed, so
2611                  * locking and refcounting of rdevs is not needed
2612                  */
2613                 for (i = 0; i < conf->raid_disks; i++) {
2614                         struct md_rdev *rdev = conf->disks[i].rdev;
2615                         if (rdev
2616                             && !test_bit(Faulty, &rdev->flags)
2617                             && !test_bit(In_sync, &rdev->flags)
2618                             && !rdev_set_badblocks(rdev, sh->sector,
2619                                                    STRIPE_SECTORS, 0))
2620                                 abort = 1;
2621                         rdev = conf->disks[i].replacement;
2622                         if (rdev
2623                             && !test_bit(Faulty, &rdev->flags)
2624                             && !test_bit(In_sync, &rdev->flags)
2625                             && !rdev_set_badblocks(rdev, sh->sector,
2626                                                    STRIPE_SECTORS, 0))
2627                                 abort = 1;
2628                 }
2629                 if (abort)
2630                         conf->recovery_disabled =
2631                                 conf->mddev->recovery_disabled;
2632         }
2633         md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
2634 }
2635
2636 static int want_replace(struct stripe_head *sh, int disk_idx)
2637 {
2638         struct md_rdev *rdev;
2639         int rv = 0;
2640         /* Doing recovery so rcu locking not required */
2641         rdev = sh->raid_conf->disks[disk_idx].replacement;
2642         if (rdev
2643             && !test_bit(Faulty, &rdev->flags)
2644             && !test_bit(In_sync, &rdev->flags)
2645             && (rdev->recovery_offset <= sh->sector
2646                 || rdev->mddev->recovery_cp <= sh->sector))
2647                 rv = 1;
2648
2649         return rv;
2650 }
2651
2652 /* fetch_block - checks the given member device to see if its data needs
2653  * to be read or computed to satisfy a request.
2654  *
2655  * Returns 1 when no more member devices need to be checked, otherwise returns
2656  * 0 to tell the loop in handle_stripe_fill to continue
2657  */
2658 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2659                        int disk_idx, int disks)
2660 {
2661         struct r5dev *dev = &sh->dev[disk_idx];
2662         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2663                                   &sh->dev[s->failed_num[1]] };
2664
2665         /* is the data in this block needed, and can we get it? */
2666         if (!test_bit(R5_LOCKED, &dev->flags) &&
2667             !test_bit(R5_UPTODATE, &dev->flags) &&
2668             (dev->toread ||
2669              (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2670              s->syncing || s->expanding ||
2671              (s->replacing && want_replace(sh, disk_idx)) ||
2672              (s->failed >= 1 && fdev[0]->toread) ||
2673              (s->failed >= 2 && fdev[1]->toread) ||
2674              (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2675               !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2676              (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2677                 /* we would like to get this block, possibly by computing it,
2678                  * otherwise read it if the backing disk is insync
2679                  */
2680                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2681                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2682                 if ((s->uptodate == disks - 1) &&
2683                     (s->failed && (disk_idx == s->failed_num[0] ||
2684                                    disk_idx == s->failed_num[1]))) {
2685                         /* have disk failed, and we're requested to fetch it;
2686                          * do compute it
2687                          */
2688                         pr_debug("Computing stripe %llu block %d\n",
2689                                (unsigned long long)sh->sector, disk_idx);
2690                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2691                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2692                         set_bit(R5_Wantcompute, &dev->flags);
2693                         sh->ops.target = disk_idx;
2694                         sh->ops.target2 = -1; /* no 2nd target */
2695                         s->req_compute = 1;
2696                         /* Careful: from this point on 'uptodate' is in the eye
2697                          * of raid_run_ops which services 'compute' operations
2698                          * before writes. R5_Wantcompute flags a block that will
2699                          * be R5_UPTODATE by the time it is needed for a
2700                          * subsequent operation.
2701                          */
2702                         s->uptodate++;
2703                         return 1;
2704                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2705                         /* Computing 2-failure is *very* expensive; only
2706                          * do it if failed >= 2
2707                          */
2708                         int other;
2709                         for (other = disks; other--; ) {
2710                                 if (other == disk_idx)
2711                                         continue;
2712                                 if (!test_bit(R5_UPTODATE,
2713                                       &sh->dev[other].flags))
2714                                         break;
2715                         }
2716                         BUG_ON(other < 0);
2717                         pr_debug("Computing stripe %llu blocks %d,%d\n",
2718                                (unsigned long long)sh->sector,
2719                                disk_idx, other);
2720                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2721                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2722                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2723                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
2724                         sh->ops.target = disk_idx;
2725                         sh->ops.target2 = other;
2726                         s->uptodate += 2;
2727                         s->req_compute = 1;
2728                         return 1;
2729                 } else if (test_bit(R5_Insync, &dev->flags)) {
2730                         set_bit(R5_LOCKED, &dev->flags);
2731                         set_bit(R5_Wantread, &dev->flags);
2732                         s->locked++;
2733                         pr_debug("Reading block %d (sync=%d)\n",
2734                                 disk_idx, s->syncing);
2735                 }
2736         }
2737
2738         return 0;
2739 }
2740
2741 /**
2742  * handle_stripe_fill - read or compute data to satisfy pending requests.
2743  */
2744 static void handle_stripe_fill(struct stripe_head *sh,
2745                                struct stripe_head_state *s,
2746                                int disks)
2747 {
2748         int i;
2749
2750         /* look for blocks to read/compute, skip this if a compute
2751          * is already in flight, or if the stripe contents are in the
2752          * midst of changing due to a write
2753          */
2754         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2755             !sh->reconstruct_state)
2756                 for (i = disks; i--; )
2757                         if (fetch_block(sh, s, i, disks))
2758                                 break;
2759         set_bit(STRIPE_HANDLE, &sh->state);
2760 }
2761
2762
2763 /* handle_stripe_clean_event
2764  * any written block on an uptodate or failed drive can be returned.
2765  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2766  * never LOCKED, so we don't need to test 'failed' directly.
2767  */
2768 static void handle_stripe_clean_event(struct r5conf *conf,
2769         struct stripe_head *sh, int disks, struct bio **return_bi)
2770 {
2771         int i;
2772         struct r5dev *dev;
2773
2774         for (i = disks; i--; )
2775                 if (sh->dev[i].written) {
2776                         dev = &sh->dev[i];
2777                         if (!test_bit(R5_LOCKED, &dev->flags) &&
2778                                 test_bit(R5_UPTODATE, &dev->flags)) {
2779                                 /* We can return any write requests */
2780                                 struct bio *wbi, *wbi2;
2781                                 pr_debug("Return write for disc %d\n", i);
2782                                 wbi = dev->written;
2783                                 dev->written = NULL;
2784                                 while (wbi && wbi->bi_sector <
2785                                         dev->sector + STRIPE_SECTORS) {
2786                                         wbi2 = r5_next_bio(wbi, dev->sector);
2787                                         if (!raid5_dec_bi_active_stripes(wbi)) {
2788                                                 md_write_end(conf->mddev);
2789                                                 wbi->bi_next = *return_bi;
2790                                                 *return_bi = wbi;
2791                                         }
2792                                         wbi = wbi2;
2793                                 }
2794                                 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2795                                                 STRIPE_SECTORS,
2796                                          !test_bit(STRIPE_DEGRADED, &sh->state),
2797                                                 0);
2798                         }
2799                 }
2800
2801         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2802                 if (atomic_dec_and_test(&conf->pending_full_writes))
2803                         md_wakeup_thread(conf->mddev->thread);
2804 }
2805
2806 static void handle_stripe_dirtying(struct r5conf *conf,
2807                                    struct stripe_head *sh,
2808                                    struct stripe_head_state *s,
2809                                    int disks)
2810 {
2811         int rmw = 0, rcw = 0, i;
2812         if (conf->max_degraded == 2) {
2813                 /* RAID6 requires 'rcw' in current implementation
2814                  * Calculate the real rcw later - for now fake it
2815                  * look like rcw is cheaper
2816                  */
2817                 rcw = 1; rmw = 2;
2818         } else for (i = disks; i--; ) {
2819                 /* would I have to read this buffer for read_modify_write */
2820                 struct r5dev *dev = &sh->dev[i];
2821                 if ((dev->towrite || i == sh->pd_idx) &&
2822                     !test_bit(R5_LOCKED, &dev->flags) &&
2823                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2824                       test_bit(R5_Wantcompute, &dev->flags))) {
2825                         if (test_bit(R5_Insync, &dev->flags))
2826                                 rmw++;
2827                         else
2828                                 rmw += 2*disks;  /* cannot read it */
2829                 }
2830                 /* Would I have to read this buffer for reconstruct_write */
2831                 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2832                     !test_bit(R5_LOCKED, &dev->flags) &&
2833                     !(test_bit(R5_UPTODATE, &dev->flags) ||
2834                     test_bit(R5_Wantcompute, &dev->flags))) {
2835                         if (test_bit(R5_Insync, &dev->flags)) rcw++;
2836                         else
2837                                 rcw += 2*disks;
2838                 }
2839         }
2840         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2841                 (unsigned long long)sh->sector, rmw, rcw);
2842         set_bit(STRIPE_HANDLE, &sh->state);
2843         if (rmw < rcw && rmw > 0)
2844                 /* prefer read-modify-write, but need to get some data */
2845                 for (i = disks; i--; ) {
2846                         struct r5dev *dev = &sh->dev[i];
2847                         if ((dev->towrite || i == sh->pd_idx) &&
2848                             !test_bit(R5_LOCKED, &dev->flags) &&
2849                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2850                             test_bit(R5_Wantcompute, &dev->flags)) &&
2851                             test_bit(R5_Insync, &dev->flags)) {
2852                                 if (
2853                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2854                                         pr_debug("Read_old block "
2855                                                 "%d for r-m-w\n", i);
2856                                         set_bit(R5_LOCKED, &dev->flags);
2857                                         set_bit(R5_Wantread, &dev->flags);
2858                                         s->locked++;
2859                                 } else {
2860                                         set_bit(STRIPE_DELAYED, &sh->state);
2861                                         set_bit(STRIPE_HANDLE, &sh->state);
2862                                 }
2863                         }
2864                 }
2865         if (rcw <= rmw && rcw > 0) {
2866                 /* want reconstruct write, but need to get some data */
2867                 rcw = 0;
2868                 for (i = disks; i--; ) {
2869                         struct r5dev *dev = &sh->dev[i];
2870                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2871                             i != sh->pd_idx && i != sh->qd_idx &&
2872                             !test_bit(R5_LOCKED, &dev->flags) &&
2873                             !(test_bit(R5_UPTODATE, &dev->flags) ||
2874                               test_bit(R5_Wantcompute, &dev->flags))) {
2875                                 rcw++;
2876                                 if (!test_bit(R5_Insync, &dev->flags))
2877                                         continue; /* it's a failed drive */
2878                                 if (
2879                                   test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2880                                         pr_debug("Read_old block "
2881                                                 "%d for Reconstruct\n", i);
2882                                         set_bit(R5_LOCKED, &dev->flags);
2883                                         set_bit(R5_Wantread, &dev->flags);
2884                                         s->locked++;
2885                                 } else {
2886                                         set_bit(STRIPE_DELAYED, &sh->state);
2887                                         set_bit(STRIPE_HANDLE, &sh->state);
2888                                 }
2889                         }
2890                 }
2891         }
2892         /* now if nothing is locked, and if we have enough data,
2893          * we can start a write request
2894          */
2895         /* since handle_stripe can be called at any time we need to handle the
2896          * case where a compute block operation has been submitted and then a
2897          * subsequent call wants to start a write request.  raid_run_ops only
2898          * handles the case where compute block and reconstruct are requested
2899          * simultaneously.  If this is not the case then new writes need to be
2900          * held off until the compute completes.
2901          */
2902         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2903             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2904             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2905                 schedule_reconstruction(sh, s, rcw == 0, 0);
2906 }
2907
2908 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
2909                                 struct stripe_head_state *s, int disks)
2910 {
2911         struct r5dev *dev = NULL;
2912
2913         set_bit(STRIPE_HANDLE, &sh->state);
2914
2915         switch (sh->check_state) {
2916         case check_state_idle:
2917                 /* start a new check operation if there are no failures */
2918                 if (s->failed == 0) {
2919                         BUG_ON(s->uptodate != disks);
2920                         sh->check_state = check_state_run;
2921                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
2922                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2923                         s->uptodate--;
2924                         break;
2925                 }
2926                 dev = &sh->dev[s->failed_num[0]];
2927                 /* fall through */
2928         case check_state_compute_result:
2929                 sh->check_state = check_state_idle;
2930                 if (!dev)
2931                         dev = &sh->dev[sh->pd_idx];
2932
2933                 /* check that a write has not made the stripe insync */
2934                 if (test_bit(STRIPE_INSYNC, &sh->state))
2935                         break;
2936
2937                 /* either failed parity check, or recovery is happening */
2938                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2939                 BUG_ON(s->uptodate != disks);
2940
2941                 set_bit(R5_LOCKED, &dev->flags);
2942                 s->locked++;
2943                 set_bit(R5_Wantwrite, &dev->flags);
2944
2945                 clear_bit(STRIPE_DEGRADED, &sh->state);
2946                 set_bit(STRIPE_INSYNC, &sh->state);
2947                 break;
2948         case check_state_run:
2949                 break; /* we will be called again upon completion */
2950         case check_state_check_result:
2951                 sh->check_state = check_state_idle;
2952
2953                 /* if a failure occurred during the check operation, leave
2954                  * STRIPE_INSYNC not set and let the stripe be handled again
2955                  */
2956                 if (s->failed)
2957                         break;
2958
2959                 /* handle a successful check operation, if parity is correct
2960                  * we are done.  Otherwise update the mismatch count and repair
2961                  * parity if !MD_RECOVERY_CHECK
2962                  */
2963                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2964                         /* parity is correct (on disc,
2965                          * not in buffer any more)
2966                          */
2967                         set_bit(STRIPE_INSYNC, &sh->state);
2968                 else {
2969                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
2970                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2971                                 /* don't try to repair!! */
2972                                 set_bit(STRIPE_INSYNC, &sh->state);
2973                         else {
2974                                 sh->check_state = check_state_compute_run;
2975                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2976                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2977                                 set_bit(R5_Wantcompute,
2978                                         &sh->dev[sh->pd_idx].flags);
2979                                 sh->ops.target = sh->pd_idx;
2980                                 sh->ops.target2 = -1;
2981                                 s->uptodate++;
2982                         }
2983                 }
2984                 break;
2985         case check_state_compute_run:
2986                 break;
2987         default:
2988                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2989                        __func__, sh->check_state,
2990                        (unsigned long long) sh->sector);
2991                 BUG();
2992         }
2993 }
2994
2995
2996 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
2997                                   struct stripe_head_state *s,
2998                                   int disks)
2999 {
3000         int pd_idx = sh->pd_idx;
3001         int qd_idx = sh->qd_idx;
3002         struct r5dev *dev;
3003
3004         set_bit(STRIPE_HANDLE, &sh->state);
3005
3006         BUG_ON(s->failed > 2);
3007
3008         /* Want to check and possibly repair P and Q.
3009          * However there could be one 'failed' device, in which
3010          * case we can only check one of them, possibly using the
3011          * other to generate missing data
3012          */
3013
3014         switch (sh->check_state) {
3015         case check_state_idle:
3016                 /* start a new check operation if there are < 2 failures */
3017                 if (s->failed == s->q_failed) {
3018                         /* The only possible failed device holds Q, so it
3019                          * makes sense to check P (If anything else were failed,
3020                          * we would have used P to recreate it).
3021                          */
3022                         sh->check_state = check_state_run;
3023                 }
3024                 if (!s->q_failed && s->failed < 2) {
3025                         /* Q is not failed, and we didn't use it to generate
3026                          * anything, so it makes sense to check it
3027                          */
3028                         if (sh->check_state == check_state_run)
3029                                 sh->check_state = check_state_run_pq;
3030                         else
3031                                 sh->check_state = check_state_run_q;
3032                 }
3033
3034                 /* discard potentially stale zero_sum_result */
3035                 sh->ops.zero_sum_result = 0;
3036
3037                 if (sh->check_state == check_state_run) {
3038                         /* async_xor_zero_sum destroys the contents of P */
3039                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3040                         s->uptodate--;
3041                 }
3042                 if (sh->check_state >= check_state_run &&
3043                     sh->check_state <= check_state_run_pq) {
3044                         /* async_syndrome_zero_sum preserves P and Q, so
3045                          * no need to mark them !uptodate here
3046                          */
3047                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3048                         break;
3049                 }
3050
3051                 /* we have 2-disk failure */
3052                 BUG_ON(s->failed != 2);
3053                 /* fall through */
3054         case check_state_compute_result:
3055                 sh->check_state = check_state_idle;
3056
3057                 /* check that a write has not made the stripe insync */
3058                 if (test_bit(STRIPE_INSYNC, &sh->state))
3059                         break;
3060
3061                 /* now write out any block on a failed drive,
3062                  * or P or Q if they were recomputed
3063                  */
3064                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3065                 if (s->failed == 2) {
3066                         dev = &sh->dev[s->failed_num[1]];
3067                         s->locked++;
3068                         set_bit(R5_LOCKED, &dev->flags);
3069                         set_bit(R5_Wantwrite, &dev->flags);
3070                 }
3071                 if (s->failed >= 1) {
3072                         dev = &sh->dev[s->failed_num[0]];
3073                         s->locked++;
3074                         set_bit(R5_LOCKED, &dev->flags);
3075                         set_bit(R5_Wantwrite, &dev->flags);
3076                 }
3077                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3078                         dev = &sh->dev[pd_idx];
3079                         s->locked++;
3080                         set_bit(R5_LOCKED, &dev->flags);
3081                         set_bit(R5_Wantwrite, &dev->flags);
3082                 }
3083                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3084                         dev = &sh->dev[qd_idx];
3085                         s->locked++;
3086                         set_bit(R5_LOCKED, &dev->flags);
3087                         set_bit(R5_Wantwrite, &dev->flags);
3088                 }
3089                 clear_bit(STRIPE_DEGRADED, &sh->state);
3090
3091                 set_bit(STRIPE_INSYNC, &sh->state);
3092                 break;
3093         case check_state_run:
3094         case check_state_run_q:
3095         case check_state_run_pq:
3096                 break; /* we will be called again upon completion */
3097         case check_state_check_result:
3098                 sh->check_state = check_state_idle;
3099
3100                 /* handle a successful check operation, if parity is correct
3101                  * we are done.  Otherwise update the mismatch count and repair
3102                  * parity if !MD_RECOVERY_CHECK
3103                  */
3104                 if (sh->ops.zero_sum_result == 0) {
3105                         /* both parities are correct */
3106                         if (!s->failed)
3107                                 set_bit(STRIPE_INSYNC, &sh->state);
3108                         else {
3109                                 /* in contrast to the raid5 case we can validate
3110                                  * parity, but still have a failure to write
3111                                  * back
3112                                  */
3113                                 sh->check_state = check_state_compute_result;
3114                                 /* Returning at this point means that we may go
3115                                  * off and bring p and/or q uptodate again so
3116                                  * we make sure to check zero_sum_result again
3117                                  * to verify if p or q need writeback
3118                                  */
3119                         }
3120                 } else {
3121                         conf->mddev->resync_mismatches += STRIPE_SECTORS;
3122                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3123                                 /* don't try to repair!! */
3124                                 set_bit(STRIPE_INSYNC, &sh->state);
3125                         else {
3126                                 int *target = &sh->ops.target;
3127
3128                                 sh->ops.target = -1;
3129                                 sh->ops.target2 = -1;
3130                                 sh->check_state = check_state_compute_run;
3131                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3132                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3133                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3134                                         set_bit(R5_Wantcompute,
3135                                                 &sh->dev[pd_idx].flags);
3136                                         *target = pd_idx;
3137                                         target = &sh->ops.target2;
3138                                         s->uptodate++;
3139                                 }
3140                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3141                                         set_bit(R5_Wantcompute,
3142                                                 &sh->dev[qd_idx].flags);
3143                                         *target = qd_idx;
3144                                         s->uptodate++;
3145                                 }
3146                         }
3147                 }
3148                 break;
3149         case check_state_compute_run:
3150                 break;
3151         default:
3152                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3153                        __func__, sh->check_state,
3154                        (unsigned long long) sh->sector);
3155                 BUG();
3156         }
3157 }
3158
3159 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3160 {
3161         int i;
3162
3163         /* We have read all the blocks in this stripe and now we need to
3164          * copy some of them into a target stripe for expand.
3165          */
3166         struct dma_async_tx_descriptor *tx = NULL;
3167         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3168         for (i = 0; i < sh->disks; i++)
3169                 if (i != sh->pd_idx && i != sh->qd_idx) {
3170                         int dd_idx, j;
3171                         struct stripe_head *sh2;
3172                         struct async_submit_ctl submit;
3173
3174                         sector_t bn = compute_blocknr(sh, i, 1);
3175                         sector_t s = raid5_compute_sector(conf, bn, 0,
3176                                                           &dd_idx, NULL);
3177                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
3178                         if (sh2 == NULL)
3179                                 /* so far only the early blocks of this stripe
3180                                  * have been requested.  When later blocks
3181                                  * get requested, we will try again
3182                                  */
3183                                 continue;
3184                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3185                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3186                                 /* must have already done this block */
3187                                 release_stripe(sh2);
3188                                 continue;
3189                         }
3190
3191                         /* place all the copies on one channel */
3192                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3193                         tx = async_memcpy(sh2->dev[dd_idx].page,
3194                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
3195                                           &submit);
3196
3197                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3198                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3199                         for (j = 0; j < conf->raid_disks; j++)
3200                                 if (j != sh2->pd_idx &&
3201                                     j != sh2->qd_idx &&
3202                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
3203                                         break;
3204                         if (j == conf->raid_disks) {
3205                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3206                                 set_bit(STRIPE_HANDLE, &sh2->state);
3207                         }
3208                         release_stripe(sh2);
3209
3210                 }
3211         /* done submitting copies, wait for them to complete */
3212         if (tx) {
3213                 async_tx_ack(tx);
3214                 dma_wait_for_async_tx(tx);
3215         }
3216 }
3217
3218 /*
3219  * handle_stripe - do things to a stripe.
3220  *
3221  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3222  * state of various bits to see what needs to be done.
3223  * Possible results:
3224  *    return some read requests which now have data
3225  *    return some write requests which are safely on storage
3226  *    schedule a read on some buffers
3227  *    schedule a write of some buffers
3228  *    return confirmation of parity correctness
3229  *
3230  */
3231
3232 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3233 {
3234         struct r5conf *conf = sh->raid_conf;
3235         int disks = sh->disks;
3236         struct r5dev *dev;
3237         int i;
3238         int do_recovery = 0;
3239
3240         memset(s, 0, sizeof(*s));
3241
3242         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3243         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3244         s->failed_num[0] = -1;
3245         s->failed_num[1] = -1;
3246
3247         /* Now to look around and see what can be done */
3248         rcu_read_lock();
3249         for (i=disks; i--; ) {
3250                 struct md_rdev *rdev;
3251                 sector_t first_bad;
3252                 int bad_sectors;
3253                 int is_bad = 0;
3254
3255                 dev = &sh->dev[i];
3256
3257                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3258                          i, dev->flags,
3259                          dev->toread, dev->towrite, dev->written);
3260                 /* maybe we can reply to a read
3261                  *
3262                  * new wantfill requests are only permitted while
3263                  * ops_complete_biofill is guaranteed to be inactive
3264                  */
3265                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3266                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3267                         set_bit(R5_Wantfill, &dev->flags);
3268
3269                 /* now count some things */
3270                 if (test_bit(R5_LOCKED, &dev->flags))
3271                         s->locked++;
3272                 if (test_bit(R5_UPTODATE, &dev->flags))
3273                         s->uptodate++;
3274                 if (test_bit(R5_Wantcompute, &dev->flags)) {
3275                         s->compute++;
3276                         BUG_ON(s->compute > 2);
3277                 }
3278
3279                 if (test_bit(R5_Wantfill, &dev->flags))
3280                         s->to_fill++;
3281                 else if (dev->toread)
3282                         s->to_read++;
3283                 if (dev->towrite) {
3284                         s->to_write++;
3285                         if (!test_bit(R5_OVERWRITE, &dev->flags))
3286                                 s->non_overwrite++;
3287                 }
3288                 if (dev->written)
3289                         s->written++;
3290                 /* Prefer to use the replacement for reads, but only
3291                  * if it is recovered enough and has no bad blocks.
3292                  */
3293                 rdev = rcu_dereference(conf->disks[i].replacement);
3294                 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3295                     rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3296                     !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3297                                  &first_bad, &bad_sectors))
3298                         set_bit(R5_ReadRepl, &dev->flags);
3299                 else {
3300                         if (rdev)
3301                                 set_bit(R5_NeedReplace, &dev->flags);
3302                         rdev = rcu_dereference(conf->disks[i].rdev);
3303                         clear_bit(R5_ReadRepl, &dev->flags);
3304                 }
3305                 if (rdev && test_bit(Faulty, &rdev->flags))
3306                         rdev = NULL;
3307                 if (rdev) {
3308                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3309                                              &first_bad, &bad_sectors);
3310                         if (s->blocked_rdev == NULL
3311                             && (test_bit(Blocked, &rdev->flags)
3312                                 || is_bad < 0)) {
3313                                 if (is_bad < 0)
3314                                         set_bit(BlockedBadBlocks,
3315                                                 &rdev->flags);
3316                                 s->blocked_rdev = rdev;
3317                                 atomic_inc(&rdev->nr_pending);
3318                         }
3319                 }
3320                 clear_bit(R5_Insync, &dev->flags);
3321                 if (!rdev)
3322                         /* Not in-sync */;
3323                 else if (is_bad) {
3324                         /* also not in-sync */
3325                         if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3326                             test_bit(R5_UPTODATE, &dev->flags)) {
3327                                 /* treat as in-sync, but with a read error
3328                                  * which we can now try to correct
3329                                  */
3330                                 set_bit(R5_Insync, &dev->flags);
3331                                 set_bit(R5_ReadError, &dev->flags);
3332                         }
3333                 } else if (test_bit(In_sync, &rdev->flags))
3334                         set_bit(R5_Insync, &dev->flags);
3335                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3336                         /* in sync if before recovery_offset */
3337                         set_bit(R5_Insync, &dev->flags);
3338                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3339                          test_bit(R5_Expanded, &dev->flags))
3340                         /* If we've reshaped into here, we assume it is Insync.
3341                          * We will shortly update recovery_offset to make
3342                          * it official.
3343                          */
3344                         set_bit(R5_Insync, &dev->flags);
3345
3346                 if (rdev && test_bit(R5_WriteError, &dev->flags)) {
3347                         /* This flag does not apply to '.replacement'
3348                          * only to .rdev, so make sure to check that*/
3349                         struct md_rdev *rdev2 = rcu_dereference(
3350                                 conf->disks[i].rdev);
3351                         if (rdev2 == rdev)
3352                                 clear_bit(R5_Insync, &dev->flags);
3353                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3354                                 s->handle_bad_blocks = 1;
3355                                 atomic_inc(&rdev2->nr_pending);
3356                         } else
3357                                 clear_bit(R5_WriteError, &dev->flags);
3358                 }
3359                 if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
3360                         /* This flag does not apply to '.replacement'
3361                          * only to .rdev, so make sure to check that*/
3362                         struct md_rdev *rdev2 = rcu_dereference(
3363                                 conf->disks[i].rdev);
3364                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3365                                 s->handle_bad_blocks = 1;
3366                                 atomic_inc(&rdev2->nr_pending);
3367                         } else
3368                                 clear_bit(R5_MadeGood, &dev->flags);
3369                 }
3370                 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3371                         struct md_rdev *rdev2 = rcu_dereference(
3372                                 conf->disks[i].replacement);
3373                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3374                                 s->handle_bad_blocks = 1;
3375                                 atomic_inc(&rdev2->nr_pending);
3376                         } else
3377                                 clear_bit(R5_MadeGoodRepl, &dev->flags);
3378                 }
3379                 if (!test_bit(R5_Insync, &dev->flags)) {
3380                         /* The ReadError flag will just be confusing now */
3381                         clear_bit(R5_ReadError, &dev->flags);
3382                         clear_bit(R5_ReWrite, &dev->flags);
3383                 }
3384                 if (test_bit(R5_ReadError, &dev->flags))
3385                         clear_bit(R5_Insync, &dev->flags);
3386                 if (!test_bit(R5_Insync, &dev->flags)) {
3387                         if (s->failed < 2)
3388                                 s->failed_num[s->failed] = i;
3389                         s->failed++;
3390                         if (rdev && !test_bit(Faulty, &rdev->flags))
3391                                 do_recovery = 1;
3392                 }
3393         }
3394         if (test_bit(STRIPE_SYNCING, &sh->state)) {
3395                 /* If there is a failed device being replaced,
3396                  *     we must be recovering.
3397                  * else if we are after recovery_cp, we must be syncing
3398                  * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
3399                  * else we can only be replacing
3400                  * sync and recovery both need to read all devices, and so
3401                  * use the same flag.
3402                  */
3403                 if (do_recovery ||
3404                     sh->sector >= conf->mddev->recovery_cp ||
3405                     test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
3406                         s->syncing = 1;
3407                 else
3408                         s->replacing = 1;
3409         }
3410         rcu_read_unlock();
3411 }
3412
3413 static void handle_stripe(struct stripe_head *sh)
3414 {
3415         struct stripe_head_state s;
3416         struct r5conf *conf = sh->raid_conf;
3417         int i;
3418         int prexor;
3419         int disks = sh->disks;
3420         struct r5dev *pdev, *qdev;
3421
3422         clear_bit(STRIPE_HANDLE, &sh->state);
3423         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
3424                 /* already being handled, ensure it gets handled
3425                  * again when current action finishes */
3426                 set_bit(STRIPE_HANDLE, &sh->state);
3427                 return;
3428         }
3429
3430         if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3431                 set_bit(STRIPE_SYNCING, &sh->state);
3432                 clear_bit(STRIPE_INSYNC, &sh->state);
3433         }
3434         clear_bit(STRIPE_DELAYED, &sh->state);
3435
3436         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3437                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3438                (unsigned long long)sh->sector, sh->state,
3439                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3440                sh->check_state, sh->reconstruct_state);
3441
3442         analyse_stripe(sh, &s);
3443
3444         if (s.handle_bad_blocks) {
3445                 set_bit(STRIPE_HANDLE, &sh->state);
3446                 goto finish;
3447         }
3448
3449         if (unlikely(s.blocked_rdev)) {
3450                 if (s.syncing || s.expanding || s.expanded ||
3451                     s.replacing || s.to_write || s.written) {
3452                         set_bit(STRIPE_HANDLE, &sh->state);
3453                         goto finish;
3454                 }
3455                 /* There is nothing for the blocked_rdev to block */
3456                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3457                 s.blocked_rdev = NULL;
3458         }
3459
3460         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3461                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3462                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3463         }
3464
3465         pr_debug("locked=%d uptodate=%d to_read=%d"
3466                " to_write=%d failed=%d failed_num=%d,%d\n",
3467                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3468                s.failed_num[0], s.failed_num[1]);
3469         /* check if the array has lost more than max_degraded devices and,
3470          * if so, some requests might need to be failed.
3471          */
3472         if (s.failed > conf->max_degraded) {
3473                 sh->check_state = 0;
3474                 sh->reconstruct_state = 0;
3475                 if (s.to_read+s.to_write+s.written)
3476                         handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3477                 if (s.syncing + s.replacing)
3478                         handle_failed_sync(conf, sh, &s);
3479         }
3480
3481         /*
3482          * might be able to return some write requests if the parity blocks
3483          * are safe, or on a failed drive
3484          */
3485         pdev = &sh->dev[sh->pd_idx];
3486         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3487                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3488         qdev = &sh->dev[sh->qd_idx];
3489         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3490                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3491                 || conf->level < 6;
3492
3493         if (s.written &&
3494             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3495                              && !test_bit(R5_LOCKED, &pdev->flags)
3496                              && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3497             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3498                              && !test_bit(R5_LOCKED, &qdev->flags)
3499                              && test_bit(R5_UPTODATE, &qdev->flags)))))
3500                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3501
3502         /* Now we might consider reading some blocks, either to check/generate
3503          * parity, or to satisfy requests
3504          * or to load a block that is being partially written.
3505          */
3506         if (s.to_read || s.non_overwrite
3507             || (conf->level == 6 && s.to_write && s.failed)
3508             || (s.syncing && (s.uptodate + s.compute < disks))
3509             || s.replacing
3510             || s.expanding)
3511                 handle_stripe_fill(sh, &s, disks);
3512
3513         /* Now we check to see if any write operations have recently
3514          * completed
3515          */
3516         prexor = 0;
3517         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3518                 prexor = 1;
3519         if (sh->reconstruct_state == reconstruct_state_drain_result ||
3520             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3521                 sh->reconstruct_state = reconstruct_state_idle;
3522
3523                 /* All the 'written' buffers and the parity block are ready to
3524                  * be written back to disk
3525                  */
3526                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3527                 BUG_ON(sh->qd_idx >= 0 &&
3528                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
3529                 for (i = disks; i--; ) {
3530                         struct r5dev *dev = &sh->dev[i];
3531                         if (test_bit(R5_LOCKED, &dev->flags) &&
3532                                 (i == sh->pd_idx || i == sh->qd_idx ||
3533                                  dev->written)) {
3534                                 pr_debug("Writing block %d\n", i);
3535                                 set_bit(R5_Wantwrite, &dev->flags);
3536                                 if (prexor)
3537                                         continue;
3538                                 if (!test_bit(R5_Insync, &dev->flags) ||
3539                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
3540                                      s.failed == 0))
3541                                         set_bit(STRIPE_INSYNC, &sh->state);
3542                         }
3543                 }
3544                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3545                         s.dec_preread_active = 1;
3546         }
3547
3548         /* Now to consider new write requests and what else, if anything
3549          * should be read.  We do not handle new writes when:
3550          * 1/ A 'write' operation (copy+xor) is already in flight.
3551          * 2/ A 'check' operation is in flight, as it may clobber the parity
3552          *    block.
3553          */
3554         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3555                 handle_stripe_dirtying(conf, sh, &s, disks);
3556
3557         /* maybe we need to check and possibly fix the parity for this stripe
3558          * Any reads will already have been scheduled, so we just see if enough
3559          * data is available.  The parity check is held off while parity
3560          * dependent operations are in flight.
3561          */
3562         if (sh->check_state ||
3563             (s.syncing && s.locked == 0 &&
3564              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3565              !test_bit(STRIPE_INSYNC, &sh->state))) {
3566                 if (conf->level == 6)
3567                         handle_parity_checks6(conf, sh, &s, disks);
3568                 else
3569                         handle_parity_checks5(conf, sh, &s, disks);
3570         }
3571
3572         if (s.replacing && s.locked == 0
3573             && !test_bit(STRIPE_INSYNC, &sh->state)) {
3574                 /* Write out to replacement devices where possible */
3575                 for (i = 0; i < conf->raid_disks; i++)
3576                         if (test_bit(R5_UPTODATE, &sh->dev[i].flags) &&
3577                             test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3578                                 set_bit(R5_WantReplace, &sh->dev[i].flags);
3579                                 set_bit(R5_LOCKED, &sh->dev[i].flags);
3580                                 s.locked++;
3581                         }
3582                 set_bit(STRIPE_INSYNC, &sh->state);
3583         }
3584         if ((s.syncing || s.replacing) && s.locked == 0 &&
3585             test_bit(STRIPE_INSYNC, &sh->state)) {
3586                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3587                 clear_bit(STRIPE_SYNCING, &sh->state);
3588         }
3589
3590         /* If the failed drives are just a ReadError, then we might need
3591          * to progress the repair/check process
3592          */
3593         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3594                 for (i = 0; i < s.failed; i++) {
3595                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
3596                         if (test_bit(R5_ReadError, &dev->flags)
3597                             && !test_bit(R5_LOCKED, &dev->flags)
3598                             && test_bit(R5_UPTODATE, &dev->flags)
3599                                 ) {
3600                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
3601                                         set_bit(R5_Wantwrite, &dev->flags);
3602                                         set_bit(R5_ReWrite, &dev->flags);
3603                                         set_bit(R5_LOCKED, &dev->flags);
3604                                         s.locked++;
3605                                 } else {
3606                                         /* let's read it back */
3607                                         set_bit(R5_Wantread, &dev->flags);
3608                                         set_bit(R5_LOCKED, &dev->flags);
3609                                         s.locked++;
3610                                 }
3611                         }
3612                 }
3613
3614
3615         /* Finish reconstruct operations initiated by the expansion process */
3616         if (sh->reconstruct_state == reconstruct_state_result) {
3617                 struct stripe_head *sh_src
3618                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
3619                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3620                         /* sh cannot be written until sh_src has been read.
3621                          * so arrange for sh to be delayed a little
3622                          */
3623                         set_bit(STRIPE_DELAYED, &sh->state);
3624                         set_bit(STRIPE_HANDLE, &sh->state);
3625                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3626                                               &sh_src->state))
3627                                 atomic_inc(&conf->preread_active_stripes);
3628                         release_stripe(sh_src);
3629                         goto finish;
3630                 }
3631                 if (sh_src)
3632                         release_stripe(sh_src);
3633
3634                 sh->reconstruct_state = reconstruct_state_idle;
3635                 clear_bit(STRIPE_EXPANDING, &sh->state);
3636                 for (i = conf->raid_disks; i--; ) {
3637                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
3638                         set_bit(R5_LOCKED, &sh->dev[i].flags);
3639                         s.locked++;
3640                 }
3641         }
3642
3643         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3644             !sh->reconstruct_state) {
3645                 /* Need to write out all blocks after computing parity */
3646                 sh->disks = conf->raid_disks;
3647                 stripe_set_idx(sh->sector, conf, 0, sh);
3648                 schedule_reconstruction(sh, &s, 1, 1);
3649         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3650                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3651                 atomic_dec(&conf->reshape_stripes);
3652                 wake_up(&conf->wait_for_overlap);
3653                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3654         }
3655
3656         if (s.expanding && s.locked == 0 &&
3657             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3658                 handle_stripe_expansion(conf, sh);
3659
3660 finish:
3661         /* wait for this device to become unblocked */
3662         if (unlikely(s.blocked_rdev)) {
3663                 if (conf->mddev->external)
3664                         md_wait_for_blocked_rdev(s.blocked_rdev,
3665                                                  conf->mddev);
3666                 else
3667                         /* Internal metadata will immediately
3668                          * be written by raid5d, so we don't
3669                          * need to wait here.
3670                          */
3671                         rdev_dec_pending(s.blocked_rdev,
3672                                          conf->mddev);
3673         }
3674
3675         if (s.handle_bad_blocks)
3676                 for (i = disks; i--; ) {
3677                         struct md_rdev *rdev;
3678                         struct r5dev *dev = &sh->dev[i];
3679                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3680                                 /* We own a safe reference to the rdev */
3681                                 rdev = conf->disks[i].rdev;
3682                                 if (!rdev_set_badblocks(rdev, sh->sector,
3683                                                         STRIPE_SECTORS, 0))
3684                                         md_error(conf->mddev, rdev);
3685                                 rdev_dec_pending(rdev, conf->mddev);
3686                         }
3687                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3688                                 rdev = conf->disks[i].rdev;
3689                                 rdev_clear_badblocks(rdev, sh->sector,
3690                                                      STRIPE_SECTORS, 0);
3691                                 rdev_dec_pending(rdev, conf->mddev);
3692                         }
3693                         if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3694                                 rdev = conf->disks[i].replacement;
3695                                 if (!rdev)
3696                                         /* rdev have been moved down */
3697                                         rdev = conf->disks[i].rdev;
3698                                 rdev_clear_badblocks(rdev, sh->sector,
3699                                                      STRIPE_SECTORS, 0);
3700                                 rdev_dec_pending(rdev, conf->mddev);
3701                         }
3702                 }
3703
3704         if (s.ops_request)
3705                 raid_run_ops(sh, s.ops_request);
3706
3707         ops_run_io(sh, &s);
3708
3709         if (s.dec_preread_active) {
3710                 /* We delay this until after ops_run_io so that if make_request
3711                  * is waiting on a flush, it won't continue until the writes
3712                  * have actually been submitted.
3713                  */
3714                 atomic_dec(&conf->preread_active_stripes);
3715                 if (atomic_read(&conf->preread_active_stripes) <
3716                     IO_THRESHOLD)
3717                         md_wakeup_thread(conf->mddev->thread);
3718         }
3719
3720         return_io(s.return_bi);
3721
3722         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
3723 }
3724
3725 static void raid5_activate_delayed(struct r5conf *conf)
3726 {
3727         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3728                 while (!list_empty(&conf->delayed_list)) {
3729                         struct list_head *l = conf->delayed_list.next;
3730                         struct stripe_head *sh;
3731                         sh = list_entry(l, struct stripe_head, lru);
3732                         list_del_init(l);
3733                         clear_bit(STRIPE_DELAYED, &sh->state);
3734                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3735                                 atomic_inc(&conf->preread_active_stripes);
3736                         list_add_tail(&sh->lru, &conf->hold_list);
3737                 }
3738         }
3739 }
3740
3741 static void activate_bit_delay(struct r5conf *conf)
3742 {
3743         /* device_lock is held */
3744         struct list_head head;
3745         list_add(&head, &conf->bitmap_list);
3746         list_del_init(&conf->bitmap_list);
3747         while (!list_empty(&head)) {
3748                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3749                 list_del_init(&sh->lru);
3750                 atomic_inc(&sh->count);
3751                 __release_stripe(conf, sh);
3752         }
3753 }
3754
3755 int md_raid5_congested(struct mddev *mddev, int bits)
3756 {
3757         struct r5conf *conf = mddev->private;
3758
3759         /* No difference between reads and writes.  Just check
3760          * how busy the stripe_cache is
3761          */
3762
3763         if (conf->inactive_blocked)
3764                 return 1;
3765         if (conf->quiesce)
3766                 return 1;
3767         if (list_empty_careful(&conf->inactive_list))
3768                 return 1;
3769
3770         return 0;
3771 }
3772 EXPORT_SYMBOL_GPL(md_raid5_congested);
3773
3774 static int raid5_congested(void *data, int bits)
3775 {
3776         struct mddev *mddev = data;
3777
3778         return mddev_congested(mddev, bits) ||
3779                 md_raid5_congested(mddev, bits);
3780 }
3781
3782 /* We want read requests to align with chunks where possible,
3783  * but write requests don't need to.
3784  */
3785 static int raid5_mergeable_bvec(struct request_queue *q,
3786                                 struct bvec_merge_data *bvm,
3787                                 struct bio_vec *biovec)
3788 {
3789         struct mddev *mddev = q->queuedata;
3790         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3791         int max;
3792         unsigned int chunk_sectors = mddev->chunk_sectors;
3793         unsigned int bio_sectors = bvm->bi_size >> 9;
3794
3795         if ((bvm->bi_rw & 1) == WRITE)
3796                 return biovec->bv_len; /* always allow writes to be mergeable */
3797
3798         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3799                 chunk_sectors = mddev->new_chunk_sectors;
3800         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3801         if (max < 0) max = 0;
3802         if (max <= biovec->bv_len && bio_sectors == 0)
3803                 return biovec->bv_len;
3804         else
3805                 return max;
3806 }
3807
3808
3809 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
3810 {
3811         sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3812         unsigned int chunk_sectors = mddev->chunk_sectors;
3813         unsigned int bio_sectors = bio->bi_size >> 9;
3814
3815         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3816                 chunk_sectors = mddev->new_chunk_sectors;
3817         return  chunk_sectors >=
3818                 ((sector & (chunk_sectors - 1)) + bio_sectors);
3819 }
3820
3821 /*
3822  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
3823  *  later sampled by raid5d.
3824  */
3825 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
3826 {
3827         unsigned long flags;
3828
3829         spin_lock_irqsave(&conf->device_lock, flags);
3830
3831         bi->bi_next = conf->retry_read_aligned_list;
3832         conf->retry_read_aligned_list = bi;
3833
3834         spin_unlock_irqrestore(&conf->device_lock, flags);
3835         md_wakeup_thread(conf->mddev->thread);
3836 }
3837
3838
3839 static struct bio *remove_bio_from_retry(struct r5conf *conf)
3840 {
3841         struct bio *bi;
3842
3843         bi = conf->retry_read_aligned;
3844         if (bi) {
3845                 conf->retry_read_aligned = NULL;
3846                 return bi;
3847         }
3848         bi = conf->retry_read_aligned_list;
3849         if(bi) {
3850                 conf->retry_read_aligned_list = bi->bi_next;
3851                 bi->bi_next = NULL;
3852                 /*
3853                  * this sets the active strip count to 1 and the processed
3854                  * strip count to zero (upper 8 bits)
3855                  */
3856                 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
3857         }
3858
3859         return bi;
3860 }
3861
3862
3863 /*
3864  *  The "raid5_align_endio" should check if the read succeeded and if it
3865  *  did, call bio_endio on the original bio (having bio_put the new bio
3866  *  first).
3867  *  If the read failed..
3868  */
3869 static void raid5_align_endio(struct bio *bi, int error)
3870 {
3871         struct bio* raid_bi  = bi->bi_private;
3872         struct mddev *mddev;
3873         struct r5conf *conf;
3874         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3875         struct md_rdev *rdev;
3876
3877         bio_put(bi);
3878
3879         rdev = (void*)raid_bi->bi_next;
3880         raid_bi->bi_next = NULL;
3881         mddev = rdev->mddev;
3882         conf = mddev->private;
3883
3884         rdev_dec_pending(rdev, conf->mddev);
3885
3886         if (!error && uptodate) {
3887                 bio_endio(raid_bi, 0);
3888                 if (atomic_dec_and_test(&conf->active_aligned_reads))
3889                         wake_up(&conf->wait_for_stripe);
3890                 return;
3891         }
3892
3893
3894         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3895
3896         add_bio_to_retry(raid_bi, conf);
3897 }
3898
3899 static int bio_fits_rdev(struct bio *bi)
3900 {
3901         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3902
3903         if ((bi->bi_size>>9) > queue_max_sectors(q))
3904                 return 0;
3905         blk_recount_segments(q, bi);
3906         if (bi->bi_phys_segments > queue_max_segments(q))
3907                 return 0;
3908
3909         if (q->merge_bvec_fn)
3910                 /* it's too hard to apply the merge_bvec_fn at this stage,
3911                  * just just give up
3912                  */
3913                 return 0;
3914
3915         return 1;
3916 }
3917
3918
3919 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
3920 {
3921         struct r5conf *conf = mddev->private;
3922         int dd_idx;
3923         struct bio* align_bi;
3924         struct md_rdev *rdev;
3925         sector_t end_sector;
3926
3927         if (!in_chunk_boundary(mddev, raid_bio)) {
3928                 pr_debug("chunk_aligned_read : non aligned\n");
3929                 return 0;
3930         }
3931         /*
3932          * use bio_clone_mddev to make a copy of the bio
3933          */
3934         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3935         if (!align_bi)
3936                 return 0;
3937         /*
3938          *   set bi_end_io to a new function, and set bi_private to the
3939          *     original bio.
3940          */
3941         align_bi->bi_end_io  = raid5_align_endio;
3942         align_bi->bi_private = raid_bio;
3943         /*
3944          *      compute position
3945          */
3946         align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
3947                                                     0,
3948                                                     &dd_idx, NULL);
3949
3950         end_sector = align_bi->bi_sector + (align_bi->bi_size >> 9);
3951         rcu_read_lock();
3952         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
3953         if (!rdev || test_bit(Faulty, &rdev->flags) ||
3954             rdev->recovery_offset < end_sector) {
3955                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3956                 if (rdev &&
3957                     (test_bit(Faulty, &rdev->flags) ||
3958                     !(test_bit(In_sync, &rdev->flags) ||
3959                       rdev->recovery_offset >= end_sector)))
3960                         rdev = NULL;
3961         }
3962         if (rdev) {
3963                 sector_t first_bad;
3964                 int bad_sectors;
3965
3966                 atomic_inc(&rdev->nr_pending);
3967                 rcu_read_unlock();
3968                 raid_bio->bi_next = (void*)rdev;
3969                 align_bi->bi_bdev =  rdev->bdev;
3970                 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3971
3972                 if (!bio_fits_rdev(align_bi) ||
3973                     is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
3974                                 &first_bad, &bad_sectors)) {
3975                         /* too big in some way, or has a known bad block */
3976                         bio_put(align_bi);
3977                         rdev_dec_pending(rdev, mddev);
3978                         return 0;
3979                 }
3980
3981                 /* No reshape active, so we can trust rdev->data_offset */
3982                 align_bi->bi_sector += rdev->data_offset;
3983
3984                 spin_lock_irq(&conf->device_lock);
3985                 wait_event_lock_irq(conf->wait_for_stripe,
3986                                     conf->quiesce == 0,
3987                                     conf->device_lock, /* nothing */);
3988                 atomic_inc(&conf->active_aligned_reads);
3989                 spin_unlock_irq(&conf->device_lock);
3990
3991                 generic_make_request(align_bi);
3992                 return 1;
3993         } else {
3994                 rcu_read_unlock();
3995                 bio_put(align_bi);
3996                 return 0;
3997         }
3998 }
3999
4000 /* __get_priority_stripe - get the next stripe to process
4001  *
4002  * Full stripe writes are allowed to pass preread active stripes up until
4003  * the bypass_threshold is exceeded.  In general the bypass_count
4004  * increments when the handle_list is handled before the hold_list; however, it
4005  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4006  * stripe with in flight i/o.  The bypass_count will be reset when the
4007  * head of the hold_list has changed, i.e. the head was promoted to the
4008  * handle_list.
4009  */
4010 static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
4011 {
4012         struct stripe_head *sh;
4013
4014         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4015                   __func__,
4016                   list_empty(&conf->handle_list) ? "empty" : "busy",
4017                   list_empty(&conf->hold_list) ? "empty" : "busy",
4018                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
4019
4020         if (!list_empty(&conf->handle_list)) {
4021                 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
4022
4023                 if (list_empty(&conf->hold_list))
4024                         conf->bypass_count = 0;
4025                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4026                         if (conf->hold_list.next == conf->last_hold)
4027                                 conf->bypass_count++;
4028                         else {
4029                                 conf->last_hold = conf->hold_list.next;
4030                                 conf->bypass_count -= conf->bypass_threshold;
4031                                 if (conf->bypass_count < 0)
4032                                         conf->bypass_count = 0;
4033                         }
4034                 }
4035         } else if (!list_empty(&conf->hold_list) &&
4036                    ((conf->bypass_threshold &&
4037                      conf->bypass_count > conf->bypass_threshold) ||
4038                     atomic_read(&conf->pending_full_writes) == 0)) {
4039                 sh = list_entry(conf->hold_list.next,
4040                                 typeof(*sh), lru);
4041                 conf->bypass_count -= conf->bypass_threshold;
4042                 if (conf->bypass_count < 0)
4043                         conf->bypass_count = 0;
4044         } else
4045                 return NULL;
4046
4047         list_del_init(&sh->lru);
4048         atomic_inc(&sh->count);
4049         BUG_ON(atomic_read(&sh->count) != 1);
4050         return sh;
4051 }
4052
4053 struct raid5_plug_cb {
4054         struct blk_plug_cb      cb;
4055         struct list_head        list;
4056 };
4057
4058 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4059 {
4060         struct raid5_plug_cb *cb = container_of(
4061                 blk_cb, struct raid5_plug_cb, cb);
4062         struct stripe_head *sh;
4063         struct mddev *mddev = cb->cb.data;
4064         struct r5conf *conf = mddev->private;
4065
4066         if (cb->list.next && !list_empty(&cb->list)) {
4067                 spin_lock_irq(&conf->device_lock);
4068                 while (!list_empty(&cb->list)) {
4069                         sh = list_first_entry(&cb->list, struct stripe_head, lru);
4070                         list_del_init(&sh->lru);
4071                         /*
4072                          * avoid race release_stripe_plug() sees
4073                          * STRIPE_ON_UNPLUG_LIST clear but the stripe
4074                          * is still in our list
4075                          */
4076                         smp_mb__before_clear_bit();
4077                         clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4078                         __release_stripe(conf, sh);
4079                 }
4080                 spin_unlock_irq(&conf->device_lock);
4081         }
4082         kfree(cb);
4083 }
4084
4085 static void release_stripe_plug(struct mddev *mddev,
4086                                 struct stripe_head *sh)
4087 {
4088         struct blk_plug_cb *blk_cb = blk_check_plugged(
4089                 raid5_unplug, mddev,
4090                 sizeof(struct raid5_plug_cb));
4091         struct raid5_plug_cb *cb;
4092
4093         if (!blk_cb) {
4094                 release_stripe(sh);
4095                 return;
4096         }
4097
4098         cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4099
4100         if (cb->list.next == NULL)
4101                 INIT_LIST_HEAD(&cb->list);
4102
4103         if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4104                 list_add_tail(&sh->lru, &cb->list);
4105         else
4106                 release_stripe(sh);
4107 }
4108
4109 static void make_discard_request(struct mddev *mddev, struct bio *bi)
4110 {
4111         struct r5conf *conf = mddev->private;
4112         sector_t logical_sector, last_sector;
4113         struct stripe_head *sh;
4114         int remaining;
4115         int stripe_sectors;
4116
4117         if (mddev->reshape_position != MaxSector)
4118                 /* Skip discard while reshape is happening */
4119                 return;
4120
4121         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4122         last_sector = bi->bi_sector + (bi->bi_size>>9);
4123
4124         bi->bi_next = NULL;
4125         bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4126
4127         stripe_sectors = conf->chunk_sectors *
4128                 (conf->raid_disks - conf->max_degraded);
4129         logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4130                                                stripe_sectors);
4131         sector_div(last_sector, stripe_sectors);
4132
4133         logical_sector *= conf->chunk_sectors;
4134         last_sector *= conf->chunk_sectors;
4135
4136         for (; logical_sector < last_sector;
4137              logical_sector += STRIPE_SECTORS) {
4138                 DEFINE_WAIT(w);
4139                 int d;
4140         again:
4141                 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4142                 prepare_to_wait(&conf->wait_for_overlap, &w,
4143                                 TASK_UNINTERRUPTIBLE);
4144                 spin_lock_irq(&sh->stripe_lock);
4145                 for (d = 0; d < conf->raid_disks; d++) {
4146                         if (d == sh->pd_idx || d == sh->qd_idx)
4147                                 continue;
4148                         if (sh->dev[d].towrite || sh->dev[d].toread) {
4149                                 set_bit(R5_Overlap, &sh->dev[d].flags);
4150                                 spin_unlock_irq(&sh->stripe_lock);
4151                                 release_stripe(sh);
4152                                 schedule();
4153                                 goto again;
4154                         }
4155                 }
4156                 finish_wait(&conf->wait_for_overlap, &w);
4157                 for (d = 0; d < conf->raid_disks; d++) {
4158                         if (d == sh->pd_idx || d == sh->qd_idx)
4159                                 continue;
4160                         sh->dev[d].towrite = bi;
4161                         set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4162                         raid5_inc_bi_active_stripes(bi);
4163                 }
4164                 spin_unlock_irq(&sh->stripe_lock);
4165                 if (conf->mddev->bitmap) {
4166                         for (d = 0;
4167                              d < conf->raid_disks - conf->max_degraded;
4168                              d++)
4169                                 bitmap_startwrite(mddev->bitmap,
4170                                                   sh->sector,
4171                                                   STRIPE_SECTORS,
4172                                                   0);
4173                         sh->bm_seq = conf->seq_flush + 1;
4174                         set_bit(STRIPE_BIT_DELAY, &sh->state);
4175                 }
4176
4177                 set_bit(STRIPE_HANDLE, &sh->state);
4178                 clear_bit(STRIPE_DELAYED, &sh->state);
4179                 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4180                         atomic_inc(&conf->preread_active_stripes);
4181                 release_stripe_plug(mddev, sh);
4182         }
4183
4184         remaining = raid5_dec_bi_active_stripes(bi);
4185         if (remaining == 0) {
4186                 md_write_end(mddev);
4187                 bio_endio(bi, 0);
4188         }
4189 }
4190
4191 static void make_request(struct mddev *mddev, struct bio * bi)
4192 {
4193         struct r5conf *conf = mddev->private;
4194         int dd_idx;
4195         sector_t new_sector;
4196         sector_t logical_sector, last_sector;
4197         struct stripe_head *sh;
4198         const int rw = bio_data_dir(bi);
4199         int remaining;
4200
4201         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4202                 md_flush_request(mddev, bi);
4203                 return;
4204         }
4205
4206         md_write_start(mddev, bi);
4207
4208         if (rw == READ &&
4209              mddev->reshape_position == MaxSector &&
4210              chunk_aligned_read(mddev,bi))
4211                 return;
4212
4213         if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4214                 make_discard_request(mddev, bi);
4215                 return;
4216         }
4217
4218         logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4219         last_sector = bi->bi_sector + (bi->bi_size>>9);
4220         bi->bi_next = NULL;
4221         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
4222
4223         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4224                 DEFINE_WAIT(w);
4225                 int previous;
4226
4227         retry:
4228                 previous = 0;
4229                 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
4230                 if (unlikely(conf->reshape_progress != MaxSector)) {
4231                         /* spinlock is needed as reshape_progress may be
4232                          * 64bit on a 32bit platform, and so it might be
4233                          * possible to see a half-updated value
4234                          * Of course reshape_progress could change after
4235                          * the lock is dropped, so once we get a reference
4236                          * to the stripe that we think it is, we will have
4237                          * to check again.
4238                          */
4239                         spin_lock_irq(&conf->device_lock);
4240                         if (mddev->reshape_backwards
4241                             ? logical_sector < conf->reshape_progress
4242                             : logical_sector >= conf->reshape_progress) {
4243                                 previous = 1;
4244                         } else {
4245                                 if (mddev->reshape_backwards
4246                                     ? logical_sector < conf->reshape_safe
4247                                     : logical_sector >= conf->reshape_safe) {
4248                                         spin_unlock_irq(&conf->device_lock);
4249                                         schedule();
4250                                         goto retry;
4251                                 }
4252                         }
4253                         spin_unlock_irq(&conf->device_lock);
4254                 }
4255
4256                 new_sector = raid5_compute_sector(conf, logical_sector,
4257                                                   previous,
4258                                                   &dd_idx, NULL);
4259                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
4260                         (unsigned long long)new_sector, 
4261                         (unsigned long long)logical_sector);
4262
4263                 sh = get_active_stripe(conf, new_sector, previous,
4264                                        (bi->bi_rw&RWA_MASK), 0);
4265                 if (sh) {
4266                         if (unlikely(previous)) {
4267                                 /* expansion might have moved on while waiting for a
4268                                  * stripe, so we must do the range check again.
4269                                  * Expansion could still move past after this
4270                                  * test, but as we are holding a reference to
4271                                  * 'sh', we know that if that happens,
4272                                  *  STRIPE_EXPANDING will get set and the expansion
4273                                  * won't proceed until we finish with the stripe.
4274                                  */
4275                                 int must_retry = 0;
4276                                 spin_lock_irq(&conf->device_lock);
4277                                 if (mddev->reshape_backwards
4278                                     ? logical_sector >= conf->reshape_progress
4279                                     : logical_sector < conf->reshape_progress)
4280                                         /* mismatch, need to try again */
4281                                         must_retry = 1;
4282                                 spin_unlock_irq(&conf->device_lock);
4283                                 if (must_retry) {
4284                                         release_stripe(sh);
4285                                         schedule();
4286                                         goto retry;
4287                                 }
4288                         }
4289
4290                         if (rw == WRITE &&
4291                             logical_sector >= mddev->suspend_lo &&
4292                             logical_sector < mddev->suspend_hi) {
4293                                 release_stripe(sh);
4294                                 /* As the suspend_* range is controlled by
4295                                  * userspace, we want an interruptible
4296                                  * wait.
4297                                  */
4298                                 flush_signals(current);
4299                                 prepare_to_wait(&conf->wait_for_overlap,
4300                                                 &w, TASK_INTERRUPTIBLE);
4301                                 if (logical_sector >= mddev->suspend_lo &&
4302                                     logical_sector < mddev->suspend_hi)
4303                                         schedule();
4304                                 goto retry;
4305                         }
4306
4307                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4308                             !add_stripe_bio(sh, bi, dd_idx, rw)) {
4309                                 /* Stripe is busy expanding or
4310                                  * add failed due to overlap.  Flush everything
4311                                  * and wait a while
4312                                  */
4313                                 md_wakeup_thread(mddev->thread);
4314                                 release_stripe(sh);
4315                                 schedule();
4316                                 goto retry;
4317                         }
4318                         finish_wait(&conf->wait_for_overlap, &w);
4319                         set_bit(STRIPE_HANDLE, &sh->state);
4320                         clear_bit(STRIPE_DELAYED, &sh->state);
4321                         if ((bi->bi_rw & REQ_NOIDLE) &&
4322                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4323                                 atomic_inc(&conf->preread_active_stripes);
4324                         release_stripe_plug(mddev, sh);
4325                 } else {
4326                         /* cannot get stripe for read-ahead, just give-up */
4327                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
4328                         finish_wait(&conf->wait_for_overlap, &w);
4329                         break;
4330                 }
4331         }
4332
4333         remaining = raid5_dec_bi_active_stripes(bi);
4334         if (remaining == 0) {
4335
4336                 if ( rw == WRITE )
4337                         md_write_end(mddev);
4338
4339                 bio_endio(bi, 0);
4340         }
4341 }
4342
4343 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
4344
4345 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
4346 {
4347         /* reshaping is quite different to recovery/resync so it is
4348          * handled quite separately ... here.
4349          *
4350          * On each call to sync_request, we gather one chunk worth of
4351          * destination stripes and flag them as expanding.
4352          * Then we find all the source stripes and request reads.
4353          * As the reads complete, handle_stripe will copy the data
4354          * into the destination stripe and release that stripe.
4355          */
4356         struct r5conf *conf = mddev->private;
4357         struct stripe_head *sh;
4358         sector_t first_sector, last_sector;
4359         int raid_disks = conf->previous_raid_disks;
4360         int data_disks = raid_disks - conf->max_degraded;
4361         int new_data_disks = conf->raid_disks - conf->max_degraded;
4362         int i;
4363         int dd_idx;
4364         sector_t writepos, readpos, safepos;
4365         sector_t stripe_addr;
4366         int reshape_sectors;
4367         struct list_head stripes;
4368
4369         if (sector_nr == 0) {
4370                 /* If restarting in the middle, skip the initial sectors */
4371                 if (mddev->reshape_backwards &&
4372                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4373                         sector_nr = raid5_size(mddev, 0, 0)
4374                                 - conf->reshape_progress;
4375                 } else if (!mddev->reshape_backwards &&
4376                            conf->reshape_progress > 0)
4377                         sector_nr = conf->reshape_progress;
4378                 sector_div(sector_nr, new_data_disks);
4379                 if (sector_nr) {
4380                         mddev->curr_resync_completed = sector_nr;
4381                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4382                         *skipped = 1;
4383                         return sector_nr;
4384                 }
4385         }
4386
4387         /* We need to process a full chunk at a time.
4388          * If old and new chunk sizes differ, we need to process the
4389          * largest of these
4390          */
4391         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4392                 reshape_sectors = mddev->new_chunk_sectors;
4393         else
4394                 reshape_sectors = mddev->chunk_sectors;
4395
4396         /* We update the metadata at least every 10 seconds, or when
4397          * the data about to be copied would over-write the source of
4398          * the data at the front of the range.  i.e. one new_stripe
4399          * along from reshape_progress new_maps to after where
4400          * reshape_safe old_maps to
4401          */
4402         writepos = conf->reshape_progress;
4403         sector_div(writepos, new_data_disks);
4404         readpos = conf->reshape_progress;
4405         sector_div(readpos, data_disks);
4406         safepos = conf->reshape_safe;
4407         sector_div(safepos, data_disks);
4408         if (mddev->reshape_backwards) {
4409                 writepos -= min_t(sector_t, reshape_sectors, writepos);
4410                 readpos += reshape_sectors;
4411                 safepos += reshape_sectors;
4412         } else {
4413                 writepos += reshape_sectors;
4414                 readpos -= min_t(sector_t, reshape_sectors, readpos);
4415                 safepos -= min_t(sector_t, reshape_sectors, safepos);
4416         }
4417
4418         /* Having calculated the 'writepos' possibly use it
4419          * to set 'stripe_addr' which is where we will write to.
4420          */
4421         if (mddev->reshape_backwards) {
4422                 BUG_ON(conf->reshape_progress == 0);
4423                 stripe_addr = writepos;
4424                 BUG_ON((mddev->dev_sectors &
4425                         ~((sector_t)reshape_sectors - 1))
4426                        - reshape_sectors - stripe_addr
4427                        != sector_nr);
4428         } else {
4429                 BUG_ON(writepos != sector_nr + reshape_sectors);
4430                 stripe_addr = sector_nr;
4431         }
4432
4433         /* 'writepos' is the most advanced device address we might write.
4434          * 'readpos' is the least advanced device address we might read.
4435          * 'safepos' is the least address recorded in the metadata as having
4436          *     been reshaped.
4437          * If there is a min_offset_diff, these are adjusted either by
4438          * increasing the safepos/readpos if diff is negative, or
4439          * increasing writepos if diff is positive.
4440          * If 'readpos' is then behind 'writepos', there is no way that we can
4441          * ensure safety in the face of a crash - that must be done by userspace
4442          * making a backup of the data.  So in that case there is no particular
4443          * rush to update metadata.
4444          * Otherwise if 'safepos' is behind 'writepos', then we really need to
4445          * update the metadata to advance 'safepos' to match 'readpos' so that
4446          * we can be safe in the event of a crash.
4447          * So we insist on updating metadata if safepos is behind writepos and
4448          * readpos is beyond writepos.
4449          * In any case, update the metadata every 10 seconds.
4450          * Maybe that number should be configurable, but I'm not sure it is
4451          * worth it.... maybe it could be a multiple of safemode_delay???
4452          */
4453         if (conf->min_offset_diff < 0) {
4454                 safepos += -conf->min_offset_diff;
4455                 readpos += -conf->min_offset_diff;
4456         } else
4457                 writepos += conf->min_offset_diff;
4458
4459         if ((mddev->reshape_backwards
4460              ? (safepos > writepos && readpos < writepos)
4461              : (safepos < writepos && readpos > writepos)) ||
4462             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4463                 /* Cannot proceed until we've updated the superblock... */
4464                 wait_event(conf->wait_for_overlap,
4465                            atomic_read(&conf->reshape_stripes)==0);
4466                 mddev->reshape_position = conf->reshape_progress;
4467                 mddev->curr_resync_completed = sector_nr;
4468                 conf->reshape_checkpoint = jiffies;
4469                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4470                 md_wakeup_thread(mddev->thread);
4471                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4472                            kthread_should_stop());
4473                 spin_lock_irq(&conf->device_lock);
4474                 conf->reshape_safe = mddev->reshape_position;
4475                 spin_unlock_irq(&conf->device_lock);
4476                 wake_up(&conf->wait_for_overlap);
4477                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4478         }
4479
4480         INIT_LIST_HEAD(&stripes);
4481         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4482                 int j;
4483                 int skipped_disk = 0;
4484                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4485                 set_bit(STRIPE_EXPANDING, &sh->state);
4486                 atomic_inc(&conf->reshape_stripes);
4487                 /* If any of this stripe is beyond the end of the old
4488                  * array, then we need to zero those blocks
4489                  */
4490                 for (j=sh->disks; j--;) {
4491                         sector_t s;
4492                         if (j == sh->pd_idx)
4493                                 continue;
4494                         if (conf->level == 6 &&
4495                             j == sh->qd_idx)
4496                                 continue;
4497                         s = compute_blocknr(sh, j, 0);
4498                         if (s < raid5_size(mddev, 0, 0)) {
4499                                 skipped_disk = 1;
4500                                 continue;
4501                         }
4502                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4503                         set_bit(R5_Expanded, &sh->dev[j].flags);
4504                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
4505                 }
4506                 if (!skipped_disk) {
4507                         set_bit(STRIPE_EXPAND_READY, &sh->state);
4508                         set_bit(STRIPE_HANDLE, &sh->state);
4509                 }
4510                 list_add(&sh->lru, &stripes);
4511         }
4512         spin_lock_irq(&conf->device_lock);
4513         if (mddev->reshape_backwards)
4514                 conf->reshape_progress -= reshape_sectors * new_data_disks;
4515         else
4516                 conf->reshape_progress += reshape_sectors * new_data_disks;
4517         spin_unlock_irq(&conf->device_lock);
4518         /* Ok, those stripe are ready. We can start scheduling
4519          * reads on the source stripes.
4520          * The source stripes are determined by mapping the first and last
4521          * block on the destination stripes.
4522          */
4523         first_sector =
4524                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4525                                      1, &dd_idx, NULL);
4526         last_sector =
4527                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4528                                             * new_data_disks - 1),
4529                                      1, &dd_idx, NULL);
4530         if (last_sector >= mddev->dev_sectors)
4531                 last_sector = mddev->dev_sectors - 1;
4532         while (first_sector <= last_sector) {
4533                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4534                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4535                 set_bit(STRIPE_HANDLE, &sh->state);
4536                 release_stripe(sh);
4537                 first_sector += STRIPE_SECTORS;
4538         }
4539         /* Now that the sources are clearly marked, we can release
4540          * the destination stripes
4541          */
4542         while (!list_empty(&stripes)) {
4543                 sh = list_entry(stripes.next, struct stripe_head, lru);
4544                 list_del_init(&sh->lru);
4545                 release_stripe(sh);
4546         }
4547         /* If this takes us to the resync_max point where we have to pause,
4548          * then we need to write out the superblock.
4549          */
4550         sector_nr += reshape_sectors;
4551         if ((sector_nr - mddev->curr_resync_completed) * 2
4552             >= mddev->resync_max - mddev->curr_resync_completed) {
4553                 /* Cannot proceed until we've updated the superblock... */
4554                 wait_event(conf->wait_for_overlap,
4555                            atomic_read(&conf->reshape_stripes) == 0);
4556                 mddev->reshape_position = conf->reshape_progress;
4557                 mddev->curr_resync_completed = sector_nr;
4558                 conf->reshape_checkpoint = jiffies;
4559                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4560                 md_wakeup_thread(mddev->thread);
4561                 wait_event(mddev->sb_wait,
4562                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4563                            || kthread_should_stop());
4564                 spin_lock_irq(&conf->device_lock);
4565                 conf->reshape_safe = mddev->reshape_position;
4566                 spin_unlock_irq(&conf->device_lock);
4567                 wake_up(&conf->wait_for_overlap);
4568                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4569         }
4570         return reshape_sectors;
4571 }
4572
4573 /* FIXME go_faster isn't used */
4574 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
4575 {
4576         struct r5conf *conf = mddev->private;
4577         struct stripe_head *sh;
4578         sector_t max_sector = mddev->dev_sectors;
4579         sector_t sync_blocks;
4580         int still_degraded = 0;
4581         int i;
4582
4583         if (sector_nr >= max_sector) {
4584                 /* just being told to finish up .. nothing much to do */
4585
4586                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4587                         end_reshape(conf);
4588                         return 0;
4589                 }
4590
4591                 if (mddev->curr_resync < max_sector) /* aborted */
4592                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4593                                         &sync_blocks, 1);
4594                 else /* completed sync */
4595                         conf->fullsync = 0;
4596                 bitmap_close_sync(mddev->bitmap);
4597
4598                 return 0;
4599         }
4600
4601         /* Allow raid5_quiesce to complete */
4602         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4603
4604         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4605                 return reshape_request(mddev, sector_nr, skipped);
4606
4607         /* No need to check resync_max as we never do more than one
4608          * stripe, and as resync_max will always be on a chunk boundary,
4609          * if the check in md_do_sync didn't fire, there is no chance
4610          * of overstepping resync_max here
4611          */
4612
4613         /* if there is too many failed drives and we are trying
4614          * to resync, then assert that we are finished, because there is
4615          * nothing we can do.
4616          */
4617         if (mddev->degraded >= conf->max_degraded &&
4618             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4619                 sector_t rv = mddev->dev_sectors - sector_nr;
4620                 *skipped = 1;
4621                 return rv;
4622         }
4623         if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4624             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4625             !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4626                 /* we can skip this block, and probably more */
4627                 sync_blocks /= STRIPE_SECTORS;
4628                 *skipped = 1;
4629                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4630         }
4631
4632         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4633
4634         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4635         if (sh == NULL) {
4636                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4637                 /* make sure we don't swamp the stripe cache if someone else
4638                  * is trying to get access
4639                  */
4640                 schedule_timeout_uninterruptible(1);
4641         }
4642         /* Need to check if array will still be degraded after recovery/resync
4643          * We don't need to check the 'failed' flag as when that gets set,
4644          * recovery aborts.
4645          */
4646         for (i = 0; i < conf->raid_disks; i++)
4647                 if (conf->disks[i].rdev == NULL)
4648                         still_degraded = 1;
4649
4650         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4651
4652         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4653
4654         handle_stripe(sh);
4655         release_stripe(sh);
4656
4657         return STRIPE_SECTORS;
4658 }
4659
4660 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
4661 {
4662         /* We may not be able to submit a whole bio at once as there
4663          * may not be enough stripe_heads available.
4664          * We cannot pre-allocate enough stripe_heads as we may need
4665          * more than exist in the cache (if we allow ever large chunks).
4666          * So we do one stripe head at a time and record in
4667          * ->bi_hw_segments how many have been done.
4668          *
4669          * We *know* that this entire raid_bio is in one chunk, so
4670          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4671          */
4672         struct stripe_head *sh;
4673         int dd_idx;
4674         sector_t sector, logical_sector, last_sector;
4675         int scnt = 0;
4676         int remaining;
4677         int handled = 0;
4678
4679         logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4680         sector = raid5_compute_sector(conf, logical_sector,
4681                                       0, &dd_idx, NULL);
4682         last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4683
4684         for (; logical_sector < last_sector;
4685              logical_sector += STRIPE_SECTORS,
4686                      sector += STRIPE_SECTORS,
4687                      scnt++) {
4688
4689                 if (scnt < raid5_bi_processed_stripes(raid_bio))
4690                         /* already done this stripe */
4691                         continue;
4692
4693                 sh = get_active_stripe(conf, sector, 0, 1, 0);
4694
4695                 if (!sh) {
4696                         /* failed to get a stripe - must wait */
4697                         raid5_set_bi_processed_stripes(raid_bio, scnt);
4698                         conf->retry_read_aligned = raid_bio;
4699                         return handled;
4700                 }
4701
4702                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4703                         release_stripe(sh);
4704                         raid5_set_bi_processed_stripes(raid_bio, scnt);
4705                         conf->retry_read_aligned = raid_bio;
4706                         return handled;
4707                 }
4708
4709                 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
4710                 handle_stripe(sh);
4711                 release_stripe(sh);
4712                 handled++;
4713         }
4714         remaining = raid5_dec_bi_active_stripes(raid_bio);
4715         if (remaining == 0)
4716                 bio_endio(raid_bio, 0);
4717         if (atomic_dec_and_test(&conf->active_aligned_reads))
4718                 wake_up(&conf->wait_for_stripe);
4719         return handled;
4720 }
4721
4722 #define MAX_STRIPE_BATCH 8
4723 static int handle_active_stripes(struct r5conf *conf)
4724 {
4725         struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
4726         int i, batch_size = 0;
4727
4728         while (batch_size < MAX_STRIPE_BATCH &&
4729                         (sh = __get_priority_stripe(conf)) != NULL)
4730                 batch[batch_size++] = sh;
4731
4732         if (batch_size == 0)
4733                 return batch_size;
4734         spin_unlock_irq(&conf->device_lock);
4735
4736         for (i = 0; i < batch_size; i++)
4737                 handle_stripe(batch[i]);
4738
4739         cond_resched();
4740
4741         spin_lock_irq(&conf->device_lock);
4742         for (i = 0; i < batch_size; i++)
4743                 __release_stripe(conf, batch[i]);
4744         return batch_size;
4745 }
4746
4747 /*
4748  * This is our raid5 kernel thread.
4749  *
4750  * We scan the hash table for stripes which can be handled now.
4751  * During the scan, completed stripes are saved for us by the interrupt
4752  * handler, so that they will not have to wait for our next wakeup.
4753  */
4754 static void raid5d(struct md_thread *thread)
4755 {
4756         struct mddev *mddev = thread->mddev;
4757         struct r5conf *conf = mddev->private;
4758         int handled;
4759         struct blk_plug plug;
4760
4761         pr_debug("+++ raid5d active\n");
4762
4763         md_check_recovery(mddev);
4764
4765         blk_start_plug(&plug);
4766         handled = 0;
4767         spin_lock_irq(&conf->device_lock);
4768         while (1) {
4769                 struct bio *bio;
4770                 int batch_size;
4771
4772                 if (
4773                     !list_empty(&conf->bitmap_list)) {
4774                         /* Now is a good time to flush some bitmap updates */
4775                         conf->seq_flush++;
4776                         spin_unlock_irq(&conf->device_lock);
4777                         bitmap_unplug(mddev->bitmap);
4778                         spin_lock_irq(&conf->device_lock);
4779                         conf->seq_write = conf->seq_flush;
4780                         activate_bit_delay(conf);
4781                 }
4782                 raid5_activate_delayed(conf);
4783
4784                 while ((bio = remove_bio_from_retry(conf))) {
4785                         int ok;
4786                         spin_unlock_irq(&conf->device_lock);
4787                         ok = retry_aligned_read(conf, bio);
4788                         spin_lock_irq(&conf->device_lock);
4789                         if (!ok)
4790                                 break;
4791                         handled++;
4792                 }
4793
4794                 batch_size = handle_active_stripes(conf);
4795                 if (!batch_size)
4796                         break;
4797                 handled += batch_size;
4798
4799                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
4800                         spin_unlock_irq(&conf->device_lock);
4801                         md_check_recovery(mddev);
4802                         spin_lock_irq(&conf->device_lock);
4803                 }
4804         }
4805         pr_debug("%d stripes handled\n", handled);
4806
4807         spin_unlock_irq(&conf->device_lock);
4808
4809         async_tx_issue_pending_all();
4810         blk_finish_plug(&plug);
4811
4812         pr_debug("--- raid5d inactive\n");
4813 }
4814
4815 static ssize_t
4816 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
4817 {
4818         struct r5conf *conf = mddev->private;
4819         if (conf)
4820                 return sprintf(page, "%d\n", conf->max_nr_stripes);
4821         else
4822                 return 0;
4823 }
4824
4825 int
4826 raid5_set_cache_size(struct mddev *mddev, int size)
4827 {
4828         struct r5conf *conf = mddev->private;
4829         int err;
4830
4831         if (size <= 16 || size > 32768)
4832                 return -EINVAL;
4833         while (size < conf->max_nr_stripes) {
4834                 if (drop_one_stripe(conf))
4835                         conf->max_nr_stripes--;
4836                 else
4837                         break;
4838         }
4839         err = md_allow_write(mddev);
4840         if (err)
4841                 return err;
4842         while (size > conf->max_nr_stripes) {
4843                 if (grow_one_stripe(conf))
4844                         conf->max_nr_stripes++;
4845                 else break;
4846         }
4847         return 0;
4848 }
4849 EXPORT_SYMBOL(raid5_set_cache_size);
4850
4851 static ssize_t
4852 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
4853 {
4854         struct r5conf *conf = mddev->private;
4855         unsigned long new;
4856         int err;
4857
4858         if (len >= PAGE_SIZE)
4859                 return -EINVAL;
4860         if (!conf)
4861                 return -ENODEV;
4862
4863         if (strict_strtoul(page, 10, &new))
4864                 return -EINVAL;
4865         err = raid5_set_cache_size(mddev, new);
4866         if (err)
4867                 return err;
4868         return len;
4869 }
4870
4871 static struct md_sysfs_entry
4872 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4873                                 raid5_show_stripe_cache_size,
4874                                 raid5_store_stripe_cache_size);
4875
4876 static ssize_t
4877 raid5_show_preread_threshold(struct mddev *mddev, char *page)
4878 {
4879         struct r5conf *conf = mddev->private;
4880         if (conf)
4881                 return sprintf(page, "%d\n", conf->bypass_threshold);
4882         else
4883                 return 0;
4884 }
4885
4886 static ssize_t
4887 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
4888 {
4889         struct r5conf *conf = mddev->private;
4890         unsigned long new;
4891         if (len >= PAGE_SIZE)
4892                 return -EINVAL;
4893         if (!conf)
4894                 return -ENODEV;
4895
4896         if (strict_strtoul(page, 10, &new))
4897                 return -EINVAL;
4898         if (new > conf->max_nr_stripes)
4899                 return -EINVAL;
4900         conf->bypass_threshold = new;
4901         return len;
4902 }
4903
4904 static struct md_sysfs_entry
4905 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4906                                         S_IRUGO | S_IWUSR,
4907                                         raid5_show_preread_threshold,
4908                                         raid5_store_preread_threshold);
4909
4910 static ssize_t
4911 stripe_cache_active_show(struct mddev *mddev, char *page)
4912 {
4913         struct r5conf *conf = mddev->private;
4914         if (conf)
4915                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4916         else
4917                 return 0;
4918 }
4919
4920 static struct md_sysfs_entry
4921 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4922
4923 static struct attribute *raid5_attrs[] =  {
4924         &raid5_stripecache_size.attr,
4925         &raid5_stripecache_active.attr,
4926         &raid5_preread_bypass_threshold.attr,
4927         NULL,
4928 };
4929 static struct attribute_group raid5_attrs_group = {
4930         .name = NULL,
4931         .attrs = raid5_attrs,
4932 };
4933
4934 static sector_t
4935 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
4936 {
4937         struct r5conf *conf = mddev->private;
4938
4939         if (!sectors)
4940                 sectors = mddev->dev_sectors;
4941         if (!raid_disks)
4942                 /* size is defined by the smallest of previous and new size */
4943                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4944
4945         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4946         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4947         return sectors * (raid_disks - conf->max_degraded);
4948 }
4949
4950 static void raid5_free_percpu(struct r5conf *conf)
4951 {
4952         struct raid5_percpu *percpu;
4953         unsigned long cpu;
4954
4955         if (!conf->percpu)
4956                 return;
4957
4958         get_online_cpus();
4959         for_each_possible_cpu(cpu) {
4960                 percpu = per_cpu_ptr(conf->percpu, cpu);
4961                 safe_put_page(percpu->spare_page);
4962                 kfree(percpu->scribble);
4963         }
4964 #ifdef CONFIG_HOTPLUG_CPU
4965         unregister_cpu_notifier(&conf->cpu_notify);
4966 #endif
4967         put_online_cpus();
4968
4969         free_percpu(conf->percpu);
4970 }
4971
4972 static void free_conf(struct r5conf *conf)
4973 {
4974         shrink_stripes(conf);
4975         raid5_free_percpu(conf);
4976         kfree(conf->disks);
4977         kfree(conf->stripe_hashtbl);
4978         kfree(conf);
4979 }
4980
4981 #ifdef CONFIG_HOTPLUG_CPU
4982 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4983                               void *hcpu)
4984 {
4985         struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
4986         long cpu = (long)hcpu;
4987         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4988
4989         switch (action) {
4990         case CPU_UP_PREPARE:
4991         case CPU_UP_PREPARE_FROZEN:
4992                 if (conf->level == 6 && !percpu->spare_page)
4993                         percpu->spare_page = alloc_page(GFP_KERNEL);
4994                 if (!percpu->scribble)
4995                         percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4996
4997                 if (!percpu->scribble ||
4998                     (conf->level == 6 && !percpu->spare_page)) {
4999                         safe_put_page(percpu->spare_page);
5000                         kfree(percpu->scribble);
5001                         pr_err("%s: failed memory allocation for cpu%ld\n",
5002                                __func__, cpu);
5003                         return notifier_from_errno(-ENOMEM);
5004                 }
5005                 break;
5006         case CPU_DEAD:
5007         case CPU_DEAD_FROZEN:
5008                 safe_put_page(percpu->spare_page);
5009                 kfree(percpu->scribble);
5010                 percpu->spare_page = NULL;
5011                 percpu->scribble = NULL;
5012                 break;
5013         default:
5014                 break;
5015         }
5016         return NOTIFY_OK;
5017 }
5018 #endif
5019
5020 static int raid5_alloc_percpu(struct r5conf *conf)
5021 {
5022         unsigned long cpu;
5023         struct page *spare_page;
5024         struct raid5_percpu __percpu *allcpus;
5025         void *scribble;
5026         int err;
5027
5028         allcpus = alloc_percpu(struct raid5_percpu);
5029         if (!allcpus)
5030                 return -ENOMEM;
5031         conf->percpu = allcpus;
5032
5033         get_online_cpus();
5034         err = 0;
5035         for_each_present_cpu(cpu) {
5036                 if (conf->level == 6) {
5037                         spare_page = alloc_page(GFP_KERNEL);
5038                         if (!spare_page) {
5039                                 err = -ENOMEM;
5040                                 break;
5041                         }
5042                         per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
5043                 }
5044                 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5045                 if (!scribble) {
5046                         err = -ENOMEM;
5047                         break;
5048                 }
5049                 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
5050         }
5051 #ifdef CONFIG_HOTPLUG_CPU
5052         conf->cpu_notify.notifier_call = raid456_cpu_notify;
5053         conf->cpu_notify.priority = 0;
5054         if (err == 0)
5055                 err = register_cpu_notifier(&conf->cpu_notify);
5056 #endif
5057         put_online_cpus();
5058
5059         return err;
5060 }
5061
5062 static struct r5conf *setup_conf(struct mddev *mddev)
5063 {
5064         struct r5conf *conf;
5065         int raid_disk, memory, max_disks;
5066         struct md_rdev *rdev;
5067         struct disk_info *disk;
5068         char pers_name[6];
5069
5070         if (mddev->new_level != 5
5071             && mddev->new_level != 4
5072             && mddev->new_level != 6) {
5073                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
5074                        mdname(mddev), mddev->new_level);
5075                 return ERR_PTR(-EIO);
5076         }
5077         if ((mddev->new_level == 5
5078              && !algorithm_valid_raid5(mddev->new_layout)) ||
5079             (mddev->new_level == 6
5080              && !algorithm_valid_raid6(mddev->new_layout))) {
5081                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
5082                        mdname(mddev), mddev->new_layout);
5083                 return ERR_PTR(-EIO);
5084         }
5085         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
5086                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
5087                        mdname(mddev), mddev->raid_disks);
5088                 return ERR_PTR(-EINVAL);
5089         }
5090
5091         if (!mddev->new_chunk_sectors ||
5092             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5093             !is_power_of_2(mddev->new_chunk_sectors)) {
5094                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5095                        mdname(mddev), mddev->new_chunk_sectors << 9);
5096                 return ERR_PTR(-EINVAL);
5097         }
5098
5099         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
5100         if (conf == NULL)
5101                 goto abort;
5102         spin_lock_init(&conf->device_lock);
5103         init_waitqueue_head(&conf->wait_for_stripe);
5104         init_waitqueue_head(&conf->wait_for_overlap);
5105         INIT_LIST_HEAD(&conf->handle_list);
5106         INIT_LIST_HEAD(&conf->hold_list);
5107         INIT_LIST_HEAD(&conf->delayed_list);
5108         INIT_LIST_HEAD(&conf->bitmap_list);
5109         INIT_LIST_HEAD(&conf->inactive_list);
5110         atomic_set(&conf->active_stripes, 0);
5111         atomic_set(&conf->preread_active_stripes, 0);
5112         atomic_set(&conf->active_aligned_reads, 0);
5113         conf->bypass_threshold = BYPASS_THRESHOLD;
5114         conf->recovery_disabled = mddev->recovery_disabled - 1;
5115
5116         conf->raid_disks = mddev->raid_disks;
5117         if (mddev->reshape_position == MaxSector)
5118                 conf->previous_raid_disks = mddev->raid_disks;
5119         else
5120                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5121         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5122         conf->scribble_len = scribble_len(max_disks);
5123
5124         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
5125                               GFP_KERNEL);
5126         if (!conf->disks)
5127                 goto abort;
5128
5129         conf->mddev = mddev;
5130
5131         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
5132                 goto abort;
5133
5134         conf->level = mddev->new_level;
5135         if (raid5_alloc_percpu(conf) != 0)
5136                 goto abort;
5137
5138         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
5139
5140         rdev_for_each(rdev, mddev) {
5141                 raid_disk = rdev->raid_disk;
5142                 if (raid_disk >= max_disks
5143                     || raid_disk < 0)
5144                         continue;
5145                 disk = conf->disks + raid_disk;
5146
5147                 if (test_bit(Replacement, &rdev->flags)) {
5148                         if (disk->replacement)
5149                                 goto abort;
5150                         disk->replacement = rdev;
5151                 } else {
5152                         if (disk->rdev)
5153                                 goto abort;
5154                         disk->rdev = rdev;
5155                 }
5156
5157                 if (test_bit(In_sync, &rdev->flags)) {
5158                         char b[BDEVNAME_SIZE];
5159                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5160                                " disk %d\n",
5161                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
5162                 } else if (rdev->saved_raid_disk != raid_disk)
5163                         /* Cannot rely on bitmap to complete recovery */
5164                         conf->fullsync = 1;
5165         }
5166
5167         conf->chunk_sectors = mddev->new_chunk_sectors;
5168         conf->level = mddev->new_level;
5169         if (conf->level == 6)
5170                 conf->max_degraded = 2;
5171         else
5172                 conf->max_degraded = 1;
5173         conf->algorithm = mddev->new_layout;
5174         conf->max_nr_stripes = NR_STRIPES;
5175         conf->reshape_progress = mddev->reshape_position;
5176         if (conf->reshape_progress != MaxSector) {
5177                 conf->prev_chunk_sectors = mddev->chunk_sectors;
5178                 conf->prev_algo = mddev->layout;
5179         }
5180
5181         memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5182                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
5183         if (grow_stripes(conf, conf->max_nr_stripes)) {
5184                 printk(KERN_ERR
5185                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
5186                        mdname(mddev), memory);
5187                 goto abort;
5188         } else
5189                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5190                        mdname(mddev), memory);
5191
5192         sprintf(pers_name, "raid%d", mddev->new_level);
5193         conf->thread = md_register_thread(raid5d, mddev, pers_name);
5194         if (!conf->thread) {
5195                 printk(KERN_ERR
5196                        "md/raid:%s: couldn't allocate thread.\n",
5197                        mdname(mddev));
5198                 goto abort;
5199         }
5200
5201         return conf;
5202
5203  abort:
5204         if (conf) {
5205                 free_conf(conf);
5206                 return ERR_PTR(-EIO);
5207         } else
5208                 return ERR_PTR(-ENOMEM);
5209 }
5210
5211
5212 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5213 {
5214         switch (algo) {
5215         case ALGORITHM_PARITY_0:
5216                 if (raid_disk < max_degraded)
5217                         return 1;
5218                 break;
5219         case ALGORITHM_PARITY_N:
5220                 if (raid_disk >= raid_disks - max_degraded)
5221                         return 1;
5222                 break;
5223         case ALGORITHM_PARITY_0_6:
5224                 if (raid_disk == 0 || 
5225                     raid_disk == raid_disks - 1)
5226                         return 1;
5227                 break;
5228         case ALGORITHM_LEFT_ASYMMETRIC_6:
5229         case ALGORITHM_RIGHT_ASYMMETRIC_6:
5230         case ALGORITHM_LEFT_SYMMETRIC_6:
5231         case ALGORITHM_RIGHT_SYMMETRIC_6:
5232                 if (raid_disk == raid_disks - 1)
5233                         return 1;
5234         }
5235         return 0;
5236 }
5237
5238 static int run(struct mddev *mddev)
5239 {
5240         struct r5conf *conf;
5241         int working_disks = 0;
5242         int dirty_parity_disks = 0;
5243         struct md_rdev *rdev;
5244         sector_t reshape_offset = 0;
5245         int i;
5246         long long min_offset_diff = 0;
5247         int first = 1;
5248
5249         if (mddev->recovery_cp != MaxSector)
5250                 printk(KERN_NOTICE "md/raid:%s: not clean"
5251                        " -- starting background reconstruction\n",
5252                        mdname(mddev));
5253
5254         rdev_for_each(rdev, mddev) {
5255                 long long diff;
5256                 if (rdev->raid_disk < 0)
5257                         continue;
5258                 diff = (rdev->new_data_offset - rdev->data_offset);
5259                 if (first) {
5260                         min_offset_diff = diff;
5261                         first = 0;
5262                 } else if (mddev->reshape_backwards &&
5263                          diff < min_offset_diff)
5264                         min_offset_diff = diff;
5265                 else if (!mddev->reshape_backwards &&
5266                          diff > min_offset_diff)
5267                         min_offset_diff = diff;
5268         }
5269
5270         if (mddev->reshape_position != MaxSector) {
5271                 /* Check that we can continue the reshape.
5272                  * Difficulties arise if the stripe we would write to
5273                  * next is at or after the stripe we would read from next.
5274                  * For a reshape that changes the number of devices, this
5275                  * is only possible for a very short time, and mdadm makes
5276                  * sure that time appears to have past before assembling
5277                  * the array.  So we fail if that time hasn't passed.
5278                  * For a reshape that keeps the number of devices the same
5279                  * mdadm must be monitoring the reshape can keeping the
5280                  * critical areas read-only and backed up.  It will start
5281                  * the array in read-only mode, so we check for that.
5282                  */
5283                 sector_t here_new, here_old;
5284                 int old_disks;
5285                 int max_degraded = (mddev->level == 6 ? 2 : 1);
5286
5287                 if (mddev->new_level != mddev->level) {
5288                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
5289                                "required - aborting.\n",
5290                                mdname(mddev));
5291                         return -EINVAL;
5292                 }
5293                 old_disks = mddev->raid_disks - mddev->delta_disks;
5294                 /* reshape_position must be on a new-stripe boundary, and one
5295                  * further up in new geometry must map after here in old
5296                  * geometry.
5297                  */
5298                 here_new = mddev->reshape_position;
5299                 if (sector_div(here_new, mddev->new_chunk_sectors *
5300                                (mddev->raid_disks - max_degraded))) {
5301                         printk(KERN_ERR "md/raid:%s: reshape_position not "
5302                                "on a stripe boundary\n", mdname(mddev));
5303                         return -EINVAL;
5304                 }
5305                 reshape_offset = here_new * mddev->new_chunk_sectors;
5306                 /* here_new is the stripe we will write to */
5307                 here_old = mddev->reshape_position;
5308                 sector_div(here_old, mddev->chunk_sectors *
5309                            (old_disks-max_degraded));
5310                 /* here_old is the first stripe that we might need to read
5311                  * from */
5312                 if (mddev->delta_disks == 0) {
5313                         if ((here_new * mddev->new_chunk_sectors !=
5314                              here_old * mddev->chunk_sectors)) {
5315                                 printk(KERN_ERR "md/raid:%s: reshape position is"
5316                                        " confused - aborting\n", mdname(mddev));
5317                                 return -EINVAL;
5318                         }
5319                         /* We cannot be sure it is safe to start an in-place
5320                          * reshape.  It is only safe if user-space is monitoring
5321                          * and taking constant backups.
5322                          * mdadm always starts a situation like this in
5323                          * readonly mode so it can take control before
5324                          * allowing any writes.  So just check for that.
5325                          */
5326                         if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5327                             abs(min_offset_diff) >= mddev->new_chunk_sectors)
5328                                 /* not really in-place - so OK */;
5329                         else if (mddev->ro == 0) {
5330                                 printk(KERN_ERR "md/raid:%s: in-place reshape "
5331                                        "must be started in read-only mode "
5332                                        "- aborting\n",
5333                                        mdname(mddev));
5334                                 return -EINVAL;
5335                         }
5336                 } else if (mddev->reshape_backwards
5337                     ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
5338                        here_old * mddev->chunk_sectors)
5339                     : (here_new * mddev->new_chunk_sectors >=
5340                        here_old * mddev->chunk_sectors + (-min_offset_diff))) {
5341                         /* Reading from the same stripe as writing to - bad */
5342                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5343                                "auto-recovery - aborting.\n",
5344                                mdname(mddev));
5345                         return -EINVAL;
5346                 }
5347                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5348                        mdname(mddev));
5349                 /* OK, we should be able to continue; */
5350         } else {
5351                 BUG_ON(mddev->level != mddev->new_level);
5352                 BUG_ON(mddev->layout != mddev->new_layout);
5353                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5354                 BUG_ON(mddev->delta_disks != 0);
5355         }
5356
5357         if (mddev->private == NULL)
5358                 conf = setup_conf(mddev);
5359         else
5360                 conf = mddev->private;
5361
5362         if (IS_ERR(conf))
5363                 return PTR_ERR(conf);
5364
5365         conf->min_offset_diff = min_offset_diff;
5366         mddev->thread = conf->thread;
5367         conf->thread = NULL;
5368         mddev->private = conf;
5369
5370         for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5371              i++) {
5372                 rdev = conf->disks[i].rdev;
5373                 if (!rdev && conf->disks[i].replacement) {
5374                         /* The replacement is all we have yet */
5375                         rdev = conf->disks[i].replacement;
5376                         conf->disks[i].replacement = NULL;
5377                         clear_bit(Replacement, &rdev->flags);
5378                         conf->disks[i].rdev = rdev;
5379                 }
5380                 if (!rdev)
5381                         continue;
5382                 if (conf->disks[i].replacement &&
5383                     conf->reshape_progress != MaxSector) {
5384                         /* replacements and reshape simply do not mix. */
5385                         printk(KERN_ERR "md: cannot handle concurrent "
5386                                "replacement and reshape.\n");
5387                         goto abort;
5388                 }
5389                 if (test_bit(In_sync, &rdev->flags)) {
5390                         working_disks++;
5391                         continue;
5392                 }
5393                 /* This disc is not fully in-sync.  However if it
5394                  * just stored parity (beyond the recovery_offset),
5395                  * when we don't need to be concerned about the
5396                  * array being dirty.
5397                  * When reshape goes 'backwards', we never have
5398                  * partially completed devices, so we only need
5399                  * to worry about reshape going forwards.
5400                  */
5401                 /* Hack because v0.91 doesn't store recovery_offset properly. */
5402                 if (mddev->major_version == 0 &&
5403                     mddev->minor_version > 90)
5404                         rdev->recovery_offset = reshape_offset;
5405                         
5406                 if (rdev->recovery_offset < reshape_offset) {
5407                         /* We need to check old and new layout */
5408                         if (!only_parity(rdev->raid_disk,
5409                                          conf->algorithm,
5410                                          conf->raid_disks,
5411                                          conf->max_degraded))
5412                                 continue;
5413                 }
5414                 if (!only_parity(rdev->raid_disk,
5415                                  conf->prev_algo,
5416                                  conf->previous_raid_disks,
5417                                  conf->max_degraded))
5418                         continue;
5419                 dirty_parity_disks++;
5420         }
5421
5422         /*
5423          * 0 for a fully functional array, 1 or 2 for a degraded array.
5424          */
5425         mddev->degraded = calc_degraded(conf);
5426
5427         if (has_failed(conf)) {
5428                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
5429                         " (%d/%d failed)\n",
5430                         mdname(mddev), mddev->degraded, conf->raid_disks);
5431                 goto abort;
5432         }
5433
5434         /* device size must be a multiple of chunk size */
5435         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5436         mddev->resync_max_sectors = mddev->dev_sectors;
5437
5438         if (mddev->degraded > dirty_parity_disks &&
5439             mddev->recovery_cp != MaxSector) {
5440                 if (mddev->ok_start_degraded)
5441                         printk(KERN_WARNING
5442                                "md/raid:%s: starting dirty degraded array"
5443                                " - data corruption possible.\n",
5444                                mdname(mddev));
5445                 else {
5446                         printk(KERN_ERR
5447                                "md/raid:%s: cannot start dirty degraded array.\n",
5448                                mdname(mddev));
5449                         goto abort;
5450                 }
5451         }
5452
5453         if (mddev->degraded == 0)
5454                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5455                        " devices, algorithm %d\n", mdname(mddev), conf->level,
5456                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5457                        mddev->new_layout);
5458         else
5459                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5460                        " out of %d devices, algorithm %d\n",
5461                        mdname(mddev), conf->level,
5462                        mddev->raid_disks - mddev->degraded,
5463                        mddev->raid_disks, mddev->new_layout);
5464
5465         print_raid5_conf(conf);
5466
5467         if (conf->reshape_progress != MaxSector) {
5468                 conf->reshape_safe = conf->reshape_progress;
5469                 atomic_set(&conf->reshape_stripes, 0);
5470                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5471                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5472                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5473                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5474                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5475                                                         "reshape");
5476         }
5477
5478
5479         /* Ok, everything is just fine now */
5480         if (mddev->to_remove == &raid5_attrs_group)
5481                 mddev->to_remove = NULL;
5482         else if (mddev->kobj.sd &&
5483             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5484                 printk(KERN_WARNING
5485                        "raid5: failed to create sysfs attributes for %s\n",
5486                        mdname(mddev));
5487         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5488
5489         if (mddev->queue) {
5490                 int chunk_size;
5491                 bool discard_supported = true;
5492                 /* read-ahead size must cover two whole stripes, which
5493                  * is 2 * (datadisks) * chunksize where 'n' is the
5494                  * number of raid devices
5495                  */
5496                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5497                 int stripe = data_disks *
5498                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5499                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5500                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5501
5502                 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5503
5504                 mddev->queue->backing_dev_info.congested_data = mddev;
5505                 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5506
5507                 chunk_size = mddev->chunk_sectors << 9;
5508                 blk_queue_io_min(mddev->queue, chunk_size);
5509                 blk_queue_io_opt(mddev->queue, chunk_size *
5510                                  (conf->raid_disks - conf->max_degraded));
5511                 /*
5512                  * We can only discard a whole stripe. It doesn't make sense to
5513                  * discard data disk but write parity disk
5514                  */
5515                 stripe = stripe * PAGE_SIZE;
5516                 mddev->queue->limits.discard_alignment = stripe;
5517                 mddev->queue->limits.discard_granularity = stripe;
5518                 /*
5519                  * unaligned part of discard request will be ignored, so can't
5520                  * guarantee discard_zerors_data
5521                  */
5522                 mddev->queue->limits.discard_zeroes_data = 0;
5523
5524                 rdev_for_each(rdev, mddev) {
5525                         disk_stack_limits(mddev->gendisk, rdev->bdev,
5526                                           rdev->data_offset << 9);
5527                         disk_stack_limits(mddev->gendisk, rdev->bdev,
5528                                           rdev->new_data_offset << 9);
5529                         /*
5530                          * discard_zeroes_data is required, otherwise data
5531                          * could be lost. Consider a scenario: discard a stripe
5532                          * (the stripe could be inconsistent if
5533                          * discard_zeroes_data is 0); write one disk of the
5534                          * stripe (the stripe could be inconsistent again
5535                          * depending on which disks are used to calculate
5536                          * parity); the disk is broken; The stripe data of this
5537                          * disk is lost.
5538                          */
5539                         if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
5540                             !bdev_get_queue(rdev->bdev)->
5541                                                 limits.discard_zeroes_data)
5542                                 discard_supported = false;
5543                 }
5544
5545                 if (discard_supported &&
5546                    mddev->queue->limits.max_discard_sectors >= stripe &&
5547                    mddev->queue->limits.discard_granularity >= stripe)
5548                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
5549                                                 mddev->queue);
5550                 else
5551                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
5552                                                 mddev->queue);
5553         }
5554
5555         return 0;
5556 abort:
5557         md_unregister_thread(&mddev->thread);
5558         print_raid5_conf(conf);
5559         free_conf(conf);
5560         mddev->private = NULL;
5561         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5562         return -EIO;
5563 }
5564
5565 static int stop(struct mddev *mddev)
5566 {
5567         struct r5conf *conf = mddev->private;
5568
5569         md_unregister_thread(&mddev->thread);
5570         if (mddev->queue)
5571                 mddev->queue->backing_dev_info.congested_fn = NULL;
5572         free_conf(conf);
5573         mddev->private = NULL;
5574         mddev->to_remove = &raid5_attrs_group;
5575         return 0;
5576 }
5577
5578 static void status(struct seq_file *seq, struct mddev *mddev)
5579 {
5580         struct r5conf *conf = mddev->private;
5581         int i;
5582
5583         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5584                 mddev->chunk_sectors / 2, mddev->layout);
5585         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5586         for (i = 0; i < conf->raid_disks; i++)
5587                 seq_printf (seq, "%s",
5588                                conf->disks[i].rdev &&
5589                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5590         seq_printf (seq, "]");
5591 }
5592
5593 static void print_raid5_conf (struct r5conf *conf)
5594 {
5595         int i;
5596         struct disk_info *tmp;
5597
5598         printk(KERN_DEBUG "RAID conf printout:\n");
5599         if (!conf) {
5600                 printk("(conf==NULL)\n");
5601                 return;
5602         }
5603         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5604                conf->raid_disks,
5605                conf->raid_disks - conf->mddev->degraded);
5606
5607         for (i = 0; i < conf->raid_disks; i++) {
5608                 char b[BDEVNAME_SIZE];
5609                 tmp = conf->disks + i;
5610                 if (tmp->rdev)
5611                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5612                                i, !test_bit(Faulty, &tmp->rdev->flags),
5613                                bdevname(tmp->rdev->bdev, b));
5614         }
5615 }
5616
5617 static int raid5_spare_active(struct mddev *mddev)
5618 {
5619         int i;
5620         struct r5conf *conf = mddev->private;
5621         struct disk_info *tmp;
5622         int count = 0;
5623         unsigned long flags;
5624
5625         for (i = 0; i < conf->raid_disks; i++) {
5626                 tmp = conf->disks + i;
5627                 if (tmp->replacement
5628                     && tmp->replacement->recovery_offset == MaxSector
5629                     && !test_bit(Faulty, &tmp->replacement->flags)
5630                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
5631                         /* Replacement has just become active. */
5632                         if (!tmp->rdev
5633                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
5634                                 count++;
5635                         if (tmp->rdev) {
5636                                 /* Replaced device not technically faulty,
5637                                  * but we need to be sure it gets removed
5638                                  * and never re-added.
5639                                  */
5640                                 set_bit(Faulty, &tmp->rdev->flags);
5641                                 sysfs_notify_dirent_safe(
5642                                         tmp->rdev->sysfs_state);
5643                         }
5644                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
5645                 } else if (tmp->rdev
5646                     && tmp->rdev->recovery_offset == MaxSector
5647                     && !test_bit(Faulty, &tmp->rdev->flags)
5648                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5649                         count++;
5650                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5651                 }
5652         }
5653         spin_lock_irqsave(&conf->device_lock, flags);
5654         mddev->degraded = calc_degraded(conf);
5655         spin_unlock_irqrestore(&conf->device_lock, flags);
5656         print_raid5_conf(conf);
5657         return count;
5658 }
5659
5660 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
5661 {
5662         struct r5conf *conf = mddev->private;
5663         int err = 0;
5664         int number = rdev->raid_disk;
5665         struct md_rdev **rdevp;
5666         struct disk_info *p = conf->disks + number;
5667
5668         print_raid5_conf(conf);
5669         if (rdev == p->rdev)
5670                 rdevp = &p->rdev;
5671         else if (rdev == p->replacement)
5672                 rdevp = &p->replacement;
5673         else
5674                 return 0;
5675
5676         if (number >= conf->raid_disks &&
5677             conf->reshape_progress == MaxSector)
5678                 clear_bit(In_sync, &rdev->flags);
5679
5680         if (test_bit(In_sync, &rdev->flags) ||
5681             atomic_read(&rdev->nr_pending)) {
5682                 err = -EBUSY;
5683                 goto abort;
5684         }
5685         /* Only remove non-faulty devices if recovery
5686          * isn't possible.
5687          */
5688         if (!test_bit(Faulty, &rdev->flags) &&
5689             mddev->recovery_disabled != conf->recovery_disabled &&
5690             !has_failed(conf) &&
5691             (!p->replacement || p->replacement == rdev) &&
5692             number < conf->raid_disks) {
5693                 err = -EBUSY;
5694                 goto abort;
5695         }
5696         *rdevp = NULL;
5697         synchronize_rcu();
5698         if (atomic_read(&rdev->nr_pending)) {
5699                 /* lost the race, try later */
5700                 err = -EBUSY;
5701                 *rdevp = rdev;
5702         } else if (p->replacement) {
5703                 /* We must have just cleared 'rdev' */
5704                 p->rdev = p->replacement;
5705                 clear_bit(Replacement, &p->replacement->flags);
5706                 smp_mb(); /* Make sure other CPUs may see both as identical
5707                            * but will never see neither - if they are careful
5708                            */
5709                 p->replacement = NULL;
5710                 clear_bit(WantReplacement, &rdev->flags);
5711         } else
5712                 /* We might have just removed the Replacement as faulty-
5713                  * clear the bit just in case
5714                  */
5715                 clear_bit(WantReplacement, &rdev->flags);
5716 abort:
5717
5718         print_raid5_conf(conf);
5719         return err;
5720 }
5721
5722 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
5723 {
5724         struct r5conf *conf = mddev->private;
5725         int err = -EEXIST;
5726         int disk;
5727         struct disk_info *p;
5728         int first = 0;
5729         int last = conf->raid_disks - 1;
5730
5731         if (mddev->recovery_disabled == conf->recovery_disabled)
5732                 return -EBUSY;
5733
5734         if (rdev->saved_raid_disk < 0 && has_failed(conf))
5735                 /* no point adding a device */
5736                 return -EINVAL;
5737
5738         if (rdev->raid_disk >= 0)
5739                 first = last = rdev->raid_disk;
5740
5741         /*
5742          * find the disk ... but prefer rdev->saved_raid_disk
5743          * if possible.
5744          */
5745         if (rdev->saved_raid_disk >= 0 &&
5746             rdev->saved_raid_disk >= first &&
5747             conf->disks[rdev->saved_raid_disk].rdev == NULL)
5748                 first = rdev->saved_raid_disk;
5749
5750         for (disk = first; disk <= last; disk++) {
5751                 p = conf->disks + disk;
5752                 if (p->rdev == NULL) {
5753                         clear_bit(In_sync, &rdev->flags);
5754                         rdev->raid_disk = disk;
5755                         err = 0;
5756                         if (rdev->saved_raid_disk != disk)
5757                                 conf->fullsync = 1;
5758                         rcu_assign_pointer(p->rdev, rdev);
5759                         goto out;
5760                 }
5761         }
5762         for (disk = first; disk <= last; disk++) {
5763                 p = conf->disks + disk;
5764                 if (test_bit(WantReplacement, &p->rdev->flags) &&
5765                     p->replacement == NULL) {
5766                         clear_bit(In_sync, &rdev->flags);
5767                         set_bit(Replacement, &rdev->flags);
5768                         rdev->raid_disk = disk;
5769                         err = 0;
5770                         conf->fullsync = 1;
5771                         rcu_assign_pointer(p->replacement, rdev);
5772                         break;
5773                 }
5774         }
5775 out:
5776         print_raid5_conf(conf);
5777         return err;
5778 }
5779
5780 static int raid5_resize(struct mddev *mddev, sector_t sectors)
5781 {
5782         /* no resync is happening, and there is enough space
5783          * on all devices, so we can resize.
5784          * We need to make sure resync covers any new space.
5785          * If the array is shrinking we should possibly wait until
5786          * any io in the removed space completes, but it hardly seems
5787          * worth it.
5788          */
5789         sector_t newsize;
5790         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5791         newsize = raid5_size(mddev, sectors, mddev->raid_disks);
5792         if (mddev->external_size &&
5793             mddev->array_sectors > newsize)
5794                 return -EINVAL;
5795         if (mddev->bitmap) {
5796                 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
5797                 if (ret)
5798                         return ret;
5799         }
5800         md_set_array_sectors(mddev, newsize);
5801         set_capacity(mddev->gendisk, mddev->array_sectors);
5802         revalidate_disk(mddev->gendisk);
5803         if (sectors > mddev->dev_sectors &&
5804             mddev->recovery_cp > mddev->dev_sectors) {
5805                 mddev->recovery_cp = mddev->dev_sectors;
5806                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5807         }
5808         mddev->dev_sectors = sectors;
5809         mddev->resync_max_sectors = sectors;
5810         return 0;
5811 }
5812
5813 static int check_stripe_cache(struct mddev *mddev)
5814 {
5815         /* Can only proceed if there are plenty of stripe_heads.
5816          * We need a minimum of one full stripe,, and for sensible progress
5817          * it is best to have about 4 times that.
5818          * If we require 4 times, then the default 256 4K stripe_heads will
5819          * allow for chunk sizes up to 256K, which is probably OK.
5820          * If the chunk size is greater, user-space should request more
5821          * stripe_heads first.
5822          */
5823         struct r5conf *conf = mddev->private;
5824         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5825             > conf->max_nr_stripes ||
5826             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5827             > conf->max_nr_stripes) {
5828                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
5829                        mdname(mddev),
5830                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5831                         / STRIPE_SIZE)*4);
5832                 return 0;
5833         }
5834         return 1;
5835 }
5836
5837 static int check_reshape(struct mddev *mddev)
5838 {
5839         struct r5conf *conf = mddev->private;
5840
5841         if (mddev->delta_disks == 0 &&
5842             mddev->new_layout == mddev->layout &&
5843             mddev->new_chunk_sectors == mddev->chunk_sectors)
5844                 return 0; /* nothing to do */
5845         if (has_failed(conf))
5846                 return -EINVAL;
5847         if (mddev->delta_disks < 0) {
5848                 /* We might be able to shrink, but the devices must
5849                  * be made bigger first.
5850                  * For raid6, 4 is the minimum size.
5851                  * Otherwise 2 is the minimum
5852                  */
5853                 int min = 2;
5854                 if (mddev->level == 6)
5855                         min = 4;
5856                 if (mddev->raid_disks + mddev->delta_disks < min)
5857                         return -EINVAL;
5858         }
5859
5860         if (!check_stripe_cache(mddev))
5861                 return -ENOSPC;
5862
5863         return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5864 }
5865
5866 static int raid5_start_reshape(struct mddev *mddev)
5867 {
5868         struct r5conf *conf = mddev->private;
5869         struct md_rdev *rdev;
5870         int spares = 0;
5871         unsigned long flags;
5872
5873         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5874                 return -EBUSY;
5875
5876         if (!check_stripe_cache(mddev))
5877                 return -ENOSPC;
5878
5879         if (has_failed(conf))
5880                 return -EINVAL;
5881
5882         rdev_for_each(rdev, mddev) {
5883                 if (!test_bit(In_sync, &rdev->flags)
5884                     && !test_bit(Faulty, &rdev->flags))
5885                         spares++;
5886         }
5887
5888         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5889                 /* Not enough devices even to make a degraded array
5890                  * of that size
5891                  */
5892                 return -EINVAL;
5893
5894         /* Refuse to reduce size of the array.  Any reductions in
5895          * array size must be through explicit setting of array_size
5896          * attribute.
5897          */
5898         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5899             < mddev->array_sectors) {
5900                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5901                        "before number of disks\n", mdname(mddev));
5902                 return -EINVAL;
5903         }
5904
5905         atomic_set(&conf->reshape_stripes, 0);
5906         spin_lock_irq(&conf->device_lock);
5907         conf->previous_raid_disks = conf->raid_disks;
5908         conf->raid_disks += mddev->delta_disks;
5909         conf->prev_chunk_sectors = conf->chunk_sectors;
5910         conf->chunk_sectors = mddev->new_chunk_sectors;
5911         conf->prev_algo = conf->algorithm;
5912         conf->algorithm = mddev->new_layout;
5913         conf->generation++;
5914         /* Code that selects data_offset needs to see the generation update
5915          * if reshape_progress has been set - so a memory barrier needed.
5916          */
5917         smp_mb();
5918         if (mddev->reshape_backwards)
5919                 conf->reshape_progress = raid5_size(mddev, 0, 0);
5920         else
5921                 conf->reshape_progress = 0;
5922         conf->reshape_safe = conf->reshape_progress;
5923         spin_unlock_irq(&conf->device_lock);
5924
5925         /* Add some new drives, as many as will fit.
5926          * We know there are enough to make the newly sized array work.
5927          * Don't add devices if we are reducing the number of
5928          * devices in the array.  This is because it is not possible
5929          * to correctly record the "partially reconstructed" state of
5930          * such devices during the reshape and confusion could result.
5931          */
5932         if (mddev->delta_disks >= 0) {
5933                 rdev_for_each(rdev, mddev)
5934                         if (rdev->raid_disk < 0 &&
5935                             !test_bit(Faulty, &rdev->flags)) {
5936                                 if (raid5_add_disk(mddev, rdev) == 0) {
5937                                         if (rdev->raid_disk
5938                                             >= conf->previous_raid_disks)
5939                                                 set_bit(In_sync, &rdev->flags);
5940                                         else
5941                                                 rdev->recovery_offset = 0;
5942
5943                                         if (sysfs_link_rdev(mddev, rdev))
5944                                                 /* Failure here is OK */;
5945                                 }
5946                         } else if (rdev->raid_disk >= conf->previous_raid_disks
5947                                    && !test_bit(Faulty, &rdev->flags)) {
5948                                 /* This is a spare that was manually added */
5949                                 set_bit(In_sync, &rdev->flags);
5950                         }
5951
5952                 /* When a reshape changes the number of devices,
5953                  * ->degraded is measured against the larger of the
5954                  * pre and post number of devices.
5955                  */
5956                 spin_lock_irqsave(&conf->device_lock, flags);
5957                 mddev->degraded = calc_degraded(conf);
5958                 spin_unlock_irqrestore(&conf->device_lock, flags);
5959         }
5960         mddev->raid_disks = conf->raid_disks;
5961         mddev->reshape_position = conf->reshape_progress;
5962         set_bit(MD_CHANGE_DEVS, &mddev->flags);
5963
5964         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5965         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5966         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5967         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5968         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5969                                                 "reshape");
5970         if (!mddev->sync_thread) {
5971                 mddev->recovery = 0;
5972                 spin_lock_irq(&conf->device_lock);
5973                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5974                 rdev_for_each(rdev, mddev)
5975                         rdev->new_data_offset = rdev->data_offset;
5976                 smp_wmb();
5977                 conf->reshape_progress = MaxSector;
5978                 mddev->reshape_position = MaxSector;
5979                 spin_unlock_irq(&conf->device_lock);
5980                 return -EAGAIN;
5981         }
5982         conf->reshape_checkpoint = jiffies;
5983         md_wakeup_thread(mddev->sync_thread);
5984         md_new_event(mddev);
5985         return 0;
5986 }
5987
5988 /* This is called from the reshape thread and should make any
5989  * changes needed in 'conf'
5990  */
5991 static void end_reshape(struct r5conf *conf)
5992 {
5993
5994         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5995                 struct md_rdev *rdev;
5996
5997                 spin_lock_irq(&conf->device_lock);
5998                 conf->previous_raid_disks = conf->raid_disks;
5999                 rdev_for_each(rdev, conf->mddev)
6000                         rdev->data_offset = rdev->new_data_offset;
6001                 smp_wmb();
6002                 conf->reshape_progress = MaxSector;
6003                 spin_unlock_irq(&conf->device_lock);
6004                 wake_up(&conf->wait_for_overlap);
6005
6006                 /* read-ahead size must cover two whole stripes, which is
6007                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6008                  */
6009                 if (conf->mddev->queue) {
6010                         int data_disks = conf->raid_disks - conf->max_degraded;
6011                         int stripe = data_disks * ((conf->chunk_sectors << 9)
6012                                                    / PAGE_SIZE);
6013                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6014                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6015                 }
6016         }
6017 }
6018
6019 /* This is called from the raid5d thread with mddev_lock held.
6020  * It makes config changes to the device.
6021  */
6022 static void raid5_finish_reshape(struct mddev *mddev)
6023 {
6024         struct r5conf *conf = mddev->private;
6025
6026         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6027
6028                 if (mddev->delta_disks > 0) {
6029                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6030                         set_capacity(mddev->gendisk, mddev->array_sectors);
6031                         revalidate_disk(mddev->gendisk);
6032                 } else {
6033                         int d;
6034                         spin_lock_irq(&conf->device_lock);
6035                         mddev->degraded = calc_degraded(conf);
6036                         spin_unlock_irq(&conf->device_lock);
6037                         for (d = conf->raid_disks ;
6038                              d < conf->raid_disks - mddev->delta_disks;
6039                              d++) {
6040                                 struct md_rdev *rdev = conf->disks[d].rdev;
6041                                 if (rdev)
6042                                         clear_bit(In_sync, &rdev->flags);
6043                                 rdev = conf->disks[d].replacement;
6044                                 if (rdev)
6045                                         clear_bit(In_sync, &rdev->flags);
6046                         }
6047                 }
6048                 mddev->layout = conf->algorithm;
6049                 mddev->chunk_sectors = conf->chunk_sectors;
6050                 mddev->reshape_position = MaxSector;
6051                 mddev->delta_disks = 0;
6052                 mddev->reshape_backwards = 0;
6053         }
6054 }
6055
6056 static void raid5_quiesce(struct mddev *mddev, int state)
6057 {
6058         struct r5conf *conf = mddev->private;
6059
6060         switch(state) {
6061         case 2: /* resume for a suspend */
6062                 wake_up(&conf->wait_for_overlap);
6063                 break;
6064
6065         case 1: /* stop all writes */
6066                 spin_lock_irq(&conf->device_lock);
6067                 /* '2' tells resync/reshape to pause so that all
6068                  * active stripes can drain
6069                  */
6070                 conf->quiesce = 2;
6071                 wait_event_lock_irq(conf->wait_for_stripe,
6072                                     atomic_read(&conf->active_stripes) == 0 &&
6073                                     atomic_read(&conf->active_aligned_reads) == 0,
6074                                     conf->device_lock, /* nothing */);
6075                 conf->quiesce = 1;
6076                 spin_unlock_irq(&conf->device_lock);
6077                 /* allow reshape to continue */
6078                 wake_up(&conf->wait_for_overlap);
6079                 break;
6080
6081         case 0: /* re-enable writes */
6082                 spin_lock_irq(&conf->device_lock);
6083                 conf->quiesce = 0;
6084                 wake_up(&conf->wait_for_stripe);
6085                 wake_up(&conf->wait_for_overlap);
6086                 spin_unlock_irq(&conf->device_lock);
6087                 break;
6088         }
6089 }
6090
6091
6092 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
6093 {
6094         struct r0conf *raid0_conf = mddev->private;
6095         sector_t sectors;
6096
6097         /* for raid0 takeover only one zone is supported */
6098         if (raid0_conf->nr_strip_zones > 1) {
6099                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6100                        mdname(mddev));
6101                 return ERR_PTR(-EINVAL);
6102         }
6103
6104         sectors = raid0_conf->strip_zone[0].zone_end;
6105         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
6106         mddev->dev_sectors = sectors;
6107         mddev->new_level = level;
6108         mddev->new_layout = ALGORITHM_PARITY_N;
6109         mddev->new_chunk_sectors = mddev->chunk_sectors;
6110         mddev->raid_disks += 1;
6111         mddev->delta_disks = 1;
6112         /* make sure it will be not marked as dirty */
6113         mddev->recovery_cp = MaxSector;
6114
6115         return setup_conf(mddev);
6116 }
6117
6118
6119 static void *raid5_takeover_raid1(struct mddev *mddev)
6120 {
6121         int chunksect;
6122
6123         if (mddev->raid_disks != 2 ||
6124             mddev->degraded > 1)
6125                 return ERR_PTR(-EINVAL);
6126
6127         /* Should check if there are write-behind devices? */
6128
6129         chunksect = 64*2; /* 64K by default */
6130
6131         /* The array must be an exact multiple of chunksize */
6132         while (chunksect && (mddev->array_sectors & (chunksect-1)))
6133                 chunksect >>= 1;
6134
6135         if ((chunksect<<9) < STRIPE_SIZE)
6136                 /* array size does not allow a suitable chunk size */
6137                 return ERR_PTR(-EINVAL);
6138
6139         mddev->new_level = 5;
6140         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
6141         mddev->new_chunk_sectors = chunksect;
6142
6143         return setup_conf(mddev);
6144 }
6145
6146 static void *raid5_takeover_raid6(struct mddev *mddev)
6147 {
6148         int new_layout;
6149
6150         switch (mddev->layout) {
6151         case ALGORITHM_LEFT_ASYMMETRIC_6:
6152                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6153                 break;
6154         case ALGORITHM_RIGHT_ASYMMETRIC_6:
6155                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6156                 break;
6157         case ALGORITHM_LEFT_SYMMETRIC_6:
6158                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
6159                 break;
6160         case ALGORITHM_RIGHT_SYMMETRIC_6:
6161                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6162                 break;
6163         case ALGORITHM_PARITY_0_6:
6164                 new_layout = ALGORITHM_PARITY_0;
6165                 break;
6166         case ALGORITHM_PARITY_N:
6167                 new_layout = ALGORITHM_PARITY_N;
6168                 break;
6169         default:
6170                 return ERR_PTR(-EINVAL);
6171         }
6172         mddev->new_level = 5;
6173         mddev->new_layout = new_layout;
6174         mddev->delta_disks = -1;
6175         mddev->raid_disks -= 1;
6176         return setup_conf(mddev);
6177 }
6178
6179
6180 static int raid5_check_reshape(struct mddev *mddev)
6181 {
6182         /* For a 2-drive array, the layout and chunk size can be changed
6183          * immediately as not restriping is needed.
6184          * For larger arrays we record the new value - after validation
6185          * to be used by a reshape pass.
6186          */
6187         struct r5conf *conf = mddev->private;
6188         int new_chunk = mddev->new_chunk_sectors;
6189
6190         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
6191                 return -EINVAL;
6192         if (new_chunk > 0) {
6193                 if (!is_power_of_2(new_chunk))
6194                         return -EINVAL;
6195                 if (new_chunk < (PAGE_SIZE>>9))
6196                         return -EINVAL;
6197                 if (mddev->array_sectors & (new_chunk-1))
6198                         /* not factor of array size */
6199                         return -EINVAL;
6200         }
6201
6202         /* They look valid */
6203
6204         if (mddev->raid_disks == 2) {
6205                 /* can make the change immediately */
6206                 if (mddev->new_layout >= 0) {
6207                         conf->algorithm = mddev->new_layout;
6208                         mddev->layout = mddev->new_layout;
6209                 }
6210                 if (new_chunk > 0) {
6211                         conf->chunk_sectors = new_chunk ;
6212                         mddev->chunk_sectors = new_chunk;
6213                 }
6214                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6215                 md_wakeup_thread(mddev->thread);
6216         }
6217         return check_reshape(mddev);
6218 }
6219
6220 static int raid6_check_reshape(struct mddev *mddev)
6221 {
6222         int new_chunk = mddev->new_chunk_sectors;
6223
6224         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
6225                 return -EINVAL;
6226         if (new_chunk > 0) {
6227                 if (!is_power_of_2(new_chunk))
6228                         return -EINVAL;
6229                 if (new_chunk < (PAGE_SIZE >> 9))
6230                         return -EINVAL;
6231                 if (mddev->array_sectors & (new_chunk-1))
6232                         /* not factor of array size */
6233                         return -EINVAL;
6234         }
6235
6236         /* They look valid */
6237         return check_reshape(mddev);
6238 }
6239
6240 static void *raid5_takeover(struct mddev *mddev)
6241 {
6242         /* raid5 can take over:
6243          *  raid0 - if there is only one strip zone - make it a raid4 layout
6244          *  raid1 - if there are two drives.  We need to know the chunk size
6245          *  raid4 - trivial - just use a raid4 layout.
6246          *  raid6 - Providing it is a *_6 layout
6247          */
6248         if (mddev->level == 0)
6249                 return raid45_takeover_raid0(mddev, 5);
6250         if (mddev->level == 1)
6251                 return raid5_takeover_raid1(mddev);
6252         if (mddev->level == 4) {
6253                 mddev->new_layout = ALGORITHM_PARITY_N;
6254                 mddev->new_level = 5;
6255                 return setup_conf(mddev);
6256         }
6257         if (mddev->level == 6)
6258                 return raid5_takeover_raid6(mddev);
6259
6260         return ERR_PTR(-EINVAL);
6261 }
6262
6263 static void *raid4_takeover(struct mddev *mddev)
6264 {
6265         /* raid4 can take over:
6266          *  raid0 - if there is only one strip zone
6267          *  raid5 - if layout is right
6268          */
6269         if (mddev->level == 0)
6270                 return raid45_takeover_raid0(mddev, 4);
6271         if (mddev->level == 5 &&
6272             mddev->layout == ALGORITHM_PARITY_N) {
6273                 mddev->new_layout = 0;
6274                 mddev->new_level = 4;
6275                 return setup_conf(mddev);
6276         }
6277         return ERR_PTR(-EINVAL);
6278 }
6279
6280 static struct md_personality raid5_personality;
6281
6282 static void *raid6_takeover(struct mddev *mddev)
6283 {
6284         /* Currently can only take over a raid5.  We map the
6285          * personality to an equivalent raid6 personality
6286          * with the Q block at the end.
6287          */
6288         int new_layout;
6289
6290         if (mddev->pers != &raid5_personality)
6291                 return ERR_PTR(-EINVAL);
6292         if (mddev->degraded > 1)
6293                 return ERR_PTR(-EINVAL);
6294         if (mddev->raid_disks > 253)
6295                 return ERR_PTR(-EINVAL);
6296         if (mddev->raid_disks < 3)
6297                 return ERR_PTR(-EINVAL);
6298
6299         switch (mddev->layout) {
6300         case ALGORITHM_LEFT_ASYMMETRIC:
6301                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
6302                 break;
6303         case ALGORITHM_RIGHT_ASYMMETRIC:
6304                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
6305                 break;
6306         case ALGORITHM_LEFT_SYMMETRIC:
6307                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
6308                 break;
6309         case ALGORITHM_RIGHT_SYMMETRIC:
6310                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
6311                 break;
6312         case ALGORITHM_PARITY_0:
6313                 new_layout = ALGORITHM_PARITY_0_6;
6314                 break;
6315         case ALGORITHM_PARITY_N:
6316                 new_layout = ALGORITHM_PARITY_N;
6317                 break;
6318         default:
6319                 return ERR_PTR(-EINVAL);
6320         }
6321         mddev->new_level = 6;
6322         mddev->new_layout = new_layout;
6323         mddev->delta_disks = 1;
6324         mddev->raid_disks += 1;
6325         return setup_conf(mddev);
6326 }
6327
6328
6329 static struct md_personality raid6_personality =
6330 {
6331         .name           = "raid6",
6332         .level          = 6,
6333         .owner          = THIS_MODULE,
6334         .make_request   = make_request,
6335         .run            = run,
6336         .stop           = stop,
6337         .status         = status,
6338         .error_handler  = error,
6339         .hot_add_disk   = raid5_add_disk,
6340         .hot_remove_disk= raid5_remove_disk,
6341         .spare_active   = raid5_spare_active,
6342         .sync_request   = sync_request,
6343         .resize         = raid5_resize,
6344         .size           = raid5_size,
6345         .check_reshape  = raid6_check_reshape,
6346         .start_reshape  = raid5_start_reshape,
6347         .finish_reshape = raid5_finish_reshape,
6348         .quiesce        = raid5_quiesce,
6349         .takeover       = raid6_takeover,
6350 };
6351 static struct md_personality raid5_personality =
6352 {
6353         .name           = "raid5",
6354         .level          = 5,
6355         .owner          = THIS_MODULE,
6356         .make_request   = make_request,
6357         .run            = run,
6358         .stop           = stop,
6359         .status         = status,
6360         .error_handler  = error,
6361         .hot_add_disk   = raid5_add_disk,
6362         .hot_remove_disk= raid5_remove_disk,
6363         .spare_active   = raid5_spare_active,
6364         .sync_request   = sync_request,
6365         .resize         = raid5_resize,
6366         .size           = raid5_size,
6367         .check_reshape  = raid5_check_reshape,
6368         .start_reshape  = raid5_start_reshape,
6369         .finish_reshape = raid5_finish_reshape,
6370         .quiesce        = raid5_quiesce,
6371         .takeover       = raid5_takeover,
6372 };
6373
6374 static struct md_personality raid4_personality =
6375 {
6376         .name           = "raid4",
6377         .level          = 4,
6378         .owner          = THIS_MODULE,
6379         .make_request   = make_request,
6380         .run            = run,
6381         .stop           = stop,
6382         .status         = status,
6383         .error_handler  = error,
6384         .hot_add_disk   = raid5_add_disk,
6385         .hot_remove_disk= raid5_remove_disk,
6386         .spare_active   = raid5_spare_active,
6387         .sync_request   = sync_request,
6388         .resize         = raid5_resize,
6389         .size           = raid5_size,
6390         .check_reshape  = raid5_check_reshape,
6391         .start_reshape  = raid5_start_reshape,
6392         .finish_reshape = raid5_finish_reshape,
6393         .quiesce        = raid5_quiesce,
6394         .takeover       = raid4_takeover,
6395 };
6396
6397 static int __init raid5_init(void)
6398 {
6399         register_md_personality(&raid6_personality);
6400         register_md_personality(&raid5_personality);
6401         register_md_personality(&raid4_personality);
6402         return 0;
6403 }
6404
6405 static void raid5_exit(void)
6406 {
6407         unregister_md_personality(&raid6_personality);
6408         unregister_md_personality(&raid5_personality);
6409         unregister_md_personality(&raid4_personality);
6410 }
6411
6412 module_init(raid5_init);
6413 module_exit(raid5_exit);
6414 MODULE_LICENSE("GPL");
6415 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6416 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6417 MODULE_ALIAS("md-raid5");
6418 MODULE_ALIAS("md-raid4");
6419 MODULE_ALIAS("md-level-5");
6420 MODULE_ALIAS("md-level-4");
6421 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6422 MODULE_ALIAS("md-raid6");
6423 MODULE_ALIAS("md-level-6");
6424
6425 /* This used to be two separate modules, they were: */
6426 MODULE_ALIAS("raid5");
6427 MODULE_ALIAS("raid6");