415cac6d89bd71905fedb615c13329effac92690
[pandora-kernel.git] / drivers / md / raid5.c
1 /*
2  * raid5.c : Multiple Devices driver for Linux
3  *         Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4  *         Copyright (C) 1999, 2000 Ingo Molnar
5  *         Copyright (C) 2002, 2003 H. Peter Anvin
6  *
7  * RAID-4/5/6 management functions.
8  * Thanks to Penguin Computing for making the RAID-6 development possible
9  * by donating a test server!
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20
21 /*
22  * BITMAP UNPLUGGING:
23  *
24  * The sequencing for updating the bitmap reliably is a little
25  * subtle (and I got it wrong the first time) so it deserves some
26  * explanation.
27  *
28  * We group bitmap updates into batches.  Each batch has a number.
29  * We may write out several batches at once, but that isn't very important.
30  * conf->seq_write is the number of the last batch successfully written.
31  * conf->seq_flush is the number of the last batch that was closed to
32  *    new additions.
33  * When we discover that we will need to write to any block in a stripe
34  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35  * the number of the batch it will be in. This is seq_flush+1.
36  * When we are ready to do a write, if that batch hasn't been written yet,
37  *   we plug the array and queue the stripe for later.
38  * When an unplug happens, we increment bm_flush, thus closing the current
39  *   batch.
40  * When we notice that bm_flush > bm_write, we write out all pending updates
41  * to the bitmap, and advance bm_write to where bm_flush was.
42  * This may occasionally write a bit out twice, but is sure never to
43  * miss any bits.
44  */
45
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/module.h>
51 #include <linux/async.h>
52 #include <linux/seq_file.h>
53 #include <linux/cpu.h>
54 #include <linux/slab.h>
55 #include <linux/ratelimit.h>
56 #include <linux/nodemask.h>
57 #include <linux/flex_array.h>
58 #include <trace/events/block.h>
59
60 #include "md.h"
61 #include "raid5.h"
62 #include "raid0.h"
63 #include "bitmap.h"
64
65 #define cpu_to_group(cpu) cpu_to_node(cpu)
66 #define ANY_GROUP NUMA_NO_NODE
67
68 static bool devices_handle_discard_safely = false;
69 module_param(devices_handle_discard_safely, bool, 0644);
70 MODULE_PARM_DESC(devices_handle_discard_safely,
71                  "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
72 static struct workqueue_struct *raid5_wq;
73 /*
74  * Stripe cache
75  */
76
77 #define NR_STRIPES              256
78 #define STRIPE_SIZE             PAGE_SIZE
79 #define STRIPE_SHIFT            (PAGE_SHIFT - 9)
80 #define STRIPE_SECTORS          (STRIPE_SIZE>>9)
81 #define IO_THRESHOLD            1
82 #define BYPASS_THRESHOLD        1
83 #define NR_HASH                 (PAGE_SIZE / sizeof(struct hlist_head))
84 #define HASH_MASK               (NR_HASH - 1)
85 #define MAX_STRIPE_BATCH        8
86
87 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
88 {
89         int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
90         return &conf->stripe_hashtbl[hash];
91 }
92
93 static inline int stripe_hash_locks_hash(sector_t sect)
94 {
95         return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
96 }
97
98 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
99 {
100         spin_lock_irq(conf->hash_locks + hash);
101         spin_lock(&conf->device_lock);
102 }
103
104 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
105 {
106         spin_unlock(&conf->device_lock);
107         spin_unlock_irq(conf->hash_locks + hash);
108 }
109
110 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
111 {
112         int i;
113         local_irq_disable();
114         spin_lock(conf->hash_locks);
115         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
116                 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
117         spin_lock(&conf->device_lock);
118 }
119
120 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
121 {
122         int i;
123         spin_unlock(&conf->device_lock);
124         for (i = NR_STRIPE_HASH_LOCKS; i; i--)
125                 spin_unlock(conf->hash_locks + i - 1);
126         local_irq_enable();
127 }
128
129 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
130  * order without overlap.  There may be several bio's per stripe+device, and
131  * a bio could span several devices.
132  * When walking this list for a particular stripe+device, we must never proceed
133  * beyond a bio that extends past this device, as the next bio might no longer
134  * be valid.
135  * This function is used to determine the 'next' bio in the list, given the sector
136  * of the current stripe+device
137  */
138 static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
139 {
140         int sectors = bio_sectors(bio);
141         if (bio->bi_iter.bi_sector + sectors < sector + STRIPE_SECTORS)
142                 return bio->bi_next;
143         else
144                 return NULL;
145 }
146
147 /*
148  * We maintain a biased count of active stripes in the bottom 16 bits of
149  * bi_phys_segments, and a count of processed stripes in the upper 16 bits
150  */
151 static inline int raid5_bi_processed_stripes(struct bio *bio)
152 {
153         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
154         return (atomic_read(segments) >> 16) & 0xffff;
155 }
156
157 static inline int raid5_dec_bi_active_stripes(struct bio *bio)
158 {
159         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
160         return atomic_sub_return(1, segments) & 0xffff;
161 }
162
163 static inline void raid5_inc_bi_active_stripes(struct bio *bio)
164 {
165         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
166         atomic_inc(segments);
167 }
168
169 static inline void raid5_set_bi_processed_stripes(struct bio *bio,
170         unsigned int cnt)
171 {
172         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
173         int old, new;
174
175         do {
176                 old = atomic_read(segments);
177                 new = (old & 0xffff) | (cnt << 16);
178         } while (atomic_cmpxchg(segments, old, new) != old);
179 }
180
181 static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
182 {
183         atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
184         atomic_set(segments, cnt);
185 }
186
187 /* Find first data disk in a raid6 stripe */
188 static inline int raid6_d0(struct stripe_head *sh)
189 {
190         if (sh->ddf_layout)
191                 /* ddf always start from first device */
192                 return 0;
193         /* md starts just after Q block */
194         if (sh->qd_idx == sh->disks - 1)
195                 return 0;
196         else
197                 return sh->qd_idx + 1;
198 }
199 static inline int raid6_next_disk(int disk, int raid_disks)
200 {
201         disk++;
202         return (disk < raid_disks) ? disk : 0;
203 }
204
205 /* When walking through the disks in a raid5, starting at raid6_d0,
206  * We need to map each disk to a 'slot', where the data disks are slot
207  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
208  * is raid_disks-1.  This help does that mapping.
209  */
210 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
211                              int *count, int syndrome_disks)
212 {
213         int slot = *count;
214
215         if (sh->ddf_layout)
216                 (*count)++;
217         if (idx == sh->pd_idx)
218                 return syndrome_disks;
219         if (idx == sh->qd_idx)
220                 return syndrome_disks + 1;
221         if (!sh->ddf_layout)
222                 (*count)++;
223         return slot;
224 }
225
226 static void return_io(struct bio *return_bi)
227 {
228         struct bio *bi = return_bi;
229         while (bi) {
230
231                 return_bi = bi->bi_next;
232                 bi->bi_next = NULL;
233                 bi->bi_iter.bi_size = 0;
234                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
235                                          bi, 0);
236                 bio_endio(bi, 0);
237                 bi = return_bi;
238         }
239 }
240
241 static void print_raid5_conf (struct r5conf *conf);
242
243 static int stripe_operations_active(struct stripe_head *sh)
244 {
245         return sh->check_state || sh->reconstruct_state ||
246                test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
247                test_bit(STRIPE_COMPUTE_RUN, &sh->state);
248 }
249
250 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
251 {
252         struct r5conf *conf = sh->raid_conf;
253         struct r5worker_group *group;
254         int thread_cnt;
255         int i, cpu = sh->cpu;
256
257         if (!cpu_online(cpu)) {
258                 cpu = cpumask_any(cpu_online_mask);
259                 sh->cpu = cpu;
260         }
261
262         if (list_empty(&sh->lru)) {
263                 struct r5worker_group *group;
264                 group = conf->worker_groups + cpu_to_group(cpu);
265                 list_add_tail(&sh->lru, &group->handle_list);
266                 group->stripes_cnt++;
267                 sh->group = group;
268         }
269
270         if (conf->worker_cnt_per_group == 0) {
271                 md_wakeup_thread(conf->mddev->thread);
272                 return;
273         }
274
275         group = conf->worker_groups + cpu_to_group(sh->cpu);
276
277         group->workers[0].working = true;
278         /* at least one worker should run to avoid race */
279         queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
280
281         thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
282         /* wakeup more workers */
283         for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
284                 if (group->workers[i].working == false) {
285                         group->workers[i].working = true;
286                         queue_work_on(sh->cpu, raid5_wq,
287                                       &group->workers[i].work);
288                         thread_cnt--;
289                 }
290         }
291 }
292
293 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
294                               struct list_head *temp_inactive_list)
295 {
296         BUG_ON(!list_empty(&sh->lru));
297         BUG_ON(atomic_read(&conf->active_stripes)==0);
298         if (test_bit(STRIPE_HANDLE, &sh->state)) {
299                 if (test_bit(STRIPE_DELAYED, &sh->state) &&
300                     !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
301                         list_add_tail(&sh->lru, &conf->delayed_list);
302                 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
303                            sh->bm_seq - conf->seq_write > 0)
304                         list_add_tail(&sh->lru, &conf->bitmap_list);
305                 else {
306                         clear_bit(STRIPE_DELAYED, &sh->state);
307                         clear_bit(STRIPE_BIT_DELAY, &sh->state);
308                         if (conf->worker_cnt_per_group == 0) {
309                                 list_add_tail(&sh->lru, &conf->handle_list);
310                         } else {
311                                 raid5_wakeup_stripe_thread(sh);
312                                 return;
313                         }
314                 }
315                 md_wakeup_thread(conf->mddev->thread);
316         } else {
317                 BUG_ON(stripe_operations_active(sh));
318                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
319                         if (atomic_dec_return(&conf->preread_active_stripes)
320                             < IO_THRESHOLD)
321                                 md_wakeup_thread(conf->mddev->thread);
322                 atomic_dec(&conf->active_stripes);
323                 if (!test_bit(STRIPE_EXPANDING, &sh->state))
324                         list_add_tail(&sh->lru, temp_inactive_list);
325         }
326 }
327
328 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
329                              struct list_head *temp_inactive_list)
330 {
331         if (atomic_dec_and_test(&sh->count))
332                 do_release_stripe(conf, sh, temp_inactive_list);
333 }
334
335 /*
336  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
337  *
338  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
339  * given time. Adding stripes only takes device lock, while deleting stripes
340  * only takes hash lock.
341  */
342 static void release_inactive_stripe_list(struct r5conf *conf,
343                                          struct list_head *temp_inactive_list,
344                                          int hash)
345 {
346         int size;
347         bool do_wakeup = false;
348         unsigned long flags;
349
350         if (hash == NR_STRIPE_HASH_LOCKS) {
351                 size = NR_STRIPE_HASH_LOCKS;
352                 hash = NR_STRIPE_HASH_LOCKS - 1;
353         } else
354                 size = 1;
355         while (size) {
356                 struct list_head *list = &temp_inactive_list[size - 1];
357
358                 /*
359                  * We don't hold any lock here yet, get_active_stripe() might
360                  * remove stripes from the list
361                  */
362                 if (!list_empty_careful(list)) {
363                         spin_lock_irqsave(conf->hash_locks + hash, flags);
364                         if (list_empty(conf->inactive_list + hash) &&
365                             !list_empty(list))
366                                 atomic_dec(&conf->empty_inactive_list_nr);
367                         list_splice_tail_init(list, conf->inactive_list + hash);
368                         do_wakeup = true;
369                         spin_unlock_irqrestore(conf->hash_locks + hash, flags);
370                 }
371                 size--;
372                 hash--;
373         }
374
375         if (do_wakeup) {
376                 wake_up(&conf->wait_for_stripe);
377                 if (conf->retry_read_aligned)
378                         md_wakeup_thread(conf->mddev->thread);
379         }
380 }
381
382 /* should hold conf->device_lock already */
383 static int release_stripe_list(struct r5conf *conf,
384                                struct list_head *temp_inactive_list)
385 {
386         struct stripe_head *sh;
387         int count = 0;
388         struct llist_node *head;
389
390         head = llist_del_all(&conf->released_stripes);
391         head = llist_reverse_order(head);
392         while (head) {
393                 int hash;
394
395                 sh = llist_entry(head, struct stripe_head, release_list);
396                 head = llist_next(head);
397                 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
398                 smp_mb();
399                 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
400                 /*
401                  * Don't worry the bit is set here, because if the bit is set
402                  * again, the count is always > 1. This is true for
403                  * STRIPE_ON_UNPLUG_LIST bit too.
404                  */
405                 hash = sh->hash_lock_index;
406                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
407                 count++;
408         }
409
410         return count;
411 }
412
413 static void release_stripe(struct stripe_head *sh)
414 {
415         struct r5conf *conf = sh->raid_conf;
416         unsigned long flags;
417         struct list_head list;
418         int hash;
419         bool wakeup;
420
421         /* Avoid release_list until the last reference.
422          */
423         if (atomic_add_unless(&sh->count, -1, 1))
424                 return;
425
426         if (unlikely(!conf->mddev->thread) ||
427                 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
428                 goto slow_path;
429         wakeup = llist_add(&sh->release_list, &conf->released_stripes);
430         if (wakeup)
431                 md_wakeup_thread(conf->mddev->thread);
432         return;
433 slow_path:
434         local_irq_save(flags);
435         /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
436         if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
437                 INIT_LIST_HEAD(&list);
438                 hash = sh->hash_lock_index;
439                 do_release_stripe(conf, sh, &list);
440                 spin_unlock(&conf->device_lock);
441                 release_inactive_stripe_list(conf, &list, hash);
442         }
443         local_irq_restore(flags);
444 }
445
446 static inline void remove_hash(struct stripe_head *sh)
447 {
448         pr_debug("remove_hash(), stripe %llu\n",
449                 (unsigned long long)sh->sector);
450
451         hlist_del_init(&sh->hash);
452 }
453
454 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
455 {
456         struct hlist_head *hp = stripe_hash(conf, sh->sector);
457
458         pr_debug("insert_hash(), stripe %llu\n",
459                 (unsigned long long)sh->sector);
460
461         hlist_add_head(&sh->hash, hp);
462 }
463
464 /* find an idle stripe, make sure it is unhashed, and return it. */
465 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
466 {
467         struct stripe_head *sh = NULL;
468         struct list_head *first;
469
470         if (list_empty(conf->inactive_list + hash))
471                 goto out;
472         first = (conf->inactive_list + hash)->next;
473         sh = list_entry(first, struct stripe_head, lru);
474         list_del_init(first);
475         remove_hash(sh);
476         atomic_inc(&conf->active_stripes);
477         BUG_ON(hash != sh->hash_lock_index);
478         if (list_empty(conf->inactive_list + hash))
479                 atomic_inc(&conf->empty_inactive_list_nr);
480 out:
481         return sh;
482 }
483
484 static void shrink_buffers(struct stripe_head *sh)
485 {
486         struct page *p;
487         int i;
488         int num = sh->raid_conf->pool_size;
489
490         for (i = 0; i < num ; i++) {
491                 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
492                 p = sh->dev[i].page;
493                 if (!p)
494                         continue;
495                 sh->dev[i].page = NULL;
496                 put_page(p);
497         }
498 }
499
500 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
501 {
502         int i;
503         int num = sh->raid_conf->pool_size;
504
505         for (i = 0; i < num; i++) {
506                 struct page *page;
507
508                 if (!(page = alloc_page(gfp))) {
509                         return 1;
510                 }
511                 sh->dev[i].page = page;
512                 sh->dev[i].orig_page = page;
513         }
514         return 0;
515 }
516
517 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
518 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
519                             struct stripe_head *sh);
520
521 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
522 {
523         struct r5conf *conf = sh->raid_conf;
524         int i, seq;
525
526         BUG_ON(atomic_read(&sh->count) != 0);
527         BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
528         BUG_ON(stripe_operations_active(sh));
529         BUG_ON(sh->batch_head);
530
531         pr_debug("init_stripe called, stripe %llu\n",
532                 (unsigned long long)sector);
533 retry:
534         seq = read_seqcount_begin(&conf->gen_lock);
535         sh->generation = conf->generation - previous;
536         sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
537         sh->sector = sector;
538         stripe_set_idx(sector, conf, previous, sh);
539         sh->state = 0;
540
541         for (i = sh->disks; i--; ) {
542                 struct r5dev *dev = &sh->dev[i];
543
544                 if (dev->toread || dev->read || dev->towrite || dev->written ||
545                     test_bit(R5_LOCKED, &dev->flags)) {
546                         printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
547                                (unsigned long long)sh->sector, i, dev->toread,
548                                dev->read, dev->towrite, dev->written,
549                                test_bit(R5_LOCKED, &dev->flags));
550                         WARN_ON(1);
551                 }
552                 dev->flags = 0;
553                 raid5_build_block(sh, i, previous);
554         }
555         if (read_seqcount_retry(&conf->gen_lock, seq))
556                 goto retry;
557         sh->overwrite_disks = 0;
558         insert_hash(conf, sh);
559         sh->cpu = smp_processor_id();
560         set_bit(STRIPE_BATCH_READY, &sh->state);
561 }
562
563 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
564                                          short generation)
565 {
566         struct stripe_head *sh;
567
568         pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
569         hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
570                 if (sh->sector == sector && sh->generation == generation)
571                         return sh;
572         pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
573         return NULL;
574 }
575
576 /*
577  * Need to check if array has failed when deciding whether to:
578  *  - start an array
579  *  - remove non-faulty devices
580  *  - add a spare
581  *  - allow a reshape
582  * This determination is simple when no reshape is happening.
583  * However if there is a reshape, we need to carefully check
584  * both the before and after sections.
585  * This is because some failed devices may only affect one
586  * of the two sections, and some non-in_sync devices may
587  * be insync in the section most affected by failed devices.
588  */
589 static int calc_degraded(struct r5conf *conf)
590 {
591         int degraded, degraded2;
592         int i;
593
594         rcu_read_lock();
595         degraded = 0;
596         for (i = 0; i < conf->previous_raid_disks; i++) {
597                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
598                 if (rdev && test_bit(Faulty, &rdev->flags))
599                         rdev = rcu_dereference(conf->disks[i].replacement);
600                 if (!rdev || test_bit(Faulty, &rdev->flags))
601                         degraded++;
602                 else if (test_bit(In_sync, &rdev->flags))
603                         ;
604                 else
605                         /* not in-sync or faulty.
606                          * If the reshape increases the number of devices,
607                          * this is being recovered by the reshape, so
608                          * this 'previous' section is not in_sync.
609                          * If the number of devices is being reduced however,
610                          * the device can only be part of the array if
611                          * we are reverting a reshape, so this section will
612                          * be in-sync.
613                          */
614                         if (conf->raid_disks >= conf->previous_raid_disks)
615                                 degraded++;
616         }
617         rcu_read_unlock();
618         if (conf->raid_disks == conf->previous_raid_disks)
619                 return degraded;
620         rcu_read_lock();
621         degraded2 = 0;
622         for (i = 0; i < conf->raid_disks; i++) {
623                 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
624                 if (rdev && test_bit(Faulty, &rdev->flags))
625                         rdev = rcu_dereference(conf->disks[i].replacement);
626                 if (!rdev || test_bit(Faulty, &rdev->flags))
627                         degraded2++;
628                 else if (test_bit(In_sync, &rdev->flags))
629                         ;
630                 else
631                         /* not in-sync or faulty.
632                          * If reshape increases the number of devices, this
633                          * section has already been recovered, else it
634                          * almost certainly hasn't.
635                          */
636                         if (conf->raid_disks <= conf->previous_raid_disks)
637                                 degraded2++;
638         }
639         rcu_read_unlock();
640         if (degraded2 > degraded)
641                 return degraded2;
642         return degraded;
643 }
644
645 static int has_failed(struct r5conf *conf)
646 {
647         int degraded;
648
649         if (conf->mddev->reshape_position == MaxSector)
650                 return conf->mddev->degraded > conf->max_degraded;
651
652         degraded = calc_degraded(conf);
653         if (degraded > conf->max_degraded)
654                 return 1;
655         return 0;
656 }
657
658 static struct stripe_head *
659 get_active_stripe(struct r5conf *conf, sector_t sector,
660                   int previous, int noblock, int noquiesce)
661 {
662         struct stripe_head *sh;
663         int hash = stripe_hash_locks_hash(sector);
664
665         pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
666
667         spin_lock_irq(conf->hash_locks + hash);
668
669         do {
670                 wait_event_lock_irq(conf->wait_for_stripe,
671                                     conf->quiesce == 0 || noquiesce,
672                                     *(conf->hash_locks + hash));
673                 sh = __find_stripe(conf, sector, conf->generation - previous);
674                 if (!sh) {
675                         if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
676                                 sh = get_free_stripe(conf, hash);
677                                 if (!sh && llist_empty(&conf->released_stripes) &&
678                                     !test_bit(R5_DID_ALLOC, &conf->cache_state))
679                                         set_bit(R5_ALLOC_MORE,
680                                                 &conf->cache_state);
681                         }
682                         if (noblock && sh == NULL)
683                                 break;
684                         if (!sh) {
685                                 set_bit(R5_INACTIVE_BLOCKED,
686                                         &conf->cache_state);
687                                 wait_event_lock_irq(
688                                         conf->wait_for_stripe,
689                                         !list_empty(conf->inactive_list + hash) &&
690                                         (atomic_read(&conf->active_stripes)
691                                          < (conf->max_nr_stripes * 3 / 4)
692                                          || !test_bit(R5_INACTIVE_BLOCKED,
693                                                       &conf->cache_state)),
694                                         *(conf->hash_locks + hash));
695                                 clear_bit(R5_INACTIVE_BLOCKED,
696                                           &conf->cache_state);
697                         } else {
698                                 init_stripe(sh, sector, previous);
699                                 atomic_inc(&sh->count);
700                         }
701                 } else if (!atomic_inc_not_zero(&sh->count)) {
702                         spin_lock(&conf->device_lock);
703                         if (!atomic_read(&sh->count)) {
704                                 if (!test_bit(STRIPE_HANDLE, &sh->state))
705                                         atomic_inc(&conf->active_stripes);
706                                 BUG_ON(list_empty(&sh->lru) &&
707                                        !test_bit(STRIPE_EXPANDING, &sh->state));
708                                 list_del_init(&sh->lru);
709                                 if (sh->group) {
710                                         sh->group->stripes_cnt--;
711                                         sh->group = NULL;
712                                 }
713                         }
714                         atomic_inc(&sh->count);
715                         spin_unlock(&conf->device_lock);
716                 }
717         } while (sh == NULL);
718
719         spin_unlock_irq(conf->hash_locks + hash);
720         return sh;
721 }
722
723 static bool is_full_stripe_write(struct stripe_head *sh)
724 {
725         BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
726         return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
727 }
728
729 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
730 {
731         local_irq_disable();
732         if (sh1 > sh2) {
733                 spin_lock(&sh2->stripe_lock);
734                 spin_lock_nested(&sh1->stripe_lock, 1);
735         } else {
736                 spin_lock(&sh1->stripe_lock);
737                 spin_lock_nested(&sh2->stripe_lock, 1);
738         }
739 }
740
741 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
742 {
743         spin_unlock(&sh1->stripe_lock);
744         spin_unlock(&sh2->stripe_lock);
745         local_irq_enable();
746 }
747
748 /* Only freshly new full stripe normal write stripe can be added to a batch list */
749 static bool stripe_can_batch(struct stripe_head *sh)
750 {
751         return test_bit(STRIPE_BATCH_READY, &sh->state) &&
752                 is_full_stripe_write(sh);
753 }
754
755 /* we only do back search */
756 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
757 {
758         struct stripe_head *head;
759         sector_t head_sector, tmp_sec;
760         int hash;
761         int dd_idx;
762
763         if (!stripe_can_batch(sh))
764                 return;
765         /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
766         tmp_sec = sh->sector;
767         if (!sector_div(tmp_sec, conf->chunk_sectors))
768                 return;
769         head_sector = sh->sector - STRIPE_SECTORS;
770
771         hash = stripe_hash_locks_hash(head_sector);
772         spin_lock_irq(conf->hash_locks + hash);
773         head = __find_stripe(conf, head_sector, conf->generation);
774         if (head && !atomic_inc_not_zero(&head->count)) {
775                 spin_lock(&conf->device_lock);
776                 if (!atomic_read(&head->count)) {
777                         if (!test_bit(STRIPE_HANDLE, &head->state))
778                                 atomic_inc(&conf->active_stripes);
779                         BUG_ON(list_empty(&head->lru) &&
780                                !test_bit(STRIPE_EXPANDING, &head->state));
781                         list_del_init(&head->lru);
782                         if (head->group) {
783                                 head->group->stripes_cnt--;
784                                 head->group = NULL;
785                         }
786                 }
787                 atomic_inc(&head->count);
788                 spin_unlock(&conf->device_lock);
789         }
790         spin_unlock_irq(conf->hash_locks + hash);
791
792         if (!head)
793                 return;
794         if (!stripe_can_batch(head))
795                 goto out;
796
797         lock_two_stripes(head, sh);
798         /* clear_batch_ready clear the flag */
799         if (!stripe_can_batch(head) || !stripe_can_batch(sh))
800                 goto unlock_out;
801
802         if (sh->batch_head)
803                 goto unlock_out;
804
805         dd_idx = 0;
806         while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
807                 dd_idx++;
808         if (head->dev[dd_idx].towrite->bi_rw != sh->dev[dd_idx].towrite->bi_rw)
809                 goto unlock_out;
810
811         if (head->batch_head) {
812                 spin_lock(&head->batch_head->batch_lock);
813                 /* This batch list is already running */
814                 if (!stripe_can_batch(head)) {
815                         spin_unlock(&head->batch_head->batch_lock);
816                         goto unlock_out;
817                 }
818
819                 /*
820                  * at this point, head's BATCH_READY could be cleared, but we
821                  * can still add the stripe to batch list
822                  */
823                 list_add(&sh->batch_list, &head->batch_list);
824                 spin_unlock(&head->batch_head->batch_lock);
825
826                 sh->batch_head = head->batch_head;
827         } else {
828                 head->batch_head = head;
829                 sh->batch_head = head->batch_head;
830                 spin_lock(&head->batch_lock);
831                 list_add_tail(&sh->batch_list, &head->batch_list);
832                 spin_unlock(&head->batch_lock);
833         }
834
835         if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
836                 if (atomic_dec_return(&conf->preread_active_stripes)
837                     < IO_THRESHOLD)
838                         md_wakeup_thread(conf->mddev->thread);
839
840         atomic_inc(&sh->count);
841 unlock_out:
842         unlock_two_stripes(head, sh);
843 out:
844         release_stripe(head);
845 }
846
847 /* Determine if 'data_offset' or 'new_data_offset' should be used
848  * in this stripe_head.
849  */
850 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
851 {
852         sector_t progress = conf->reshape_progress;
853         /* Need a memory barrier to make sure we see the value
854          * of conf->generation, or ->data_offset that was set before
855          * reshape_progress was updated.
856          */
857         smp_rmb();
858         if (progress == MaxSector)
859                 return 0;
860         if (sh->generation == conf->generation - 1)
861                 return 0;
862         /* We are in a reshape, and this is a new-generation stripe,
863          * so use new_data_offset.
864          */
865         return 1;
866 }
867
868 static void
869 raid5_end_read_request(struct bio *bi, int error);
870 static void
871 raid5_end_write_request(struct bio *bi, int error);
872
873 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
874 {
875         struct r5conf *conf = sh->raid_conf;
876         int i, disks = sh->disks;
877         struct stripe_head *head_sh = sh;
878
879         might_sleep();
880
881         for (i = disks; i--; ) {
882                 int rw;
883                 int replace_only = 0;
884                 struct bio *bi, *rbi;
885                 struct md_rdev *rdev, *rrdev = NULL;
886
887                 sh = head_sh;
888                 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
889                         if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
890                                 rw = WRITE_FUA;
891                         else
892                                 rw = WRITE;
893                         if (test_bit(R5_Discard, &sh->dev[i].flags))
894                                 rw |= REQ_DISCARD;
895                 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
896                         rw = READ;
897                 else if (test_and_clear_bit(R5_WantReplace,
898                                             &sh->dev[i].flags)) {
899                         rw = WRITE;
900                         replace_only = 1;
901                 } else
902                         continue;
903                 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
904                         rw |= REQ_SYNC;
905
906 again:
907                 bi = &sh->dev[i].req;
908                 rbi = &sh->dev[i].rreq; /* For writing to replacement */
909
910                 rcu_read_lock();
911                 rrdev = rcu_dereference(conf->disks[i].replacement);
912                 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
913                 rdev = rcu_dereference(conf->disks[i].rdev);
914                 if (!rdev) {
915                         rdev = rrdev;
916                         rrdev = NULL;
917                 }
918                 if (rw & WRITE) {
919                         if (replace_only)
920                                 rdev = NULL;
921                         if (rdev == rrdev)
922                                 /* We raced and saw duplicates */
923                                 rrdev = NULL;
924                 } else {
925                         if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
926                                 rdev = rrdev;
927                         rrdev = NULL;
928                 }
929
930                 if (rdev && test_bit(Faulty, &rdev->flags))
931                         rdev = NULL;
932                 if (rdev)
933                         atomic_inc(&rdev->nr_pending);
934                 if (rrdev && test_bit(Faulty, &rrdev->flags))
935                         rrdev = NULL;
936                 if (rrdev)
937                         atomic_inc(&rrdev->nr_pending);
938                 rcu_read_unlock();
939
940                 /* We have already checked bad blocks for reads.  Now
941                  * need to check for writes.  We never accept write errors
942                  * on the replacement, so we don't to check rrdev.
943                  */
944                 while ((rw & WRITE) && rdev &&
945                        test_bit(WriteErrorSeen, &rdev->flags)) {
946                         sector_t first_bad;
947                         int bad_sectors;
948                         int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
949                                               &first_bad, &bad_sectors);
950                         if (!bad)
951                                 break;
952
953                         if (bad < 0) {
954                                 set_bit(BlockedBadBlocks, &rdev->flags);
955                                 if (!conf->mddev->external &&
956                                     conf->mddev->flags) {
957                                         /* It is very unlikely, but we might
958                                          * still need to write out the
959                                          * bad block log - better give it
960                                          * a chance*/
961                                         md_check_recovery(conf->mddev);
962                                 }
963                                 /*
964                                  * Because md_wait_for_blocked_rdev
965                                  * will dec nr_pending, we must
966                                  * increment it first.
967                                  */
968                                 atomic_inc(&rdev->nr_pending);
969                                 md_wait_for_blocked_rdev(rdev, conf->mddev);
970                         } else {
971                                 /* Acknowledged bad block - skip the write */
972                                 rdev_dec_pending(rdev, conf->mddev);
973                                 rdev = NULL;
974                         }
975                 }
976
977                 if (rdev) {
978                         if (s->syncing || s->expanding || s->expanded
979                             || s->replacing)
980                                 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
981
982                         set_bit(STRIPE_IO_STARTED, &sh->state);
983
984                         bio_reset(bi);
985                         bi->bi_bdev = rdev->bdev;
986                         bi->bi_rw = rw;
987                         bi->bi_end_io = (rw & WRITE)
988                                 ? raid5_end_write_request
989                                 : raid5_end_read_request;
990                         bi->bi_private = sh;
991
992                         pr_debug("%s: for %llu schedule op %ld on disc %d\n",
993                                 __func__, (unsigned long long)sh->sector,
994                                 bi->bi_rw, i);
995                         atomic_inc(&sh->count);
996                         if (sh != head_sh)
997                                 atomic_inc(&head_sh->count);
998                         if (use_new_offset(conf, sh))
999                                 bi->bi_iter.bi_sector = (sh->sector
1000                                                  + rdev->new_data_offset);
1001                         else
1002                                 bi->bi_iter.bi_sector = (sh->sector
1003                                                  + rdev->data_offset);
1004                         if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1005                                 bi->bi_rw |= REQ_NOMERGE;
1006
1007                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1008                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1009                         sh->dev[i].vec.bv_page = sh->dev[i].page;
1010                         bi->bi_vcnt = 1;
1011                         bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1012                         bi->bi_io_vec[0].bv_offset = 0;
1013                         bi->bi_iter.bi_size = STRIPE_SIZE;
1014                         /*
1015                          * If this is discard request, set bi_vcnt 0. We don't
1016                          * want to confuse SCSI because SCSI will replace payload
1017                          */
1018                         if (rw & REQ_DISCARD)
1019                                 bi->bi_vcnt = 0;
1020                         if (rrdev)
1021                                 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1022
1023                         if (conf->mddev->gendisk)
1024                                 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
1025                                                       bi, disk_devt(conf->mddev->gendisk),
1026                                                       sh->dev[i].sector);
1027                         generic_make_request(bi);
1028                 }
1029                 if (rrdev) {
1030                         if (s->syncing || s->expanding || s->expanded
1031                             || s->replacing)
1032                                 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1033
1034                         set_bit(STRIPE_IO_STARTED, &sh->state);
1035
1036                         bio_reset(rbi);
1037                         rbi->bi_bdev = rrdev->bdev;
1038                         rbi->bi_rw = rw;
1039                         BUG_ON(!(rw & WRITE));
1040                         rbi->bi_end_io = raid5_end_write_request;
1041                         rbi->bi_private = sh;
1042
1043                         pr_debug("%s: for %llu schedule op %ld on "
1044                                  "replacement disc %d\n",
1045                                 __func__, (unsigned long long)sh->sector,
1046                                 rbi->bi_rw, i);
1047                         atomic_inc(&sh->count);
1048                         if (sh != head_sh)
1049                                 atomic_inc(&head_sh->count);
1050                         if (use_new_offset(conf, sh))
1051                                 rbi->bi_iter.bi_sector = (sh->sector
1052                                                   + rrdev->new_data_offset);
1053                         else
1054                                 rbi->bi_iter.bi_sector = (sh->sector
1055                                                   + rrdev->data_offset);
1056                         if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1057                                 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1058                         sh->dev[i].rvec.bv_page = sh->dev[i].page;
1059                         rbi->bi_vcnt = 1;
1060                         rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1061                         rbi->bi_io_vec[0].bv_offset = 0;
1062                         rbi->bi_iter.bi_size = STRIPE_SIZE;
1063                         /*
1064                          * If this is discard request, set bi_vcnt 0. We don't
1065                          * want to confuse SCSI because SCSI will replace payload
1066                          */
1067                         if (rw & REQ_DISCARD)
1068                                 rbi->bi_vcnt = 0;
1069                         if (conf->mddev->gendisk)
1070                                 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
1071                                                       rbi, disk_devt(conf->mddev->gendisk),
1072                                                       sh->dev[i].sector);
1073                         generic_make_request(rbi);
1074                 }
1075                 if (!rdev && !rrdev) {
1076                         if (rw & WRITE)
1077                                 set_bit(STRIPE_DEGRADED, &sh->state);
1078                         pr_debug("skip op %ld on disc %d for sector %llu\n",
1079                                 bi->bi_rw, i, (unsigned long long)sh->sector);
1080                         clear_bit(R5_LOCKED, &sh->dev[i].flags);
1081                         if (sh->batch_head)
1082                                 set_bit(STRIPE_BATCH_ERR,
1083                                         &sh->batch_head->state);
1084                         set_bit(STRIPE_HANDLE, &sh->state);
1085                 }
1086
1087                 if (!head_sh->batch_head)
1088                         continue;
1089                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1090                                       batch_list);
1091                 if (sh != head_sh)
1092                         goto again;
1093         }
1094 }
1095
1096 static struct dma_async_tx_descriptor *
1097 async_copy_data(int frombio, struct bio *bio, struct page **page,
1098         sector_t sector, struct dma_async_tx_descriptor *tx,
1099         struct stripe_head *sh)
1100 {
1101         struct bio_vec bvl;
1102         struct bvec_iter iter;
1103         struct page *bio_page;
1104         int page_offset;
1105         struct async_submit_ctl submit;
1106         enum async_tx_flags flags = 0;
1107
1108         if (bio->bi_iter.bi_sector >= sector)
1109                 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1110         else
1111                 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1112
1113         if (frombio)
1114                 flags |= ASYNC_TX_FENCE;
1115         init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1116
1117         bio_for_each_segment(bvl, bio, iter) {
1118                 int len = bvl.bv_len;
1119                 int clen;
1120                 int b_offset = 0;
1121
1122                 if (page_offset < 0) {
1123                         b_offset = -page_offset;
1124                         page_offset += b_offset;
1125                         len -= b_offset;
1126                 }
1127
1128                 if (len > 0 && page_offset + len > STRIPE_SIZE)
1129                         clen = STRIPE_SIZE - page_offset;
1130                 else
1131                         clen = len;
1132
1133                 if (clen > 0) {
1134                         b_offset += bvl.bv_offset;
1135                         bio_page = bvl.bv_page;
1136                         if (frombio) {
1137                                 if (sh->raid_conf->skip_copy &&
1138                                     b_offset == 0 && page_offset == 0 &&
1139                                     clen == STRIPE_SIZE)
1140                                         *page = bio_page;
1141                                 else
1142                                         tx = async_memcpy(*page, bio_page, page_offset,
1143                                                   b_offset, clen, &submit);
1144                         } else
1145                                 tx = async_memcpy(bio_page, *page, b_offset,
1146                                                   page_offset, clen, &submit);
1147                 }
1148                 /* chain the operations */
1149                 submit.depend_tx = tx;
1150
1151                 if (clen < len) /* hit end of page */
1152                         break;
1153                 page_offset +=  len;
1154         }
1155
1156         return tx;
1157 }
1158
1159 static void ops_complete_biofill(void *stripe_head_ref)
1160 {
1161         struct stripe_head *sh = stripe_head_ref;
1162         struct bio *return_bi = NULL;
1163         int i;
1164
1165         pr_debug("%s: stripe %llu\n", __func__,
1166                 (unsigned long long)sh->sector);
1167
1168         /* clear completed biofills */
1169         for (i = sh->disks; i--; ) {
1170                 struct r5dev *dev = &sh->dev[i];
1171
1172                 /* acknowledge completion of a biofill operation */
1173                 /* and check if we need to reply to a read request,
1174                  * new R5_Wantfill requests are held off until
1175                  * !STRIPE_BIOFILL_RUN
1176                  */
1177                 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1178                         struct bio *rbi, *rbi2;
1179
1180                         BUG_ON(!dev->read);
1181                         rbi = dev->read;
1182                         dev->read = NULL;
1183                         while (rbi && rbi->bi_iter.bi_sector <
1184                                 dev->sector + STRIPE_SECTORS) {
1185                                 rbi2 = r5_next_bio(rbi, dev->sector);
1186                                 if (!raid5_dec_bi_active_stripes(rbi)) {
1187                                         rbi->bi_next = return_bi;
1188                                         return_bi = rbi;
1189                                 }
1190                                 rbi = rbi2;
1191                         }
1192                 }
1193         }
1194         clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1195
1196         return_io(return_bi);
1197
1198         set_bit(STRIPE_HANDLE, &sh->state);
1199         release_stripe(sh);
1200 }
1201
1202 static void ops_run_biofill(struct stripe_head *sh)
1203 {
1204         struct dma_async_tx_descriptor *tx = NULL;
1205         struct async_submit_ctl submit;
1206         int i;
1207
1208         BUG_ON(sh->batch_head);
1209         pr_debug("%s: stripe %llu\n", __func__,
1210                 (unsigned long long)sh->sector);
1211
1212         for (i = sh->disks; i--; ) {
1213                 struct r5dev *dev = &sh->dev[i];
1214                 if (test_bit(R5_Wantfill, &dev->flags)) {
1215                         struct bio *rbi;
1216                         spin_lock_irq(&sh->stripe_lock);
1217                         dev->read = rbi = dev->toread;
1218                         dev->toread = NULL;
1219                         spin_unlock_irq(&sh->stripe_lock);
1220                         while (rbi && rbi->bi_iter.bi_sector <
1221                                 dev->sector + STRIPE_SECTORS) {
1222                                 tx = async_copy_data(0, rbi, &dev->page,
1223                                         dev->sector, tx, sh);
1224                                 rbi = r5_next_bio(rbi, dev->sector);
1225                         }
1226                 }
1227         }
1228
1229         atomic_inc(&sh->count);
1230         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1231         async_trigger_callback(&submit);
1232 }
1233
1234 static void mark_target_uptodate(struct stripe_head *sh, int target)
1235 {
1236         struct r5dev *tgt;
1237
1238         if (target < 0)
1239                 return;
1240
1241         tgt = &sh->dev[target];
1242         set_bit(R5_UPTODATE, &tgt->flags);
1243         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1244         clear_bit(R5_Wantcompute, &tgt->flags);
1245 }
1246
1247 static void ops_complete_compute(void *stripe_head_ref)
1248 {
1249         struct stripe_head *sh = stripe_head_ref;
1250
1251         pr_debug("%s: stripe %llu\n", __func__,
1252                 (unsigned long long)sh->sector);
1253
1254         /* mark the computed target(s) as uptodate */
1255         mark_target_uptodate(sh, sh->ops.target);
1256         mark_target_uptodate(sh, sh->ops.target2);
1257
1258         clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1259         if (sh->check_state == check_state_compute_run)
1260                 sh->check_state = check_state_compute_result;
1261         set_bit(STRIPE_HANDLE, &sh->state);
1262         release_stripe(sh);
1263 }
1264
1265 /* return a pointer to the address conversion region of the scribble buffer */
1266 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1267                                  struct raid5_percpu *percpu, int i)
1268 {
1269         void *addr;
1270
1271         addr = flex_array_get(percpu->scribble, i);
1272         return addr + sizeof(struct page *) * (sh->disks + 2);
1273 }
1274
1275 /* return a pointer to the address conversion region of the scribble buffer */
1276 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1277 {
1278         void *addr;
1279
1280         addr = flex_array_get(percpu->scribble, i);
1281         return addr;
1282 }
1283
1284 static struct dma_async_tx_descriptor *
1285 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1286 {
1287         int disks = sh->disks;
1288         struct page **xor_srcs = to_addr_page(percpu, 0);
1289         int target = sh->ops.target;
1290         struct r5dev *tgt = &sh->dev[target];
1291         struct page *xor_dest = tgt->page;
1292         int count = 0;
1293         struct dma_async_tx_descriptor *tx;
1294         struct async_submit_ctl submit;
1295         int i;
1296
1297         BUG_ON(sh->batch_head);
1298
1299         pr_debug("%s: stripe %llu block: %d\n",
1300                 __func__, (unsigned long long)sh->sector, target);
1301         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1302
1303         for (i = disks; i--; )
1304                 if (i != target)
1305                         xor_srcs[count++] = sh->dev[i].page;
1306
1307         atomic_inc(&sh->count);
1308
1309         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1310                           ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1311         if (unlikely(count == 1))
1312                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1313         else
1314                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1315
1316         return tx;
1317 }
1318
1319 /* set_syndrome_sources - populate source buffers for gen_syndrome
1320  * @srcs - (struct page *) array of size sh->disks
1321  * @sh - stripe_head to parse
1322  *
1323  * Populates srcs in proper layout order for the stripe and returns the
1324  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1325  * destination buffer is recorded in srcs[count] and the Q destination
1326  * is recorded in srcs[count+1]].
1327  */
1328 static int set_syndrome_sources(struct page **srcs,
1329                                 struct stripe_head *sh,
1330                                 int srctype)
1331 {
1332         int disks = sh->disks;
1333         int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1334         int d0_idx = raid6_d0(sh);
1335         int count;
1336         int i;
1337
1338         for (i = 0; i < disks; i++)
1339                 srcs[i] = NULL;
1340
1341         count = 0;
1342         i = d0_idx;
1343         do {
1344                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1345                 struct r5dev *dev = &sh->dev[i];
1346
1347                 if (i == sh->qd_idx || i == sh->pd_idx ||
1348                     (srctype == SYNDROME_SRC_ALL) ||
1349                     (srctype == SYNDROME_SRC_WANT_DRAIN &&
1350                      test_bit(R5_Wantdrain, &dev->flags)) ||
1351                     (srctype == SYNDROME_SRC_WRITTEN &&
1352                      dev->written))
1353                         srcs[slot] = sh->dev[i].page;
1354                 i = raid6_next_disk(i, disks);
1355         } while (i != d0_idx);
1356
1357         return syndrome_disks;
1358 }
1359
1360 static struct dma_async_tx_descriptor *
1361 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1362 {
1363         int disks = sh->disks;
1364         struct page **blocks = to_addr_page(percpu, 0);
1365         int target;
1366         int qd_idx = sh->qd_idx;
1367         struct dma_async_tx_descriptor *tx;
1368         struct async_submit_ctl submit;
1369         struct r5dev *tgt;
1370         struct page *dest;
1371         int i;
1372         int count;
1373
1374         BUG_ON(sh->batch_head);
1375         if (sh->ops.target < 0)
1376                 target = sh->ops.target2;
1377         else if (sh->ops.target2 < 0)
1378                 target = sh->ops.target;
1379         else
1380                 /* we should only have one valid target */
1381                 BUG();
1382         BUG_ON(target < 0);
1383         pr_debug("%s: stripe %llu block: %d\n",
1384                 __func__, (unsigned long long)sh->sector, target);
1385
1386         tgt = &sh->dev[target];
1387         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1388         dest = tgt->page;
1389
1390         atomic_inc(&sh->count);
1391
1392         if (target == qd_idx) {
1393                 count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1394                 blocks[count] = NULL; /* regenerating p is not necessary */
1395                 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1396                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1397                                   ops_complete_compute, sh,
1398                                   to_addr_conv(sh, percpu, 0));
1399                 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1400         } else {
1401                 /* Compute any data- or p-drive using XOR */
1402                 count = 0;
1403                 for (i = disks; i-- ; ) {
1404                         if (i == target || i == qd_idx)
1405                                 continue;
1406                         blocks[count++] = sh->dev[i].page;
1407                 }
1408
1409                 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1410                                   NULL, ops_complete_compute, sh,
1411                                   to_addr_conv(sh, percpu, 0));
1412                 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1413         }
1414
1415         return tx;
1416 }
1417
1418 static struct dma_async_tx_descriptor *
1419 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1420 {
1421         int i, count, disks = sh->disks;
1422         int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1423         int d0_idx = raid6_d0(sh);
1424         int faila = -1, failb = -1;
1425         int target = sh->ops.target;
1426         int target2 = sh->ops.target2;
1427         struct r5dev *tgt = &sh->dev[target];
1428         struct r5dev *tgt2 = &sh->dev[target2];
1429         struct dma_async_tx_descriptor *tx;
1430         struct page **blocks = to_addr_page(percpu, 0);
1431         struct async_submit_ctl submit;
1432
1433         BUG_ON(sh->batch_head);
1434         pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1435                  __func__, (unsigned long long)sh->sector, target, target2);
1436         BUG_ON(target < 0 || target2 < 0);
1437         BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1438         BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1439
1440         /* we need to open-code set_syndrome_sources to handle the
1441          * slot number conversion for 'faila' and 'failb'
1442          */
1443         for (i = 0; i < disks ; i++)
1444                 blocks[i] = NULL;
1445         count = 0;
1446         i = d0_idx;
1447         do {
1448                 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1449
1450                 blocks[slot] = sh->dev[i].page;
1451
1452                 if (i == target)
1453                         faila = slot;
1454                 if (i == target2)
1455                         failb = slot;
1456                 i = raid6_next_disk(i, disks);
1457         } while (i != d0_idx);
1458
1459         BUG_ON(faila == failb);
1460         if (failb < faila)
1461                 swap(faila, failb);
1462         pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1463                  __func__, (unsigned long long)sh->sector, faila, failb);
1464
1465         atomic_inc(&sh->count);
1466
1467         if (failb == syndrome_disks+1) {
1468                 /* Q disk is one of the missing disks */
1469                 if (faila == syndrome_disks) {
1470                         /* Missing P+Q, just recompute */
1471                         init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1472                                           ops_complete_compute, sh,
1473                                           to_addr_conv(sh, percpu, 0));
1474                         return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1475                                                   STRIPE_SIZE, &submit);
1476                 } else {
1477                         struct page *dest;
1478                         int data_target;
1479                         int qd_idx = sh->qd_idx;
1480
1481                         /* Missing D+Q: recompute D from P, then recompute Q */
1482                         if (target == qd_idx)
1483                                 data_target = target2;
1484                         else
1485                                 data_target = target;
1486
1487                         count = 0;
1488                         for (i = disks; i-- ; ) {
1489                                 if (i == data_target || i == qd_idx)
1490                                         continue;
1491                                 blocks[count++] = sh->dev[i].page;
1492                         }
1493                         dest = sh->dev[data_target].page;
1494                         init_async_submit(&submit,
1495                                           ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1496                                           NULL, NULL, NULL,
1497                                           to_addr_conv(sh, percpu, 0));
1498                         tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1499                                        &submit);
1500
1501                         count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1502                         init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1503                                           ops_complete_compute, sh,
1504                                           to_addr_conv(sh, percpu, 0));
1505                         return async_gen_syndrome(blocks, 0, count+2,
1506                                                   STRIPE_SIZE, &submit);
1507                 }
1508         } else {
1509                 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1510                                   ops_complete_compute, sh,
1511                                   to_addr_conv(sh, percpu, 0));
1512                 if (failb == syndrome_disks) {
1513                         /* We're missing D+P. */
1514                         return async_raid6_datap_recov(syndrome_disks+2,
1515                                                        STRIPE_SIZE, faila,
1516                                                        blocks, &submit);
1517                 } else {
1518                         /* We're missing D+D. */
1519                         return async_raid6_2data_recov(syndrome_disks+2,
1520                                                        STRIPE_SIZE, faila, failb,
1521                                                        blocks, &submit);
1522                 }
1523         }
1524 }
1525
1526 static void ops_complete_prexor(void *stripe_head_ref)
1527 {
1528         struct stripe_head *sh = stripe_head_ref;
1529
1530         pr_debug("%s: stripe %llu\n", __func__,
1531                 (unsigned long long)sh->sector);
1532 }
1533
1534 static struct dma_async_tx_descriptor *
1535 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1536                 struct dma_async_tx_descriptor *tx)
1537 {
1538         int disks = sh->disks;
1539         struct page **xor_srcs = to_addr_page(percpu, 0);
1540         int count = 0, pd_idx = sh->pd_idx, i;
1541         struct async_submit_ctl submit;
1542
1543         /* existing parity data subtracted */
1544         struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1545
1546         BUG_ON(sh->batch_head);
1547         pr_debug("%s: stripe %llu\n", __func__,
1548                 (unsigned long long)sh->sector);
1549
1550         for (i = disks; i--; ) {
1551                 struct r5dev *dev = &sh->dev[i];
1552                 /* Only process blocks that are known to be uptodate */
1553                 if (test_bit(R5_Wantdrain, &dev->flags))
1554                         xor_srcs[count++] = dev->page;
1555         }
1556
1557         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1558                           ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1559         tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1560
1561         return tx;
1562 }
1563
1564 static struct dma_async_tx_descriptor *
1565 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1566                 struct dma_async_tx_descriptor *tx)
1567 {
1568         struct page **blocks = to_addr_page(percpu, 0);
1569         int count;
1570         struct async_submit_ctl submit;
1571
1572         pr_debug("%s: stripe %llu\n", __func__,
1573                 (unsigned long long)sh->sector);
1574
1575         count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1576
1577         init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1578                           ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1579         tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1580
1581         return tx;
1582 }
1583
1584 static struct dma_async_tx_descriptor *
1585 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1586 {
1587         int disks = sh->disks;
1588         int i;
1589         struct stripe_head *head_sh = sh;
1590
1591         pr_debug("%s: stripe %llu\n", __func__,
1592                 (unsigned long long)sh->sector);
1593
1594         for (i = disks; i--; ) {
1595                 struct r5dev *dev;
1596                 struct bio *chosen;
1597
1598                 sh = head_sh;
1599                 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1600                         struct bio *wbi;
1601
1602 again:
1603                         dev = &sh->dev[i];
1604                         spin_lock_irq(&sh->stripe_lock);
1605                         chosen = dev->towrite;
1606                         dev->towrite = NULL;
1607                         sh->overwrite_disks = 0;
1608                         BUG_ON(dev->written);
1609                         wbi = dev->written = chosen;
1610                         spin_unlock_irq(&sh->stripe_lock);
1611                         WARN_ON(dev->page != dev->orig_page);
1612
1613                         while (wbi && wbi->bi_iter.bi_sector <
1614                                 dev->sector + STRIPE_SECTORS) {
1615                                 if (wbi->bi_rw & REQ_FUA)
1616                                         set_bit(R5_WantFUA, &dev->flags);
1617                                 if (wbi->bi_rw & REQ_SYNC)
1618                                         set_bit(R5_SyncIO, &dev->flags);
1619                                 if (wbi->bi_rw & REQ_DISCARD)
1620                                         set_bit(R5_Discard, &dev->flags);
1621                                 else {
1622                                         tx = async_copy_data(1, wbi, &dev->page,
1623                                                 dev->sector, tx, sh);
1624                                         if (dev->page != dev->orig_page) {
1625                                                 set_bit(R5_SkipCopy, &dev->flags);
1626                                                 clear_bit(R5_UPTODATE, &dev->flags);
1627                                                 clear_bit(R5_OVERWRITE, &dev->flags);
1628                                         }
1629                                 }
1630                                 wbi = r5_next_bio(wbi, dev->sector);
1631                         }
1632
1633                         if (head_sh->batch_head) {
1634                                 sh = list_first_entry(&sh->batch_list,
1635                                                       struct stripe_head,
1636                                                       batch_list);
1637                                 if (sh == head_sh)
1638                                         continue;
1639                                 goto again;
1640                         }
1641                 }
1642         }
1643
1644         return tx;
1645 }
1646
1647 static void ops_complete_reconstruct(void *stripe_head_ref)
1648 {
1649         struct stripe_head *sh = stripe_head_ref;
1650         int disks = sh->disks;
1651         int pd_idx = sh->pd_idx;
1652         int qd_idx = sh->qd_idx;
1653         int i;
1654         bool fua = false, sync = false, discard = false;
1655
1656         pr_debug("%s: stripe %llu\n", __func__,
1657                 (unsigned long long)sh->sector);
1658
1659         for (i = disks; i--; ) {
1660                 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1661                 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1662                 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1663         }
1664
1665         for (i = disks; i--; ) {
1666                 struct r5dev *dev = &sh->dev[i];
1667
1668                 if (dev->written || i == pd_idx || i == qd_idx) {
1669                         if (!discard && !test_bit(R5_SkipCopy, &dev->flags))
1670                                 set_bit(R5_UPTODATE, &dev->flags);
1671                         if (fua)
1672                                 set_bit(R5_WantFUA, &dev->flags);
1673                         if (sync)
1674                                 set_bit(R5_SyncIO, &dev->flags);
1675                 }
1676         }
1677
1678         if (sh->reconstruct_state == reconstruct_state_drain_run)
1679                 sh->reconstruct_state = reconstruct_state_drain_result;
1680         else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1681                 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1682         else {
1683                 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1684                 sh->reconstruct_state = reconstruct_state_result;
1685         }
1686
1687         set_bit(STRIPE_HANDLE, &sh->state);
1688         release_stripe(sh);
1689 }
1690
1691 static void
1692 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1693                      struct dma_async_tx_descriptor *tx)
1694 {
1695         int disks = sh->disks;
1696         struct page **xor_srcs;
1697         struct async_submit_ctl submit;
1698         int count, pd_idx = sh->pd_idx, i;
1699         struct page *xor_dest;
1700         int prexor = 0;
1701         unsigned long flags;
1702         int j = 0;
1703         struct stripe_head *head_sh = sh;
1704         int last_stripe;
1705
1706         pr_debug("%s: stripe %llu\n", __func__,
1707                 (unsigned long long)sh->sector);
1708
1709         for (i = 0; i < sh->disks; i++) {
1710                 if (pd_idx == i)
1711                         continue;
1712                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1713                         break;
1714         }
1715         if (i >= sh->disks) {
1716                 atomic_inc(&sh->count);
1717                 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1718                 ops_complete_reconstruct(sh);
1719                 return;
1720         }
1721 again:
1722         count = 0;
1723         xor_srcs = to_addr_page(percpu, j);
1724         /* check if prexor is active which means only process blocks
1725          * that are part of a read-modify-write (written)
1726          */
1727         if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1728                 prexor = 1;
1729                 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1730                 for (i = disks; i--; ) {
1731                         struct r5dev *dev = &sh->dev[i];
1732                         if (head_sh->dev[i].written)
1733                                 xor_srcs[count++] = dev->page;
1734                 }
1735         } else {
1736                 xor_dest = sh->dev[pd_idx].page;
1737                 for (i = disks; i--; ) {
1738                         struct r5dev *dev = &sh->dev[i];
1739                         if (i != pd_idx)
1740                                 xor_srcs[count++] = dev->page;
1741                 }
1742         }
1743
1744         /* 1/ if we prexor'd then the dest is reused as a source
1745          * 2/ if we did not prexor then we are redoing the parity
1746          * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1747          * for the synchronous xor case
1748          */
1749         last_stripe = !head_sh->batch_head ||
1750                 list_first_entry(&sh->batch_list,
1751                                  struct stripe_head, batch_list) == head_sh;
1752         if (last_stripe) {
1753                 flags = ASYNC_TX_ACK |
1754                         (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1755
1756                 atomic_inc(&head_sh->count);
1757                 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1758                                   to_addr_conv(sh, percpu, j));
1759         } else {
1760                 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1761                 init_async_submit(&submit, flags, tx, NULL, NULL,
1762                                   to_addr_conv(sh, percpu, j));
1763         }
1764
1765         if (unlikely(count == 1))
1766                 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1767         else
1768                 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1769         if (!last_stripe) {
1770                 j++;
1771                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1772                                       batch_list);
1773                 goto again;
1774         }
1775 }
1776
1777 static void
1778 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1779                      struct dma_async_tx_descriptor *tx)
1780 {
1781         struct async_submit_ctl submit;
1782         struct page **blocks;
1783         int count, i, j = 0;
1784         struct stripe_head *head_sh = sh;
1785         int last_stripe;
1786         int synflags;
1787         unsigned long txflags;
1788
1789         pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1790
1791         for (i = 0; i < sh->disks; i++) {
1792                 if (sh->pd_idx == i || sh->qd_idx == i)
1793                         continue;
1794                 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1795                         break;
1796         }
1797         if (i >= sh->disks) {
1798                 atomic_inc(&sh->count);
1799                 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1800                 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1801                 ops_complete_reconstruct(sh);
1802                 return;
1803         }
1804
1805 again:
1806         blocks = to_addr_page(percpu, j);
1807
1808         if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1809                 synflags = SYNDROME_SRC_WRITTEN;
1810                 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1811         } else {
1812                 synflags = SYNDROME_SRC_ALL;
1813                 txflags = ASYNC_TX_ACK;
1814         }
1815
1816         count = set_syndrome_sources(blocks, sh, synflags);
1817         last_stripe = !head_sh->batch_head ||
1818                 list_first_entry(&sh->batch_list,
1819                                  struct stripe_head, batch_list) == head_sh;
1820
1821         if (last_stripe) {
1822                 atomic_inc(&head_sh->count);
1823                 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1824                                   head_sh, to_addr_conv(sh, percpu, j));
1825         } else
1826                 init_async_submit(&submit, 0, tx, NULL, NULL,
1827                                   to_addr_conv(sh, percpu, j));
1828         async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1829         if (!last_stripe) {
1830                 j++;
1831                 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1832                                       batch_list);
1833                 goto again;
1834         }
1835 }
1836
1837 static void ops_complete_check(void *stripe_head_ref)
1838 {
1839         struct stripe_head *sh = stripe_head_ref;
1840
1841         pr_debug("%s: stripe %llu\n", __func__,
1842                 (unsigned long long)sh->sector);
1843
1844         sh->check_state = check_state_check_result;
1845         set_bit(STRIPE_HANDLE, &sh->state);
1846         release_stripe(sh);
1847 }
1848
1849 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1850 {
1851         int disks = sh->disks;
1852         int pd_idx = sh->pd_idx;
1853         int qd_idx = sh->qd_idx;
1854         struct page *xor_dest;
1855         struct page **xor_srcs = to_addr_page(percpu, 0);
1856         struct dma_async_tx_descriptor *tx;
1857         struct async_submit_ctl submit;
1858         int count;
1859         int i;
1860
1861         pr_debug("%s: stripe %llu\n", __func__,
1862                 (unsigned long long)sh->sector);
1863
1864         BUG_ON(sh->batch_head);
1865         count = 0;
1866         xor_dest = sh->dev[pd_idx].page;
1867         xor_srcs[count++] = xor_dest;
1868         for (i = disks; i--; ) {
1869                 if (i == pd_idx || i == qd_idx)
1870                         continue;
1871                 xor_srcs[count++] = sh->dev[i].page;
1872         }
1873
1874         init_async_submit(&submit, 0, NULL, NULL, NULL,
1875                           to_addr_conv(sh, percpu, 0));
1876         tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1877                            &sh->ops.zero_sum_result, &submit);
1878
1879         atomic_inc(&sh->count);
1880         init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1881         tx = async_trigger_callback(&submit);
1882 }
1883
1884 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1885 {
1886         struct page **srcs = to_addr_page(percpu, 0);
1887         struct async_submit_ctl submit;
1888         int count;
1889
1890         pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1891                 (unsigned long long)sh->sector, checkp);
1892
1893         BUG_ON(sh->batch_head);
1894         count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
1895         if (!checkp)
1896                 srcs[count] = NULL;
1897
1898         atomic_inc(&sh->count);
1899         init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1900                           sh, to_addr_conv(sh, percpu, 0));
1901         async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1902                            &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1903 }
1904
1905 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1906 {
1907         int overlap_clear = 0, i, disks = sh->disks;
1908         struct dma_async_tx_descriptor *tx = NULL;
1909         struct r5conf *conf = sh->raid_conf;
1910         int level = conf->level;
1911         struct raid5_percpu *percpu;
1912         unsigned long cpu;
1913
1914         cpu = get_cpu();
1915         percpu = per_cpu_ptr(conf->percpu, cpu);
1916         if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1917                 ops_run_biofill(sh);
1918                 overlap_clear++;
1919         }
1920
1921         if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1922                 if (level < 6)
1923                         tx = ops_run_compute5(sh, percpu);
1924                 else {
1925                         if (sh->ops.target2 < 0 || sh->ops.target < 0)
1926                                 tx = ops_run_compute6_1(sh, percpu);
1927                         else
1928                                 tx = ops_run_compute6_2(sh, percpu);
1929                 }
1930                 /* terminate the chain if reconstruct is not set to be run */
1931                 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1932                         async_tx_ack(tx);
1933         }
1934
1935         if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
1936                 if (level < 6)
1937                         tx = ops_run_prexor5(sh, percpu, tx);
1938                 else
1939                         tx = ops_run_prexor6(sh, percpu, tx);
1940         }
1941
1942         if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1943                 tx = ops_run_biodrain(sh, tx);
1944                 overlap_clear++;
1945         }
1946
1947         if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1948                 if (level < 6)
1949                         ops_run_reconstruct5(sh, percpu, tx);
1950                 else
1951                         ops_run_reconstruct6(sh, percpu, tx);
1952         }
1953
1954         if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1955                 if (sh->check_state == check_state_run)
1956                         ops_run_check_p(sh, percpu);
1957                 else if (sh->check_state == check_state_run_q)
1958                         ops_run_check_pq(sh, percpu, 0);
1959                 else if (sh->check_state == check_state_run_pq)
1960                         ops_run_check_pq(sh, percpu, 1);
1961                 else
1962                         BUG();
1963         }
1964
1965         if (overlap_clear && !sh->batch_head)
1966                 for (i = disks; i--; ) {
1967                         struct r5dev *dev = &sh->dev[i];
1968                         if (test_and_clear_bit(R5_Overlap, &dev->flags))
1969                                 wake_up(&sh->raid_conf->wait_for_overlap);
1970                 }
1971         put_cpu();
1972 }
1973
1974 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp)
1975 {
1976         struct stripe_head *sh;
1977
1978         sh = kmem_cache_zalloc(sc, gfp);
1979         if (sh) {
1980                 spin_lock_init(&sh->stripe_lock);
1981                 spin_lock_init(&sh->batch_lock);
1982                 INIT_LIST_HEAD(&sh->batch_list);
1983                 INIT_LIST_HEAD(&sh->lru);
1984                 atomic_set(&sh->count, 1);
1985         }
1986         return sh;
1987 }
1988 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
1989 {
1990         struct stripe_head *sh;
1991
1992         sh = alloc_stripe(conf->slab_cache, gfp);
1993         if (!sh)
1994                 return 0;
1995
1996         sh->raid_conf = conf;
1997
1998         if (grow_buffers(sh, gfp)) {
1999                 shrink_buffers(sh);
2000                 kmem_cache_free(conf->slab_cache, sh);
2001                 return 0;
2002         }
2003         sh->hash_lock_index =
2004                 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2005         /* we just created an active stripe so... */
2006         atomic_inc(&conf->active_stripes);
2007
2008         release_stripe(sh);
2009         conf->max_nr_stripes++;
2010         return 1;
2011 }
2012
2013 static int grow_stripes(struct r5conf *conf, int num)
2014 {
2015         struct kmem_cache *sc;
2016         int devs = max(conf->raid_disks, conf->previous_raid_disks);
2017
2018         if (conf->mddev->gendisk)
2019                 sprintf(conf->cache_name[0],
2020                         "raid%d-%s", conf->level, mdname(conf->mddev));
2021         else
2022                 sprintf(conf->cache_name[0],
2023                         "raid%d-%p", conf->level, conf->mddev);
2024         sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
2025
2026         conf->active_name = 0;
2027         sc = kmem_cache_create(conf->cache_name[conf->active_name],
2028                                sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2029                                0, 0, NULL);
2030         if (!sc)
2031                 return 1;
2032         conf->slab_cache = sc;
2033         conf->pool_size = devs;
2034         while (num--)
2035                 if (!grow_one_stripe(conf, GFP_KERNEL))
2036                         return 1;
2037
2038         return 0;
2039 }
2040
2041 /**
2042  * scribble_len - return the required size of the scribble region
2043  * @num - total number of disks in the array
2044  *
2045  * The size must be enough to contain:
2046  * 1/ a struct page pointer for each device in the array +2
2047  * 2/ room to convert each entry in (1) to its corresponding dma
2048  *    (dma_map_page()) or page (page_address()) address.
2049  *
2050  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2051  * calculate over all devices (not just the data blocks), using zeros in place
2052  * of the P and Q blocks.
2053  */
2054 static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
2055 {
2056         struct flex_array *ret;
2057         size_t len;
2058
2059         len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
2060         ret = flex_array_alloc(len, cnt, flags);
2061         if (!ret)
2062                 return NULL;
2063         /* always prealloc all elements, so no locking is required */
2064         if (flex_array_prealloc(ret, 0, cnt, flags)) {
2065                 flex_array_free(ret);
2066                 return NULL;
2067         }
2068         return ret;
2069 }
2070
2071 static int resize_stripes(struct r5conf *conf, int newsize)
2072 {
2073         /* Make all the stripes able to hold 'newsize' devices.
2074          * New slots in each stripe get 'page' set to a new page.
2075          *
2076          * This happens in stages:
2077          * 1/ create a new kmem_cache and allocate the required number of
2078          *    stripe_heads.
2079          * 2/ gather all the old stripe_heads and transfer the pages across
2080          *    to the new stripe_heads.  This will have the side effect of
2081          *    freezing the array as once all stripe_heads have been collected,
2082          *    no IO will be possible.  Old stripe heads are freed once their
2083          *    pages have been transferred over, and the old kmem_cache is
2084          *    freed when all stripes are done.
2085          * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2086          *    we simple return a failre status - no need to clean anything up.
2087          * 4/ allocate new pages for the new slots in the new stripe_heads.
2088          *    If this fails, we don't bother trying the shrink the
2089          *    stripe_heads down again, we just leave them as they are.
2090          *    As each stripe_head is processed the new one is released into
2091          *    active service.
2092          *
2093          * Once step2 is started, we cannot afford to wait for a write,
2094          * so we use GFP_NOIO allocations.
2095          */
2096         struct stripe_head *osh, *nsh;
2097         LIST_HEAD(newstripes);
2098         struct disk_info *ndisks;
2099         unsigned long cpu;
2100         int err;
2101         struct kmem_cache *sc;
2102         int i;
2103         int hash, cnt;
2104
2105         if (newsize <= conf->pool_size)
2106                 return 0; /* never bother to shrink */
2107
2108         err = md_allow_write(conf->mddev);
2109         if (err)
2110                 return err;
2111
2112         /* Step 1 */
2113         sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2114                                sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2115                                0, 0, NULL);
2116         if (!sc)
2117                 return -ENOMEM;
2118
2119         for (i = conf->max_nr_stripes; i; i--) {
2120                 nsh = alloc_stripe(sc, GFP_KERNEL);
2121                 if (!nsh)
2122                         break;
2123
2124                 nsh->raid_conf = conf;
2125                 list_add(&nsh->lru, &newstripes);
2126         }
2127         if (i) {
2128                 /* didn't get enough, give up */
2129                 while (!list_empty(&newstripes)) {
2130                         nsh = list_entry(newstripes.next, struct stripe_head, lru);
2131                         list_del(&nsh->lru);
2132                         kmem_cache_free(sc, nsh);
2133                 }
2134                 kmem_cache_destroy(sc);
2135                 return -ENOMEM;
2136         }
2137         /* Step 2 - Must use GFP_NOIO now.
2138          * OK, we have enough stripes, start collecting inactive
2139          * stripes and copying them over
2140          */
2141         hash = 0;
2142         cnt = 0;
2143         list_for_each_entry(nsh, &newstripes, lru) {
2144                 lock_device_hash_lock(conf, hash);
2145                 wait_event_cmd(conf->wait_for_stripe,
2146                                     !list_empty(conf->inactive_list + hash),
2147                                     unlock_device_hash_lock(conf, hash),
2148                                     lock_device_hash_lock(conf, hash));
2149                 osh = get_free_stripe(conf, hash);
2150                 unlock_device_hash_lock(conf, hash);
2151
2152                 for(i=0; i<conf->pool_size; i++) {
2153                         nsh->dev[i].page = osh->dev[i].page;
2154                         nsh->dev[i].orig_page = osh->dev[i].page;
2155                 }
2156                 nsh->hash_lock_index = hash;
2157                 kmem_cache_free(conf->slab_cache, osh);
2158                 cnt++;
2159                 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2160                     !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2161                         hash++;
2162                         cnt = 0;
2163                 }
2164         }
2165         kmem_cache_destroy(conf->slab_cache);
2166
2167         /* Step 3.
2168          * At this point, we are holding all the stripes so the array
2169          * is completely stalled, so now is a good time to resize
2170          * conf->disks and the scribble region
2171          */
2172         ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
2173         if (ndisks) {
2174                 for (i=0; i<conf->raid_disks; i++)
2175                         ndisks[i] = conf->disks[i];
2176                 kfree(conf->disks);
2177                 conf->disks = ndisks;
2178         } else
2179                 err = -ENOMEM;
2180
2181         get_online_cpus();
2182         for_each_present_cpu(cpu) {
2183                 struct raid5_percpu *percpu;
2184                 struct flex_array *scribble;
2185
2186                 percpu = per_cpu_ptr(conf->percpu, cpu);
2187                 scribble = scribble_alloc(newsize, conf->chunk_sectors /
2188                         STRIPE_SECTORS, GFP_NOIO);
2189
2190                 if (scribble) {
2191                         flex_array_free(percpu->scribble);
2192                         percpu->scribble = scribble;
2193                 } else {
2194                         err = -ENOMEM;
2195                         break;
2196                 }
2197         }
2198         put_online_cpus();
2199
2200         /* Step 4, return new stripes to service */
2201         while(!list_empty(&newstripes)) {
2202                 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2203                 list_del_init(&nsh->lru);
2204
2205                 for (i=conf->raid_disks; i < newsize; i++)
2206                         if (nsh->dev[i].page == NULL) {
2207                                 struct page *p = alloc_page(GFP_NOIO);
2208                                 nsh->dev[i].page = p;
2209                                 nsh->dev[i].orig_page = p;
2210                                 if (!p)
2211                                         err = -ENOMEM;
2212                         }
2213                 release_stripe(nsh);
2214         }
2215         /* critical section pass, GFP_NOIO no longer needed */
2216
2217         conf->slab_cache = sc;
2218         conf->active_name = 1-conf->active_name;
2219         conf->pool_size = newsize;
2220         return err;
2221 }
2222
2223 static int drop_one_stripe(struct r5conf *conf)
2224 {
2225         struct stripe_head *sh;
2226         int hash = (conf->max_nr_stripes - 1) % NR_STRIPE_HASH_LOCKS;
2227
2228         spin_lock_irq(conf->hash_locks + hash);
2229         sh = get_free_stripe(conf, hash);
2230         spin_unlock_irq(conf->hash_locks + hash);
2231         if (!sh)
2232                 return 0;
2233         BUG_ON(atomic_read(&sh->count));
2234         shrink_buffers(sh);
2235         kmem_cache_free(conf->slab_cache, sh);
2236         atomic_dec(&conf->active_stripes);
2237         conf->max_nr_stripes--;
2238         return 1;
2239 }
2240
2241 static void shrink_stripes(struct r5conf *conf)
2242 {
2243         while (conf->max_nr_stripes &&
2244                drop_one_stripe(conf))
2245                 ;
2246
2247         if (conf->slab_cache)
2248                 kmem_cache_destroy(conf->slab_cache);
2249         conf->slab_cache = NULL;
2250 }
2251
2252 static void raid5_end_read_request(struct bio * bi, int error)
2253 {
2254         struct stripe_head *sh = bi->bi_private;
2255         struct r5conf *conf = sh->raid_conf;
2256         int disks = sh->disks, i;
2257         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2258         char b[BDEVNAME_SIZE];
2259         struct md_rdev *rdev = NULL;
2260         sector_t s;
2261
2262         for (i=0 ; i<disks; i++)
2263                 if (bi == &sh->dev[i].req)
2264                         break;
2265
2266         pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
2267                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2268                 uptodate);
2269         if (i == disks) {
2270                 BUG();
2271                 return;
2272         }
2273         if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2274                 /* If replacement finished while this request was outstanding,
2275                  * 'replacement' might be NULL already.
2276                  * In that case it moved down to 'rdev'.
2277                  * rdev is not removed until all requests are finished.
2278                  */
2279                 rdev = conf->disks[i].replacement;
2280         if (!rdev)
2281                 rdev = conf->disks[i].rdev;
2282
2283         if (use_new_offset(conf, sh))
2284                 s = sh->sector + rdev->new_data_offset;
2285         else
2286                 s = sh->sector + rdev->data_offset;
2287         if (uptodate) {
2288                 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2289                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2290                         /* Note that this cannot happen on a
2291                          * replacement device.  We just fail those on
2292                          * any error
2293                          */
2294                         printk_ratelimited(
2295                                 KERN_INFO
2296                                 "md/raid:%s: read error corrected"
2297                                 " (%lu sectors at %llu on %s)\n",
2298                                 mdname(conf->mddev), STRIPE_SECTORS,
2299                                 (unsigned long long)s,
2300                                 bdevname(rdev->bdev, b));
2301                         atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2302                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2303                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2304                 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2305                         clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2306
2307                 if (atomic_read(&rdev->read_errors))
2308                         atomic_set(&rdev->read_errors, 0);
2309         } else {
2310                 const char *bdn = bdevname(rdev->bdev, b);
2311                 int retry = 0;
2312                 int set_bad = 0;
2313
2314                 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2315                 atomic_inc(&rdev->read_errors);
2316                 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2317                         printk_ratelimited(
2318                                 KERN_WARNING
2319                                 "md/raid:%s: read error on replacement device "
2320                                 "(sector %llu on %s).\n",
2321                                 mdname(conf->mddev),
2322                                 (unsigned long long)s,
2323                                 bdn);
2324                 else if (conf->mddev->degraded >= conf->max_degraded) {
2325                         set_bad = 1;
2326                         printk_ratelimited(
2327                                 KERN_WARNING
2328                                 "md/raid:%s: read error not correctable "
2329                                 "(sector %llu on %s).\n",
2330                                 mdname(conf->mddev),
2331                                 (unsigned long long)s,
2332                                 bdn);
2333                 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2334                         /* Oh, no!!! */
2335                         set_bad = 1;
2336                         printk_ratelimited(
2337                                 KERN_WARNING
2338                                 "md/raid:%s: read error NOT corrected!! "
2339                                 "(sector %llu on %s).\n",
2340                                 mdname(conf->mddev),
2341                                 (unsigned long long)s,
2342                                 bdn);
2343                 } else if (atomic_read(&rdev->read_errors)
2344                          > conf->max_nr_stripes)
2345                         printk(KERN_WARNING
2346                                "md/raid:%s: Too many read errors, failing device %s.\n",
2347                                mdname(conf->mddev), bdn);
2348                 else
2349                         retry = 1;
2350                 if (set_bad && test_bit(In_sync, &rdev->flags)
2351                     && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2352                         retry = 1;
2353                 if (retry)
2354                         if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2355                                 set_bit(R5_ReadError, &sh->dev[i].flags);
2356                                 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2357                         } else
2358                                 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2359                 else {
2360                         clear_bit(R5_ReadError, &sh->dev[i].flags);
2361                         clear_bit(R5_ReWrite, &sh->dev[i].flags);
2362                         if (!(set_bad
2363                               && test_bit(In_sync, &rdev->flags)
2364                               && rdev_set_badblocks(
2365                                       rdev, sh->sector, STRIPE_SECTORS, 0)))
2366                                 md_error(conf->mddev, rdev);
2367                 }
2368         }
2369         rdev_dec_pending(rdev, conf->mddev);
2370         clear_bit(R5_LOCKED, &sh->dev[i].flags);
2371         set_bit(STRIPE_HANDLE, &sh->state);
2372         release_stripe(sh);
2373 }
2374
2375 static void raid5_end_write_request(struct bio *bi, int error)
2376 {
2377         struct stripe_head *sh = bi->bi_private;
2378         struct r5conf *conf = sh->raid_conf;
2379         int disks = sh->disks, i;
2380         struct md_rdev *uninitialized_var(rdev);
2381         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
2382         sector_t first_bad;
2383         int bad_sectors;
2384         int replacement = 0;
2385
2386         for (i = 0 ; i < disks; i++) {
2387                 if (bi == &sh->dev[i].req) {
2388                         rdev = conf->disks[i].rdev;
2389                         break;
2390                 }
2391                 if (bi == &sh->dev[i].rreq) {
2392                         rdev = conf->disks[i].replacement;
2393                         if (rdev)
2394                                 replacement = 1;
2395                         else
2396                                 /* rdev was removed and 'replacement'
2397                                  * replaced it.  rdev is not removed
2398                                  * until all requests are finished.
2399                                  */
2400                                 rdev = conf->disks[i].rdev;
2401                         break;
2402                 }
2403         }
2404         pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
2405                 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2406                 uptodate);
2407         if (i == disks) {
2408                 BUG();
2409                 return;
2410         }
2411
2412         if (replacement) {
2413                 if (!uptodate)
2414                         md_error(conf->mddev, rdev);
2415                 else if (is_badblock(rdev, sh->sector,
2416                                      STRIPE_SECTORS,
2417                                      &first_bad, &bad_sectors))
2418                         set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2419         } else {
2420                 if (!uptodate) {
2421                         set_bit(STRIPE_DEGRADED, &sh->state);
2422                         set_bit(WriteErrorSeen, &rdev->flags);
2423                         set_bit(R5_WriteError, &sh->dev[i].flags);
2424                         if (!test_and_set_bit(WantReplacement, &rdev->flags))
2425                                 set_bit(MD_RECOVERY_NEEDED,
2426                                         &rdev->mddev->recovery);
2427                 } else if (is_badblock(rdev, sh->sector,
2428                                        STRIPE_SECTORS,
2429                                        &first_bad, &bad_sectors)) {
2430                         set_bit(R5_MadeGood, &sh->dev[i].flags);
2431                         if (test_bit(R5_ReadError, &sh->dev[i].flags))
2432                                 /* That was a successful write so make
2433                                  * sure it looks like we already did
2434                                  * a re-write.
2435                                  */
2436                                 set_bit(R5_ReWrite, &sh->dev[i].flags);
2437                 }
2438         }
2439         rdev_dec_pending(rdev, conf->mddev);
2440
2441         if (sh->batch_head && !uptodate)
2442                 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2443
2444         if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2445                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2446         set_bit(STRIPE_HANDLE, &sh->state);
2447         release_stripe(sh);
2448
2449         if (sh->batch_head && sh != sh->batch_head)
2450                 release_stripe(sh->batch_head);
2451 }
2452
2453 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
2454
2455 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
2456 {
2457         struct r5dev *dev = &sh->dev[i];
2458
2459         bio_init(&dev->req);
2460         dev->req.bi_io_vec = &dev->vec;
2461         dev->req.bi_max_vecs = 1;
2462         dev->req.bi_private = sh;
2463
2464         bio_init(&dev->rreq);
2465         dev->rreq.bi_io_vec = &dev->rvec;
2466         dev->rreq.bi_max_vecs = 1;
2467         dev->rreq.bi_private = sh;
2468
2469         dev->flags = 0;
2470         dev->sector = compute_blocknr(sh, i, previous);
2471 }
2472
2473 static void error(struct mddev *mddev, struct md_rdev *rdev)
2474 {
2475         char b[BDEVNAME_SIZE];
2476         struct r5conf *conf = mddev->private;
2477         unsigned long flags;
2478         pr_debug("raid456: error called\n");
2479
2480         spin_lock_irqsave(&conf->device_lock, flags);
2481         clear_bit(In_sync, &rdev->flags);
2482         mddev->degraded = calc_degraded(conf);
2483         spin_unlock_irqrestore(&conf->device_lock, flags);
2484         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2485
2486         set_bit(Blocked, &rdev->flags);
2487         set_bit(Faulty, &rdev->flags);
2488         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2489         printk(KERN_ALERT
2490                "md/raid:%s: Disk failure on %s, disabling device.\n"
2491                "md/raid:%s: Operation continuing on %d devices.\n",
2492                mdname(mddev),
2493                bdevname(rdev->bdev, b),
2494                mdname(mddev),
2495                conf->raid_disks - mddev->degraded);
2496 }
2497
2498 /*
2499  * Input: a 'big' sector number,
2500  * Output: index of the data and parity disk, and the sector # in them.
2501  */
2502 static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2503                                      int previous, int *dd_idx,
2504                                      struct stripe_head *sh)
2505 {
2506         sector_t stripe, stripe2;
2507         sector_t chunk_number;
2508         unsigned int chunk_offset;
2509         int pd_idx, qd_idx;
2510         int ddf_layout = 0;
2511         sector_t new_sector;
2512         int algorithm = previous ? conf->prev_algo
2513                                  : conf->algorithm;
2514         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2515                                          : conf->chunk_sectors;
2516         int raid_disks = previous ? conf->previous_raid_disks
2517                                   : conf->raid_disks;
2518         int data_disks = raid_disks - conf->max_degraded;
2519
2520         /* First compute the information on this sector */
2521
2522         /*
2523          * Compute the chunk number and the sector offset inside the chunk
2524          */
2525         chunk_offset = sector_div(r_sector, sectors_per_chunk);
2526         chunk_number = r_sector;
2527
2528         /*
2529          * Compute the stripe number
2530          */
2531         stripe = chunk_number;
2532         *dd_idx = sector_div(stripe, data_disks);
2533         stripe2 = stripe;
2534         /*
2535          * Select the parity disk based on the user selected algorithm.
2536          */
2537         pd_idx = qd_idx = -1;
2538         switch(conf->level) {
2539         case 4:
2540                 pd_idx = data_disks;
2541                 break;
2542         case 5:
2543                 switch (algorithm) {
2544                 case ALGORITHM_LEFT_ASYMMETRIC:
2545                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2546                         if (*dd_idx >= pd_idx)
2547                                 (*dd_idx)++;
2548                         break;
2549                 case ALGORITHM_RIGHT_ASYMMETRIC:
2550                         pd_idx = sector_div(stripe2, raid_disks);
2551                         if (*dd_idx >= pd_idx)
2552                                 (*dd_idx)++;
2553                         break;
2554                 case ALGORITHM_LEFT_SYMMETRIC:
2555                         pd_idx = data_disks - sector_div(stripe2, raid_disks);
2556                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2557                         break;
2558                 case ALGORITHM_RIGHT_SYMMETRIC:
2559                         pd_idx = sector_div(stripe2, raid_disks);
2560                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2561                         break;
2562                 case ALGORITHM_PARITY_0:
2563                         pd_idx = 0;
2564                         (*dd_idx)++;
2565                         break;
2566                 case ALGORITHM_PARITY_N:
2567                         pd_idx = data_disks;
2568                         break;
2569                 default:
2570                         BUG();
2571                 }
2572                 break;
2573         case 6:
2574
2575                 switch (algorithm) {
2576                 case ALGORITHM_LEFT_ASYMMETRIC:
2577                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2578                         qd_idx = pd_idx + 1;
2579                         if (pd_idx == raid_disks-1) {
2580                                 (*dd_idx)++;    /* Q D D D P */
2581                                 qd_idx = 0;
2582                         } else if (*dd_idx >= pd_idx)
2583                                 (*dd_idx) += 2; /* D D P Q D */
2584                         break;
2585                 case ALGORITHM_RIGHT_ASYMMETRIC:
2586                         pd_idx = sector_div(stripe2, raid_disks);
2587                         qd_idx = pd_idx + 1;
2588                         if (pd_idx == raid_disks-1) {
2589                                 (*dd_idx)++;    /* Q D D D P */
2590                                 qd_idx = 0;
2591                         } else if (*dd_idx >= pd_idx)
2592                                 (*dd_idx) += 2; /* D D P Q D */
2593                         break;
2594                 case ALGORITHM_LEFT_SYMMETRIC:
2595                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2596                         qd_idx = (pd_idx + 1) % raid_disks;
2597                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2598                         break;
2599                 case ALGORITHM_RIGHT_SYMMETRIC:
2600                         pd_idx = sector_div(stripe2, raid_disks);
2601                         qd_idx = (pd_idx + 1) % raid_disks;
2602                         *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2603                         break;
2604
2605                 case ALGORITHM_PARITY_0:
2606                         pd_idx = 0;
2607                         qd_idx = 1;
2608                         (*dd_idx) += 2;
2609                         break;
2610                 case ALGORITHM_PARITY_N:
2611                         pd_idx = data_disks;
2612                         qd_idx = data_disks + 1;
2613                         break;
2614
2615                 case ALGORITHM_ROTATING_ZERO_RESTART:
2616                         /* Exactly the same as RIGHT_ASYMMETRIC, but or
2617                          * of blocks for computing Q is different.
2618                          */
2619                         pd_idx = sector_div(stripe2, raid_disks);
2620                         qd_idx = pd_idx + 1;
2621                         if (pd_idx == raid_disks-1) {
2622                                 (*dd_idx)++;    /* Q D D D P */
2623                                 qd_idx = 0;
2624                         } else if (*dd_idx >= pd_idx)
2625                                 (*dd_idx) += 2; /* D D P Q D */
2626                         ddf_layout = 1;
2627                         break;
2628
2629                 case ALGORITHM_ROTATING_N_RESTART:
2630                         /* Same a left_asymmetric, by first stripe is
2631                          * D D D P Q  rather than
2632                          * Q D D D P
2633                          */
2634                         stripe2 += 1;
2635                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2636                         qd_idx = pd_idx + 1;
2637                         if (pd_idx == raid_disks-1) {
2638                                 (*dd_idx)++;    /* Q D D D P */
2639                                 qd_idx = 0;
2640                         } else if (*dd_idx >= pd_idx)
2641                                 (*dd_idx) += 2; /* D D P Q D */
2642                         ddf_layout = 1;
2643                         break;
2644
2645                 case ALGORITHM_ROTATING_N_CONTINUE:
2646                         /* Same as left_symmetric but Q is before P */
2647                         pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2648                         qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2649                         *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2650                         ddf_layout = 1;
2651                         break;
2652
2653                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2654                         /* RAID5 left_asymmetric, with Q on last device */
2655                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2656                         if (*dd_idx >= pd_idx)
2657                                 (*dd_idx)++;
2658                         qd_idx = raid_disks - 1;
2659                         break;
2660
2661                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2662                         pd_idx = sector_div(stripe2, raid_disks-1);
2663                         if (*dd_idx >= pd_idx)
2664                                 (*dd_idx)++;
2665                         qd_idx = raid_disks - 1;
2666                         break;
2667
2668                 case ALGORITHM_LEFT_SYMMETRIC_6:
2669                         pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2670                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2671                         qd_idx = raid_disks - 1;
2672                         break;
2673
2674                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2675                         pd_idx = sector_div(stripe2, raid_disks-1);
2676                         *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2677                         qd_idx = raid_disks - 1;
2678                         break;
2679
2680                 case ALGORITHM_PARITY_0_6:
2681                         pd_idx = 0;
2682                         (*dd_idx)++;
2683                         qd_idx = raid_disks - 1;
2684                         break;
2685
2686                 default:
2687                         BUG();
2688                 }
2689                 break;
2690         }
2691
2692         if (sh) {
2693                 sh->pd_idx = pd_idx;
2694                 sh->qd_idx = qd_idx;
2695                 sh->ddf_layout = ddf_layout;
2696         }
2697         /*
2698          * Finally, compute the new sector number
2699          */
2700         new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2701         return new_sector;
2702 }
2703
2704 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
2705 {
2706         struct r5conf *conf = sh->raid_conf;
2707         int raid_disks = sh->disks;
2708         int data_disks = raid_disks - conf->max_degraded;
2709         sector_t new_sector = sh->sector, check;
2710         int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2711                                          : conf->chunk_sectors;
2712         int algorithm = previous ? conf->prev_algo
2713                                  : conf->algorithm;
2714         sector_t stripe;
2715         int chunk_offset;
2716         sector_t chunk_number;
2717         int dummy1, dd_idx = i;
2718         sector_t r_sector;
2719         struct stripe_head sh2;
2720
2721         chunk_offset = sector_div(new_sector, sectors_per_chunk);
2722         stripe = new_sector;
2723
2724         if (i == sh->pd_idx)
2725                 return 0;
2726         switch(conf->level) {
2727         case 4: break;
2728         case 5:
2729                 switch (algorithm) {
2730                 case ALGORITHM_LEFT_ASYMMETRIC:
2731                 case ALGORITHM_RIGHT_ASYMMETRIC:
2732                         if (i > sh->pd_idx)
2733                                 i--;
2734                         break;
2735                 case ALGORITHM_LEFT_SYMMETRIC:
2736                 case ALGORITHM_RIGHT_SYMMETRIC:
2737                         if (i < sh->pd_idx)
2738                                 i += raid_disks;
2739                         i -= (sh->pd_idx + 1);
2740                         break;
2741                 case ALGORITHM_PARITY_0:
2742                         i -= 1;
2743                         break;
2744                 case ALGORITHM_PARITY_N:
2745                         break;
2746                 default:
2747                         BUG();
2748                 }
2749                 break;
2750         case 6:
2751                 if (i == sh->qd_idx)
2752                         return 0; /* It is the Q disk */
2753                 switch (algorithm) {
2754                 case ALGORITHM_LEFT_ASYMMETRIC:
2755                 case ALGORITHM_RIGHT_ASYMMETRIC:
2756                 case ALGORITHM_ROTATING_ZERO_RESTART:
2757                 case ALGORITHM_ROTATING_N_RESTART:
2758                         if (sh->pd_idx == raid_disks-1)
2759                                 i--;    /* Q D D D P */
2760                         else if (i > sh->pd_idx)
2761                                 i -= 2; /* D D P Q D */
2762                         break;
2763                 case ALGORITHM_LEFT_SYMMETRIC:
2764                 case ALGORITHM_RIGHT_SYMMETRIC:
2765                         if (sh->pd_idx == raid_disks-1)
2766                                 i--; /* Q D D D P */
2767                         else {
2768                                 /* D D P Q D */
2769                                 if (i < sh->pd_idx)
2770                                         i += raid_disks;
2771                                 i -= (sh->pd_idx + 2);
2772                         }
2773                         break;
2774                 case ALGORITHM_PARITY_0:
2775                         i -= 2;
2776                         break;
2777                 case ALGORITHM_PARITY_N:
2778                         break;
2779                 case ALGORITHM_ROTATING_N_CONTINUE:
2780                         /* Like left_symmetric, but P is before Q */
2781                         if (sh->pd_idx == 0)
2782                                 i--;    /* P D D D Q */
2783                         else {
2784                                 /* D D Q P D */
2785                                 if (i < sh->pd_idx)
2786                                         i += raid_disks;
2787                                 i -= (sh->pd_idx + 1);
2788                         }
2789                         break;
2790                 case ALGORITHM_LEFT_ASYMMETRIC_6:
2791                 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2792                         if (i > sh->pd_idx)
2793                                 i--;
2794                         break;
2795                 case ALGORITHM_LEFT_SYMMETRIC_6:
2796                 case ALGORITHM_RIGHT_SYMMETRIC_6:
2797                         if (i < sh->pd_idx)
2798                                 i += data_disks + 1;
2799                         i -= (sh->pd_idx + 1);
2800                         break;
2801                 case ALGORITHM_PARITY_0_6:
2802                         i -= 1;
2803                         break;
2804                 default:
2805                         BUG();
2806                 }
2807                 break;
2808         }
2809
2810         chunk_number = stripe * data_disks + i;
2811         r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2812
2813         check = raid5_compute_sector(conf, r_sector,
2814                                      previous, &dummy1, &sh2);
2815         if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2816                 || sh2.qd_idx != sh->qd_idx) {
2817                 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2818                        mdname(conf->mddev));
2819                 return 0;
2820         }
2821         return r_sector;
2822 }
2823
2824 static void
2825 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2826                          int rcw, int expand)
2827 {
2828         int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
2829         struct r5conf *conf = sh->raid_conf;
2830         int level = conf->level;
2831
2832         if (rcw) {
2833
2834                 for (i = disks; i--; ) {
2835                         struct r5dev *dev = &sh->dev[i];
2836
2837                         if (dev->towrite) {
2838                                 set_bit(R5_LOCKED, &dev->flags);
2839                                 set_bit(R5_Wantdrain, &dev->flags);
2840                                 if (!expand)
2841                                         clear_bit(R5_UPTODATE, &dev->flags);
2842                                 s->locked++;
2843                         }
2844                 }
2845                 /* if we are not expanding this is a proper write request, and
2846                  * there will be bios with new data to be drained into the
2847                  * stripe cache
2848                  */
2849                 if (!expand) {
2850                         if (!s->locked)
2851                                 /* False alarm, nothing to do */
2852                                 return;
2853                         sh->reconstruct_state = reconstruct_state_drain_run;
2854                         set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2855                 } else
2856                         sh->reconstruct_state = reconstruct_state_run;
2857
2858                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2859
2860                 if (s->locked + conf->max_degraded == disks)
2861                         if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2862                                 atomic_inc(&conf->pending_full_writes);
2863         } else {
2864                 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2865                         test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2866                 BUG_ON(level == 6 &&
2867                         (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
2868                            test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
2869
2870                 for (i = disks; i--; ) {
2871                         struct r5dev *dev = &sh->dev[i];
2872                         if (i == pd_idx || i == qd_idx)
2873                                 continue;
2874
2875                         if (dev->towrite &&
2876                             (test_bit(R5_UPTODATE, &dev->flags) ||
2877                              test_bit(R5_Wantcompute, &dev->flags))) {
2878                                 set_bit(R5_Wantdrain, &dev->flags);
2879                                 set_bit(R5_LOCKED, &dev->flags);
2880                                 clear_bit(R5_UPTODATE, &dev->flags);
2881                                 s->locked++;
2882                         }
2883                 }
2884                 if (!s->locked)
2885                         /* False alarm - nothing to do */
2886                         return;
2887                 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2888                 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2889                 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2890                 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2891         }
2892
2893         /* keep the parity disk(s) locked while asynchronous operations
2894          * are in flight
2895          */
2896         set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2897         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2898         s->locked++;
2899
2900         if (level == 6) {
2901                 int qd_idx = sh->qd_idx;
2902                 struct r5dev *dev = &sh->dev[qd_idx];
2903
2904                 set_bit(R5_LOCKED, &dev->flags);
2905                 clear_bit(R5_UPTODATE, &dev->flags);
2906                 s->locked++;
2907         }
2908
2909         pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2910                 __func__, (unsigned long long)sh->sector,
2911                 s->locked, s->ops_request);
2912 }
2913
2914 /*
2915  * Each stripe/dev can have one or more bion attached.
2916  * toread/towrite point to the first in a chain.
2917  * The bi_next chain must be in order.
2918  */
2919 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
2920                           int forwrite, int previous)
2921 {
2922         struct bio **bip;
2923         struct r5conf *conf = sh->raid_conf;
2924         int firstwrite=0;
2925
2926         pr_debug("adding bi b#%llu to stripe s#%llu\n",
2927                 (unsigned long long)bi->bi_iter.bi_sector,
2928                 (unsigned long long)sh->sector);
2929
2930         /*
2931          * If several bio share a stripe. The bio bi_phys_segments acts as a
2932          * reference count to avoid race. The reference count should already be
2933          * increased before this function is called (for example, in
2934          * make_request()), so other bio sharing this stripe will not free the
2935          * stripe. If a stripe is owned by one stripe, the stripe lock will
2936          * protect it.
2937          */
2938         spin_lock_irq(&sh->stripe_lock);
2939         /* Don't allow new IO added to stripes in batch list */
2940         if (sh->batch_head)
2941                 goto overlap;
2942         if (forwrite) {
2943                 bip = &sh->dev[dd_idx].towrite;
2944                 if (*bip == NULL)
2945                         firstwrite = 1;
2946         } else
2947                 bip = &sh->dev[dd_idx].toread;
2948         while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
2949                 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
2950                         goto overlap;
2951                 bip = & (*bip)->bi_next;
2952         }
2953         if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
2954                 goto overlap;
2955
2956         if (!forwrite || previous)
2957                 clear_bit(STRIPE_BATCH_READY, &sh->state);
2958
2959         BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2960         if (*bip)
2961                 bi->bi_next = *bip;
2962         *bip = bi;
2963         raid5_inc_bi_active_stripes(bi);
2964
2965         if (forwrite) {
2966                 /* check if page is covered */
2967                 sector_t sector = sh->dev[dd_idx].sector;
2968                 for (bi=sh->dev[dd_idx].towrite;
2969                      sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2970                              bi && bi->bi_iter.bi_sector <= sector;
2971                      bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2972                         if (bio_end_sector(bi) >= sector)
2973                                 sector = bio_end_sector(bi);
2974                 }
2975                 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2976                         if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
2977                                 sh->overwrite_disks++;
2978         }
2979
2980         pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2981                 (unsigned long long)(*bip)->bi_iter.bi_sector,
2982                 (unsigned long long)sh->sector, dd_idx);
2983         spin_unlock_irq(&sh->stripe_lock);
2984
2985         if (conf->mddev->bitmap && firstwrite) {
2986                 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2987                                   STRIPE_SECTORS, 0);
2988                 sh->bm_seq = conf->seq_flush+1;
2989                 set_bit(STRIPE_BIT_DELAY, &sh->state);
2990         }
2991
2992         if (stripe_can_batch(sh))
2993                 stripe_add_to_batch_list(conf, sh);
2994         return 1;
2995
2996  overlap:
2997         set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2998         spin_unlock_irq(&sh->stripe_lock);
2999         return 0;
3000 }
3001
3002 static void end_reshape(struct r5conf *conf);
3003
3004 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3005                             struct stripe_head *sh)
3006 {
3007         int sectors_per_chunk =
3008                 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3009         int dd_idx;
3010         int chunk_offset = sector_div(stripe, sectors_per_chunk);
3011         int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3012
3013         raid5_compute_sector(conf,
3014                              stripe * (disks - conf->max_degraded)
3015                              *sectors_per_chunk + chunk_offset,
3016                              previous,
3017                              &dd_idx, sh);
3018 }
3019
3020 static void
3021 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3022                                 struct stripe_head_state *s, int disks,
3023                                 struct bio **return_bi)
3024 {
3025         int i;
3026         BUG_ON(sh->batch_head);
3027         for (i = disks; i--; ) {
3028                 struct bio *bi;
3029                 int bitmap_end = 0;
3030
3031                 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3032                         struct md_rdev *rdev;
3033                         rcu_read_lock();
3034                         rdev = rcu_dereference(conf->disks[i].rdev);
3035                         if (rdev && test_bit(In_sync, &rdev->flags))
3036                                 atomic_inc(&rdev->nr_pending);
3037                         else
3038                                 rdev = NULL;
3039                         rcu_read_unlock();
3040                         if (rdev) {
3041                                 if (!rdev_set_badblocks(
3042                                             rdev,
3043                                             sh->sector,
3044                                             STRIPE_SECTORS, 0))
3045                                         md_error(conf->mddev, rdev);
3046                                 rdev_dec_pending(rdev, conf->mddev);
3047                         }
3048                 }
3049                 spin_lock_irq(&sh->stripe_lock);
3050                 /* fail all writes first */
3051                 bi = sh->dev[i].towrite;
3052                 sh->dev[i].towrite = NULL;
3053                 sh->overwrite_disks = 0;
3054                 spin_unlock_irq(&sh->stripe_lock);
3055                 if (bi)
3056                         bitmap_end = 1;
3057
3058                 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3059                         wake_up(&conf->wait_for_overlap);
3060
3061                 while (bi && bi->bi_iter.bi_sector <
3062                         sh->dev[i].sector + STRIPE_SECTORS) {
3063                         struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3064                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
3065                         if (!raid5_dec_bi_active_stripes(bi)) {
3066                                 md_write_end(conf->mddev);
3067                                 bi->bi_next = *return_bi;
3068                                 *return_bi = bi;
3069                         }
3070                         bi = nextbi;
3071                 }
3072                 if (bitmap_end)
3073                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3074                                 STRIPE_SECTORS, 0, 0);
3075                 bitmap_end = 0;
3076                 /* and fail all 'written' */
3077                 bi = sh->dev[i].written;
3078                 sh->dev[i].written = NULL;
3079                 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3080                         WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3081                         sh->dev[i].page = sh->dev[i].orig_page;
3082                 }
3083
3084                 if (bi) bitmap_end = 1;
3085                 while (bi && bi->bi_iter.bi_sector <
3086                        sh->dev[i].sector + STRIPE_SECTORS) {
3087                         struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3088                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
3089                         if (!raid5_dec_bi_active_stripes(bi)) {
3090                                 md_write_end(conf->mddev);
3091                                 bi->bi_next = *return_bi;
3092                                 *return_bi = bi;
3093                         }
3094                         bi = bi2;
3095                 }
3096
3097                 /* fail any reads if this device is non-operational and
3098                  * the data has not reached the cache yet.
3099                  */
3100                 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3101                     (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3102                       test_bit(R5_ReadError, &sh->dev[i].flags))) {
3103                         spin_lock_irq(&sh->stripe_lock);
3104                         bi = sh->dev[i].toread;
3105                         sh->dev[i].toread = NULL;
3106                         spin_unlock_irq(&sh->stripe_lock);
3107                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3108                                 wake_up(&conf->wait_for_overlap);
3109                         while (bi && bi->bi_iter.bi_sector <
3110                                sh->dev[i].sector + STRIPE_SECTORS) {
3111                                 struct bio *nextbi =
3112                                         r5_next_bio(bi, sh->dev[i].sector);
3113                                 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3114                                 if (!raid5_dec_bi_active_stripes(bi)) {
3115                                         bi->bi_next = *return_bi;
3116                                         *return_bi = bi;
3117                                 }
3118                                 bi = nextbi;
3119                         }
3120                 }
3121                 if (bitmap_end)
3122                         bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3123                                         STRIPE_SECTORS, 0, 0);
3124                 /* If we were in the middle of a write the parity block might
3125                  * still be locked - so just clear all R5_LOCKED flags
3126                  */
3127                 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3128         }
3129
3130         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3131                 if (atomic_dec_and_test(&conf->pending_full_writes))
3132                         md_wakeup_thread(conf->mddev->thread);
3133 }
3134
3135 static void
3136 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3137                    struct stripe_head_state *s)
3138 {
3139         int abort = 0;
3140         int i;
3141
3142         BUG_ON(sh->batch_head);
3143         clear_bit(STRIPE_SYNCING, &sh->state);
3144         if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3145                 wake_up(&conf->wait_for_overlap);
3146         s->syncing = 0;
3147         s->replacing = 0;
3148         /* There is nothing more to do for sync/check/repair.
3149          * Don't even need to abort as that is handled elsewhere
3150          * if needed, and not always wanted e.g. if there is a known
3151          * bad block here.
3152          * For recover/replace we need to record a bad block on all
3153          * non-sync devices, or abort the recovery
3154          */
3155         if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3156                 /* During recovery devices cannot be removed, so
3157                  * locking and refcounting of rdevs is not needed
3158                  */
3159                 for (i = 0; i < conf->raid_disks; i++) {
3160                         struct md_rdev *rdev = conf->disks[i].rdev;
3161                         if (rdev
3162                             && !test_bit(Faulty, &rdev->flags)
3163                             && !test_bit(In_sync, &rdev->flags)
3164                             && !rdev_set_badblocks(rdev, sh->sector,
3165                                                    STRIPE_SECTORS, 0))
3166                                 abort = 1;
3167                         rdev = conf->disks[i].replacement;
3168                         if (rdev
3169                             && !test_bit(Faulty, &rdev->flags)
3170                             && !test_bit(In_sync, &rdev->flags)
3171                             && !rdev_set_badblocks(rdev, sh->sector,
3172                                                    STRIPE_SECTORS, 0))
3173                                 abort = 1;
3174                 }
3175                 if (abort)
3176                         conf->recovery_disabled =
3177                                 conf->mddev->recovery_disabled;
3178         }
3179         md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3180 }
3181
3182 static int want_replace(struct stripe_head *sh, int disk_idx)
3183 {
3184         struct md_rdev *rdev;
3185         int rv = 0;
3186         /* Doing recovery so rcu locking not required */
3187         rdev = sh->raid_conf->disks[disk_idx].replacement;
3188         if (rdev
3189             && !test_bit(Faulty, &rdev->flags)
3190             && !test_bit(In_sync, &rdev->flags)
3191             && (rdev->recovery_offset <= sh->sector
3192                 || rdev->mddev->recovery_cp <= sh->sector))
3193                 rv = 1;
3194
3195         return rv;
3196 }
3197
3198 /* fetch_block - checks the given member device to see if its data needs
3199  * to be read or computed to satisfy a request.
3200  *
3201  * Returns 1 when no more member devices need to be checked, otherwise returns
3202  * 0 to tell the loop in handle_stripe_fill to continue
3203  */
3204
3205 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3206                            int disk_idx, int disks)
3207 {
3208         struct r5dev *dev = &sh->dev[disk_idx];
3209         struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3210                                   &sh->dev[s->failed_num[1]] };
3211         int i;
3212
3213
3214         if (test_bit(R5_LOCKED, &dev->flags) ||
3215             test_bit(R5_UPTODATE, &dev->flags))
3216                 /* No point reading this as we already have it or have
3217                  * decided to get it.
3218                  */
3219                 return 0;
3220
3221         if (dev->toread ||
3222             (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3223                 /* We need this block to directly satisfy a request */
3224                 return 1;
3225
3226         if (s->syncing || s->expanding ||
3227             (s->replacing && want_replace(sh, disk_idx)))
3228                 /* When syncing, or expanding we read everything.
3229                  * When replacing, we need the replaced block.
3230                  */
3231                 return 1;
3232
3233         if ((s->failed >= 1 && fdev[0]->toread) ||
3234             (s->failed >= 2 && fdev[1]->toread))
3235                 /* If we want to read from a failed device, then
3236                  * we need to actually read every other device.
3237                  */
3238                 return 1;
3239
3240         /* Sometimes neither read-modify-write nor reconstruct-write
3241          * cycles can work.  In those cases we read every block we
3242          * can.  Then the parity-update is certain to have enough to
3243          * work with.
3244          * This can only be a problem when we need to write something,
3245          * and some device has failed.  If either of those tests
3246          * fail we need look no further.
3247          */
3248         if (!s->failed || !s->to_write)
3249                 return 0;
3250
3251         if (test_bit(R5_Insync, &dev->flags) &&
3252             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3253                 /* Pre-reads at not permitted until after short delay
3254                  * to gather multiple requests.  However if this
3255                  * device is no Insync, the block could only be be computed
3256                  * and there is no need to delay that.
3257                  */
3258                 return 0;
3259
3260         for (i = 0; i < s->failed; i++) {
3261                 if (fdev[i]->towrite &&
3262                     !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3263                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3264                         /* If we have a partial write to a failed
3265                          * device, then we will need to reconstruct
3266                          * the content of that device, so all other
3267                          * devices must be read.
3268                          */
3269                         return 1;
3270         }
3271
3272         /* If we are forced to do a reconstruct-write, either because
3273          * the current RAID6 implementation only supports that, or
3274          * or because parity cannot be trusted and we are currently
3275          * recovering it, there is extra need to be careful.
3276          * If one of the devices that we would need to read, because
3277          * it is not being overwritten (and maybe not written at all)
3278          * is missing/faulty, then we need to read everything we can.
3279          */
3280         if (sh->raid_conf->level != 6 &&
3281             sh->sector < sh->raid_conf->mddev->recovery_cp)
3282                 /* reconstruct-write isn't being forced */
3283                 return 0;
3284         for (i = 0; i < s->failed; i++) {
3285                 if (!test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3286                     !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3287                         return 1;
3288         }
3289
3290         return 0;
3291 }
3292
3293 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3294                        int disk_idx, int disks)
3295 {
3296         struct r5dev *dev = &sh->dev[disk_idx];
3297
3298         /* is the data in this block needed, and can we get it? */
3299         if (need_this_block(sh, s, disk_idx, disks)) {
3300                 /* we would like to get this block, possibly by computing it,
3301                  * otherwise read it if the backing disk is insync
3302                  */
3303                 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3304                 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3305                 BUG_ON(sh->batch_head);
3306                 if ((s->uptodate == disks - 1) &&
3307                     (s->failed && (disk_idx == s->failed_num[0] ||
3308                                    disk_idx == s->failed_num[1]))) {
3309                         /* have disk failed, and we're requested to fetch it;
3310                          * do compute it
3311                          */
3312                         pr_debug("Computing stripe %llu block %d\n",
3313                                (unsigned long long)sh->sector, disk_idx);
3314                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3315                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3316                         set_bit(R5_Wantcompute, &dev->flags);
3317                         sh->ops.target = disk_idx;
3318                         sh->ops.target2 = -1; /* no 2nd target */
3319                         s->req_compute = 1;
3320                         /* Careful: from this point on 'uptodate' is in the eye
3321                          * of raid_run_ops which services 'compute' operations
3322                          * before writes. R5_Wantcompute flags a block that will
3323                          * be R5_UPTODATE by the time it is needed for a
3324                          * subsequent operation.
3325                          */
3326                         s->uptodate++;
3327                         return 1;
3328                 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3329                         /* Computing 2-failure is *very* expensive; only
3330                          * do it if failed >= 2
3331                          */
3332                         int other;
3333                         for (other = disks; other--; ) {
3334                                 if (other == disk_idx)
3335                                         continue;
3336                                 if (!test_bit(R5_UPTODATE,
3337                                       &sh->dev[other].flags))
3338                                         break;
3339                         }
3340                         BUG_ON(other < 0);
3341                         pr_debug("Computing stripe %llu blocks %d,%d\n",
3342                                (unsigned long long)sh->sector,
3343                                disk_idx, other);
3344                         set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3345                         set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3346                         set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3347                         set_bit(R5_Wantcompute, &sh->dev[other].flags);
3348                         sh->ops.target = disk_idx;
3349                         sh->ops.target2 = other;
3350                         s->uptodate += 2;
3351                         s->req_compute = 1;
3352                         return 1;
3353                 } else if (test_bit(R5_Insync, &dev->flags)) {
3354                         set_bit(R5_LOCKED, &dev->flags);
3355                         set_bit(R5_Wantread, &dev->flags);
3356                         s->locked++;
3357                         pr_debug("Reading block %d (sync=%d)\n",
3358                                 disk_idx, s->syncing);
3359                 }
3360         }
3361
3362         return 0;
3363 }
3364
3365 /**
3366  * handle_stripe_fill - read or compute data to satisfy pending requests.
3367  */
3368 static void handle_stripe_fill(struct stripe_head *sh,
3369                                struct stripe_head_state *s,
3370                                int disks)
3371 {
3372         int i;
3373
3374         /* look for blocks to read/compute, skip this if a compute
3375          * is already in flight, or if the stripe contents are in the
3376          * midst of changing due to a write
3377          */
3378         if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3379             !sh->reconstruct_state)
3380                 for (i = disks; i--; )
3381                         if (fetch_block(sh, s, i, disks))
3382                                 break;
3383         set_bit(STRIPE_HANDLE, &sh->state);
3384 }
3385
3386 /* handle_stripe_clean_event
3387  * any written block on an uptodate or failed drive can be returned.
3388  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3389  * never LOCKED, so we don't need to test 'failed' directly.
3390  */
3391 static void handle_stripe_clean_event(struct r5conf *conf,
3392         struct stripe_head *sh, int disks, struct bio **return_bi)
3393 {
3394         int i;
3395         struct r5dev *dev;
3396         int discard_pending = 0;
3397         struct stripe_head *head_sh = sh;
3398         bool do_endio = false;
3399         int wakeup_nr = 0;
3400
3401         for (i = disks; i--; )
3402                 if (sh->dev[i].written) {
3403                         dev = &sh->dev[i];
3404                         if (!test_bit(R5_LOCKED, &dev->flags) &&
3405                             (test_bit(R5_UPTODATE, &dev->flags) ||
3406                              test_bit(R5_Discard, &dev->flags) ||
3407                              test_bit(R5_SkipCopy, &dev->flags))) {
3408                                 /* We can return any write requests */
3409                                 struct bio *wbi, *wbi2;
3410                                 pr_debug("Return write for disc %d\n", i);
3411                                 if (test_and_clear_bit(R5_Discard, &dev->flags))
3412                                         clear_bit(R5_UPTODATE, &dev->flags);
3413                                 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3414                                         WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3415                                 }
3416                                 do_endio = true;
3417
3418 returnbi:
3419                                 dev->page = dev->orig_page;
3420                                 wbi = dev->written;
3421                                 dev->written = NULL;
3422                                 while (wbi && wbi->bi_iter.bi_sector <
3423                                         dev->sector + STRIPE_SECTORS) {
3424                                         wbi2 = r5_next_bio(wbi, dev->sector);
3425                                         if (!raid5_dec_bi_active_stripes(wbi)) {
3426                                                 md_write_end(conf->mddev);
3427                                                 wbi->bi_next = *return_bi;
3428                                                 *return_bi = wbi;
3429                                         }
3430                                         wbi = wbi2;
3431                                 }
3432                                 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3433                                                 STRIPE_SECTORS,
3434                                          !test_bit(STRIPE_DEGRADED, &sh->state),
3435                                                 0);
3436                                 if (head_sh->batch_head) {
3437                                         sh = list_first_entry(&sh->batch_list,
3438                                                               struct stripe_head,
3439                                                               batch_list);
3440                                         if (sh != head_sh) {
3441                                                 dev = &sh->dev[i];
3442                                                 goto returnbi;
3443                                         }
3444                                 }
3445                                 sh = head_sh;
3446                                 dev = &sh->dev[i];
3447                         } else if (test_bit(R5_Discard, &dev->flags))
3448                                 discard_pending = 1;
3449                         WARN_ON(test_bit(R5_SkipCopy, &dev->flags));
3450                         WARN_ON(dev->page != dev->orig_page);
3451                 }
3452         if (!discard_pending &&
3453             test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3454                 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3455                 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3456                 if (sh->qd_idx >= 0) {
3457                         clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3458                         clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3459                 }
3460                 /* now that discard is done we can proceed with any sync */
3461                 clear_bit(STRIPE_DISCARD, &sh->state);
3462                 /*
3463                  * SCSI discard will change some bio fields and the stripe has
3464                  * no updated data, so remove it from hash list and the stripe
3465                  * will be reinitialized
3466                  */
3467                 spin_lock_irq(&conf->device_lock);
3468 unhash:
3469                 remove_hash(sh);
3470                 if (head_sh->batch_head) {
3471                         sh = list_first_entry(&sh->batch_list,
3472                                               struct stripe_head, batch_list);
3473                         if (sh != head_sh)
3474                                         goto unhash;
3475                 }
3476                 spin_unlock_irq(&conf->device_lock);
3477                 sh = head_sh;
3478
3479                 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3480                         set_bit(STRIPE_HANDLE, &sh->state);
3481
3482         }
3483
3484         if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3485                 if (atomic_dec_and_test(&conf->pending_full_writes))
3486                         md_wakeup_thread(conf->mddev->thread);
3487
3488         if (!head_sh->batch_head || !do_endio)
3489                 return;
3490         for (i = 0; i < head_sh->disks; i++) {
3491                 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
3492                         wakeup_nr++;
3493         }
3494         while (!list_empty(&head_sh->batch_list)) {
3495                 int i;
3496                 sh = list_first_entry(&head_sh->batch_list,
3497                                       struct stripe_head, batch_list);
3498                 list_del_init(&sh->batch_list);
3499
3500                 set_mask_bits(&sh->state, ~STRIPE_EXPAND_SYNC_FLAG,
3501                               head_sh->state & ~((1 << STRIPE_ACTIVE) |
3502                                                  (1 << STRIPE_PREREAD_ACTIVE) |
3503                                                  STRIPE_EXPAND_SYNC_FLAG));
3504                 sh->check_state = head_sh->check_state;
3505                 sh->reconstruct_state = head_sh->reconstruct_state;
3506                 for (i = 0; i < sh->disks; i++) {
3507                         if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3508                                 wakeup_nr++;
3509                         sh->dev[i].flags = head_sh->dev[i].flags;
3510                 }
3511
3512                 spin_lock_irq(&sh->stripe_lock);
3513                 sh->batch_head = NULL;
3514                 spin_unlock_irq(&sh->stripe_lock);
3515                 if (sh->state & STRIPE_EXPAND_SYNC_FLAG)
3516                         set_bit(STRIPE_HANDLE, &sh->state);
3517                 release_stripe(sh);
3518         }
3519
3520         spin_lock_irq(&head_sh->stripe_lock);
3521         head_sh->batch_head = NULL;
3522         spin_unlock_irq(&head_sh->stripe_lock);
3523         wake_up_nr(&conf->wait_for_overlap, wakeup_nr);
3524         if (head_sh->state & STRIPE_EXPAND_SYNC_FLAG)
3525                 set_bit(STRIPE_HANDLE, &head_sh->state);
3526 }
3527
3528 static void handle_stripe_dirtying(struct r5conf *conf,
3529                                    struct stripe_head *sh,
3530                                    struct stripe_head_state *s,
3531                                    int disks)
3532 {
3533         int rmw = 0, rcw = 0, i;
3534         sector_t recovery_cp = conf->mddev->recovery_cp;
3535
3536         /* Check whether resync is now happening or should start.
3537          * If yes, then the array is dirty (after unclean shutdown or
3538          * initial creation), so parity in some stripes might be inconsistent.
3539          * In this case, we need to always do reconstruct-write, to ensure
3540          * that in case of drive failure or read-error correction, we
3541          * generate correct data from the parity.
3542          */
3543         if (conf->rmw_level == PARITY_DISABLE_RMW ||
3544             (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3545              s->failed == 0)) {
3546                 /* Calculate the real rcw later - for now make it
3547                  * look like rcw is cheaper
3548                  */
3549                 rcw = 1; rmw = 2;
3550                 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3551                          conf->rmw_level, (unsigned long long)recovery_cp,
3552                          (unsigned long long)sh->sector);
3553         } else for (i = disks; i--; ) {
3554                 /* would I have to read this buffer for read_modify_write */
3555                 struct r5dev *dev = &sh->dev[i];
3556                 if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3557                     !test_bit(R5_LOCKED, &dev->flags) &&
3558                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3559                       test_bit(R5_Wantcompute, &dev->flags))) {
3560                         if (test_bit(R5_Insync, &dev->flags))
3561                                 rmw++;
3562                         else
3563                                 rmw += 2*disks;  /* cannot read it */
3564                 }
3565                 /* Would I have to read this buffer for reconstruct_write */
3566                 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3567                     i != sh->pd_idx && i != sh->qd_idx &&
3568                     !test_bit(R5_LOCKED, &dev->flags) &&
3569                     !(test_bit(R5_UPTODATE, &dev->flags) ||
3570                     test_bit(R5_Wantcompute, &dev->flags))) {
3571                         if (test_bit(R5_Insync, &dev->flags))
3572                                 rcw++;
3573                         else
3574                                 rcw += 2*disks;
3575                 }
3576         }
3577         pr_debug("for sector %llu, rmw=%d rcw=%d\n",
3578                 (unsigned long long)sh->sector, rmw, rcw);
3579         set_bit(STRIPE_HANDLE, &sh->state);
3580         if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_ENABLE_RMW)) && rmw > 0) {
3581                 /* prefer read-modify-write, but need to get some data */
3582                 if (conf->mddev->queue)
3583                         blk_add_trace_msg(conf->mddev->queue,
3584                                           "raid5 rmw %llu %d",
3585                                           (unsigned long long)sh->sector, rmw);
3586                 for (i = disks; i--; ) {
3587                         struct r5dev *dev = &sh->dev[i];
3588                         if ((dev->towrite || i == sh->pd_idx || i == sh->qd_idx) &&
3589                             !test_bit(R5_LOCKED, &dev->flags) &&
3590                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3591                             test_bit(R5_Wantcompute, &dev->flags)) &&
3592                             test_bit(R5_Insync, &dev->flags)) {
3593                                 if (test_bit(STRIPE_PREREAD_ACTIVE,
3594                                              &sh->state)) {
3595                                         pr_debug("Read_old block %d for r-m-w\n",
3596                                                  i);
3597                                         set_bit(R5_LOCKED, &dev->flags);
3598                                         set_bit(R5_Wantread, &dev->flags);
3599                                         s->locked++;
3600                                 } else {
3601                                         set_bit(STRIPE_DELAYED, &sh->state);
3602                                         set_bit(STRIPE_HANDLE, &sh->state);
3603                                 }
3604                         }
3605                 }
3606         }
3607         if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_ENABLE_RMW)) && rcw > 0) {
3608                 /* want reconstruct write, but need to get some data */
3609                 int qread =0;
3610                 rcw = 0;
3611                 for (i = disks; i--; ) {
3612                         struct r5dev *dev = &sh->dev[i];
3613                         if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3614                             i != sh->pd_idx && i != sh->qd_idx &&
3615                             !test_bit(R5_LOCKED, &dev->flags) &&
3616                             !(test_bit(R5_UPTODATE, &dev->flags) ||
3617                               test_bit(R5_Wantcompute, &dev->flags))) {
3618                                 rcw++;
3619                                 if (test_bit(R5_Insync, &dev->flags) &&
3620                                     test_bit(STRIPE_PREREAD_ACTIVE,
3621                                              &sh->state)) {
3622                                         pr_debug("Read_old block "
3623                                                 "%d for Reconstruct\n", i);
3624                                         set_bit(R5_LOCKED, &dev->flags);
3625                                         set_bit(R5_Wantread, &dev->flags);
3626                                         s->locked++;
3627                                         qread++;
3628                                 } else {
3629                                         set_bit(STRIPE_DELAYED, &sh->state);
3630                                         set_bit(STRIPE_HANDLE, &sh->state);
3631                                 }
3632                         }
3633                 }
3634                 if (rcw && conf->mddev->queue)
3635                         blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3636                                           (unsigned long long)sh->sector,
3637                                           rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
3638         }
3639
3640         if (rcw > disks && rmw > disks &&
3641             !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3642                 set_bit(STRIPE_DELAYED, &sh->state);
3643
3644         /* now if nothing is locked, and if we have enough data,
3645          * we can start a write request
3646          */
3647         /* since handle_stripe can be called at any time we need to handle the
3648          * case where a compute block operation has been submitted and then a
3649          * subsequent call wants to start a write request.  raid_run_ops only
3650          * handles the case where compute block and reconstruct are requested
3651          * simultaneously.  If this is not the case then new writes need to be
3652          * held off until the compute completes.
3653          */
3654         if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
3655             (s->locked == 0 && (rcw == 0 || rmw == 0) &&
3656             !test_bit(STRIPE_BIT_DELAY, &sh->state)))
3657                 schedule_reconstruction(sh, s, rcw == 0, 0);
3658 }
3659
3660 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
3661                                 struct stripe_head_state *s, int disks)
3662 {
3663         struct r5dev *dev = NULL;
3664
3665         BUG_ON(sh->batch_head);
3666         set_bit(STRIPE_HANDLE, &sh->state);
3667
3668         switch (sh->check_state) {
3669         case check_state_idle:
3670                 /* start a new check operation if there are no failures */
3671                 if (s->failed == 0) {
3672                         BUG_ON(s->uptodate != disks);
3673                         sh->check_state = check_state_run;
3674                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3675                         clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3676                         s->uptodate--;
3677                         break;
3678                 }
3679                 dev = &sh->dev[s->failed_num[0]];
3680                 /* fall through */
3681         case check_state_compute_result:
3682                 sh->check_state = check_state_idle;
3683                 if (!dev)
3684                         dev = &sh->dev[sh->pd_idx];
3685
3686                 /* check that a write has not made the stripe insync */
3687                 if (test_bit(STRIPE_INSYNC, &sh->state))
3688                         break;
3689
3690                 /* either failed parity check, or recovery is happening */
3691                 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3692                 BUG_ON(s->uptodate != disks);
3693
3694                 set_bit(R5_LOCKED, &dev->flags);
3695                 s->locked++;
3696                 set_bit(R5_Wantwrite, &dev->flags);
3697
3698                 clear_bit(STRIPE_DEGRADED, &sh->state);
3699                 set_bit(STRIPE_INSYNC, &sh->state);
3700                 break;
3701         case check_state_run:
3702                 break; /* we will be called again upon completion */
3703         case check_state_check_result:
3704                 sh->check_state = check_state_idle;
3705
3706                 /* if a failure occurred during the check operation, leave
3707                  * STRIPE_INSYNC not set and let the stripe be handled again
3708                  */
3709                 if (s->failed)
3710                         break;
3711
3712                 /* handle a successful check operation, if parity is correct
3713                  * we are done.  Otherwise update the mismatch count and repair
3714                  * parity if !MD_RECOVERY_CHECK
3715                  */
3716                 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
3717                         /* parity is correct (on disc,
3718                          * not in buffer any more)
3719                          */
3720                         set_bit(STRIPE_INSYNC, &sh->state);
3721                 else {
3722                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3723                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3724                                 /* don't try to repair!! */
3725                                 set_bit(STRIPE_INSYNC, &sh->state);
3726                         else {
3727                                 sh->check_state = check_state_compute_run;
3728                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3729                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3730                                 set_bit(R5_Wantcompute,
3731                                         &sh->dev[sh->pd_idx].flags);
3732                                 sh->ops.target = sh->pd_idx;
3733                                 sh->ops.target2 = -1;
3734                                 s->uptodate++;
3735                         }
3736                 }
3737                 break;
3738         case check_state_compute_run:
3739                 break;
3740         default:
3741                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3742                        __func__, sh->check_state,
3743                        (unsigned long long) sh->sector);
3744                 BUG();
3745         }
3746 }
3747
3748 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
3749                                   struct stripe_head_state *s,
3750                                   int disks)
3751 {
3752         int pd_idx = sh->pd_idx;
3753         int qd_idx = sh->qd_idx;
3754         struct r5dev *dev;
3755
3756         BUG_ON(sh->batch_head);
3757         set_bit(STRIPE_HANDLE, &sh->state);
3758
3759         BUG_ON(s->failed > 2);
3760
3761         /* Want to check and possibly repair P and Q.
3762          * However there could be one 'failed' device, in which
3763          * case we can only check one of them, possibly using the
3764          * other to generate missing data
3765          */
3766
3767         switch (sh->check_state) {
3768         case check_state_idle:
3769                 /* start a new check operation if there are < 2 failures */
3770                 if (s->failed == s->q_failed) {
3771                         /* The only possible failed device holds Q, so it
3772                          * makes sense to check P (If anything else were failed,
3773                          * we would have used P to recreate it).
3774                          */
3775                         sh->check_state = check_state_run;
3776                 }
3777                 if (!s->q_failed && s->failed < 2) {
3778                         /* Q is not failed, and we didn't use it to generate
3779                          * anything, so it makes sense to check it
3780                          */
3781                         if (sh->check_state == check_state_run)
3782                                 sh->check_state = check_state_run_pq;
3783                         else
3784                                 sh->check_state = check_state_run_q;
3785                 }
3786
3787                 /* discard potentially stale zero_sum_result */
3788                 sh->ops.zero_sum_result = 0;
3789
3790                 if (sh->check_state == check_state_run) {
3791                         /* async_xor_zero_sum destroys the contents of P */
3792                         clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3793                         s->uptodate--;
3794                 }
3795                 if (sh->check_state >= check_state_run &&
3796                     sh->check_state <= check_state_run_pq) {
3797                         /* async_syndrome_zero_sum preserves P and Q, so
3798                          * no need to mark them !uptodate here
3799                          */
3800                         set_bit(STRIPE_OP_CHECK, &s->ops_request);
3801                         break;
3802                 }
3803
3804                 /* we have 2-disk failure */
3805                 BUG_ON(s->failed != 2);
3806                 /* fall through */
3807         case check_state_compute_result:
3808                 sh->check_state = check_state_idle;
3809
3810                 /* check that a write has not made the stripe insync */
3811                 if (test_bit(STRIPE_INSYNC, &sh->state))
3812                         break;
3813
3814                 /* now write out any block on a failed drive,
3815                  * or P or Q if they were recomputed
3816                  */
3817                 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
3818                 if (s->failed == 2) {
3819                         dev = &sh->dev[s->failed_num[1]];
3820                         s->locked++;
3821                         set_bit(R5_LOCKED, &dev->flags);
3822                         set_bit(R5_Wantwrite, &dev->flags);
3823                 }
3824                 if (s->failed >= 1) {
3825                         dev = &sh->dev[s->failed_num[0]];
3826                         s->locked++;
3827                         set_bit(R5_LOCKED, &dev->flags);
3828                         set_bit(R5_Wantwrite, &dev->flags);
3829                 }
3830                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3831                         dev = &sh->dev[pd_idx];
3832                         s->locked++;
3833                         set_bit(R5_LOCKED, &dev->flags);
3834                         set_bit(R5_Wantwrite, &dev->flags);
3835                 }
3836                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3837                         dev = &sh->dev[qd_idx];
3838                         s->locked++;
3839                         set_bit(R5_LOCKED, &dev->flags);
3840                         set_bit(R5_Wantwrite, &dev->flags);
3841                 }
3842                 clear_bit(STRIPE_DEGRADED, &sh->state);
3843
3844                 set_bit(STRIPE_INSYNC, &sh->state);
3845                 break;
3846         case check_state_run:
3847         case check_state_run_q:
3848         case check_state_run_pq:
3849                 break; /* we will be called again upon completion */
3850         case check_state_check_result:
3851                 sh->check_state = check_state_idle;
3852
3853                 /* handle a successful check operation, if parity is correct
3854                  * we are done.  Otherwise update the mismatch count and repair
3855                  * parity if !MD_RECOVERY_CHECK
3856                  */
3857                 if (sh->ops.zero_sum_result == 0) {
3858                         /* both parities are correct */
3859                         if (!s->failed)
3860                                 set_bit(STRIPE_INSYNC, &sh->state);
3861                         else {
3862                                 /* in contrast to the raid5 case we can validate
3863                                  * parity, but still have a failure to write
3864                                  * back
3865                                  */
3866                                 sh->check_state = check_state_compute_result;
3867                                 /* Returning at this point means that we may go
3868                                  * off and bring p and/or q uptodate again so
3869                                  * we make sure to check zero_sum_result again
3870                                  * to verify if p or q need writeback
3871                                  */
3872                         }
3873                 } else {
3874                         atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
3875                         if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3876                                 /* don't try to repair!! */
3877                                 set_bit(STRIPE_INSYNC, &sh->state);
3878                         else {
3879                                 int *target = &sh->ops.target;
3880
3881                                 sh->ops.target = -1;
3882                                 sh->ops.target2 = -1;
3883                                 sh->check_state = check_state_compute_run;
3884                                 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3885                                 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3886                                 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3887                                         set_bit(R5_Wantcompute,
3888                                                 &sh->dev[pd_idx].flags);
3889                                         *target = pd_idx;
3890                                         target = &sh->ops.target2;
3891                                         s->uptodate++;
3892                                 }
3893                                 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3894                                         set_bit(R5_Wantcompute,
3895                                                 &sh->dev[qd_idx].flags);
3896                                         *target = qd_idx;
3897                                         s->uptodate++;
3898                                 }
3899                         }
3900                 }
3901                 break;
3902         case check_state_compute_run:
3903                 break;
3904         default:
3905                 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3906                        __func__, sh->check_state,
3907                        (unsigned long long) sh->sector);
3908                 BUG();
3909         }
3910 }
3911
3912 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
3913 {
3914         int i;
3915
3916         /* We have read all the blocks in this stripe and now we need to
3917          * copy some of them into a target stripe for expand.
3918          */
3919         struct dma_async_tx_descriptor *tx = NULL;
3920         BUG_ON(sh->batch_head);
3921         clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3922         for (i = 0; i < sh->disks; i++)
3923                 if (i != sh->pd_idx && i != sh->qd_idx) {
3924                         int dd_idx, j;
3925                         struct stripe_head *sh2;
3926                         struct async_submit_ctl submit;
3927
3928                         sector_t bn = compute_blocknr(sh, i, 1);
3929                         sector_t s = raid5_compute_sector(conf, bn, 0,
3930                                                           &dd_idx, NULL);
3931                         sh2 = get_active_stripe(conf, s, 0, 1, 1);
3932                         if (sh2 == NULL)
3933                                 /* so far only the early blocks of this stripe
3934                                  * have been requested.  When later blocks
3935                                  * get requested, we will try again
3936                                  */
3937                                 continue;
3938                         if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3939                            test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3940                                 /* must have already done this block */
3941                                 release_stripe(sh2);
3942                                 continue;
3943                         }
3944
3945                         /* place all the copies on one channel */
3946                         init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
3947                         tx = async_memcpy(sh2->dev[dd_idx].page,
3948                                           sh->dev[i].page, 0, 0, STRIPE_SIZE,
3949                                           &submit);
3950
3951                         set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3952                         set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3953                         for (j = 0; j < conf->raid_disks; j++)
3954                                 if (j != sh2->pd_idx &&
3955                                     j != sh2->qd_idx &&
3956                                     !test_bit(R5_Expanded, &sh2->dev[j].flags))
3957                                         break;
3958                         if (j == conf->raid_disks) {
3959                                 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3960                                 set_bit(STRIPE_HANDLE, &sh2->state);
3961                         }
3962                         release_stripe(sh2);
3963
3964                 }
3965         /* done submitting copies, wait for them to complete */
3966         async_tx_quiesce(&tx);
3967 }
3968
3969 /*
3970  * handle_stripe - do things to a stripe.
3971  *
3972  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3973  * state of various bits to see what needs to be done.
3974  * Possible results:
3975  *    return some read requests which now have data
3976  *    return some write requests which are safely on storage
3977  *    schedule a read on some buffers
3978  *    schedule a write of some buffers
3979  *    return confirmation of parity correctness
3980  *
3981  */
3982
3983 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
3984 {
3985         struct r5conf *conf = sh->raid_conf;
3986         int disks = sh->disks;
3987         struct r5dev *dev;
3988         int i;
3989         int do_recovery = 0;
3990
3991         memset(s, 0, sizeof(*s));
3992
3993         s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
3994         s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
3995         s->failed_num[0] = -1;
3996         s->failed_num[1] = -1;
3997
3998         /* Now to look around and see what can be done */
3999         rcu_read_lock();
4000         for (i=disks; i--; ) {
4001                 struct md_rdev *rdev;
4002                 sector_t first_bad;
4003                 int bad_sectors;
4004                 int is_bad = 0;
4005
4006                 dev = &sh->dev[i];
4007
4008                 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4009                          i, dev->flags,
4010                          dev->toread, dev->towrite, dev->written);
4011                 /* maybe we can reply to a read
4012                  *
4013                  * new wantfill requests are only permitted while
4014                  * ops_complete_biofill is guaranteed to be inactive
4015                  */
4016                 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4017                     !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4018                         set_bit(R5_Wantfill, &dev->flags);
4019
4020                 /* now count some things */
4021                 if (test_bit(R5_LOCKED, &dev->flags))
4022                         s->locked++;
4023                 if (test_bit(R5_UPTODATE, &dev->flags))
4024                         s->uptodate++;
4025                 if (test_bit(R5_Wantcompute, &dev->flags)) {
4026                         s->compute++;
4027                         BUG_ON(s->compute > 2);
4028                 }
4029
4030                 if (test_bit(R5_Wantfill, &dev->flags))
4031                         s->to_fill++;
4032                 else if (dev->toread)
4033                         s->to_read++;
4034                 if (dev->towrite) {
4035                         s->to_write++;
4036                         if (!test_bit(R5_OVERWRITE, &dev->flags))
4037                                 s->non_overwrite++;
4038                 }
4039                 if (dev->written)
4040                         s->written++;
4041                 /* Prefer to use the replacement for reads, but only
4042                  * if it is recovered enough and has no bad blocks.
4043                  */
4044                 rdev = rcu_dereference(conf->disks[i].replacement);
4045                 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4046                     rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4047                     !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4048                                  &first_bad, &bad_sectors))
4049                         set_bit(R5_ReadRepl, &dev->flags);
4050                 else {
4051                         if (rdev)
4052                                 set_bit(R5_NeedReplace, &dev->flags);
4053                         rdev = rcu_dereference(conf->disks[i].rdev);
4054                         clear_bit(R5_ReadRepl, &dev->flags);
4055                 }
4056                 if (rdev && test_bit(Faulty, &rdev->flags))
4057                         rdev = NULL;
4058                 if (rdev) {
4059                         is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4060                                              &first_bad, &bad_sectors);
4061                         if (s->blocked_rdev == NULL
4062                             && (test_bit(Blocked, &rdev->flags)
4063                                 || is_bad < 0)) {
4064                                 if (is_bad < 0)
4065                                         set_bit(BlockedBadBlocks,
4066                                                 &rdev->flags);
4067                                 s->blocked_rdev = rdev;
4068                                 atomic_inc(&rdev->nr_pending);
4069                         }
4070                 }
4071                 clear_bit(R5_Insync, &dev->flags);
4072                 if (!rdev)
4073                         /* Not in-sync */;
4074                 else if (is_bad) {
4075                         /* also not in-sync */
4076                         if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4077                             test_bit(R5_UPTODATE, &dev->flags)) {
4078                                 /* treat as in-sync, but with a read error
4079                                  * which we can now try to correct
4080                                  */
4081                                 set_bit(R5_Insync, &dev->flags);
4082                                 set_bit(R5_ReadError, &dev->flags);
4083                         }
4084                 } else if (test_bit(In_sync, &rdev->flags))
4085                         set_bit(R5_Insync, &dev->flags);
4086                 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4087                         /* in sync if before recovery_offset */
4088                         set_bit(R5_Insync, &dev->flags);
4089                 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4090                          test_bit(R5_Expanded, &dev->flags))
4091                         /* If we've reshaped into here, we assume it is Insync.
4092                          * We will shortly update recovery_offset to make
4093                          * it official.
4094                          */
4095                         set_bit(R5_Insync, &dev->flags);
4096
4097                 if (test_bit(R5_WriteError, &dev->flags)) {
4098                         /* This flag does not apply to '.replacement'
4099                          * only to .rdev, so make sure to check that*/
4100                         struct md_rdev *rdev2 = rcu_dereference(
4101                                 conf->disks[i].rdev);
4102                         if (rdev2 == rdev)
4103                                 clear_bit(R5_Insync, &dev->flags);
4104                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4105                                 s->handle_bad_blocks = 1;
4106                                 atomic_inc(&rdev2->nr_pending);
4107                         } else
4108                                 clear_bit(R5_WriteError, &dev->flags);
4109                 }
4110                 if (test_bit(R5_MadeGood, &dev->flags)) {
4111                         /* This flag does not apply to '.replacement'
4112                          * only to .rdev, so make sure to check that*/
4113                         struct md_rdev *rdev2 = rcu_dereference(
4114                                 conf->disks[i].rdev);
4115                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4116                                 s->handle_bad_blocks = 1;
4117                                 atomic_inc(&rdev2->nr_pending);
4118                         } else
4119                                 clear_bit(R5_MadeGood, &dev->flags);
4120                 }
4121                 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4122                         struct md_rdev *rdev2 = rcu_dereference(
4123                                 conf->disks[i].replacement);
4124                         if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4125                                 s->handle_bad_blocks = 1;
4126                                 atomic_inc(&rdev2->nr_pending);
4127                         } else
4128                                 clear_bit(R5_MadeGoodRepl, &dev->flags);
4129                 }
4130                 if (!test_bit(R5_Insync, &dev->flags)) {
4131                         /* The ReadError flag will just be confusing now */
4132                         clear_bit(R5_ReadError, &dev->flags);
4133                         clear_bit(R5_ReWrite, &dev->flags);
4134                 }
4135                 if (test_bit(R5_ReadError, &dev->flags))
4136                         clear_bit(R5_Insync, &dev->flags);
4137                 if (!test_bit(R5_Insync, &dev->flags)) {
4138                         if (s->failed < 2)
4139                                 s->failed_num[s->failed] = i;
4140                         s->failed++;
4141                         if (rdev && !test_bit(Faulty, &rdev->flags))
4142                                 do_recovery = 1;
4143                 }
4144         }
4145         if (test_bit(STRIPE_SYNCING, &sh->state)) {
4146                 /* If there is a failed device being replaced,
4147                  *     we must be recovering.
4148                  * else if we are after recovery_cp, we must be syncing
4149                  * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4150                  * else we can only be replacing
4151                  * sync and recovery both need to read all devices, and so
4152                  * use the same flag.
4153                  */
4154                 if (do_recovery ||
4155                     sh->sector >= conf->mddev->recovery_cp ||
4156                     test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4157                         s->syncing = 1;
4158                 else
4159                         s->replacing = 1;
4160         }
4161         rcu_read_unlock();
4162 }
4163
4164 static int clear_batch_ready(struct stripe_head *sh)
4165 {
4166         struct stripe_head *tmp;
4167         if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4168                 return 0;
4169         spin_lock(&sh->stripe_lock);
4170         if (!sh->batch_head) {
4171                 spin_unlock(&sh->stripe_lock);
4172                 return 0;
4173         }
4174
4175         /*
4176          * this stripe could be added to a batch list before we check
4177          * BATCH_READY, skips it
4178          */
4179         if (sh->batch_head != sh) {
4180                 spin_unlock(&sh->stripe_lock);
4181                 return 1;
4182         }
4183         spin_lock(&sh->batch_lock);
4184         list_for_each_entry(tmp, &sh->batch_list, batch_list)
4185                 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4186         spin_unlock(&sh->batch_lock);
4187         spin_unlock(&sh->stripe_lock);
4188
4189         /*
4190          * BATCH_READY is cleared, no new stripes can be added.
4191          * batch_list can be accessed without lock
4192          */
4193         return 0;
4194 }
4195
4196 static void check_break_stripe_batch_list(struct stripe_head *sh)
4197 {
4198         struct stripe_head *head_sh, *next;
4199         int i;
4200
4201         if (!test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4202                 return;
4203
4204         head_sh = sh;
4205         do {
4206                 sh = list_first_entry(&sh->batch_list,
4207                                       struct stripe_head, batch_list);
4208                 BUG_ON(sh == head_sh);
4209         } while (!test_bit(STRIPE_DEGRADED, &sh->state));
4210
4211         while (sh != head_sh) {
4212                 next = list_first_entry(&sh->batch_list,
4213                                         struct stripe_head, batch_list);
4214                 list_del_init(&sh->batch_list);
4215
4216                 set_mask_bits(&sh->state, ~STRIPE_EXPAND_SYNC_FLAG,
4217                               head_sh->state & ~((1 << STRIPE_ACTIVE) |
4218                                                  (1 << STRIPE_PREREAD_ACTIVE) |
4219                                                  (1 << STRIPE_DEGRADED) |
4220                                                  STRIPE_EXPAND_SYNC_FLAG));
4221                 sh->check_state = head_sh->check_state;
4222                 sh->reconstruct_state = head_sh->reconstruct_state;
4223                 for (i = 0; i < sh->disks; i++)
4224                         sh->dev[i].flags = head_sh->dev[i].flags &
4225                                 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4226
4227                 spin_lock_irq(&sh->stripe_lock);
4228                 sh->batch_head = NULL;
4229                 spin_unlock_irq(&sh->stripe_lock);
4230
4231                 set_bit(STRIPE_HANDLE, &sh->state);
4232                 release_stripe(sh);
4233
4234                 sh = next;
4235         }
4236 }
4237
4238 static void handle_stripe(struct stripe_head *sh)
4239 {
4240         struct stripe_head_state s;
4241         struct r5conf *conf = sh->raid_conf;
4242         int i;
4243         int prexor;
4244         int disks = sh->disks;
4245         struct r5dev *pdev, *qdev;
4246
4247         clear_bit(STRIPE_HANDLE, &sh->state);
4248         if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4249                 /* already being handled, ensure it gets handled
4250                  * again when current action finishes */
4251                 set_bit(STRIPE_HANDLE, &sh->state);
4252                 return;
4253         }
4254
4255         if (clear_batch_ready(sh) ) {
4256                 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4257                 return;
4258         }
4259
4260         check_break_stripe_batch_list(sh);
4261
4262         if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4263                 spin_lock(&sh->stripe_lock);
4264                 /* Cannot process 'sync' concurrently with 'discard' */
4265                 if (!test_bit(STRIPE_DISCARD, &sh->state) &&
4266                     test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4267                         set_bit(STRIPE_SYNCING, &sh->state);
4268                         clear_bit(STRIPE_INSYNC, &sh->state);
4269                         clear_bit(STRIPE_REPLACED, &sh->state);
4270                 }
4271                 spin_unlock(&sh->stripe_lock);
4272         }
4273         clear_bit(STRIPE_DELAYED, &sh->state);
4274
4275         pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4276                 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4277                (unsigned long long)sh->sector, sh->state,
4278                atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4279                sh->check_state, sh->reconstruct_state);
4280
4281         analyse_stripe(sh, &s);
4282
4283         if (s.handle_bad_blocks) {
4284                 set_bit(STRIPE_HANDLE, &sh->state);
4285                 goto finish;
4286         }
4287
4288         if (unlikely(s.blocked_rdev)) {
4289                 if (s.syncing || s.expanding || s.expanded ||
4290                     s.replacing || s.to_write || s.written) {
4291                         set_bit(STRIPE_HANDLE, &sh->state);
4292                         goto finish;
4293                 }
4294                 /* There is nothing for the blocked_rdev to block */
4295                 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4296                 s.blocked_rdev = NULL;
4297         }
4298
4299         if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4300                 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4301                 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4302         }
4303
4304         pr_debug("locked=%d uptodate=%d to_read=%d"
4305                " to_write=%d failed=%d failed_num=%d,%d\n",
4306                s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4307                s.failed_num[0], s.failed_num[1]);
4308         /* check if the array has lost more than max_degraded devices and,
4309          * if so, some requests might need to be failed.
4310          */
4311         if (s.failed > conf->max_degraded) {
4312                 sh->check_state = 0;
4313                 sh->reconstruct_state = 0;
4314                 if (s.to_read+s.to_write+s.written)
4315                         handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
4316                 if (s.syncing + s.replacing)
4317                         handle_failed_sync(conf, sh, &s);
4318         }
4319
4320         /* Now we check to see if any write operations have recently
4321          * completed
4322          */
4323         prexor = 0;
4324         if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4325                 prexor = 1;
4326         if (sh->reconstruct_state == reconstruct_state_drain_result ||
4327             sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4328                 sh->reconstruct_state = reconstruct_state_idle;
4329
4330                 /* All the 'written' buffers and the parity block are ready to
4331                  * be written back to disk
4332                  */
4333                 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4334                        !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4335                 BUG_ON(sh->qd_idx >= 0 &&
4336                        !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4337                        !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4338                 for (i = disks; i--; ) {
4339                         struct r5dev *dev = &sh->dev[i];
4340                         if (test_bit(R5_LOCKED, &dev->flags) &&
4341                                 (i == sh->pd_idx || i == sh->qd_idx ||
4342                                  dev->written)) {
4343                                 pr_debug("Writing block %d\n", i);
4344                                 set_bit(R5_Wantwrite, &dev->flags);
4345                                 if (prexor)
4346                                         continue;
4347                                 if (s.failed > 1)
4348                                         continue;
4349                                 if (!test_bit(R5_Insync, &dev->flags) ||
4350                                     ((i == sh->pd_idx || i == sh->qd_idx)  &&
4351                                      s.failed == 0))
4352                                         set_bit(STRIPE_INSYNC, &sh->state);
4353                         }
4354                 }
4355                 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4356                         s.dec_preread_active = 1;
4357         }
4358
4359         /*
4360          * might be able to return some write requests if the parity blocks
4361          * are safe, or on a failed drive
4362          */
4363         pdev = &sh->dev[sh->pd_idx];
4364         s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4365                 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4366         qdev = &sh->dev[sh->qd_idx];
4367         s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4368                 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4369                 || conf->level < 6;
4370
4371         if (s.written &&
4372             (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4373                              && !test_bit(R5_LOCKED, &pdev->flags)
4374                              && (test_bit(R5_UPTODATE, &pdev->flags) ||
4375                                  test_bit(R5_Discard, &pdev->flags))))) &&
4376             (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4377                              && !test_bit(R5_LOCKED, &qdev->flags)
4378                              && (test_bit(R5_UPTODATE, &qdev->flags) ||
4379                                  test_bit(R5_Discard, &qdev->flags))))))
4380                 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
4381
4382         /* Now we might consider reading some blocks, either to check/generate
4383          * parity, or to satisfy requests
4384          * or to load a block that is being partially written.
4385          */
4386         if (s.to_read || s.non_overwrite
4387             || (conf->level == 6 && s.to_write && s.failed)
4388             || (s.syncing && (s.uptodate + s.compute < disks))
4389             || s.replacing
4390             || s.expanding)
4391                 handle_stripe_fill(sh, &s, disks);
4392
4393         /* Now to consider new write requests and what else, if anything
4394          * should be read.  We do not handle new writes when:
4395          * 1/ A 'write' operation (copy+xor) is already in flight.
4396          * 2/ A 'check' operation is in flight, as it may clobber the parity
4397          *    block.
4398          */
4399         if (s.to_write && !sh->reconstruct_state && !sh->check_state)
4400                 handle_stripe_dirtying(conf, sh, &s, disks);
4401
4402         /* maybe we need to check and possibly fix the parity for this stripe
4403          * Any reads will already have been scheduled, so we just see if enough
4404          * data is available.  The parity check is held off while parity
4405          * dependent operations are in flight.
4406          */
4407         if (sh->check_state ||
4408             (s.syncing && s.locked == 0 &&
4409              !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4410              !test_bit(STRIPE_INSYNC, &sh->state))) {
4411                 if (conf->level == 6)
4412                         handle_parity_checks6(conf, sh, &s, disks);
4413                 else
4414                         handle_parity_checks5(conf, sh, &s, disks);
4415         }
4416
4417         if ((s.replacing || s.syncing) && s.locked == 0
4418             && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4419             && !test_bit(STRIPE_REPLACED, &sh->state)) {
4420                 /* Write out to replacement devices where possible */
4421                 for (i = 0; i < conf->raid_disks; i++)
4422                         if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4423                                 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4424                                 set_bit(R5_WantReplace, &sh->dev[i].flags);
4425                                 set_bit(R5_LOCKED, &sh->dev[i].flags);
4426                                 s.locked++;
4427                         }
4428                 if (s.replacing)
4429                         set_bit(STRIPE_INSYNC, &sh->state);
4430                 set_bit(STRIPE_REPLACED, &sh->state);
4431         }
4432         if ((s.syncing || s.replacing) && s.locked == 0 &&
4433             !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4434             test_bit(STRIPE_INSYNC, &sh->state)) {
4435                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4436                 clear_bit(STRIPE_SYNCING, &sh->state);
4437                 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4438                         wake_up(&conf->wait_for_overlap);
4439         }
4440
4441         /* If the failed drives are just a ReadError, then we might need
4442          * to progress the repair/check process
4443          */
4444         if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4445                 for (i = 0; i < s.failed; i++) {
4446                         struct r5dev *dev = &sh->dev[s.failed_num[i]];
4447                         if (test_bit(R5_ReadError, &dev->flags)
4448                             && !test_bit(R5_LOCKED, &dev->flags)
4449                             && test_bit(R5_UPTODATE, &dev->flags)
4450                                 ) {
4451                                 if (!test_bit(R5_ReWrite, &dev->flags)) {
4452                                         set_bit(R5_Wantwrite, &dev->flags);
4453                                         set_bit(R5_ReWrite, &dev->flags);
4454                                         set_bit(R5_LOCKED, &dev->flags);
4455                                         s.locked++;
4456                                 } else {
4457                                         /* let's read it back */
4458                                         set_bit(R5_Wantread, &dev->flags);
4459                                         set_bit(R5_LOCKED, &dev->flags);
4460                                         s.locked++;
4461                                 }
4462                         }
4463                 }
4464
4465         /* Finish reconstruct operations initiated by the expansion process */
4466         if (sh->reconstruct_state == reconstruct_state_result) {
4467                 struct stripe_head *sh_src
4468                         = get_active_stripe(conf, sh->sector, 1, 1, 1);
4469                 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4470                         /* sh cannot be written until sh_src has been read.
4471                          * so arrange for sh to be delayed a little
4472                          */
4473                         set_bit(STRIPE_DELAYED, &sh->state);
4474                         set_bit(STRIPE_HANDLE, &sh->state);
4475                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4476                                               &sh_src->state))
4477                                 atomic_inc(&conf->preread_active_stripes);
4478                         release_stripe(sh_src);
4479                         goto finish;
4480                 }
4481                 if (sh_src)
4482                         release_stripe(sh_src);
4483
4484                 sh->reconstruct_state = reconstruct_state_idle;
4485                 clear_bit(STRIPE_EXPANDING, &sh->state);
4486                 for (i = conf->raid_disks; i--; ) {
4487                         set_bit(R5_Wantwrite, &sh->dev[i].flags);
4488                         set_bit(R5_LOCKED, &sh->dev[i].flags);
4489                         s.locked++;
4490                 }
4491         }
4492
4493         if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4494             !sh->reconstruct_state) {
4495                 /* Need to write out all blocks after computing parity */
4496                 sh->disks = conf->raid_disks;
4497                 stripe_set_idx(sh->sector, conf, 0, sh);
4498                 schedule_reconstruction(sh, &s, 1, 1);
4499         } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4500                 clear_bit(STRIPE_EXPAND_READY, &sh->state);
4501                 atomic_dec(&conf->reshape_stripes);
4502                 wake_up(&conf->wait_for_overlap);
4503                 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4504         }
4505
4506         if (s.expanding && s.locked == 0 &&
4507             !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4508                 handle_stripe_expansion(conf, sh);
4509
4510 finish:
4511         /* wait for this device to become unblocked */
4512         if (unlikely(s.blocked_rdev)) {
4513                 if (conf->mddev->external)
4514                         md_wait_for_blocked_rdev(s.blocked_rdev,
4515                                                  conf->mddev);
4516                 else
4517                         /* Internal metadata will immediately
4518                          * be written by raid5d, so we don't
4519                          * need to wait here.
4520                          */
4521                         rdev_dec_pending(s.blocked_rdev,
4522                                          conf->mddev);
4523         }
4524
4525         if (s.handle_bad_blocks)
4526                 for (i = disks; i--; ) {
4527                         struct md_rdev *rdev;
4528                         struct r5dev *dev = &sh->dev[i];
4529                         if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
4530                                 /* We own a safe reference to the rdev */
4531                                 rdev = conf->disks[i].rdev;
4532                                 if (!rdev_set_badblocks(rdev, sh->sector,
4533                                                         STRIPE_SECTORS, 0))
4534                                         md_error(conf->mddev, rdev);
4535                                 rdev_dec_pending(rdev, conf->mddev);
4536                         }
4537                         if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
4538                                 rdev = conf->disks[i].rdev;
4539                                 rdev_clear_badblocks(rdev, sh->sector,
4540                                                      STRIPE_SECTORS, 0);
4541                                 rdev_dec_pending(rdev, conf->mddev);
4542                         }
4543                         if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
4544                                 rdev = conf->disks[i].replacement;
4545                                 if (!rdev)
4546                                         /* rdev have been moved down */
4547                                         rdev = conf->disks[i].rdev;
4548                                 rdev_clear_badblocks(rdev, sh->sector,
4549                                                      STRIPE_SECTORS, 0);
4550                                 rdev_dec_pending(rdev, conf->mddev);
4551                         }
4552                 }
4553
4554         if (s.ops_request)
4555                 raid_run_ops(sh, s.ops_request);
4556
4557         ops_run_io(sh, &s);
4558
4559         if (s.dec_preread_active) {
4560                 /* We delay this until after ops_run_io so that if make_request
4561                  * is waiting on a flush, it won't continue until the writes
4562                  * have actually been submitted.
4563                  */
4564                 atomic_dec(&conf->preread_active_stripes);
4565                 if (atomic_read(&conf->preread_active_stripes) <
4566                     IO_THRESHOLD)
4567                         md_wakeup_thread(conf->mddev->thread);
4568         }
4569
4570         return_io(s.return_bi);
4571
4572         clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4573 }
4574
4575 static void raid5_activate_delayed(struct r5conf *conf)
4576 {
4577         if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
4578                 while (!list_empty(&conf->delayed_list)) {
4579                         struct list_head *l = conf->delayed_list.next;
4580                         struct stripe_head *sh;
4581                         sh = list_entry(l, struct stripe_head, lru);
4582                         list_del_init(l);
4583                         clear_bit(STRIPE_DELAYED, &sh->state);
4584                         if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4585                                 atomic_inc(&conf->preread_active_stripes);
4586                         list_add_tail(&sh->lru, &conf->hold_list);
4587                         raid5_wakeup_stripe_thread(sh);
4588                 }
4589         }
4590 }
4591
4592 static void activate_bit_delay(struct r5conf *conf,
4593         struct list_head *temp_inactive_list)
4594 {
4595         /* device_lock is held */
4596         struct list_head head;
4597         list_add(&head, &conf->bitmap_list);
4598         list_del_init(&conf->bitmap_list);
4599         while (!list_empty(&head)) {
4600                 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
4601                 int hash;
4602                 list_del_init(&sh->lru);
4603                 atomic_inc(&sh->count);
4604                 hash = sh->hash_lock_index;
4605                 __release_stripe(conf, sh, &temp_inactive_list[hash]);
4606         }
4607 }
4608
4609 static int raid5_congested(struct mddev *mddev, int bits)
4610 {
4611         struct r5conf *conf = mddev->private;
4612
4613         /* No difference between reads and writes.  Just check
4614          * how busy the stripe_cache is
4615          */
4616
4617         if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
4618                 return 1;
4619         if (conf->quiesce)
4620                 return 1;
4621         if (atomic_read(&conf->empty_inactive_list_nr))
4622                 return 1;
4623
4624         return 0;
4625 }
4626
4627 /* We want read requests to align with chunks where possible,
4628  * but write requests don't need to.
4629  */
4630 static int raid5_mergeable_bvec(struct mddev *mddev,
4631                                 struct bvec_merge_data *bvm,
4632                                 struct bio_vec *biovec)
4633 {
4634         sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
4635         int max;
4636         unsigned int chunk_sectors = mddev->chunk_sectors;
4637         unsigned int bio_sectors = bvm->bi_size >> 9;
4638
4639         /*
4640          * always allow writes to be mergeable, read as well if array
4641          * is degraded as we'll go through stripe cache anyway.
4642          */
4643         if ((bvm->bi_rw & 1) == WRITE || mddev->degraded)
4644                 return biovec->bv_len;
4645
4646         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4647                 chunk_sectors = mddev->new_chunk_sectors;
4648         max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
4649         if (max < 0) max = 0;
4650         if (max <= biovec->bv_len && bio_sectors == 0)
4651                 return biovec->bv_len;
4652         else
4653                 return max;
4654 }
4655
4656 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
4657 {
4658         sector_t sector = bio->bi_iter.bi_sector + get_start_sect(bio->bi_bdev);
4659         unsigned int chunk_sectors = mddev->chunk_sectors;
4660         unsigned int bio_sectors = bio_sectors(bio);
4661
4662         if (mddev->new_chunk_sectors < mddev->chunk_sectors)
4663                 chunk_sectors = mddev->new_chunk_sectors;
4664         return  chunk_sectors >=
4665                 ((sector & (chunk_sectors - 1)) + bio_sectors);
4666 }
4667
4668 /*
4669  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
4670  *  later sampled by raid5d.
4671  */
4672 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
4673 {
4674         unsigned long flags;
4675
4676         spin_lock_irqsave(&conf->device_lock, flags);
4677
4678         bi->bi_next = conf->retry_read_aligned_list;
4679         conf->retry_read_aligned_list = bi;
4680
4681         spin_unlock_irqrestore(&conf->device_lock, flags);
4682         md_wakeup_thread(conf->mddev->thread);
4683 }
4684
4685 static struct bio *remove_bio_from_retry(struct r5conf *conf)
4686 {
4687         struct bio *bi;
4688
4689         bi = conf->retry_read_aligned;
4690         if (bi) {
4691                 conf->retry_read_aligned = NULL;
4692                 return bi;
4693         }
4694         bi = conf->retry_read_aligned_list;
4695         if(bi) {
4696                 conf->retry_read_aligned_list = bi->bi_next;
4697                 bi->bi_next = NULL;
4698                 /*
4699                  * this sets the active strip count to 1 and the processed
4700                  * strip count to zero (upper 8 bits)
4701                  */
4702                 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
4703         }
4704
4705         return bi;
4706 }
4707
4708 /*
4709  *  The "raid5_align_endio" should check if the read succeeded and if it
4710  *  did, call bio_endio on the original bio (having bio_put the new bio
4711  *  first).
4712  *  If the read failed..
4713  */
4714 static void raid5_align_endio(struct bio *bi, int error)
4715 {
4716         struct bio* raid_bi  = bi->bi_private;
4717         struct mddev *mddev;
4718         struct r5conf *conf;
4719         int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
4720         struct md_rdev *rdev;
4721
4722         bio_put(bi);
4723
4724         rdev = (void*)raid_bi->bi_next;
4725         raid_bi->bi_next = NULL;
4726         mddev = rdev->mddev;
4727         conf = mddev->private;
4728
4729         rdev_dec_pending(rdev, conf->mddev);
4730
4731         if (!error && uptodate) {
4732                 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
4733                                          raid_bi, 0);
4734                 bio_endio(raid_bi, 0);
4735                 if (atomic_dec_and_test(&conf->active_aligned_reads))
4736                         wake_up(&conf->wait_for_stripe);
4737                 return;
4738         }
4739
4740         pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
4741
4742         add_bio_to_retry(raid_bi, conf);
4743 }
4744
4745 static int bio_fits_rdev(struct bio *bi)
4746 {
4747         struct request_queue *q = bdev_get_queue(bi->bi_bdev);
4748
4749         if (bio_sectors(bi) > queue_max_sectors(q))
4750                 return 0;
4751         blk_recount_segments(q, bi);
4752         if (bi->bi_phys_segments > queue_max_segments(q))
4753                 return 0;
4754
4755         if (q->merge_bvec_fn)
4756                 /* it's too hard to apply the merge_bvec_fn at this stage,
4757                  * just just give up
4758                  */
4759                 return 0;
4760
4761         return 1;
4762 }
4763
4764 static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
4765 {
4766         struct r5conf *conf = mddev->private;
4767         int dd_idx;
4768         struct bio* align_bi;
4769         struct md_rdev *rdev;
4770         sector_t end_sector;
4771
4772         if (!in_chunk_boundary(mddev, raid_bio)) {
4773                 pr_debug("chunk_aligned_read : non aligned\n");
4774                 return 0;
4775         }
4776         /*
4777          * use bio_clone_mddev to make a copy of the bio
4778          */
4779         align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
4780         if (!align_bi)
4781                 return 0;
4782         /*
4783          *   set bi_end_io to a new function, and set bi_private to the
4784          *     original bio.
4785          */
4786         align_bi->bi_end_io  = raid5_align_endio;
4787         align_bi->bi_private = raid_bio;
4788         /*
4789          *      compute position
4790          */
4791         align_bi->bi_iter.bi_sector =
4792                 raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
4793                                      0, &dd_idx, NULL);
4794
4795         end_sector = bio_end_sector(align_bi);
4796         rcu_read_lock();
4797         rdev = rcu_dereference(conf->disks[dd_idx].replacement);
4798         if (!rdev || test_bit(Faulty, &rdev->flags) ||
4799             rdev->recovery_offset < end_sector) {
4800                 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
4801                 if (rdev &&
4802                     (test_bit(Faulty, &rdev->flags) ||
4803                     !(test_bit(In_sync, &rdev->flags) ||
4804                       rdev->recovery_offset >= end_sector)))
4805                         rdev = NULL;
4806         }
4807         if (rdev) {
4808                 sector_t first_bad;
4809                 int bad_sectors;
4810
4811                 atomic_inc(&rdev->nr_pending);
4812                 rcu_read_unlock();
4813                 raid_bio->bi_next = (void*)rdev;
4814                 align_bi->bi_bdev =  rdev->bdev;
4815                 __clear_bit(BIO_SEG_VALID, &align_bi->bi_flags);
4816
4817                 if (!bio_fits_rdev(align_bi) ||
4818                     is_badblock(rdev, align_bi->bi_iter.bi_sector,
4819                                 bio_sectors(align_bi),
4820                                 &first_bad, &bad_sectors)) {
4821                         /* too big in some way, or has a known bad block */
4822                         bio_put(align_bi);
4823                         rdev_dec_pending(rdev, mddev);
4824                         return 0;
4825                 }
4826
4827                 /* No reshape active, so we can trust rdev->data_offset */
4828                 align_bi->bi_iter.bi_sector += rdev->data_offset;
4829
4830                 spin_lock_irq(&conf->device_lock);
4831                 wait_event_lock_irq(conf->wait_for_stripe,
4832                                     conf->quiesce == 0,
4833                                     conf->device_lock);
4834                 atomic_inc(&conf->active_aligned_reads);
4835                 spin_unlock_irq(&conf->device_lock);
4836
4837                 if (mddev->gendisk)
4838                         trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4839                                               align_bi, disk_devt(mddev->gendisk),
4840                                               raid_bio->bi_iter.bi_sector);
4841                 generic_make_request(align_bi);
4842                 return 1;
4843         } else {
4844                 rcu_read_unlock();
4845                 bio_put(align_bi);
4846                 return 0;
4847         }
4848 }
4849
4850 /* __get_priority_stripe - get the next stripe to process
4851  *
4852  * Full stripe writes are allowed to pass preread active stripes up until
4853  * the bypass_threshold is exceeded.  In general the bypass_count
4854  * increments when the handle_list is handled before the hold_list; however, it
4855  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4856  * stripe with in flight i/o.  The bypass_count will be reset when the
4857  * head of the hold_list has changed, i.e. the head was promoted to the
4858  * handle_list.
4859  */
4860 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
4861 {
4862         struct stripe_head *sh = NULL, *tmp;
4863         struct list_head *handle_list = NULL;
4864         struct r5worker_group *wg = NULL;
4865
4866         if (conf->worker_cnt_per_group == 0) {
4867                 handle_list = &conf->handle_list;
4868         } else if (group != ANY_GROUP) {
4869                 handle_list = &conf->worker_groups[group].handle_list;
4870                 wg = &conf->worker_groups[group];
4871         } else {
4872                 int i;
4873                 for (i = 0; i < conf->group_cnt; i++) {
4874                         handle_list = &conf->worker_groups[i].handle_list;
4875                         wg = &conf->worker_groups[i];
4876                         if (!list_empty(handle_list))
4877                                 break;
4878                 }
4879         }
4880
4881         pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4882                   __func__,
4883                   list_empty(handle_list) ? "empty" : "busy",
4884                   list_empty(&conf->hold_list) ? "empty" : "busy",
4885                   atomic_read(&conf->pending_full_writes), conf->bypass_count);
4886
4887         if (!list_empty(handle_list)) {
4888                 sh = list_entry(handle_list->next, typeof(*sh), lru);
4889
4890                 if (list_empty(&conf->hold_list))
4891                         conf->bypass_count = 0;
4892                 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4893                         if (conf->hold_list.next == conf->last_hold)
4894                                 conf->bypass_count++;
4895                         else {
4896                                 conf->last_hold = conf->hold_list.next;
4897                                 conf->bypass_count -= conf->bypass_threshold;
4898                                 if (conf->bypass_count < 0)
4899                                         conf->bypass_count = 0;
4900                         }
4901                 }
4902         } else if (!list_empty(&conf->hold_list) &&
4903                    ((conf->bypass_threshold &&
4904                      conf->bypass_count > conf->bypass_threshold) ||
4905                     atomic_read(&conf->pending_full_writes) == 0)) {
4906
4907                 list_for_each_entry(tmp, &conf->hold_list,  lru) {
4908                         if (conf->worker_cnt_per_group == 0 ||
4909                             group == ANY_GROUP ||
4910                             !cpu_online(tmp->cpu) ||
4911                             cpu_to_group(tmp->cpu) == group) {
4912                                 sh = tmp;
4913                                 break;
4914                         }
4915                 }
4916
4917                 if (sh) {
4918                         conf->bypass_count -= conf->bypass_threshold;
4919                         if (conf->bypass_count < 0)
4920                                 conf->bypass_count = 0;
4921                 }
4922                 wg = NULL;
4923         }
4924
4925         if (!sh)
4926                 return NULL;
4927
4928         if (wg) {
4929                 wg->stripes_cnt--;
4930                 sh->group = NULL;
4931         }
4932         list_del_init(&sh->lru);
4933         BUG_ON(atomic_inc_return(&sh->count) != 1);
4934         return sh;
4935 }
4936
4937 struct raid5_plug_cb {
4938         struct blk_plug_cb      cb;
4939         struct list_head        list;
4940         struct list_head        temp_inactive_list[NR_STRIPE_HASH_LOCKS];
4941 };
4942
4943 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4944 {
4945         struct raid5_plug_cb *cb = container_of(
4946                 blk_cb, struct raid5_plug_cb, cb);
4947         struct stripe_head *sh;
4948         struct mddev *mddev = cb->cb.data;
4949         struct r5conf *conf = mddev->private;
4950         int cnt = 0;
4951         int hash;
4952
4953         if (cb->list.next && !list_empty(&cb->list)) {
4954                 spin_lock_irq(&conf->device_lock);
4955                 while (!list_empty(&cb->list)) {
4956                         sh = list_first_entry(&cb->list, struct stripe_head, lru);
4957                         list_del_init(&sh->lru);
4958                         /*
4959                          * avoid race release_stripe_plug() sees
4960                          * STRIPE_ON_UNPLUG_LIST clear but the stripe
4961                          * is still in our list
4962                          */
4963                         smp_mb__before_atomic();
4964                         clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4965                         /*
4966                          * STRIPE_ON_RELEASE_LIST could be set here. In that
4967                          * case, the count is always > 1 here
4968                          */
4969                         hash = sh->hash_lock_index;
4970                         __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
4971                         cnt++;
4972                 }
4973                 spin_unlock_irq(&conf->device_lock);
4974         }
4975         release_inactive_stripe_list(conf, cb->temp_inactive_list,
4976                                      NR_STRIPE_HASH_LOCKS);
4977         if (mddev->queue)
4978                 trace_block_unplug(mddev->queue, cnt, !from_schedule);
4979         kfree(cb);
4980 }
4981
4982 static void release_stripe_plug(struct mddev *mddev,
4983                                 struct stripe_head *sh)
4984 {
4985         struct blk_plug_cb *blk_cb = blk_check_plugged(
4986                 raid5_unplug, mddev,
4987                 sizeof(struct raid5_plug_cb));
4988         struct raid5_plug_cb *cb;
4989
4990         if (!blk_cb) {
4991                 release_stripe(sh);
4992                 return;
4993         }
4994
4995         cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4996
4997         if (cb->list.next == NULL) {
4998                 int i;
4999                 INIT_LIST_HEAD(&cb->list);
5000                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5001                         INIT_LIST_HEAD(cb->temp_inactive_list + i);
5002         }
5003
5004         if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5005                 list_add_tail(&sh->lru, &cb->list);
5006         else
5007                 release_stripe(sh);
5008 }
5009
5010 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5011 {
5012         struct r5conf *conf = mddev->private;
5013         sector_t logical_sector, last_sector;
5014         struct stripe_head *sh;
5015         int remaining;
5016         int stripe_sectors;
5017
5018         if (mddev->reshape_position != MaxSector)
5019                 /* Skip discard while reshape is happening */
5020                 return;
5021
5022         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5023         last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5024
5025         bi->bi_next = NULL;
5026         bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
5027
5028         stripe_sectors = conf->chunk_sectors *
5029                 (conf->raid_disks - conf->max_degraded);
5030         logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5031                                                stripe_sectors);
5032         sector_div(last_sector, stripe_sectors);
5033
5034         logical_sector *= conf->chunk_sectors;
5035         last_sector *= conf->chunk_sectors;
5036
5037         for (; logical_sector < last_sector;
5038              logical_sector += STRIPE_SECTORS) {
5039                 DEFINE_WAIT(w);
5040                 int d;
5041         again:
5042                 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
5043                 prepare_to_wait(&conf->wait_for_overlap, &w,
5044                                 TASK_UNINTERRUPTIBLE);
5045                 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5046                 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5047                         release_stripe(sh);
5048                         schedule();
5049                         goto again;
5050                 }
5051                 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5052                 spin_lock_irq(&sh->stripe_lock);
5053                 for (d = 0; d < conf->raid_disks; d++) {
5054                         if (d == sh->pd_idx || d == sh->qd_idx)
5055                                 continue;
5056                         if (sh->dev[d].towrite || sh->dev[d].toread) {
5057                                 set_bit(R5_Overlap, &sh->dev[d].flags);
5058                                 spin_unlock_irq(&sh->stripe_lock);
5059                                 release_stripe(sh);
5060                                 schedule();
5061                                 goto again;
5062                         }
5063                 }
5064                 set_bit(STRIPE_DISCARD, &sh->state);
5065                 finish_wait(&conf->wait_for_overlap, &w);
5066                 sh->overwrite_disks = 0;
5067                 for (d = 0; d < conf->raid_disks; d++) {
5068                         if (d == sh->pd_idx || d == sh->qd_idx)
5069                                 continue;
5070                         sh->dev[d].towrite = bi;
5071                         set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5072                         raid5_inc_bi_active_stripes(bi);
5073                         sh->overwrite_disks++;
5074                 }
5075                 spin_unlock_irq(&sh->stripe_lock);
5076                 if (conf->mddev->bitmap) {
5077                         for (d = 0;
5078                              d < conf->raid_disks - conf->max_degraded;
5079                              d++)
5080                                 bitmap_startwrite(mddev->bitmap,
5081                                                   sh->sector,
5082                                                   STRIPE_SECTORS,
5083                                                   0);
5084                         sh->bm_seq = conf->seq_flush + 1;
5085                         set_bit(STRIPE_BIT_DELAY, &sh->state);
5086                 }
5087
5088                 set_bit(STRIPE_HANDLE, &sh->state);
5089                 clear_bit(STRIPE_DELAYED, &sh->state);
5090                 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5091                         atomic_inc(&conf->preread_active_stripes);
5092                 release_stripe_plug(mddev, sh);
5093         }
5094
5095         remaining = raid5_dec_bi_active_stripes(bi);
5096         if (remaining == 0) {
5097                 md_write_end(mddev);
5098                 bio_endio(bi, 0);
5099         }
5100 }
5101
5102 static void make_request(struct mddev *mddev, struct bio * bi)
5103 {
5104         struct r5conf *conf = mddev->private;
5105         int dd_idx;
5106         sector_t new_sector;
5107         sector_t logical_sector, last_sector;
5108         struct stripe_head *sh;
5109         const int rw = bio_data_dir(bi);
5110         int remaining;
5111         DEFINE_WAIT(w);
5112         bool do_prepare;
5113
5114         if (unlikely(bi->bi_rw & REQ_FLUSH)) {
5115                 md_flush_request(mddev, bi);
5116                 return;
5117         }
5118
5119         md_write_start(mddev, bi);
5120
5121         /*
5122          * If array is degraded, better not do chunk aligned read because
5123          * later we might have to read it again in order to reconstruct
5124          * data on failed drives.
5125          */
5126         if (rw == READ && mddev->degraded == 0 &&
5127              mddev->reshape_position == MaxSector &&
5128              chunk_aligned_read(mddev,bi))
5129                 return;
5130
5131         if (unlikely(bi->bi_rw & REQ_DISCARD)) {
5132                 make_discard_request(mddev, bi);
5133                 return;
5134         }
5135
5136         logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5137         last_sector = bio_end_sector(bi);
5138         bi->bi_next = NULL;
5139         bi->bi_phys_segments = 1;       /* over-loaded to count active stripes */
5140
5141         prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5142         for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5143                 int previous;
5144                 int seq;
5145
5146                 do_prepare = false;
5147         retry:
5148                 seq = read_seqcount_begin(&conf->gen_lock);
5149                 previous = 0;
5150                 if (do_prepare)
5151                         prepare_to_wait(&conf->wait_for_overlap, &w,
5152                                 TASK_UNINTERRUPTIBLE);
5153                 if (unlikely(conf->reshape_progress != MaxSector)) {
5154                         /* spinlock is needed as reshape_progress may be
5155                          * 64bit on a 32bit platform, and so it might be
5156                          * possible to see a half-updated value
5157                          * Of course reshape_progress could change after
5158                          * the lock is dropped, so once we get a reference
5159                          * to the stripe that we think it is, we will have
5160                          * to check again.
5161                          */
5162                         spin_lock_irq(&conf->device_lock);
5163                         if (mddev->reshape_backwards
5164                             ? logical_sector < conf->reshape_progress
5165                             : logical_sector >= conf->reshape_progress) {
5166                                 previous = 1;
5167                         } else {
5168                                 if (mddev->reshape_backwards
5169                                     ? logical_sector < conf->reshape_safe
5170                                     : logical_sector >= conf->reshape_safe) {
5171                                         spin_unlock_irq(&conf->device_lock);
5172                                         schedule();
5173                                         do_prepare = true;
5174                                         goto retry;
5175                                 }
5176                         }
5177                         spin_unlock_irq(&conf->device_lock);
5178                 }
5179
5180                 new_sector = raid5_compute_sector(conf, logical_sector,
5181                                                   previous,
5182                                                   &dd_idx, NULL);
5183                 pr_debug("raid456: make_request, sector %llu logical %llu\n",
5184                         (unsigned long long)new_sector,
5185                         (unsigned long long)logical_sector);
5186
5187                 sh = get_active_stripe(conf, new_sector, previous,
5188                                        (bi->bi_rw&RWA_MASK), 0);
5189                 if (sh) {
5190                         if (unlikely(previous)) {
5191                                 /* expansion might have moved on while waiting for a
5192                                  * stripe, so we must do the range check again.
5193                                  * Expansion could still move past after this
5194                                  * test, but as we are holding a reference to
5195                                  * 'sh', we know that if that happens,
5196                                  *  STRIPE_EXPANDING will get set and the expansion
5197                                  * won't proceed until we finish with the stripe.
5198                                  */
5199                                 int must_retry = 0;
5200                                 spin_lock_irq(&conf->device_lock);
5201                                 if (mddev->reshape_backwards
5202                                     ? logical_sector >= conf->reshape_progress
5203                                     : logical_sector < conf->reshape_progress)
5204                                         /* mismatch, need to try again */
5205                                         must_retry = 1;
5206                                 spin_unlock_irq(&conf->device_lock);
5207                                 if (must_retry) {
5208                                         release_stripe(sh);
5209                                         schedule();
5210                                         do_prepare = true;
5211                                         goto retry;
5212                                 }
5213                         }
5214                         if (read_seqcount_retry(&conf->gen_lock, seq)) {
5215                                 /* Might have got the wrong stripe_head
5216                                  * by accident
5217                                  */
5218                                 release_stripe(sh);
5219                                 goto retry;
5220                         }
5221
5222                         if (rw == WRITE &&
5223                             logical_sector >= mddev->suspend_lo &&
5224                             logical_sector < mddev->suspend_hi) {
5225                                 release_stripe(sh);
5226                                 /* As the suspend_* range is controlled by
5227                                  * userspace, we want an interruptible
5228                                  * wait.
5229                                  */
5230                                 flush_signals(current);
5231                                 prepare_to_wait(&conf->wait_for_overlap,
5232                                                 &w, TASK_INTERRUPTIBLE);
5233                                 if (logical_sector >= mddev->suspend_lo &&
5234                                     logical_sector < mddev->suspend_hi) {
5235                                         schedule();
5236                                         do_prepare = true;
5237                                 }
5238                                 goto retry;
5239                         }
5240
5241                         if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5242                             !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5243                                 /* Stripe is busy expanding or
5244                                  * add failed due to overlap.  Flush everything
5245                                  * and wait a while
5246                                  */
5247                                 md_wakeup_thread(mddev->thread);
5248                                 release_stripe(sh);
5249                                 schedule();
5250                                 do_prepare = true;
5251                                 goto retry;
5252                         }
5253                         set_bit(STRIPE_HANDLE, &sh->state);
5254                         clear_bit(STRIPE_DELAYED, &sh->state);
5255                         if ((!sh->batch_head || sh == sh->batch_head) &&
5256                             (bi->bi_rw & REQ_SYNC) &&
5257                             !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5258                                 atomic_inc(&conf->preread_active_stripes);
5259                         release_stripe_plug(mddev, sh);
5260                 } else {
5261                         /* cannot get stripe for read-ahead, just give-up */
5262                         clear_bit(BIO_UPTODATE, &bi->bi_flags);
5263                         break;
5264                 }
5265         }
5266         finish_wait(&conf->wait_for_overlap, &w);
5267
5268         remaining = raid5_dec_bi_active_stripes(bi);
5269         if (remaining == 0) {
5270
5271                 if ( rw == WRITE )
5272                         md_write_end(mddev);
5273
5274                 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
5275                                          bi, 0);
5276                 bio_endio(bi, 0);
5277         }
5278 }
5279
5280 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5281
5282 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5283 {
5284         /* reshaping is quite different to recovery/resync so it is
5285          * handled quite separately ... here.
5286          *
5287          * On each call to sync_request, we gather one chunk worth of
5288          * destination stripes and flag them as expanding.
5289          * Then we find all the source stripes and request reads.
5290          * As the reads complete, handle_stripe will copy the data
5291          * into the destination stripe and release that stripe.
5292          */
5293         struct r5conf *conf = mddev->private;
5294         struct stripe_head *sh;
5295         sector_t first_sector, last_sector;
5296         int raid_disks = conf->previous_raid_disks;
5297         int data_disks = raid_disks - conf->max_degraded;
5298         int new_data_disks = conf->raid_disks - conf->max_degraded;
5299         int i;
5300         int dd_idx;
5301         sector_t writepos, readpos, safepos;
5302         sector_t stripe_addr;
5303         int reshape_sectors;
5304         struct list_head stripes;
5305
5306         if (sector_nr == 0) {
5307                 /* If restarting in the middle, skip the initial sectors */
5308                 if (mddev->reshape_backwards &&
5309                     conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5310                         sector_nr = raid5_size(mddev, 0, 0)
5311                                 - conf->reshape_progress;
5312                 } else if (!mddev->reshape_backwards &&
5313                            conf->reshape_progress > 0)
5314                         sector_nr = conf->reshape_progress;
5315                 sector_div(sector_nr, new_data_disks);
5316                 if (sector_nr) {
5317                         mddev->curr_resync_completed = sector_nr;
5318                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5319                         *skipped = 1;
5320                         return sector_nr;
5321                 }
5322         }
5323
5324         /* We need to process a full chunk at a time.
5325          * If old and new chunk sizes differ, we need to process the
5326          * largest of these
5327          */
5328         if (mddev->new_chunk_sectors > mddev->chunk_sectors)
5329                 reshape_sectors = mddev->new_chunk_sectors;
5330         else
5331                 reshape_sectors = mddev->chunk_sectors;
5332
5333         /* We update the metadata at least every 10 seconds, or when
5334          * the data about to be copied would over-write the source of
5335          * the data at the front of the range.  i.e. one new_stripe
5336          * along from reshape_progress new_maps to after where
5337          * reshape_safe old_maps to
5338          */
5339         writepos = conf->reshape_progress;
5340         sector_div(writepos, new_data_disks);
5341         readpos = conf->reshape_progress;
5342         sector_div(readpos, data_disks);
5343         safepos = conf->reshape_safe;
5344         sector_div(safepos, data_disks);
5345         if (mddev->reshape_backwards) {
5346                 writepos -= min_t(sector_t, reshape_sectors, writepos);
5347                 readpos += reshape_sectors;
5348                 safepos += reshape_sectors;
5349         } else {
5350                 writepos += reshape_sectors;
5351                 readpos -= min_t(sector_t, reshape_sectors, readpos);
5352                 safepos -= min_t(sector_t, reshape_sectors, safepos);
5353         }
5354
5355         /* Having calculated the 'writepos' possibly use it
5356          * to set 'stripe_addr' which is where we will write to.
5357          */
5358         if (mddev->reshape_backwards) {
5359                 BUG_ON(conf->reshape_progress == 0);
5360                 stripe_addr = writepos;
5361                 BUG_ON((mddev->dev_sectors &
5362                         ~((sector_t)reshape_sectors - 1))
5363                        - reshape_sectors - stripe_addr
5364                        != sector_nr);
5365         } else {
5366                 BUG_ON(writepos != sector_nr + reshape_sectors);
5367                 stripe_addr = sector_nr;
5368         }
5369
5370         /* 'writepos' is the most advanced device address we might write.
5371          * 'readpos' is the least advanced device address we might read.
5372          * 'safepos' is the least address recorded in the metadata as having
5373          *     been reshaped.
5374          * If there is a min_offset_diff, these are adjusted either by
5375          * increasing the safepos/readpos if diff is negative, or
5376          * increasing writepos if diff is positive.
5377          * If 'readpos' is then behind 'writepos', there is no way that we can
5378          * ensure safety in the face of a crash - that must be done by userspace
5379          * making a backup of the data.  So in that case there is no particular
5380          * rush to update metadata.
5381          * Otherwise if 'safepos' is behind 'writepos', then we really need to
5382          * update the metadata to advance 'safepos' to match 'readpos' so that
5383          * we can be safe in the event of a crash.
5384          * So we insist on updating metadata if safepos is behind writepos and
5385          * readpos is beyond writepos.
5386          * In any case, update the metadata every 10 seconds.
5387          * Maybe that number should be configurable, but I'm not sure it is
5388          * worth it.... maybe it could be a multiple of safemode_delay???
5389          */
5390         if (conf->min_offset_diff < 0) {
5391                 safepos += -conf->min_offset_diff;
5392                 readpos += -conf->min_offset_diff;
5393         } else
5394                 writepos += conf->min_offset_diff;
5395
5396         if ((mddev->reshape_backwards
5397              ? (safepos > writepos && readpos < writepos)
5398              : (safepos < writepos && readpos > writepos)) ||
5399             time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5400                 /* Cannot proceed until we've updated the superblock... */
5401                 wait_event(conf->wait_for_overlap,
5402                            atomic_read(&conf->reshape_stripes)==0
5403                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5404                 if (atomic_read(&conf->reshape_stripes) != 0)
5405                         return 0;
5406                 mddev->reshape_position = conf->reshape_progress;
5407                 mddev->curr_resync_completed = sector_nr;
5408                 conf->reshape_checkpoint = jiffies;
5409                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5410                 md_wakeup_thread(mddev->thread);
5411                 wait_event(mddev->sb_wait, mddev->flags == 0 ||
5412                            test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5413                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5414                         return 0;
5415                 spin_lock_irq(&conf->device_lock);
5416                 conf->reshape_safe = mddev->reshape_position;
5417                 spin_unlock_irq(&conf->device_lock);
5418                 wake_up(&conf->wait_for_overlap);
5419                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5420         }
5421
5422         INIT_LIST_HEAD(&stripes);
5423         for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5424                 int j;
5425                 int skipped_disk = 0;
5426                 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5427                 set_bit(STRIPE_EXPANDING, &sh->state);
5428                 atomic_inc(&conf->reshape_stripes);
5429                 /* If any of this stripe is beyond the end of the old
5430                  * array, then we need to zero those blocks
5431                  */
5432                 for (j=sh->disks; j--;) {
5433                         sector_t s;
5434                         if (j == sh->pd_idx)
5435                                 continue;
5436                         if (conf->level == 6 &&
5437                             j == sh->qd_idx)
5438                                 continue;
5439                         s = compute_blocknr(sh, j, 0);
5440                         if (s < raid5_size(mddev, 0, 0)) {
5441                                 skipped_disk = 1;
5442                                 continue;
5443                         }
5444                         memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5445                         set_bit(R5_Expanded, &sh->dev[j].flags);
5446                         set_bit(R5_UPTODATE, &sh->dev[j].flags);
5447                 }
5448                 if (!skipped_disk) {
5449                         set_bit(STRIPE_EXPAND_READY, &sh->state);
5450                         set_bit(STRIPE_HANDLE, &sh->state);
5451                 }
5452                 list_add(&sh->lru, &stripes);
5453         }
5454         spin_lock_irq(&conf->device_lock);
5455         if (mddev->reshape_backwards)
5456                 conf->reshape_progress -= reshape_sectors * new_data_disks;
5457         else
5458                 conf->reshape_progress += reshape_sectors * new_data_disks;
5459         spin_unlock_irq(&conf->device_lock);
5460         /* Ok, those stripe are ready. We can start scheduling
5461          * reads on the source stripes.
5462          * The source stripes are determined by mapping the first and last
5463          * block on the destination stripes.
5464          */
5465         first_sector =
5466                 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5467                                      1, &dd_idx, NULL);
5468         last_sector =
5469                 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5470                                             * new_data_disks - 1),
5471                                      1, &dd_idx, NULL);
5472         if (last_sector >= mddev->dev_sectors)
5473                 last_sector = mddev->dev_sectors - 1;
5474         while (first_sector <= last_sector) {
5475                 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
5476                 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5477                 set_bit(STRIPE_HANDLE, &sh->state);
5478                 release_stripe(sh);
5479                 first_sector += STRIPE_SECTORS;
5480         }
5481         /* Now that the sources are clearly marked, we can release
5482          * the destination stripes
5483          */
5484         while (!list_empty(&stripes)) {
5485                 sh = list_entry(stripes.next, struct stripe_head, lru);
5486                 list_del_init(&sh->lru);
5487                 release_stripe(sh);
5488         }
5489         /* If this takes us to the resync_max point where we have to pause,
5490          * then we need to write out the superblock.
5491          */
5492         sector_nr += reshape_sectors;
5493         if ((sector_nr - mddev->curr_resync_completed) * 2
5494             >= mddev->resync_max - mddev->curr_resync_completed) {
5495                 /* Cannot proceed until we've updated the superblock... */
5496                 wait_event(conf->wait_for_overlap,
5497                            atomic_read(&conf->reshape_stripes) == 0
5498                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5499                 if (atomic_read(&conf->reshape_stripes) != 0)
5500                         goto ret;
5501                 mddev->reshape_position = conf->reshape_progress;
5502                 mddev->curr_resync_completed = sector_nr;
5503                 conf->reshape_checkpoint = jiffies;
5504                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5505                 md_wakeup_thread(mddev->thread);
5506                 wait_event(mddev->sb_wait,
5507                            !test_bit(MD_CHANGE_DEVS, &mddev->flags)
5508                            || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5509                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5510                         goto ret;
5511                 spin_lock_irq(&conf->device_lock);
5512                 conf->reshape_safe = mddev->reshape_position;
5513                 spin_unlock_irq(&conf->device_lock);
5514                 wake_up(&conf->wait_for_overlap);
5515                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5516         }
5517 ret:
5518         return reshape_sectors;
5519 }
5520
5521 static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5522 {
5523         struct r5conf *conf = mddev->private;
5524         struct stripe_head *sh;
5525         sector_t max_sector = mddev->dev_sectors;
5526         sector_t sync_blocks;
5527         int still_degraded = 0;
5528         int i;
5529
5530         if (sector_nr >= max_sector) {
5531                 /* just being told to finish up .. nothing much to do */
5532
5533                 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
5534                         end_reshape(conf);
5535                         return 0;
5536                 }
5537
5538                 if (mddev->curr_resync < max_sector) /* aborted */
5539                         bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
5540                                         &sync_blocks, 1);
5541                 else /* completed sync */
5542                         conf->fullsync = 0;
5543                 bitmap_close_sync(mddev->bitmap);
5544
5545                 return 0;
5546         }
5547
5548         /* Allow raid5_quiesce to complete */
5549         wait_event(conf->wait_for_overlap, conf->quiesce != 2);
5550
5551         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5552                 return reshape_request(mddev, sector_nr, skipped);
5553
5554         /* No need to check resync_max as we never do more than one
5555          * stripe, and as resync_max will always be on a chunk boundary,
5556          * if the check in md_do_sync didn't fire, there is no chance
5557          * of overstepping resync_max here
5558          */
5559
5560         /* if there is too many failed drives and we are trying
5561          * to resync, then assert that we are finished, because there is
5562          * nothing we can do.
5563          */
5564         if (mddev->degraded >= conf->max_degraded &&
5565             test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5566                 sector_t rv = mddev->dev_sectors - sector_nr;
5567                 *skipped = 1;
5568                 return rv;
5569         }
5570         if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
5571             !conf->fullsync &&
5572             !bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
5573             sync_blocks >= STRIPE_SECTORS) {
5574                 /* we can skip this block, and probably more */
5575                 sync_blocks /= STRIPE_SECTORS;
5576                 *skipped = 1;
5577                 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
5578         }
5579
5580         bitmap_cond_end_sync(mddev->bitmap, sector_nr);
5581
5582         sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
5583         if (sh == NULL) {
5584                 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
5585                 /* make sure we don't swamp the stripe cache if someone else
5586                  * is trying to get access
5587                  */
5588                 schedule_timeout_uninterruptible(1);
5589         }
5590         /* Need to check if array will still be degraded after recovery/resync
5591          * Note in case of > 1 drive failures it's possible we're rebuilding
5592          * one drive while leaving another faulty drive in array.
5593          */
5594         rcu_read_lock();
5595         for (i = 0; i < conf->raid_disks; i++) {
5596                 struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
5597
5598                 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
5599                         still_degraded = 1;
5600         }
5601         rcu_read_unlock();
5602
5603         bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
5604
5605         set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
5606         set_bit(STRIPE_HANDLE, &sh->state);
5607
5608         release_stripe(sh);
5609
5610         return STRIPE_SECTORS;
5611 }
5612
5613 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
5614 {
5615         /* We may not be able to submit a whole bio at once as there
5616          * may not be enough stripe_heads available.
5617          * We cannot pre-allocate enough stripe_heads as we may need
5618          * more than exist in the cache (if we allow ever large chunks).
5619          * So we do one stripe head at a time and record in
5620          * ->bi_hw_segments how many have been done.
5621          *
5622          * We *know* that this entire raid_bio is in one chunk, so
5623          * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
5624          */
5625         struct stripe_head *sh;
5626         int dd_idx;
5627         sector_t sector, logical_sector, last_sector;
5628         int scnt = 0;
5629         int remaining;
5630         int handled = 0;
5631
5632         logical_sector = raid_bio->bi_iter.bi_sector &
5633                 ~((sector_t)STRIPE_SECTORS-1);
5634         sector = raid5_compute_sector(conf, logical_sector,
5635                                       0, &dd_idx, NULL);
5636         last_sector = bio_end_sector(raid_bio);
5637
5638         for (; logical_sector < last_sector;
5639              logical_sector += STRIPE_SECTORS,
5640                      sector += STRIPE_SECTORS,
5641                      scnt++) {
5642
5643                 if (scnt < raid5_bi_processed_stripes(raid_bio))
5644                         /* already done this stripe */
5645                         continue;
5646
5647                 sh = get_active_stripe(conf, sector, 0, 1, 1);
5648
5649                 if (!sh) {
5650                         /* failed to get a stripe - must wait */
5651                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5652                         conf->retry_read_aligned = raid_bio;
5653                         return handled;
5654                 }
5655
5656                 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
5657                         release_stripe(sh);
5658                         raid5_set_bi_processed_stripes(raid_bio, scnt);
5659                         conf->retry_read_aligned = raid_bio;
5660                         return handled;
5661                 }
5662
5663                 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
5664                 handle_stripe(sh);
5665                 release_stripe(sh);
5666                 handled++;
5667         }
5668         remaining = raid5_dec_bi_active_stripes(raid_bio);
5669         if (remaining == 0) {
5670                 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
5671                                          raid_bio, 0);
5672                 bio_endio(raid_bio, 0);
5673         }
5674         if (atomic_dec_and_test(&conf->active_aligned_reads))
5675                 wake_up(&conf->wait_for_stripe);
5676         return handled;
5677 }
5678
5679 static int handle_active_stripes(struct r5conf *conf, int group,
5680                                  struct r5worker *worker,
5681                                  struct list_head *temp_inactive_list)
5682 {
5683         struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
5684         int i, batch_size = 0, hash;
5685         bool release_inactive = false;
5686
5687         while (batch_size < MAX_STRIPE_BATCH &&
5688                         (sh = __get_priority_stripe(conf, group)) != NULL)
5689                 batch[batch_size++] = sh;
5690
5691         if (batch_size == 0) {
5692                 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5693                         if (!list_empty(temp_inactive_list + i))
5694                                 break;
5695                 if (i == NR_STRIPE_HASH_LOCKS)
5696                         return batch_size;
5697                 release_inactive = true;
5698         }
5699         spin_unlock_irq(&conf->device_lock);
5700
5701         release_inactive_stripe_list(conf, temp_inactive_list,
5702                                      NR_STRIPE_HASH_LOCKS);
5703
5704         if (release_inactive) {
5705                 spin_lock_irq(&conf->device_lock);
5706                 return 0;
5707         }
5708
5709         for (i = 0; i < batch_size; i++)
5710                 handle_stripe(batch[i]);
5711
5712         cond_resched();
5713
5714         spin_lock_irq(&conf->device_lock);
5715         for (i = 0; i < batch_size; i++) {
5716                 hash = batch[i]->hash_lock_index;
5717                 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
5718         }
5719         return batch_size;
5720 }
5721
5722 static void raid5_do_work(struct work_struct *work)
5723 {
5724         struct r5worker *worker = container_of(work, struct r5worker, work);
5725         struct r5worker_group *group = worker->group;
5726         struct r5conf *conf = group->conf;
5727         int group_id = group - conf->worker_groups;
5728         int handled;
5729         struct blk_plug plug;
5730
5731         pr_debug("+++ raid5worker active\n");
5732
5733         blk_start_plug(&plug);
5734         handled = 0;
5735         spin_lock_irq(&conf->device_lock);
5736         while (1) {
5737                 int batch_size, released;
5738
5739                 released = release_stripe_list(conf, worker->temp_inactive_list);
5740
5741                 batch_size = handle_active_stripes(conf, group_id, worker,
5742                                                    worker->temp_inactive_list);
5743                 worker->working = false;
5744                 if (!batch_size && !released)
5745                         break;
5746                 handled += batch_size;
5747         }
5748         pr_debug("%d stripes handled\n", handled);
5749
5750         spin_unlock_irq(&conf->device_lock);
5751         blk_finish_plug(&plug);
5752
5753         pr_debug("--- raid5worker inactive\n");
5754 }
5755
5756 /*
5757  * This is our raid5 kernel thread.
5758  *
5759  * We scan the hash table for stripes which can be handled now.
5760  * During the scan, completed stripes are saved for us by the interrupt
5761  * handler, so that they will not have to wait for our next wakeup.
5762  */
5763 static void raid5d(struct md_thread *thread)
5764 {
5765         struct mddev *mddev = thread->mddev;
5766         struct r5conf *conf = mddev->private;
5767         int handled;
5768         struct blk_plug plug;
5769
5770         pr_debug("+++ raid5d active\n");
5771
5772         md_check_recovery(mddev);
5773
5774         blk_start_plug(&plug);
5775         handled = 0;
5776         spin_lock_irq(&conf->device_lock);
5777         while (1) {
5778                 struct bio *bio;
5779                 int batch_size, released;
5780
5781                 released = release_stripe_list(conf, conf->temp_inactive_list);
5782                 if (released)
5783                         clear_bit(R5_DID_ALLOC, &conf->cache_state);
5784
5785                 if (
5786                     !list_empty(&conf->bitmap_list)) {
5787                         /* Now is a good time to flush some bitmap updates */
5788                         conf->seq_flush++;
5789                         spin_unlock_irq(&conf->device_lock);
5790                         bitmap_unplug(mddev->bitmap);
5791                         spin_lock_irq(&conf->device_lock);
5792                         conf->seq_write = conf->seq_flush;
5793                         activate_bit_delay(conf, conf->temp_inactive_list);
5794                 }
5795                 raid5_activate_delayed(conf);
5796
5797                 while ((bio = remove_bio_from_retry(conf))) {
5798                         int ok;
5799                         spin_unlock_irq(&conf->device_lock);
5800                         ok = retry_aligned_read(conf, bio);
5801                         spin_lock_irq(&conf->device_lock);
5802                         if (!ok)
5803                                 break;
5804                         handled++;
5805                 }
5806
5807                 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
5808                                                    conf->temp_inactive_list);
5809                 if (!batch_size && !released)
5810                         break;
5811                 handled += batch_size;
5812
5813                 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
5814                         spin_unlock_irq(&conf->device_lock);
5815                         md_check_recovery(mddev);
5816                         spin_lock_irq(&conf->device_lock);
5817                 }
5818         }
5819         pr_debug("%d stripes handled\n", handled);
5820
5821         spin_unlock_irq(&conf->device_lock);
5822         if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state)) {
5823                 grow_one_stripe(conf, __GFP_NOWARN);
5824                 /* Set flag even if allocation failed.  This helps
5825                  * slow down allocation requests when mem is short
5826                  */
5827                 set_bit(R5_DID_ALLOC, &conf->cache_state);
5828         }
5829
5830         async_tx_issue_pending_all();
5831         blk_finish_plug(&plug);
5832
5833         pr_debug("--- raid5d inactive\n");
5834 }
5835
5836 static ssize_t
5837 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
5838 {
5839         struct r5conf *conf;
5840         int ret = 0;
5841         spin_lock(&mddev->lock);
5842         conf = mddev->private;
5843         if (conf)
5844                 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
5845         spin_unlock(&mddev->lock);
5846         return ret;
5847 }
5848
5849 int
5850 raid5_set_cache_size(struct mddev *mddev, int size)
5851 {
5852         struct r5conf *conf = mddev->private;
5853         int err;
5854
5855         if (size <= 16 || size > 32768)
5856                 return -EINVAL;
5857
5858         conf->min_nr_stripes = size;
5859         while (size < conf->max_nr_stripes &&
5860                drop_one_stripe(conf))
5861                 ;
5862
5863
5864         err = md_allow_write(mddev);
5865         if (err)
5866                 return err;
5867
5868         while (size > conf->max_nr_stripes)
5869                 if (!grow_one_stripe(conf, GFP_KERNEL))
5870                         break;
5871
5872         return 0;
5873 }
5874 EXPORT_SYMBOL(raid5_set_cache_size);
5875
5876 static ssize_t
5877 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
5878 {
5879         struct r5conf *conf;
5880         unsigned long new;
5881         int err;
5882
5883         if (len >= PAGE_SIZE)
5884                 return -EINVAL;
5885         if (kstrtoul(page, 10, &new))
5886                 return -EINVAL;
5887         err = mddev_lock(mddev);
5888         if (err)
5889                 return err;
5890         conf = mddev->private;
5891         if (!conf)
5892                 err = -ENODEV;
5893         else
5894                 err = raid5_set_cache_size(mddev, new);
5895         mddev_unlock(mddev);
5896
5897         return err ?: len;
5898 }
5899
5900 static struct md_sysfs_entry
5901 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
5902                                 raid5_show_stripe_cache_size,
5903                                 raid5_store_stripe_cache_size);
5904
5905 static ssize_t
5906 raid5_show_rmw_level(struct mddev  *mddev, char *page)
5907 {
5908         struct r5conf *conf = mddev->private;
5909         if (conf)
5910                 return sprintf(page, "%d\n", conf->rmw_level);
5911         else
5912                 return 0;
5913 }
5914
5915 static ssize_t
5916 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
5917 {
5918         struct r5conf *conf = mddev->private;
5919         unsigned long new;
5920
5921         if (!conf)
5922                 return -ENODEV;
5923
5924         if (len >= PAGE_SIZE)
5925                 return -EINVAL;
5926
5927         if (kstrtoul(page, 10, &new))
5928                 return -EINVAL;
5929
5930         if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
5931                 return -EINVAL;
5932
5933         if (new != PARITY_DISABLE_RMW &&
5934             new != PARITY_ENABLE_RMW &&
5935             new != PARITY_PREFER_RMW)
5936                 return -EINVAL;
5937
5938         conf->rmw_level = new;
5939         return len;
5940 }
5941
5942 static struct md_sysfs_entry
5943 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
5944                          raid5_show_rmw_level,
5945                          raid5_store_rmw_level);
5946
5947
5948 static ssize_t
5949 raid5_show_preread_threshold(struct mddev *mddev, char *page)
5950 {
5951         struct r5conf *conf;
5952         int ret = 0;
5953         spin_lock(&mddev->lock);
5954         conf = mddev->private;
5955         if (conf)
5956                 ret = sprintf(page, "%d\n", conf->bypass_threshold);
5957         spin_unlock(&mddev->lock);
5958         return ret;
5959 }
5960
5961 static ssize_t
5962 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
5963 {
5964         struct r5conf *conf;
5965         unsigned long new;
5966         int err;
5967
5968         if (len >= PAGE_SIZE)
5969                 return -EINVAL;
5970         if (kstrtoul(page, 10, &new))
5971                 return -EINVAL;
5972
5973         err = mddev_lock(mddev);
5974         if (err)
5975                 return err;
5976         conf = mddev->private;
5977         if (!conf)
5978                 err = -ENODEV;
5979         else if (new > conf->min_nr_stripes)
5980                 err = -EINVAL;
5981         else
5982                 conf->bypass_threshold = new;
5983         mddev_unlock(mddev);
5984         return err ?: len;
5985 }
5986
5987 static struct md_sysfs_entry
5988 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
5989                                         S_IRUGO | S_IWUSR,
5990                                         raid5_show_preread_threshold,
5991                                         raid5_store_preread_threshold);
5992
5993 static ssize_t
5994 raid5_show_skip_copy(struct mddev *mddev, char *page)
5995 {
5996         struct r5conf *conf;
5997         int ret = 0;
5998         spin_lock(&mddev->lock);
5999         conf = mddev->private;
6000         if (conf)
6001                 ret = sprintf(page, "%d\n", conf->skip_copy);
6002         spin_unlock(&mddev->lock);
6003         return ret;
6004 }
6005
6006 static ssize_t
6007 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6008 {
6009         struct r5conf *conf;
6010         unsigned long new;
6011         int err;
6012
6013         if (len >= PAGE_SIZE)
6014                 return -EINVAL;
6015         if (kstrtoul(page, 10, &new))
6016                 return -EINVAL;
6017         new = !!new;
6018
6019         err = mddev_lock(mddev);
6020         if (err)
6021                 return err;
6022         conf = mddev->private;
6023         if (!conf)
6024                 err = -ENODEV;
6025         else if (new != conf->skip_copy) {
6026                 mddev_suspend(mddev);
6027                 conf->skip_copy = new;
6028                 if (new)
6029                         mddev->queue->backing_dev_info.capabilities |=
6030                                 BDI_CAP_STABLE_WRITES;
6031                 else
6032                         mddev->queue->backing_dev_info.capabilities &=
6033                                 ~BDI_CAP_STABLE_WRITES;
6034                 mddev_resume(mddev);
6035         }
6036         mddev_unlock(mddev);
6037         return err ?: len;
6038 }
6039
6040 static struct md_sysfs_entry
6041 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6042                                         raid5_show_skip_copy,
6043                                         raid5_store_skip_copy);
6044
6045 static ssize_t
6046 stripe_cache_active_show(struct mddev *mddev, char *page)
6047 {
6048         struct r5conf *conf = mddev->private;
6049         if (conf)
6050                 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6051         else
6052                 return 0;
6053 }
6054
6055 static struct md_sysfs_entry
6056 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6057
6058 static ssize_t
6059 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6060 {
6061         struct r5conf *conf;
6062         int ret = 0;
6063         spin_lock(&mddev->lock);
6064         conf = mddev->private;
6065         if (conf)
6066                 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6067         spin_unlock(&mddev->lock);
6068         return ret;
6069 }
6070
6071 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6072                                int *group_cnt,
6073                                int *worker_cnt_per_group,
6074                                struct r5worker_group **worker_groups);
6075 static ssize_t
6076 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6077 {
6078         struct r5conf *conf;
6079         unsigned long new;
6080         int err;
6081         struct r5worker_group *new_groups, *old_groups;
6082         int group_cnt, worker_cnt_per_group;
6083
6084         if (len >= PAGE_SIZE)
6085                 return -EINVAL;
6086         if (kstrtoul(page, 10, &new))
6087                 return -EINVAL;
6088
6089         err = mddev_lock(mddev);
6090         if (err)
6091                 return err;
6092         conf = mddev->private;
6093         if (!conf)
6094                 err = -ENODEV;
6095         else if (new != conf->worker_cnt_per_group) {
6096                 mddev_suspend(mddev);
6097
6098                 old_groups = conf->worker_groups;
6099                 if (old_groups)
6100                         flush_workqueue(raid5_wq);
6101
6102                 err = alloc_thread_groups(conf, new,
6103                                           &group_cnt, &worker_cnt_per_group,
6104                                           &new_groups);
6105                 if (!err) {
6106                         spin_lock_irq(&conf->device_lock);
6107                         conf->group_cnt = group_cnt;
6108                         conf->worker_cnt_per_group = worker_cnt_per_group;
6109                         conf->worker_groups = new_groups;
6110                         spin_unlock_irq(&conf->device_lock);
6111
6112                         if (old_groups)
6113                                 kfree(old_groups[0].workers);
6114                         kfree(old_groups);
6115                 }
6116                 mddev_resume(mddev);
6117         }
6118         mddev_unlock(mddev);
6119
6120         return err ?: len;
6121 }
6122
6123 static struct md_sysfs_entry
6124 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6125                                 raid5_show_group_thread_cnt,
6126                                 raid5_store_group_thread_cnt);
6127
6128 static struct attribute *raid5_attrs[] =  {
6129         &raid5_stripecache_size.attr,
6130         &raid5_stripecache_active.attr,
6131         &raid5_preread_bypass_threshold.attr,
6132         &raid5_group_thread_cnt.attr,
6133         &raid5_skip_copy.attr,
6134         &raid5_rmw_level.attr,
6135         NULL,
6136 };
6137 static struct attribute_group raid5_attrs_group = {
6138         .name = NULL,
6139         .attrs = raid5_attrs,
6140 };
6141
6142 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6143                                int *group_cnt,
6144                                int *worker_cnt_per_group,
6145                                struct r5worker_group **worker_groups)
6146 {
6147         int i, j, k;
6148         ssize_t size;
6149         struct r5worker *workers;
6150
6151         *worker_cnt_per_group = cnt;
6152         if (cnt == 0) {
6153                 *group_cnt = 0;
6154                 *worker_groups = NULL;
6155                 return 0;
6156         }
6157         *group_cnt = num_possible_nodes();
6158         size = sizeof(struct r5worker) * cnt;
6159         workers = kzalloc(size * *group_cnt, GFP_NOIO);
6160         *worker_groups = kzalloc(sizeof(struct r5worker_group) *
6161                                 *group_cnt, GFP_NOIO);
6162         if (!*worker_groups || !workers) {
6163                 kfree(workers);
6164                 kfree(*worker_groups);
6165                 return -ENOMEM;
6166         }
6167
6168         for (i = 0; i < *group_cnt; i++) {
6169                 struct r5worker_group *group;
6170
6171                 group = &(*worker_groups)[i];
6172                 INIT_LIST_HEAD(&group->handle_list);
6173                 group->conf = conf;
6174                 group->workers = workers + i * cnt;
6175
6176                 for (j = 0; j < cnt; j++) {
6177                         struct r5worker *worker = group->workers + j;
6178                         worker->group = group;
6179                         INIT_WORK(&worker->work, raid5_do_work);
6180
6181                         for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6182                                 INIT_LIST_HEAD(worker->temp_inactive_list + k);
6183                 }
6184         }
6185
6186         return 0;
6187 }
6188
6189 static void free_thread_groups(struct r5conf *conf)
6190 {
6191         if (conf->worker_groups)
6192                 kfree(conf->worker_groups[0].workers);
6193         kfree(conf->worker_groups);
6194         conf->worker_groups = NULL;
6195 }
6196
6197 static sector_t
6198 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6199 {
6200         struct r5conf *conf = mddev->private;
6201
6202         if (!sectors)
6203                 sectors = mddev->dev_sectors;
6204         if (!raid_disks)
6205                 /* size is defined by the smallest of previous and new size */
6206                 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6207
6208         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
6209         sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
6210         return sectors * (raid_disks - conf->max_degraded);
6211 }
6212
6213 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6214 {
6215         safe_put_page(percpu->spare_page);
6216         if (percpu->scribble)
6217                 flex_array_free(percpu->scribble);
6218         percpu->spare_page = NULL;
6219         percpu->scribble = NULL;
6220 }
6221
6222 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6223 {
6224         if (conf->level == 6 && !percpu->spare_page)
6225                 percpu->spare_page = alloc_page(GFP_KERNEL);
6226         if (!percpu->scribble)
6227                 percpu->scribble = scribble_alloc(max(conf->raid_disks,
6228                         conf->previous_raid_disks), conf->chunk_sectors /
6229                         STRIPE_SECTORS, GFP_KERNEL);
6230
6231         if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
6232                 free_scratch_buffer(conf, percpu);
6233                 return -ENOMEM;
6234         }
6235
6236         return 0;
6237 }
6238
6239 static void raid5_free_percpu(struct r5conf *conf)
6240 {
6241         unsigned long cpu;
6242
6243         if (!conf->percpu)
6244                 return;
6245
6246 #ifdef CONFIG_HOTPLUG_CPU
6247         unregister_cpu_notifier(&conf->cpu_notify);
6248 #endif
6249
6250         get_online_cpus();
6251         for_each_possible_cpu(cpu)
6252                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6253         put_online_cpus();
6254
6255         free_percpu(conf->percpu);
6256 }
6257
6258 static void free_conf(struct r5conf *conf)
6259 {
6260         if (conf->shrinker.seeks)
6261                 unregister_shrinker(&conf->shrinker);
6262         free_thread_groups(conf);
6263         shrink_stripes(conf);
6264         raid5_free_percpu(conf);
6265         kfree(conf->disks);
6266         kfree(conf->stripe_hashtbl);
6267         kfree(conf);
6268 }
6269
6270 #ifdef CONFIG_HOTPLUG_CPU
6271 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
6272                               void *hcpu)
6273 {
6274         struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
6275         long cpu = (long)hcpu;
6276         struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6277
6278         switch (action) {
6279         case CPU_UP_PREPARE:
6280         case CPU_UP_PREPARE_FROZEN:
6281                 if (alloc_scratch_buffer(conf, percpu)) {
6282                         pr_err("%s: failed memory allocation for cpu%ld\n",
6283                                __func__, cpu);
6284                         return notifier_from_errno(-ENOMEM);
6285                 }
6286                 break;
6287         case CPU_DEAD:
6288         case CPU_DEAD_FROZEN:
6289                 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6290                 break;
6291         default:
6292                 break;
6293         }
6294         return NOTIFY_OK;
6295 }
6296 #endif
6297
6298 static int raid5_alloc_percpu(struct r5conf *conf)
6299 {
6300         unsigned long cpu;
6301         int err = 0;
6302
6303         conf->percpu = alloc_percpu(struct raid5_percpu);
6304         if (!conf->percpu)
6305                 return -ENOMEM;
6306
6307 #ifdef CONFIG_HOTPLUG_CPU
6308         conf->cpu_notify.notifier_call = raid456_cpu_notify;
6309         conf->cpu_notify.priority = 0;
6310         err = register_cpu_notifier(&conf->cpu_notify);
6311         if (err)
6312                 return err;
6313 #endif
6314
6315         get_online_cpus();
6316         for_each_present_cpu(cpu) {
6317                 err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6318                 if (err) {
6319                         pr_err("%s: failed memory allocation for cpu%ld\n",
6320                                __func__, cpu);
6321                         break;
6322                 }
6323         }
6324         put_online_cpus();
6325
6326         return err;
6327 }
6328
6329 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6330                                       struct shrink_control *sc)
6331 {
6332         struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6333         int ret = 0;
6334         while (ret < sc->nr_to_scan) {
6335                 if (drop_one_stripe(conf) == 0)
6336                         return SHRINK_STOP;
6337                 ret++;
6338         }
6339         return ret;
6340 }
6341
6342 static unsigned long raid5_cache_count(struct shrinker *shrink,
6343                                        struct shrink_control *sc)
6344 {
6345         struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6346
6347         if (conf->max_nr_stripes < conf->min_nr_stripes)
6348                 /* unlikely, but not impossible */
6349                 return 0;
6350         return conf->max_nr_stripes - conf->min_nr_stripes;
6351 }
6352
6353 static struct r5conf *setup_conf(struct mddev *mddev)
6354 {
6355         struct r5conf *conf;
6356         int raid_disk, memory, max_disks;
6357         struct md_rdev *rdev;
6358         struct disk_info *disk;
6359         char pers_name[6];
6360         int i;
6361         int group_cnt, worker_cnt_per_group;
6362         struct r5worker_group *new_group;
6363
6364         if (mddev->new_level != 5
6365             && mddev->new_level != 4
6366             && mddev->new_level != 6) {
6367                 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6368                        mdname(mddev), mddev->new_level);
6369                 return ERR_PTR(-EIO);
6370         }
6371         if ((mddev->new_level == 5
6372              && !algorithm_valid_raid5(mddev->new_layout)) ||
6373             (mddev->new_level == 6
6374              && !algorithm_valid_raid6(mddev->new_layout))) {
6375                 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
6376                        mdname(mddev), mddev->new_layout);
6377                 return ERR_PTR(-EIO);
6378         }
6379         if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6380                 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6381                        mdname(mddev), mddev->raid_disks);
6382                 return ERR_PTR(-EINVAL);
6383         }
6384
6385         if (!mddev->new_chunk_sectors ||
6386             (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6387             !is_power_of_2(mddev->new_chunk_sectors)) {
6388                 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
6389                        mdname(mddev), mddev->new_chunk_sectors << 9);
6390                 return ERR_PTR(-EINVAL);
6391         }
6392
6393         conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6394         if (conf == NULL)
6395                 goto abort;
6396         /* Don't enable multi-threading by default*/
6397         if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6398                                  &new_group)) {
6399                 conf->group_cnt = group_cnt;
6400                 conf->worker_cnt_per_group = worker_cnt_per_group;
6401                 conf->worker_groups = new_group;
6402         } else
6403                 goto abort;
6404         spin_lock_init(&conf->device_lock);
6405         seqcount_init(&conf->gen_lock);
6406         init_waitqueue_head(&conf->wait_for_stripe);
6407         init_waitqueue_head(&conf->wait_for_overlap);
6408         INIT_LIST_HEAD(&conf->handle_list);
6409         INIT_LIST_HEAD(&conf->hold_list);
6410         INIT_LIST_HEAD(&conf->delayed_list);
6411         INIT_LIST_HEAD(&conf->bitmap_list);
6412         init_llist_head(&conf->released_stripes);
6413         atomic_set(&conf->active_stripes, 0);
6414         atomic_set(&conf->preread_active_stripes, 0);
6415         atomic_set(&conf->active_aligned_reads, 0);
6416         conf->bypass_threshold = BYPASS_THRESHOLD;
6417         conf->recovery_disabled = mddev->recovery_disabled - 1;
6418
6419         conf->raid_disks = mddev->raid_disks;
6420         if (mddev->reshape_position == MaxSector)
6421                 conf->previous_raid_disks = mddev->raid_disks;
6422         else
6423                 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6424         max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6425
6426         conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
6427                               GFP_KERNEL);
6428         if (!conf->disks)
6429                 goto abort;
6430
6431         conf->mddev = mddev;
6432
6433         if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6434                 goto abort;
6435
6436         /* We init hash_locks[0] separately to that it can be used
6437          * as the reference lock in the spin_lock_nest_lock() call
6438          * in lock_all_device_hash_locks_irq in order to convince
6439          * lockdep that we know what we are doing.
6440          */
6441         spin_lock_init(conf->hash_locks);
6442         for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6443                 spin_lock_init(conf->hash_locks + i);
6444
6445         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6446                 INIT_LIST_HEAD(conf->inactive_list + i);
6447
6448         for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6449                 INIT_LIST_HEAD(conf->temp_inactive_list + i);
6450
6451         conf->level = mddev->new_level;
6452         conf->chunk_sectors = mddev->new_chunk_sectors;
6453         if (raid5_alloc_percpu(conf) != 0)
6454                 goto abort;
6455
6456         pr_debug("raid456: run(%s) called.\n", mdname(mddev));
6457
6458         rdev_for_each(rdev, mddev) {
6459                 raid_disk = rdev->raid_disk;
6460                 if (raid_disk >= max_disks
6461                     || raid_disk < 0)
6462                         continue;
6463                 disk = conf->disks + raid_disk;
6464
6465                 if (test_bit(Replacement, &rdev->flags)) {
6466                         if (disk->replacement)
6467                                 goto abort;
6468                         disk->replacement = rdev;
6469                 } else {
6470                         if (disk->rdev)
6471                                 goto abort;
6472                         disk->rdev = rdev;
6473                 }
6474
6475                 if (test_bit(In_sync, &rdev->flags)) {
6476                         char b[BDEVNAME_SIZE];
6477                         printk(KERN_INFO "md/raid:%s: device %s operational as raid"
6478                                " disk %d\n",
6479                                mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
6480                 } else if (rdev->saved_raid_disk != raid_disk)
6481                         /* Cannot rely on bitmap to complete recovery */
6482                         conf->fullsync = 1;
6483         }
6484
6485         conf->level = mddev->new_level;
6486         if (conf->level == 6) {
6487                 conf->max_degraded = 2;
6488                 if (raid6_call.xor_syndrome)
6489                         conf->rmw_level = PARITY_ENABLE_RMW;
6490                 else
6491                         conf->rmw_level = PARITY_DISABLE_RMW;
6492         } else {
6493                 conf->max_degraded = 1;
6494                 conf->rmw_level = PARITY_ENABLE_RMW;
6495         }
6496         conf->algorithm = mddev->new_layout;
6497         conf->reshape_progress = mddev->reshape_position;
6498         if (conf->reshape_progress != MaxSector) {
6499                 conf->prev_chunk_sectors = mddev->chunk_sectors;
6500                 conf->prev_algo = mddev->layout;
6501         }
6502
6503         conf->min_nr_stripes = NR_STRIPES;
6504         memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
6505                  max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
6506         atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
6507         if (grow_stripes(conf, conf->min_nr_stripes)) {
6508                 printk(KERN_ERR
6509                        "md/raid:%s: couldn't allocate %dkB for buffers\n",
6510                        mdname(mddev), memory);
6511                 goto abort;
6512         } else
6513                 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
6514                        mdname(mddev), memory);
6515         /*
6516          * Losing a stripe head costs more than the time to refill it,
6517          * it reduces the queue depth and so can hurt throughput.
6518          * So set it rather large, scaled by number of devices.
6519          */
6520         conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
6521         conf->shrinker.scan_objects = raid5_cache_scan;
6522         conf->shrinker.count_objects = raid5_cache_count;
6523         conf->shrinker.batch = 128;
6524         conf->shrinker.flags = 0;
6525         register_shrinker(&conf->shrinker);
6526
6527         sprintf(pers_name, "raid%d", mddev->new_level);
6528         conf->thread = md_register_thread(raid5d, mddev, pers_name);
6529         if (!conf->thread) {
6530                 printk(KERN_ERR
6531                        "md/raid:%s: couldn't allocate thread.\n",
6532                        mdname(mddev));
6533                 goto abort;
6534         }
6535
6536         return conf;
6537
6538  abort:
6539         if (conf) {
6540                 free_conf(conf);
6541                 return ERR_PTR(-EIO);
6542         } else
6543                 return ERR_PTR(-ENOMEM);
6544 }
6545
6546 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
6547 {
6548         switch (algo) {
6549         case ALGORITHM_PARITY_0:
6550                 if (raid_disk < max_degraded)
6551                         return 1;
6552                 break;
6553         case ALGORITHM_PARITY_N:
6554                 if (raid_disk >= raid_disks - max_degraded)
6555                         return 1;
6556                 break;
6557         case ALGORITHM_PARITY_0_6:
6558                 if (raid_disk == 0 ||
6559                     raid_disk == raid_disks - 1)
6560                         return 1;
6561                 break;
6562         case ALGORITHM_LEFT_ASYMMETRIC_6:
6563         case ALGORITHM_RIGHT_ASYMMETRIC_6:
6564         case ALGORITHM_LEFT_SYMMETRIC_6:
6565         case ALGORITHM_RIGHT_SYMMETRIC_6:
6566                 if (raid_disk == raid_disks - 1)
6567                         return 1;
6568         }
6569         return 0;
6570 }
6571
6572 static int run(struct mddev *mddev)
6573 {
6574         struct r5conf *conf;
6575         int working_disks = 0;
6576         int dirty_parity_disks = 0;
6577         struct md_rdev *rdev;
6578         sector_t reshape_offset = 0;
6579         int i;
6580         long long min_offset_diff = 0;
6581         int first = 1;
6582
6583         if (mddev->recovery_cp != MaxSector)
6584                 printk(KERN_NOTICE "md/raid:%s: not clean"
6585                        " -- starting background reconstruction\n",
6586                        mdname(mddev));
6587
6588         rdev_for_each(rdev, mddev) {
6589                 long long diff;
6590                 if (rdev->raid_disk < 0)
6591                         continue;
6592                 diff = (rdev->new_data_offset - rdev->data_offset);
6593                 if (first) {
6594                         min_offset_diff = diff;
6595                         first = 0;
6596                 } else if (mddev->reshape_backwards &&
6597                          diff < min_offset_diff)
6598                         min_offset_diff = diff;
6599                 else if (!mddev->reshape_backwards &&
6600                          diff > min_offset_diff)
6601                         min_offset_diff = diff;
6602         }
6603
6604         if (mddev->reshape_position != MaxSector) {
6605                 /* Check that we can continue the reshape.
6606                  * Difficulties arise if the stripe we would write to
6607                  * next is at or after the stripe we would read from next.
6608                  * For a reshape that changes the number of devices, this
6609                  * is only possible for a very short time, and mdadm makes
6610                  * sure that time appears to have past before assembling
6611                  * the array.  So we fail if that time hasn't passed.
6612                  * For a reshape that keeps the number of devices the same
6613                  * mdadm must be monitoring the reshape can keeping the
6614                  * critical areas read-only and backed up.  It will start
6615                  * the array in read-only mode, so we check for that.
6616                  */
6617                 sector_t here_new, here_old;
6618                 int old_disks;
6619                 int max_degraded = (mddev->level == 6 ? 2 : 1);
6620
6621                 if (mddev->new_level != mddev->level) {
6622                         printk(KERN_ERR "md/raid:%s: unsupported reshape "
6623                                "required - aborting.\n",
6624                                mdname(mddev));
6625                         return -EINVAL;
6626                 }
6627                 old_disks = mddev->raid_disks - mddev->delta_disks;
6628                 /* reshape_position must be on a new-stripe boundary, and one
6629                  * further up in new geometry must map after here in old
6630                  * geometry.
6631                  */
6632                 here_new = mddev->reshape_position;
6633                 if (sector_div(here_new, mddev->new_chunk_sectors *
6634                                (mddev->raid_disks - max_degraded))) {
6635                         printk(KERN_ERR "md/raid:%s: reshape_position not "
6636                                "on a stripe boundary\n", mdname(mddev));
6637                         return -EINVAL;
6638                 }
6639                 reshape_offset = here_new * mddev->new_chunk_sectors;
6640                 /* here_new is the stripe we will write to */
6641                 here_old = mddev->reshape_position;
6642                 sector_div(here_old, mddev->chunk_sectors *
6643                            (old_disks-max_degraded));
6644                 /* here_old is the first stripe that we might need to read
6645                  * from */
6646                 if (mddev->delta_disks == 0) {
6647                         if ((here_new * mddev->new_chunk_sectors !=
6648                              here_old * mddev->chunk_sectors)) {
6649                                 printk(KERN_ERR "md/raid:%s: reshape position is"
6650                                        " confused - aborting\n", mdname(mddev));
6651                                 return -EINVAL;
6652                         }
6653                         /* We cannot be sure it is safe to start an in-place
6654                          * reshape.  It is only safe if user-space is monitoring
6655                          * and taking constant backups.
6656                          * mdadm always starts a situation like this in
6657                          * readonly mode so it can take control before
6658                          * allowing any writes.  So just check for that.
6659                          */
6660                         if (abs(min_offset_diff) >= mddev->chunk_sectors &&
6661                             abs(min_offset_diff) >= mddev->new_chunk_sectors)
6662                                 /* not really in-place - so OK */;
6663                         else if (mddev->ro == 0) {
6664                                 printk(KERN_ERR "md/raid:%s: in-place reshape "
6665                                        "must be started in read-only mode "
6666                                        "- aborting\n",
6667                                        mdname(mddev));
6668                                 return -EINVAL;
6669                         }
6670                 } else if (mddev->reshape_backwards
6671                     ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
6672                        here_old * mddev->chunk_sectors)
6673                     : (here_new * mddev->new_chunk_sectors >=
6674                        here_old * mddev->chunk_sectors + (-min_offset_diff))) {
6675                         /* Reading from the same stripe as writing to - bad */
6676                         printk(KERN_ERR "md/raid:%s: reshape_position too early for "
6677                                "auto-recovery - aborting.\n",
6678                                mdname(mddev));
6679                         return -EINVAL;
6680                 }
6681                 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
6682                        mdname(mddev));
6683                 /* OK, we should be able to continue; */
6684         } else {
6685                 BUG_ON(mddev->level != mddev->new_level);
6686                 BUG_ON(mddev->layout != mddev->new_layout);
6687                 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
6688                 BUG_ON(mddev->delta_disks != 0);
6689         }
6690
6691         if (mddev->private == NULL)
6692                 conf = setup_conf(mddev);
6693         else
6694                 conf = mddev->private;
6695
6696         if (IS_ERR(conf))
6697                 return PTR_ERR(conf);
6698
6699         conf->min_offset_diff = min_offset_diff;
6700         mddev->thread = conf->thread;
6701         conf->thread = NULL;
6702         mddev->private = conf;
6703
6704         for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
6705              i++) {
6706                 rdev = conf->disks[i].rdev;
6707                 if (!rdev && conf->disks[i].replacement) {
6708                         /* The replacement is all we have yet */
6709                         rdev = conf->disks[i].replacement;
6710                         conf->disks[i].replacement = NULL;
6711                         clear_bit(Replacement, &rdev->flags);
6712                         conf->disks[i].rdev = rdev;
6713                 }
6714                 if (!rdev)
6715                         continue;
6716                 if (conf->disks[i].replacement &&
6717                     conf->reshape_progress != MaxSector) {
6718                         /* replacements and reshape simply do not mix. */
6719                         printk(KERN_ERR "md: cannot handle concurrent "
6720                                "replacement and reshape.\n");
6721                         goto abort;
6722                 }
6723                 if (test_bit(In_sync, &rdev->flags)) {
6724                         working_disks++;
6725                         continue;
6726                 }
6727                 /* This disc is not fully in-sync.  However if it
6728                  * just stored parity (beyond the recovery_offset),
6729                  * when we don't need to be concerned about the
6730                  * array being dirty.
6731                  * When reshape goes 'backwards', we never have
6732                  * partially completed devices, so we only need
6733                  * to worry about reshape going forwards.
6734                  */
6735                 /* Hack because v0.91 doesn't store recovery_offset properly. */
6736                 if (mddev->major_version == 0 &&
6737                     mddev->minor_version > 90)
6738                         rdev->recovery_offset = reshape_offset;
6739
6740                 if (rdev->recovery_offset < reshape_offset) {
6741                         /* We need to check old and new layout */
6742                         if (!only_parity(rdev->raid_disk,
6743                                          conf->algorithm,
6744                                          conf->raid_disks,
6745                                          conf->max_degraded))
6746                                 continue;
6747                 }
6748                 if (!only_parity(rdev->raid_disk,
6749                                  conf->prev_algo,
6750                                  conf->previous_raid_disks,
6751                                  conf->max_degraded))
6752                         continue;
6753                 dirty_parity_disks++;
6754         }
6755
6756         /*
6757          * 0 for a fully functional array, 1 or 2 for a degraded array.
6758          */
6759         mddev->degraded = calc_degraded(conf);
6760
6761         if (has_failed(conf)) {
6762                 printk(KERN_ERR "md/raid:%s: not enough operational devices"
6763                         " (%d/%d failed)\n",
6764                         mdname(mddev), mddev->degraded, conf->raid_disks);
6765                 goto abort;
6766         }
6767
6768         /* device size must be a multiple of chunk size */
6769         mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
6770         mddev->resync_max_sectors = mddev->dev_sectors;
6771
6772         if (mddev->degraded > dirty_parity_disks &&
6773             mddev->recovery_cp != MaxSector) {
6774                 if (mddev->ok_start_degraded)
6775                         printk(KERN_WARNING
6776                                "md/raid:%s: starting dirty degraded array"
6777                                " - data corruption possible.\n",
6778                                mdname(mddev));
6779                 else {
6780                         printk(KERN_ERR
6781                                "md/raid:%s: cannot start dirty degraded array.\n",
6782                                mdname(mddev));
6783                         goto abort;
6784                 }
6785         }
6786
6787         if (mddev->degraded == 0)
6788                 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
6789                        " devices, algorithm %d\n", mdname(mddev), conf->level,
6790                        mddev->raid_disks-mddev->degraded, mddev->raid_disks,
6791                        mddev->new_layout);
6792         else
6793                 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
6794                        " out of %d devices, algorithm %d\n",
6795                        mdname(mddev), conf->level,
6796                        mddev->raid_disks - mddev->degraded,
6797                        mddev->raid_disks, mddev->new_layout);
6798
6799         print_raid5_conf(conf);
6800
6801         if (conf->reshape_progress != MaxSector) {
6802                 conf->reshape_safe = conf->reshape_progress;
6803                 atomic_set(&conf->reshape_stripes, 0);
6804                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
6805                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
6806                 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
6807                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
6808                 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
6809                                                         "reshape");
6810         }
6811
6812         /* Ok, everything is just fine now */
6813         if (mddev->to_remove == &raid5_attrs_group)
6814                 mddev->to_remove = NULL;
6815         else if (mddev->kobj.sd &&
6816             sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
6817                 printk(KERN_WARNING
6818                        "raid5: failed to create sysfs attributes for %s\n",
6819                        mdname(mddev));
6820         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6821
6822         if (mddev->queue) {
6823                 int chunk_size;
6824                 bool discard_supported = true;
6825                 /* read-ahead size must cover two whole stripes, which
6826                  * is 2 * (datadisks) * chunksize where 'n' is the
6827                  * number of raid devices
6828                  */
6829                 int data_disks = conf->previous_raid_disks - conf->max_degraded;
6830                 int stripe = data_disks *
6831                         ((mddev->chunk_sectors << 9) / PAGE_SIZE);
6832                 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6833                         mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6834
6835                 chunk_size = mddev->chunk_sectors << 9;
6836                 blk_queue_io_min(mddev->queue, chunk_size);
6837                 blk_queue_io_opt(mddev->queue, chunk_size *
6838                                  (conf->raid_disks - conf->max_degraded));
6839                 mddev->queue->limits.raid_partial_stripes_expensive = 1;
6840                 /*
6841                  * We can only discard a whole stripe. It doesn't make sense to
6842                  * discard data disk but write parity disk
6843                  */
6844                 stripe = stripe * PAGE_SIZE;
6845                 /* Round up to power of 2, as discard handling
6846                  * currently assumes that */
6847                 while ((stripe-1) & stripe)
6848                         stripe = (stripe | (stripe-1)) + 1;
6849                 mddev->queue->limits.discard_alignment = stripe;
6850                 mddev->queue->limits.discard_granularity = stripe;
6851                 /*
6852                  * unaligned part of discard request will be ignored, so can't
6853                  * guarantee discard_zeroes_data
6854                  */
6855                 mddev->queue->limits.discard_zeroes_data = 0;
6856
6857                 blk_queue_max_write_same_sectors(mddev->queue, 0);
6858
6859                 rdev_for_each(rdev, mddev) {
6860                         disk_stack_limits(mddev->gendisk, rdev->bdev,
6861                                           rdev->data_offset << 9);
6862                         disk_stack_limits(mddev->gendisk, rdev->bdev,
6863                                           rdev->new_data_offset << 9);
6864                         /*
6865                          * discard_zeroes_data is required, otherwise data
6866                          * could be lost. Consider a scenario: discard a stripe
6867                          * (the stripe could be inconsistent if
6868                          * discard_zeroes_data is 0); write one disk of the
6869                          * stripe (the stripe could be inconsistent again
6870                          * depending on which disks are used to calculate
6871                          * parity); the disk is broken; The stripe data of this
6872                          * disk is lost.
6873                          */
6874                         if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
6875                             !bdev_get_queue(rdev->bdev)->
6876                                                 limits.discard_zeroes_data)
6877                                 discard_supported = false;
6878                         /* Unfortunately, discard_zeroes_data is not currently
6879                          * a guarantee - just a hint.  So we only allow DISCARD
6880                          * if the sysadmin has confirmed that only safe devices
6881                          * are in use by setting a module parameter.
6882                          */
6883                         if (!devices_handle_discard_safely) {
6884                                 if (discard_supported) {
6885                                         pr_info("md/raid456: discard support disabled due to uncertainty.\n");
6886                                         pr_info("Set raid456.devices_handle_discard_safely=Y to override.\n");
6887                                 }
6888                                 discard_supported = false;
6889                         }
6890                 }
6891
6892                 if (discard_supported &&
6893                    mddev->queue->limits.max_discard_sectors >= stripe &&
6894                    mddev->queue->limits.discard_granularity >= stripe)
6895                         queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
6896                                                 mddev->queue);
6897                 else
6898                         queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
6899                                                 mddev->queue);
6900         }
6901
6902         return 0;
6903 abort:
6904         md_unregister_thread(&mddev->thread);
6905         print_raid5_conf(conf);
6906         free_conf(conf);
6907         mddev->private = NULL;
6908         printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
6909         return -EIO;
6910 }
6911
6912 static void raid5_free(struct mddev *mddev, void *priv)
6913 {
6914         struct r5conf *conf = priv;
6915
6916         free_conf(conf);
6917         mddev->to_remove = &raid5_attrs_group;
6918 }
6919
6920 static void status(struct seq_file *seq, struct mddev *mddev)
6921 {
6922         struct r5conf *conf = mddev->private;
6923         int i;
6924
6925         seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
6926                 mddev->chunk_sectors / 2, mddev->layout);
6927         seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
6928         for (i = 0; i < conf->raid_disks; i++)
6929                 seq_printf (seq, "%s",
6930                                conf->disks[i].rdev &&
6931                                test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
6932         seq_printf (seq, "]");
6933 }
6934
6935 static void print_raid5_conf (struct r5conf *conf)
6936 {
6937         int i;
6938         struct disk_info *tmp;
6939
6940         printk(KERN_DEBUG "RAID conf printout:\n");
6941         if (!conf) {
6942                 printk("(conf==NULL)\n");
6943                 return;
6944         }
6945         printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
6946                conf->raid_disks,
6947                conf->raid_disks - conf->mddev->degraded);
6948
6949         for (i = 0; i < conf->raid_disks; i++) {
6950                 char b[BDEVNAME_SIZE];
6951                 tmp = conf->disks + i;
6952                 if (tmp->rdev)
6953                         printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
6954                                i, !test_bit(Faulty, &tmp->rdev->flags),
6955                                bdevname(tmp->rdev->bdev, b));
6956         }
6957 }
6958
6959 static int raid5_spare_active(struct mddev *mddev)
6960 {
6961         int i;
6962         struct r5conf *conf = mddev->private;
6963         struct disk_info *tmp;
6964         int count = 0;
6965         unsigned long flags;
6966
6967         for (i = 0; i < conf->raid_disks; i++) {
6968                 tmp = conf->disks + i;
6969                 if (tmp->replacement
6970                     && tmp->replacement->recovery_offset == MaxSector
6971                     && !test_bit(Faulty, &tmp->replacement->flags)
6972                     && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
6973                         /* Replacement has just become active. */
6974                         if (!tmp->rdev
6975                             || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
6976                                 count++;
6977                         if (tmp->rdev) {
6978                                 /* Replaced device not technically faulty,
6979                                  * but we need to be sure it gets removed
6980                                  * and never re-added.
6981                                  */
6982                                 set_bit(Faulty, &tmp->rdev->flags);
6983                                 sysfs_notify_dirent_safe(
6984                                         tmp->rdev->sysfs_state);
6985                         }
6986                         sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
6987                 } else if (tmp->rdev
6988                     && tmp->rdev->recovery_offset == MaxSector
6989                     && !test_bit(Faulty, &tmp->rdev->flags)
6990                     && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6991                         count++;
6992                         sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
6993                 }
6994         }
6995         spin_lock_irqsave(&conf->device_lock, flags);
6996         mddev->degraded = calc_degraded(conf);
6997         spin_unlock_irqrestore(&conf->device_lock, flags);
6998         print_raid5_conf(conf);
6999         return count;
7000 }
7001
7002 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7003 {
7004         struct r5conf *conf = mddev->private;
7005         int err = 0;
7006         int number = rdev->raid_disk;
7007         struct md_rdev **rdevp;
7008         struct disk_info *p = conf->disks + number;
7009
7010         print_raid5_conf(conf);
7011         if (rdev == p->rdev)
7012                 rdevp = &p->rdev;
7013         else if (rdev == p->replacement)
7014                 rdevp = &p->replacement;
7015         else
7016                 return 0;
7017
7018         if (number >= conf->raid_disks &&
7019             conf->reshape_progress == MaxSector)
7020                 clear_bit(In_sync, &rdev->flags);
7021
7022         if (test_bit(In_sync, &rdev->flags) ||
7023             atomic_read(&rdev->nr_pending)) {
7024                 err = -EBUSY;
7025                 goto abort;
7026         }
7027         /* Only remove non-faulty devices if recovery
7028          * isn't possible.
7029          */
7030         if (!test_bit(Faulty, &rdev->flags) &&
7031             mddev->recovery_disabled != conf->recovery_disabled &&
7032             !has_failed(conf) &&
7033             (!p->replacement || p->replacement == rdev) &&
7034             number < conf->raid_disks) {
7035                 err = -EBUSY;
7036                 goto abort;
7037         }
7038         *rdevp = NULL;
7039         synchronize_rcu();
7040         if (atomic_read(&rdev->nr_pending)) {
7041                 /* lost the race, try later */
7042                 err = -EBUSY;
7043                 *rdevp = rdev;
7044         } else if (p->replacement) {
7045                 /* We must have just cleared 'rdev' */
7046                 p->rdev = p->replacement;
7047                 clear_bit(Replacement, &p->replacement->flags);
7048                 smp_mb(); /* Make sure other CPUs may see both as identical
7049                            * but will never see neither - if they are careful
7050                            */
7051                 p->replacement = NULL;
7052                 clear_bit(WantReplacement, &rdev->flags);
7053         } else
7054                 /* We might have just removed the Replacement as faulty-
7055                  * clear the bit just in case
7056                  */
7057                 clear_bit(WantReplacement, &rdev->flags);
7058 abort:
7059
7060         print_raid5_conf(conf);
7061         return err;
7062 }
7063
7064 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7065 {
7066         struct r5conf *conf = mddev->private;
7067         int err = -EEXIST;
7068         int disk;
7069         struct disk_info *p;
7070         int first = 0;
7071         int last = conf->raid_disks - 1;
7072
7073         if (mddev->recovery_disabled == conf->recovery_disabled)
7074                 return -EBUSY;
7075
7076         if (rdev->saved_raid_disk < 0 && has_failed(conf))
7077                 /* no point adding a device */
7078                 return -EINVAL;
7079
7080         if (rdev->raid_disk >= 0)
7081                 first = last = rdev->raid_disk;
7082
7083         /*
7084          * find the disk ... but prefer rdev->saved_raid_disk
7085          * if possible.
7086          */
7087         if (rdev->saved_raid_disk >= 0 &&
7088             rdev->saved_raid_disk >= first &&
7089             conf->disks[rdev->saved_raid_disk].rdev == NULL)
7090                 first = rdev->saved_raid_disk;
7091
7092         for (disk = first; disk <= last; disk++) {
7093                 p = conf->disks + disk;
7094                 if (p->rdev == NULL) {
7095                         clear_bit(In_sync, &rdev->flags);
7096                         rdev->raid_disk = disk;
7097                         err = 0;
7098                         if (rdev->saved_raid_disk != disk)
7099                                 conf->fullsync = 1;
7100                         rcu_assign_pointer(p->rdev, rdev);
7101                         goto out;
7102                 }
7103         }
7104         for (disk = first; disk <= last; disk++) {
7105                 p = conf->disks + disk;
7106                 if (test_bit(WantReplacement, &p->rdev->flags) &&
7107                     p->replacement == NULL) {
7108                         clear_bit(In_sync, &rdev->flags);
7109                         set_bit(Replacement, &rdev->flags);
7110                         rdev->raid_disk = disk;
7111                         err = 0;
7112                         conf->fullsync = 1;
7113                         rcu_assign_pointer(p->replacement, rdev);
7114                         break;
7115                 }
7116         }
7117 out:
7118         print_raid5_conf(conf);
7119         return err;
7120 }
7121
7122 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7123 {
7124         /* no resync is happening, and there is enough space
7125          * on all devices, so we can resize.
7126          * We need to make sure resync covers any new space.
7127          * If the array is shrinking we should possibly wait until
7128          * any io in the removed space completes, but it hardly seems
7129          * worth it.
7130          */
7131         sector_t newsize;
7132         sectors &= ~((sector_t)mddev->chunk_sectors - 1);
7133         newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7134         if (mddev->external_size &&
7135             mddev->array_sectors > newsize)
7136                 return -EINVAL;
7137         if (mddev->bitmap) {
7138                 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
7139                 if (ret)
7140                         return ret;
7141         }
7142         md_set_array_sectors(mddev, newsize);
7143         set_capacity(mddev->gendisk, mddev->array_sectors);
7144         revalidate_disk(mddev->gendisk);
7145         if (sectors > mddev->dev_sectors &&
7146             mddev->recovery_cp > mddev->dev_sectors) {
7147                 mddev->recovery_cp = mddev->dev_sectors;
7148                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7149         }
7150         mddev->dev_sectors = sectors;
7151         mddev->resync_max_sectors = sectors;
7152         return 0;
7153 }
7154
7155 static int check_stripe_cache(struct mddev *mddev)
7156 {
7157         /* Can only proceed if there are plenty of stripe_heads.
7158          * We need a minimum of one full stripe,, and for sensible progress
7159          * it is best to have about 4 times that.
7160          * If we require 4 times, then the default 256 4K stripe_heads will
7161          * allow for chunk sizes up to 256K, which is probably OK.
7162          * If the chunk size is greater, user-space should request more
7163          * stripe_heads first.
7164          */
7165         struct r5conf *conf = mddev->private;
7166         if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7167             > conf->min_nr_stripes ||
7168             ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7169             > conf->min_nr_stripes) {
7170                 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7171                        mdname(mddev),
7172                        ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7173                         / STRIPE_SIZE)*4);
7174                 return 0;
7175         }
7176         return 1;
7177 }
7178
7179 static int check_reshape(struct mddev *mddev)
7180 {
7181         struct r5conf *conf = mddev->private;
7182
7183         if (mddev->delta_disks == 0 &&
7184             mddev->new_layout == mddev->layout &&
7185             mddev->new_chunk_sectors == mddev->chunk_sectors)
7186                 return 0; /* nothing to do */
7187         if (has_failed(conf))
7188                 return -EINVAL;
7189         if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7190                 /* We might be able to shrink, but the devices must
7191                  * be made bigger first.
7192                  * For raid6, 4 is the minimum size.
7193                  * Otherwise 2 is the minimum
7194                  */
7195                 int min = 2;
7196                 if (mddev->level == 6)
7197                         min = 4;
7198                 if (mddev->raid_disks + mddev->delta_disks < min)
7199                         return -EINVAL;
7200         }
7201
7202         if (!check_stripe_cache(mddev))
7203                 return -ENOSPC;
7204
7205         return resize_stripes(conf, (conf->previous_raid_disks
7206                                      + mddev->delta_disks));
7207 }
7208
7209 static int raid5_start_reshape(struct mddev *mddev)
7210 {
7211         struct r5conf *conf = mddev->private;
7212         struct md_rdev *rdev;
7213         int spares = 0;
7214         unsigned long flags;
7215
7216         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7217                 return -EBUSY;
7218
7219         if (!check_stripe_cache(mddev))
7220                 return -ENOSPC;
7221
7222         if (has_failed(conf))
7223                 return -EINVAL;
7224
7225         rdev_for_each(rdev, mddev) {
7226                 if (!test_bit(In_sync, &rdev->flags)
7227                     && !test_bit(Faulty, &rdev->flags))
7228                         spares++;
7229         }
7230
7231         if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7232                 /* Not enough devices even to make a degraded array
7233                  * of that size
7234                  */
7235                 return -EINVAL;
7236
7237         /* Refuse to reduce size of the array.  Any reductions in
7238          * array size must be through explicit setting of array_size
7239          * attribute.
7240          */
7241         if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7242             < mddev->array_sectors) {
7243                 printk(KERN_ERR "md/raid:%s: array size must be reduced "
7244                        "before number of disks\n", mdname(mddev));
7245                 return -EINVAL;
7246         }
7247
7248         atomic_set(&conf->reshape_stripes, 0);
7249         spin_lock_irq(&conf->device_lock);
7250         write_seqcount_begin(&conf->gen_lock);
7251         conf->previous_raid_disks = conf->raid_disks;
7252         conf->raid_disks += mddev->delta_disks;
7253         conf->prev_chunk_sectors = conf->chunk_sectors;
7254         conf->chunk_sectors = mddev->new_chunk_sectors;
7255         conf->prev_algo = conf->algorithm;
7256         conf->algorithm = mddev->new_layout;
7257         conf->generation++;
7258         /* Code that selects data_offset needs to see the generation update
7259          * if reshape_progress has been set - so a memory barrier needed.
7260          */
7261         smp_mb();
7262         if (mddev->reshape_backwards)
7263                 conf->reshape_progress = raid5_size(mddev, 0, 0);
7264         else
7265                 conf->reshape_progress = 0;
7266         conf->reshape_safe = conf->reshape_progress;
7267         write_seqcount_end(&conf->gen_lock);
7268         spin_unlock_irq(&conf->device_lock);
7269
7270         /* Now make sure any requests that proceeded on the assumption
7271          * the reshape wasn't running - like Discard or Read - have
7272          * completed.
7273          */
7274         mddev_suspend(mddev);
7275         mddev_resume(mddev);
7276
7277         /* Add some new drives, as many as will fit.
7278          * We know there are enough to make the newly sized array work.
7279          * Don't add devices if we are reducing the number of
7280          * devices in the array.  This is because it is not possible
7281          * to correctly record the "partially reconstructed" state of
7282          * such devices during the reshape and confusion could result.
7283          */
7284         if (mddev->delta_disks >= 0) {
7285                 rdev_for_each(rdev, mddev)
7286                         if (rdev->raid_disk < 0 &&
7287                             !test_bit(Faulty, &rdev->flags)) {
7288                                 if (raid5_add_disk(mddev, rdev) == 0) {
7289                                         if (rdev->raid_disk
7290                                             >= conf->previous_raid_disks)
7291                                                 set_bit(In_sync, &rdev->flags);
7292                                         else
7293                                                 rdev->recovery_offset = 0;
7294
7295                                         if (sysfs_link_rdev(mddev, rdev))
7296                                                 /* Failure here is OK */;
7297                                 }
7298                         } else if (rdev->raid_disk >= conf->previous_raid_disks
7299                                    && !test_bit(Faulty, &rdev->flags)) {
7300                                 /* This is a spare that was manually added */
7301                                 set_bit(In_sync, &rdev->flags);
7302                         }
7303
7304                 /* When a reshape changes the number of devices,
7305                  * ->degraded is measured against the larger of the
7306                  * pre and post number of devices.
7307                  */
7308                 spin_lock_irqsave(&conf->device_lock, flags);
7309                 mddev->degraded = calc_degraded(conf);
7310                 spin_unlock_irqrestore(&conf->device_lock, flags);
7311         }
7312         mddev->raid_disks = conf->raid_disks;
7313         mddev->reshape_position = conf->reshape_progress;
7314         set_bit(MD_CHANGE_DEVS, &mddev->flags);
7315
7316         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7317         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7318         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7319         set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7320         mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7321                                                 "reshape");
7322         if (!mddev->sync_thread) {
7323                 mddev->recovery = 0;
7324                 spin_lock_irq(&conf->device_lock);
7325                 write_seqcount_begin(&conf->gen_lock);
7326                 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7327                 mddev->new_chunk_sectors =
7328                         conf->chunk_sectors = conf->prev_chunk_sectors;
7329                 mddev->new_layout = conf->algorithm = conf->prev_algo;
7330                 rdev_for_each(rdev, mddev)
7331                         rdev->new_data_offset = rdev->data_offset;
7332                 smp_wmb();
7333                 conf->generation --;
7334                 conf->reshape_progress = MaxSector;
7335                 mddev->reshape_position = MaxSector;
7336                 write_seqcount_end(&conf->gen_lock);
7337                 spin_unlock_irq(&conf->device_lock);
7338                 return -EAGAIN;
7339         }
7340         conf->reshape_checkpoint = jiffies;
7341         md_wakeup_thread(mddev->sync_thread);
7342         md_new_event(mddev);
7343         return 0;
7344 }
7345
7346 /* This is called from the reshape thread and should make any
7347  * changes needed in 'conf'
7348  */
7349 static void end_reshape(struct r5conf *conf)
7350 {
7351
7352         if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7353                 struct md_rdev *rdev;
7354
7355                 spin_lock_irq(&conf->device_lock);
7356                 conf->previous_raid_disks = conf->raid_disks;
7357                 rdev_for_each(rdev, conf->mddev)
7358                         rdev->data_offset = rdev->new_data_offset;
7359                 smp_wmb();
7360                 conf->reshape_progress = MaxSector;
7361                 spin_unlock_irq(&conf->device_lock);
7362                 wake_up(&conf->wait_for_overlap);
7363
7364                 /* read-ahead size must cover two whole stripes, which is
7365                  * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
7366                  */
7367                 if (conf->mddev->queue) {
7368                         int data_disks = conf->raid_disks - conf->max_degraded;
7369                         int stripe = data_disks * ((conf->chunk_sectors << 9)
7370                                                    / PAGE_SIZE);
7371                         if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
7372                                 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
7373                 }
7374         }
7375 }
7376
7377 /* This is called from the raid5d thread with mddev_lock held.
7378  * It makes config changes to the device.
7379  */
7380 static void raid5_finish_reshape(struct mddev *mddev)
7381 {
7382         struct r5conf *conf = mddev->private;
7383
7384         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7385
7386                 if (mddev->delta_disks > 0) {
7387                         md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7388                         set_capacity(mddev->gendisk, mddev->array_sectors);
7389                         revalidate_disk(mddev->gendisk);
7390                 } else {
7391                         int d;
7392                         spin_lock_irq(&conf->device_lock);
7393                         mddev->degraded = calc_degraded(conf);
7394                         spin_unlock_irq(&conf->device_lock);
7395                         for (d = conf->raid_disks ;
7396                              d < conf->raid_disks - mddev->delta_disks;
7397                              d++) {
7398                                 struct md_rdev *rdev = conf->disks[d].rdev;
7399                                 if (rdev)
7400                                         clear_bit(In_sync, &rdev->flags);
7401                                 rdev = conf->disks[d].replacement;
7402                                 if (rdev)
7403                                         clear_bit(In_sync, &rdev->flags);
7404                         }
7405                 }
7406                 mddev->layout = conf->algorithm;
7407                 mddev->chunk_sectors = conf->chunk_sectors;
7408                 mddev->reshape_position = MaxSector;
7409                 mddev->delta_disks = 0;
7410                 mddev->reshape_backwards = 0;
7411         }
7412 }
7413
7414 static void raid5_quiesce(struct mddev *mddev, int state)
7415 {
7416         struct r5conf *conf = mddev->private;
7417
7418         switch(state) {
7419         case 2: /* resume for a suspend */
7420                 wake_up(&conf->wait_for_overlap);
7421                 break;
7422
7423         case 1: /* stop all writes */
7424                 lock_all_device_hash_locks_irq(conf);
7425                 /* '2' tells resync/reshape to pause so that all
7426                  * active stripes can drain
7427                  */
7428                 conf->quiesce = 2;
7429                 wait_event_cmd(conf->wait_for_stripe,
7430                                     atomic_read(&conf->active_stripes) == 0 &&
7431                                     atomic_read(&conf->active_aligned_reads) == 0,
7432                                     unlock_all_device_hash_locks_irq(conf),
7433                                     lock_all_device_hash_locks_irq(conf));
7434                 conf->quiesce = 1;
7435                 unlock_all_device_hash_locks_irq(conf);
7436                 /* allow reshape to continue */
7437                 wake_up(&conf->wait_for_overlap);
7438                 break;
7439
7440         case 0: /* re-enable writes */
7441                 lock_all_device_hash_locks_irq(conf);
7442                 conf->quiesce = 0;
7443                 wake_up(&conf->wait_for_stripe);
7444                 wake_up(&conf->wait_for_overlap);
7445                 unlock_all_device_hash_locks_irq(conf);
7446                 break;
7447         }
7448 }
7449
7450 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
7451 {
7452         struct r0conf *raid0_conf = mddev->private;
7453         sector_t sectors;
7454
7455         /* for raid0 takeover only one zone is supported */
7456         if (raid0_conf->nr_strip_zones > 1) {
7457                 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
7458                        mdname(mddev));
7459                 return ERR_PTR(-EINVAL);
7460         }
7461
7462         sectors = raid0_conf->strip_zone[0].zone_end;
7463         sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
7464         mddev->dev_sectors = sectors;
7465         mddev->new_level = level;
7466         mddev->new_layout = ALGORITHM_PARITY_N;
7467         mddev->new_chunk_sectors = mddev->chunk_sectors;
7468         mddev->raid_disks += 1;
7469         mddev->delta_disks = 1;
7470         /* make sure it will be not marked as dirty */
7471         mddev->recovery_cp = MaxSector;
7472
7473         return setup_conf(mddev);
7474 }
7475
7476 static void *raid5_takeover_raid1(struct mddev *mddev)
7477 {
7478         int chunksect;
7479
7480         if (mddev->raid_disks != 2 ||
7481             mddev->degraded > 1)
7482                 return ERR_PTR(-EINVAL);
7483
7484         /* Should check if there are write-behind devices? */
7485
7486         chunksect = 64*2; /* 64K by default */
7487
7488         /* The array must be an exact multiple of chunksize */
7489         while (chunksect && (mddev->array_sectors & (chunksect-1)))
7490                 chunksect >>= 1;
7491
7492         if ((chunksect<<9) < STRIPE_SIZE)
7493                 /* array size does not allow a suitable chunk size */
7494                 return ERR_PTR(-EINVAL);
7495
7496         mddev->new_level = 5;
7497         mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
7498         mddev->new_chunk_sectors = chunksect;
7499
7500         return setup_conf(mddev);
7501 }
7502
7503 static void *raid5_takeover_raid6(struct mddev *mddev)
7504 {
7505         int new_layout;
7506
7507         switch (mddev->layout) {
7508         case ALGORITHM_LEFT_ASYMMETRIC_6:
7509                 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
7510                 break;
7511         case ALGORITHM_RIGHT_ASYMMETRIC_6:
7512                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
7513                 break;
7514         case ALGORITHM_LEFT_SYMMETRIC_6:
7515                 new_layout = ALGORITHM_LEFT_SYMMETRIC;
7516                 break;
7517         case ALGORITHM_RIGHT_SYMMETRIC_6:
7518                 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
7519                 break;
7520         case ALGORITHM_PARITY_0_6:
7521                 new_layout = ALGORITHM_PARITY_0;
7522                 break;
7523         case ALGORITHM_PARITY_N:
7524                 new_layout = ALGORITHM_PARITY_N;
7525                 break;
7526         default:
7527                 return ERR_PTR(-EINVAL);
7528         }
7529         mddev->new_level = 5;
7530         mddev->new_layout = new_layout;
7531         mddev->delta_disks = -1;
7532         mddev->raid_disks -= 1;
7533         return setup_conf(mddev);
7534 }
7535
7536 static int raid5_check_reshape(struct mddev *mddev)
7537 {
7538         /* For a 2-drive array, the layout and chunk size can be changed
7539          * immediately as not restriping is needed.
7540          * For larger arrays we record the new value - after validation
7541          * to be used by a reshape pass.
7542          */
7543         struct r5conf *conf = mddev->private;
7544         int new_chunk = mddev->new_chunk_sectors;
7545
7546         if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
7547                 return -EINVAL;
7548         if (new_chunk > 0) {
7549                 if (!is_power_of_2(new_chunk))
7550                         return -EINVAL;
7551                 if (new_chunk < (PAGE_SIZE>>9))
7552                         return -EINVAL;
7553                 if (mddev->array_sectors & (new_chunk-1))
7554                         /* not factor of array size */
7555                         return -EINVAL;
7556         }
7557
7558         /* They look valid */
7559
7560         if (mddev->raid_disks == 2) {
7561                 /* can make the change immediately */
7562                 if (mddev->new_layout >= 0) {
7563                         conf->algorithm = mddev->new_layout;
7564                         mddev->layout = mddev->new_layout;
7565                 }
7566                 if (new_chunk > 0) {
7567                         conf->chunk_sectors = new_chunk ;
7568                         mddev->chunk_sectors = new_chunk;
7569                 }
7570                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7571                 md_wakeup_thread(mddev->thread);
7572         }
7573         return check_reshape(mddev);
7574 }
7575
7576 static int raid6_check_reshape(struct mddev *mddev)
7577 {
7578         int new_chunk = mddev->new_chunk_sectors;
7579
7580         if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
7581                 return -EINVAL;
7582         if (new_chunk > 0) {
7583                 if (!is_power_of_2(new_chunk))
7584                         return -EINVAL;
7585                 if (new_chunk < (PAGE_SIZE >> 9))
7586                         return -EINVAL;
7587                 if (mddev->array_sectors & (new_chunk-1))
7588                         /* not factor of array size */
7589                         return -EINVAL;
7590         }
7591
7592         /* They look valid */
7593         return check_reshape(mddev);
7594 }
7595
7596 static void *raid5_takeover(struct mddev *mddev)
7597 {
7598         /* raid5 can take over:
7599          *  raid0 - if there is only one strip zone - make it a raid4 layout
7600          *  raid1 - if there are two drives.  We need to know the chunk size
7601          *  raid4 - trivial - just use a raid4 layout.
7602          *  raid6 - Providing it is a *_6 layout
7603          */
7604         if (mddev->level == 0)
7605                 return raid45_takeover_raid0(mddev, 5);
7606         if (mddev->level == 1)
7607                 return raid5_takeover_raid1(mddev);
7608         if (mddev->level == 4) {
7609                 mddev->new_layout = ALGORITHM_PARITY_N;
7610                 mddev->new_level = 5;
7611                 return setup_conf(mddev);
7612         }
7613         if (mddev->level == 6)
7614                 return raid5_takeover_raid6(mddev);
7615
7616         return ERR_PTR(-EINVAL);
7617 }
7618
7619 static void *raid4_takeover(struct mddev *mddev)
7620 {
7621         /* raid4 can take over:
7622          *  raid0 - if there is only one strip zone
7623          *  raid5 - if layout is right
7624          */
7625         if (mddev->level == 0)
7626                 return raid45_takeover_raid0(mddev, 4);
7627         if (mddev->level == 5 &&
7628             mddev->layout == ALGORITHM_PARITY_N) {
7629                 mddev->new_layout = 0;
7630                 mddev->new_level = 4;
7631                 return setup_conf(mddev);
7632         }
7633         return ERR_PTR(-EINVAL);
7634 }
7635
7636 static struct md_personality raid5_personality;
7637
7638 static void *raid6_takeover(struct mddev *mddev)
7639 {
7640         /* Currently can only take over a raid5.  We map the
7641          * personality to an equivalent raid6 personality
7642          * with the Q block at the end.
7643          */
7644         int new_layout;
7645
7646         if (mddev->pers != &raid5_personality)
7647                 return ERR_PTR(-EINVAL);
7648         if (mddev->degraded > 1)
7649                 return ERR_PTR(-EINVAL);
7650         if (mddev->raid_disks > 253)
7651                 return ERR_PTR(-EINVAL);
7652         if (mddev->raid_disks < 3)
7653                 return ERR_PTR(-EINVAL);
7654
7655         switch (mddev->layout) {
7656         case ALGORITHM_LEFT_ASYMMETRIC:
7657                 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
7658                 break;
7659         case ALGORITHM_RIGHT_ASYMMETRIC:
7660                 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
7661                 break;
7662         case ALGORITHM_LEFT_SYMMETRIC:
7663                 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
7664                 break;
7665         case ALGORITHM_RIGHT_SYMMETRIC:
7666                 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
7667                 break;
7668         case ALGORITHM_PARITY_0:
7669                 new_layout = ALGORITHM_PARITY_0_6;
7670                 break;
7671         case ALGORITHM_PARITY_N:
7672                 new_layout = ALGORITHM_PARITY_N;
7673                 break;
7674         default:
7675                 return ERR_PTR(-EINVAL);
7676         }
7677         mddev->new_level = 6;
7678         mddev->new_layout = new_layout;
7679         mddev->delta_disks = 1;
7680         mddev->raid_disks += 1;
7681         return setup_conf(mddev);
7682 }
7683
7684 static struct md_personality raid6_personality =
7685 {
7686         .name           = "raid6",
7687         .level          = 6,
7688         .owner          = THIS_MODULE,
7689         .make_request   = make_request,
7690         .run            = run,
7691         .free           = raid5_free,
7692         .status         = status,
7693         .error_handler  = error,
7694         .hot_add_disk   = raid5_add_disk,
7695         .hot_remove_disk= raid5_remove_disk,
7696         .spare_active   = raid5_spare_active,
7697         .sync_request   = sync_request,
7698         .resize         = raid5_resize,
7699         .size           = raid5_size,
7700         .check_reshape  = raid6_check_reshape,
7701         .start_reshape  = raid5_start_reshape,
7702         .finish_reshape = raid5_finish_reshape,
7703         .quiesce        = raid5_quiesce,
7704         .takeover       = raid6_takeover,
7705         .congested      = raid5_congested,
7706         .mergeable_bvec = raid5_mergeable_bvec,
7707 };
7708 static struct md_personality raid5_personality =
7709 {
7710         .name           = "raid5",
7711         .level          = 5,
7712         .owner          = THIS_MODULE,
7713         .make_request   = make_request,
7714         .run            = run,
7715         .free           = raid5_free,
7716         .status         = status,
7717         .error_handler  = error,
7718         .hot_add_disk   = raid5_add_disk,
7719         .hot_remove_disk= raid5_remove_disk,
7720         .spare_active   = raid5_spare_active,
7721         .sync_request   = sync_request,
7722         .resize         = raid5_resize,
7723         .size           = raid5_size,
7724         .check_reshape  = raid5_check_reshape,
7725         .start_reshape  = raid5_start_reshape,
7726         .finish_reshape = raid5_finish_reshape,
7727         .quiesce        = raid5_quiesce,
7728         .takeover       = raid5_takeover,
7729         .congested      = raid5_congested,
7730         .mergeable_bvec = raid5_mergeable_bvec,
7731 };
7732
7733 static struct md_personality raid4_personality =
7734 {
7735         .name           = "raid4",
7736         .level          = 4,
7737         .owner          = THIS_MODULE,
7738         .make_request   = make_request,
7739         .run            = run,
7740         .free           = raid5_free,
7741         .status         = status,
7742         .error_handler  = error,
7743         .hot_add_disk   = raid5_add_disk,
7744         .hot_remove_disk= raid5_remove_disk,
7745         .spare_active   = raid5_spare_active,
7746         .sync_request   = sync_request,
7747         .resize         = raid5_resize,
7748         .size           = raid5_size,
7749         .check_reshape  = raid5_check_reshape,
7750         .start_reshape  = raid5_start_reshape,
7751         .finish_reshape = raid5_finish_reshape,
7752         .quiesce        = raid5_quiesce,
7753         .takeover       = raid4_takeover,
7754         .congested      = raid5_congested,
7755         .mergeable_bvec = raid5_mergeable_bvec,
7756 };
7757
7758 static int __init raid5_init(void)
7759 {
7760         raid5_wq = alloc_workqueue("raid5wq",
7761                 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
7762         if (!raid5_wq)
7763                 return -ENOMEM;
7764         register_md_personality(&raid6_personality);
7765         register_md_personality(&raid5_personality);
7766         register_md_personality(&raid4_personality);
7767         return 0;
7768 }
7769
7770 static void raid5_exit(void)
7771 {
7772         unregister_md_personality(&raid6_personality);
7773         unregister_md_personality(&raid5_personality);
7774         unregister_md_personality(&raid4_personality);
7775         destroy_workqueue(raid5_wq);
7776 }
7777
7778 module_init(raid5_init);
7779 module_exit(raid5_exit);
7780 MODULE_LICENSE("GPL");
7781 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
7782 MODULE_ALIAS("md-personality-4"); /* RAID5 */
7783 MODULE_ALIAS("md-raid5");
7784 MODULE_ALIAS("md-raid4");
7785 MODULE_ALIAS("md-level-5");
7786 MODULE_ALIAS("md-level-4");
7787 MODULE_ALIAS("md-personality-8"); /* RAID6 */
7788 MODULE_ALIAS("md-raid6");
7789 MODULE_ALIAS("md-level-6");
7790
7791 /* This used to be two separate modules, they were: */
7792 MODULE_ALIAS("raid5");
7793 MODULE_ALIAS("raid6");