7d5a6cede9b07888167cd5fd250238085c2b53b1
[pandora-kernel.git] / drivers / md / md.c
1 /*
2    md.c : Multiple Devices driver for Linux
3      Copyright (C) 1998, 1999, 2000 Ingo Molnar
4
5      completely rewritten, based on the MD driver code from Marc Zyngier
6
7    Changes:
8
9    - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10    - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11    - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12    - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13    - kmod support by: Cyrus Durgin
14    - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15    - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
16
17    - lots of fixes and improvements to the RAID1/RAID5 and generic
18      RAID code (such as request based resynchronization):
19
20      Neil Brown <neilb@cse.unsw.edu.au>.
21
22    - persistent bitmap code
23      Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
24
25    This program is free software; you can redistribute it and/or modify
26    it under the terms of the GNU General Public License as published by
27    the Free Software Foundation; either version 2, or (at your option)
28    any later version.
29
30    You should have received a copy of the GNU General Public License
31    (for example /usr/src/linux/COPYING); if not, write to the Free
32    Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/fs.h>
40 #include <linux/poll.h>
41 #include <linux/ctype.h>
42 #include <linux/string.h>
43 #include <linux/hdreg.h>
44 #include <linux/proc_fs.h>
45 #include <linux/random.h>
46 #include <linux/module.h>
47 #include <linux/reboot.h>
48 #include <linux/file.h>
49 #include <linux/compat.h>
50 #include <linux/delay.h>
51 #include <linux/raid/md_p.h>
52 #include <linux/raid/md_u.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "bitmap.h"
56 #include "md-cluster.h"
57
58 #ifndef MODULE
59 static void autostart_arrays(int part);
60 #endif
61
62 /* pers_list is a list of registered personalities protected
63  * by pers_lock.
64  * pers_lock does extra service to protect accesses to
65  * mddev->thread when the mutex cannot be held.
66  */
67 static LIST_HEAD(pers_list);
68 static DEFINE_SPINLOCK(pers_lock);
69
70 struct md_cluster_operations *md_cluster_ops;
71 EXPORT_SYMBOL(md_cluster_ops);
72 struct module *md_cluster_mod;
73 EXPORT_SYMBOL(md_cluster_mod);
74
75 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
76 static struct workqueue_struct *md_wq;
77 static struct workqueue_struct *md_misc_wq;
78
79 static int remove_and_add_spares(struct mddev *mddev,
80                                  struct md_rdev *this);
81 static void mddev_detach(struct mddev *mddev);
82
83 /*
84  * Default number of read corrections we'll attempt on an rdev
85  * before ejecting it from the array. We divide the read error
86  * count by 2 for every hour elapsed between read errors.
87  */
88 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
89 /*
90  * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
91  * is 1000 KB/sec, so the extra system load does not show up that much.
92  * Increase it if you want to have more _guaranteed_ speed. Note that
93  * the RAID driver will use the maximum available bandwidth if the IO
94  * subsystem is idle. There is also an 'absolute maximum' reconstruction
95  * speed limit - in case reconstruction slows down your system despite
96  * idle IO detection.
97  *
98  * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
99  * or /sys/block/mdX/md/sync_speed_{min,max}
100  */
101
102 static int sysctl_speed_limit_min = 1000;
103 static int sysctl_speed_limit_max = 200000;
104 static inline int speed_min(struct mddev *mddev)
105 {
106         return mddev->sync_speed_min ?
107                 mddev->sync_speed_min : sysctl_speed_limit_min;
108 }
109
110 static inline int speed_max(struct mddev *mddev)
111 {
112         return mddev->sync_speed_max ?
113                 mddev->sync_speed_max : sysctl_speed_limit_max;
114 }
115
116 static struct ctl_table_header *raid_table_header;
117
118 static struct ctl_table raid_table[] = {
119         {
120                 .procname       = "speed_limit_min",
121                 .data           = &sysctl_speed_limit_min,
122                 .maxlen         = sizeof(int),
123                 .mode           = S_IRUGO|S_IWUSR,
124                 .proc_handler   = proc_dointvec,
125         },
126         {
127                 .procname       = "speed_limit_max",
128                 .data           = &sysctl_speed_limit_max,
129                 .maxlen         = sizeof(int),
130                 .mode           = S_IRUGO|S_IWUSR,
131                 .proc_handler   = proc_dointvec,
132         },
133         { }
134 };
135
136 static struct ctl_table raid_dir_table[] = {
137         {
138                 .procname       = "raid",
139                 .maxlen         = 0,
140                 .mode           = S_IRUGO|S_IXUGO,
141                 .child          = raid_table,
142         },
143         { }
144 };
145
146 static struct ctl_table raid_root_table[] = {
147         {
148                 .procname       = "dev",
149                 .maxlen         = 0,
150                 .mode           = 0555,
151                 .child          = raid_dir_table,
152         },
153         {  }
154 };
155
156 static const struct block_device_operations md_fops;
157
158 static int start_readonly;
159
160 /* bio_clone_mddev
161  * like bio_clone, but with a local bio set
162  */
163
164 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
165                             struct mddev *mddev)
166 {
167         struct bio *b;
168
169         if (!mddev || !mddev->bio_set)
170                 return bio_alloc(gfp_mask, nr_iovecs);
171
172         b = bio_alloc_bioset(gfp_mask, nr_iovecs, mddev->bio_set);
173         if (!b)
174                 return NULL;
175         return b;
176 }
177 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
178
179 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
180                             struct mddev *mddev)
181 {
182         if (!mddev || !mddev->bio_set)
183                 return bio_clone(bio, gfp_mask);
184
185         return bio_clone_bioset(bio, gfp_mask, mddev->bio_set);
186 }
187 EXPORT_SYMBOL_GPL(bio_clone_mddev);
188
189 /*
190  * We have a system wide 'event count' that is incremented
191  * on any 'interesting' event, and readers of /proc/mdstat
192  * can use 'poll' or 'select' to find out when the event
193  * count increases.
194  *
195  * Events are:
196  *  start array, stop array, error, add device, remove device,
197  *  start build, activate spare
198  */
199 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
200 static atomic_t md_event_count;
201 void md_new_event(struct mddev *mddev)
202 {
203         atomic_inc(&md_event_count);
204         wake_up(&md_event_waiters);
205 }
206 EXPORT_SYMBOL_GPL(md_new_event);
207
208 /* Alternate version that can be called from interrupts
209  * when calling sysfs_notify isn't needed.
210  */
211 static void md_new_event_inintr(struct mddev *mddev)
212 {
213         atomic_inc(&md_event_count);
214         wake_up(&md_event_waiters);
215 }
216
217 /*
218  * Enables to iterate over all existing md arrays
219  * all_mddevs_lock protects this list.
220  */
221 static LIST_HEAD(all_mddevs);
222 static DEFINE_SPINLOCK(all_mddevs_lock);
223
224 /*
225  * iterates through all used mddevs in the system.
226  * We take care to grab the all_mddevs_lock whenever navigating
227  * the list, and to always hold a refcount when unlocked.
228  * Any code which breaks out of this loop while own
229  * a reference to the current mddev and must mddev_put it.
230  */
231 #define for_each_mddev(_mddev,_tmp)                                     \
232                                                                         \
233         for (({ spin_lock(&all_mddevs_lock);                            \
234                 _tmp = all_mddevs.next;                                 \
235                 _mddev = NULL;});                                       \
236              ({ if (_tmp != &all_mddevs)                                \
237                         mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
238                 spin_unlock(&all_mddevs_lock);                          \
239                 if (_mddev) mddev_put(_mddev);                          \
240                 _mddev = list_entry(_tmp, struct mddev, all_mddevs);    \
241                 _tmp != &all_mddevs;});                                 \
242              ({ spin_lock(&all_mddevs_lock);                            \
243                 _tmp = _tmp->next;})                                    \
244                 )
245
246 /* Rather than calling directly into the personality make_request function,
247  * IO requests come here first so that we can check if the device is
248  * being suspended pending a reconfiguration.
249  * We hold a refcount over the call to ->make_request.  By the time that
250  * call has finished, the bio has been linked into some internal structure
251  * and so is visible to ->quiesce(), so we don't need the refcount any more.
252  */
253 static void md_make_request(struct request_queue *q, struct bio *bio)
254 {
255         const int rw = bio_data_dir(bio);
256         struct mddev *mddev = q->queuedata;
257         unsigned int sectors;
258         int cpu;
259
260         if (mddev == NULL || mddev->pers == NULL
261             || !mddev->ready) {
262                 bio_io_error(bio);
263                 return;
264         }
265         if (mddev->ro == 1 && unlikely(rw == WRITE)) {
266                 bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
267                 return;
268         }
269         smp_rmb(); /* Ensure implications of  'active' are visible */
270         rcu_read_lock();
271         if (mddev->suspended) {
272                 DEFINE_WAIT(__wait);
273                 for (;;) {
274                         prepare_to_wait(&mddev->sb_wait, &__wait,
275                                         TASK_UNINTERRUPTIBLE);
276                         if (!mddev->suspended)
277                                 break;
278                         rcu_read_unlock();
279                         schedule();
280                         rcu_read_lock();
281                 }
282                 finish_wait(&mddev->sb_wait, &__wait);
283         }
284         atomic_inc(&mddev->active_io);
285         rcu_read_unlock();
286
287         /*
288          * save the sectors now since our bio can
289          * go away inside make_request
290          */
291         sectors = bio_sectors(bio);
292         mddev->pers->make_request(mddev, bio);
293
294         cpu = part_stat_lock();
295         part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
296         part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
297         part_stat_unlock();
298
299         if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
300                 wake_up(&mddev->sb_wait);
301 }
302
303 /* mddev_suspend makes sure no new requests are submitted
304  * to the device, and that any requests that have been submitted
305  * are completely handled.
306  * Once mddev_detach() is called and completes, the module will be
307  * completely unused.
308  */
309 void mddev_suspend(struct mddev *mddev)
310 {
311         BUG_ON(mddev->suspended);
312         mddev->suspended = 1;
313         synchronize_rcu();
314         wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
315         mddev->pers->quiesce(mddev, 1);
316
317         del_timer_sync(&mddev->safemode_timer);
318 }
319 EXPORT_SYMBOL_GPL(mddev_suspend);
320
321 void mddev_resume(struct mddev *mddev)
322 {
323         mddev->suspended = 0;
324         wake_up(&mddev->sb_wait);
325         mddev->pers->quiesce(mddev, 0);
326
327         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
328         md_wakeup_thread(mddev->thread);
329         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
330 }
331 EXPORT_SYMBOL_GPL(mddev_resume);
332
333 int mddev_congested(struct mddev *mddev, int bits)
334 {
335         struct md_personality *pers = mddev->pers;
336         int ret = 0;
337
338         rcu_read_lock();
339         if (mddev->suspended)
340                 ret = 1;
341         else if (pers && pers->congested)
342                 ret = pers->congested(mddev, bits);
343         rcu_read_unlock();
344         return ret;
345 }
346 EXPORT_SYMBOL_GPL(mddev_congested);
347 static int md_congested(void *data, int bits)
348 {
349         struct mddev *mddev = data;
350         return mddev_congested(mddev, bits);
351 }
352
353 static int md_mergeable_bvec(struct request_queue *q,
354                              struct bvec_merge_data *bvm,
355                              struct bio_vec *biovec)
356 {
357         struct mddev *mddev = q->queuedata;
358         int ret;
359         rcu_read_lock();
360         if (mddev->suspended) {
361                 /* Must always allow one vec */
362                 if (bvm->bi_size == 0)
363                         ret = biovec->bv_len;
364                 else
365                         ret = 0;
366         } else {
367                 struct md_personality *pers = mddev->pers;
368                 if (pers && pers->mergeable_bvec)
369                         ret = pers->mergeable_bvec(mddev, bvm, biovec);
370                 else
371                         ret = biovec->bv_len;
372         }
373         rcu_read_unlock();
374         return ret;
375 }
376 /*
377  * Generic flush handling for md
378  */
379
380 static void md_end_flush(struct bio *bio, int err)
381 {
382         struct md_rdev *rdev = bio->bi_private;
383         struct mddev *mddev = rdev->mddev;
384
385         rdev_dec_pending(rdev, mddev);
386
387         if (atomic_dec_and_test(&mddev->flush_pending)) {
388                 /* The pre-request flush has finished */
389                 queue_work(md_wq, &mddev->flush_work);
390         }
391         bio_put(bio);
392 }
393
394 static void md_submit_flush_data(struct work_struct *ws);
395
396 static void submit_flushes(struct work_struct *ws)
397 {
398         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
399         struct md_rdev *rdev;
400
401         INIT_WORK(&mddev->flush_work, md_submit_flush_data);
402         atomic_set(&mddev->flush_pending, 1);
403         rcu_read_lock();
404         rdev_for_each_rcu(rdev, mddev)
405                 if (rdev->raid_disk >= 0 &&
406                     !test_bit(Faulty, &rdev->flags)) {
407                         /* Take two references, one is dropped
408                          * when request finishes, one after
409                          * we reclaim rcu_read_lock
410                          */
411                         struct bio *bi;
412                         atomic_inc(&rdev->nr_pending);
413                         atomic_inc(&rdev->nr_pending);
414                         rcu_read_unlock();
415                         bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
416                         bi->bi_end_io = md_end_flush;
417                         bi->bi_private = rdev;
418                         bi->bi_bdev = rdev->bdev;
419                         atomic_inc(&mddev->flush_pending);
420                         submit_bio(WRITE_FLUSH, bi);
421                         rcu_read_lock();
422                         rdev_dec_pending(rdev, mddev);
423                 }
424         rcu_read_unlock();
425         if (atomic_dec_and_test(&mddev->flush_pending))
426                 queue_work(md_wq, &mddev->flush_work);
427 }
428
429 static void md_submit_flush_data(struct work_struct *ws)
430 {
431         struct mddev *mddev = container_of(ws, struct mddev, flush_work);
432         struct bio *bio = mddev->flush_bio;
433
434         if (bio->bi_iter.bi_size == 0)
435                 /* an empty barrier - all done */
436                 bio_endio(bio, 0);
437         else {
438                 bio->bi_rw &= ~REQ_FLUSH;
439                 mddev->pers->make_request(mddev, bio);
440         }
441
442         mddev->flush_bio = NULL;
443         wake_up(&mddev->sb_wait);
444 }
445
446 void md_flush_request(struct mddev *mddev, struct bio *bio)
447 {
448         spin_lock_irq(&mddev->lock);
449         wait_event_lock_irq(mddev->sb_wait,
450                             !mddev->flush_bio,
451                             mddev->lock);
452         mddev->flush_bio = bio;
453         spin_unlock_irq(&mddev->lock);
454
455         INIT_WORK(&mddev->flush_work, submit_flushes);
456         queue_work(md_wq, &mddev->flush_work);
457 }
458 EXPORT_SYMBOL(md_flush_request);
459
460 void md_unplug(struct blk_plug_cb *cb, bool from_schedule)
461 {
462         struct mddev *mddev = cb->data;
463         md_wakeup_thread(mddev->thread);
464         kfree(cb);
465 }
466 EXPORT_SYMBOL(md_unplug);
467
468 static inline struct mddev *mddev_get(struct mddev *mddev)
469 {
470         atomic_inc(&mddev->active);
471         return mddev;
472 }
473
474 static void mddev_delayed_delete(struct work_struct *ws);
475
476 static void mddev_put(struct mddev *mddev)
477 {
478         struct bio_set *bs = NULL;
479
480         if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
481                 return;
482         if (!mddev->raid_disks && list_empty(&mddev->disks) &&
483             mddev->ctime == 0 && !mddev->hold_active) {
484                 /* Array is not configured at all, and not held active,
485                  * so destroy it */
486                 list_del_init(&mddev->all_mddevs);
487                 bs = mddev->bio_set;
488                 mddev->bio_set = NULL;
489                 if (mddev->gendisk) {
490                         /* We did a probe so need to clean up.  Call
491                          * queue_work inside the spinlock so that
492                          * flush_workqueue() after mddev_find will
493                          * succeed in waiting for the work to be done.
494                          */
495                         INIT_WORK(&mddev->del_work, mddev_delayed_delete);
496                         queue_work(md_misc_wq, &mddev->del_work);
497                 } else
498                         kfree(mddev);
499         }
500         spin_unlock(&all_mddevs_lock);
501         if (bs)
502                 bioset_free(bs);
503 }
504
505 static void md_safemode_timeout(unsigned long data);
506
507 void mddev_init(struct mddev *mddev)
508 {
509         mutex_init(&mddev->open_mutex);
510         mutex_init(&mddev->reconfig_mutex);
511         mutex_init(&mddev->bitmap_info.mutex);
512         INIT_LIST_HEAD(&mddev->disks);
513         INIT_LIST_HEAD(&mddev->all_mddevs);
514         setup_timer(&mddev->safemode_timer, md_safemode_timeout,
515                     (unsigned long) mddev);
516         atomic_set(&mddev->active, 1);
517         atomic_set(&mddev->openers, 0);
518         atomic_set(&mddev->active_io, 0);
519         spin_lock_init(&mddev->lock);
520         atomic_set(&mddev->flush_pending, 0);
521         init_waitqueue_head(&mddev->sb_wait);
522         init_waitqueue_head(&mddev->recovery_wait);
523         mddev->reshape_position = MaxSector;
524         mddev->reshape_backwards = 0;
525         mddev->last_sync_action = "none";
526         mddev->resync_min = 0;
527         mddev->resync_max = MaxSector;
528         mddev->level = LEVEL_NONE;
529 }
530 EXPORT_SYMBOL_GPL(mddev_init);
531
532 static struct mddev *mddev_find(dev_t unit)
533 {
534         struct mddev *mddev, *new = NULL;
535
536         if (unit && MAJOR(unit) != MD_MAJOR)
537                 unit &= ~((1<<MdpMinorShift)-1);
538
539  retry:
540         spin_lock(&all_mddevs_lock);
541
542         if (unit) {
543                 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
544                         if (mddev->unit == unit) {
545                                 mddev_get(mddev);
546                                 spin_unlock(&all_mddevs_lock);
547                                 kfree(new);
548                                 return mddev;
549                         }
550
551                 if (new) {
552                         list_add(&new->all_mddevs, &all_mddevs);
553                         spin_unlock(&all_mddevs_lock);
554                         new->hold_active = UNTIL_IOCTL;
555                         return new;
556                 }
557         } else if (new) {
558                 /* find an unused unit number */
559                 static int next_minor = 512;
560                 int start = next_minor;
561                 int is_free = 0;
562                 int dev = 0;
563                 while (!is_free) {
564                         dev = MKDEV(MD_MAJOR, next_minor);
565                         next_minor++;
566                         if (next_minor > MINORMASK)
567                                 next_minor = 0;
568                         if (next_minor == start) {
569                                 /* Oh dear, all in use. */
570                                 spin_unlock(&all_mddevs_lock);
571                                 kfree(new);
572                                 return NULL;
573                         }
574
575                         is_free = 1;
576                         list_for_each_entry(mddev, &all_mddevs, all_mddevs)
577                                 if (mddev->unit == dev) {
578                                         is_free = 0;
579                                         break;
580                                 }
581                 }
582                 new->unit = dev;
583                 new->md_minor = MINOR(dev);
584                 new->hold_active = UNTIL_STOP;
585                 list_add(&new->all_mddevs, &all_mddevs);
586                 spin_unlock(&all_mddevs_lock);
587                 return new;
588         }
589         spin_unlock(&all_mddevs_lock);
590
591         new = kzalloc(sizeof(*new), GFP_KERNEL);
592         if (!new)
593                 return NULL;
594
595         new->unit = unit;
596         if (MAJOR(unit) == MD_MAJOR)
597                 new->md_minor = MINOR(unit);
598         else
599                 new->md_minor = MINOR(unit) >> MdpMinorShift;
600
601         mddev_init(new);
602
603         goto retry;
604 }
605
606 static struct attribute_group md_redundancy_group;
607
608 void mddev_unlock(struct mddev *mddev)
609 {
610         if (mddev->to_remove) {
611                 /* These cannot be removed under reconfig_mutex as
612                  * an access to the files will try to take reconfig_mutex
613                  * while holding the file unremovable, which leads to
614                  * a deadlock.
615                  * So hold set sysfs_active while the remove in happeing,
616                  * and anything else which might set ->to_remove or my
617                  * otherwise change the sysfs namespace will fail with
618                  * -EBUSY if sysfs_active is still set.
619                  * We set sysfs_active under reconfig_mutex and elsewhere
620                  * test it under the same mutex to ensure its correct value
621                  * is seen.
622                  */
623                 struct attribute_group *to_remove = mddev->to_remove;
624                 mddev->to_remove = NULL;
625                 mddev->sysfs_active = 1;
626                 mutex_unlock(&mddev->reconfig_mutex);
627
628                 if (mddev->kobj.sd) {
629                         if (to_remove != &md_redundancy_group)
630                                 sysfs_remove_group(&mddev->kobj, to_remove);
631                         if (mddev->pers == NULL ||
632                             mddev->pers->sync_request == NULL) {
633                                 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
634                                 if (mddev->sysfs_action)
635                                         sysfs_put(mddev->sysfs_action);
636                                 mddev->sysfs_action = NULL;
637                         }
638                 }
639                 mddev->sysfs_active = 0;
640         } else
641                 mutex_unlock(&mddev->reconfig_mutex);
642
643         /* As we've dropped the mutex we need a spinlock to
644          * make sure the thread doesn't disappear
645          */
646         spin_lock(&pers_lock);
647         md_wakeup_thread(mddev->thread);
648         spin_unlock(&pers_lock);
649 }
650 EXPORT_SYMBOL_GPL(mddev_unlock);
651
652 struct md_rdev *md_find_rdev_nr_rcu(struct mddev *mddev, int nr)
653 {
654         struct md_rdev *rdev;
655
656         rdev_for_each_rcu(rdev, mddev)
657                 if (rdev->desc_nr == nr)
658                         return rdev;
659
660         return NULL;
661 }
662 EXPORT_SYMBOL_GPL(md_find_rdev_nr_rcu);
663
664 static struct md_rdev *find_rdev(struct mddev *mddev, dev_t dev)
665 {
666         struct md_rdev *rdev;
667
668         rdev_for_each(rdev, mddev)
669                 if (rdev->bdev->bd_dev == dev)
670                         return rdev;
671
672         return NULL;
673 }
674
675 static struct md_rdev *find_rdev_rcu(struct mddev *mddev, dev_t dev)
676 {
677         struct md_rdev *rdev;
678
679         rdev_for_each_rcu(rdev, mddev)
680                 if (rdev->bdev->bd_dev == dev)
681                         return rdev;
682
683         return NULL;
684 }
685
686 static struct md_personality *find_pers(int level, char *clevel)
687 {
688         struct md_personality *pers;
689         list_for_each_entry(pers, &pers_list, list) {
690                 if (level != LEVEL_NONE && pers->level == level)
691                         return pers;
692                 if (strcmp(pers->name, clevel)==0)
693                         return pers;
694         }
695         return NULL;
696 }
697
698 /* return the offset of the super block in 512byte sectors */
699 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
700 {
701         sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
702         return MD_NEW_SIZE_SECTORS(num_sectors);
703 }
704
705 static int alloc_disk_sb(struct md_rdev *rdev)
706 {
707         rdev->sb_page = alloc_page(GFP_KERNEL);
708         if (!rdev->sb_page) {
709                 printk(KERN_ALERT "md: out of memory.\n");
710                 return -ENOMEM;
711         }
712
713         return 0;
714 }
715
716 void md_rdev_clear(struct md_rdev *rdev)
717 {
718         if (rdev->sb_page) {
719                 put_page(rdev->sb_page);
720                 rdev->sb_loaded = 0;
721                 rdev->sb_page = NULL;
722                 rdev->sb_start = 0;
723                 rdev->sectors = 0;
724         }
725         if (rdev->bb_page) {
726                 put_page(rdev->bb_page);
727                 rdev->bb_page = NULL;
728         }
729         kfree(rdev->badblocks.page);
730         rdev->badblocks.page = NULL;
731 }
732 EXPORT_SYMBOL_GPL(md_rdev_clear);
733
734 static void super_written(struct bio *bio, int error)
735 {
736         struct md_rdev *rdev = bio->bi_private;
737         struct mddev *mddev = rdev->mddev;
738
739         if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
740                 printk("md: super_written gets error=%d, uptodate=%d\n",
741                        error, test_bit(BIO_UPTODATE, &bio->bi_flags));
742                 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
743                 md_error(mddev, rdev);
744         }
745
746         if (atomic_dec_and_test(&mddev->pending_writes))
747                 wake_up(&mddev->sb_wait);
748         bio_put(bio);
749 }
750
751 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
752                    sector_t sector, int size, struct page *page)
753 {
754         /* write first size bytes of page to sector of rdev
755          * Increment mddev->pending_writes before returning
756          * and decrement it on completion, waking up sb_wait
757          * if zero is reached.
758          * If an error occurred, call md_error
759          */
760         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
761
762         bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
763         bio->bi_iter.bi_sector = sector;
764         bio_add_page(bio, page, size, 0);
765         bio->bi_private = rdev;
766         bio->bi_end_io = super_written;
767
768         atomic_inc(&mddev->pending_writes);
769         submit_bio(WRITE_FLUSH_FUA, bio);
770 }
771
772 void md_super_wait(struct mddev *mddev)
773 {
774         /* wait for all superblock writes that were scheduled to complete */
775         wait_event(mddev->sb_wait, atomic_read(&mddev->pending_writes)==0);
776 }
777
778 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
779                  struct page *page, int rw, bool metadata_op)
780 {
781         struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
782         int ret;
783
784         bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
785                 rdev->meta_bdev : rdev->bdev;
786         if (metadata_op)
787                 bio->bi_iter.bi_sector = sector + rdev->sb_start;
788         else if (rdev->mddev->reshape_position != MaxSector &&
789                  (rdev->mddev->reshape_backwards ==
790                   (sector >= rdev->mddev->reshape_position)))
791                 bio->bi_iter.bi_sector = sector + rdev->new_data_offset;
792         else
793                 bio->bi_iter.bi_sector = sector + rdev->data_offset;
794         bio_add_page(bio, page, size, 0);
795         submit_bio_wait(rw, bio);
796
797         ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
798         bio_put(bio);
799         return ret;
800 }
801 EXPORT_SYMBOL_GPL(sync_page_io);
802
803 static int read_disk_sb(struct md_rdev *rdev, int size)
804 {
805         char b[BDEVNAME_SIZE];
806
807         if (rdev->sb_loaded)
808                 return 0;
809
810         if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
811                 goto fail;
812         rdev->sb_loaded = 1;
813         return 0;
814
815 fail:
816         printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
817                 bdevname(rdev->bdev,b));
818         return -EINVAL;
819 }
820
821 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
822 {
823         return  sb1->set_uuid0 == sb2->set_uuid0 &&
824                 sb1->set_uuid1 == sb2->set_uuid1 &&
825                 sb1->set_uuid2 == sb2->set_uuid2 &&
826                 sb1->set_uuid3 == sb2->set_uuid3;
827 }
828
829 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
830 {
831         int ret;
832         mdp_super_t *tmp1, *tmp2;
833
834         tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
835         tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
836
837         if (!tmp1 || !tmp2) {
838                 ret = 0;
839                 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
840                 goto abort;
841         }
842
843         *tmp1 = *sb1;
844         *tmp2 = *sb2;
845
846         /*
847          * nr_disks is not constant
848          */
849         tmp1->nr_disks = 0;
850         tmp2->nr_disks = 0;
851
852         ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
853 abort:
854         kfree(tmp1);
855         kfree(tmp2);
856         return ret;
857 }
858
859 static u32 md_csum_fold(u32 csum)
860 {
861         csum = (csum & 0xffff) + (csum >> 16);
862         return (csum & 0xffff) + (csum >> 16);
863 }
864
865 static unsigned int calc_sb_csum(mdp_super_t *sb)
866 {
867         u64 newcsum = 0;
868         u32 *sb32 = (u32*)sb;
869         int i;
870         unsigned int disk_csum, csum;
871
872         disk_csum = sb->sb_csum;
873         sb->sb_csum = 0;
874
875         for (i = 0; i < MD_SB_BYTES/4 ; i++)
876                 newcsum += sb32[i];
877         csum = (newcsum & 0xffffffff) + (newcsum>>32);
878
879 #ifdef CONFIG_ALPHA
880         /* This used to use csum_partial, which was wrong for several
881          * reasons including that different results are returned on
882          * different architectures.  It isn't critical that we get exactly
883          * the same return value as before (we always csum_fold before
884          * testing, and that removes any differences).  However as we
885          * know that csum_partial always returned a 16bit value on
886          * alphas, do a fold to maximise conformity to previous behaviour.
887          */
888         sb->sb_csum = md_csum_fold(disk_csum);
889 #else
890         sb->sb_csum = disk_csum;
891 #endif
892         return csum;
893 }
894
895 /*
896  * Handle superblock details.
897  * We want to be able to handle multiple superblock formats
898  * so we have a common interface to them all, and an array of
899  * different handlers.
900  * We rely on user-space to write the initial superblock, and support
901  * reading and updating of superblocks.
902  * Interface methods are:
903  *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
904  *      loads and validates a superblock on dev.
905  *      if refdev != NULL, compare superblocks on both devices
906  *    Return:
907  *      0 - dev has a superblock that is compatible with refdev
908  *      1 - dev has a superblock that is compatible and newer than refdev
909  *          so dev should be used as the refdev in future
910  *     -EINVAL superblock incompatible or invalid
911  *     -othererror e.g. -EIO
912  *
913  *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
914  *      Verify that dev is acceptable into mddev.
915  *       The first time, mddev->raid_disks will be 0, and data from
916  *       dev should be merged in.  Subsequent calls check that dev
917  *       is new enough.  Return 0 or -EINVAL
918  *
919  *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
920  *     Update the superblock for rdev with data in mddev
921  *     This does not write to disc.
922  *
923  */
924
925 struct super_type  {
926         char                *name;
927         struct module       *owner;
928         int                 (*load_super)(struct md_rdev *rdev,
929                                           struct md_rdev *refdev,
930                                           int minor_version);
931         int                 (*validate_super)(struct mddev *mddev,
932                                               struct md_rdev *rdev);
933         void                (*sync_super)(struct mddev *mddev,
934                                           struct md_rdev *rdev);
935         unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
936                                                 sector_t num_sectors);
937         int                 (*allow_new_offset)(struct md_rdev *rdev,
938                                                 unsigned long long new_offset);
939 };
940
941 /*
942  * Check that the given mddev has no bitmap.
943  *
944  * This function is called from the run method of all personalities that do not
945  * support bitmaps. It prints an error message and returns non-zero if mddev
946  * has a bitmap. Otherwise, it returns 0.
947  *
948  */
949 int md_check_no_bitmap(struct mddev *mddev)
950 {
951         if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
952                 return 0;
953         printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
954                 mdname(mddev), mddev->pers->name);
955         return 1;
956 }
957 EXPORT_SYMBOL(md_check_no_bitmap);
958
959 /*
960  * load_super for 0.90.0
961  */
962 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
963 {
964         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
965         mdp_super_t *sb;
966         int ret;
967
968         /*
969          * Calculate the position of the superblock (512byte sectors),
970          * it's at the end of the disk.
971          *
972          * It also happens to be a multiple of 4Kb.
973          */
974         rdev->sb_start = calc_dev_sboffset(rdev);
975
976         ret = read_disk_sb(rdev, MD_SB_BYTES);
977         if (ret) return ret;
978
979         ret = -EINVAL;
980
981         bdevname(rdev->bdev, b);
982         sb = page_address(rdev->sb_page);
983
984         if (sb->md_magic != MD_SB_MAGIC) {
985                 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
986                        b);
987                 goto abort;
988         }
989
990         if (sb->major_version != 0 ||
991             sb->minor_version < 90 ||
992             sb->minor_version > 91) {
993                 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
994                         sb->major_version, sb->minor_version,
995                         b);
996                 goto abort;
997         }
998
999         if (sb->raid_disks <= 0)
1000                 goto abort;
1001
1002         if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1003                 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1004                         b);
1005                 goto abort;
1006         }
1007
1008         rdev->preferred_minor = sb->md_minor;
1009         rdev->data_offset = 0;
1010         rdev->new_data_offset = 0;
1011         rdev->sb_size = MD_SB_BYTES;
1012         rdev->badblocks.shift = -1;
1013
1014         if (sb->level == LEVEL_MULTIPATH)
1015                 rdev->desc_nr = -1;
1016         else
1017                 rdev->desc_nr = sb->this_disk.number;
1018
1019         if (!refdev) {
1020                 ret = 1;
1021         } else {
1022                 __u64 ev1, ev2;
1023                 mdp_super_t *refsb = page_address(refdev->sb_page);
1024                 if (!uuid_equal(refsb, sb)) {
1025                         printk(KERN_WARNING "md: %s has different UUID to %s\n",
1026                                 b, bdevname(refdev->bdev,b2));
1027                         goto abort;
1028                 }
1029                 if (!sb_equal(refsb, sb)) {
1030                         printk(KERN_WARNING "md: %s has same UUID"
1031                                " but different superblock to %s\n",
1032                                b, bdevname(refdev->bdev, b2));
1033                         goto abort;
1034                 }
1035                 ev1 = md_event(sb);
1036                 ev2 = md_event(refsb);
1037                 if (ev1 > ev2)
1038                         ret = 1;
1039                 else
1040                         ret = 0;
1041         }
1042         rdev->sectors = rdev->sb_start;
1043         /* Limit to 4TB as metadata cannot record more than that.
1044          * (not needed for Linear and RAID0 as metadata doesn't
1045          * record this size)
1046          */
1047         if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
1048                 rdev->sectors = (2ULL << 32) - 2;
1049
1050         if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1051                 /* "this cannot possibly happen" ... */
1052                 ret = -EINVAL;
1053
1054  abort:
1055         return ret;
1056 }
1057
1058 /*
1059  * validate_super for 0.90.0
1060  */
1061 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1062 {
1063         mdp_disk_t *desc;
1064         mdp_super_t *sb = page_address(rdev->sb_page);
1065         __u64 ev1 = md_event(sb);
1066
1067         rdev->raid_disk = -1;
1068         clear_bit(Faulty, &rdev->flags);
1069         clear_bit(In_sync, &rdev->flags);
1070         clear_bit(Bitmap_sync, &rdev->flags);
1071         clear_bit(WriteMostly, &rdev->flags);
1072
1073         if (mddev->raid_disks == 0) {
1074                 mddev->major_version = 0;
1075                 mddev->minor_version = sb->minor_version;
1076                 mddev->patch_version = sb->patch_version;
1077                 mddev->external = 0;
1078                 mddev->chunk_sectors = sb->chunk_size >> 9;
1079                 mddev->ctime = sb->ctime;
1080                 mddev->utime = sb->utime;
1081                 mddev->level = sb->level;
1082                 mddev->clevel[0] = 0;
1083                 mddev->layout = sb->layout;
1084                 mddev->raid_disks = sb->raid_disks;
1085                 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1086                 mddev->events = ev1;
1087                 mddev->bitmap_info.offset = 0;
1088                 mddev->bitmap_info.space = 0;
1089                 /* bitmap can use 60 K after the 4K superblocks */
1090                 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1091                 mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
1092                 mddev->reshape_backwards = 0;
1093
1094                 if (mddev->minor_version >= 91) {
1095                         mddev->reshape_position = sb->reshape_position;
1096                         mddev->delta_disks = sb->delta_disks;
1097                         mddev->new_level = sb->new_level;
1098                         mddev->new_layout = sb->new_layout;
1099                         mddev->new_chunk_sectors = sb->new_chunk >> 9;
1100                         if (mddev->delta_disks < 0)
1101                                 mddev->reshape_backwards = 1;
1102                 } else {
1103                         mddev->reshape_position = MaxSector;
1104                         mddev->delta_disks = 0;
1105                         mddev->new_level = mddev->level;
1106                         mddev->new_layout = mddev->layout;
1107                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1108                 }
1109
1110                 if (sb->state & (1<<MD_SB_CLEAN))
1111                         mddev->recovery_cp = MaxSector;
1112                 else {
1113                         if (sb->events_hi == sb->cp_events_hi &&
1114                                 sb->events_lo == sb->cp_events_lo) {
1115                                 mddev->recovery_cp = sb->recovery_cp;
1116                         } else
1117                                 mddev->recovery_cp = 0;
1118                 }
1119
1120                 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1121                 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1122                 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1123                 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1124
1125                 mddev->max_disks = MD_SB_DISKS;
1126
1127                 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1128                     mddev->bitmap_info.file == NULL) {
1129                         mddev->bitmap_info.offset =
1130                                 mddev->bitmap_info.default_offset;
1131                         mddev->bitmap_info.space =
1132                                 mddev->bitmap_info.default_space;
1133                 }
1134
1135         } else if (mddev->pers == NULL) {
1136                 /* Insist on good event counter while assembling, except
1137                  * for spares (which don't need an event count) */
1138                 ++ev1;
1139                 if (sb->disks[rdev->desc_nr].state & (
1140                             (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1141                         if (ev1 < mddev->events)
1142                                 return -EINVAL;
1143         } else if (mddev->bitmap) {
1144                 /* if adding to array with a bitmap, then we can accept an
1145                  * older device ... but not too old.
1146                  */
1147                 if (ev1 < mddev->bitmap->events_cleared)
1148                         return 0;
1149                 if (ev1 < mddev->events)
1150                         set_bit(Bitmap_sync, &rdev->flags);
1151         } else {
1152                 if (ev1 < mddev->events)
1153                         /* just a hot-add of a new device, leave raid_disk at -1 */
1154                         return 0;
1155         }
1156
1157         if (mddev->level != LEVEL_MULTIPATH) {
1158                 desc = sb->disks + rdev->desc_nr;
1159
1160                 if (desc->state & (1<<MD_DISK_FAULTY))
1161                         set_bit(Faulty, &rdev->flags);
1162                 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1163                             desc->raid_disk < mddev->raid_disks */) {
1164                         set_bit(In_sync, &rdev->flags);
1165                         rdev->raid_disk = desc->raid_disk;
1166                         rdev->saved_raid_disk = desc->raid_disk;
1167                 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1168                         /* active but not in sync implies recovery up to
1169                          * reshape position.  We don't know exactly where
1170                          * that is, so set to zero for now */
1171                         if (mddev->minor_version >= 91) {
1172                                 rdev->recovery_offset = 0;
1173                                 rdev->raid_disk = desc->raid_disk;
1174                         }
1175                 }
1176                 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1177                         set_bit(WriteMostly, &rdev->flags);
1178         } else /* MULTIPATH are always insync */
1179                 set_bit(In_sync, &rdev->flags);
1180         return 0;
1181 }
1182
1183 /*
1184  * sync_super for 0.90.0
1185  */
1186 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1187 {
1188         mdp_super_t *sb;
1189         struct md_rdev *rdev2;
1190         int next_spare = mddev->raid_disks;
1191
1192         /* make rdev->sb match mddev data..
1193          *
1194          * 1/ zero out disks
1195          * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1196          * 3/ any empty disks < next_spare become removed
1197          *
1198          * disks[0] gets initialised to REMOVED because
1199          * we cannot be sure from other fields if it has
1200          * been initialised or not.
1201          */
1202         int i;
1203         int active=0, working=0,failed=0,spare=0,nr_disks=0;
1204
1205         rdev->sb_size = MD_SB_BYTES;
1206
1207         sb = page_address(rdev->sb_page);
1208
1209         memset(sb, 0, sizeof(*sb));
1210
1211         sb->md_magic = MD_SB_MAGIC;
1212         sb->major_version = mddev->major_version;
1213         sb->patch_version = mddev->patch_version;
1214         sb->gvalid_words  = 0; /* ignored */
1215         memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1216         memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1217         memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1218         memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1219
1220         sb->ctime = mddev->ctime;
1221         sb->level = mddev->level;
1222         sb->size = mddev->dev_sectors / 2;
1223         sb->raid_disks = mddev->raid_disks;
1224         sb->md_minor = mddev->md_minor;
1225         sb->not_persistent = 0;
1226         sb->utime = mddev->utime;
1227         sb->state = 0;
1228         sb->events_hi = (mddev->events>>32);
1229         sb->events_lo = (u32)mddev->events;
1230
1231         if (mddev->reshape_position == MaxSector)
1232                 sb->minor_version = 90;
1233         else {
1234                 sb->minor_version = 91;
1235                 sb->reshape_position = mddev->reshape_position;
1236                 sb->new_level = mddev->new_level;
1237                 sb->delta_disks = mddev->delta_disks;
1238                 sb->new_layout = mddev->new_layout;
1239                 sb->new_chunk = mddev->new_chunk_sectors << 9;
1240         }
1241         mddev->minor_version = sb->minor_version;
1242         if (mddev->in_sync)
1243         {
1244                 sb->recovery_cp = mddev->recovery_cp;
1245                 sb->cp_events_hi = (mddev->events>>32);
1246                 sb->cp_events_lo = (u32)mddev->events;
1247                 if (mddev->recovery_cp == MaxSector)
1248                         sb->state = (1<< MD_SB_CLEAN);
1249         } else
1250                 sb->recovery_cp = 0;
1251
1252         sb->layout = mddev->layout;
1253         sb->chunk_size = mddev->chunk_sectors << 9;
1254
1255         if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1256                 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1257
1258         sb->disks[0].state = (1<<MD_DISK_REMOVED);
1259         rdev_for_each(rdev2, mddev) {
1260                 mdp_disk_t *d;
1261                 int desc_nr;
1262                 int is_active = test_bit(In_sync, &rdev2->flags);
1263
1264                 if (rdev2->raid_disk >= 0 &&
1265                     sb->minor_version >= 91)
1266                         /* we have nowhere to store the recovery_offset,
1267                          * but if it is not below the reshape_position,
1268                          * we can piggy-back on that.
1269                          */
1270                         is_active = 1;
1271                 if (rdev2->raid_disk < 0 ||
1272                     test_bit(Faulty, &rdev2->flags))
1273                         is_active = 0;
1274                 if (is_active)
1275                         desc_nr = rdev2->raid_disk;
1276                 else
1277                         desc_nr = next_spare++;
1278                 rdev2->desc_nr = desc_nr;
1279                 d = &sb->disks[rdev2->desc_nr];
1280                 nr_disks++;
1281                 d->number = rdev2->desc_nr;
1282                 d->major = MAJOR(rdev2->bdev->bd_dev);
1283                 d->minor = MINOR(rdev2->bdev->bd_dev);
1284                 if (is_active)
1285                         d->raid_disk = rdev2->raid_disk;
1286                 else
1287                         d->raid_disk = rdev2->desc_nr; /* compatibility */
1288                 if (test_bit(Faulty, &rdev2->flags))
1289                         d->state = (1<<MD_DISK_FAULTY);
1290                 else if (is_active) {
1291                         d->state = (1<<MD_DISK_ACTIVE);
1292                         if (test_bit(In_sync, &rdev2->flags))
1293                                 d->state |= (1<<MD_DISK_SYNC);
1294                         active++;
1295                         working++;
1296                 } else {
1297                         d->state = 0;
1298                         spare++;
1299                         working++;
1300                 }
1301                 if (test_bit(WriteMostly, &rdev2->flags))
1302                         d->state |= (1<<MD_DISK_WRITEMOSTLY);
1303         }
1304         /* now set the "removed" and "faulty" bits on any missing devices */
1305         for (i=0 ; i < mddev->raid_disks ; i++) {
1306                 mdp_disk_t *d = &sb->disks[i];
1307                 if (d->state == 0 && d->number == 0) {
1308                         d->number = i;
1309                         d->raid_disk = i;
1310                         d->state = (1<<MD_DISK_REMOVED);
1311                         d->state |= (1<<MD_DISK_FAULTY);
1312                         failed++;
1313                 }
1314         }
1315         sb->nr_disks = nr_disks;
1316         sb->active_disks = active;
1317         sb->working_disks = working;
1318         sb->failed_disks = failed;
1319         sb->spare_disks = spare;
1320
1321         sb->this_disk = sb->disks[rdev->desc_nr];
1322         sb->sb_csum = calc_sb_csum(sb);
1323 }
1324
1325 /*
1326  * rdev_size_change for 0.90.0
1327  */
1328 static unsigned long long
1329 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1330 {
1331         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1332                 return 0; /* component must fit device */
1333         if (rdev->mddev->bitmap_info.offset)
1334                 return 0; /* can't move bitmap */
1335         rdev->sb_start = calc_dev_sboffset(rdev);
1336         if (!num_sectors || num_sectors > rdev->sb_start)
1337                 num_sectors = rdev->sb_start;
1338         /* Limit to 4TB as metadata cannot record more than that.
1339          * 4TB == 2^32 KB, or 2*2^32 sectors.
1340          */
1341         if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
1342                 num_sectors = (2ULL << 32) - 2;
1343         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1344                        rdev->sb_page);
1345         md_super_wait(rdev->mddev);
1346         return num_sectors;
1347 }
1348
1349 static int
1350 super_90_allow_new_offset(struct md_rdev *rdev, unsigned long long new_offset)
1351 {
1352         /* non-zero offset changes not possible with v0.90 */
1353         return new_offset == 0;
1354 }
1355
1356 /*
1357  * version 1 superblock
1358  */
1359
1360 static __le32 calc_sb_1_csum(struct mdp_superblock_1 *sb)
1361 {
1362         __le32 disk_csum;
1363         u32 csum;
1364         unsigned long long newcsum;
1365         int size = 256 + le32_to_cpu(sb->max_dev)*2;
1366         __le32 *isuper = (__le32*)sb;
1367
1368         disk_csum = sb->sb_csum;
1369         sb->sb_csum = 0;
1370         newcsum = 0;
1371         for (; size >= 4; size -= 4)
1372                 newcsum += le32_to_cpu(*isuper++);
1373
1374         if (size == 2)
1375                 newcsum += le16_to_cpu(*(__le16*) isuper);
1376
1377         csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1378         sb->sb_csum = disk_csum;
1379         return cpu_to_le32(csum);
1380 }
1381
1382 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1383                             int acknowledged);
1384 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1385 {
1386         struct mdp_superblock_1 *sb;
1387         int ret;
1388         sector_t sb_start;
1389         sector_t sectors;
1390         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1391         int bmask;
1392
1393         /*
1394          * Calculate the position of the superblock in 512byte sectors.
1395          * It is always aligned to a 4K boundary and
1396          * depeding on minor_version, it can be:
1397          * 0: At least 8K, but less than 12K, from end of device
1398          * 1: At start of device
1399          * 2: 4K from start of device.
1400          */
1401         switch(minor_version) {
1402         case 0:
1403                 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1404                 sb_start -= 8*2;
1405                 sb_start &= ~(sector_t)(4*2-1);
1406                 break;
1407         case 1:
1408                 sb_start = 0;
1409                 break;
1410         case 2:
1411                 sb_start = 8;
1412                 break;
1413         default:
1414                 return -EINVAL;
1415         }
1416         rdev->sb_start = sb_start;
1417
1418         /* superblock is rarely larger than 1K, but it can be larger,
1419          * and it is safe to read 4k, so we do that
1420          */
1421         ret = read_disk_sb(rdev, 4096);
1422         if (ret) return ret;
1423
1424         sb = page_address(rdev->sb_page);
1425
1426         if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1427             sb->major_version != cpu_to_le32(1) ||
1428             le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1429             le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1430             (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1431                 return -EINVAL;
1432
1433         if (calc_sb_1_csum(sb) != sb->sb_csum) {
1434                 printk("md: invalid superblock checksum on %s\n",
1435                         bdevname(rdev->bdev,b));
1436                 return -EINVAL;
1437         }
1438         if (le64_to_cpu(sb->data_size) < 10) {
1439                 printk("md: data_size too small on %s\n",
1440                        bdevname(rdev->bdev,b));
1441                 return -EINVAL;
1442         }
1443         if (sb->pad0 ||
1444             sb->pad3[0] ||
1445             memcmp(sb->pad3, sb->pad3+1, sizeof(sb->pad3) - sizeof(sb->pad3[1])))
1446                 /* Some padding is non-zero, might be a new feature */
1447                 return -EINVAL;
1448
1449         rdev->preferred_minor = 0xffff;
1450         rdev->data_offset = le64_to_cpu(sb->data_offset);
1451         rdev->new_data_offset = rdev->data_offset;
1452         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE) &&
1453             (le32_to_cpu(sb->feature_map) & MD_FEATURE_NEW_OFFSET))
1454                 rdev->new_data_offset += (s32)le32_to_cpu(sb->new_offset);
1455         atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1456
1457         rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1458         bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1459         if (rdev->sb_size & bmask)
1460                 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1461
1462         if (minor_version
1463             && rdev->data_offset < sb_start + (rdev->sb_size/512))
1464                 return -EINVAL;
1465         if (minor_version
1466             && rdev->new_data_offset < sb_start + (rdev->sb_size/512))
1467                 return -EINVAL;
1468
1469         if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1470                 rdev->desc_nr = -1;
1471         else
1472                 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1473
1474         if (!rdev->bb_page) {
1475                 rdev->bb_page = alloc_page(GFP_KERNEL);
1476                 if (!rdev->bb_page)
1477                         return -ENOMEM;
1478         }
1479         if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1480             rdev->badblocks.count == 0) {
1481                 /* need to load the bad block list.
1482                  * Currently we limit it to one page.
1483                  */
1484                 s32 offset;
1485                 sector_t bb_sector;
1486                 u64 *bbp;
1487                 int i;
1488                 int sectors = le16_to_cpu(sb->bblog_size);
1489                 if (sectors > (PAGE_SIZE / 512))
1490                         return -EINVAL;
1491                 offset = le32_to_cpu(sb->bblog_offset);
1492                 if (offset == 0)
1493                         return -EINVAL;
1494                 bb_sector = (long long)offset;
1495                 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1496                                   rdev->bb_page, READ, true))
1497                         return -EIO;
1498                 bbp = (u64 *)page_address(rdev->bb_page);
1499                 rdev->badblocks.shift = sb->bblog_shift;
1500                 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1501                         u64 bb = le64_to_cpu(*bbp);
1502                         int count = bb & (0x3ff);
1503                         u64 sector = bb >> 10;
1504                         sector <<= sb->bblog_shift;
1505                         count <<= sb->bblog_shift;
1506                         if (bb + 1 == 0)
1507                                 break;
1508                         if (md_set_badblocks(&rdev->badblocks,
1509                                              sector, count, 1) == 0)
1510                                 return -EINVAL;
1511                 }
1512         } else if (sb->bblog_offset != 0)
1513                 rdev->badblocks.shift = 0;
1514
1515         if (!refdev) {
1516                 ret = 1;
1517         } else {
1518                 __u64 ev1, ev2;
1519                 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1520
1521                 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1522                     sb->level != refsb->level ||
1523                     sb->layout != refsb->layout ||
1524                     sb->chunksize != refsb->chunksize) {
1525                         printk(KERN_WARNING "md: %s has strangely different"
1526                                 " superblock to %s\n",
1527                                 bdevname(rdev->bdev,b),
1528                                 bdevname(refdev->bdev,b2));
1529                         return -EINVAL;
1530                 }
1531                 ev1 = le64_to_cpu(sb->events);
1532                 ev2 = le64_to_cpu(refsb->events);
1533
1534                 if (ev1 > ev2)
1535                         ret = 1;
1536                 else
1537                         ret = 0;
1538         }
1539         if (minor_version) {
1540                 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9);
1541                 sectors -= rdev->data_offset;
1542         } else
1543                 sectors = rdev->sb_start;
1544         if (sectors < le64_to_cpu(sb->data_size))
1545                 return -EINVAL;
1546         rdev->sectors = le64_to_cpu(sb->data_size);
1547         return ret;
1548 }
1549
1550 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1551 {
1552         struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1553         __u64 ev1 = le64_to_cpu(sb->events);
1554
1555         rdev->raid_disk = -1;
1556         clear_bit(Faulty, &rdev->flags);
1557         clear_bit(In_sync, &rdev->flags);
1558         clear_bit(Bitmap_sync, &rdev->flags);
1559         clear_bit(WriteMostly, &rdev->flags);
1560
1561         if (mddev->raid_disks == 0) {
1562                 mddev->major_version = 1;
1563                 mddev->patch_version = 0;
1564                 mddev->external = 0;
1565                 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1566                 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1567                 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1568                 mddev->level = le32_to_cpu(sb->level);
1569                 mddev->clevel[0] = 0;
1570                 mddev->layout = le32_to_cpu(sb->layout);
1571                 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1572                 mddev->dev_sectors = le64_to_cpu(sb->size);
1573                 mddev->events = ev1;
1574                 mddev->bitmap_info.offset = 0;
1575                 mddev->bitmap_info.space = 0;
1576                 /* Default location for bitmap is 1K after superblock
1577                  * using 3K - total of 4K
1578                  */
1579                 mddev->bitmap_info.default_offset = 1024 >> 9;
1580                 mddev->bitmap_info.default_space = (4096-1024) >> 9;
1581                 mddev->reshape_backwards = 0;
1582
1583                 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1584                 memcpy(mddev->uuid, sb->set_uuid, 16);
1585
1586                 mddev->max_disks =  (4096-256)/2;
1587
1588                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1589                     mddev->bitmap_info.file == NULL) {
1590                         mddev->bitmap_info.offset =
1591                                 (__s32)le32_to_cpu(sb->bitmap_offset);
1592                         /* Metadata doesn't record how much space is available.
1593                          * For 1.0, we assume we can use up to the superblock
1594                          * if before, else to 4K beyond superblock.
1595                          * For others, assume no change is possible.
1596                          */
1597                         if (mddev->minor_version > 0)
1598                                 mddev->bitmap_info.space = 0;
1599                         else if (mddev->bitmap_info.offset > 0)
1600                                 mddev->bitmap_info.space =
1601                                         8 - mddev->bitmap_info.offset;
1602                         else
1603                                 mddev->bitmap_info.space =
1604                                         -mddev->bitmap_info.offset;
1605                 }
1606
1607                 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1608                         mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1609                         mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1610                         mddev->new_level = le32_to_cpu(sb->new_level);
1611                         mddev->new_layout = le32_to_cpu(sb->new_layout);
1612                         mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1613                         if (mddev->delta_disks < 0 ||
1614                             (mddev->delta_disks == 0 &&
1615                              (le32_to_cpu(sb->feature_map)
1616                               & MD_FEATURE_RESHAPE_BACKWARDS)))
1617                                 mddev->reshape_backwards = 1;
1618                 } else {
1619                         mddev->reshape_position = MaxSector;
1620                         mddev->delta_disks = 0;
1621                         mddev->new_level = mddev->level;
1622                         mddev->new_layout = mddev->layout;
1623                         mddev->new_chunk_sectors = mddev->chunk_sectors;
1624                 }
1625
1626         } else if (mddev->pers == NULL) {
1627                 /* Insist of good event counter while assembling, except for
1628                  * spares (which don't need an event count) */
1629                 ++ev1;
1630                 if (rdev->desc_nr >= 0 &&
1631                     rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1632                     le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1633                         if (ev1 < mddev->events)
1634                                 return -EINVAL;
1635         } else if (mddev->bitmap) {
1636                 /* If adding to array with a bitmap, then we can accept an
1637                  * older device, but not too old.
1638                  */
1639                 if (ev1 < mddev->bitmap->events_cleared)
1640                         return 0;
1641                 if (ev1 < mddev->events)
1642                         set_bit(Bitmap_sync, &rdev->flags);
1643         } else {
1644                 if (ev1 < mddev->events)
1645                         /* just a hot-add of a new device, leave raid_disk at -1 */
1646                         return 0;
1647         }
1648         if (mddev->level != LEVEL_MULTIPATH) {
1649                 int role;
1650                 if (rdev->desc_nr < 0 ||
1651                     rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1652                         role = 0xffff;
1653                         rdev->desc_nr = -1;
1654                 } else
1655                         role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1656                 switch(role) {
1657                 case 0xffff: /* spare */
1658                         break;
1659                 case 0xfffe: /* faulty */
1660                         set_bit(Faulty, &rdev->flags);
1661                         break;
1662                 default:
1663                         rdev->saved_raid_disk = role;
1664                         if ((le32_to_cpu(sb->feature_map) &
1665                              MD_FEATURE_RECOVERY_OFFSET)) {
1666                                 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1667                                 if (!(le32_to_cpu(sb->feature_map) &
1668                                       MD_FEATURE_RECOVERY_BITMAP))
1669                                         rdev->saved_raid_disk = -1;
1670                         } else
1671                                 set_bit(In_sync, &rdev->flags);
1672                         rdev->raid_disk = role;
1673                         break;
1674                 }
1675                 if (sb->devflags & WriteMostly1)
1676                         set_bit(WriteMostly, &rdev->flags);
1677                 if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
1678                         set_bit(Replacement, &rdev->flags);
1679         } else /* MULTIPATH are always insync */
1680                 set_bit(In_sync, &rdev->flags);
1681
1682         return 0;
1683 }
1684
1685 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1686 {
1687         struct mdp_superblock_1 *sb;
1688         struct md_rdev *rdev2;
1689         int max_dev, i;
1690         /* make rdev->sb match mddev and rdev data. */
1691
1692         sb = page_address(rdev->sb_page);
1693
1694         sb->feature_map = 0;
1695         sb->pad0 = 0;
1696         sb->recovery_offset = cpu_to_le64(0);
1697         memset(sb->pad3, 0, sizeof(sb->pad3));
1698
1699         sb->utime = cpu_to_le64((__u64)mddev->utime);
1700         sb->events = cpu_to_le64(mddev->events);
1701         if (mddev->in_sync)
1702                 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1703         else
1704                 sb->resync_offset = cpu_to_le64(0);
1705
1706         sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1707
1708         sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1709         sb->size = cpu_to_le64(mddev->dev_sectors);
1710         sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1711         sb->level = cpu_to_le32(mddev->level);
1712         sb->layout = cpu_to_le32(mddev->layout);
1713
1714         if (test_bit(WriteMostly, &rdev->flags))
1715                 sb->devflags |= WriteMostly1;
1716         else
1717                 sb->devflags &= ~WriteMostly1;
1718         sb->data_offset = cpu_to_le64(rdev->data_offset);
1719         sb->data_size = cpu_to_le64(rdev->sectors);
1720
1721         if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1722                 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1723                 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1724         }
1725
1726         if (rdev->raid_disk >= 0 &&
1727             !test_bit(In_sync, &rdev->flags)) {
1728                 sb->feature_map |=
1729                         cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1730                 sb->recovery_offset =
1731                         cpu_to_le64(rdev->recovery_offset);
1732                 if (rdev->saved_raid_disk >= 0 && mddev->bitmap)
1733                         sb->feature_map |=
1734                                 cpu_to_le32(MD_FEATURE_RECOVERY_BITMAP);
1735         }
1736         if (test_bit(Replacement, &rdev->flags))
1737                 sb->feature_map |=
1738                         cpu_to_le32(MD_FEATURE_REPLACEMENT);
1739
1740         if (mddev->reshape_position != MaxSector) {
1741                 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1742                 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1743                 sb->new_layout = cpu_to_le32(mddev->new_layout);
1744                 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1745                 sb->new_level = cpu_to_le32(mddev->new_level);
1746                 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1747                 if (mddev->delta_disks == 0 &&
1748                     mddev->reshape_backwards)
1749                         sb->feature_map
1750                                 |= cpu_to_le32(MD_FEATURE_RESHAPE_BACKWARDS);
1751                 if (rdev->new_data_offset != rdev->data_offset) {
1752                         sb->feature_map
1753                                 |= cpu_to_le32(MD_FEATURE_NEW_OFFSET);
1754                         sb->new_offset = cpu_to_le32((__u32)(rdev->new_data_offset
1755                                                              - rdev->data_offset));
1756                 }
1757         }
1758
1759         if (rdev->badblocks.count == 0)
1760                 /* Nothing to do for bad blocks*/ ;
1761         else if (sb->bblog_offset == 0)
1762                 /* Cannot record bad blocks on this device */
1763                 md_error(mddev, rdev);
1764         else {
1765                 struct badblocks *bb = &rdev->badblocks;
1766                 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1767                 u64 *p = bb->page;
1768                 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1769                 if (bb->changed) {
1770                         unsigned seq;
1771
1772 retry:
1773                         seq = read_seqbegin(&bb->lock);
1774
1775                         memset(bbp, 0xff, PAGE_SIZE);
1776
1777                         for (i = 0 ; i < bb->count ; i++) {
1778                                 u64 internal_bb = p[i];
1779                                 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1780                                                 | BB_LEN(internal_bb));
1781                                 bbp[i] = cpu_to_le64(store_bb);
1782                         }
1783                         bb->changed = 0;
1784                         if (read_seqretry(&bb->lock, seq))
1785                                 goto retry;
1786
1787                         bb->sector = (rdev->sb_start +
1788                                       (int)le32_to_cpu(sb->bblog_offset));
1789                         bb->size = le16_to_cpu(sb->bblog_size);
1790                 }
1791         }
1792
1793         max_dev = 0;
1794         rdev_for_each(rdev2, mddev)
1795                 if (rdev2->desc_nr+1 > max_dev)
1796                         max_dev = rdev2->desc_nr+1;
1797
1798         if (max_dev > le32_to_cpu(sb->max_dev)) {
1799                 int bmask;
1800                 sb->max_dev = cpu_to_le32(max_dev);
1801                 rdev->sb_size = max_dev * 2 + 256;
1802                 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1803                 if (rdev->sb_size & bmask)
1804                         rdev->sb_size = (rdev->sb_size | bmask) + 1;
1805         } else
1806                 max_dev = le32_to_cpu(sb->max_dev);
1807
1808         for (i=0; i<max_dev;i++)
1809                 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1810
1811         rdev_for_each(rdev2, mddev) {
1812                 i = rdev2->desc_nr;
1813                 if (test_bit(Faulty, &rdev2->flags))
1814                         sb->dev_roles[i] = cpu_to_le16(0xfffe);
1815                 else if (test_bit(In_sync, &rdev2->flags))
1816                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1817                 else if (rdev2->raid_disk >= 0)
1818                         sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1819                 else
1820                         sb->dev_roles[i] = cpu_to_le16(0xffff);
1821         }
1822
1823         sb->sb_csum = calc_sb_1_csum(sb);
1824 }
1825
1826 static unsigned long long
1827 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1828 {
1829         struct mdp_superblock_1 *sb;
1830         sector_t max_sectors;
1831         if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1832                 return 0; /* component must fit device */
1833         if (rdev->data_offset != rdev->new_data_offset)
1834                 return 0; /* too confusing */
1835         if (rdev->sb_start < rdev->data_offset) {
1836                 /* minor versions 1 and 2; superblock before data */
1837                 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1838                 max_sectors -= rdev->data_offset;
1839                 if (!num_sectors || num_sectors > max_sectors)
1840                         num_sectors = max_sectors;
1841         } else if (rdev->mddev->bitmap_info.offset) {
1842                 /* minor version 0 with bitmap we can't move */
1843                 return 0;
1844         } else {
1845                 /* minor version 0; superblock after data */
1846                 sector_t sb_start;
1847                 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1848                 sb_start &= ~(sector_t)(4*2 - 1);
1849                 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1850                 if (!num_sectors || num_sectors > max_sectors)
1851                         num_sectors = max_sectors;
1852                 rdev->sb_start = sb_start;
1853         }
1854         sb = page_address(rdev->sb_page);
1855         sb->data_size = cpu_to_le64(num_sectors);
1856         sb->super_offset = rdev->sb_start;
1857         sb->sb_csum = calc_sb_1_csum(sb);
1858         md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1859                        rdev->sb_page);
1860         md_super_wait(rdev->mddev);
1861         return num_sectors;
1862
1863 }
1864
1865 static int
1866 super_1_allow_new_offset(struct md_rdev *rdev,
1867                          unsigned long long new_offset)
1868 {
1869         /* All necessary checks on new >= old have been done */
1870         struct bitmap *bitmap;
1871         if (new_offset >= rdev->data_offset)
1872                 return 1;
1873
1874         /* with 1.0 metadata, there is no metadata to tread on
1875          * so we can always move back */
1876         if (rdev->mddev->minor_version == 0)
1877                 return 1;
1878
1879         /* otherwise we must be sure not to step on
1880          * any metadata, so stay:
1881          * 36K beyond start of superblock
1882          * beyond end of badblocks
1883          * beyond write-intent bitmap
1884          */
1885         if (rdev->sb_start + (32+4)*2 > new_offset)
1886                 return 0;
1887         bitmap = rdev->mddev->bitmap;
1888         if (bitmap && !rdev->mddev->bitmap_info.file &&
1889             rdev->sb_start + rdev->mddev->bitmap_info.offset +
1890             bitmap->storage.file_pages * (PAGE_SIZE>>9) > new_offset)
1891                 return 0;
1892         if (rdev->badblocks.sector + rdev->badblocks.size > new_offset)
1893                 return 0;
1894
1895         return 1;
1896 }
1897
1898 static struct super_type super_types[] = {
1899         [0] = {
1900                 .name   = "0.90.0",
1901                 .owner  = THIS_MODULE,
1902                 .load_super         = super_90_load,
1903                 .validate_super     = super_90_validate,
1904                 .sync_super         = super_90_sync,
1905                 .rdev_size_change   = super_90_rdev_size_change,
1906                 .allow_new_offset   = super_90_allow_new_offset,
1907         },
1908         [1] = {
1909                 .name   = "md-1",
1910                 .owner  = THIS_MODULE,
1911                 .load_super         = super_1_load,
1912                 .validate_super     = super_1_validate,
1913                 .sync_super         = super_1_sync,
1914                 .rdev_size_change   = super_1_rdev_size_change,
1915                 .allow_new_offset   = super_1_allow_new_offset,
1916         },
1917 };
1918
1919 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1920 {
1921         if (mddev->sync_super) {
1922                 mddev->sync_super(mddev, rdev);
1923                 return;
1924         }
1925
1926         BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1927
1928         super_types[mddev->major_version].sync_super(mddev, rdev);
1929 }
1930
1931 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1932 {
1933         struct md_rdev *rdev, *rdev2;
1934
1935         rcu_read_lock();
1936         rdev_for_each_rcu(rdev, mddev1)
1937                 rdev_for_each_rcu(rdev2, mddev2)
1938                         if (rdev->bdev->bd_contains ==
1939                             rdev2->bdev->bd_contains) {
1940                                 rcu_read_unlock();
1941                                 return 1;
1942                         }
1943         rcu_read_unlock();
1944         return 0;
1945 }
1946
1947 static LIST_HEAD(pending_raid_disks);
1948
1949 /*
1950  * Try to register data integrity profile for an mddev
1951  *
1952  * This is called when an array is started and after a disk has been kicked
1953  * from the array. It only succeeds if all working and active component devices
1954  * are integrity capable with matching profiles.
1955  */
1956 int md_integrity_register(struct mddev *mddev)
1957 {
1958         struct md_rdev *rdev, *reference = NULL;
1959
1960         if (list_empty(&mddev->disks))
1961                 return 0; /* nothing to do */
1962         if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1963                 return 0; /* shouldn't register, or already is */
1964         rdev_for_each(rdev, mddev) {
1965                 /* skip spares and non-functional disks */
1966                 if (test_bit(Faulty, &rdev->flags))
1967                         continue;
1968                 if (rdev->raid_disk < 0)
1969                         continue;
1970                 if (!reference) {
1971                         /* Use the first rdev as the reference */
1972                         reference = rdev;
1973                         continue;
1974                 }
1975                 /* does this rdev's profile match the reference profile? */
1976                 if (blk_integrity_compare(reference->bdev->bd_disk,
1977                                 rdev->bdev->bd_disk) < 0)
1978                         return -EINVAL;
1979         }
1980         if (!reference || !bdev_get_integrity(reference->bdev))
1981                 return 0;
1982         /*
1983          * All component devices are integrity capable and have matching
1984          * profiles, register the common profile for the md device.
1985          */
1986         if (blk_integrity_register(mddev->gendisk,
1987                         bdev_get_integrity(reference->bdev)) != 0) {
1988                 printk(KERN_ERR "md: failed to register integrity for %s\n",
1989                         mdname(mddev));
1990                 return -EINVAL;
1991         }
1992         printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1993         if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1994                 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1995                        mdname(mddev));
1996                 return -EINVAL;
1997         }
1998         return 0;
1999 }
2000 EXPORT_SYMBOL(md_integrity_register);
2001
2002 /* Disable data integrity if non-capable/non-matching disk is being added */
2003 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
2004 {
2005         struct blk_integrity *bi_rdev;
2006         struct blk_integrity *bi_mddev;
2007
2008         if (!mddev->gendisk)
2009                 return;
2010
2011         bi_rdev = bdev_get_integrity(rdev->bdev);
2012         bi_mddev = blk_get_integrity(mddev->gendisk);
2013
2014         if (!bi_mddev) /* nothing to do */
2015                 return;
2016         if (rdev->raid_disk < 0) /* skip spares */
2017                 return;
2018         if (bi_rdev && blk_integrity_compare(mddev->gendisk,
2019                                              rdev->bdev->bd_disk) >= 0)
2020                 return;
2021         printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
2022         blk_integrity_unregister(mddev->gendisk);
2023 }
2024 EXPORT_SYMBOL(md_integrity_add_rdev);
2025
2026 static int bind_rdev_to_array(struct md_rdev *rdev, struct mddev *mddev)
2027 {
2028         char b[BDEVNAME_SIZE];
2029         struct kobject *ko;
2030         int err;
2031
2032         /* prevent duplicates */
2033         if (find_rdev(mddev, rdev->bdev->bd_dev))
2034                 return -EEXIST;
2035
2036         /* make sure rdev->sectors exceeds mddev->dev_sectors */
2037         if (rdev->sectors && (mddev->dev_sectors == 0 ||
2038                         rdev->sectors < mddev->dev_sectors)) {
2039                 if (mddev->pers) {
2040                         /* Cannot change size, so fail
2041                          * If mddev->level <= 0, then we don't care
2042                          * about aligning sizes (e.g. linear)
2043                          */
2044                         if (mddev->level > 0)
2045                                 return -ENOSPC;
2046                 } else
2047                         mddev->dev_sectors = rdev->sectors;
2048         }
2049
2050         /* Verify rdev->desc_nr is unique.
2051          * If it is -1, assign a free number, else
2052          * check number is not in use
2053          */
2054         rcu_read_lock();
2055         if (rdev->desc_nr < 0) {
2056                 int choice = 0;
2057                 if (mddev->pers)
2058                         choice = mddev->raid_disks;
2059                 while (md_find_rdev_nr_rcu(mddev, choice))
2060                         choice++;
2061                 rdev->desc_nr = choice;
2062         } else {
2063                 if (md_find_rdev_nr_rcu(mddev, rdev->desc_nr)) {
2064                         rcu_read_unlock();
2065                         return -EBUSY;
2066                 }
2067         }
2068         rcu_read_unlock();
2069         if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2070                 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2071                        mdname(mddev), mddev->max_disks);
2072                 return -EBUSY;
2073         }
2074         bdevname(rdev->bdev,b);
2075         strreplace(b, '/', '!');
2076
2077         rdev->mddev = mddev;
2078         printk(KERN_INFO "md: bind<%s>\n", b);
2079
2080         if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2081                 goto fail;
2082
2083         ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2084         if (sysfs_create_link(&rdev->kobj, ko, "block"))
2085                 /* failure here is OK */;
2086         rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2087
2088         list_add_rcu(&rdev->same_set, &mddev->disks);
2089         bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2090
2091         /* May as well allow recovery to be retried once */
2092         mddev->recovery_disabled++;
2093
2094         return 0;
2095
2096  fail:
2097         printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2098                b, mdname(mddev));
2099         return err;
2100 }
2101
2102 static void md_delayed_delete(struct work_struct *ws)
2103 {
2104         struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2105         kobject_del(&rdev->kobj);
2106         kobject_put(&rdev->kobj);
2107 }
2108
2109 static void unbind_rdev_from_array(struct md_rdev *rdev)
2110 {
2111         char b[BDEVNAME_SIZE];
2112
2113         bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2114         list_del_rcu(&rdev->same_set);
2115         printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2116         rdev->mddev = NULL;
2117         sysfs_remove_link(&rdev->kobj, "block");
2118         sysfs_put(rdev->sysfs_state);
2119         rdev->sysfs_state = NULL;
2120         rdev->badblocks.count = 0;
2121         /* We need to delay this, otherwise we can deadlock when
2122          * writing to 'remove' to "dev/state".  We also need
2123          * to delay it due to rcu usage.
2124          */
2125         synchronize_rcu();
2126         INIT_WORK(&rdev->del_work, md_delayed_delete);
2127         kobject_get(&rdev->kobj);
2128         queue_work(md_misc_wq, &rdev->del_work);
2129 }
2130
2131 /*
2132  * prevent the device from being mounted, repartitioned or
2133  * otherwise reused by a RAID array (or any other kernel
2134  * subsystem), by bd_claiming the device.
2135  */
2136 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2137 {
2138         int err = 0;
2139         struct block_device *bdev;
2140         char b[BDEVNAME_SIZE];
2141
2142         bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2143                                  shared ? (struct md_rdev *)lock_rdev : rdev);
2144         if (IS_ERR(bdev)) {
2145                 printk(KERN_ERR "md: could not open %s.\n",
2146                         __bdevname(dev, b));
2147                 return PTR_ERR(bdev);
2148         }
2149         rdev->bdev = bdev;
2150         return err;
2151 }
2152
2153 static void unlock_rdev(struct md_rdev *rdev)
2154 {
2155         struct block_device *bdev = rdev->bdev;
2156         rdev->bdev = NULL;
2157         blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2158 }
2159
2160 void md_autodetect_dev(dev_t dev);
2161
2162 static void export_rdev(struct md_rdev *rdev)
2163 {
2164         char b[BDEVNAME_SIZE];
2165
2166         printk(KERN_INFO "md: export_rdev(%s)\n",
2167                 bdevname(rdev->bdev,b));
2168         md_rdev_clear(rdev);
2169 #ifndef MODULE
2170         if (test_bit(AutoDetected, &rdev->flags))
2171                 md_autodetect_dev(rdev->bdev->bd_dev);
2172 #endif
2173         unlock_rdev(rdev);
2174         kobject_put(&rdev->kobj);
2175 }
2176
2177 void md_kick_rdev_from_array(struct md_rdev *rdev)
2178 {
2179         unbind_rdev_from_array(rdev);
2180         export_rdev(rdev);
2181 }
2182 EXPORT_SYMBOL_GPL(md_kick_rdev_from_array);
2183
2184 static void export_array(struct mddev *mddev)
2185 {
2186         struct md_rdev *rdev;
2187
2188         while (!list_empty(&mddev->disks)) {
2189                 rdev = list_first_entry(&mddev->disks, struct md_rdev,
2190                                         same_set);
2191                 md_kick_rdev_from_array(rdev);
2192         }
2193         mddev->raid_disks = 0;
2194         mddev->major_version = 0;
2195 }
2196
2197 static void sync_sbs(struct mddev *mddev, int nospares)
2198 {
2199         /* Update each superblock (in-memory image), but
2200          * if we are allowed to, skip spares which already
2201          * have the right event counter, or have one earlier
2202          * (which would mean they aren't being marked as dirty
2203          * with the rest of the array)
2204          */
2205         struct md_rdev *rdev;
2206         rdev_for_each(rdev, mddev) {
2207                 if (rdev->sb_events == mddev->events ||
2208                     (nospares &&
2209                      rdev->raid_disk < 0 &&
2210                      rdev->sb_events+1 == mddev->events)) {
2211                         /* Don't update this superblock */
2212                         rdev->sb_loaded = 2;
2213                 } else {
2214                         sync_super(mddev, rdev);
2215                         rdev->sb_loaded = 1;
2216                 }
2217         }
2218 }
2219
2220 void md_update_sb(struct mddev *mddev, int force_change)
2221 {
2222         struct md_rdev *rdev;
2223         int sync_req;
2224         int nospares = 0;
2225         int any_badblocks_changed = 0;
2226
2227         if (mddev->ro) {
2228                 if (force_change)
2229                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2230                 return;
2231         }
2232 repeat:
2233         /* First make sure individual recovery_offsets are correct */
2234         rdev_for_each(rdev, mddev) {
2235                 if (rdev->raid_disk >= 0 &&
2236                     mddev->delta_disks >= 0 &&
2237                     !test_bit(In_sync, &rdev->flags) &&
2238                     mddev->curr_resync_completed > rdev->recovery_offset)
2239                                 rdev->recovery_offset = mddev->curr_resync_completed;
2240
2241         }
2242         if (!mddev->persistent) {
2243                 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2244                 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2245                 if (!mddev->external) {
2246                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2247                         rdev_for_each(rdev, mddev) {
2248                                 if (rdev->badblocks.changed) {
2249                                         rdev->badblocks.changed = 0;
2250                                         md_ack_all_badblocks(&rdev->badblocks);
2251                                         md_error(mddev, rdev);
2252                                 }
2253                                 clear_bit(Blocked, &rdev->flags);
2254                                 clear_bit(BlockedBadBlocks, &rdev->flags);
2255                                 wake_up(&rdev->blocked_wait);
2256                         }
2257                 }
2258                 wake_up(&mddev->sb_wait);
2259                 return;
2260         }
2261
2262         spin_lock(&mddev->lock);
2263
2264         mddev->utime = get_seconds();
2265
2266         if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2267                 force_change = 1;
2268         if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2269                 /* just a clean<-> dirty transition, possibly leave spares alone,
2270                  * though if events isn't the right even/odd, we will have to do
2271                  * spares after all
2272                  */
2273                 nospares = 1;
2274         if (force_change)
2275                 nospares = 0;
2276         if (mddev->degraded)
2277                 /* If the array is degraded, then skipping spares is both
2278                  * dangerous and fairly pointless.
2279                  * Dangerous because a device that was removed from the array
2280                  * might have a event_count that still looks up-to-date,
2281                  * so it can be re-added without a resync.
2282                  * Pointless because if there are any spares to skip,
2283                  * then a recovery will happen and soon that array won't
2284                  * be degraded any more and the spare can go back to sleep then.
2285                  */
2286                 nospares = 0;
2287
2288         sync_req = mddev->in_sync;
2289
2290         /* If this is just a dirty<->clean transition, and the array is clean
2291          * and 'events' is odd, we can roll back to the previous clean state */
2292         if (nospares
2293             && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2294             && mddev->can_decrease_events
2295             && mddev->events != 1) {
2296                 mddev->events--;
2297                 mddev->can_decrease_events = 0;
2298         } else {
2299                 /* otherwise we have to go forward and ... */
2300                 mddev->events ++;
2301                 mddev->can_decrease_events = nospares;
2302         }
2303
2304         /*
2305          * This 64-bit counter should never wrap.
2306          * Either we are in around ~1 trillion A.C., assuming
2307          * 1 reboot per second, or we have a bug...
2308          */
2309         WARN_ON(mddev->events == 0);
2310
2311         rdev_for_each(rdev, mddev) {
2312                 if (rdev->badblocks.changed)
2313                         any_badblocks_changed++;
2314                 if (test_bit(Faulty, &rdev->flags))
2315                         set_bit(FaultRecorded, &rdev->flags);
2316         }
2317
2318         sync_sbs(mddev, nospares);
2319         spin_unlock(&mddev->lock);
2320
2321         pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2322                  mdname(mddev), mddev->in_sync);
2323
2324         bitmap_update_sb(mddev->bitmap);
2325         rdev_for_each(rdev, mddev) {
2326                 char b[BDEVNAME_SIZE];
2327
2328                 if (rdev->sb_loaded != 1)
2329                         continue; /* no noise on spare devices */
2330
2331                 if (!test_bit(Faulty, &rdev->flags)) {
2332                         md_super_write(mddev,rdev,
2333                                        rdev->sb_start, rdev->sb_size,
2334                                        rdev->sb_page);
2335                         pr_debug("md: (write) %s's sb offset: %llu\n",
2336                                  bdevname(rdev->bdev, b),
2337                                  (unsigned long long)rdev->sb_start);
2338                         rdev->sb_events = mddev->events;
2339                         if (rdev->badblocks.size) {
2340                                 md_super_write(mddev, rdev,
2341                                                rdev->badblocks.sector,
2342                                                rdev->badblocks.size << 9,
2343                                                rdev->bb_page);
2344                                 rdev->badblocks.size = 0;
2345                         }
2346
2347                 } else
2348                         pr_debug("md: %s (skipping faulty)\n",
2349                                  bdevname(rdev->bdev, b));
2350
2351                 if (mddev->level == LEVEL_MULTIPATH)
2352                         /* only need to write one superblock... */
2353                         break;
2354         }
2355         md_super_wait(mddev);
2356         /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2357
2358         spin_lock(&mddev->lock);
2359         if (mddev->in_sync != sync_req ||
2360             test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2361                 /* have to write it out again */
2362                 spin_unlock(&mddev->lock);
2363                 goto repeat;
2364         }
2365         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2366         spin_unlock(&mddev->lock);
2367         wake_up(&mddev->sb_wait);
2368         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2369                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2370
2371         rdev_for_each(rdev, mddev) {
2372                 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2373                         clear_bit(Blocked, &rdev->flags);
2374
2375                 if (any_badblocks_changed)
2376                         md_ack_all_badblocks(&rdev->badblocks);
2377                 clear_bit(BlockedBadBlocks, &rdev->flags);
2378                 wake_up(&rdev->blocked_wait);
2379         }
2380 }
2381 EXPORT_SYMBOL(md_update_sb);
2382
2383 static int add_bound_rdev(struct md_rdev *rdev)
2384 {
2385         struct mddev *mddev = rdev->mddev;
2386         int err = 0;
2387
2388         if (!mddev->pers->hot_remove_disk) {
2389                 /* If there is hot_add_disk but no hot_remove_disk
2390                  * then added disks for geometry changes,
2391                  * and should be added immediately.
2392                  */
2393                 super_types[mddev->major_version].
2394                         validate_super(mddev, rdev);
2395                 err = mddev->pers->hot_add_disk(mddev, rdev);
2396                 if (err) {
2397                         unbind_rdev_from_array(rdev);
2398                         export_rdev(rdev);
2399                         return err;
2400                 }
2401         }
2402         sysfs_notify_dirent_safe(rdev->sysfs_state);
2403
2404         set_bit(MD_CHANGE_DEVS, &mddev->flags);
2405         if (mddev->degraded)
2406                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
2407         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2408         md_new_event(mddev);
2409         md_wakeup_thread(mddev->thread);
2410         return 0;
2411 }
2412
2413 /* words written to sysfs files may, or may not, be \n terminated.
2414  * We want to accept with case. For this we use cmd_match.
2415  */
2416 static int cmd_match(const char *cmd, const char *str)
2417 {
2418         /* See if cmd, written into a sysfs file, matches
2419          * str.  They must either be the same, or cmd can
2420          * have a trailing newline
2421          */
2422         while (*cmd && *str && *cmd == *str) {
2423                 cmd++;
2424                 str++;
2425         }
2426         if (*cmd == '\n')
2427                 cmd++;
2428         if (*str || *cmd)
2429                 return 0;
2430         return 1;
2431 }
2432
2433 struct rdev_sysfs_entry {
2434         struct attribute attr;
2435         ssize_t (*show)(struct md_rdev *, char *);
2436         ssize_t (*store)(struct md_rdev *, const char *, size_t);
2437 };
2438
2439 static ssize_t
2440 state_show(struct md_rdev *rdev, char *page)
2441 {
2442         char *sep = "";
2443         size_t len = 0;
2444         unsigned long flags = ACCESS_ONCE(rdev->flags);
2445
2446         if (test_bit(Faulty, &flags) ||
2447             rdev->badblocks.unacked_exist) {
2448                 len+= sprintf(page+len, "%sfaulty",sep);
2449                 sep = ",";
2450         }
2451         if (test_bit(In_sync, &flags)) {
2452                 len += sprintf(page+len, "%sin_sync",sep);
2453                 sep = ",";
2454         }
2455         if (test_bit(WriteMostly, &flags)) {
2456                 len += sprintf(page+len, "%swrite_mostly",sep);
2457                 sep = ",";
2458         }
2459         if (test_bit(Blocked, &flags) ||
2460             (rdev->badblocks.unacked_exist
2461              && !test_bit(Faulty, &flags))) {
2462                 len += sprintf(page+len, "%sblocked", sep);
2463                 sep = ",";
2464         }
2465         if (!test_bit(Faulty, &flags) &&
2466             !test_bit(In_sync, &flags)) {
2467                 len += sprintf(page+len, "%sspare", sep);
2468                 sep = ",";
2469         }
2470         if (test_bit(WriteErrorSeen, &flags)) {
2471                 len += sprintf(page+len, "%swrite_error", sep);
2472                 sep = ",";
2473         }
2474         if (test_bit(WantReplacement, &flags)) {
2475                 len += sprintf(page+len, "%swant_replacement", sep);
2476                 sep = ",";
2477         }
2478         if (test_bit(Replacement, &flags)) {
2479                 len += sprintf(page+len, "%sreplacement", sep);
2480                 sep = ",";
2481         }
2482
2483         return len+sprintf(page+len, "\n");
2484 }
2485
2486 static ssize_t
2487 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2488 {
2489         /* can write
2490          *  faulty  - simulates an error
2491          *  remove  - disconnects the device
2492          *  writemostly - sets write_mostly
2493          *  -writemostly - clears write_mostly
2494          *  blocked - sets the Blocked flags
2495          *  -blocked - clears the Blocked and possibly simulates an error
2496          *  insync - sets Insync providing device isn't active
2497          *  -insync - clear Insync for a device with a slot assigned,
2498          *            so that it gets rebuilt based on bitmap
2499          *  write_error - sets WriteErrorSeen
2500          *  -write_error - clears WriteErrorSeen
2501          */
2502         int err = -EINVAL;
2503         if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2504                 md_error(rdev->mddev, rdev);
2505                 if (test_bit(Faulty, &rdev->flags))
2506                         err = 0;
2507                 else
2508                         err = -EBUSY;
2509         } else if (cmd_match(buf, "remove")) {
2510                 if (rdev->raid_disk >= 0)
2511                         err = -EBUSY;
2512                 else {
2513                         struct mddev *mddev = rdev->mddev;
2514                         if (mddev_is_clustered(mddev))
2515                                 md_cluster_ops->remove_disk(mddev, rdev);
2516                         md_kick_rdev_from_array(rdev);
2517                         if (mddev_is_clustered(mddev))
2518                                 md_cluster_ops->metadata_update_start(mddev);
2519                         if (mddev->pers)
2520                                 md_update_sb(mddev, 1);
2521                         md_new_event(mddev);
2522                         if (mddev_is_clustered(mddev))
2523                                 md_cluster_ops->metadata_update_finish(mddev);
2524                         err = 0;
2525                 }
2526         } else if (cmd_match(buf, "writemostly")) {
2527                 set_bit(WriteMostly, &rdev->flags);
2528                 err = 0;
2529         } else if (cmd_match(buf, "-writemostly")) {
2530                 clear_bit(WriteMostly, &rdev->flags);
2531                 err = 0;
2532         } else if (cmd_match(buf, "blocked")) {
2533                 set_bit(Blocked, &rdev->flags);
2534                 err = 0;
2535         } else if (cmd_match(buf, "-blocked")) {
2536                 if (!test_bit(Faulty, &rdev->flags) &&
2537                     rdev->badblocks.unacked_exist) {
2538                         /* metadata handler doesn't understand badblocks,
2539                          * so we need to fail the device
2540                          */
2541                         md_error(rdev->mddev, rdev);
2542                 }
2543                 clear_bit(Blocked, &rdev->flags);
2544                 clear_bit(BlockedBadBlocks, &rdev->flags);
2545                 wake_up(&rdev->blocked_wait);
2546                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2547                 md_wakeup_thread(rdev->mddev->thread);
2548
2549                 err = 0;
2550         } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2551                 set_bit(In_sync, &rdev->flags);
2552                 err = 0;
2553         } else if (cmd_match(buf, "-insync") && rdev->raid_disk >= 0) {
2554                 if (rdev->mddev->pers == NULL) {
2555                         clear_bit(In_sync, &rdev->flags);
2556                         rdev->saved_raid_disk = rdev->raid_disk;
2557                         rdev->raid_disk = -1;
2558                         err = 0;
2559                 }
2560         } else if (cmd_match(buf, "write_error")) {
2561                 set_bit(WriteErrorSeen, &rdev->flags);
2562                 err = 0;
2563         } else if (cmd_match(buf, "-write_error")) {
2564                 clear_bit(WriteErrorSeen, &rdev->flags);
2565                 err = 0;
2566         } else if (cmd_match(buf, "want_replacement")) {
2567                 /* Any non-spare device that is not a replacement can
2568                  * become want_replacement at any time, but we then need to
2569                  * check if recovery is needed.
2570                  */
2571                 if (rdev->raid_disk >= 0 &&
2572                     !test_bit(Replacement, &rdev->flags))
2573                         set_bit(WantReplacement, &rdev->flags);
2574                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2575                 md_wakeup_thread(rdev->mddev->thread);
2576                 err = 0;
2577         } else if (cmd_match(buf, "-want_replacement")) {
2578                 /* Clearing 'want_replacement' is always allowed.
2579                  * Once replacements starts it is too late though.
2580                  */
2581                 err = 0;
2582                 clear_bit(WantReplacement, &rdev->flags);
2583         } else if (cmd_match(buf, "replacement")) {
2584                 /* Can only set a device as a replacement when array has not
2585                  * yet been started.  Once running, replacement is automatic
2586                  * from spares, or by assigning 'slot'.
2587                  */
2588                 if (rdev->mddev->pers)
2589                         err = -EBUSY;
2590                 else {
2591                         set_bit(Replacement, &rdev->flags);
2592                         err = 0;
2593                 }
2594         } else if (cmd_match(buf, "-replacement")) {
2595                 /* Similarly, can only clear Replacement before start */
2596                 if (rdev->mddev->pers)
2597                         err = -EBUSY;
2598                 else {
2599                         clear_bit(Replacement, &rdev->flags);
2600                         err = 0;
2601                 }
2602         } else if (cmd_match(buf, "re-add")) {
2603                 if (test_bit(Faulty, &rdev->flags) && (rdev->raid_disk == -1)) {
2604                         /* clear_bit is performed _after_ all the devices
2605                          * have their local Faulty bit cleared. If any writes
2606                          * happen in the meantime in the local node, they
2607                          * will land in the local bitmap, which will be synced
2608                          * by this node eventually
2609                          */
2610                         if (!mddev_is_clustered(rdev->mddev) ||
2611                             (err = md_cluster_ops->gather_bitmaps(rdev)) == 0) {
2612                                 clear_bit(Faulty, &rdev->flags);
2613                                 err = add_bound_rdev(rdev);
2614                         }
2615                 } else
2616                         err = -EBUSY;
2617         }
2618         if (!err)
2619                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2620         return err ? err : len;
2621 }
2622 static struct rdev_sysfs_entry rdev_state =
2623 __ATTR_PREALLOC(state, S_IRUGO|S_IWUSR, state_show, state_store);
2624
2625 static ssize_t
2626 errors_show(struct md_rdev *rdev, char *page)
2627 {
2628         return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2629 }
2630
2631 static ssize_t
2632 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2633 {
2634         unsigned int n;
2635         int rv;
2636
2637         rv = kstrtouint(buf, 10, &n);
2638         if (rv < 0)
2639                 return rv;
2640         atomic_set(&rdev->corrected_errors, n);
2641         return len;
2642 }
2643 static struct rdev_sysfs_entry rdev_errors =
2644 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2645
2646 static ssize_t
2647 slot_show(struct md_rdev *rdev, char *page)
2648 {
2649         if (rdev->raid_disk < 0)
2650                 return sprintf(page, "none\n");
2651         else
2652                 return sprintf(page, "%d\n", rdev->raid_disk);
2653 }
2654
2655 static ssize_t
2656 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2657 {
2658         int slot;
2659         int err;
2660
2661         if (strncmp(buf, "none", 4)==0)
2662                 slot = -1;
2663         else {
2664                 err = kstrtouint(buf, 10, (unsigned int *)&slot);
2665                 if (err < 0)
2666                         return err;
2667         }
2668         if (rdev->mddev->pers && slot == -1) {
2669                 /* Setting 'slot' on an active array requires also
2670                  * updating the 'rd%d' link, and communicating
2671                  * with the personality with ->hot_*_disk.
2672                  * For now we only support removing
2673                  * failed/spare devices.  This normally happens automatically,
2674                  * but not when the metadata is externally managed.
2675                  */
2676                 if (rdev->raid_disk == -1)
2677                         return -EEXIST;
2678                 /* personality does all needed checks */
2679                 if (rdev->mddev->pers->hot_remove_disk == NULL)
2680                         return -EINVAL;
2681                 clear_bit(Blocked, &rdev->flags);
2682                 remove_and_add_spares(rdev->mddev, rdev);
2683                 if (rdev->raid_disk >= 0)
2684                         return -EBUSY;
2685                 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2686                 md_wakeup_thread(rdev->mddev->thread);
2687         } else if (rdev->mddev->pers) {
2688                 /* Activating a spare .. or possibly reactivating
2689                  * if we ever get bitmaps working here.
2690                  */
2691
2692                 if (rdev->raid_disk != -1)
2693                         return -EBUSY;
2694
2695                 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2696                         return -EBUSY;
2697
2698                 if (rdev->mddev->pers->hot_add_disk == NULL)
2699                         return -EINVAL;
2700
2701                 if (slot >= rdev->mddev->raid_disks &&
2702                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2703                         return -ENOSPC;
2704
2705                 rdev->raid_disk = slot;
2706                 if (test_bit(In_sync, &rdev->flags))
2707                         rdev->saved_raid_disk = slot;
2708                 else
2709                         rdev->saved_raid_disk = -1;
2710                 clear_bit(In_sync, &rdev->flags);
2711                 clear_bit(Bitmap_sync, &rdev->flags);
2712                 err = rdev->mddev->pers->
2713                         hot_add_disk(rdev->mddev, rdev);
2714                 if (err) {
2715                         rdev->raid_disk = -1;
2716                         return err;
2717                 } else
2718                         sysfs_notify_dirent_safe(rdev->sysfs_state);
2719                 if (sysfs_link_rdev(rdev->mddev, rdev))
2720                         /* failure here is OK */;
2721                 /* don't wakeup anyone, leave that to userspace. */
2722         } else {
2723                 if (slot >= rdev->mddev->raid_disks &&
2724                     slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2725                         return -ENOSPC;
2726                 rdev->raid_disk = slot;
2727                 /* assume it is working */
2728                 clear_bit(Faulty, &rdev->flags);
2729                 clear_bit(WriteMostly, &rdev->flags);
2730                 set_bit(In_sync, &rdev->flags);
2731                 sysfs_notify_dirent_safe(rdev->sysfs_state);
2732         }
2733         return len;
2734 }
2735
2736 static struct rdev_sysfs_entry rdev_slot =
2737 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2738
2739 static ssize_t
2740 offset_show(struct md_rdev *rdev, char *page)
2741 {
2742         return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2743 }
2744
2745 static ssize_t
2746 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2747 {
2748         unsigned long long offset;
2749         if (kstrtoull(buf, 10, &offset) < 0)
2750                 return -EINVAL;
2751         if (rdev->mddev->pers && rdev->raid_disk >= 0)
2752                 return -EBUSY;
2753         if (rdev->sectors && rdev->mddev->external)
2754                 /* Must set offset before size, so overlap checks
2755                  * can be sane */
2756                 return -EBUSY;
2757         rdev->data_offset = offset;
2758         rdev->new_data_offset = offset;
2759         return len;
2760 }
2761
2762 static struct rdev_sysfs_entry rdev_offset =
2763 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2764
2765 static ssize_t new_offset_show(struct md_rdev *rdev, char *page)
2766 {
2767         return sprintf(page, "%llu\n",
2768                        (unsigned long long)rdev->new_data_offset);
2769 }
2770
2771 static ssize_t new_offset_store(struct md_rdev *rdev,
2772                                 const char *buf, size_t len)
2773 {
2774         unsigned long long new_offset;
2775         struct mddev *mddev = rdev->mddev;
2776
2777         if (kstrtoull(buf, 10, &new_offset) < 0)
2778                 return -EINVAL;
2779
2780         if (mddev->sync_thread ||
2781             test_bit(MD_RECOVERY_RUNNING,&mddev->recovery))
2782                 return -EBUSY;
2783         if (new_offset == rdev->data_offset)
2784                 /* reset is always permitted */
2785                 ;
2786         else if (new_offset > rdev->data_offset) {
2787                 /* must not push array size beyond rdev_sectors */
2788                 if (new_offset - rdev->data_offset
2789                     + mddev->dev_sectors > rdev->sectors)
2790                                 return -E2BIG;
2791         }
2792         /* Metadata worries about other space details. */
2793
2794         /* decreasing the offset is inconsistent with a backwards
2795          * reshape.
2796          */
2797         if (new_offset < rdev->data_offset &&
2798             mddev->reshape_backwards)
2799                 return -EINVAL;
2800         /* Increasing offset is inconsistent with forwards
2801          * reshape.  reshape_direction should be set to
2802          * 'backwards' first.
2803          */
2804         if (new_offset > rdev->data_offset &&
2805             !mddev->reshape_backwards)
2806                 return -EINVAL;
2807
2808         if (mddev->pers && mddev->persistent &&
2809             !super_types[mddev->major_version]
2810             .allow_new_offset(rdev, new_offset))
2811                 return -E2BIG;
2812         rdev->new_data_offset = new_offset;
2813         if (new_offset > rdev->data_offset)
2814                 mddev->reshape_backwards = 1;
2815         else if (new_offset < rdev->data_offset)
2816                 mddev->reshape_backwards = 0;
2817
2818         return len;
2819 }
2820 static struct rdev_sysfs_entry rdev_new_offset =
2821 __ATTR(new_offset, S_IRUGO|S_IWUSR, new_offset_show, new_offset_store);
2822
2823 static ssize_t
2824 rdev_size_show(struct md_rdev *rdev, char *page)
2825 {
2826         return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2827 }
2828
2829 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2830 {
2831         /* check if two start/length pairs overlap */
2832         if (s1+l1 <= s2)
2833                 return 0;
2834         if (s2+l2 <= s1)
2835                 return 0;
2836         return 1;
2837 }
2838
2839 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2840 {
2841         unsigned long long blocks;
2842         sector_t new;
2843
2844         if (kstrtoull(buf, 10, &blocks) < 0)
2845                 return -EINVAL;
2846
2847         if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2848                 return -EINVAL; /* sector conversion overflow */
2849
2850         new = blocks * 2;
2851         if (new != blocks * 2)
2852                 return -EINVAL; /* unsigned long long to sector_t overflow */
2853
2854         *sectors = new;
2855         return 0;
2856 }
2857
2858 static ssize_t
2859 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2860 {
2861         struct mddev *my_mddev = rdev->mddev;
2862         sector_t oldsectors = rdev->sectors;
2863         sector_t sectors;
2864
2865         if (strict_blocks_to_sectors(buf, &sectors) < 0)
2866                 return -EINVAL;
2867         if (rdev->data_offset != rdev->new_data_offset)
2868                 return -EINVAL; /* too confusing */
2869         if (my_mddev->pers && rdev->raid_disk >= 0) {
2870                 if (my_mddev->persistent) {
2871                         sectors = super_types[my_mddev->major_version].
2872                                 rdev_size_change(rdev, sectors);
2873                         if (!sectors)
2874                                 return -EBUSY;
2875                 } else if (!sectors)
2876                         sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2877                                 rdev->data_offset;
2878                 if (!my_mddev->pers->resize)
2879                         /* Cannot change size for RAID0 or Linear etc */
2880                         return -EINVAL;
2881         }
2882         if (sectors < my_mddev->dev_sectors)
2883                 return -EINVAL; /* component must fit device */
2884
2885         rdev->sectors = sectors;
2886         if (sectors > oldsectors && my_mddev->external) {
2887                 /* Need to check that all other rdevs with the same
2888                  * ->bdev do not overlap.  'rcu' is sufficient to walk
2889                  * the rdev lists safely.
2890                  * This check does not provide a hard guarantee, it
2891                  * just helps avoid dangerous mistakes.
2892                  */
2893                 struct mddev *mddev;
2894                 int overlap = 0;
2895                 struct list_head *tmp;
2896
2897                 rcu_read_lock();
2898                 for_each_mddev(mddev, tmp) {
2899                         struct md_rdev *rdev2;
2900
2901                         rdev_for_each(rdev2, mddev)
2902                                 if (rdev->bdev == rdev2->bdev &&
2903                                     rdev != rdev2 &&
2904                                     overlaps(rdev->data_offset, rdev->sectors,
2905                                              rdev2->data_offset,
2906                                              rdev2->sectors)) {
2907                                         overlap = 1;
2908                                         break;
2909                                 }
2910                         if (overlap) {
2911                                 mddev_put(mddev);
2912                                 break;
2913                         }
2914                 }
2915                 rcu_read_unlock();
2916                 if (overlap) {
2917                         /* Someone else could have slipped in a size
2918                          * change here, but doing so is just silly.
2919                          * We put oldsectors back because we *know* it is
2920                          * safe, and trust userspace not to race with
2921                          * itself
2922                          */
2923                         rdev->sectors = oldsectors;
2924                         return -EBUSY;
2925                 }
2926         }
2927         return len;
2928 }
2929
2930 static struct rdev_sysfs_entry rdev_size =
2931 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2932
2933 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2934 {
2935         unsigned long long recovery_start = rdev->recovery_offset;
2936
2937         if (test_bit(In_sync, &rdev->flags) ||
2938             recovery_start == MaxSector)
2939                 return sprintf(page, "none\n");
2940
2941         return sprintf(page, "%llu\n", recovery_start);
2942 }
2943
2944 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2945 {
2946         unsigned long long recovery_start;
2947
2948         if (cmd_match(buf, "none"))
2949                 recovery_start = MaxSector;
2950         else if (kstrtoull(buf, 10, &recovery_start))
2951                 return -EINVAL;
2952
2953         if (rdev->mddev->pers &&
2954             rdev->raid_disk >= 0)
2955                 return -EBUSY;
2956
2957         rdev->recovery_offset = recovery_start;
2958         if (recovery_start == MaxSector)
2959                 set_bit(In_sync, &rdev->flags);
2960         else
2961                 clear_bit(In_sync, &rdev->flags);
2962         return len;
2963 }
2964
2965 static struct rdev_sysfs_entry rdev_recovery_start =
2966 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2967
2968 static ssize_t
2969 badblocks_show(struct badblocks *bb, char *page, int unack);
2970 static ssize_t
2971 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2972
2973 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2974 {
2975         return badblocks_show(&rdev->badblocks, page, 0);
2976 }
2977 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2978 {
2979         int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2980         /* Maybe that ack was all we needed */
2981         if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2982                 wake_up(&rdev->blocked_wait);
2983         return rv;
2984 }
2985 static struct rdev_sysfs_entry rdev_bad_blocks =
2986 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2987
2988 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2989 {
2990         return badblocks_show(&rdev->badblocks, page, 1);
2991 }
2992 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2993 {
2994         return badblocks_store(&rdev->badblocks, page, len, 1);
2995 }
2996 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2997 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
2998
2999 static struct attribute *rdev_default_attrs[] = {
3000         &rdev_state.attr,
3001         &rdev_errors.attr,
3002         &rdev_slot.attr,
3003         &rdev_offset.attr,
3004         &rdev_new_offset.attr,
3005         &rdev_size.attr,
3006         &rdev_recovery_start.attr,
3007         &rdev_bad_blocks.attr,
3008         &rdev_unack_bad_blocks.attr,
3009         NULL,
3010 };
3011 static ssize_t
3012 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
3013 {
3014         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3015         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3016
3017         if (!entry->show)
3018                 return -EIO;
3019         if (!rdev->mddev)
3020                 return -EBUSY;
3021         return entry->show(rdev, page);
3022 }
3023
3024 static ssize_t
3025 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
3026               const char *page, size_t length)
3027 {
3028         struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
3029         struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
3030         ssize_t rv;
3031         struct mddev *mddev = rdev->mddev;
3032
3033         if (!entry->store)
3034                 return -EIO;
3035         if (!capable(CAP_SYS_ADMIN))
3036                 return -EACCES;
3037         rv = mddev ? mddev_lock(mddev): -EBUSY;
3038         if (!rv) {
3039                 if (rdev->mddev == NULL)
3040                         rv = -EBUSY;
3041                 else
3042                         rv = entry->store(rdev, page, length);
3043                 mddev_unlock(mddev);
3044         }
3045         return rv;
3046 }
3047
3048 static void rdev_free(struct kobject *ko)
3049 {
3050         struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3051         kfree(rdev);
3052 }
3053 static const struct sysfs_ops rdev_sysfs_ops = {
3054         .show           = rdev_attr_show,
3055         .store          = rdev_attr_store,
3056 };
3057 static struct kobj_type rdev_ktype = {
3058         .release        = rdev_free,
3059         .sysfs_ops      = &rdev_sysfs_ops,
3060         .default_attrs  = rdev_default_attrs,
3061 };
3062
3063 int md_rdev_init(struct md_rdev *rdev)
3064 {
3065         rdev->desc_nr = -1;
3066         rdev->saved_raid_disk = -1;
3067         rdev->raid_disk = -1;
3068         rdev->flags = 0;
3069         rdev->data_offset = 0;
3070         rdev->new_data_offset = 0;
3071         rdev->sb_events = 0;
3072         rdev->last_read_error.tv_sec  = 0;
3073         rdev->last_read_error.tv_nsec = 0;
3074         rdev->sb_loaded = 0;
3075         rdev->bb_page = NULL;
3076         atomic_set(&rdev->nr_pending, 0);
3077         atomic_set(&rdev->read_errors, 0);
3078         atomic_set(&rdev->corrected_errors, 0);
3079
3080         INIT_LIST_HEAD(&rdev->same_set);
3081         init_waitqueue_head(&rdev->blocked_wait);
3082
3083         /* Add space to store bad block list.
3084          * This reserves the space even on arrays where it cannot
3085          * be used - I wonder if that matters
3086          */
3087         rdev->badblocks.count = 0;
3088         rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
3089         rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3090         seqlock_init(&rdev->badblocks.lock);
3091         if (rdev->badblocks.page == NULL)
3092                 return -ENOMEM;
3093
3094         return 0;
3095 }
3096 EXPORT_SYMBOL_GPL(md_rdev_init);
3097 /*
3098  * Import a device. If 'super_format' >= 0, then sanity check the superblock
3099  *
3100  * mark the device faulty if:
3101  *
3102  *   - the device is nonexistent (zero size)
3103  *   - the device has no valid superblock
3104  *
3105  * a faulty rdev _never_ has rdev->sb set.
3106  */
3107 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3108 {
3109         char b[BDEVNAME_SIZE];
3110         int err;
3111         struct md_rdev *rdev;
3112         sector_t size;
3113
3114         rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3115         if (!rdev) {
3116                 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3117                 return ERR_PTR(-ENOMEM);
3118         }
3119
3120         err = md_rdev_init(rdev);
3121         if (err)
3122                 goto abort_free;
3123         err = alloc_disk_sb(rdev);
3124         if (err)
3125                 goto abort_free;
3126
3127         err = lock_rdev(rdev, newdev, super_format == -2);
3128         if (err)
3129                 goto abort_free;
3130
3131         kobject_init(&rdev->kobj, &rdev_ktype);
3132
3133         size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3134         if (!size) {
3135                 printk(KERN_WARNING
3136                         "md: %s has zero or unknown size, marking faulty!\n",
3137                         bdevname(rdev->bdev,b));
3138                 err = -EINVAL;
3139                 goto abort_free;
3140         }
3141
3142         if (super_format >= 0) {
3143                 err = super_types[super_format].
3144                         load_super(rdev, NULL, super_minor);
3145                 if (err == -EINVAL) {
3146                         printk(KERN_WARNING
3147                                 "md: %s does not have a valid v%d.%d "
3148                                "superblock, not importing!\n",
3149                                 bdevname(rdev->bdev,b),
3150                                super_format, super_minor);
3151                         goto abort_free;
3152                 }
3153                 if (err < 0) {
3154                         printk(KERN_WARNING
3155                                 "md: could not read %s's sb, not importing!\n",
3156                                 bdevname(rdev->bdev,b));
3157                         goto abort_free;
3158                 }
3159         }
3160
3161         return rdev;
3162
3163 abort_free:
3164         if (rdev->bdev)
3165                 unlock_rdev(rdev);
3166         md_rdev_clear(rdev);
3167         kfree(rdev);
3168         return ERR_PTR(err);
3169 }
3170
3171 /*
3172  * Check a full RAID array for plausibility
3173  */
3174
3175 static void analyze_sbs(struct mddev *mddev)
3176 {
3177         int i;
3178         struct md_rdev *rdev, *freshest, *tmp;
3179         char b[BDEVNAME_SIZE];
3180
3181         freshest = NULL;
3182         rdev_for_each_safe(rdev, tmp, mddev)
3183                 switch (super_types[mddev->major_version].
3184                         load_super(rdev, freshest, mddev->minor_version)) {
3185                 case 1:
3186                         freshest = rdev;
3187                         break;
3188                 case 0:
3189                         break;
3190                 default:
3191                         printk( KERN_ERR \
3192                                 "md: fatal superblock inconsistency in %s"
3193                                 " -- removing from array\n",
3194                                 bdevname(rdev->bdev,b));
3195                         md_kick_rdev_from_array(rdev);
3196                 }
3197
3198         super_types[mddev->major_version].
3199                 validate_super(mddev, freshest);
3200
3201         i = 0;
3202         rdev_for_each_safe(rdev, tmp, mddev) {
3203                 if (mddev->max_disks &&
3204                     (rdev->desc_nr >= mddev->max_disks ||
3205                      i > mddev->max_disks)) {
3206                         printk(KERN_WARNING
3207                                "md: %s: %s: only %d devices permitted\n",
3208                                mdname(mddev), bdevname(rdev->bdev, b),
3209                                mddev->max_disks);
3210                         md_kick_rdev_from_array(rdev);
3211                         continue;
3212                 }
3213                 if (rdev != freshest) {
3214                         if (super_types[mddev->major_version].
3215                             validate_super(mddev, rdev)) {
3216                                 printk(KERN_WARNING "md: kicking non-fresh %s"
3217                                         " from array!\n",
3218                                         bdevname(rdev->bdev,b));
3219                                 md_kick_rdev_from_array(rdev);
3220                                 continue;
3221                         }
3222                         /* No device should have a Candidate flag
3223                          * when reading devices
3224                          */
3225                         if (test_bit(Candidate, &rdev->flags)) {
3226                                 pr_info("md: kicking Cluster Candidate %s from array!\n",
3227                                         bdevname(rdev->bdev, b));
3228                                 md_kick_rdev_from_array(rdev);
3229                         }
3230                 }
3231                 if (mddev->level == LEVEL_MULTIPATH) {
3232                         rdev->desc_nr = i++;
3233                         rdev->raid_disk = rdev->desc_nr;
3234                         set_bit(In_sync, &rdev->flags);
3235                 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3236                         rdev->raid_disk = -1;
3237                         clear_bit(In_sync, &rdev->flags);
3238                 }
3239         }
3240 }
3241
3242 /* Read a fixed-point number.
3243  * Numbers in sysfs attributes should be in "standard" units where
3244  * possible, so time should be in seconds.
3245  * However we internally use a a much smaller unit such as
3246  * milliseconds or jiffies.
3247  * This function takes a decimal number with a possible fractional
3248  * component, and produces an integer which is the result of
3249  * multiplying that number by 10^'scale'.
3250  * all without any floating-point arithmetic.
3251  */
3252 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3253 {
3254         unsigned long result = 0;
3255         long decimals = -1;
3256         while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3257                 if (*cp == '.')
3258                         decimals = 0;
3259                 else if (decimals < scale) {
3260                         unsigned int value;
3261                         value = *cp - '0';
3262                         result = result * 10 + value;
3263                         if (decimals >= 0)
3264                                 decimals++;
3265                 }
3266                 cp++;
3267         }
3268         if (*cp == '\n')
3269                 cp++;
3270         if (*cp)
3271                 return -EINVAL;
3272         if (decimals < 0)
3273                 decimals = 0;
3274         while (decimals < scale) {
3275                 result *= 10;
3276                 decimals ++;
3277         }
3278         *res = result;
3279         return 0;
3280 }
3281
3282 static ssize_t
3283 safe_delay_show(struct mddev *mddev, char *page)
3284 {
3285         int msec = (mddev->safemode_delay*1000)/HZ;
3286         return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3287 }
3288 static ssize_t
3289 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3290 {
3291         unsigned long msec;
3292
3293         if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3294                 return -EINVAL;
3295         if (msec == 0)
3296                 mddev->safemode_delay = 0;
3297         else {
3298                 unsigned long old_delay = mddev->safemode_delay;
3299                 unsigned long new_delay = (msec*HZ)/1000;
3300
3301                 if (new_delay == 0)
3302                         new_delay = 1;
3303                 mddev->safemode_delay = new_delay;
3304                 if (new_delay < old_delay || old_delay == 0)
3305                         mod_timer(&mddev->safemode_timer, jiffies+1);
3306         }
3307         return len;
3308 }
3309 static struct md_sysfs_entry md_safe_delay =
3310 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3311
3312 static ssize_t
3313 level_show(struct mddev *mddev, char *page)
3314 {
3315         struct md_personality *p;
3316         int ret;
3317         spin_lock(&mddev->lock);
3318         p = mddev->pers;
3319         if (p)
3320                 ret = sprintf(page, "%s\n", p->name);
3321         else if (mddev->clevel[0])
3322                 ret = sprintf(page, "%s\n", mddev->clevel);
3323         else if (mddev->level != LEVEL_NONE)
3324                 ret = sprintf(page, "%d\n", mddev->level);
3325         else
3326                 ret = 0;
3327         spin_unlock(&mddev->lock);
3328         return ret;
3329 }
3330
3331 static ssize_t
3332 level_store(struct mddev *mddev, const char *buf, size_t len)
3333 {
3334         char clevel[16];
3335         ssize_t rv;
3336         size_t slen = len;
3337         struct md_personality *pers, *oldpers;
3338         long level;
3339         void *priv, *oldpriv;
3340         struct md_rdev *rdev;
3341
3342         if (slen == 0 || slen >= sizeof(clevel))
3343                 return -EINVAL;
3344
3345         rv = mddev_lock(mddev);
3346         if (rv)
3347                 return rv;
3348
3349         if (mddev->pers == NULL) {
3350                 strncpy(mddev->clevel, buf, slen);
3351                 if (mddev->clevel[slen-1] == '\n')
3352                         slen--;
3353                 mddev->clevel[slen] = 0;
3354                 mddev->level = LEVEL_NONE;
3355                 rv = len;
3356                 goto out_unlock;
3357         }
3358         rv = -EROFS;
3359         if (mddev->ro)
3360                 goto out_unlock;
3361
3362         /* request to change the personality.  Need to ensure:
3363          *  - array is not engaged in resync/recovery/reshape
3364          *  - old personality can be suspended
3365          *  - new personality will access other array.
3366          */
3367
3368         rv = -EBUSY;
3369         if (mddev->sync_thread ||
3370             test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
3371             mddev->reshape_position != MaxSector ||
3372             mddev->sysfs_active)
3373                 goto out_unlock;
3374
3375         rv = -EINVAL;
3376         if (!mddev->pers->quiesce) {
3377                 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3378                        mdname(mddev), mddev->pers->name);
3379                 goto out_unlock;
3380         }
3381
3382         /* Now find the new personality */
3383         strncpy(clevel, buf, slen);
3384         if (clevel[slen-1] == '\n')
3385                 slen--;
3386         clevel[slen] = 0;
3387         if (kstrtol(clevel, 10, &level))
3388                 level = LEVEL_NONE;
3389
3390         if (request_module("md-%s", clevel) != 0)
3391                 request_module("md-level-%s", clevel);
3392         spin_lock(&pers_lock);
3393         pers = find_pers(level, clevel);
3394         if (!pers || !try_module_get(pers->owner)) {
3395                 spin_unlock(&pers_lock);
3396                 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3397                 rv = -EINVAL;
3398                 goto out_unlock;
3399         }
3400         spin_unlock(&pers_lock);
3401
3402         if (pers == mddev->pers) {
3403                 /* Nothing to do! */
3404                 module_put(pers->owner);
3405                 rv = len;
3406                 goto out_unlock;
3407         }
3408         if (!pers->takeover) {
3409                 module_put(pers->owner);
3410                 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3411                        mdname(mddev), clevel);
3412                 rv = -EINVAL;
3413                 goto out_unlock;
3414         }
3415
3416         rdev_for_each(rdev, mddev)
3417                 rdev->new_raid_disk = rdev->raid_disk;
3418
3419         /* ->takeover must set new_* and/or delta_disks
3420          * if it succeeds, and may set them when it fails.
3421          */
3422         priv = pers->takeover(mddev);
3423         if (IS_ERR(priv)) {
3424                 mddev->new_level = mddev->level;
3425                 mddev->new_layout = mddev->layout;
3426                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3427                 mddev->raid_disks -= mddev->delta_disks;
3428                 mddev->delta_disks = 0;
3429                 mddev->reshape_backwards = 0;
3430                 module_put(pers->owner);
3431                 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3432                        mdname(mddev), clevel);
3433                 rv = PTR_ERR(priv);
3434                 goto out_unlock;
3435         }
3436
3437         /* Looks like we have a winner */
3438         mddev_suspend(mddev);
3439         mddev_detach(mddev);
3440
3441         spin_lock(&mddev->lock);
3442         oldpers = mddev->pers;
3443         oldpriv = mddev->private;
3444         mddev->pers = pers;
3445         mddev->private = priv;
3446         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3447         mddev->level = mddev->new_level;
3448         mddev->layout = mddev->new_layout;
3449         mddev->chunk_sectors = mddev->new_chunk_sectors;
3450         mddev->delta_disks = 0;
3451         mddev->reshape_backwards = 0;
3452         mddev->degraded = 0;
3453         spin_unlock(&mddev->lock);
3454
3455         if (oldpers->sync_request == NULL &&
3456             mddev->external) {
3457                 /* We are converting from a no-redundancy array
3458                  * to a redundancy array and metadata is managed
3459                  * externally so we need to be sure that writes
3460                  * won't block due to a need to transition
3461                  *      clean->dirty
3462                  * until external management is started.
3463                  */
3464                 mddev->in_sync = 0;
3465                 mddev->safemode_delay = 0;
3466                 mddev->safemode = 0;
3467         }
3468
3469         oldpers->free(mddev, oldpriv);
3470
3471         if (oldpers->sync_request == NULL &&
3472             pers->sync_request != NULL) {
3473                 /* need to add the md_redundancy_group */
3474                 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3475                         printk(KERN_WARNING
3476                                "md: cannot register extra attributes for %s\n",
3477                                mdname(mddev));
3478                 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, "sync_action");
3479         }
3480         if (oldpers->sync_request != NULL &&
3481             pers->sync_request == NULL) {
3482                 /* need to remove the md_redundancy_group */
3483                 if (mddev->to_remove == NULL)
3484                         mddev->to_remove = &md_redundancy_group;
3485         }
3486
3487         rdev_for_each(rdev, mddev) {
3488                 if (rdev->raid_disk < 0)
3489                         continue;
3490                 if (rdev->new_raid_disk >= mddev->raid_disks)
3491                         rdev->new_raid_disk = -1;
3492                 if (rdev->new_raid_disk == rdev->raid_disk)
3493                         continue;
3494                 sysfs_unlink_rdev(mddev, rdev);
3495         }
3496         rdev_for_each(rdev, mddev) {
3497                 if (rdev->raid_disk < 0)
3498                         continue;
3499                 if (rdev->new_raid_disk == rdev->raid_disk)
3500                         continue;
3501                 rdev->raid_disk = rdev->new_raid_disk;
3502                 if (rdev->raid_disk < 0)
3503                         clear_bit(In_sync, &rdev->flags);
3504                 else {
3505                         if (sysfs_link_rdev(mddev, rdev))
3506                                 printk(KERN_WARNING "md: cannot register rd%d"
3507                                        " for %s after level change\n",
3508                                        rdev->raid_disk, mdname(mddev));
3509                 }
3510         }
3511
3512         if (pers->sync_request == NULL) {
3513                 /* this is now an array without redundancy, so
3514                  * it must always be in_sync
3515                  */
3516                 mddev->in_sync = 1;
3517                 del_timer_sync(&mddev->safemode_timer);
3518         }
3519         blk_set_stacking_limits(&mddev->queue->limits);
3520         pers->run(mddev);
3521         set_bit(MD_CHANGE_DEVS, &mddev->flags);
3522         mddev_resume(mddev);
3523         if (!mddev->thread)
3524                 md_update_sb(mddev, 1);
3525         sysfs_notify(&mddev->kobj, NULL, "level");
3526         md_new_event(mddev);
3527         rv = len;
3528 out_unlock:
3529         mddev_unlock(mddev);
3530         return rv;
3531 }
3532
3533 static struct md_sysfs_entry md_level =
3534 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3535
3536 static ssize_t
3537 layout_show(struct mddev *mddev, char *page)
3538 {
3539         /* just a number, not meaningful for all levels */
3540         if (mddev->reshape_position != MaxSector &&
3541             mddev->layout != mddev->new_layout)
3542                 return sprintf(page, "%d (%d)\n",
3543                                mddev->new_layout, mddev->layout);
3544         return sprintf(page, "%d\n", mddev->layout);
3545 }
3546
3547 static ssize_t
3548 layout_store(struct mddev *mddev, const char *buf, size_t len)
3549 {
3550         unsigned int n;
3551         int err;
3552
3553         err = kstrtouint(buf, 10, &n);
3554         if (err < 0)
3555                 return err;
3556         err = mddev_lock(mddev);
3557         if (err)
3558                 return err;
3559
3560         if (mddev->pers) {
3561                 if (mddev->pers->check_reshape == NULL)
3562                         err = -EBUSY;
3563                 else if (mddev->ro)
3564                         err = -EROFS;
3565                 else {
3566                         mddev->new_layout = n;
3567                         err = mddev->pers->check_reshape(mddev);
3568                         if (err)
3569                                 mddev->new_layout = mddev->layout;
3570                 }
3571         } else {
3572                 mddev->new_layout = n;
3573                 if (mddev->reshape_position == MaxSector)
3574                         mddev->layout = n;
3575         }
3576         mddev_unlock(mddev);
3577         return err ?: len;
3578 }
3579 static struct md_sysfs_entry md_layout =
3580 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3581
3582 static ssize_t
3583 raid_disks_show(struct mddev *mddev, char *page)
3584 {
3585         if (mddev->raid_disks == 0)
3586                 return 0;
3587         if (mddev->reshape_position != MaxSector &&
3588             mddev->delta_disks != 0)
3589                 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3590                                mddev->raid_disks - mddev->delta_disks);
3591         return sprintf(page, "%d\n", mddev->raid_disks);
3592 }
3593
3594 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3595
3596 static ssize_t
3597 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3598 {
3599         unsigned int n;
3600         int err;
3601
3602         err = kstrtouint(buf, 10, &n);
3603         if (err < 0)
3604                 return err;
3605
3606         err = mddev_lock(mddev);
3607         if (err)
3608                 return err;
3609         if (mddev->pers)
3610                 err = update_raid_disks(mddev, n);
3611         else if (mddev->reshape_position != MaxSector) {
3612                 struct md_rdev *rdev;
3613                 int olddisks = mddev->raid_disks - mddev->delta_disks;
3614
3615                 err = -EINVAL;
3616                 rdev_for_each(rdev, mddev) {
3617                         if (olddisks < n &&
3618                             rdev->data_offset < rdev->new_data_offset)
3619                                 goto out_unlock;
3620                         if (olddisks > n &&
3621                             rdev->data_offset > rdev->new_data_offset)
3622                                 goto out_unlock;
3623                 }
3624                 err = 0;
3625                 mddev->delta_disks = n - olddisks;
3626                 mddev->raid_disks = n;
3627                 mddev->reshape_backwards = (mddev->delta_disks < 0);
3628         } else
3629                 mddev->raid_disks = n;
3630 out_unlock:
3631         mddev_unlock(mddev);
3632         return err ? err : len;
3633 }
3634 static struct md_sysfs_entry md_raid_disks =
3635 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3636
3637 static ssize_t
3638 chunk_size_show(struct mddev *mddev, char *page)
3639 {
3640         if (mddev->reshape_position != MaxSector &&
3641             mddev->chunk_sectors != mddev->new_chunk_sectors)
3642                 return sprintf(page, "%d (%d)\n",
3643                                mddev->new_chunk_sectors << 9,
3644                                mddev->chunk_sectors << 9);
3645         return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3646 }
3647
3648 static ssize_t
3649 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3650 {
3651         unsigned long n;
3652         int err;
3653
3654         err = kstrtoul(buf, 10, &n);
3655         if (err < 0)
3656                 return err;
3657
3658         err = mddev_lock(mddev);
3659         if (err)
3660                 return err;
3661         if (mddev->pers) {
3662                 if (mddev->pers->check_reshape == NULL)
3663                         err = -EBUSY;
3664                 else if (mddev->ro)
3665                         err = -EROFS;
3666                 else {
3667                         mddev->new_chunk_sectors = n >> 9;
3668                         err = mddev->pers->check_reshape(mddev);
3669                         if (err)
3670                                 mddev->new_chunk_sectors = mddev->chunk_sectors;
3671                 }
3672         } else {
3673                 mddev->new_chunk_sectors = n >> 9;
3674                 if (mddev->reshape_position == MaxSector)
3675                         mddev->chunk_sectors = n >> 9;
3676         }
3677         mddev_unlock(mddev);
3678         return err ?: len;
3679 }
3680 static struct md_sysfs_entry md_chunk_size =
3681 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3682
3683 static ssize_t
3684 resync_start_show(struct mddev *mddev, char *page)
3685 {
3686         if (mddev->recovery_cp == MaxSector)
3687                 return sprintf(page, "none\n");
3688         return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3689 }
3690
3691 static ssize_t
3692 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3693 {
3694         unsigned long long n;
3695         int err;
3696
3697         if (cmd_match(buf, "none"))
3698                 n = MaxSector;
3699         else {
3700                 err = kstrtoull(buf, 10, &n);
3701                 if (err < 0)
3702                         return err;
3703                 if (n != (sector_t)n)
3704                         return -EINVAL;
3705         }
3706
3707         err = mddev_lock(mddev);
3708         if (err)
3709                 return err;
3710         if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3711                 err = -EBUSY;
3712
3713         if (!err) {
3714                 mddev->recovery_cp = n;
3715                 if (mddev->pers)
3716                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3717         }
3718         mddev_unlock(mddev);
3719         return err ?: len;
3720 }
3721 static struct md_sysfs_entry md_resync_start =
3722 __ATTR_PREALLOC(resync_start, S_IRUGO|S_IWUSR,
3723                 resync_start_show, resync_start_store);
3724
3725 /*
3726  * The array state can be:
3727  *
3728  * clear
3729  *     No devices, no size, no level
3730  *     Equivalent to STOP_ARRAY ioctl
3731  * inactive
3732  *     May have some settings, but array is not active
3733  *        all IO results in error
3734  *     When written, doesn't tear down array, but just stops it
3735  * suspended (not supported yet)
3736  *     All IO requests will block. The array can be reconfigured.
3737  *     Writing this, if accepted, will block until array is quiescent
3738  * readonly
3739  *     no resync can happen.  no superblocks get written.
3740  *     write requests fail
3741  * read-auto
3742  *     like readonly, but behaves like 'clean' on a write request.
3743  *
3744  * clean - no pending writes, but otherwise active.
3745  *     When written to inactive array, starts without resync
3746  *     If a write request arrives then
3747  *       if metadata is known, mark 'dirty' and switch to 'active'.
3748  *       if not known, block and switch to write-pending
3749  *     If written to an active array that has pending writes, then fails.
3750  * active
3751  *     fully active: IO and resync can be happening.
3752  *     When written to inactive array, starts with resync
3753  *
3754  * write-pending
3755  *     clean, but writes are blocked waiting for 'active' to be written.
3756  *
3757  * active-idle
3758  *     like active, but no writes have been seen for a while (100msec).
3759  *
3760  */
3761 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3762                    write_pending, active_idle, bad_word};
3763 static char *array_states[] = {
3764         "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3765         "write-pending", "active-idle", NULL };
3766
3767 static int match_word(const char *word, char **list)
3768 {
3769         int n;
3770         for (n=0; list[n]; n++)
3771                 if (cmd_match(word, list[n]))
3772                         break;
3773         return n;
3774 }
3775
3776 static ssize_t
3777 array_state_show(struct mddev *mddev, char *page)
3778 {
3779         enum array_state st = inactive;
3780
3781         if (mddev->pers)
3782                 switch(mddev->ro) {
3783                 case 1:
3784                         st = readonly;
3785                         break;
3786                 case 2:
3787                         st = read_auto;
3788                         break;
3789                 case 0:
3790                         if (mddev->in_sync)
3791                                 st = clean;
3792                         else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3793                                 st = write_pending;
3794                         else if (mddev->safemode)
3795                                 st = active_idle;
3796                         else
3797                                 st = active;
3798                 }
3799         else {
3800                 if (list_empty(&mddev->disks) &&
3801                     mddev->raid_disks == 0 &&
3802                     mddev->dev_sectors == 0)
3803                         st = clear;
3804                 else
3805                         st = inactive;
3806         }
3807         return sprintf(page, "%s\n", array_states[st]);
3808 }
3809
3810 static int do_md_stop(struct mddev *mddev, int ro, struct block_device *bdev);
3811 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev);
3812 static int do_md_run(struct mddev *mddev);
3813 static int restart_array(struct mddev *mddev);
3814
3815 static ssize_t
3816 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3817 {
3818         int err;
3819         enum array_state st = match_word(buf, array_states);
3820
3821         if (mddev->pers && (st == active || st == clean) && mddev->ro != 1) {
3822                 /* don't take reconfig_mutex when toggling between
3823                  * clean and active
3824                  */
3825                 spin_lock(&mddev->lock);
3826                 if (st == active) {
3827                         restart_array(mddev);
3828                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3829                         wake_up(&mddev->sb_wait);
3830                         err = 0;
3831                 } else /* st == clean */ {
3832                         restart_array(mddev);
3833                         if (atomic_read(&mddev->writes_pending) == 0) {
3834                                 if (mddev->in_sync == 0) {
3835                                         mddev->in_sync = 1;
3836                                         if (mddev->safemode == 1)
3837                                                 mddev->safemode = 0;
3838                                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3839                                 }
3840                                 err = 0;
3841                         } else
3842                                 err = -EBUSY;
3843                 }
3844                 spin_unlock(&mddev->lock);
3845                 return err ?: len;
3846         }
3847         err = mddev_lock(mddev);
3848         if (err)
3849                 return err;
3850         err = -EINVAL;
3851         switch(st) {
3852         case bad_word:
3853                 break;
3854         case clear:
3855                 /* stopping an active array */
3856                 err = do_md_stop(mddev, 0, NULL);
3857                 break;
3858         case inactive:
3859                 /* stopping an active array */
3860                 if (mddev->pers)
3861                         err = do_md_stop(mddev, 2, NULL);
3862                 else
3863                         err = 0; /* already inactive */
3864                 break;
3865         case suspended:
3866                 break; /* not supported yet */
3867         case readonly:
3868                 if (mddev->pers)
3869                         err = md_set_readonly(mddev, NULL);
3870                 else {
3871                         mddev->ro = 1;
3872                         set_disk_ro(mddev->gendisk, 1);
3873                         err = do_md_run(mddev);
3874                 }
3875                 break;
3876         case read_auto:
3877                 if (mddev->pers) {
3878                         if (mddev->ro == 0)
3879                                 err = md_set_readonly(mddev, NULL);
3880                         else if (mddev->ro == 1)
3881                                 err = restart_array(mddev);
3882                         if (err == 0) {
3883                                 mddev->ro = 2;
3884                                 set_disk_ro(mddev->gendisk, 0);
3885                         }
3886                 } else {
3887                         mddev->ro = 2;
3888                         err = do_md_run(mddev);
3889                 }
3890                 break;
3891         case clean:
3892                 if (mddev->pers) {
3893                         restart_array(mddev);
3894                         spin_lock(&mddev->lock);
3895                         if (atomic_read(&mddev->writes_pending) == 0) {
3896                                 if (mddev->in_sync == 0) {
3897                                         mddev->in_sync = 1;
3898                                         if (mddev->safemode == 1)
3899                                                 mddev->safemode = 0;
3900                                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3901                                 }
3902                                 err = 0;
3903                         } else
3904                                 err = -EBUSY;
3905                         spin_unlock(&mddev->lock);
3906                 } else
3907                         err = -EINVAL;
3908                 break;
3909         case active:
3910                 if (mddev->pers) {
3911                         restart_array(mddev);
3912                         clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3913                         wake_up(&mddev->sb_wait);
3914                         err = 0;
3915                 } else {
3916                         mddev->ro = 0;
3917                         set_disk_ro(mddev->gendisk, 0);
3918                         err = do_md_run(mddev);
3919                 }
3920                 break;
3921         case write_pending:
3922         case active_idle:
3923                 /* these cannot be set */
3924                 break;
3925         }
3926
3927         if (!err) {
3928                 if (mddev->hold_active == UNTIL_IOCTL)
3929                         mddev->hold_active = 0;
3930                 sysfs_notify_dirent_safe(mddev->sysfs_state);
3931         }
3932         mddev_unlock(mddev);
3933         return err ?: len;
3934 }
3935 static struct md_sysfs_entry md_array_state =
3936 __ATTR_PREALLOC(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3937
3938 static ssize_t
3939 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3940         return sprintf(page, "%d\n",
3941                        atomic_read(&mddev->max_corr_read_errors));
3942 }
3943
3944 static ssize_t
3945 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3946 {
3947         unsigned int n;
3948         int rv;
3949
3950         rv = kstrtouint(buf, 10, &n);
3951         if (rv < 0)
3952                 return rv;
3953         atomic_set(&mddev->max_corr_read_errors, n);
3954         return len;
3955 }
3956
3957 static struct md_sysfs_entry max_corr_read_errors =
3958 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3959         max_corrected_read_errors_store);
3960
3961 static ssize_t
3962 null_show(struct mddev *mddev, char *page)
3963 {
3964         return -EINVAL;
3965 }
3966
3967 static ssize_t
3968 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3969 {
3970         /* buf must be %d:%d\n? giving major and minor numbers */
3971         /* The new device is added to the array.
3972          * If the array has a persistent superblock, we read the
3973          * superblock to initialise info and check validity.
3974          * Otherwise, only checking done is that in bind_rdev_to_array,
3975          * which mainly checks size.
3976          */
3977         char *e;
3978         int major = simple_strtoul(buf, &e, 10);
3979         int minor;
3980         dev_t dev;
3981         struct md_rdev *rdev;
3982         int err;
3983
3984         if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3985                 return -EINVAL;
3986         minor = simple_strtoul(e+1, &e, 10);
3987         if (*e && *e != '\n')
3988                 return -EINVAL;
3989         dev = MKDEV(major, minor);
3990         if (major != MAJOR(dev) ||
3991             minor != MINOR(dev))
3992                 return -EOVERFLOW;
3993
3994         flush_workqueue(md_misc_wq);
3995
3996         err = mddev_lock(mddev);
3997         if (err)
3998                 return err;
3999         if (mddev->persistent) {
4000                 rdev = md_import_device(dev, mddev->major_version,
4001                                         mddev->minor_version);
4002                 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
4003                         struct md_rdev *rdev0
4004                                 = list_entry(mddev->disks.next,
4005                                              struct md_rdev, same_set);
4006                         err = super_types[mddev->major_version]
4007                                 .load_super(rdev, rdev0, mddev->minor_version);
4008                         if (err < 0)
4009                                 goto out;
4010                 }
4011         } else if (mddev->external)
4012                 rdev = md_import_device(dev, -2, -1);
4013         else
4014                 rdev = md_import_device(dev, -1, -1);
4015
4016         if (IS_ERR(rdev)) {
4017                 mddev_unlock(mddev);
4018                 return PTR_ERR(rdev);
4019         }
4020         err = bind_rdev_to_array(rdev, mddev);
4021  out:
4022         if (err)
4023                 export_rdev(rdev);
4024         mddev_unlock(mddev);
4025         return err ? err : len;
4026 }
4027
4028 static struct md_sysfs_entry md_new_device =
4029 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
4030
4031 static ssize_t
4032 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
4033 {
4034         char *end;
4035         unsigned long chunk, end_chunk;
4036         int err;
4037
4038         err = mddev_lock(mddev);
4039         if (err)
4040                 return err;
4041         if (!mddev->bitmap)
4042                 goto out;
4043         /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
4044         while (*buf) {
4045                 chunk = end_chunk = simple_strtoul(buf, &end, 0);
4046                 if (buf == end) break;
4047                 if (*end == '-') { /* range */
4048                         buf = end + 1;
4049                         end_chunk = simple_strtoul(buf, &end, 0);
4050                         if (buf == end) break;
4051                 }
4052                 if (*end && !isspace(*end)) break;
4053                 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
4054                 buf = skip_spaces(end);
4055         }
4056         bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
4057 out:
4058         mddev_unlock(mddev);
4059         return len;
4060 }
4061
4062 static struct md_sysfs_entry md_bitmap =
4063 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
4064
4065 static ssize_t
4066 size_show(struct mddev *mddev, char *page)
4067 {
4068         return sprintf(page, "%llu\n",
4069                 (unsigned long long)mddev->dev_sectors / 2);
4070 }
4071
4072 static int update_size(struct mddev *mddev, sector_t num_sectors);
4073
4074 static ssize_t
4075 size_store(struct mddev *mddev, const char *buf, size_t len)
4076 {
4077         /* If array is inactive, we can reduce the component size, but
4078          * not increase it (except from 0).
4079          * If array is active, we can try an on-line resize
4080          */
4081         sector_t sectors;
4082         int err = strict_blocks_to_sectors(buf, &sectors);
4083
4084         if (err < 0)
4085                 return err;
4086         err = mddev_lock(mddev);
4087         if (err)
4088                 return err;
4089         if (mddev->pers) {
4090                 if (mddev_is_clustered(mddev))
4091                         md_cluster_ops->metadata_update_start(mddev);
4092                 err = update_size(mddev, sectors);
4093                 md_update_sb(mddev, 1);
4094                 if (mddev_is_clustered(mddev))
4095                         md_cluster_ops->metadata_update_finish(mddev);
4096         } else {
4097                 if (mddev->dev_sectors == 0 ||
4098                     mddev->dev_sectors > sectors)
4099                         mddev->dev_sectors = sectors;
4100                 else
4101                         err = -ENOSPC;
4102         }
4103         mddev_unlock(mddev);
4104         return err ? err : len;
4105 }
4106
4107 static struct md_sysfs_entry md_size =
4108 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
4109
4110 /* Metadata version.
4111  * This is one of
4112  *   'none' for arrays with no metadata (good luck...)
4113  *   'external' for arrays with externally managed metadata,
4114  * or N.M for internally known formats
4115  */
4116 static ssize_t
4117 metadata_show(struct mddev *mddev, char *page)
4118 {
4119         if (mddev->persistent)
4120                 return sprintf(page, "%d.%d\n",
4121                                mddev->major_version, mddev->minor_version);
4122         else if (mddev->external)
4123                 return sprintf(page, "external:%s\n", mddev->metadata_type);
4124         else
4125                 return sprintf(page, "none\n");
4126 }
4127
4128 static ssize_t
4129 metadata_store(struct mddev *mddev, const char *buf, size_t len)
4130 {
4131         int major, minor;
4132         char *e;
4133         int err;
4134         /* Changing the details of 'external' metadata is
4135          * always permitted.  Otherwise there must be
4136          * no devices attached to the array.
4137          */
4138
4139         err = mddev_lock(mddev);
4140         if (err)
4141                 return err;
4142         err = -EBUSY;
4143         if (mddev->external && strncmp(buf, "external:", 9) == 0)
4144                 ;
4145         else if (!list_empty(&mddev->disks))
4146                 goto out_unlock;
4147
4148         err = 0;
4149         if (cmd_match(buf, "none")) {
4150                 mddev->persistent = 0;
4151                 mddev->external = 0;
4152                 mddev->major_version = 0;
4153                 mddev->minor_version = 90;
4154                 goto out_unlock;
4155         }
4156         if (strncmp(buf, "external:", 9) == 0) {
4157                 size_t namelen = len-9;
4158                 if (namelen >= sizeof(mddev->metadata_type))
4159                         namelen = sizeof(mddev->metadata_type)-1;
4160                 strncpy(mddev->metadata_type, buf+9, namelen);
4161                 mddev->metadata_type[namelen] = 0;
4162                 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4163                         mddev->metadata_type[--namelen] = 0;
4164                 mddev->persistent = 0;
4165                 mddev->external = 1;
4166                 mddev->major_version = 0;
4167                 mddev->minor_version = 90;
4168                 goto out_unlock;
4169         }
4170         major = simple_strtoul(buf, &e, 10);
4171         err = -EINVAL;
4172         if (e==buf || *e != '.')
4173                 goto out_unlock;
4174         buf = e+1;
4175         minor = simple_strtoul(buf, &e, 10);
4176         if (e==buf || (*e && *e != '\n') )
4177                 goto out_unlock;
4178         err = -ENOENT;
4179         if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4180                 goto out_unlock;
4181         mddev->major_version = major;
4182         mddev->minor_version = minor;
4183         mddev->persistent = 1;
4184         mddev->external = 0;
4185         err = 0;
4186 out_unlock:
4187         mddev_unlock(mddev);
4188         return err ?: len;
4189 }
4190
4191 static struct md_sysfs_entry md_metadata =
4192 __ATTR_PREALLOC(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4193
4194 static ssize_t
4195 action_show(struct mddev *mddev, char *page)
4196 {
4197         char *type = "idle";
4198         unsigned long recovery = mddev->recovery;
4199         if (test_bit(MD_RECOVERY_FROZEN, &recovery))
4200                 type = "frozen";
4201         else if (test_bit(MD_RECOVERY_RUNNING, &recovery) ||
4202             (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &recovery))) {
4203                 if (test_bit(MD_RECOVERY_RESHAPE, &recovery))
4204                         type = "reshape";
4205                 else if (test_bit(MD_RECOVERY_SYNC, &recovery)) {
4206                         if (!test_bit(MD_RECOVERY_REQUESTED, &recovery))
4207                                 type = "resync";
4208                         else if (test_bit(MD_RECOVERY_CHECK, &recovery))
4209                                 type = "check";
4210                         else
4211                                 type = "repair";
4212                 } else if (test_bit(MD_RECOVERY_RECOVER, &recovery))
4213                         type = "recover";
4214                 else if (mddev->reshape_position != MaxSector)
4215                         type = "reshape";
4216         }
4217         return sprintf(page, "%s\n", type);
4218 }
4219
4220 static ssize_t
4221 action_store(struct mddev *mddev, const char *page, size_t len)
4222 {
4223         if (!mddev->pers || !mddev->pers->sync_request)
4224                 return -EINVAL;
4225
4226
4227         if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4228                 if (cmd_match(page, "frozen"))
4229                         set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4230                 else
4231                         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4232                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
4233                     mddev_lock(mddev) == 0) {
4234                         flush_workqueue(md_misc_wq);
4235                         if (mddev->sync_thread) {
4236                                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4237                                 md_reap_sync_thread(mddev);
4238                         }
4239                         mddev_unlock(mddev);
4240                 }
4241         } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4242                    test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4243                 return -EBUSY;
4244         else if (cmd_match(page, "resync"))
4245                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4246         else if (cmd_match(page, "recover")) {
4247                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4248                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4249         } else if (cmd_match(page, "reshape")) {
4250                 int err;
4251                 if (mddev->pers->start_reshape == NULL)
4252                         return -EINVAL;
4253                 err = mddev_lock(mddev);
4254                 if (!err) {
4255                         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4256                         err = mddev->pers->start_reshape(mddev);
4257                         mddev_unlock(mddev);
4258                 }
4259                 if (err)
4260                         return err;
4261                 sysfs_notify(&mddev->kobj, NULL, "degraded");
4262         } else {
4263                 if (cmd_match(page, "check"))
4264                         set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4265                 else if (!cmd_match(page, "repair"))
4266                         return -EINVAL;
4267                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4268                 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4269                 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4270         }
4271         if (mddev->ro == 2) {
4272                 /* A write to sync_action is enough to justify
4273                  * canceling read-auto mode
4274                  */
4275                 mddev->ro = 0;
4276                 md_wakeup_thread(mddev->sync_thread);
4277         }
4278         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4279         md_wakeup_thread(mddev->thread);
4280         sysfs_notify_dirent_safe(mddev->sysfs_action);
4281         return len;
4282 }
4283
4284 static struct md_sysfs_entry md_scan_mode =
4285 __ATTR_PREALLOC(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4286
4287 static ssize_t
4288 last_sync_action_show(struct mddev *mddev, char *page)
4289 {
4290         return sprintf(page, "%s\n", mddev->last_sync_action);
4291 }
4292
4293 static struct md_sysfs_entry md_last_scan_mode = __ATTR_RO(last_sync_action);
4294
4295 static ssize_t
4296 mismatch_cnt_show(struct mddev *mddev, char *page)
4297 {
4298         return sprintf(page, "%llu\n",
4299                        (unsigned long long)
4300                        atomic64_read(&mddev->resync_mismatches));
4301 }
4302
4303 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4304
4305 static ssize_t
4306 sync_min_show(struct mddev *mddev, char *page)
4307 {
4308         return sprintf(page, "%d (%s)\n", speed_min(mddev),
4309                        mddev->sync_speed_min ? "local": "system");
4310 }
4311
4312 static ssize_t
4313 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4314 {
4315         unsigned int min;
4316         int rv;
4317
4318         if (strncmp(buf, "system", 6)==0) {
4319                 min = 0;
4320         } else {
4321                 rv = kstrtouint(buf, 10, &min);
4322                 if (rv < 0)
4323                         return rv;
4324                 if (min == 0)
4325                         return -EINVAL;
4326         }
4327         mddev->sync_speed_min = min;
4328         return len;
4329 }
4330
4331 static struct md_sysfs_entry md_sync_min =
4332 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4333
4334 static ssize_t
4335 sync_max_show(struct mddev *mddev, char *page)
4336 {
4337         return sprintf(page, "%d (%s)\n", speed_max(mddev),
4338                        mddev->sync_speed_max ? "local": "system");
4339 }
4340
4341 static ssize_t
4342 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4343 {
4344         unsigned int max;
4345         int rv;
4346
4347         if (strncmp(buf, "system", 6)==0) {
4348                 max = 0;
4349         } else {
4350                 rv = kstrtouint(buf, 10, &max);
4351                 if (rv < 0)
4352                         return rv;
4353                 if (max == 0)
4354                         return -EINVAL;
4355         }
4356         mddev->sync_speed_max = max;
4357         return len;
4358 }
4359
4360 static struct md_sysfs_entry md_sync_max =
4361 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4362
4363 static ssize_t
4364 degraded_show(struct mddev *mddev, char *page)
4365 {
4366         return sprintf(page, "%d\n", mddev->degraded);
4367 }
4368 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4369
4370 static ssize_t
4371 sync_force_parallel_show(struct mddev *mddev, char *page)
4372 {
4373         return sprintf(page, "%d\n", mddev->parallel_resync);
4374 }
4375
4376 static ssize_t
4377 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4378 {
4379         long n;
4380
4381         if (kstrtol(buf, 10, &n))
4382                 return -EINVAL;
4383
4384         if (n != 0 && n != 1)
4385                 return -EINVAL;
4386
4387         mddev->parallel_resync = n;
4388
4389         if (mddev->sync_thread)
4390                 wake_up(&resync_wait);
4391
4392         return len;
4393 }
4394
4395 /* force parallel resync, even with shared block devices */
4396 static struct md_sysfs_entry md_sync_force_parallel =
4397 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4398        sync_force_parallel_show, sync_force_parallel_store);
4399
4400 static ssize_t
4401 sync_speed_show(struct mddev *mddev, char *page)
4402 {
4403         unsigned long resync, dt, db;
4404         if (mddev->curr_resync == 0)
4405                 return sprintf(page, "none\n");
4406         resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4407         dt = (jiffies - mddev->resync_mark) / HZ;
4408         if (!dt) dt++;
4409         db = resync - mddev->resync_mark_cnt;
4410         return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4411 }
4412
4413 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4414
4415 static ssize_t
4416 sync_completed_show(struct mddev *mddev, char *page)
4417 {
4418         unsigned long long max_sectors, resync;
4419
4420         if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4421                 return sprintf(page, "none\n");
4422
4423         if (mddev->curr_resync == 1 ||
4424             mddev->curr_resync == 2)
4425                 return sprintf(page, "delayed\n");
4426
4427         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
4428             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4429                 max_sectors = mddev->resync_max_sectors;
4430         else
4431                 max_sectors = mddev->dev_sectors;
4432
4433         resync = mddev->curr_resync_completed;
4434         return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4435 }
4436
4437 static struct md_sysfs_entry md_sync_completed =
4438         __ATTR_PREALLOC(sync_completed, S_IRUGO, sync_completed_show, NULL);
4439
4440 static ssize_t
4441 min_sync_show(struct mddev *mddev, char *page)
4442 {
4443         return sprintf(page, "%llu\n",
4444                        (unsigned long long)mddev->resync_min);
4445 }
4446 static ssize_t
4447 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4448 {
4449         unsigned long long min;
4450         int err;
4451
4452         if (kstrtoull(buf, 10, &min))
4453                 return -EINVAL;
4454
4455         spin_lock(&mddev->lock);
4456         err = -EINVAL;
4457         if (min > mddev->resync_max)
4458                 goto out_unlock;
4459
4460         err = -EBUSY;
4461         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4462                 goto out_unlock;
4463
4464         /* Round down to multiple of 4K for safety */
4465         mddev->resync_min = round_down(min, 8);
4466         err = 0;
4467
4468 out_unlock:
4469         spin_unlock(&mddev->lock);
4470         return err ?: len;
4471 }
4472
4473 static struct md_sysfs_entry md_min_sync =
4474 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4475
4476 static ssize_t
4477 max_sync_show(struct mddev *mddev, char *page)
4478 {
4479         if (mddev->resync_max == MaxSector)
4480                 return sprintf(page, "max\n");
4481         else
4482                 return sprintf(page, "%llu\n",
4483                                (unsigned long long)mddev->resync_max);
4484 }
4485 static ssize_t
4486 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4487 {
4488         int err;
4489         spin_lock(&mddev->lock);
4490         if (strncmp(buf, "max", 3) == 0)
4491                 mddev->resync_max = MaxSector;
4492         else {
4493                 unsigned long long max;
4494                 int chunk;
4495
4496                 err = -EINVAL;
4497                 if (kstrtoull(buf, 10, &max))
4498                         goto out_unlock;
4499                 if (max < mddev->resync_min)
4500                         goto out_unlock;
4501
4502                 err = -EBUSY;
4503                 if (max < mddev->resync_max &&
4504                     mddev->ro == 0 &&
4505                     test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4506                         goto out_unlock;
4507
4508                 /* Must be a multiple of chunk_size */
4509                 chunk = mddev->chunk_sectors;
4510                 if (chunk) {
4511                         sector_t temp = max;
4512
4513                         err = -EINVAL;
4514                         if (sector_div(temp, chunk))
4515                                 goto out_unlock;
4516                 }
4517                 mddev->resync_max = max;
4518         }
4519         wake_up(&mddev->recovery_wait);
4520         err = 0;
4521 out_unlock:
4522         spin_unlock(&mddev->lock);
4523         return err ?: len;
4524 }
4525
4526 static struct md_sysfs_entry md_max_sync =
4527 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4528
4529 static ssize_t
4530 suspend_lo_show(struct mddev *mddev, char *page)
4531 {
4532         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4533 }
4534
4535 static ssize_t
4536 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4537 {
4538         unsigned long long old, new;
4539         int err;
4540
4541         err = kstrtoull(buf, 10, &new);
4542         if (err < 0)
4543                 return err;
4544         if (new != (sector_t)new)
4545                 return -EINVAL;
4546
4547         err = mddev_lock(mddev);
4548         if (err)
4549                 return err;
4550         err = -EINVAL;
4551         if (mddev->pers == NULL ||
4552             mddev->pers->quiesce == NULL)
4553                 goto unlock;
4554         old = mddev->suspend_lo;
4555         mddev->suspend_lo = new;
4556         if (new >= old)
4557                 /* Shrinking suspended region */
4558                 mddev->pers->quiesce(mddev, 2);
4559         else {
4560                 /* Expanding suspended region - need to wait */
4561                 mddev->pers->quiesce(mddev, 1);
4562                 mddev->pers->quiesce(mddev, 0);
4563         }
4564         err = 0;
4565 unlock:
4566         mddev_unlock(mddev);
4567         return err ?: len;
4568 }
4569 static struct md_sysfs_entry md_suspend_lo =
4570 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4571
4572 static ssize_t
4573 suspend_hi_show(struct mddev *mddev, char *page)
4574 {
4575         return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4576 }
4577
4578 static ssize_t
4579 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4580 {
4581         unsigned long long old, new;
4582         int err;
4583
4584         err = kstrtoull(buf, 10, &new);
4585         if (err < 0)
4586                 return err;
4587         if (new != (sector_t)new)
4588                 return -EINVAL;
4589
4590         err = mddev_lock(mddev);
4591         if (err)
4592                 return err;
4593         err = -EINVAL;
4594         if (mddev->pers == NULL ||
4595             mddev->pers->quiesce == NULL)
4596                 goto unlock;
4597         old = mddev->suspend_hi;
4598         mddev->suspend_hi = new;
4599         if (new <= old)
4600                 /* Shrinking suspended region */
4601                 mddev->pers->quiesce(mddev, 2);
4602         else {
4603                 /* Expanding suspended region - need to wait */
4604                 mddev->pers->quiesce(mddev, 1);
4605                 mddev->pers->quiesce(mddev, 0);
4606         }
4607         err = 0;
4608 unlock:
4609         mddev_unlock(mddev);
4610         return err ?: len;
4611 }
4612 static struct md_sysfs_entry md_suspend_hi =
4613 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4614
4615 static ssize_t
4616 reshape_position_show(struct mddev *mddev, char *page)
4617 {
4618         if (mddev->reshape_position != MaxSector)
4619                 return sprintf(page, "%llu\n",
4620                                (unsigned long long)mddev->reshape_position);
4621         strcpy(page, "none\n");
4622         return 5;
4623 }
4624
4625 static ssize_t
4626 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4627 {
4628         struct md_rdev *rdev;
4629         unsigned long long new;
4630         int err;
4631
4632         err = kstrtoull(buf, 10, &new);
4633         if (err < 0)
4634                 return err;
4635         if (new != (sector_t)new)
4636                 return -EINVAL;
4637         err = mddev_lock(mddev);
4638         if (err)
4639                 return err;
4640         err = -EBUSY;
4641         if (mddev->pers)
4642                 goto unlock;
4643         mddev->reshape_position = new;
4644         mddev->delta_disks = 0;
4645         mddev->reshape_backwards = 0;
4646         mddev->new_level = mddev->level;
4647         mddev->new_layout = mddev->layout;
4648         mddev->new_chunk_sectors = mddev->chunk_sectors;
4649         rdev_for_each(rdev, mddev)
4650                 rdev->new_data_offset = rdev->data_offset;
4651         err = 0;
4652 unlock:
4653         mddev_unlock(mddev);
4654         return err ?: len;
4655 }
4656
4657 static struct md_sysfs_entry md_reshape_position =
4658 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4659        reshape_position_store);
4660
4661 static ssize_t
4662 reshape_direction_show(struct mddev *mddev, char *page)
4663 {
4664         return sprintf(page, "%s\n",
4665                        mddev->reshape_backwards ? "backwards" : "forwards");
4666 }
4667
4668 static ssize_t
4669 reshape_direction_store(struct mddev *mddev, const char *buf, size_t len)
4670 {
4671         int backwards = 0;
4672         int err;
4673
4674         if (cmd_match(buf, "forwards"))
4675                 backwards = 0;
4676         else if (cmd_match(buf, "backwards"))
4677                 backwards = 1;
4678         else
4679                 return -EINVAL;
4680         if (mddev->reshape_backwards == backwards)
4681                 return len;
4682
4683         err = mddev_lock(mddev);
4684         if (err)
4685                 return err;
4686         /* check if we are allowed to change */
4687         if (mddev->delta_disks)
4688                 err = -EBUSY;
4689         else if (mddev->persistent &&
4690             mddev->major_version == 0)
4691                 err =  -EINVAL;
4692         else
4693                 mddev->reshape_backwards = backwards;
4694         mddev_unlock(mddev);
4695         return err ?: len;
4696 }
4697
4698 static struct md_sysfs_entry md_reshape_direction =
4699 __ATTR(reshape_direction, S_IRUGO|S_IWUSR, reshape_direction_show,
4700        reshape_direction_store);
4701
4702 static ssize_t
4703 array_size_show(struct mddev *mddev, char *page)
4704 {
4705         if (mddev->external_size)
4706                 return sprintf(page, "%llu\n",
4707                                (unsigned long long)mddev->array_sectors/2);
4708         else
4709                 return sprintf(page, "default\n");
4710 }
4711
4712 static ssize_t
4713 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4714 {
4715         sector_t sectors;
4716         int err;
4717
4718         err = mddev_lock(mddev);
4719         if (err)
4720                 return err;
4721
4722         if (strncmp(buf, "default", 7) == 0) {
4723                 if (mddev->pers)
4724                         sectors = mddev->pers->size(mddev, 0, 0);
4725                 else
4726                         sectors = mddev->array_sectors;
4727
4728                 mddev->external_size = 0;
4729         } else {
4730                 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4731                         err = -EINVAL;
4732                 else if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4733                         err = -E2BIG;
4734                 else
4735                         mddev->external_size = 1;
4736         }
4737
4738         if (!err) {
4739                 mddev->array_sectors = sectors;
4740                 if (mddev->pers) {
4741                         set_capacity(mddev->gendisk, mddev->array_sectors);
4742                         revalidate_disk(mddev->gendisk);
4743                 }
4744         }
4745         mddev_unlock(mddev);
4746         return err ?: len;
4747 }
4748
4749 static struct md_sysfs_entry md_array_size =
4750 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4751        array_size_store);
4752
4753 static struct attribute *md_default_attrs[] = {
4754         &md_level.attr,
4755         &md_layout.attr,
4756         &md_raid_disks.attr,
4757         &md_chunk_size.attr,
4758         &md_size.attr,
4759         &md_resync_start.attr,
4760         &md_metadata.attr,
4761         &md_new_device.attr,
4762         &md_safe_delay.attr,
4763         &md_array_state.attr,
4764         &md_reshape_position.attr,
4765         &md_reshape_direction.attr,
4766         &md_array_size.attr,
4767         &max_corr_read_errors.attr,
4768         NULL,
4769 };
4770
4771 static struct attribute *md_redundancy_attrs[] = {
4772         &md_scan_mode.attr,
4773         &md_last_scan_mode.attr,
4774         &md_mismatches.attr,
4775         &md_sync_min.attr,
4776         &md_sync_max.attr,
4777         &md_sync_speed.attr,
4778         &md_sync_force_parallel.attr,
4779         &md_sync_completed.attr,
4780         &md_min_sync.attr,
4781         &md_max_sync.attr,
4782         &md_suspend_lo.attr,
4783         &md_suspend_hi.attr,
4784         &md_bitmap.attr,
4785         &md_degraded.attr,
4786         NULL,
4787 };
4788 static struct attribute_group md_redundancy_group = {
4789         .name = NULL,
4790         .attrs = md_redundancy_attrs,
4791 };
4792
4793 static ssize_t
4794 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4795 {
4796         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4797         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4798         ssize_t rv;
4799
4800         if (!entry->show)
4801                 return -EIO;
4802         spin_lock(&all_mddevs_lock);
4803         if (list_empty(&mddev->all_mddevs)) {
4804                 spin_unlock(&all_mddevs_lock);
4805                 return -EBUSY;
4806         }
4807         mddev_get(mddev);
4808         spin_unlock(&all_mddevs_lock);
4809
4810         rv = entry->show(mddev, page);
4811         mddev_put(mddev);
4812         return rv;
4813 }
4814
4815 static ssize_t
4816 md_attr_store(struct kobject *kobj, struct attribute *attr,
4817               const char *page, size_t length)
4818 {
4819         struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4820         struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4821         ssize_t rv;
4822
4823         if (!entry->store)
4824                 return -EIO;
4825         if (!capable(CAP_SYS_ADMIN))
4826                 return -EACCES;
4827         spin_lock(&all_mddevs_lock);
4828         if (list_empty(&mddev->all_mddevs)) {
4829                 spin_unlock(&all_mddevs_lock);
4830                 return -EBUSY;
4831         }
4832         mddev_get(mddev);
4833         spin_unlock(&all_mddevs_lock);
4834         rv = entry->store(mddev, page, length);
4835         mddev_put(mddev);
4836         return rv;
4837 }
4838
4839 static void md_free(struct kobject *ko)
4840 {
4841         struct mddev *mddev = container_of(ko, struct mddev, kobj);
4842
4843         if (mddev->sysfs_state)
4844                 sysfs_put(mddev->sysfs_state);
4845
4846         if (mddev->queue)
4847                 blk_cleanup_queue(mddev->queue);
4848         if (mddev->gendisk) {
4849                 del_gendisk(mddev->gendisk);
4850                 put_disk(mddev->gendisk);
4851         }
4852
4853         kfree(mddev);
4854 }
4855
4856 static const struct sysfs_ops md_sysfs_ops = {
4857         .show   = md_attr_show,
4858         .store  = md_attr_store,
4859 };
4860 static struct kobj_type md_ktype = {
4861         .release        = md_free,
4862         .sysfs_ops      = &md_sysfs_ops,
4863         .default_attrs  = md_default_attrs,
4864 };
4865
4866 int mdp_major = 0;
4867
4868 static void mddev_delayed_delete(struct work_struct *ws)
4869 {
4870         struct mddev *mddev = container_of(ws, struct mddev, del_work);
4871
4872         sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4873         kobject_del(&mddev->kobj);
4874         kobject_put(&mddev->kobj);
4875 }
4876
4877 static int md_alloc(dev_t dev, char *name)
4878 {
4879         static DEFINE_MUTEX(disks_mutex);
4880         struct mddev *mddev = mddev_find(dev);
4881         struct gendisk *disk;
4882         int partitioned;
4883         int shift;
4884         int unit;
4885         int error;
4886
4887         if (!mddev)
4888                 return -ENODEV;
4889
4890         partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4891         shift = partitioned ? MdpMinorShift : 0;
4892         unit = MINOR(mddev->unit) >> shift;
4893
4894         /* wait for any previous instance of this device to be
4895          * completely removed (mddev_delayed_delete).
4896          */
4897         flush_workqueue(md_misc_wq);
4898
4899         mutex_lock(&disks_mutex);
4900         error = -EEXIST;
4901         if (mddev->gendisk)
4902                 goto abort;
4903
4904         if (name) {
4905                 /* Need to ensure that 'name' is not a duplicate.
4906                  */
4907                 struct mddev *mddev2;
4908                 spin_lock(&all_mddevs_lock);
4909
4910                 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4911                         if (mddev2->gendisk &&
4912                             strcmp(mddev2->gendisk->disk_name, name) == 0) {
4913                                 spin_unlock(&all_mddevs_lock);
4914                                 goto abort;
4915                         }
4916                 spin_unlock(&all_mddevs_lock);
4917         }
4918
4919         error = -ENOMEM;
4920         mddev->queue = blk_alloc_queue(GFP_KERNEL);
4921         if (!mddev->queue)
4922                 goto abort;
4923         mddev->queue->queuedata = mddev;
4924
4925         blk_queue_make_request(mddev->queue, md_make_request);
4926         blk_set_stacking_limits(&mddev->queue->limits);
4927
4928         disk = alloc_disk(1 << shift);
4929         if (!disk) {
4930                 blk_cleanup_queue(mddev->queue);
4931                 mddev->queue = NULL;
4932                 goto abort;
4933         }
4934         disk->major = MAJOR(mddev->unit);
4935         disk->first_minor = unit << shift;
4936         if (name)
4937                 strcpy(disk->disk_name, name);
4938         else if (partitioned)
4939                 sprintf(disk->disk_name, "md_d%d", unit);
4940         else
4941                 sprintf(disk->disk_name, "md%d", unit);
4942         disk->fops = &md_fops;
4943         disk->private_data = mddev;
4944         disk->queue = mddev->queue;
4945         blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4946         /* Allow extended partitions.  This makes the
4947          * 'mdp' device redundant, but we can't really
4948          * remove it now.
4949          */
4950         disk->flags |= GENHD_FL_EXT_DEVT;
4951         mddev->gendisk = disk;
4952         /* As soon as we call add_disk(), another thread could get
4953          * through to md_open, so make sure it doesn't get too far
4954          */
4955         mutex_lock(&mddev->open_mutex);
4956         add_disk(disk);
4957
4958         error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4959                                      &disk_to_dev(disk)->kobj, "%s", "md");
4960         if (error) {
4961                 /* This isn't possible, but as kobject_init_and_add is marked
4962                  * __must_check, we must do something with the result
4963                  */
4964                 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4965                        disk->disk_name);
4966                 error = 0;
4967         }
4968         if (mddev->kobj.sd &&
4969             sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4970                 printk(KERN_DEBUG "pointless warning\n");
4971         mutex_unlock(&mddev->open_mutex);
4972  abort:
4973         mutex_unlock(&disks_mutex);
4974         if (!error && mddev->kobj.sd) {
4975                 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4976                 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4977         }
4978         mddev_put(mddev);
4979         return error;
4980 }
4981
4982 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4983 {
4984         md_alloc(dev, NULL);
4985         return NULL;
4986 }
4987
4988 static int add_named_array(const char *val, struct kernel_param *kp)
4989 {
4990         /* val must be "md_*" where * is not all digits.
4991          * We allocate an array with a large free minor number, and
4992          * set the name to val.  val must not already be an active name.
4993          */
4994         int len = strlen(val);
4995         char buf[DISK_NAME_LEN];
4996
4997         while (len && val[len-1] == '\n')
4998                 len--;
4999         if (len >= DISK_NAME_LEN)
5000                 return -E2BIG;
5001         strlcpy(buf, val, len+1);
5002         if (strncmp(buf, "md_", 3) != 0)
5003                 return -EINVAL;
5004         return md_alloc(0, buf);
5005 }
5006
5007 static void md_safemode_timeout(unsigned long data)
5008 {
5009         struct mddev *mddev = (struct mddev *) data;
5010
5011         if (!atomic_read(&mddev->writes_pending)) {
5012                 mddev->safemode = 1;
5013                 if (mddev->external)
5014                         sysfs_notify_dirent_safe(mddev->sysfs_state);
5015         }
5016         md_wakeup_thread(mddev->thread);
5017 }
5018
5019 static int start_dirty_degraded;
5020
5021 int md_run(struct mddev *mddev)
5022 {
5023         int err;
5024         struct md_rdev *rdev;
5025         struct md_personality *pers;
5026
5027         if (list_empty(&mddev->disks))
5028                 /* cannot run an array with no devices.. */
5029                 return -EINVAL;
5030
5031         if (mddev->pers)
5032                 return -EBUSY;
5033         /* Cannot run until previous stop completes properly */
5034         if (mddev->sysfs_active)
5035                 return -EBUSY;
5036
5037         /*
5038          * Analyze all RAID superblock(s)
5039          */
5040         if (!mddev->raid_disks) {
5041                 if (!mddev->persistent)
5042                         return -EINVAL;
5043                 analyze_sbs(mddev);
5044         }
5045
5046         if (mddev->level != LEVEL_NONE)
5047                 request_module("md-level-%d", mddev->level);
5048         else if (mddev->clevel[0])
5049                 request_module("md-%s", mddev->clevel);
5050
5051         /*
5052          * Drop all container device buffers, from now on
5053          * the only valid external interface is through the md
5054          * device.
5055          */
5056         rdev_for_each(rdev, mddev) {
5057                 if (test_bit(Faulty, &rdev->flags))
5058                         continue;
5059                 sync_blockdev(rdev->bdev);
5060                 invalidate_bdev(rdev->bdev);
5061
5062                 /* perform some consistency tests on the device.
5063                  * We don't want the data to overlap the metadata,
5064                  * Internal Bitmap issues have been handled elsewhere.
5065                  */
5066                 if (rdev->meta_bdev) {
5067                         /* Nothing to check */;
5068                 } else if (rdev->data_offset < rdev->sb_start) {
5069                         if (mddev->dev_sectors &&
5070                             rdev->data_offset + mddev->dev_sectors
5071                             > rdev->sb_start) {
5072                                 printk("md: %s: data overlaps metadata\n",
5073                                        mdname(mddev));
5074                                 return -EINVAL;
5075                         }
5076                 } else {
5077                         if (rdev->sb_start + rdev->sb_size/512
5078                             > rdev->data_offset) {
5079                                 printk("md: %s: metadata overlaps data\n",
5080                                        mdname(mddev));
5081                                 return -EINVAL;
5082                         }
5083                 }
5084                 sysfs_notify_dirent_safe(rdev->sysfs_state);
5085         }
5086
5087         if (mddev->bio_set == NULL)
5088                 mddev->bio_set = bioset_create(BIO_POOL_SIZE, 0);
5089
5090         spin_lock(&pers_lock);
5091         pers = find_pers(mddev->level, mddev->clevel);
5092         if (!pers || !try_module_get(pers->owner)) {
5093                 spin_unlock(&pers_lock);
5094                 if (mddev->level != LEVEL_NONE)
5095                         printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
5096                                mddev->level);
5097                 else
5098                         printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
5099                                mddev->clevel);
5100                 return -EINVAL;
5101         }
5102         spin_unlock(&pers_lock);
5103         if (mddev->level != pers->level) {
5104                 mddev->level = pers->level;
5105                 mddev->new_level = pers->level;
5106         }
5107         strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
5108
5109         if (mddev->reshape_position != MaxSector &&
5110             pers->start_reshape == NULL) {
5111                 /* This personality cannot handle reshaping... */
5112                 module_put(pers->owner);
5113                 return -EINVAL;
5114         }
5115
5116         if (pers->sync_request) {
5117                 /* Warn if this is a potentially silly
5118                  * configuration.
5119                  */
5120                 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5121                 struct md_rdev *rdev2;
5122                 int warned = 0;
5123
5124                 rdev_for_each(rdev, mddev)
5125                         rdev_for_each(rdev2, mddev) {
5126                                 if (rdev < rdev2 &&
5127                                     rdev->bdev->bd_contains ==
5128                                     rdev2->bdev->bd_contains) {
5129                                         printk(KERN_WARNING
5130                                                "%s: WARNING: %s appears to be"
5131                                                " on the same physical disk as"
5132                                                " %s.\n",
5133                                                mdname(mddev),
5134                                                bdevname(rdev->bdev,b),
5135                                                bdevname(rdev2->bdev,b2));
5136                                         warned = 1;
5137                                 }
5138                         }
5139
5140                 if (warned)
5141                         printk(KERN_WARNING
5142                                "True protection against single-disk"
5143                                " failure might be compromised.\n");
5144         }
5145
5146         mddev->recovery = 0;
5147         /* may be over-ridden by personality */
5148         mddev->resync_max_sectors = mddev->dev_sectors;
5149
5150         mddev->ok_start_degraded = start_dirty_degraded;
5151
5152         if (start_readonly && mddev->ro == 0)
5153                 mddev->ro = 2; /* read-only, but switch on first write */
5154
5155         err = pers->run(mddev);
5156         if (err)
5157                 printk(KERN_ERR "md: pers->run() failed ...\n");
5158         else if (pers->size(mddev, 0, 0) < mddev->array_sectors) {
5159                 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
5160                           " but 'external_size' not in effect?\n", __func__);
5161                 printk(KERN_ERR
5162                        "md: invalid array_size %llu > default size %llu\n",
5163                        (unsigned long long)mddev->array_sectors / 2,
5164                        (unsigned long long)pers->size(mddev, 0, 0) / 2);
5165                 err = -EINVAL;
5166         }
5167         if (err == 0 && pers->sync_request &&
5168             (mddev->bitmap_info.file || mddev->bitmap_info.offset)) {
5169                 struct bitmap *bitmap;
5170
5171                 bitmap = bitmap_create(mddev, -1);
5172                 if (IS_ERR(bitmap)) {
5173                         err = PTR_ERR(bitmap);
5174                         printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
5175                                mdname(mddev), err);
5176                 } else
5177                         mddev->bitmap = bitmap;
5178
5179         }
5180         if (err) {
5181                 mddev_detach(mddev);
5182                 if (mddev->private)
5183                         pers->free(mddev, mddev->private);
5184                 mddev->private = NULL;
5185                 module_put(pers->owner);
5186                 bitmap_destroy(mddev);
5187                 return err;
5188         }
5189         if (mddev->queue) {
5190                 mddev->queue->backing_dev_info.congested_data = mddev;
5191                 mddev->queue->backing_dev_info.congested_fn = md_congested;
5192                 blk_queue_merge_bvec(mddev->queue, md_mergeable_bvec);
5193         }
5194         if (pers->sync_request) {
5195                 if (mddev->kobj.sd &&
5196                     sysfs_create_group(&mddev->kobj, &md_redundancy_group))
5197                         printk(KERN_WARNING
5198                                "md: cannot register extra attributes for %s\n",
5199                                mdname(mddev));
5200                 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
5201         } else if (mddev->ro == 2) /* auto-readonly not meaningful */
5202                 mddev->ro = 0;
5203
5204         atomic_set(&mddev->writes_pending,0);
5205         atomic_set(&mddev->max_corr_read_errors,
5206                    MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
5207         mddev->safemode = 0;
5208         mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
5209         mddev->in_sync = 1;
5210         smp_wmb();
5211         spin_lock(&mddev->lock);
5212         mddev->pers = pers;
5213         mddev->ready = 1;
5214         spin_unlock(&mddev->lock);
5215         rdev_for_each(rdev, mddev)
5216                 if (rdev->raid_disk >= 0)
5217                         if (sysfs_link_rdev(mddev, rdev))
5218                                 /* failure here is OK */;
5219
5220         if (mddev->degraded && !mddev->ro)
5221                 /* This ensures that recovering status is reported immediately
5222                  * via sysfs - until a lack of spares is confirmed.
5223                  */
5224                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5225         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5226
5227         if (mddev->flags & MD_UPDATE_SB_FLAGS)
5228                 md_update_sb(mddev, 0);
5229
5230         md_new_event(mddev);
5231         sysfs_notify_dirent_safe(mddev->sysfs_state);
5232         sysfs_notify_dirent_safe(mddev->sysfs_action);
5233         sysfs_notify(&mddev->kobj, NULL, "degraded");
5234         return 0;
5235 }
5236 EXPORT_SYMBOL_GPL(md_run);
5237
5238 static int do_md_run(struct mddev *mddev)
5239 {
5240         int err;
5241
5242         err = md_run(mddev);
5243         if (err)
5244                 goto out;
5245         err = bitmap_load(mddev);
5246         if (err) {
5247                 bitmap_destroy(mddev);
5248                 goto out;
5249         }
5250
5251         md_wakeup_thread(mddev->thread);
5252         md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
5253
5254         set_capacity(mddev->gendisk, mddev->array_sectors);
5255         revalidate_disk(mddev->gendisk);
5256         mddev->changed = 1;
5257         kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5258 out:
5259         return err;
5260 }
5261
5262 static int restart_array(struct mddev *mddev)
5263 {
5264         struct gendisk *disk = mddev->gendisk;
5265
5266         /* Complain if it has no devices */
5267         if (list_empty(&mddev->disks))
5268                 return -ENXIO;
5269         if (!mddev->pers)
5270                 return -EINVAL;
5271         if (!mddev->ro)
5272                 return -EBUSY;
5273         mddev->safemode = 0;
5274         mddev->ro = 0;
5275         set_disk_ro(disk, 0);
5276         printk(KERN_INFO "md: %s switched to read-write mode.\n",
5277                 mdname(mddev));
5278         /* Kick recovery or resync if necessary */
5279         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5280         md_wakeup_thread(mddev->thread);
5281         md_wakeup_thread(mddev->sync_thread);
5282         sysfs_notify_dirent_safe(mddev->sysfs_state);
5283         return 0;
5284 }
5285
5286 static void md_clean(struct mddev *mddev)
5287 {
5288         mddev->array_sectors = 0;
5289         mddev->external_size = 0;
5290         mddev->dev_sectors = 0;
5291         mddev->raid_disks = 0;
5292         mddev->recovery_cp = 0;
5293         mddev->resync_min = 0;
5294         mddev->resync_max = MaxSector;
5295         mddev->reshape_position = MaxSector;
5296         mddev->external = 0;
5297         mddev->persistent = 0;
5298         mddev->level = LEVEL_NONE;
5299         mddev->clevel[0] = 0;
5300         mddev->flags = 0;
5301         mddev->ro = 0;
5302         mddev->metadata_type[0] = 0;
5303         mddev->chunk_sectors = 0;
5304         mddev->ctime = mddev->utime = 0;
5305         mddev->layout = 0;
5306         mddev->max_disks = 0;
5307         mddev->events = 0;
5308         mddev->can_decrease_events = 0;
5309         mddev->delta_disks = 0;
5310         mddev->reshape_backwards = 0;
5311         mddev->new_level = LEVEL_NONE;
5312         mddev->new_layout = 0;
5313         mddev->new_chunk_sectors = 0;
5314         mddev->curr_resync = 0;
5315         atomic64_set(&mddev->resync_mismatches, 0);
5316         mddev->suspend_lo = mddev->suspend_hi = 0;
5317         mddev->sync_speed_min = mddev->sync_speed_max = 0;
5318         mddev->recovery = 0;
5319         mddev->in_sync = 0;
5320         mddev->changed = 0;
5321         mddev->degraded = 0;
5322         mddev->safemode = 0;
5323         mddev->private = NULL;
5324         mddev->merge_check_needed = 0;
5325         mddev->bitmap_info.offset = 0;
5326         mddev->bitmap_info.default_offset = 0;
5327         mddev->bitmap_info.default_space = 0;
5328         mddev->bitmap_info.chunksize = 0;
5329         mddev->bitmap_info.daemon_sleep = 0;
5330         mddev->bitmap_info.max_write_behind = 0;
5331 }
5332
5333 static void __md_stop_writes(struct mddev *mddev)
5334 {
5335         if (mddev_is_clustered(mddev))
5336                 md_cluster_ops->metadata_update_start(mddev);
5337         set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5338         flush_workqueue(md_misc_wq);
5339         if (mddev->sync_thread) {
5340                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5341                 md_reap_sync_thread(mddev);
5342         }
5343
5344         del_timer_sync(&mddev->safemode_timer);
5345
5346         bitmap_flush(mddev);
5347         md_super_wait(mddev);
5348
5349         if (mddev->ro == 0 &&
5350             (!mddev->in_sync || (mddev->flags & MD_UPDATE_SB_FLAGS))) {
5351                 /* mark array as shutdown cleanly */
5352                 mddev->in_sync = 1;
5353                 md_update_sb(mddev, 1);
5354         }
5355         if (mddev_is_clustered(mddev))
5356                 md_cluster_ops->metadata_update_finish(mddev);
5357 }
5358
5359 void md_stop_writes(struct mddev *mddev)
5360 {
5361         mddev_lock_nointr(mddev);
5362         __md_stop_writes(mddev);
5363         mddev_unlock(mddev);
5364 }
5365 EXPORT_SYMBOL_GPL(md_stop_writes);
5366
5367 static void mddev_detach(struct mddev *mddev)
5368 {
5369         struct bitmap *bitmap = mddev->bitmap;
5370         /* wait for behind writes to complete */
5371         if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
5372                 printk(KERN_INFO "md:%s: behind writes in progress - waiting to stop.\n",
5373                        mdname(mddev));
5374                 /* need to kick something here to make sure I/O goes? */
5375                 wait_event(bitmap->behind_wait,
5376                            atomic_read(&bitmap->behind_writes) == 0);
5377         }
5378         if (mddev->pers && mddev->pers->quiesce) {
5379                 mddev->pers->quiesce(mddev, 1);
5380                 mddev->pers->quiesce(mddev, 0);
5381         }
5382         md_unregister_thread(&mddev->thread);
5383         if (mddev->queue)
5384                 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5385 }
5386
5387 static void __md_stop(struct mddev *mddev)
5388 {
5389         struct md_personality *pers = mddev->pers;
5390         mddev_detach(mddev);
5391         /* Ensure ->event_work is done */
5392         flush_workqueue(md_misc_wq);
5393         spin_lock(&mddev->lock);
5394         mddev->ready = 0;
5395         mddev->pers = NULL;
5396         spin_unlock(&mddev->lock);
5397         pers->free(mddev, mddev->private);
5398         mddev->private = NULL;
5399         if (pers->sync_request && mddev->to_remove == NULL)
5400                 mddev->to_remove = &md_redundancy_group;
5401         module_put(pers->owner);
5402         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5403 }
5404
5405 void md_stop(struct mddev *mddev)
5406 {
5407         /* stop the array and free an attached data structures.
5408          * This is called from dm-raid
5409          */
5410         __md_stop(mddev);
5411         bitmap_destroy(mddev);
5412         if (mddev->bio_set)
5413                 bioset_free(mddev->bio_set);
5414 }
5415
5416 EXPORT_SYMBOL_GPL(md_stop);
5417
5418 static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
5419 {
5420         int err = 0;
5421         int did_freeze = 0;
5422
5423         if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5424                 did_freeze = 1;
5425                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5426                 md_wakeup_thread(mddev->thread);
5427         }
5428         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5429                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5430         if (mddev->sync_thread)
5431                 /* Thread might be blocked waiting for metadata update
5432                  * which will now never happen */
5433                 wake_up_process(mddev->sync_thread->tsk);
5434
5435         mddev_unlock(mddev);
5436         wait_event(resync_wait, !test_bit(MD_RECOVERY_RUNNING,
5437                                           &mddev->recovery));
5438         mddev_lock_nointr(mddev);
5439
5440         mutex_lock(&mddev->open_mutex);
5441         if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5442             mddev->sync_thread ||
5443             test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5444             (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5445                 printk("md: %s still in use.\n",mdname(mddev));
5446                 if (did_freeze) {
5447                         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5448                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5449                         md_wakeup_thread(mddev->thread);
5450                 }
5451                 err = -EBUSY;
5452                 goto out;
5453         }
5454         if (mddev->pers) {
5455                 __md_stop_writes(mddev);
5456
5457                 err  = -ENXIO;
5458                 if (mddev->ro==1)
5459                         goto out;
5460                 mddev->ro = 1;
5461                 set_disk_ro(mddev->gendisk, 1);
5462                 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5463                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5464                 md_wakeup_thread(mddev->thread);
5465                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5466                 err = 0;
5467         }
5468 out:
5469         mutex_unlock(&mddev->open_mutex);
5470         return err;
5471 }
5472
5473 /* mode:
5474  *   0 - completely stop and dis-assemble array
5475  *   2 - stop but do not disassemble array
5476  */
5477 static int do_md_stop(struct mddev *mddev, int mode,
5478                       struct block_device *bdev)
5479 {
5480         struct gendisk *disk = mddev->gendisk;
5481         struct md_rdev *rdev;
5482         int did_freeze = 0;
5483
5484         if (!test_bit(MD_RECOVERY_FROZEN, &mddev->recovery)) {
5485                 did_freeze = 1;
5486                 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5487                 md_wakeup_thread(mddev->thread);
5488         }
5489         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5490                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5491         if (mddev->sync_thread)
5492                 /* Thread might be blocked waiting for metadata update
5493                  * which will now never happen */
5494                 wake_up_process(mddev->sync_thread->tsk);
5495
5496         mddev_unlock(mddev);
5497         wait_event(resync_wait, (mddev->sync_thread == NULL &&
5498                                  !test_bit(MD_RECOVERY_RUNNING,
5499                                            &mddev->recovery)));
5500         mddev_lock_nointr(mddev);
5501
5502         mutex_lock(&mddev->open_mutex);
5503         if ((mddev->pers && atomic_read(&mddev->openers) > !!bdev) ||
5504             mddev->sysfs_active ||
5505             mddev->sync_thread ||
5506             test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
5507             (bdev && !test_bit(MD_STILL_CLOSED, &mddev->flags))) {
5508                 printk("md: %s still in use.\n",mdname(mddev));
5509                 mutex_unlock(&mddev->open_mutex);
5510                 if (did_freeze) {
5511                         clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5512                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5513                         md_wakeup_thread(mddev->thread);
5514                 }
5515                 return -EBUSY;
5516         }
5517         if (mddev->pers) {
5518                 if (mddev->ro)
5519                         set_disk_ro(disk, 0);
5520
5521                 __md_stop_writes(mddev);
5522                 __md_stop(mddev);
5523                 mddev->queue->merge_bvec_fn = NULL;
5524                 mddev->queue->backing_dev_info.congested_fn = NULL;
5525
5526                 /* tell userspace to handle 'inactive' */
5527                 sysfs_notify_dirent_safe(mddev->sysfs_state);
5528
5529                 rdev_for_each(rdev, mddev)
5530                         if (rdev->raid_disk >= 0)
5531                                 sysfs_unlink_rdev(mddev, rdev);
5532
5533                 set_capacity(disk, 0);
5534                 mutex_unlock(&mddev->open_mutex);
5535                 mddev->changed = 1;
5536                 revalidate_disk(disk);
5537
5538                 if (mddev->ro)
5539                         mddev->ro = 0;
5540         } else
5541                 mutex_unlock(&mddev->open_mutex);
5542         /*
5543          * Free resources if final stop
5544          */
5545         if (mode == 0) {
5546                 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5547
5548                 bitmap_destroy(mddev);
5549                 if (mddev->bitmap_info.file) {
5550                         struct file *f = mddev->bitmap_info.file;
5551                         spin_lock(&mddev->lock);
5552                         mddev->bitmap_info.file = NULL;
5553                         spin_unlock(&mddev->lock);
5554                         fput(f);
5555                 }
5556                 mddev->bitmap_info.offset = 0;
5557
5558                 export_array(mddev);
5559
5560                 md_clean(mddev);
5561                 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5562                 if (mddev->hold_active == UNTIL_STOP)
5563                         mddev->hold_active = 0;
5564         }
5565         blk_integrity_unregister(disk);
5566         md_new_event(mddev);
5567         sysfs_notify_dirent_safe(mddev->sysfs_state);
5568         return 0;
5569 }
5570
5571 #ifndef MODULE
5572 static void autorun_array(struct mddev *mddev)
5573 {
5574         struct md_rdev *rdev;
5575         int err;
5576
5577         if (list_empty(&mddev->disks))
5578                 return;
5579
5580         printk(KERN_INFO "md: running: ");
5581
5582         rdev_for_each(rdev, mddev) {
5583                 char b[BDEVNAME_SIZE];
5584                 printk("<%s>", bdevname(rdev->bdev,b));
5585         }
5586         printk("\n");
5587
5588         err = do_md_run(mddev);
5589         if (err) {
5590                 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5591                 do_md_stop(mddev, 0, NULL);
5592         }
5593 }
5594
5595 /*
5596  * lets try to run arrays based on all disks that have arrived
5597  * until now. (those are in pending_raid_disks)
5598  *
5599  * the method: pick the first pending disk, collect all disks with
5600  * the same UUID, remove all from the pending list and put them into
5601  * the 'same_array' list. Then order this list based on superblock
5602  * update time (freshest comes first), kick out 'old' disks and
5603  * compare superblocks. If everything's fine then run it.
5604  *
5605  * If "unit" is allocated, then bump its reference count
5606  */
5607 static void autorun_devices(int part)
5608 {
5609         struct md_rdev *rdev0, *rdev, *tmp;
5610         struct mddev *mddev;
5611         char b[BDEVNAME_SIZE];
5612
5613         printk(KERN_INFO "md: autorun ...\n");
5614         while (!list_empty(&pending_raid_disks)) {
5615                 int unit;
5616                 dev_t dev;
5617                 LIST_HEAD(candidates);
5618                 rdev0 = list_entry(pending_raid_disks.next,
5619                                          struct md_rdev, same_set);
5620
5621                 printk(KERN_INFO "md: considering %s ...\n",
5622                         bdevname(rdev0->bdev,b));
5623                 INIT_LIST_HEAD(&candidates);
5624                 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5625                         if (super_90_load(rdev, rdev0, 0) >= 0) {
5626                                 printk(KERN_INFO "md:  adding %s ...\n",
5627                                         bdevname(rdev->bdev,b));
5628                                 list_move(&rdev->same_set, &candidates);
5629                         }
5630                 /*
5631                  * now we have a set of devices, with all of them having
5632                  * mostly sane superblocks. It's time to allocate the
5633                  * mddev.
5634                  */
5635                 if (part) {
5636                         dev = MKDEV(mdp_major,
5637                                     rdev0->preferred_minor << MdpMinorShift);
5638                         unit = MINOR(dev) >> MdpMinorShift;
5639                 } else {
5640                         dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5641                         unit = MINOR(dev);
5642                 }
5643                 if (rdev0->preferred_minor != unit) {
5644                         printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5645                                bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5646                         break;
5647                 }
5648
5649                 md_probe(dev, NULL, NULL);
5650                 mddev = mddev_find(dev);
5651                 if (!mddev || !mddev->gendisk) {
5652                         if (mddev)
5653                                 mddev_put(mddev);
5654                         printk(KERN_ERR
5655                                 "md: cannot allocate memory for md drive.\n");
5656                         break;
5657                 }
5658                 if (mddev_lock(mddev))
5659                         printk(KERN_WARNING "md: %s locked, cannot run\n",
5660                                mdname(mddev));
5661                 else if (mddev->raid_disks || mddev->major_version
5662                          || !list_empty(&mddev->disks)) {
5663                         printk(KERN_WARNING
5664                                 "md: %s already running, cannot run %s\n",
5665                                 mdname(mddev), bdevname(rdev0->bdev,b));
5666                         mddev_unlock(mddev);
5667                 } else {
5668                         printk(KERN_INFO "md: created %s\n", mdname(mddev));
5669                         mddev->persistent = 1;
5670                         rdev_for_each_list(rdev, tmp, &candidates) {
5671                                 list_del_init(&rdev->same_set);
5672                                 if (bind_rdev_to_array(rdev, mddev))
5673                                         export_rdev(rdev);
5674                         }
5675                         autorun_array(mddev);
5676                         mddev_unlock(mddev);
5677                 }
5678                 /* on success, candidates will be empty, on error
5679                  * it won't...
5680                  */
5681                 rdev_for_each_list(rdev, tmp, &candidates) {
5682                         list_del_init(&rdev->same_set);
5683                         export_rdev(rdev);
5684                 }
5685                 mddev_put(mddev);
5686         }
5687         printk(KERN_INFO "md: ... autorun DONE.\n");
5688 }
5689 #endif /* !MODULE */
5690
5691 static int get_version(void __user *arg)
5692 {
5693         mdu_version_t ver;
5694
5695         ver.major = MD_MAJOR_VERSION;
5696         ver.minor = MD_MINOR_VERSION;
5697         ver.patchlevel = MD_PATCHLEVEL_VERSION;
5698
5699         if (copy_to_user(arg, &ver, sizeof(ver)))
5700                 return -EFAULT;
5701
5702         return 0;
5703 }
5704
5705 static int get_array_info(struct mddev *mddev, void __user *arg)
5706 {
5707         mdu_array_info_t info;
5708         int nr,working,insync,failed,spare;
5709         struct md_rdev *rdev;
5710
5711         nr = working = insync = failed = spare = 0;
5712         rcu_read_lock();
5713         rdev_for_each_rcu(rdev, mddev) {
5714                 nr++;
5715                 if (test_bit(Faulty, &rdev->flags))
5716                         failed++;
5717                 else {
5718                         working++;
5719                         if (test_bit(In_sync, &rdev->flags))
5720                                 insync++;
5721                         else
5722                                 spare++;
5723                 }
5724         }
5725         rcu_read_unlock();
5726
5727         info.major_version = mddev->major_version;
5728         info.minor_version = mddev->minor_version;
5729         info.patch_version = MD_PATCHLEVEL_VERSION;
5730         info.ctime         = mddev->ctime;
5731         info.level         = mddev->level;
5732         info.size          = mddev->dev_sectors / 2;
5733         if (info.size != mddev->dev_sectors / 2) /* overflow */
5734                 info.size = -1;
5735         info.nr_disks      = nr;
5736         info.raid_disks    = mddev->raid_disks;
5737         info.md_minor      = mddev->md_minor;
5738         info.not_persistent= !mddev->persistent;
5739
5740         info.utime         = mddev->utime;
5741         info.state         = 0;
5742         if (mddev->in_sync)
5743                 info.state = (1<<MD_SB_CLEAN);
5744         if (mddev->bitmap && mddev->bitmap_info.offset)
5745                 info.state |= (1<<MD_SB_BITMAP_PRESENT);
5746         if (mddev_is_clustered(mddev))
5747                 info.state |= (1<<MD_SB_CLUSTERED);
5748         info.active_disks  = insync;
5749         info.working_disks = working;
5750         info.failed_disks  = failed;
5751         info.spare_disks   = spare;
5752
5753         info.layout        = mddev->layout;
5754         info.chunk_size    = mddev->chunk_sectors << 9;
5755
5756         if (copy_to_user(arg, &info, sizeof(info)))
5757                 return -EFAULT;
5758
5759         return 0;
5760 }
5761
5762 static int get_bitmap_file(struct mddev *mddev, void __user * arg)
5763 {
5764         mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5765         char *ptr;
5766         int err;
5767
5768         file = kzalloc(sizeof(*file), GFP_NOIO);
5769         if (!file)
5770                 return -ENOMEM;
5771
5772         err = 0;
5773         spin_lock(&mddev->lock);
5774         /* bitmap enabled */
5775         if (mddev->bitmap_info.file) {
5776                 ptr = file_path(mddev->bitmap_info.file, file->pathname,
5777                                 sizeof(file->pathname));
5778                 if (IS_ERR(ptr))
5779                         err = PTR_ERR(ptr);
5780                 else
5781                         memmove(file->pathname, ptr,
5782                                 sizeof(file->pathname)-(ptr-file->pathname));
5783         }
5784         spin_unlock(&mddev->lock);
5785
5786         if (err == 0 &&
5787             copy_to_user(arg, file, sizeof(*file)))
5788                 err = -EFAULT;
5789
5790         kfree(file);
5791         return err;
5792 }
5793
5794 static int get_disk_info(struct mddev *mddev, void __user * arg)
5795 {
5796         mdu_disk_info_t info;
5797         struct md_rdev *rdev;
5798
5799         if (copy_from_user(&info, arg, sizeof(info)))
5800                 return -EFAULT;
5801
5802         rcu_read_lock();
5803         rdev = md_find_rdev_nr_rcu(mddev, info.number);
5804         if (rdev) {
5805                 info.major = MAJOR(rdev->bdev->bd_dev);
5806                 info.minor = MINOR(rdev->bdev->bd_dev);
5807                 info.raid_disk = rdev->raid_disk;
5808                 info.state = 0;
5809                 if (test_bit(Faulty, &rdev->flags))
5810                         info.state |= (1<<MD_DISK_FAULTY);
5811                 else if (test_bit(In_sync, &rdev->flags)) {
5812                         info.state |= (1<<MD_DISK_ACTIVE);
5813                         info.state |= (1<<MD_DISK_SYNC);
5814                 }
5815                 if (test_bit(WriteMostly, &rdev->flags))
5816                         info.state |= (1<<MD_DISK_WRITEMOSTLY);
5817         } else {
5818                 info.major = info.minor = 0;
5819                 info.raid_disk = -1;
5820                 info.state = (1<<MD_DISK_REMOVED);
5821         }
5822         rcu_read_unlock();
5823
5824         if (copy_to_user(arg, &info, sizeof(info)))
5825                 return -EFAULT;
5826
5827         return 0;
5828 }
5829
5830 static int add_new_disk(struct mddev *mddev, mdu_disk_info_t *info)
5831 {
5832         char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5833         struct md_rdev *rdev;
5834         dev_t dev = MKDEV(info->major,info->minor);
5835
5836         if (mddev_is_clustered(mddev) &&
5837                 !(info->state & ((1 << MD_DISK_CLUSTER_ADD) | (1 << MD_DISK_CANDIDATE)))) {
5838                 pr_err("%s: Cannot add to clustered mddev.\n",
5839                                mdname(mddev));
5840                 return -EINVAL;
5841         }
5842
5843         if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5844                 return -EOVERFLOW;
5845
5846         if (!mddev->raid_disks) {
5847                 int err;
5848                 /* expecting a device which has a superblock */
5849                 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5850                 if (IS_ERR(rdev)) {
5851                         printk(KERN_WARNING
5852                                 "md: md_import_device returned %ld\n",
5853                                 PTR_ERR(rdev));
5854                         return PTR_ERR(rdev);
5855                 }
5856                 if (!list_empty(&mddev->disks)) {
5857                         struct md_rdev *rdev0
5858                                 = list_entry(mddev->disks.next,
5859                                              struct md_rdev, same_set);
5860                         err = super_types[mddev->major_version]
5861                                 .load_super(rdev, rdev0, mddev->minor_version);
5862                         if (err < 0) {
5863                                 printk(KERN_WARNING
5864                                         "md: %s has different UUID to %s\n",
5865                                         bdevname(rdev->bdev,b),
5866                                         bdevname(rdev0->bdev,b2));
5867                                 export_rdev(rdev);
5868                                 return -EINVAL;
5869                         }
5870                 }
5871                 err = bind_rdev_to_array(rdev, mddev);
5872                 if (err)
5873                         export_rdev(rdev);
5874                 return err;
5875         }
5876
5877         /*
5878          * add_new_disk can be used once the array is assembled
5879          * to add "hot spares".  They must already have a superblock
5880          * written
5881          */
5882         if (mddev->pers) {
5883                 int err;
5884                 if (!mddev->pers->hot_add_disk) {
5885                         printk(KERN_WARNING
5886                                 "%s: personality does not support diskops!\n",
5887                                mdname(mddev));
5888                         return -EINVAL;
5889                 }
5890                 if (mddev->persistent)
5891                         rdev = md_import_device(dev, mddev->major_version,
5892                                                 mddev->minor_version);
5893                 else
5894                         rdev = md_import_device(dev, -1, -1);
5895                 if (IS_ERR(rdev)) {
5896                         printk(KERN_WARNING
5897                                 "md: md_import_device returned %ld\n",
5898                                 PTR_ERR(rdev));
5899                         return PTR_ERR(rdev);
5900                 }
5901                 /* set saved_raid_disk if appropriate */
5902                 if (!mddev->persistent) {
5903                         if (info->state & (1<<MD_DISK_SYNC)  &&
5904                             info->raid_disk < mddev->raid_disks) {
5905                                 rdev->raid_disk = info->raid_disk;
5906                                 set_bit(In_sync, &rdev->flags);
5907                                 clear_bit(Bitmap_sync, &rdev->flags);
5908                         } else
5909                                 rdev->raid_disk = -1;
5910                         rdev->saved_raid_disk = rdev->raid_disk;
5911                 } else
5912                         super_types[mddev->major_version].
5913                                 validate_super(mddev, rdev);
5914                 if ((info->state & (1<<MD_DISK_SYNC)) &&
5915                      rdev->raid_disk != info->raid_disk) {
5916                         /* This was a hot-add request, but events doesn't
5917                          * match, so reject it.
5918                          */
5919                         export_rdev(rdev);
5920                         return -EINVAL;
5921                 }
5922
5923                 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5924                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5925                         set_bit(WriteMostly, &rdev->flags);
5926                 else
5927                         clear_bit(WriteMostly, &rdev->flags);
5928
5929                 /*
5930                  * check whether the device shows up in other nodes
5931                  */
5932                 if (mddev_is_clustered(mddev)) {
5933                         if (info->state & (1 << MD_DISK_CANDIDATE)) {
5934                                 /* Through --cluster-confirm */
5935                                 set_bit(Candidate, &rdev->flags);
5936                                 err = md_cluster_ops->new_disk_ack(mddev, true);
5937                                 if (err) {
5938                                         export_rdev(rdev);
5939                                         return err;
5940                                 }
5941                         } else if (info->state & (1 << MD_DISK_CLUSTER_ADD)) {
5942                                 /* --add initiated by this node */
5943                                 err = md_cluster_ops->add_new_disk_start(mddev, rdev);
5944                                 if (err) {
5945                                         md_cluster_ops->add_new_disk_finish(mddev);
5946                                         export_rdev(rdev);
5947                                         return err;
5948                                 }
5949                         }
5950                 }
5951
5952                 rdev->raid_disk = -1;
5953                 err = bind_rdev_to_array(rdev, mddev);
5954                 if (err)
5955                         export_rdev(rdev);
5956                 else
5957                         err = add_bound_rdev(rdev);
5958                 if (mddev_is_clustered(mddev) &&
5959                                 (info->state & (1 << MD_DISK_CLUSTER_ADD)))
5960                         md_cluster_ops->add_new_disk_finish(mddev);
5961                 return err;
5962         }
5963
5964         /* otherwise, add_new_disk is only allowed
5965          * for major_version==0 superblocks
5966          */
5967         if (mddev->major_version != 0) {
5968                 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5969                        mdname(mddev));
5970                 return -EINVAL;
5971         }
5972
5973         if (!(info->state & (1<<MD_DISK_FAULTY))) {
5974                 int err;
5975                 rdev = md_import_device(dev, -1, 0);
5976                 if (IS_ERR(rdev)) {
5977                         printk(KERN_WARNING
5978                                 "md: error, md_import_device() returned %ld\n",
5979                                 PTR_ERR(rdev));
5980                         return PTR_ERR(rdev);
5981                 }
5982                 rdev->desc_nr = info->number;
5983                 if (info->raid_disk < mddev->raid_disks)
5984                         rdev->raid_disk = info->raid_disk;
5985                 else
5986                         rdev->raid_disk = -1;
5987
5988                 if (rdev->raid_disk < mddev->raid_disks)
5989                         if (info->state & (1<<MD_DISK_SYNC))
5990                                 set_bit(In_sync, &rdev->flags);
5991
5992                 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5993                         set_bit(WriteMostly, &rdev->flags);
5994
5995                 if (!mddev->persistent) {
5996                         printk(KERN_INFO "md: nonpersistent superblock ...\n");
5997                         rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5998                 } else
5999                         rdev->sb_start = calc_dev_sboffset(rdev);
6000                 rdev->sectors = rdev->sb_start;
6001
6002                 err = bind_rdev_to_array(rdev, mddev);
6003                 if (err) {
6004                         export_rdev(rdev);
6005                         return err;
6006                 }
6007         }
6008
6009         return 0;
6010 }
6011
6012 static int hot_remove_disk(struct mddev *mddev, dev_t dev)
6013 {
6014         char b[BDEVNAME_SIZE];
6015         struct md_rdev *rdev;
6016
6017         rdev = find_rdev(mddev, dev);
6018         if (!rdev)
6019                 return -ENXIO;
6020
6021         if (mddev_is_clustered(mddev))
6022                 md_cluster_ops->metadata_update_start(mddev);
6023
6024         clear_bit(Blocked, &rdev->flags);
6025         remove_and_add_spares(mddev, rdev);
6026
6027         if (rdev->raid_disk >= 0)
6028                 goto busy;
6029
6030         if (mddev_is_clustered(mddev))
6031                 md_cluster_ops->remove_disk(mddev, rdev);
6032
6033         md_kick_rdev_from_array(rdev);
6034         md_update_sb(mddev, 1);
6035         md_new_event(mddev);
6036
6037         if (mddev_is_clustered(mddev))
6038                 md_cluster_ops->metadata_update_finish(mddev);
6039
6040         return 0;
6041 busy:
6042         if (mddev_is_clustered(mddev))
6043                 md_cluster_ops->metadata_update_cancel(mddev);
6044         printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
6045                 bdevname(rdev->bdev,b), mdname(mddev));
6046         return -EBUSY;
6047 }
6048
6049 static int hot_add_disk(struct mddev *mddev, dev_t dev)
6050 {
6051         char b[BDEVNAME_SIZE];
6052         int err;
6053         struct md_rdev *rdev;
6054
6055         if (!mddev->pers)
6056                 return -ENODEV;
6057
6058         if (mddev->major_version != 0) {
6059                 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
6060                         " version-0 superblocks.\n",
6061                         mdname(mddev));
6062                 return -EINVAL;
6063         }
6064         if (!mddev->pers->hot_add_disk) {
6065                 printk(KERN_WARNING
6066                         "%s: personality does not support diskops!\n",
6067                         mdname(mddev));
6068                 return -EINVAL;
6069         }
6070
6071         rdev = md_import_device(dev, -1, 0);
6072         if (IS_ERR(rdev)) {
6073                 printk(KERN_WARNING
6074                         "md: error, md_import_device() returned %ld\n",
6075                         PTR_ERR(rdev));
6076                 return -EINVAL;
6077         }
6078
6079         if (mddev->persistent)
6080                 rdev->sb_start = calc_dev_sboffset(rdev);
6081         else
6082                 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
6083
6084         rdev->sectors = rdev->sb_start;
6085
6086         if (test_bit(Faulty, &rdev->flags)) {
6087                 printk(KERN_WARNING
6088                         "md: can not hot-add faulty %s disk to %s!\n",
6089                         bdevname(rdev->bdev,b), mdname(mddev));
6090                 err = -EINVAL;
6091                 goto abort_export;
6092         }
6093
6094         if (mddev_is_clustered(mddev))
6095                 md_cluster_ops->metadata_update_start(mddev);
6096         clear_bit(In_sync, &rdev->flags);
6097         rdev->desc_nr = -1;
6098         rdev->saved_raid_disk = -1;
6099         err = bind_rdev_to_array(rdev, mddev);
6100         if (err)
6101                 goto abort_clustered;
6102
6103         /*
6104          * The rest should better be atomic, we can have disk failures
6105          * noticed in interrupt contexts ...
6106          */
6107
6108         rdev->raid_disk = -1;
6109
6110         md_update_sb(mddev, 1);
6111
6112         if (mddev_is_clustered(mddev))
6113                 md_cluster_ops->metadata_update_finish(mddev);
6114         /*
6115          * Kick recovery, maybe this spare has to be added to the
6116          * array immediately.
6117          */
6118         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6119         md_wakeup_thread(mddev->thread);
6120         md_new_event(mddev);
6121         return 0;
6122
6123 abort_clustered:
6124         if (mddev_is_clustered(mddev))
6125                 md_cluster_ops->metadata_update_cancel(mddev);
6126 abort_export:
6127         export_rdev(rdev);
6128         return err;
6129 }
6130
6131 static int set_bitmap_file(struct mddev *mddev, int fd)
6132 {
6133         int err = 0;
6134
6135         if (mddev->pers) {
6136                 if (!mddev->pers->quiesce || !mddev->thread)
6137                         return -EBUSY;
6138                 if (mddev->recovery || mddev->sync_thread)
6139                         return -EBUSY;
6140                 /* we should be able to change the bitmap.. */
6141         }
6142
6143         if (fd >= 0) {
6144                 struct inode *inode;
6145                 struct file *f;
6146
6147                 if (mddev->bitmap || mddev->bitmap_info.file)
6148                         return -EEXIST; /* cannot add when bitmap is present */
6149                 f = fget(fd);
6150
6151                 if (f == NULL) {
6152                         printk(KERN_ERR "%s: error: failed to get bitmap file\n",
6153                                mdname(mddev));
6154                         return -EBADF;
6155                 }
6156
6157                 inode = f->f_mapping->host;
6158                 if (!S_ISREG(inode->i_mode)) {
6159                         printk(KERN_ERR "%s: error: bitmap file must be a regular file\n",
6160                                mdname(mddev));
6161                         err = -EBADF;
6162                 } else if (!(f->f_mode & FMODE_WRITE)) {
6163                         printk(KERN_ERR "%s: error: bitmap file must open for write\n",
6164                                mdname(mddev));
6165                         err = -EBADF;
6166                 } else if (atomic_read(&inode->i_writecount) != 1) {
6167                         printk(KERN_ERR "%s: error: bitmap file is already in use\n",
6168                                mdname(mddev));
6169                         err = -EBUSY;
6170                 }
6171                 if (err) {
6172                         fput(f);
6173                         return err;
6174                 }
6175                 mddev->bitmap_info.file = f;
6176                 mddev->bitmap_info.offset = 0; /* file overrides offset */
6177         } else if (mddev->bitmap == NULL)
6178                 return -ENOENT; /* cannot remove what isn't there */
6179         err = 0;
6180         if (mddev->pers) {
6181                 mddev->pers->quiesce(mddev, 1);
6182                 if (fd >= 0) {
6183                         struct bitmap *bitmap;
6184
6185                         bitmap = bitmap_create(mddev, -1);
6186                         if (!IS_ERR(bitmap)) {
6187                                 mddev->bitmap = bitmap;
6188                                 err = bitmap_load(mddev);
6189                         } else
6190                                 err = PTR_ERR(bitmap);
6191                 }
6192                 if (fd < 0 || err) {
6193                         bitmap_destroy(mddev);
6194                         fd = -1; /* make sure to put the file */
6195                 }
6196                 mddev->pers->quiesce(mddev, 0);
6197         }
6198         if (fd < 0) {
6199                 struct file *f = mddev->bitmap_info.file;
6200                 if (f) {
6201                         spin_lock(&mddev->lock);
6202                         mddev->bitmap_info.file = NULL;
6203                         spin_unlock(&mddev->lock);
6204                         fput(f);
6205                 }
6206         }
6207
6208         return err;
6209 }
6210
6211 /*
6212  * set_array_info is used two different ways
6213  * The original usage is when creating a new array.
6214  * In this usage, raid_disks is > 0 and it together with
6215  *  level, size, not_persistent,layout,chunksize determine the
6216  *  shape of the array.
6217  *  This will always create an array with a type-0.90.0 superblock.
6218  * The newer usage is when assembling an array.
6219  *  In this case raid_disks will be 0, and the major_version field is
6220  *  use to determine which style super-blocks are to be found on the devices.
6221  *  The minor and patch _version numbers are also kept incase the
6222  *  super_block handler wishes to interpret them.
6223  */
6224 static int set_array_info(struct mddev *mddev, mdu_array_info_t *info)
6225 {
6226
6227         if (info->raid_disks == 0) {
6228                 /* just setting version number for superblock loading */
6229                 if (info->major_version < 0 ||
6230                     info->major_version >= ARRAY_SIZE(super_types) ||
6231                     super_types[info->major_version].name == NULL) {
6232                         /* maybe try to auto-load a module? */
6233                         printk(KERN_INFO
6234                                 "md: superblock version %d not known\n",
6235                                 info->major_version);
6236                         return -EINVAL;
6237                 }
6238                 mddev->major_version = info->major_version;
6239                 mddev->minor_version = info->minor_version;
6240                 mddev->patch_version = info->patch_version;
6241                 mddev->persistent = !info->not_persistent;
6242                 /* ensure mddev_put doesn't delete this now that there
6243                  * is some minimal configuration.
6244                  */
6245                 mddev->ctime         = get_seconds();
6246                 return 0;
6247         }
6248         mddev->major_version = MD_MAJOR_VERSION;
6249         mddev->minor_version = MD_MINOR_VERSION;
6250         mddev->patch_version = MD_PATCHLEVEL_VERSION;
6251         mddev->ctime         = get_seconds();
6252
6253         mddev->level         = info->level;
6254         mddev->clevel[0]     = 0;
6255         mddev->dev_sectors   = 2 * (sector_t)info->size;
6256         mddev->raid_disks    = info->raid_disks;
6257         /* don't set md_minor, it is determined by which /dev/md* was
6258          * openned
6259          */
6260         if (info->state & (1<<MD_SB_CLEAN))
6261                 mddev->recovery_cp = MaxSector;
6262         else
6263                 mddev->recovery_cp = 0;
6264         mddev->persistent    = ! info->not_persistent;
6265         mddev->external      = 0;
6266
6267         mddev->layout        = info->layout;
6268         mddev->chunk_sectors = info->chunk_size >> 9;
6269
6270         mddev->max_disks     = MD_SB_DISKS;
6271
6272         if (mddev->persistent)
6273                 mddev->flags         = 0;
6274         set_bit(MD_CHANGE_DEVS, &mddev->flags);
6275
6276         mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
6277         mddev->bitmap_info.default_space = 64*2 - (MD_SB_BYTES >> 9);
6278         mddev->bitmap_info.offset = 0;
6279
6280         mddev->reshape_position = MaxSector;
6281
6282         /*
6283          * Generate a 128 bit UUID
6284          */
6285         get_random_bytes(mddev->uuid, 16);
6286
6287         mddev->new_level = mddev->level;
6288         mddev->new_chunk_sectors = mddev->chunk_sectors;
6289         mddev->new_layout = mddev->layout;
6290         mddev->delta_disks = 0;
6291         mddev->reshape_backwards = 0;
6292
6293         return 0;
6294 }
6295
6296 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
6297 {
6298         WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
6299
6300         if (mddev->external_size)
6301                 return;
6302
6303         mddev->array_sectors = array_sectors;
6304 }
6305 EXPORT_SYMBOL(md_set_array_sectors);
6306
6307 static int update_size(struct mddev *mddev, sector_t num_sectors)
6308 {
6309         struct md_rdev *rdev;
6310         int rv;
6311         int fit = (num_sectors == 0);
6312
6313         if (mddev->pers->resize == NULL)
6314                 return -EINVAL;
6315         /* The "num_sectors" is the number of sectors of each device that
6316          * is used.  This can only make sense for arrays with redundancy.
6317          * linear and raid0 always use whatever space is available. We can only
6318          * consider changing this number if no resync or reconstruction is
6319          * happening, and if the new size is acceptable. It must fit before the
6320          * sb_start or, if that is <data_offset, it must fit before the size
6321          * of each device.  If num_sectors is zero, we find the largest size
6322          * that fits.
6323          */
6324         if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6325             mddev->sync_thread)
6326                 return -EBUSY;
6327         if (mddev->ro)
6328                 return -EROFS;
6329
6330         rdev_for_each(rdev, mddev) {
6331                 sector_t avail = rdev->sectors;
6332
6333                 if (fit && (num_sectors == 0 || num_sectors > avail))
6334                         num_sectors = avail;
6335                 if (avail < num_sectors)
6336                         return -ENOSPC;
6337         }
6338         rv = mddev->pers->resize(mddev, num_sectors);
6339         if (!rv)
6340                 revalidate_disk(mddev->gendisk);
6341         return rv;
6342 }
6343
6344 static int update_raid_disks(struct mddev *mddev, int raid_disks)
6345 {
6346         int rv;
6347         struct md_rdev *rdev;
6348         /* change the number of raid disks */
6349         if (mddev->pers->check_reshape == NULL)
6350                 return -EINVAL;
6351         if (mddev->ro)
6352                 return -EROFS;
6353         if (raid_disks <= 0 ||
6354             (mddev->max_disks && raid_disks >= mddev->max_disks))
6355                 return -EINVAL;
6356         if (mddev->sync_thread ||
6357             test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6358             mddev->reshape_position != MaxSector)
6359                 return -EBUSY;
6360
6361         rdev_for_each(rdev, mddev) {
6362                 if (mddev->raid_disks < raid_disks &&
6363                     rdev->data_offset < rdev->new_data_offset)
6364                         return -EINVAL;
6365                 if (mddev->raid_disks > raid_disks &&
6366                     rdev->data_offset > rdev->new_data_offset)
6367                         return -EINVAL;
6368         }
6369
6370         mddev->delta_disks = raid_disks - mddev->raid_disks;
6371         if (mddev->delta_disks < 0)
6372                 mddev->reshape_backwards = 1;
6373         else if (mddev->delta_disks > 0)
6374                 mddev->reshape_backwards = 0;
6375
6376         rv = mddev->pers->check_reshape(mddev);
6377         if (rv < 0) {
6378                 mddev->delta_disks = 0;
6379                 mddev->reshape_backwards = 0;
6380         }
6381         return rv;
6382 }
6383
6384 /*
6385  * update_array_info is used to change the configuration of an
6386  * on-line array.
6387  * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
6388  * fields in the info are checked against the array.
6389  * Any differences that cannot be handled will cause an error.
6390  * Normally, only one change can be managed at a time.
6391  */
6392 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
6393 {
6394         int rv = 0;
6395         int cnt = 0;
6396         int state = 0;
6397
6398         /* calculate expected state,ignoring low bits */
6399         if (mddev->bitmap && mddev->bitmap_info.offset)
6400                 state |= (1 << MD_SB_BITMAP_PRESENT);
6401
6402         if (mddev->major_version != info->major_version ||
6403             mddev->minor_version != info->minor_version ||
6404 /*          mddev->patch_version != info->patch_version || */
6405             mddev->ctime         != info->ctime         ||
6406             mddev->level         != info->level         ||
6407 /*          mddev->layout        != info->layout        || */
6408             mddev->persistent    != !info->not_persistent ||
6409             mddev->chunk_sectors != info->chunk_size >> 9 ||
6410             /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
6411             ((state^info->state) & 0xfffffe00)
6412                 )
6413                 return -EINVAL;
6414         /* Check there is only one change */
6415         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6416                 cnt++;
6417         if (mddev->raid_disks != info->raid_disks)
6418                 cnt++;
6419         if (mddev->layout != info->layout)
6420                 cnt++;
6421         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
6422                 cnt++;
6423         if (cnt == 0)
6424                 return 0;
6425         if (cnt > 1)
6426                 return -EINVAL;
6427
6428         if (mddev->layout != info->layout) {
6429                 /* Change layout
6430                  * we don't need to do anything at the md level, the
6431                  * personality will take care of it all.
6432                  */
6433                 if (mddev->pers->check_reshape == NULL)
6434                         return -EINVAL;
6435                 else {
6436                         mddev->new_layout = info->layout;
6437                         rv = mddev->pers->check_reshape(mddev);
6438                         if (rv)
6439                                 mddev->new_layout = mddev->layout;
6440                         return rv;
6441                 }
6442         }
6443         if (mddev_is_clustered(mddev))
6444                 md_cluster_ops->metadata_update_start(mddev);
6445         if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
6446                 rv = update_size(mddev, (sector_t)info->size * 2);
6447
6448         if (mddev->raid_disks    != info->raid_disks)
6449                 rv = update_raid_disks(mddev, info->raid_disks);
6450
6451         if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
6452                 if (mddev->pers->quiesce == NULL || mddev->thread == NULL) {
6453                         rv = -EINVAL;
6454                         goto err;
6455                 }
6456                 if (mddev->recovery || mddev->sync_thread) {
6457                         rv = -EBUSY;
6458                         goto err;
6459                 }
6460                 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
6461                         struct bitmap *bitmap;
6462                         /* add the bitmap */
6463                         if (mddev->bitmap) {
6464                                 rv = -EEXIST;
6465                                 goto err;
6466                         }
6467                         if (mddev->bitmap_info.default_offset == 0) {
6468                                 rv = -EINVAL;
6469                                 goto err;
6470                         }
6471                         mddev->bitmap_info.offset =
6472                                 mddev->bitmap_info.default_offset;
6473                         mddev->bitmap_info.space =
6474                                 mddev->bitmap_info.default_space;
6475                         mddev->pers->quiesce(mddev, 1);
6476                         bitmap = bitmap_create(mddev, -1);
6477                         if (!IS_ERR(bitmap)) {
6478                                 mddev->bitmap = bitmap;
6479                                 rv = bitmap_load(mddev);
6480                         } else
6481                                 rv = PTR_ERR(bitmap);
6482                         if (rv)
6483                                 bitmap_destroy(mddev);
6484                         mddev->pers->quiesce(mddev, 0);
6485                 } else {
6486                         /* remove the bitmap */
6487                         if (!mddev->bitmap) {
6488                                 rv = -ENOENT;
6489                                 goto err;
6490                         }
6491                         if (mddev->bitmap->storage.file) {
6492                                 rv = -EINVAL;
6493                                 goto err;
6494                         }
6495                         mddev->pers->quiesce(mddev, 1);
6496                         bitmap_destroy(mddev);
6497                         mddev->pers->quiesce(mddev, 0);
6498                         mddev->bitmap_info.offset = 0;
6499                 }
6500         }
6501         md_update_sb(mddev, 1);
6502         if (mddev_is_clustered(mddev))
6503                 md_cluster_ops->metadata_update_finish(mddev);
6504         return rv;
6505 err:
6506         if (mddev_is_clustered(mddev))
6507                 md_cluster_ops->metadata_update_cancel(mddev);
6508         return rv;
6509 }
6510
6511 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6512 {
6513         struct md_rdev *rdev;
6514         int err = 0;
6515
6516         if (mddev->pers == NULL)
6517                 return -ENODEV;
6518
6519         rcu_read_lock();
6520         rdev = find_rdev_rcu(mddev, dev);
6521         if (!rdev)
6522                 err =  -ENODEV;
6523         else {
6524                 md_error(mddev, rdev);
6525                 if (!test_bit(Faulty, &rdev->flags))
6526                         err = -EBUSY;
6527         }
6528         rcu_read_unlock();
6529         return err;
6530 }
6531
6532 /*
6533  * We have a problem here : there is no easy way to give a CHS
6534  * virtual geometry. We currently pretend that we have a 2 heads
6535  * 4 sectors (with a BIG number of cylinders...). This drives
6536  * dosfs just mad... ;-)
6537  */
6538 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6539 {
6540         struct mddev *mddev = bdev->bd_disk->private_data;
6541
6542         geo->heads = 2;
6543         geo->sectors = 4;
6544         geo->cylinders = mddev->array_sectors / 8;
6545         return 0;
6546 }
6547
6548 static inline bool md_ioctl_valid(unsigned int cmd)
6549 {
6550         switch (cmd) {
6551         case ADD_NEW_DISK:
6552         case BLKROSET:
6553         case GET_ARRAY_INFO:
6554         case GET_BITMAP_FILE:
6555         case GET_DISK_INFO:
6556         case HOT_ADD_DISK:
6557         case HOT_REMOVE_DISK:
6558         case RAID_AUTORUN:
6559         case RAID_VERSION:
6560         case RESTART_ARRAY_RW:
6561         case RUN_ARRAY:
6562         case SET_ARRAY_INFO:
6563         case SET_BITMAP_FILE:
6564         case SET_DISK_FAULTY:
6565         case STOP_ARRAY:
6566         case STOP_ARRAY_RO:
6567         case CLUSTERED_DISK_NACK:
6568                 return true;
6569         default:
6570                 return false;
6571         }
6572 }
6573
6574 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6575                         unsigned int cmd, unsigned long arg)
6576 {
6577         int err = 0;
6578         void __user *argp = (void __user *)arg;
6579         struct mddev *mddev = NULL;
6580         int ro;
6581
6582         if (!md_ioctl_valid(cmd))
6583                 return -ENOTTY;
6584
6585         switch (cmd) {
6586         case RAID_VERSION:
6587         case GET_ARRAY_INFO:
6588         case GET_DISK_INFO:
6589                 break;
6590         default:
6591                 if (!capable(CAP_SYS_ADMIN))
6592                         return -EACCES;
6593         }
6594
6595         /*
6596          * Commands dealing with the RAID driver but not any
6597          * particular array:
6598          */
6599         switch (cmd) {
6600         case RAID_VERSION:
6601                 err = get_version(argp);
6602                 goto out;
6603
6604 #ifndef MODULE
6605         case RAID_AUTORUN:
6606                 err = 0;
6607                 autostart_arrays(arg);
6608                 goto out;
6609 #endif
6610         default:;
6611         }
6612
6613         /*
6614          * Commands creating/starting a new array:
6615          */
6616
6617         mddev = bdev->bd_disk->private_data;
6618
6619         if (!mddev) {
6620                 BUG();
6621                 goto out;
6622         }
6623
6624         /* Some actions do not requires the mutex */
6625         switch (cmd) {
6626         case GET_ARRAY_INFO:
6627                 if (!mddev->raid_disks && !mddev->external)
6628                         err = -ENODEV;
6629                 else
6630                         err = get_array_info(mddev, argp);
6631                 goto out;
6632
6633         case GET_DISK_INFO:
6634                 if (!mddev->raid_disks && !mddev->external)
6635                         err = -ENODEV;
6636                 else
6637                         err = get_disk_info(mddev, argp);
6638                 goto out;
6639
6640         case SET_DISK_FAULTY:
6641                 err = set_disk_faulty(mddev, new_decode_dev(arg));
6642                 goto out;
6643
6644         case GET_BITMAP_FILE:
6645                 err = get_bitmap_file(mddev, argp);
6646                 goto out;
6647
6648         }
6649
6650         if (cmd == ADD_NEW_DISK)
6651                 /* need to ensure md_delayed_delete() has completed */
6652                 flush_workqueue(md_misc_wq);
6653
6654         if (cmd == HOT_REMOVE_DISK)
6655                 /* need to ensure recovery thread has run */
6656                 wait_event_interruptible_timeout(mddev->sb_wait,
6657                                                  !test_bit(MD_RECOVERY_NEEDED,
6658                                                            &mddev->flags),
6659                                                  msecs_to_jiffies(5000));
6660         if (cmd == STOP_ARRAY || cmd == STOP_ARRAY_RO) {
6661                 /* Need to flush page cache, and ensure no-one else opens
6662                  * and writes
6663                  */
6664                 mutex_lock(&mddev->open_mutex);
6665                 if (mddev->pers && atomic_read(&mddev->openers) > 1) {
6666                         mutex_unlock(&mddev->open_mutex);
6667                         err = -EBUSY;
6668                         goto out;
6669                 }
6670                 set_bit(MD_STILL_CLOSED, &mddev->flags);
6671                 mutex_unlock(&mddev->open_mutex);
6672                 sync_blockdev(bdev);
6673         }
6674         err = mddev_lock(mddev);
6675         if (err) {
6676                 printk(KERN_INFO
6677                         "md: ioctl lock interrupted, reason %d, cmd %d\n",
6678                         err, cmd);
6679                 goto out;
6680         }
6681
6682         if (cmd == SET_ARRAY_INFO) {
6683                 mdu_array_info_t info;
6684                 if (!arg)
6685                         memset(&info, 0, sizeof(info));
6686                 else if (copy_from_user(&info, argp, sizeof(info))) {
6687                         err = -EFAULT;
6688                         goto unlock;
6689                 }
6690                 if (mddev->pers) {
6691                         err = update_array_info(mddev, &info);
6692                         if (err) {
6693                                 printk(KERN_WARNING "md: couldn't update"
6694                                        " array info. %d\n", err);
6695                                 goto unlock;
6696                         }
6697                         goto unlock;
6698                 }
6699                 if (!list_empty(&mddev->disks)) {
6700                         printk(KERN_WARNING
6701                                "md: array %s already has disks!\n",
6702                                mdname(mddev));
6703                         err = -EBUSY;
6704                         goto unlock;
6705                 }
6706                 if (mddev->raid_disks) {
6707                         printk(KERN_WARNING
6708                                "md: array %s already initialised!\n",
6709                                mdname(mddev));
6710                         err = -EBUSY;
6711                         goto unlock;
6712                 }
6713                 err = set_array_info(mddev, &info);
6714                 if (err) {
6715                         printk(KERN_WARNING "md: couldn't set"
6716                                " array info. %d\n", err);
6717                         goto unlock;
6718                 }
6719                 goto unlock;
6720         }
6721
6722         /*
6723          * Commands querying/configuring an existing array:
6724          */
6725         /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6726          * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6727         if ((!mddev->raid_disks && !mddev->external)
6728             && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6729             && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6730             && cmd != GET_BITMAP_FILE) {
6731                 err = -ENODEV;
6732                 goto unlock;
6733         }
6734
6735         /*
6736          * Commands even a read-only array can execute:
6737          */
6738         switch (cmd) {
6739         case RESTART_ARRAY_RW:
6740                 err = restart_array(mddev);
6741                 goto unlock;
6742
6743         case STOP_ARRAY:
6744                 err = do_md_stop(mddev, 0, bdev);
6745                 goto unlock;
6746
6747         case STOP_ARRAY_RO:
6748                 err = md_set_readonly(mddev, bdev);
6749                 goto unlock;
6750
6751         case HOT_REMOVE_DISK:
6752                 err = hot_remove_disk(mddev, new_decode_dev(arg));
6753                 goto unlock;
6754
6755         case ADD_NEW_DISK:
6756                 /* We can support ADD_NEW_DISK on read-only arrays
6757                  * on if we are re-adding a preexisting device.
6758                  * So require mddev->pers and MD_DISK_SYNC.
6759                  */
6760                 if (mddev->pers) {
6761                         mdu_disk_info_t info;
6762                         if (copy_from_user(&info, argp, sizeof(info)))
6763                                 err = -EFAULT;
6764                         else if (!(info.state & (1<<MD_DISK_SYNC)))
6765                                 /* Need to clear read-only for this */
6766                                 break;
6767                         else
6768                                 err = add_new_disk(mddev, &info);
6769                         goto unlock;
6770                 }
6771                 break;
6772
6773         case BLKROSET:
6774                 if (get_user(ro, (int __user *)(arg))) {
6775                         err = -EFAULT;
6776                         goto unlock;
6777                 }
6778                 err = -EINVAL;
6779
6780                 /* if the bdev is going readonly the value of mddev->ro
6781                  * does not matter, no writes are coming
6782                  */
6783                 if (ro)
6784                         goto unlock;
6785
6786                 /* are we are already prepared for writes? */
6787                 if (mddev->ro != 1)
6788                         goto unlock;
6789
6790                 /* transitioning to readauto need only happen for
6791                  * arrays that call md_write_start
6792                  */
6793                 if (mddev->pers) {
6794                         err = restart_array(mddev);
6795                         if (err == 0) {
6796                                 mddev->ro = 2;
6797                                 set_disk_ro(mddev->gendisk, 0);
6798                         }
6799                 }
6800                 goto unlock;
6801         }
6802
6803         /*
6804          * The remaining ioctls are changing the state of the
6805          * superblock, so we do not allow them on read-only arrays.
6806          */
6807         if (mddev->ro && mddev->pers) {
6808                 if (mddev->ro == 2) {
6809                         mddev->ro = 0;
6810                         sysfs_notify_dirent_safe(mddev->sysfs_state);
6811                         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6812                         /* mddev_unlock will wake thread */
6813                         /* If a device failed while we were read-only, we
6814                          * need to make sure the metadata is updated now.
6815                          */
6816                         if (test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
6817                                 mddev_unlock(mddev);
6818                                 wait_event(mddev->sb_wait,
6819                                            !test_bit(MD_CHANGE_DEVS, &mddev->flags) &&
6820                                            !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6821                                 mddev_lock_nointr(mddev);
6822                         }
6823                 } else {
6824                         err = -EROFS;
6825                         goto unlock;
6826                 }
6827         }
6828
6829         switch (cmd) {
6830         case ADD_NEW_DISK:
6831         {
6832                 mdu_disk_info_t info;
6833                 if (copy_from_user(&info, argp, sizeof(info)))
6834                         err = -EFAULT;
6835                 else
6836                         err = add_new_disk(mddev, &info);
6837                 goto unlock;
6838         }
6839
6840         case CLUSTERED_DISK_NACK:
6841                 if (mddev_is_clustered(mddev))
6842                         md_cluster_ops->new_disk_ack(mddev, false);
6843                 else
6844                         err = -EINVAL;
6845                 goto unlock;
6846
6847         case HOT_ADD_DISK:
6848                 err = hot_add_disk(mddev, new_decode_dev(arg));
6849                 goto unlock;
6850
6851         case RUN_ARRAY:
6852                 err = do_md_run(mddev);
6853                 goto unlock;
6854
6855         case SET_BITMAP_FILE:
6856                 err = set_bitmap_file(mddev, (int)arg);
6857                 goto unlock;
6858
6859         default:
6860                 err = -EINVAL;
6861                 goto unlock;
6862         }
6863
6864 unlock:
6865         if (mddev->hold_active == UNTIL_IOCTL &&
6866             err != -EINVAL)
6867                 mddev->hold_active = 0;
6868         mddev_unlock(mddev);
6869 out:
6870         return err;
6871 }
6872 #ifdef CONFIG_COMPAT
6873 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6874                     unsigned int cmd, unsigned long arg)
6875 {
6876         switch (cmd) {
6877         case HOT_REMOVE_DISK:
6878         case HOT_ADD_DISK:
6879         case SET_DISK_FAULTY:
6880         case SET_BITMAP_FILE:
6881                 /* These take in integer arg, do not convert */
6882                 break;
6883         default:
6884                 arg = (unsigned long)compat_ptr(arg);
6885                 break;
6886         }
6887
6888         return md_ioctl(bdev, mode, cmd, arg);
6889 }
6890 #endif /* CONFIG_COMPAT */
6891
6892 static int md_open(struct block_device *bdev, fmode_t mode)
6893 {
6894         /*
6895          * Succeed if we can lock the mddev, which confirms that
6896          * it isn't being stopped right now.
6897          */
6898         struct mddev *mddev = mddev_find(bdev->bd_dev);
6899         int err;
6900
6901         if (!mddev)
6902                 return -ENODEV;
6903
6904         if (mddev->gendisk != bdev->bd_disk) {
6905                 /* we are racing with mddev_put which is discarding this
6906                  * bd_disk.
6907                  */
6908                 mddev_put(mddev);
6909                 /* Wait until bdev->bd_disk is definitely gone */
6910                 flush_workqueue(md_misc_wq);
6911                 /* Then retry the open from the top */
6912                 return -ERESTARTSYS;
6913         }
6914         BUG_ON(mddev != bdev->bd_disk->private_data);
6915
6916         if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6917                 goto out;
6918
6919         err = 0;
6920         atomic_inc(&mddev->openers);
6921         clear_bit(MD_STILL_CLOSED, &mddev->flags);
6922         mutex_unlock(&mddev->open_mutex);
6923
6924         check_disk_change(bdev);
6925  out:
6926         return err;
6927 }
6928
6929 static void md_release(struct gendisk *disk, fmode_t mode)
6930 {
6931         struct mddev *mddev = disk->private_data;
6932
6933         BUG_ON(!mddev);
6934         atomic_dec(&mddev->openers);
6935         mddev_put(mddev);
6936 }
6937
6938 static int md_media_changed(struct gendisk *disk)
6939 {
6940         struct mddev *mddev = disk->private_data;
6941
6942         return mddev->changed;
6943 }
6944
6945 static int md_revalidate(struct gendisk *disk)
6946 {
6947         struct mddev *mddev = disk->private_data;
6948
6949         mddev->changed = 0;
6950         return 0;
6951 }
6952 static const struct block_device_operations md_fops =
6953 {
6954         .owner          = THIS_MODULE,
6955         .open           = md_open,
6956         .release        = md_release,
6957         .ioctl          = md_ioctl,
6958 #ifdef CONFIG_COMPAT
6959         .compat_ioctl   = md_compat_ioctl,
6960 #endif
6961         .getgeo         = md_getgeo,
6962         .media_changed  = md_media_changed,
6963         .revalidate_disk= md_revalidate,
6964 };
6965
6966 static int md_thread(void *arg)
6967 {
6968         struct md_thread *thread = arg;
6969
6970         /*
6971          * md_thread is a 'system-thread', it's priority should be very
6972          * high. We avoid resource deadlocks individually in each
6973          * raid personality. (RAID5 does preallocation) We also use RR and
6974          * the very same RT priority as kswapd, thus we will never get
6975          * into a priority inversion deadlock.
6976          *
6977          * we definitely have to have equal or higher priority than
6978          * bdflush, otherwise bdflush will deadlock if there are too
6979          * many dirty RAID5 blocks.
6980          */
6981
6982         allow_signal(SIGKILL);
6983         while (!kthread_should_stop()) {
6984
6985                 /* We need to wait INTERRUPTIBLE so that
6986                  * we don't add to the load-average.
6987                  * That means we need to be sure no signals are
6988                  * pending
6989                  */
6990                 if (signal_pending(current))
6991                         flush_signals(current);
6992
6993                 wait_event_interruptible_timeout
6994                         (thread->wqueue,
6995                          test_bit(THREAD_WAKEUP, &thread->flags)
6996                          || kthread_should_stop(),
6997                          thread->timeout);
6998
6999                 clear_bit(THREAD_WAKEUP, &thread->flags);
7000                 if (!kthread_should_stop())
7001                         thread->run(thread);
7002         }
7003
7004         return 0;
7005 }
7006
7007 void md_wakeup_thread(struct md_thread *thread)
7008 {
7009         if (thread) {
7010                 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
7011                 set_bit(THREAD_WAKEUP, &thread->flags);
7012                 wake_up(&thread->wqueue);
7013         }
7014 }
7015 EXPORT_SYMBOL(md_wakeup_thread);
7016
7017 struct md_thread *md_register_thread(void (*run) (struct md_thread *),
7018                 struct mddev *mddev, const char *name)
7019 {
7020         struct md_thread *thread;
7021
7022         thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
7023         if (!thread)
7024                 return NULL;
7025
7026         init_waitqueue_head(&thread->wqueue);
7027
7028         thread->run = run;
7029         thread->mddev = mddev;
7030         thread->timeout = MAX_SCHEDULE_TIMEOUT;
7031         thread->tsk = kthread_run(md_thread, thread,
7032                                   "%s_%s",
7033                                   mdname(thread->mddev),
7034                                   name);
7035         if (IS_ERR(thread->tsk)) {
7036                 kfree(thread);
7037                 return NULL;
7038         }
7039         return thread;
7040 }
7041 EXPORT_SYMBOL(md_register_thread);
7042
7043 void md_unregister_thread(struct md_thread **threadp)
7044 {
7045         struct md_thread *thread = *threadp;
7046         if (!thread)
7047                 return;
7048         pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
7049         /* Locking ensures that mddev_unlock does not wake_up a
7050          * non-existent thread
7051          */
7052         spin_lock(&pers_lock);
7053         *threadp = NULL;
7054         spin_unlock(&pers_lock);
7055
7056         kthread_stop(thread->tsk);
7057         kfree(thread);
7058 }
7059 EXPORT_SYMBOL(md_unregister_thread);
7060
7061 void md_error(struct mddev *mddev, struct md_rdev *rdev)
7062 {
7063         if (!rdev || test_bit(Faulty, &rdev->flags))
7064                 return;
7065
7066         if (!mddev->pers || !mddev->pers->error_handler)
7067                 return;
7068         mddev->pers->error_handler(mddev,rdev);
7069         if (mddev->degraded)
7070                 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7071         sysfs_notify_dirent_safe(rdev->sysfs_state);
7072         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7073         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7074         md_wakeup_thread(mddev->thread);
7075         if (mddev->event_work.func)
7076                 queue_work(md_misc_wq, &mddev->event_work);
7077         md_new_event_inintr(mddev);
7078 }
7079 EXPORT_SYMBOL(md_error);
7080
7081 /* seq_file implementation /proc/mdstat */
7082
7083 static void status_unused(struct seq_file *seq)
7084 {
7085         int i = 0;
7086         struct md_rdev *rdev;
7087
7088         seq_printf(seq, "unused devices: ");
7089
7090         list_for_each_entry(rdev, &pending_raid_disks, same_set) {
7091                 char b[BDEVNAME_SIZE];
7092                 i++;
7093                 seq_printf(seq, "%s ",
7094                               bdevname(rdev->bdev,b));
7095         }
7096         if (!i)
7097                 seq_printf(seq, "<none>");
7098
7099         seq_printf(seq, "\n");
7100 }
7101
7102 static int status_resync(struct seq_file *seq, struct mddev *mddev)
7103 {
7104         sector_t max_sectors, resync, res;
7105         unsigned long dt, db;
7106         sector_t rt;
7107         int scale;
7108         unsigned int per_milli;
7109
7110         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
7111             test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7112                 max_sectors = mddev->resync_max_sectors;
7113         else
7114                 max_sectors = mddev->dev_sectors;
7115
7116         resync = mddev->curr_resync;
7117         if (resync <= 3) {
7118                 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7119                         /* Still cleaning up */
7120                         resync = max_sectors;
7121         } else
7122                 resync -= atomic_read(&mddev->recovery_active);
7123
7124         if (resync == 0) {
7125                 if (mddev->recovery_cp < MaxSector) {
7126                         seq_printf(seq, "\tresync=PENDING");
7127                         return 1;
7128                 }
7129                 return 0;
7130         }
7131         if (resync < 3) {
7132                 seq_printf(seq, "\tresync=DELAYED");
7133                 return 1;
7134         }
7135
7136         WARN_ON(max_sectors == 0);
7137         /* Pick 'scale' such that (resync>>scale)*1000 will fit
7138          * in a sector_t, and (max_sectors>>scale) will fit in a
7139          * u32, as those are the requirements for sector_div.
7140          * Thus 'scale' must be at least 10
7141          */
7142         scale = 10;
7143         if (sizeof(sector_t) > sizeof(unsigned long)) {
7144                 while ( max_sectors/2 > (1ULL<<(scale+32)))
7145                         scale++;
7146         }
7147         res = (resync>>scale)*1000;
7148         sector_div(res, (u32)((max_sectors>>scale)+1));
7149
7150         per_milli = res;
7151         {
7152                 int i, x = per_milli/50, y = 20-x;
7153                 seq_printf(seq, "[");
7154                 for (i = 0; i < x; i++)
7155                         seq_printf(seq, "=");
7156                 seq_printf(seq, ">");
7157                 for (i = 0; i < y; i++)
7158                         seq_printf(seq, ".");
7159                 seq_printf(seq, "] ");
7160         }
7161         seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
7162                    (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
7163                     "reshape" :
7164                     (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
7165                      "check" :
7166                      (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
7167                       "resync" : "recovery"))),
7168                    per_milli/10, per_milli % 10,
7169                    (unsigned long long) resync/2,
7170                    (unsigned long long) max_sectors/2);
7171
7172         /*
7173          * dt: time from mark until now
7174          * db: blocks written from mark until now
7175          * rt: remaining time
7176          *
7177          * rt is a sector_t, so could be 32bit or 64bit.
7178          * So we divide before multiply in case it is 32bit and close
7179          * to the limit.
7180          * We scale the divisor (db) by 32 to avoid losing precision
7181          * near the end of resync when the number of remaining sectors
7182          * is close to 'db'.
7183          * We then divide rt by 32 after multiplying by db to compensate.
7184          * The '+1' avoids division by zero if db is very small.
7185          */
7186         dt = ((jiffies - mddev->resync_mark) / HZ);
7187         if (!dt) dt++;
7188         db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
7189                 - mddev->resync_mark_cnt;
7190
7191         rt = max_sectors - resync;    /* number of remaining sectors */
7192         sector_div(rt, db/32+1);
7193         rt *= dt;
7194         rt >>= 5;
7195
7196         seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
7197                    ((unsigned long)rt % 60)/6);
7198
7199         seq_printf(seq, " speed=%ldK/sec", db/2/dt);
7200         return 1;
7201 }
7202
7203 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
7204 {
7205         struct list_head *tmp;
7206         loff_t l = *pos;
7207         struct mddev *mddev;
7208
7209         if (l >= 0x10000)
7210                 return NULL;
7211         if (!l--)
7212                 /* header */
7213                 return (void*)1;
7214
7215         spin_lock(&all_mddevs_lock);
7216         list_for_each(tmp,&all_mddevs)
7217                 if (!l--) {
7218                         mddev = list_entry(tmp, struct mddev, all_mddevs);
7219                         mddev_get(mddev);
7220                         spin_unlock(&all_mddevs_lock);
7221                         return mddev;
7222                 }
7223         spin_unlock(&all_mddevs_lock);
7224         if (!l--)
7225                 return (void*)2;/* tail */
7226         return NULL;
7227 }
7228
7229 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
7230 {
7231         struct list_head *tmp;
7232         struct mddev *next_mddev, *mddev = v;
7233
7234         ++*pos;
7235         if (v == (void*)2)
7236                 return NULL;
7237
7238         spin_lock(&all_mddevs_lock);
7239         if (v == (void*)1)
7240                 tmp = all_mddevs.next;
7241         else
7242                 tmp = mddev->all_mddevs.next;
7243         if (tmp != &all_mddevs)
7244                 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
7245         else {
7246                 next_mddev = (void*)2;
7247                 *pos = 0x10000;
7248         }
7249         spin_unlock(&all_mddevs_lock);
7250
7251         if (v != (void*)1)
7252                 mddev_put(mddev);
7253         return next_mddev;
7254
7255 }
7256
7257 static void md_seq_stop(struct seq_file *seq, void *v)
7258 {
7259         struct mddev *mddev = v;
7260
7261         if (mddev && v != (void*)1 && v != (void*)2)
7262                 mddev_put(mddev);
7263 }
7264
7265 static int md_seq_show(struct seq_file *seq, void *v)
7266 {
7267         struct mddev *mddev = v;
7268         sector_t sectors;
7269         struct md_rdev *rdev;
7270
7271         if (v == (void*)1) {
7272                 struct md_personality *pers;
7273                 seq_printf(seq, "Personalities : ");
7274                 spin_lock(&pers_lock);
7275                 list_for_each_entry(pers, &pers_list, list)
7276                         seq_printf(seq, "[%s] ", pers->name);
7277
7278                 spin_unlock(&pers_lock);
7279                 seq_printf(seq, "\n");
7280                 seq->poll_event = atomic_read(&md_event_count);
7281                 return 0;
7282         }
7283         if (v == (void*)2) {
7284                 status_unused(seq);
7285                 return 0;
7286         }
7287
7288         spin_lock(&mddev->lock);
7289         if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
7290                 seq_printf(seq, "%s : %sactive", mdname(mddev),
7291                                                 mddev->pers ? "" : "in");
7292                 if (mddev->pers) {
7293                         if (mddev->ro==1)
7294                                 seq_printf(seq, " (read-only)");
7295                         if (mddev->ro==2)
7296                                 seq_printf(seq, " (auto-read-only)");
7297                         seq_printf(seq, " %s", mddev->pers->name);
7298                 }
7299
7300                 sectors = 0;
7301                 rcu_read_lock();
7302                 rdev_for_each_rcu(rdev, mddev) {
7303                         char b[BDEVNAME_SIZE];
7304                         seq_printf(seq, " %s[%d]",
7305                                 bdevname(rdev->bdev,b), rdev->desc_nr);
7306                         if (test_bit(WriteMostly, &rdev->flags))
7307                                 seq_printf(seq, "(W)");
7308                         if (test_bit(Faulty, &rdev->flags)) {
7309                                 seq_printf(seq, "(F)");
7310                                 continue;
7311                         }
7312                         if (rdev->raid_disk < 0)
7313                                 seq_printf(seq, "(S)"); /* spare */
7314                         if (test_bit(Replacement, &rdev->flags))
7315                                 seq_printf(seq, "(R)");
7316                         sectors += rdev->sectors;
7317                 }
7318                 rcu_read_unlock();
7319
7320                 if (!list_empty(&mddev->disks)) {
7321                         if (mddev->pers)
7322                                 seq_printf(seq, "\n      %llu blocks",
7323                                            (unsigned long long)
7324                                            mddev->array_sectors / 2);
7325                         else
7326                                 seq_printf(seq, "\n      %llu blocks",
7327                                            (unsigned long long)sectors / 2);
7328                 }
7329                 if (mddev->persistent) {
7330                         if (mddev->major_version != 0 ||
7331                             mddev->minor_version != 90) {
7332                                 seq_printf(seq," super %d.%d",
7333                                            mddev->major_version,
7334                                            mddev->minor_version);
7335                         }
7336                 } else if (mddev->external)
7337                         seq_printf(seq, " super external:%s",
7338                                    mddev->metadata_type);
7339                 else
7340                         seq_printf(seq, " super non-persistent");
7341
7342                 if (mddev->pers) {
7343                         mddev->pers->status(seq, mddev);
7344                         seq_printf(seq, "\n      ");
7345                         if (mddev->pers->sync_request) {
7346                                 if (status_resync(seq, mddev))
7347                                         seq_printf(seq, "\n      ");
7348                         }
7349                 } else
7350                         seq_printf(seq, "\n       ");
7351
7352                 bitmap_status(seq, mddev->bitmap);
7353
7354                 seq_printf(seq, "\n");
7355         }
7356         spin_unlock(&mddev->lock);
7357
7358         return 0;
7359 }
7360
7361 static const struct seq_operations md_seq_ops = {
7362         .start  = md_seq_start,
7363         .next   = md_seq_next,
7364         .stop   = md_seq_stop,
7365         .show   = md_seq_show,
7366 };
7367
7368 static int md_seq_open(struct inode *inode, struct file *file)
7369 {
7370         struct seq_file *seq;
7371         int error;
7372
7373         error = seq_open(file, &md_seq_ops);
7374         if (error)
7375                 return error;
7376
7377         seq = file->private_data;
7378         seq->poll_event = atomic_read(&md_event_count);
7379         return error;
7380 }
7381
7382 static int md_unloading;
7383 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
7384 {
7385         struct seq_file *seq = filp->private_data;
7386         int mask;
7387
7388         if (md_unloading)
7389                 return POLLIN|POLLRDNORM|POLLERR|POLLPRI;
7390         poll_wait(filp, &md_event_waiters, wait);
7391
7392         /* always allow read */
7393         mask = POLLIN | POLLRDNORM;
7394
7395         if (seq->poll_event != atomic_read(&md_event_count))
7396                 mask |= POLLERR | POLLPRI;
7397         return mask;
7398 }
7399
7400 static const struct file_operations md_seq_fops = {
7401         .owner          = THIS_MODULE,
7402         .open           = md_seq_open,
7403         .read           = seq_read,
7404         .llseek         = seq_lseek,
7405         .release        = seq_release_private,
7406         .poll           = mdstat_poll,
7407 };
7408
7409 int register_md_personality(struct md_personality *p)
7410 {
7411         printk(KERN_INFO "md: %s personality registered for level %d\n",
7412                                                 p->name, p->level);
7413         spin_lock(&pers_lock);
7414         list_add_tail(&p->list, &pers_list);
7415         spin_unlock(&pers_lock);
7416         return 0;
7417 }
7418 EXPORT_SYMBOL(register_md_personality);
7419
7420 int unregister_md_personality(struct md_personality *p)
7421 {
7422         printk(KERN_INFO "md: %s personality unregistered\n", p->name);
7423         spin_lock(&pers_lock);
7424         list_del_init(&p->list);
7425         spin_unlock(&pers_lock);
7426         return 0;
7427 }
7428 EXPORT_SYMBOL(unregister_md_personality);
7429
7430 int register_md_cluster_operations(struct md_cluster_operations *ops,
7431                                    struct module *module)
7432 {
7433         int ret = 0;
7434         spin_lock(&pers_lock);
7435         if (md_cluster_ops != NULL)
7436                 ret = -EALREADY;
7437         else {
7438                 md_cluster_ops = ops;
7439                 md_cluster_mod = module;
7440         }
7441         spin_unlock(&pers_lock);
7442         return ret;
7443 }
7444 EXPORT_SYMBOL(register_md_cluster_operations);
7445
7446 int unregister_md_cluster_operations(void)
7447 {
7448         spin_lock(&pers_lock);
7449         md_cluster_ops = NULL;
7450         spin_unlock(&pers_lock);
7451         return 0;
7452 }
7453 EXPORT_SYMBOL(unregister_md_cluster_operations);
7454
7455 int md_setup_cluster(struct mddev *mddev, int nodes)
7456 {
7457         int err;
7458
7459         err = request_module("md-cluster");
7460         if (err) {
7461                 pr_err("md-cluster module not found.\n");
7462                 return -ENOENT;
7463         }
7464
7465         spin_lock(&pers_lock);
7466         if (!md_cluster_ops || !try_module_get(md_cluster_mod)) {
7467                 spin_unlock(&pers_lock);
7468                 return -ENOENT;
7469         }
7470         spin_unlock(&pers_lock);
7471
7472         return md_cluster_ops->join(mddev, nodes);
7473 }
7474
7475 void md_cluster_stop(struct mddev *mddev)
7476 {
7477         if (!md_cluster_ops)
7478                 return;
7479         md_cluster_ops->leave(mddev);
7480         module_put(md_cluster_mod);
7481 }
7482
7483 static int is_mddev_idle(struct mddev *mddev, int init)
7484 {
7485         struct md_rdev *rdev;
7486         int idle;
7487         int curr_events;
7488
7489         idle = 1;
7490         rcu_read_lock();
7491         rdev_for_each_rcu(rdev, mddev) {
7492                 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
7493                 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
7494                               (int)part_stat_read(&disk->part0, sectors[1]) -
7495                               atomic_read(&disk->sync_io);
7496                 /* sync IO will cause sync_io to increase before the disk_stats
7497                  * as sync_io is counted when a request starts, and
7498                  * disk_stats is counted when it completes.
7499                  * So resync activity will cause curr_events to be smaller than
7500                  * when there was no such activity.
7501                  * non-sync IO will cause disk_stat to increase without
7502                  * increasing sync_io so curr_events will (eventually)
7503                  * be larger than it was before.  Once it becomes
7504                  * substantially larger, the test below will cause
7505                  * the array to appear non-idle, and resync will slow
7506                  * down.
7507                  * If there is a lot of outstanding resync activity when
7508                  * we set last_event to curr_events, then all that activity
7509                  * completing might cause the array to appear non-idle
7510                  * and resync will be slowed down even though there might
7511                  * not have been non-resync activity.  This will only
7512                  * happen once though.  'last_events' will soon reflect
7513                  * the state where there is little or no outstanding
7514                  * resync requests, and further resync activity will
7515                  * always make curr_events less than last_events.
7516                  *
7517                  */
7518                 if (init || curr_events - rdev->last_events > 64) {
7519                         rdev->last_events = curr_events;
7520                         idle = 0;
7521                 }
7522         }
7523         rcu_read_unlock();
7524         return idle;
7525 }
7526
7527 void md_done_sync(struct mddev *mddev, int blocks, int ok)
7528 {
7529         /* another "blocks" (512byte) blocks have been synced */
7530         atomic_sub(blocks, &mddev->recovery_active);
7531         wake_up(&mddev->recovery_wait);
7532         if (!ok) {
7533                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7534                 set_bit(MD_RECOVERY_ERROR, &mddev->recovery);
7535                 md_wakeup_thread(mddev->thread);
7536                 // stop recovery, signal do_sync ....
7537         }
7538 }
7539 EXPORT_SYMBOL(md_done_sync);
7540
7541 /* md_write_start(mddev, bi)
7542  * If we need to update some array metadata (e.g. 'active' flag
7543  * in superblock) before writing, schedule a superblock update
7544  * and wait for it to complete.
7545  */
7546 void md_write_start(struct mddev *mddev, struct bio *bi)
7547 {
7548         int did_change = 0;
7549         if (bio_data_dir(bi) != WRITE)
7550                 return;
7551
7552         BUG_ON(mddev->ro == 1);
7553         if (mddev->ro == 2) {
7554                 /* need to switch to read/write */
7555                 mddev->ro = 0;
7556                 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7557                 md_wakeup_thread(mddev->thread);
7558                 md_wakeup_thread(mddev->sync_thread);
7559                 did_change = 1;
7560         }
7561         atomic_inc(&mddev->writes_pending);
7562         if (mddev->safemode == 1)
7563                 mddev->safemode = 0;
7564         if (mddev->in_sync) {
7565                 spin_lock(&mddev->lock);
7566                 if (mddev->in_sync) {
7567                         mddev->in_sync = 0;
7568                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7569                         set_bit(MD_CHANGE_PENDING, &mddev->flags);
7570                         md_wakeup_thread(mddev->thread);
7571                         did_change = 1;
7572                 }
7573                 spin_unlock(&mddev->lock);
7574         }
7575         if (did_change)
7576                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7577         wait_event(mddev->sb_wait,
7578                    !test_bit(MD_CHANGE_PENDING, &mddev->flags));
7579 }
7580 EXPORT_SYMBOL(md_write_start);
7581
7582 void md_write_end(struct mddev *mddev)
7583 {
7584         if (atomic_dec_and_test(&mddev->writes_pending)) {
7585                 if (mddev->safemode == 2)
7586                         md_wakeup_thread(mddev->thread);
7587                 else if (mddev->safemode_delay)
7588                         mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
7589         }
7590 }
7591 EXPORT_SYMBOL(md_write_end);
7592
7593 /* md_allow_write(mddev)
7594  * Calling this ensures that the array is marked 'active' so that writes
7595  * may proceed without blocking.  It is important to call this before
7596  * attempting a GFP_KERNEL allocation while holding the mddev lock.
7597  * Must be called with mddev_lock held.
7598  *
7599  * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
7600  * is dropped, so return -EAGAIN after notifying userspace.
7601  */
7602 int md_allow_write(struct mddev *mddev)
7603 {
7604         if (!mddev->pers)
7605                 return 0;
7606         if (mddev->ro)
7607                 return 0;
7608         if (!mddev->pers->sync_request)
7609                 return 0;
7610
7611         spin_lock(&mddev->lock);
7612         if (mddev->in_sync) {
7613                 mddev->in_sync = 0;
7614                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7615                 set_bit(MD_CHANGE_PENDING, &mddev->flags);
7616                 if (mddev->safemode_delay &&
7617                     mddev->safemode == 0)
7618                         mddev->safemode = 1;
7619                 spin_unlock(&mddev->lock);
7620                 if (mddev_is_clustered(mddev))
7621                         md_cluster_ops->metadata_update_start(mddev);
7622                 md_update_sb(mddev, 0);
7623                 if (mddev_is_clustered(mddev))
7624                         md_cluster_ops->metadata_update_finish(mddev);
7625                 sysfs_notify_dirent_safe(mddev->sysfs_state);
7626         } else
7627                 spin_unlock(&mddev->lock);
7628
7629         if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
7630                 return -EAGAIN;
7631         else
7632                 return 0;
7633 }
7634 EXPORT_SYMBOL_GPL(md_allow_write);
7635
7636 #define SYNC_MARKS      10
7637 #define SYNC_MARK_STEP  (3*HZ)
7638 #define UPDATE_FREQUENCY (5*60*HZ)
7639 void md_do_sync(struct md_thread *thread)
7640 {
7641         struct mddev *mddev = thread->mddev;
7642         struct mddev *mddev2;
7643         unsigned int currspeed = 0,
7644                  window;
7645         sector_t max_sectors,j, io_sectors, recovery_done;
7646         unsigned long mark[SYNC_MARKS];
7647         unsigned long update_time;
7648         sector_t mark_cnt[SYNC_MARKS];
7649         int last_mark,m;
7650         struct list_head *tmp;
7651         sector_t last_check;
7652         int skipped = 0;
7653         struct md_rdev *rdev;
7654         char *desc, *action = NULL;
7655         struct blk_plug plug;
7656
7657         /* just incase thread restarts... */
7658         if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7659                 return;
7660         if (mddev->ro) {/* never try to sync a read-only array */
7661                 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7662                 return;
7663         }
7664
7665         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7666                 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
7667                         desc = "data-check";
7668                         action = "check";
7669                 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7670                         desc = "requested-resync";
7671                         action = "repair";
7672                 } else
7673                         desc = "resync";
7674         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7675                 desc = "reshape";
7676         else
7677                 desc = "recovery";
7678
7679         mddev->last_sync_action = action ?: desc;
7680
7681         /* we overload curr_resync somewhat here.
7682          * 0 == not engaged in resync at all
7683          * 2 == checking that there is no conflict with another sync
7684          * 1 == like 2, but have yielded to allow conflicting resync to
7685          *              commense
7686          * other == active in resync - this many blocks
7687          *
7688          * Before starting a resync we must have set curr_resync to
7689          * 2, and then checked that every "conflicting" array has curr_resync
7690          * less than ours.  When we find one that is the same or higher
7691          * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
7692          * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7693          * This will mean we have to start checking from the beginning again.
7694          *
7695          */
7696
7697         do {
7698                 mddev->curr_resync = 2;
7699
7700         try_again:
7701                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7702                         goto skip;
7703                 for_each_mddev(mddev2, tmp) {
7704                         if (mddev2 == mddev)
7705                                 continue;
7706                         if (!mddev->parallel_resync
7707                         &&  mddev2->curr_resync
7708                         &&  match_mddev_units(mddev, mddev2)) {
7709                                 DEFINE_WAIT(wq);
7710                                 if (mddev < mddev2 && mddev->curr_resync == 2) {
7711                                         /* arbitrarily yield */
7712                                         mddev->curr_resync = 1;
7713                                         wake_up(&resync_wait);
7714                                 }
7715                                 if (mddev > mddev2 && mddev->curr_resync == 1)
7716                                         /* no need to wait here, we can wait the next
7717                                          * time 'round when curr_resync == 2
7718                                          */
7719                                         continue;
7720                                 /* We need to wait 'interruptible' so as not to
7721                                  * contribute to the load average, and not to
7722                                  * be caught by 'softlockup'
7723                                  */
7724                                 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7725                                 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7726                                     mddev2->curr_resync >= mddev->curr_resync) {
7727                                         printk(KERN_INFO "md: delaying %s of %s"
7728                                                " until %s has finished (they"
7729                                                " share one or more physical units)\n",
7730                                                desc, mdname(mddev), mdname(mddev2));
7731                                         mddev_put(mddev2);
7732                                         if (signal_pending(current))
7733                                                 flush_signals(current);
7734                                         schedule();
7735                                         finish_wait(&resync_wait, &wq);
7736                                         goto try_again;
7737                                 }
7738                                 finish_wait(&resync_wait, &wq);
7739                         }
7740                 }
7741         } while (mddev->curr_resync < 2);
7742
7743         j = 0;
7744         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7745                 /* resync follows the size requested by the personality,
7746                  * which defaults to physical size, but can be virtual size
7747                  */
7748                 max_sectors = mddev->resync_max_sectors;
7749                 atomic64_set(&mddev->resync_mismatches, 0);
7750                 /* we don't use the checkpoint if there's a bitmap */
7751                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7752                         j = mddev->resync_min;
7753                 else if (!mddev->bitmap)
7754                         j = mddev->recovery_cp;
7755
7756         } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7757                 max_sectors = mddev->resync_max_sectors;
7758         else {
7759                 /* recovery follows the physical size of devices */
7760                 max_sectors = mddev->dev_sectors;
7761                 j = MaxSector;
7762                 rcu_read_lock();
7763                 rdev_for_each_rcu(rdev, mddev)
7764                         if (rdev->raid_disk >= 0 &&
7765                             !test_bit(Faulty, &rdev->flags) &&
7766                             !test_bit(In_sync, &rdev->flags) &&
7767                             rdev->recovery_offset < j)
7768                                 j = rdev->recovery_offset;
7769                 rcu_read_unlock();
7770
7771                 /* If there is a bitmap, we need to make sure all
7772                  * writes that started before we added a spare
7773                  * complete before we start doing a recovery.
7774                  * Otherwise the write might complete and (via
7775                  * bitmap_endwrite) set a bit in the bitmap after the
7776                  * recovery has checked that bit and skipped that
7777                  * region.
7778                  */
7779                 if (mddev->bitmap) {
7780                         mddev->pers->quiesce(mddev, 1);
7781                         mddev->pers->quiesce(mddev, 0);
7782                 }
7783         }
7784
7785         printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7786         printk(KERN_INFO "md: minimum _guaranteed_  speed:"
7787                 " %d KB/sec/disk.\n", speed_min(mddev));
7788         printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7789                "(but not more than %d KB/sec) for %s.\n",
7790                speed_max(mddev), desc);
7791
7792         is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7793
7794         io_sectors = 0;
7795         for (m = 0; m < SYNC_MARKS; m++) {
7796                 mark[m] = jiffies;
7797                 mark_cnt[m] = io_sectors;
7798         }
7799         last_mark = 0;
7800         mddev->resync_mark = mark[last_mark];
7801         mddev->resync_mark_cnt = mark_cnt[last_mark];
7802
7803         /*
7804          * Tune reconstruction:
7805          */
7806         window = 32*(PAGE_SIZE/512);
7807         printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7808                 window/2, (unsigned long long)max_sectors/2);
7809
7810         atomic_set(&mddev->recovery_active, 0);
7811         last_check = 0;
7812
7813         if (j>2) {
7814                 printk(KERN_INFO
7815                        "md: resuming %s of %s from checkpoint.\n",
7816                        desc, mdname(mddev));
7817                 mddev->curr_resync = j;
7818         } else
7819                 mddev->curr_resync = 3; /* no longer delayed */
7820         mddev->curr_resync_completed = j;
7821         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7822         md_new_event(mddev);
7823         update_time = jiffies;
7824
7825         if (mddev_is_clustered(mddev))
7826                 md_cluster_ops->resync_start(mddev, j, max_sectors);
7827
7828         blk_start_plug(&plug);
7829         while (j < max_sectors) {
7830                 sector_t sectors;
7831
7832                 skipped = 0;
7833
7834                 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7835                     ((mddev->curr_resync > mddev->curr_resync_completed &&
7836                       (mddev->curr_resync - mddev->curr_resync_completed)
7837                       > (max_sectors >> 4)) ||
7838                      time_after_eq(jiffies, update_time + UPDATE_FREQUENCY) ||
7839                      (j - mddev->curr_resync_completed)*2
7840                      >= mddev->resync_max - mddev->curr_resync_completed ||
7841                      mddev->curr_resync_completed > mddev->resync_max
7842                             )) {
7843                         /* time to update curr_resync_completed */
7844                         wait_event(mddev->recovery_wait,
7845                                    atomic_read(&mddev->recovery_active) == 0);
7846                         mddev->curr_resync_completed = j;
7847                         if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
7848                             j > mddev->recovery_cp)
7849                                 mddev->recovery_cp = j;
7850                         update_time = jiffies;
7851                         set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7852                         sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7853                 }
7854
7855                 while (j >= mddev->resync_max &&
7856                        !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7857                         /* As this condition is controlled by user-space,
7858                          * we can block indefinitely, so use '_interruptible'
7859                          * to avoid triggering warnings.
7860                          */
7861                         flush_signals(current); /* just in case */
7862                         wait_event_interruptible(mddev->recovery_wait,
7863                                                  mddev->resync_max > j
7864                                                  || test_bit(MD_RECOVERY_INTR,
7865                                                              &mddev->recovery));
7866                 }
7867
7868                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7869                         break;
7870
7871                 sectors = mddev->pers->sync_request(mddev, j, &skipped);
7872                 if (sectors == 0) {
7873                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7874                         break;
7875                 }
7876
7877                 if (!skipped) { /* actual IO requested */
7878                         io_sectors += sectors;
7879                         atomic_add(sectors, &mddev->recovery_active);
7880                 }
7881
7882                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7883                         break;
7884
7885                 j += sectors;
7886                 if (j > max_sectors)
7887                         /* when skipping, extra large numbers can be returned. */
7888                         j = max_sectors;
7889                 if (j > 2)
7890                         mddev->curr_resync = j;
7891                 if (mddev_is_clustered(mddev))
7892                         md_cluster_ops->resync_info_update(mddev, j, max_sectors);
7893                 mddev->curr_mark_cnt = io_sectors;
7894                 if (last_check == 0)
7895                         /* this is the earliest that rebuild will be
7896                          * visible in /proc/mdstat
7897                          */
7898                         md_new_event(mddev);
7899
7900                 if (last_check + window > io_sectors || j == max_sectors)
7901                         continue;
7902
7903                 last_check = io_sectors;
7904         repeat:
7905                 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7906                         /* step marks */
7907                         int next = (last_mark+1) % SYNC_MARKS;
7908
7909                         mddev->resync_mark = mark[next];
7910                         mddev->resync_mark_cnt = mark_cnt[next];
7911                         mark[next] = jiffies;
7912                         mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7913                         last_mark = next;
7914                 }
7915
7916                 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7917                         break;
7918
7919                 /*
7920                  * this loop exits only if either when we are slower than
7921                  * the 'hard' speed limit, or the system was IO-idle for
7922                  * a jiffy.
7923                  * the system might be non-idle CPU-wise, but we only care
7924                  * about not overloading the IO subsystem. (things like an
7925                  * e2fsck being done on the RAID array should execute fast)
7926                  */
7927                 cond_resched();
7928
7929                 recovery_done = io_sectors - atomic_read(&mddev->recovery_active);
7930                 currspeed = ((unsigned long)(recovery_done - mddev->resync_mark_cnt))/2
7931                         /((jiffies-mddev->resync_mark)/HZ +1) +1;
7932
7933                 if (currspeed > speed_min(mddev)) {
7934                         if (currspeed > speed_max(mddev)) {
7935                                 msleep(500);
7936                                 goto repeat;
7937                         }
7938                         if (!is_mddev_idle(mddev, 0)) {
7939                                 /*
7940                                  * Give other IO more of a chance.
7941                                  * The faster the devices, the less we wait.
7942                                  */
7943                                 wait_event(mddev->recovery_wait,
7944                                            !atomic_read(&mddev->recovery_active));
7945                         }
7946                 }
7947         }
7948         printk(KERN_INFO "md: %s: %s %s.\n",mdname(mddev), desc,
7949                test_bit(MD_RECOVERY_INTR, &mddev->recovery)
7950                ? "interrupted" : "done");
7951         /*
7952          * this also signals 'finished resyncing' to md_stop
7953          */
7954         blk_finish_plug(&plug);
7955         wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7956
7957         if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7958             !test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7959             mddev->curr_resync > 2) {
7960                 mddev->curr_resync_completed = mddev->curr_resync;
7961                 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7962         }
7963         /* tell personality that we are finished */
7964         mddev->pers->sync_request(mddev, max_sectors, &skipped);
7965
7966         if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7967             mddev->curr_resync > 2) {
7968                 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7969                         if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7970                                 if (mddev->curr_resync >= mddev->recovery_cp) {
7971                                         printk(KERN_INFO
7972                                                "md: checkpointing %s of %s.\n",
7973                                                desc, mdname(mddev));
7974                                         if (test_bit(MD_RECOVERY_ERROR,
7975                                                 &mddev->recovery))
7976                                                 mddev->recovery_cp =
7977                                                         mddev->curr_resync_completed;
7978                                         else
7979                                                 mddev->recovery_cp =
7980                                                         mddev->curr_resync;
7981                                 }
7982                         } else
7983                                 mddev->recovery_cp = MaxSector;
7984                 } else {
7985                         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7986                                 mddev->curr_resync = MaxSector;
7987                         rcu_read_lock();
7988                         rdev_for_each_rcu(rdev, mddev)
7989                                 if (rdev->raid_disk >= 0 &&
7990                                     mddev->delta_disks >= 0 &&
7991                                     !test_bit(Faulty, &rdev->flags) &&
7992                                     !test_bit(In_sync, &rdev->flags) &&
7993                                     rdev->recovery_offset < mddev->curr_resync)
7994                                         rdev->recovery_offset = mddev->curr_resync;
7995                         rcu_read_unlock();
7996                 }
7997         }
7998  skip:
7999         if (mddev_is_clustered(mddev))
8000                 md_cluster_ops->resync_finish(mddev);
8001
8002         set_bit(MD_CHANGE_DEVS, &mddev->flags);
8003
8004         spin_lock(&mddev->lock);
8005         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8006                 /* We completed so min/max setting can be forgotten if used. */
8007                 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8008                         mddev->resync_min = 0;
8009                 mddev->resync_max = MaxSector;
8010         } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
8011                 mddev->resync_min = mddev->curr_resync_completed;
8012         set_bit(MD_RECOVERY_DONE, &mddev->recovery);
8013         mddev->curr_resync = 0;
8014         spin_unlock(&mddev->lock);
8015
8016         wake_up(&resync_wait);
8017         md_wakeup_thread(mddev->thread);
8018         return;
8019 }
8020 EXPORT_SYMBOL_GPL(md_do_sync);
8021
8022 static int remove_and_add_spares(struct mddev *mddev,
8023                                  struct md_rdev *this)
8024 {
8025         struct md_rdev *rdev;
8026         int spares = 0;
8027         int removed = 0;
8028
8029         rdev_for_each(rdev, mddev)
8030                 if ((this == NULL || rdev == this) &&
8031                     rdev->raid_disk >= 0 &&
8032                     !test_bit(Blocked, &rdev->flags) &&
8033                     (test_bit(Faulty, &rdev->flags) ||
8034                      ! test_bit(In_sync, &rdev->flags)) &&
8035                     atomic_read(&rdev->nr_pending)==0) {
8036                         if (mddev->pers->hot_remove_disk(
8037                                     mddev, rdev) == 0) {
8038                                 sysfs_unlink_rdev(mddev, rdev);
8039                                 rdev->raid_disk = -1;
8040                                 removed++;
8041                         }
8042                 }
8043         if (removed && mddev->kobj.sd)
8044                 sysfs_notify(&mddev->kobj, NULL, "degraded");
8045
8046         if (this)
8047                 goto no_add;
8048
8049         rdev_for_each(rdev, mddev) {
8050                 if (rdev->raid_disk >= 0 &&
8051                     !test_bit(In_sync, &rdev->flags) &&
8052                     !test_bit(Faulty, &rdev->flags))
8053                         spares++;
8054                 if (rdev->raid_disk >= 0)
8055                         continue;
8056                 if (test_bit(Faulty, &rdev->flags))
8057                         continue;
8058                 if (mddev->ro &&
8059                     ! (rdev->saved_raid_disk >= 0 &&
8060                        !test_bit(Bitmap_sync, &rdev->flags)))
8061                         continue;
8062
8063                 if (rdev->saved_raid_disk < 0)
8064                         rdev->recovery_offset = 0;
8065                 if (mddev->pers->
8066                     hot_add_disk(mddev, rdev) == 0) {
8067                         if (sysfs_link_rdev(mddev, rdev))
8068                                 /* failure here is OK */;
8069                         spares++;
8070                         md_new_event(mddev);
8071                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
8072                 }
8073         }
8074 no_add:
8075         if (removed)
8076                 set_bit(MD_CHANGE_DEVS, &mddev->flags);
8077         return spares;
8078 }
8079
8080 static void md_start_sync(struct work_struct *ws)
8081 {
8082         struct mddev *mddev = container_of(ws, struct mddev, del_work);
8083
8084         mddev->sync_thread = md_register_thread(md_do_sync,
8085                                                 mddev,
8086                                                 "resync");
8087         if (!mddev->sync_thread) {
8088                 printk(KERN_ERR "%s: could not start resync"
8089                        " thread...\n",
8090                        mdname(mddev));
8091                 /* leave the spares where they are, it shouldn't hurt */
8092                 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8093                 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8094                 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8095                 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8096                 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8097                 wake_up(&resync_wait);
8098                 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8099                                        &mddev->recovery))
8100                         if (mddev->sysfs_action)
8101                                 sysfs_notify_dirent_safe(mddev->sysfs_action);
8102         } else
8103                 md_wakeup_thread(mddev->sync_thread);
8104         sysfs_notify_dirent_safe(mddev->sysfs_action);
8105         md_new_event(mddev);
8106 }
8107
8108 /*
8109  * This routine is regularly called by all per-raid-array threads to
8110  * deal with generic issues like resync and super-block update.
8111  * Raid personalities that don't have a thread (linear/raid0) do not
8112  * need this as they never do any recovery or update the superblock.
8113  *
8114  * It does not do any resync itself, but rather "forks" off other threads
8115  * to do that as needed.
8116  * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
8117  * "->recovery" and create a thread at ->sync_thread.
8118  * When the thread finishes it sets MD_RECOVERY_DONE
8119  * and wakeups up this thread which will reap the thread and finish up.
8120  * This thread also removes any faulty devices (with nr_pending == 0).
8121  *
8122  * The overall approach is:
8123  *  1/ if the superblock needs updating, update it.
8124  *  2/ If a recovery thread is running, don't do anything else.
8125  *  3/ If recovery has finished, clean up, possibly marking spares active.
8126  *  4/ If there are any faulty devices, remove them.
8127  *  5/ If array is degraded, try to add spares devices
8128  *  6/ If array has spares or is not in-sync, start a resync thread.
8129  */
8130 void md_check_recovery(struct mddev *mddev)
8131 {
8132         if (mddev->suspended)
8133                 return;
8134
8135         if (mddev->bitmap)
8136                 bitmap_daemon_work(mddev);
8137
8138         if (signal_pending(current)) {
8139                 if (mddev->pers->sync_request && !mddev->external) {
8140                         printk(KERN_INFO "md: %s in immediate safe mode\n",
8141                                mdname(mddev));
8142                         mddev->safemode = 2;
8143                 }
8144                 flush_signals(current);
8145         }
8146
8147         if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
8148                 return;
8149         if ( ! (
8150                 (mddev->flags & MD_UPDATE_SB_FLAGS & ~ (1<<MD_CHANGE_PENDING)) ||
8151                 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8152                 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
8153                 (mddev->external == 0 && mddev->safemode == 1) ||
8154                 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
8155                  && !mddev->in_sync && mddev->recovery_cp == MaxSector)
8156                 ))
8157                 return;
8158
8159         if (mddev_trylock(mddev)) {
8160                 int spares = 0;
8161
8162                 if (mddev->ro) {
8163                         struct md_rdev *rdev;
8164                         if (!mddev->external && mddev->in_sync)
8165                                 /* 'Blocked' flag not needed as failed devices
8166                                  * will be recorded if array switched to read/write.
8167                                  * Leaving it set will prevent the device
8168                                  * from being removed.
8169                                  */
8170                                 rdev_for_each(rdev, mddev)
8171                                         clear_bit(Blocked, &rdev->flags);
8172                         /* On a read-only array we can:
8173                          * - remove failed devices
8174                          * - add already-in_sync devices if the array itself
8175                          *   is in-sync.
8176                          * As we only add devices that are already in-sync,
8177                          * we can activate the spares immediately.
8178                          */
8179                         remove_and_add_spares(mddev, NULL);
8180                         /* There is no thread, but we need to call
8181                          * ->spare_active and clear saved_raid_disk
8182                          */
8183                         set_bit(MD_RECOVERY_INTR, &mddev->recovery);
8184                         md_reap_sync_thread(mddev);
8185                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8186                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8187                         goto unlock;
8188                 }
8189
8190                 if (!mddev->external) {
8191                         int did_change = 0;
8192                         spin_lock(&mddev->lock);
8193                         if (mddev->safemode &&
8194                             !atomic_read(&mddev->writes_pending) &&
8195                             !mddev->in_sync &&
8196                             mddev->recovery_cp == MaxSector) {
8197                                 mddev->in_sync = 1;
8198                                 did_change = 1;
8199                                 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
8200                         }
8201                         if (mddev->safemode == 1)
8202                                 mddev->safemode = 0;
8203                         spin_unlock(&mddev->lock);
8204                         if (did_change)
8205                                 sysfs_notify_dirent_safe(mddev->sysfs_state);
8206                 }
8207
8208                 if (mddev->flags & MD_UPDATE_SB_FLAGS) {
8209                         if (mddev_is_clustered(mddev))
8210                                 md_cluster_ops->metadata_update_start(mddev);
8211                         md_update_sb(mddev, 0);
8212                         if (mddev_is_clustered(mddev))
8213                                 md_cluster_ops->metadata_update_finish(mddev);
8214                 }
8215
8216                 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
8217                     !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
8218                         /* resync/recovery still happening */
8219                         clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8220                         goto unlock;
8221                 }
8222                 if (mddev->sync_thread) {
8223                         md_reap_sync_thread(mddev);
8224                         goto unlock;
8225                 }
8226                 /* Set RUNNING before clearing NEEDED to avoid
8227                  * any transients in the value of "sync_action".
8228                  */
8229                 mddev->curr_resync_completed = 0;
8230                 spin_lock(&mddev->lock);
8231                 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8232                 spin_unlock(&mddev->lock);
8233                 /* Clear some bits that don't mean anything, but
8234                  * might be left set
8235                  */
8236                 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
8237                 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8238
8239                 if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
8240                     test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
8241                         goto not_running;
8242                 /* no recovery is running.
8243                  * remove any failed drives, then
8244                  * add spares if possible.
8245                  * Spares are also removed and re-added, to allow
8246                  * the personality to fail the re-add.
8247                  */
8248
8249                 if (mddev->reshape_position != MaxSector) {
8250                         if (mddev->pers->check_reshape == NULL ||
8251                             mddev->pers->check_reshape(mddev) != 0)
8252                                 /* Cannot proceed */
8253                                 goto not_running;
8254                         set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8255                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8256                 } else if ((spares = remove_and_add_spares(mddev, NULL))) {
8257                         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8258                         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8259                         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8260                         set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8261                 } else if (mddev->recovery_cp < MaxSector) {
8262                         set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8263                         clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
8264                 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
8265                         /* nothing to be done ... */
8266                         goto not_running;
8267
8268                 if (mddev->pers->sync_request) {
8269                         if (spares) {
8270                                 /* We are adding a device or devices to an array
8271                                  * which has the bitmap stored on all devices.
8272                                  * So make sure all bitmap pages get written
8273                                  */
8274                                 bitmap_write_all(mddev->bitmap);
8275                         }
8276                         INIT_WORK(&mddev->del_work, md_start_sync);
8277                         queue_work(md_misc_wq, &mddev->del_work);
8278                         goto unlock;
8279                 }
8280         not_running:
8281                 if (!mddev->sync_thread) {
8282                         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8283                         wake_up(&resync_wait);
8284                         if (test_and_clear_bit(MD_RECOVERY_RECOVER,
8285                                                &mddev->recovery))
8286                                 if (mddev->sysfs_action)
8287                                         sysfs_notify_dirent_safe(mddev->sysfs_action);
8288                 }
8289         unlock:
8290                 wake_up(&mddev->sb_wait);
8291                 mddev_unlock(mddev);
8292         }
8293 }
8294 EXPORT_SYMBOL(md_check_recovery);
8295
8296 void md_reap_sync_thread(struct mddev *mddev)
8297 {
8298         struct md_rdev *rdev;
8299
8300         /* resync has finished, collect result */
8301         md_unregister_thread(&mddev->sync_thread);
8302         if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
8303             !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
8304                 /* success...*/
8305                 /* activate any spares */
8306                 if (mddev->pers->spare_active(mddev)) {
8307                         sysfs_notify(&mddev->kobj, NULL,
8308                                      "degraded");
8309                         set_bit(MD_CHANGE_DEVS, &mddev->flags);
8310                 }
8311         }
8312         if (mddev_is_clustered(mddev))
8313                 md_cluster_ops->metadata_update_start(mddev);
8314         if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
8315             mddev->pers->finish_reshape)
8316                 mddev->pers->finish_reshape(mddev);
8317
8318         /* If array is no-longer degraded, then any saved_raid_disk
8319          * information must be scrapped.
8320          */
8321         if (!mddev->degraded)
8322                 rdev_for_each(rdev, mddev)
8323                         rdev->saved_raid_disk = -1;
8324
8325         md_update_sb(mddev, 1);
8326         if (mddev_is_clustered(mddev))
8327                 md_cluster_ops->metadata_update_finish(mddev);
8328         clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
8329         clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8330         clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8331         clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8332         clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
8333         clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8334         wake_up(&resync_wait);
8335         /* flag recovery needed just to double check */
8336         set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8337         sysfs_notify_dirent_safe(mddev->sysfs_action);
8338         md_new_event(mddev);
8339         if (mddev->event_work.func)
8340                 queue_work(md_misc_wq, &mddev->event_work);
8341 }
8342 EXPORT_SYMBOL(md_reap_sync_thread);
8343
8344 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
8345 {
8346         sysfs_notify_dirent_safe(rdev->sysfs_state);
8347         wait_event_timeout(rdev->blocked_wait,
8348                            !test_bit(Blocked, &rdev->flags) &&
8349                            !test_bit(BlockedBadBlocks, &rdev->flags),
8350                            msecs_to_jiffies(5000));
8351         rdev_dec_pending(rdev, mddev);
8352 }
8353 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
8354
8355 void md_finish_reshape(struct mddev *mddev)
8356 {
8357         /* called be personality module when reshape completes. */
8358         struct md_rdev *rdev;
8359
8360         rdev_for_each(rdev, mddev) {
8361                 if (rdev->data_offset > rdev->new_data_offset)
8362                         rdev->sectors += rdev->data_offset - rdev->new_data_offset;
8363                 else
8364                         rdev->sectors -= rdev->new_data_offset - rdev->data_offset;
8365                 rdev->data_offset = rdev->new_data_offset;
8366         }
8367 }
8368 EXPORT_SYMBOL(md_finish_reshape);
8369
8370 /* Bad block management.
8371  * We can record which blocks on each device are 'bad' and so just
8372  * fail those blocks, or that stripe, rather than the whole device.
8373  * Entries in the bad-block table are 64bits wide.  This comprises:
8374  * Length of bad-range, in sectors: 0-511 for lengths 1-512
8375  * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
8376  *  A 'shift' can be set so that larger blocks are tracked and
8377  *  consequently larger devices can be covered.
8378  * 'Acknowledged' flag - 1 bit. - the most significant bit.
8379  *
8380  * Locking of the bad-block table uses a seqlock so md_is_badblock
8381  * might need to retry if it is very unlucky.
8382  * We will sometimes want to check for bad blocks in a bi_end_io function,
8383  * so we use the write_seqlock_irq variant.
8384  *
8385  * When looking for a bad block we specify a range and want to
8386  * know if any block in the range is bad.  So we binary-search
8387  * to the last range that starts at-or-before the given endpoint,
8388  * (or "before the sector after the target range")
8389  * then see if it ends after the given start.
8390  * We return
8391  *  0 if there are no known bad blocks in the range
8392  *  1 if there are known bad block which are all acknowledged
8393  * -1 if there are bad blocks which have not yet been acknowledged in metadata.
8394  * plus the start/length of the first bad section we overlap.
8395  */
8396 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
8397                    sector_t *first_bad, int *bad_sectors)
8398 {
8399         int hi;
8400         int lo;
8401         u64 *p = bb->page;
8402         int rv;
8403         sector_t target = s + sectors;
8404         unsigned seq;
8405
8406         if (bb->shift > 0) {
8407                 /* round the start down, and the end up */
8408                 s >>= bb->shift;
8409                 target += (1<<bb->shift) - 1;
8410                 target >>= bb->shift;
8411                 sectors = target - s;
8412         }
8413         /* 'target' is now the first block after the bad range */
8414
8415 retry:
8416         seq = read_seqbegin(&bb->lock);
8417         lo = 0;
8418         rv = 0;
8419         hi = bb->count;
8420
8421         /* Binary search between lo and hi for 'target'
8422          * i.e. for the last range that starts before 'target'
8423          */
8424         /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
8425          * are known not to be the last range before target.
8426          * VARIANT: hi-lo is the number of possible
8427          * ranges, and decreases until it reaches 1
8428          */
8429         while (hi - lo > 1) {
8430                 int mid = (lo + hi) / 2;
8431                 sector_t a = BB_OFFSET(p[mid]);
8432                 if (a < target)
8433                         /* This could still be the one, earlier ranges
8434                          * could not. */
8435                         lo = mid;
8436                 else
8437                         /* This and later ranges are definitely out. */
8438                         hi = mid;
8439         }
8440         /* 'lo' might be the last that started before target, but 'hi' isn't */
8441         if (hi > lo) {
8442                 /* need to check all range that end after 's' to see if
8443                  * any are unacknowledged.
8444                  */
8445                 while (lo >= 0 &&
8446                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8447                         if (BB_OFFSET(p[lo]) < target) {
8448                                 /* starts before the end, and finishes after
8449                                  * the start, so they must overlap
8450                                  */
8451                                 if (rv != -1 && BB_ACK(p[lo]))
8452                                         rv = 1;
8453                                 else
8454                                         rv = -1;
8455                                 *first_bad = BB_OFFSET(p[lo]);
8456                                 *bad_sectors = BB_LEN(p[lo]);
8457                         }
8458                         lo--;
8459                 }
8460         }
8461
8462         if (read_seqretry(&bb->lock, seq))
8463                 goto retry;
8464
8465         return rv;
8466 }
8467 EXPORT_SYMBOL_GPL(md_is_badblock);
8468
8469 /*
8470  * Add a range of bad blocks to the table.
8471  * This might extend the table, or might contract it
8472  * if two adjacent ranges can be merged.
8473  * We binary-search to find the 'insertion' point, then
8474  * decide how best to handle it.
8475  */
8476 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
8477                             int acknowledged)
8478 {
8479         u64 *p;
8480         int lo, hi;
8481         int rv = 1;
8482         unsigned long flags;
8483
8484         if (bb->shift < 0)
8485                 /* badblocks are disabled */
8486                 return 0;
8487
8488         if (bb->shift) {
8489                 /* round the start down, and the end up */
8490                 sector_t next = s + sectors;
8491                 s >>= bb->shift;
8492                 next += (1<<bb->shift) - 1;
8493                 next >>= bb->shift;
8494                 sectors = next - s;
8495         }
8496
8497         write_seqlock_irqsave(&bb->lock, flags);
8498
8499         p = bb->page;
8500         lo = 0;
8501         hi = bb->count;
8502         /* Find the last range that starts at-or-before 's' */
8503         while (hi - lo > 1) {
8504                 int mid = (lo + hi) / 2;
8505                 sector_t a = BB_OFFSET(p[mid]);
8506                 if (a <= s)
8507                         lo = mid;
8508                 else
8509                         hi = mid;
8510         }
8511         if (hi > lo && BB_OFFSET(p[lo]) > s)
8512                 hi = lo;
8513
8514         if (hi > lo) {
8515                 /* we found a range that might merge with the start
8516                  * of our new range
8517                  */
8518                 sector_t a = BB_OFFSET(p[lo]);
8519                 sector_t e = a + BB_LEN(p[lo]);
8520                 int ack = BB_ACK(p[lo]);
8521                 if (e >= s) {
8522                         /* Yes, we can merge with a previous range */
8523                         if (s == a && s + sectors >= e)
8524                                 /* new range covers old */
8525                                 ack = acknowledged;
8526                         else
8527                                 ack = ack && acknowledged;
8528
8529                         if (e < s + sectors)
8530                                 e = s + sectors;
8531                         if (e - a <= BB_MAX_LEN) {
8532                                 p[lo] = BB_MAKE(a, e-a, ack);
8533                                 s = e;
8534                         } else {
8535                                 /* does not all fit in one range,
8536                                  * make p[lo] maximal
8537                                  */
8538                                 if (BB_LEN(p[lo]) != BB_MAX_LEN)
8539                                         p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
8540                                 s = a + BB_MAX_LEN;
8541                         }
8542                         sectors = e - s;
8543                 }
8544         }
8545         if (sectors && hi < bb->count) {
8546                 /* 'hi' points to the first range that starts after 's'.
8547                  * Maybe we can merge with the start of that range */
8548                 sector_t a = BB_OFFSET(p[hi]);
8549                 sector_t e = a + BB_LEN(p[hi]);
8550                 int ack = BB_ACK(p[hi]);
8551                 if (a <= s + sectors) {
8552                         /* merging is possible */
8553                         if (e <= s + sectors) {
8554                                 /* full overlap */
8555                                 e = s + sectors;
8556                                 ack = acknowledged;
8557                         } else
8558                                 ack = ack && acknowledged;
8559
8560                         a = s;
8561                         if (e - a <= BB_MAX_LEN) {
8562                                 p[hi] = BB_MAKE(a, e-a, ack);
8563                                 s = e;
8564                         } else {
8565                                 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
8566                                 s = a + BB_MAX_LEN;
8567                         }
8568                         sectors = e - s;
8569                         lo = hi;
8570                         hi++;
8571                 }
8572         }
8573         if (sectors == 0 && hi < bb->count) {
8574                 /* we might be able to combine lo and hi */
8575                 /* Note: 's' is at the end of 'lo' */
8576                 sector_t a = BB_OFFSET(p[hi]);
8577                 int lolen = BB_LEN(p[lo]);
8578                 int hilen = BB_LEN(p[hi]);
8579                 int newlen = lolen + hilen - (s - a);
8580                 if (s >= a && newlen < BB_MAX_LEN) {
8581                         /* yes, we can combine them */
8582                         int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
8583                         p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
8584                         memmove(p + hi, p + hi + 1,
8585                                 (bb->count - hi - 1) * 8);
8586                         bb->count--;
8587                 }
8588         }
8589         while (sectors) {
8590                 /* didn't merge (it all).
8591                  * Need to add a range just before 'hi' */
8592                 if (bb->count >= MD_MAX_BADBLOCKS) {
8593                         /* No room for more */
8594                         rv = 0;
8595                         break;
8596                 } else {
8597                         int this_sectors = sectors;
8598                         memmove(p + hi + 1, p + hi,
8599                                 (bb->count - hi) * 8);
8600                         bb->count++;
8601
8602                         if (this_sectors > BB_MAX_LEN)
8603                                 this_sectors = BB_MAX_LEN;
8604                         p[hi] = BB_MAKE(s, this_sectors, acknowledged);
8605                         sectors -= this_sectors;
8606                         s += this_sectors;
8607                 }
8608         }
8609
8610         bb->changed = 1;
8611         if (!acknowledged)
8612                 bb->unacked_exist = 1;
8613         write_sequnlock_irqrestore(&bb->lock, flags);
8614
8615         return rv;
8616 }
8617
8618 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8619                        int is_new)
8620 {
8621         int rv;
8622         if (is_new)
8623                 s += rdev->new_data_offset;
8624         else
8625                 s += rdev->data_offset;
8626         rv = md_set_badblocks(&rdev->badblocks,
8627                               s, sectors, 0);
8628         if (rv) {
8629                 /* Make sure they get written out promptly */
8630                 sysfs_notify_dirent_safe(rdev->sysfs_state);
8631                 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
8632                 md_wakeup_thread(rdev->mddev->thread);
8633         }
8634         return rv;
8635 }
8636 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
8637
8638 /*
8639  * Remove a range of bad blocks from the table.
8640  * This may involve extending the table if we spilt a region,
8641  * but it must not fail.  So if the table becomes full, we just
8642  * drop the remove request.
8643  */
8644 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
8645 {
8646         u64 *p;
8647         int lo, hi;
8648         sector_t target = s + sectors;
8649         int rv = 0;
8650
8651         if (bb->shift > 0) {
8652                 /* When clearing we round the start up and the end down.
8653                  * This should not matter as the shift should align with
8654                  * the block size and no rounding should ever be needed.
8655                  * However it is better the think a block is bad when it
8656                  * isn't than to think a block is not bad when it is.
8657                  */
8658                 s += (1<<bb->shift) - 1;
8659                 s >>= bb->shift;
8660                 target >>= bb->shift;
8661                 sectors = target - s;
8662         }
8663
8664         write_seqlock_irq(&bb->lock);
8665
8666         p = bb->page;
8667         lo = 0;
8668         hi = bb->count;
8669         /* Find the last range that starts before 'target' */
8670         while (hi - lo > 1) {
8671                 int mid = (lo + hi) / 2;
8672                 sector_t a = BB_OFFSET(p[mid]);
8673                 if (a < target)
8674                         lo = mid;
8675                 else
8676                         hi = mid;
8677         }
8678         if (hi > lo) {
8679                 /* p[lo] is the last range that could overlap the
8680                  * current range.  Earlier ranges could also overlap,
8681                  * but only this one can overlap the end of the range.
8682                  */
8683                 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
8684                         /* Partial overlap, leave the tail of this range */
8685                         int ack = BB_ACK(p[lo]);
8686                         sector_t a = BB_OFFSET(p[lo]);
8687                         sector_t end = a + BB_LEN(p[lo]);
8688
8689                         if (a < s) {
8690                                 /* we need to split this range */
8691                                 if (bb->count >= MD_MAX_BADBLOCKS) {
8692                                         rv = -ENOSPC;
8693                                         goto out;
8694                                 }
8695                                 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
8696                                 bb->count++;
8697                                 p[lo] = BB_MAKE(a, s-a, ack);
8698                                 lo++;
8699                         }
8700                         p[lo] = BB_MAKE(target, end - target, ack);
8701                         /* there is no longer an overlap */
8702                         hi = lo;
8703                         lo--;
8704                 }
8705                 while (lo >= 0 &&
8706                        BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
8707                         /* This range does overlap */
8708                         if (BB_OFFSET(p[lo]) < s) {
8709                                 /* Keep the early parts of this range. */
8710                                 int ack = BB_ACK(p[lo]);
8711                                 sector_t start = BB_OFFSET(p[lo]);
8712                                 p[lo] = BB_MAKE(start, s - start, ack);
8713                                 /* now low doesn't overlap, so.. */
8714                                 break;
8715                         }
8716                         lo--;
8717                 }
8718                 /* 'lo' is strictly before, 'hi' is strictly after,
8719                  * anything between needs to be discarded
8720                  */
8721                 if (hi - lo > 1) {
8722                         memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
8723                         bb->count -= (hi - lo - 1);
8724                 }
8725         }
8726
8727         bb->changed = 1;
8728 out:
8729         write_sequnlock_irq(&bb->lock);
8730         return rv;
8731 }
8732
8733 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
8734                          int is_new)
8735 {
8736         if (is_new)
8737                 s += rdev->new_data_offset;
8738         else
8739                 s += rdev->data_offset;
8740         return md_clear_badblocks(&rdev->badblocks,
8741                                   s, sectors);
8742 }
8743 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
8744
8745 /*
8746  * Acknowledge all bad blocks in a list.
8747  * This only succeeds if ->changed is clear.  It is used by
8748  * in-kernel metadata updates
8749  */
8750 void md_ack_all_badblocks(struct badblocks *bb)
8751 {
8752         if (bb->page == NULL || bb->changed)
8753                 /* no point even trying */
8754                 return;
8755         write_seqlock_irq(&bb->lock);
8756
8757         if (bb->changed == 0 && bb->unacked_exist) {
8758                 u64 *p = bb->page;
8759                 int i;
8760                 for (i = 0; i < bb->count ; i++) {
8761                         if (!BB_ACK(p[i])) {
8762                                 sector_t start = BB_OFFSET(p[i]);
8763                                 int len = BB_LEN(p[i]);
8764                                 p[i] = BB_MAKE(start, len, 1);
8765                         }
8766                 }
8767                 bb->unacked_exist = 0;
8768         }
8769         write_sequnlock_irq(&bb->lock);
8770 }
8771 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
8772
8773 /* sysfs access to bad-blocks list.
8774  * We present two files.
8775  * 'bad-blocks' lists sector numbers and lengths of ranges that
8776  *    are recorded as bad.  The list is truncated to fit within
8777  *    the one-page limit of sysfs.
8778  *    Writing "sector length" to this file adds an acknowledged
8779  *    bad block list.
8780  * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8781  *    been acknowledged.  Writing to this file adds bad blocks
8782  *    without acknowledging them.  This is largely for testing.
8783  */
8784
8785 static ssize_t
8786 badblocks_show(struct badblocks *bb, char *page, int unack)
8787 {
8788         size_t len;
8789         int i;
8790         u64 *p = bb->page;
8791         unsigned seq;
8792
8793         if (bb->shift < 0)
8794                 return 0;
8795
8796 retry:
8797         seq = read_seqbegin(&bb->lock);
8798
8799         len = 0;
8800         i = 0;
8801
8802         while (len < PAGE_SIZE && i < bb->count) {
8803                 sector_t s = BB_OFFSET(p[i]);
8804                 unsigned int length = BB_LEN(p[i]);
8805                 int ack = BB_ACK(p[i]);
8806                 i++;
8807
8808                 if (unack && ack)
8809                         continue;
8810
8811                 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8812                                 (unsigned long long)s << bb->shift,
8813                                 length << bb->shift);
8814         }
8815         if (unack && len == 0)
8816                 bb->unacked_exist = 0;
8817
8818         if (read_seqretry(&bb->lock, seq))
8819                 goto retry;
8820
8821         return len;
8822 }
8823
8824 #define DO_DEBUG 1
8825
8826 static ssize_t
8827 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8828 {
8829         unsigned long long sector;
8830         int length;
8831         char newline;
8832 #ifdef DO_DEBUG
8833         /* Allow clearing via sysfs *only* for testing/debugging.
8834          * Normally only a successful write may clear a badblock
8835          */
8836         int clear = 0;
8837         if (page[0] == '-') {
8838                 clear = 1;
8839                 page++;
8840         }
8841 #endif /* DO_DEBUG */
8842
8843         switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8844         case 3:
8845                 if (newline != '\n')
8846                         return -EINVAL;
8847         case 2:
8848                 if (length <= 0)
8849                         return -EINVAL;
8850                 break;
8851         default:
8852                 return -EINVAL;
8853         }
8854
8855 #ifdef DO_DEBUG
8856         if (clear) {
8857                 md_clear_badblocks(bb, sector, length);
8858                 return len;
8859         }
8860 #endif /* DO_DEBUG */
8861         if (md_set_badblocks(bb, sector, length, !unack))
8862                 return len;
8863         else
8864                 return -ENOSPC;
8865 }
8866
8867 static int md_notify_reboot(struct notifier_block *this,
8868                             unsigned long code, void *x)
8869 {
8870         struct list_head *tmp;
8871         struct mddev *mddev;
8872         int need_delay = 0;
8873
8874         for_each_mddev(mddev, tmp) {
8875                 if (mddev_trylock(mddev)) {
8876                         if (mddev->pers)
8877                                 __md_stop_writes(mddev);
8878                         if (mddev->persistent)
8879                                 mddev->safemode = 2;
8880                         mddev_unlock(mddev);
8881                 }
8882                 need_delay = 1;
8883         }
8884         /*
8885          * certain more exotic SCSI devices are known to be
8886          * volatile wrt too early system reboots. While the
8887          * right place to handle this issue is the given
8888          * driver, we do want to have a safe RAID driver ...
8889          */
8890         if (need_delay)
8891                 mdelay(1000*1);
8892
8893         return NOTIFY_DONE;
8894 }
8895
8896 static struct notifier_block md_notifier = {
8897         .notifier_call  = md_notify_reboot,
8898         .next           = NULL,
8899         .priority       = INT_MAX, /* before any real devices */
8900 };
8901
8902 static void md_geninit(void)
8903 {
8904         pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8905
8906         proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8907 }
8908
8909 static int __init md_init(void)
8910 {
8911         int ret = -ENOMEM;
8912
8913         md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8914         if (!md_wq)
8915                 goto err_wq;
8916
8917         md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8918         if (!md_misc_wq)
8919                 goto err_misc_wq;
8920
8921         if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8922                 goto err_md;
8923
8924         if ((ret = register_blkdev(0, "mdp")) < 0)
8925                 goto err_mdp;
8926         mdp_major = ret;
8927
8928         blk_register_region(MKDEV(MD_MAJOR, 0), 512, THIS_MODULE,
8929                             md_probe, NULL, NULL);
8930         blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8931                             md_probe, NULL, NULL);
8932
8933         register_reboot_notifier(&md_notifier);
8934         raid_table_header = register_sysctl_table(raid_root_table);
8935
8936         md_geninit();
8937         return 0;
8938
8939 err_mdp:
8940         unregister_blkdev(MD_MAJOR, "md");
8941 err_md:
8942         destroy_workqueue(md_misc_wq);
8943 err_misc_wq:
8944         destroy_workqueue(md_wq);
8945 err_wq:
8946         return ret;
8947 }
8948
8949 void md_reload_sb(struct mddev *mddev)
8950 {
8951         struct md_rdev *rdev, *tmp;
8952
8953         rdev_for_each_safe(rdev, tmp, mddev) {
8954                 rdev->sb_loaded = 0;
8955                 ClearPageUptodate(rdev->sb_page);
8956         }
8957         mddev->raid_disks = 0;
8958         analyze_sbs(mddev);
8959         rdev_for_each_safe(rdev, tmp, mddev) {
8960                 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
8961                 /* since we don't write to faulty devices, we figure out if the
8962                  *  disk is faulty by comparing events
8963                  */
8964                 if (mddev->events > sb->events)
8965                         set_bit(Faulty, &rdev->flags);
8966         }
8967
8968 }
8969 EXPORT_SYMBOL(md_reload_sb);
8970
8971 #ifndef MODULE
8972
8973 /*
8974  * Searches all registered partitions for autorun RAID arrays
8975  * at boot time.
8976  */
8977
8978 static LIST_HEAD(all_detected_devices);
8979 struct detected_devices_node {
8980         struct list_head list;
8981         dev_t dev;
8982 };
8983
8984 void md_autodetect_dev(dev_t dev)
8985 {
8986         struct detected_devices_node *node_detected_dev;
8987
8988         node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8989         if (node_detected_dev) {
8990                 node_detected_dev->dev = dev;
8991                 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8992         } else {
8993                 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8994                         ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8995         }
8996 }
8997
8998 static void autostart_arrays(int part)
8999 {
9000         struct md_rdev *rdev;
9001         struct detected_devices_node *node_detected_dev;
9002         dev_t dev;
9003         int i_scanned, i_passed;
9004
9005         i_scanned = 0;
9006         i_passed = 0;
9007
9008         printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
9009
9010         while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
9011                 i_scanned++;
9012                 node_detected_dev = list_entry(all_detected_devices.next,
9013                                         struct detected_devices_node, list);
9014                 list_del(&node_detected_dev->list);
9015                 dev = node_detected_dev->dev;
9016                 kfree(node_detected_dev);
9017                 rdev = md_import_device(dev,0, 90);
9018                 if (IS_ERR(rdev))
9019                         continue;
9020
9021                 if (test_bit(Faulty, &rdev->flags))
9022                         continue;
9023
9024                 set_bit(AutoDetected, &rdev->flags);
9025                 list_add(&rdev->same_set, &pending_raid_disks);
9026                 i_passed++;
9027         }
9028
9029         printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
9030                                                 i_scanned, i_passed);
9031
9032         autorun_devices(part);
9033 }
9034
9035 #endif /* !MODULE */
9036
9037 static __exit void md_exit(void)
9038 {
9039         struct mddev *mddev;
9040         struct list_head *tmp;
9041         int delay = 1;
9042
9043         blk_unregister_region(MKDEV(MD_MAJOR,0), 512);
9044         blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
9045
9046         unregister_blkdev(MD_MAJOR,"md");
9047         unregister_blkdev(mdp_major, "mdp");
9048         unregister_reboot_notifier(&md_notifier);
9049         unregister_sysctl_table(raid_table_header);
9050
9051         /* We cannot unload the modules while some process is
9052          * waiting for us in select() or poll() - wake them up
9053          */
9054         md_unloading = 1;
9055         while (waitqueue_active(&md_event_waiters)) {
9056                 /* not safe to leave yet */
9057                 wake_up(&md_event_waiters);
9058                 msleep(delay);
9059                 delay += delay;
9060         }
9061         remove_proc_entry("mdstat", NULL);
9062
9063         for_each_mddev(mddev, tmp) {
9064                 export_array(mddev);
9065                 mddev->hold_active = 0;
9066         }
9067         destroy_workqueue(md_misc_wq);
9068         destroy_workqueue(md_wq);
9069 }
9070
9071 subsys_initcall(md_init);
9072 module_exit(md_exit)
9073
9074 static int get_ro(char *buffer, struct kernel_param *kp)
9075 {
9076         return sprintf(buffer, "%d", start_readonly);
9077 }
9078 static int set_ro(const char *val, struct kernel_param *kp)
9079 {
9080         return kstrtouint(val, 10, (unsigned int *)&start_readonly);
9081 }
9082
9083 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
9084 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
9085 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
9086
9087 MODULE_LICENSE("GPL");
9088 MODULE_DESCRIPTION("MD RAID framework");
9089 MODULE_ALIAS("md");
9090 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);