cad057d25a29761db257f24c1d53368b96989bf0
[pandora-kernel.git] / drivers / ide / ide-io.c
1 /*
2  *      IDE I/O functions
3  *
4  *      Basic PIO and command management functionality.
5  *
6  * This code was split off from ide.c. See ide.c for history and original
7  * copyrights.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the
11  * Free Software Foundation; either version 2, or (at your option) any
12  * later version.
13  *
14  * This program is distributed in the hope that it will be useful, but
15  * WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * General Public License for more details.
18  *
19  * For the avoidance of doubt the "preferred form" of this code is one which
20  * is in an open non patent encumbered format. Where cryptographic key signing
21  * forms part of the process of creating an executable the information
22  * including keys needed to generate an equivalently functional executable
23  * are deemed to be part of the source code.
24  */
25  
26  
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
32 #include <linux/mm.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/completion.h>
44 #include <linux/reboot.h>
45 #include <linux/cdrom.h>
46 #include <linux/seq_file.h>
47 #include <linux/device.h>
48 #include <linux/kmod.h>
49 #include <linux/scatterlist.h>
50 #include <linux/bitops.h>
51
52 #include <asm/byteorder.h>
53 #include <asm/irq.h>
54 #include <asm/uaccess.h>
55 #include <asm/io.h>
56
57 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
58                              int uptodate, unsigned int nr_bytes, int dequeue)
59 {
60         int ret = 1;
61
62         /*
63          * if failfast is set on a request, override number of sectors and
64          * complete the whole request right now
65          */
66         if (blk_noretry_request(rq) && end_io_error(uptodate))
67                 nr_bytes = rq->hard_nr_sectors << 9;
68
69         if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
70                 rq->errors = -EIO;
71
72         /*
73          * decide whether to reenable DMA -- 3 is a random magic for now,
74          * if we DMA timeout more than 3 times, just stay in PIO
75          */
76         if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
77                 drive->state = 0;
78                 ide_dma_on(drive);
79         }
80
81         if (!end_that_request_chunk(rq, uptodate, nr_bytes)) {
82                 add_disk_randomness(rq->rq_disk);
83                 if (dequeue) {
84                         if (!list_empty(&rq->queuelist))
85                                 blkdev_dequeue_request(rq);
86                         HWGROUP(drive)->rq = NULL;
87                 }
88                 end_that_request_last(rq, uptodate);
89                 ret = 0;
90         }
91
92         return ret;
93 }
94
95 /**
96  *      ide_end_request         -       complete an IDE I/O
97  *      @drive: IDE device for the I/O
98  *      @uptodate:
99  *      @nr_sectors: number of sectors completed
100  *
101  *      This is our end_request wrapper function. We complete the I/O
102  *      update random number input and dequeue the request, which if
103  *      it was tagged may be out of order.
104  */
105
106 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
107 {
108         unsigned int nr_bytes = nr_sectors << 9;
109         struct request *rq;
110         unsigned long flags;
111         int ret = 1;
112
113         /*
114          * room for locking improvements here, the calls below don't
115          * need the queue lock held at all
116          */
117         spin_lock_irqsave(&ide_lock, flags);
118         rq = HWGROUP(drive)->rq;
119
120         if (!nr_bytes) {
121                 if (blk_pc_request(rq))
122                         nr_bytes = rq->data_len;
123                 else
124                         nr_bytes = rq->hard_cur_sectors << 9;
125         }
126
127         ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
128
129         spin_unlock_irqrestore(&ide_lock, flags);
130         return ret;
131 }
132 EXPORT_SYMBOL(ide_end_request);
133
134 /*
135  * Power Management state machine. This one is rather trivial for now,
136  * we should probably add more, like switching back to PIO on suspend
137  * to help some BIOSes, re-do the door locking on resume, etc...
138  */
139
140 enum {
141         ide_pm_flush_cache      = ide_pm_state_start_suspend,
142         idedisk_pm_standby,
143
144         idedisk_pm_restore_pio  = ide_pm_state_start_resume,
145         idedisk_pm_idle,
146         ide_pm_restore_dma,
147 };
148
149 static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
150 {
151         struct request_pm_state *pm = rq->data;
152
153         if (drive->media != ide_disk)
154                 return;
155
156         switch (pm->pm_step) {
157         case ide_pm_flush_cache:        /* Suspend step 1 (flush cache) complete */
158                 if (pm->pm_state == PM_EVENT_FREEZE)
159                         pm->pm_step = ide_pm_state_completed;
160                 else
161                         pm->pm_step = idedisk_pm_standby;
162                 break;
163         case idedisk_pm_standby:        /* Suspend step 2 (standby) complete */
164                 pm->pm_step = ide_pm_state_completed;
165                 break;
166         case idedisk_pm_restore_pio:    /* Resume step 1 complete */
167                 pm->pm_step = idedisk_pm_idle;
168                 break;
169         case idedisk_pm_idle:           /* Resume step 2 (idle) complete */
170                 pm->pm_step = ide_pm_restore_dma;
171                 break;
172         }
173 }
174
175 static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
176 {
177         struct request_pm_state *pm = rq->data;
178         ide_task_t *args = rq->special;
179
180         memset(args, 0, sizeof(*args));
181
182         switch (pm->pm_step) {
183         case ide_pm_flush_cache:        /* Suspend step 1 (flush cache) */
184                 if (drive->media != ide_disk)
185                         break;
186                 /* Not supported? Switch to next step now. */
187                 if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
188                         ide_complete_power_step(drive, rq, 0, 0);
189                         return ide_stopped;
190                 }
191                 if (ide_id_has_flush_cache_ext(drive->id))
192                         args->tf.command = WIN_FLUSH_CACHE_EXT;
193                 else
194                         args->tf.command = WIN_FLUSH_CACHE;
195                 goto out_do_tf;
196
197         case idedisk_pm_standby:        /* Suspend step 2 (standby) */
198                 args->tf.command = WIN_STANDBYNOW1;
199                 goto out_do_tf;
200
201         case idedisk_pm_restore_pio:    /* Resume step 1 (restore PIO) */
202                 ide_set_max_pio(drive);
203                 /*
204                  * skip idedisk_pm_idle for ATAPI devices
205                  */
206                 if (drive->media != ide_disk)
207                         pm->pm_step = ide_pm_restore_dma;
208                 else
209                         ide_complete_power_step(drive, rq, 0, 0);
210                 return ide_stopped;
211
212         case idedisk_pm_idle:           /* Resume step 2 (idle) */
213                 args->tf.command = WIN_IDLEIMMEDIATE;
214                 goto out_do_tf;
215
216         case ide_pm_restore_dma:        /* Resume step 3 (restore DMA) */
217                 /*
218                  * Right now, all we do is call ide_set_dma(drive),
219                  * we could be smarter and check for current xfer_speed
220                  * in struct drive etc...
221                  */
222                 if (drive->hwif->dma_host_set == NULL)
223                         break;
224                 /*
225                  * TODO: respect ->using_dma setting
226                  */
227                 ide_set_dma(drive);
228                 break;
229         }
230         pm->pm_step = ide_pm_state_completed;
231         return ide_stopped;
232
233 out_do_tf:
234         args->tf_flags   = IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
235         args->data_phase = TASKFILE_NO_DATA;
236         return do_rw_taskfile(drive, args);
237 }
238
239 /**
240  *      ide_end_dequeued_request        -       complete an IDE I/O
241  *      @drive: IDE device for the I/O
242  *      @uptodate:
243  *      @nr_sectors: number of sectors completed
244  *
245  *      Complete an I/O that is no longer on the request queue. This
246  *      typically occurs when we pull the request and issue a REQUEST_SENSE.
247  *      We must still finish the old request but we must not tamper with the
248  *      queue in the meantime.
249  *
250  *      NOTE: This path does not handle barrier, but barrier is not supported
251  *      on ide-cd anyway.
252  */
253
254 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
255                              int uptodate, int nr_sectors)
256 {
257         unsigned long flags;
258         int ret;
259
260         spin_lock_irqsave(&ide_lock, flags);
261         BUG_ON(!blk_rq_started(rq));
262         ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
263         spin_unlock_irqrestore(&ide_lock, flags);
264
265         return ret;
266 }
267 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
268
269
270 /**
271  *      ide_complete_pm_request - end the current Power Management request
272  *      @drive: target drive
273  *      @rq: request
274  *
275  *      This function cleans up the current PM request and stops the queue
276  *      if necessary.
277  */
278 static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
279 {
280         unsigned long flags;
281
282 #ifdef DEBUG_PM
283         printk("%s: completing PM request, %s\n", drive->name,
284                blk_pm_suspend_request(rq) ? "suspend" : "resume");
285 #endif
286         spin_lock_irqsave(&ide_lock, flags);
287         if (blk_pm_suspend_request(rq)) {
288                 blk_stop_queue(drive->queue);
289         } else {
290                 drive->blocked = 0;
291                 blk_start_queue(drive->queue);
292         }
293         blkdev_dequeue_request(rq);
294         HWGROUP(drive)->rq = NULL;
295         end_that_request_last(rq, 1);
296         spin_unlock_irqrestore(&ide_lock, flags);
297 }
298
299 void ide_tf_read(ide_drive_t *drive, ide_task_t *task)
300 {
301         ide_hwif_t *hwif = drive->hwif;
302         struct ide_taskfile *tf = &task->tf;
303
304         if (task->tf_flags & IDE_TFLAG_IN_DATA) {
305                 u16 data = hwif->INW(IDE_DATA_REG);
306
307                 tf->data = data & 0xff;
308                 tf->hob_data = (data >> 8) & 0xff;
309         }
310
311         /* be sure we're looking at the low order bits */
312         hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
313
314         if (task->tf_flags & IDE_TFLAG_IN_NSECT)
315                 tf->nsect  = hwif->INB(IDE_NSECTOR_REG);
316         if (task->tf_flags & IDE_TFLAG_IN_LBAL)
317                 tf->lbal   = hwif->INB(IDE_SECTOR_REG);
318         if (task->tf_flags & IDE_TFLAG_IN_LBAM)
319                 tf->lbam   = hwif->INB(IDE_LCYL_REG);
320         if (task->tf_flags & IDE_TFLAG_IN_LBAH)
321                 tf->lbah   = hwif->INB(IDE_HCYL_REG);
322         if (task->tf_flags & IDE_TFLAG_IN_DEVICE)
323                 tf->device = hwif->INB(IDE_SELECT_REG);
324
325         if (task->tf_flags & IDE_TFLAG_LBA48) {
326                 hwif->OUTB(drive->ctl | 0x80, IDE_CONTROL_REG);
327
328                 if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE)
329                         tf->hob_feature = hwif->INB(IDE_FEATURE_REG);
330                 if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT)
331                         tf->hob_nsect   = hwif->INB(IDE_NSECTOR_REG);
332                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL)
333                         tf->hob_lbal    = hwif->INB(IDE_SECTOR_REG);
334                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM)
335                         tf->hob_lbam    = hwif->INB(IDE_LCYL_REG);
336                 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH)
337                         tf->hob_lbah    = hwif->INB(IDE_HCYL_REG);
338         }
339 }
340
341 /**
342  *      ide_end_drive_cmd       -       end an explicit drive command
343  *      @drive: command 
344  *      @stat: status bits
345  *      @err: error bits
346  *
347  *      Clean up after success/failure of an explicit drive command.
348  *      These get thrown onto the queue so they are synchronized with
349  *      real I/O operations on the drive.
350  *
351  *      In LBA48 mode we have to read the register set twice to get
352  *      all the extra information out.
353  */
354  
355 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
356 {
357         ide_hwif_t *hwif = HWIF(drive);
358         unsigned long flags;
359         struct request *rq;
360
361         spin_lock_irqsave(&ide_lock, flags);
362         rq = HWGROUP(drive)->rq;
363         spin_unlock_irqrestore(&ide_lock, flags);
364
365         if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
366                 u8 *args = (u8 *) rq->buffer;
367                 if (rq->errors == 0)
368                         rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
369
370                 if (args) {
371                         args[0] = stat;
372                         args[1] = err;
373                         /* be sure we're looking at the low order bits */
374                         hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
375                         args[2] = hwif->INB(IDE_NSECTOR_REG);
376                 }
377         } else if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
378                 ide_task_t *args = (ide_task_t *) rq->special;
379                 if (rq->errors == 0)
380                         rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
381                         
382                 if (args) {
383                         struct ide_taskfile *tf = &args->tf;
384
385                         tf->error = err;
386                         tf->status = stat;
387
388                         ide_tf_read(drive, args);
389                 }
390         } else if (blk_pm_request(rq)) {
391                 struct request_pm_state *pm = rq->data;
392 #ifdef DEBUG_PM
393                 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
394                         drive->name, rq->pm->pm_step, stat, err);
395 #endif
396                 ide_complete_power_step(drive, rq, stat, err);
397                 if (pm->pm_step == ide_pm_state_completed)
398                         ide_complete_pm_request(drive, rq);
399                 return;
400         }
401
402         spin_lock_irqsave(&ide_lock, flags);
403         blkdev_dequeue_request(rq);
404         HWGROUP(drive)->rq = NULL;
405         rq->errors = err;
406         end_that_request_last(rq, !rq->errors);
407         spin_unlock_irqrestore(&ide_lock, flags);
408 }
409
410 EXPORT_SYMBOL(ide_end_drive_cmd);
411
412 /**
413  *      try_to_flush_leftover_data      -       flush junk
414  *      @drive: drive to flush
415  *
416  *      try_to_flush_leftover_data() is invoked in response to a drive
417  *      unexpectedly having its DRQ_STAT bit set.  As an alternative to
418  *      resetting the drive, this routine tries to clear the condition
419  *      by read a sector's worth of data from the drive.  Of course,
420  *      this may not help if the drive is *waiting* for data from *us*.
421  */
422 static void try_to_flush_leftover_data (ide_drive_t *drive)
423 {
424         int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
425
426         if (drive->media != ide_disk)
427                 return;
428         while (i > 0) {
429                 u32 buffer[16];
430                 u32 wcount = (i > 16) ? 16 : i;
431
432                 i -= wcount;
433                 HWIF(drive)->ata_input_data(drive, buffer, wcount);
434         }
435 }
436
437 static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
438 {
439         if (rq->rq_disk) {
440                 ide_driver_t *drv;
441
442                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
443                 drv->end_request(drive, 0, 0);
444         } else
445                 ide_end_request(drive, 0, 0);
446 }
447
448 static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
449 {
450         ide_hwif_t *hwif = drive->hwif;
451
452         if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
453                 /* other bits are useless when BUSY */
454                 rq->errors |= ERROR_RESET;
455         } else if (stat & ERR_STAT) {
456                 /* err has different meaning on cdrom and tape */
457                 if (err == ABRT_ERR) {
458                         if (drive->select.b.lba &&
459                             /* some newer drives don't support WIN_SPECIFY */
460                             hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY)
461                                 return ide_stopped;
462                 } else if ((err & BAD_CRC) == BAD_CRC) {
463                         /* UDMA crc error, just retry the operation */
464                         drive->crc_count++;
465                 } else if (err & (BBD_ERR | ECC_ERR)) {
466                         /* retries won't help these */
467                         rq->errors = ERROR_MAX;
468                 } else if (err & TRK0_ERR) {
469                         /* help it find track zero */
470                         rq->errors |= ERROR_RECAL;
471                 }
472         }
473
474         if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ &&
475             (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0)
476                 try_to_flush_leftover_data(drive);
477
478         if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
479                 ide_kill_rq(drive, rq);
480                 return ide_stopped;
481         }
482
483         if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
484                 rq->errors |= ERROR_RESET;
485
486         if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
487                 ++rq->errors;
488                 return ide_do_reset(drive);
489         }
490
491         if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
492                 drive->special.b.recalibrate = 1;
493
494         ++rq->errors;
495
496         return ide_stopped;
497 }
498
499 static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
500 {
501         ide_hwif_t *hwif = drive->hwif;
502
503         if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
504                 /* other bits are useless when BUSY */
505                 rq->errors |= ERROR_RESET;
506         } else {
507                 /* add decoding error stuff */
508         }
509
510         if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
511                 /* force an abort */
512                 hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
513
514         if (rq->errors >= ERROR_MAX) {
515                 ide_kill_rq(drive, rq);
516         } else {
517                 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
518                         ++rq->errors;
519                         return ide_do_reset(drive);
520                 }
521                 ++rq->errors;
522         }
523
524         return ide_stopped;
525 }
526
527 ide_startstop_t
528 __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
529 {
530         if (drive->media == ide_disk)
531                 return ide_ata_error(drive, rq, stat, err);
532         return ide_atapi_error(drive, rq, stat, err);
533 }
534
535 EXPORT_SYMBOL_GPL(__ide_error);
536
537 /**
538  *      ide_error       -       handle an error on the IDE
539  *      @drive: drive the error occurred on
540  *      @msg: message to report
541  *      @stat: status bits
542  *
543  *      ide_error() takes action based on the error returned by the drive.
544  *      For normal I/O that may well include retries. We deal with
545  *      both new-style (taskfile) and old style command handling here.
546  *      In the case of taskfile command handling there is work left to
547  *      do
548  */
549  
550 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
551 {
552         struct request *rq;
553         u8 err;
554
555         err = ide_dump_status(drive, msg, stat);
556
557         if ((rq = HWGROUP(drive)->rq) == NULL)
558                 return ide_stopped;
559
560         /* retry only "normal" I/O: */
561         if (!blk_fs_request(rq)) {
562                 rq->errors = 1;
563                 ide_end_drive_cmd(drive, stat, err);
564                 return ide_stopped;
565         }
566
567         if (rq->rq_disk) {
568                 ide_driver_t *drv;
569
570                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
571                 return drv->error(drive, rq, stat, err);
572         } else
573                 return __ide_error(drive, rq, stat, err);
574 }
575
576 EXPORT_SYMBOL_GPL(ide_error);
577
578 ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
579 {
580         if (drive->media != ide_disk)
581                 rq->errors |= ERROR_RESET;
582
583         ide_kill_rq(drive, rq);
584
585         return ide_stopped;
586 }
587
588 EXPORT_SYMBOL_GPL(__ide_abort);
589
590 /**
591  *      ide_abort       -       abort pending IDE operations
592  *      @drive: drive the error occurred on
593  *      @msg: message to report
594  *
595  *      ide_abort kills and cleans up when we are about to do a 
596  *      host initiated reset on active commands. Longer term we
597  *      want handlers to have sensible abort handling themselves
598  *
599  *      This differs fundamentally from ide_error because in 
600  *      this case the command is doing just fine when we
601  *      blow it away.
602  */
603  
604 ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
605 {
606         struct request *rq;
607
608         if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
609                 return ide_stopped;
610
611         /* retry only "normal" I/O: */
612         if (!blk_fs_request(rq)) {
613                 rq->errors = 1;
614                 ide_end_drive_cmd(drive, BUSY_STAT, 0);
615                 return ide_stopped;
616         }
617
618         if (rq->rq_disk) {
619                 ide_driver_t *drv;
620
621                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
622                 return drv->abort(drive, rq);
623         } else
624                 return __ide_abort(drive, rq);
625 }
626
627 /**
628  *      drive_cmd_intr          -       drive command completion interrupt
629  *      @drive: drive the completion interrupt occurred on
630  *
631  *      drive_cmd_intr() is invoked on completion of a special DRIVE_CMD.
632  *      We do any necessary data reading and then wait for the drive to
633  *      go non busy. At that point we may read the error data and complete
634  *      the request
635  */
636  
637 static ide_startstop_t drive_cmd_intr (ide_drive_t *drive)
638 {
639         struct request *rq = HWGROUP(drive)->rq;
640         ide_hwif_t *hwif = HWIF(drive);
641         u8 *args = (u8 *)rq->buffer, pio_in = (args && args[3]) ? 1 : 0, stat;
642
643         if (pio_in) {
644                 u8 io_32bit = drive->io_32bit;
645                 stat = hwif->INB(IDE_STATUS_REG);
646                 if (!OK_STAT(stat, DRQ_STAT, BAD_R_STAT)) {
647                         if (stat & (ERR_STAT | DRQ_STAT))
648                                 return ide_error(drive, __FUNCTION__, stat);
649                         ide_set_handler(drive, &drive_cmd_intr, WAIT_WORSTCASE,
650                                         NULL);
651                         return ide_started;
652                 }
653                 drive->io_32bit = 0;
654                 hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS);
655                 drive->io_32bit = io_32bit;
656                 stat = wait_drive_not_busy(drive);
657         } else {
658                 local_irq_enable_in_hardirq();
659                 stat = hwif->INB(IDE_STATUS_REG);
660         }
661
662         if (!OK_STAT(stat, (pio_in ? 0 : READY_STAT), BAD_STAT))
663                 return ide_error(drive, __FUNCTION__, stat);
664                 /* calls ide_end_drive_cmd */
665         ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG));
666         return ide_stopped;
667 }
668
669 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
670 {
671         tf->nsect   = drive->sect;
672         tf->lbal    = drive->sect;
673         tf->lbam    = drive->cyl;
674         tf->lbah    = drive->cyl >> 8;
675         tf->device  = ((drive->head - 1) | drive->select.all) & ~ATA_LBA;
676         tf->command = WIN_SPECIFY;
677 }
678
679 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
680 {
681         tf->nsect   = drive->sect;
682         tf->command = WIN_RESTORE;
683 }
684
685 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
686 {
687         tf->nsect   = drive->mult_req;
688         tf->command = WIN_SETMULT;
689 }
690
691 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
692 {
693         special_t *s = &drive->special;
694         ide_task_t args;
695
696         memset(&args, 0, sizeof(ide_task_t));
697         args.data_phase = TASKFILE_NO_DATA;
698
699         if (s->b.set_geometry) {
700                 s->b.set_geometry = 0;
701                 ide_tf_set_specify_cmd(drive, &args.tf);
702         } else if (s->b.recalibrate) {
703                 s->b.recalibrate = 0;
704                 ide_tf_set_restore_cmd(drive, &args.tf);
705         } else if (s->b.set_multmode) {
706                 s->b.set_multmode = 0;
707                 if (drive->mult_req > drive->id->max_multsect)
708                         drive->mult_req = drive->id->max_multsect;
709                 ide_tf_set_setmult_cmd(drive, &args.tf);
710         } else if (s->all) {
711                 int special = s->all;
712                 s->all = 0;
713                 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
714                 return ide_stopped;
715         }
716
717         args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
718                         IDE_TFLAG_CUSTOM_HANDLER;
719
720         do_rw_taskfile(drive, &args);
721
722         return ide_started;
723 }
724
725 /*
726  * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
727  */
728 static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
729 {
730         switch (req_pio) {
731         case 202:
732         case 201:
733         case 200:
734         case 102:
735         case 101:
736         case 100:
737                 return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
738         case 9:
739         case 8:
740                 return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
741         case 7:
742         case 6:
743                 return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
744         default:
745                 return 0;
746         }
747 }
748
749 /**
750  *      do_special              -       issue some special commands
751  *      @drive: drive the command is for
752  *
753  *      do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
754  *      commands to a drive.  It used to do much more, but has been scaled
755  *      back.
756  */
757
758 static ide_startstop_t do_special (ide_drive_t *drive)
759 {
760         special_t *s = &drive->special;
761
762 #ifdef DEBUG
763         printk("%s: do_special: 0x%02x\n", drive->name, s->all);
764 #endif
765         if (s->b.set_tune) {
766                 ide_hwif_t *hwif = drive->hwif;
767                 u8 req_pio = drive->tune_req;
768
769                 s->b.set_tune = 0;
770
771                 if (set_pio_mode_abuse(drive->hwif, req_pio)) {
772
773                         if (hwif->set_pio_mode == NULL)
774                                 return ide_stopped;
775
776                         /*
777                          * take ide_lock for drive->[no_]unmask/[no_]io_32bit
778                          */
779                         if (req_pio == 8 || req_pio == 9) {
780                                 unsigned long flags;
781
782                                 spin_lock_irqsave(&ide_lock, flags);
783                                 hwif->set_pio_mode(drive, req_pio);
784                                 spin_unlock_irqrestore(&ide_lock, flags);
785                         } else
786                                 hwif->set_pio_mode(drive, req_pio);
787                 } else {
788                         int keep_dma = drive->using_dma;
789
790                         ide_set_pio(drive, req_pio);
791
792                         if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
793                                 if (keep_dma)
794                                         ide_dma_on(drive);
795                         }
796                 }
797
798                 return ide_stopped;
799         } else {
800                 if (drive->media == ide_disk)
801                         return ide_disk_special(drive);
802
803                 s->all = 0;
804                 drive->mult_req = 0;
805                 return ide_stopped;
806         }
807 }
808
809 void ide_map_sg(ide_drive_t *drive, struct request *rq)
810 {
811         ide_hwif_t *hwif = drive->hwif;
812         struct scatterlist *sg = hwif->sg_table;
813
814         if (hwif->sg_mapped)    /* needed by ide-scsi */
815                 return;
816
817         if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
818                 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
819         } else {
820                 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
821                 hwif->sg_nents = 1;
822         }
823 }
824
825 EXPORT_SYMBOL_GPL(ide_map_sg);
826
827 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
828 {
829         ide_hwif_t *hwif = drive->hwif;
830
831         hwif->nsect = hwif->nleft = rq->nr_sectors;
832         hwif->cursg_ofs = 0;
833         hwif->cursg = NULL;
834 }
835
836 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
837
838 /**
839  *      execute_drive_command   -       issue special drive command
840  *      @drive: the drive to issue the command on
841  *      @rq: the request structure holding the command
842  *
843  *      execute_drive_cmd() issues a special drive command,  usually 
844  *      initiated by ioctl() from the external hdparm program. The
845  *      command can be a drive command, drive task or taskfile 
846  *      operation. Weirdly you can call it with NULL to wait for
847  *      all commands to finish. Don't do this as that is due to change
848  */
849
850 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
851                 struct request *rq)
852 {
853         ide_hwif_t *hwif = HWIF(drive);
854         u8 *args = rq->buffer;
855         ide_task_t ltask;
856         struct ide_taskfile *tf = &ltask.tf;
857
858         if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
859                 ide_task_t *task = rq->special;
860  
861                 if (task == NULL)
862                         goto done;
863
864                 hwif->data_phase = task->data_phase;
865
866                 switch (hwif->data_phase) {
867                 case TASKFILE_MULTI_OUT:
868                 case TASKFILE_OUT:
869                 case TASKFILE_MULTI_IN:
870                 case TASKFILE_IN:
871                         ide_init_sg_cmd(drive, rq);
872                         ide_map_sg(drive, rq);
873                 default:
874                         break;
875                 }
876
877                 return do_rw_taskfile(drive, task);
878         }
879
880         if (args == NULL)
881                 goto done;
882
883         memset(&ltask, 0, sizeof(ltask));
884         if (rq->cmd_type == REQ_TYPE_ATA_CMD) {
885 #ifdef DEBUG
886                 printk("%s: DRIVE_CMD\n", drive->name);
887 #endif
888                 tf->feature = args[2];
889                 if (args[0] == WIN_SMART) {
890                         tf->nsect = args[3];
891                         tf->lbal  = args[1];
892                         tf->lbam  = 0x4f;
893                         tf->lbah  = 0xc2;
894                         ltask.tf_flags = IDE_TFLAG_OUT_TF;
895                 } else {
896                         tf->nsect = args[1];
897                         ltask.tf_flags = IDE_TFLAG_OUT_FEATURE |
898                                          IDE_TFLAG_OUT_NSECT;
899                 }
900         }
901         tf->command = args[0];
902         ide_tf_load(drive, &ltask);
903         ide_execute_command(drive, args[0], &drive_cmd_intr, WAIT_WORSTCASE, NULL);
904         return ide_started;
905
906 done:
907         /*
908          * NULL is actually a valid way of waiting for
909          * all current requests to be flushed from the queue.
910          */
911 #ifdef DEBUG
912         printk("%s: DRIVE_CMD (null)\n", drive->name);
913 #endif
914         ide_end_drive_cmd(drive,
915                         hwif->INB(IDE_STATUS_REG),
916                         hwif->INB(IDE_ERROR_REG));
917         return ide_stopped;
918 }
919
920 static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
921 {
922         struct request_pm_state *pm = rq->data;
923
924         if (blk_pm_suspend_request(rq) &&
925             pm->pm_step == ide_pm_state_start_suspend)
926                 /* Mark drive blocked when starting the suspend sequence. */
927                 drive->blocked = 1;
928         else if (blk_pm_resume_request(rq) &&
929                  pm->pm_step == ide_pm_state_start_resume) {
930                 /* 
931                  * The first thing we do on wakeup is to wait for BSY bit to
932                  * go away (with a looong timeout) as a drive on this hwif may
933                  * just be POSTing itself.
934                  * We do that before even selecting as the "other" device on
935                  * the bus may be broken enough to walk on our toes at this
936                  * point.
937                  */
938                 int rc;
939 #ifdef DEBUG_PM
940                 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
941 #endif
942                 rc = ide_wait_not_busy(HWIF(drive), 35000);
943                 if (rc)
944                         printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
945                 SELECT_DRIVE(drive);
946                 ide_set_irq(drive, 1);
947                 rc = ide_wait_not_busy(HWIF(drive), 100000);
948                 if (rc)
949                         printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
950         }
951 }
952
953 /**
954  *      start_request   -       start of I/O and command issuing for IDE
955  *
956  *      start_request() initiates handling of a new I/O request. It
957  *      accepts commands and I/O (read/write) requests. It also does
958  *      the final remapping for weird stuff like EZDrive. Once 
959  *      device mapper can work sector level the EZDrive stuff can go away
960  *
961  *      FIXME: this function needs a rename
962  */
963  
964 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
965 {
966         ide_startstop_t startstop;
967         sector_t block;
968
969         BUG_ON(!blk_rq_started(rq));
970
971 #ifdef DEBUG
972         printk("%s: start_request: current=0x%08lx\n",
973                 HWIF(drive)->name, (unsigned long) rq);
974 #endif
975
976         /* bail early if we've exceeded max_failures */
977         if (drive->max_failures && (drive->failures > drive->max_failures)) {
978                 rq->cmd_flags |= REQ_FAILED;
979                 goto kill_rq;
980         }
981
982         block    = rq->sector;
983         if (blk_fs_request(rq) &&
984             (drive->media == ide_disk || drive->media == ide_floppy)) {
985                 block += drive->sect0;
986         }
987         /* Yecch - this will shift the entire interval,
988            possibly killing some innocent following sector */
989         if (block == 0 && drive->remap_0_to_1 == 1)
990                 block = 1;  /* redirect MBR access to EZ-Drive partn table */
991
992         if (blk_pm_request(rq))
993                 ide_check_pm_state(drive, rq);
994
995         SELECT_DRIVE(drive);
996         if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
997                 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
998                 return startstop;
999         }
1000         if (!drive->special.all) {
1001                 ide_driver_t *drv;
1002
1003                 /*
1004                  * We reset the drive so we need to issue a SETFEATURES.
1005                  * Do it _after_ do_special() restored device parameters.
1006                  */
1007                 if (drive->current_speed == 0xff)
1008                         ide_config_drive_speed(drive, drive->desired_speed);
1009
1010                 if (rq->cmd_type == REQ_TYPE_ATA_CMD ||
1011                     rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
1012                         return execute_drive_cmd(drive, rq);
1013                 else if (blk_pm_request(rq)) {
1014                         struct request_pm_state *pm = rq->data;
1015 #ifdef DEBUG_PM
1016                         printk("%s: start_power_step(step: %d)\n",
1017                                 drive->name, rq->pm->pm_step);
1018 #endif
1019                         startstop = ide_start_power_step(drive, rq);
1020                         if (startstop == ide_stopped &&
1021                             pm->pm_step == ide_pm_state_completed)
1022                                 ide_complete_pm_request(drive, rq);
1023                         return startstop;
1024                 }
1025
1026                 drv = *(ide_driver_t **)rq->rq_disk->private_data;
1027                 return drv->do_request(drive, rq, block);
1028         }
1029         return do_special(drive);
1030 kill_rq:
1031         ide_kill_rq(drive, rq);
1032         return ide_stopped;
1033 }
1034
1035 /**
1036  *      ide_stall_queue         -       pause an IDE device
1037  *      @drive: drive to stall
1038  *      @timeout: time to stall for (jiffies)
1039  *
1040  *      ide_stall_queue() can be used by a drive to give excess bandwidth back
1041  *      to the hwgroup by sleeping for timeout jiffies.
1042  */
1043  
1044 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
1045 {
1046         if (timeout > WAIT_WORSTCASE)
1047                 timeout = WAIT_WORSTCASE;
1048         drive->sleep = timeout + jiffies;
1049         drive->sleeping = 1;
1050 }
1051
1052 EXPORT_SYMBOL(ide_stall_queue);
1053
1054 #define WAKEUP(drive)   ((drive)->service_start + 2 * (drive)->service_time)
1055
1056 /**
1057  *      choose_drive            -       select a drive to service
1058  *      @hwgroup: hardware group to select on
1059  *
1060  *      choose_drive() selects the next drive which will be serviced.
1061  *      This is necessary because the IDE layer can't issue commands
1062  *      to both drives on the same cable, unlike SCSI.
1063  */
1064  
1065 static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
1066 {
1067         ide_drive_t *drive, *best;
1068
1069 repeat: 
1070         best = NULL;
1071         drive = hwgroup->drive;
1072
1073         /*
1074          * drive is doing pre-flush, ordered write, post-flush sequence. even
1075          * though that is 3 requests, it must be seen as a single transaction.
1076          * we must not preempt this drive until that is complete
1077          */
1078         if (blk_queue_flushing(drive->queue)) {
1079                 /*
1080                  * small race where queue could get replugged during
1081                  * the 3-request flush cycle, just yank the plug since
1082                  * we want it to finish asap
1083                  */
1084                 blk_remove_plug(drive->queue);
1085                 return drive;
1086         }
1087
1088         do {
1089                 if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
1090                     && !elv_queue_empty(drive->queue)) {
1091                         if (!best
1092                          || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
1093                          || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
1094                         {
1095                                 if (!blk_queue_plugged(drive->queue))
1096                                         best = drive;
1097                         }
1098                 }
1099         } while ((drive = drive->next) != hwgroup->drive);
1100         if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
1101                 long t = (signed long)(WAKEUP(best) - jiffies);
1102                 if (t >= WAIT_MIN_SLEEP) {
1103                 /*
1104                  * We *may* have some time to spare, but first let's see if
1105                  * someone can potentially benefit from our nice mood today..
1106                  */
1107                         drive = best->next;
1108                         do {
1109                                 if (!drive->sleeping
1110                                  && time_before(jiffies - best->service_time, WAKEUP(drive))
1111                                  && time_before(WAKEUP(drive), jiffies + t))
1112                                 {
1113                                         ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
1114                                         goto repeat;
1115                                 }
1116                         } while ((drive = drive->next) != best);
1117                 }
1118         }
1119         return best;
1120 }
1121
1122 /*
1123  * Issue a new request to a drive from hwgroup
1124  * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1125  *
1126  * A hwgroup is a serialized group of IDE interfaces.  Usually there is
1127  * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1128  * may have both interfaces in a single hwgroup to "serialize" access.
1129  * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1130  * together into one hwgroup for serialized access.
1131  *
1132  * Note also that several hwgroups can end up sharing a single IRQ,
1133  * possibly along with many other devices.  This is especially common in
1134  * PCI-based systems with off-board IDE controller cards.
1135  *
1136  * The IDE driver uses the single global ide_lock spinlock to protect
1137  * access to the request queues, and to protect the hwgroup->busy flag.
1138  *
1139  * The first thread into the driver for a particular hwgroup sets the
1140  * hwgroup->busy flag to indicate that this hwgroup is now active,
1141  * and then initiates processing of the top request from the request queue.
1142  *
1143  * Other threads attempting entry notice the busy setting, and will simply
1144  * queue their new requests and exit immediately.  Note that hwgroup->busy
1145  * remains set even when the driver is merely awaiting the next interrupt.
1146  * Thus, the meaning is "this hwgroup is busy processing a request".
1147  *
1148  * When processing of a request completes, the completing thread or IRQ-handler
1149  * will start the next request from the queue.  If no more work remains,
1150  * the driver will clear the hwgroup->busy flag and exit.
1151  *
1152  * The ide_lock (spinlock) is used to protect all access to the
1153  * hwgroup->busy flag, but is otherwise not needed for most processing in
1154  * the driver.  This makes the driver much more friendlier to shared IRQs
1155  * than previous designs, while remaining 100% (?) SMP safe and capable.
1156  */
1157 static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1158 {
1159         ide_drive_t     *drive;
1160         ide_hwif_t      *hwif;
1161         struct request  *rq;
1162         ide_startstop_t startstop;
1163         int             loops = 0;
1164
1165         /* for atari only: POSSIBLY BROKEN HERE(?) */
1166         ide_get_lock(ide_intr, hwgroup);
1167
1168         /* caller must own ide_lock */
1169         BUG_ON(!irqs_disabled());
1170
1171         while (!hwgroup->busy) {
1172                 hwgroup->busy = 1;
1173                 drive = choose_drive(hwgroup);
1174                 if (drive == NULL) {
1175                         int sleeping = 0;
1176                         unsigned long sleep = 0; /* shut up, gcc */
1177                         hwgroup->rq = NULL;
1178                         drive = hwgroup->drive;
1179                         do {
1180                                 if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1181                                         sleeping = 1;
1182                                         sleep = drive->sleep;
1183                                 }
1184                         } while ((drive = drive->next) != hwgroup->drive);
1185                         if (sleeping) {
1186                 /*
1187                  * Take a short snooze, and then wake up this hwgroup again.
1188                  * This gives other hwgroups on the same a chance to
1189                  * play fairly with us, just in case there are big differences
1190                  * in relative throughputs.. don't want to hog the cpu too much.
1191                  */
1192                                 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1193                                         sleep = jiffies + WAIT_MIN_SLEEP;
1194 #if 1
1195                                 if (timer_pending(&hwgroup->timer))
1196                                         printk(KERN_CRIT "ide_set_handler: timer already active\n");
1197 #endif
1198                                 /* so that ide_timer_expiry knows what to do */
1199                                 hwgroup->sleeping = 1;
1200                                 hwgroup->req_gen_timer = hwgroup->req_gen;
1201                                 mod_timer(&hwgroup->timer, sleep);
1202                                 /* we purposely leave hwgroup->busy==1
1203                                  * while sleeping */
1204                         } else {
1205                                 /* Ugly, but how can we sleep for the lock
1206                                  * otherwise? perhaps from tq_disk?
1207                                  */
1208
1209                                 /* for atari only */
1210                                 ide_release_lock();
1211                                 hwgroup->busy = 0;
1212                         }
1213
1214                         /* no more work for this hwgroup (for now) */
1215                         return;
1216                 }
1217         again:
1218                 hwif = HWIF(drive);
1219                 if (hwgroup->hwif->sharing_irq && hwif != hwgroup->hwif) {
1220                         /*
1221                          * set nIEN for previous hwif, drives in the
1222                          * quirk_list may not like intr setups/cleanups
1223                          */
1224                         if (drive->quirk_list != 1)
1225                                 ide_set_irq(drive, 0);
1226                 }
1227                 hwgroup->hwif = hwif;
1228                 hwgroup->drive = drive;
1229                 drive->sleeping = 0;
1230                 drive->service_start = jiffies;
1231
1232                 if (blk_queue_plugged(drive->queue)) {
1233                         printk(KERN_ERR "ide: huh? queue was plugged!\n");
1234                         break;
1235                 }
1236
1237                 /*
1238                  * we know that the queue isn't empty, but this can happen
1239                  * if the q->prep_rq_fn() decides to kill a request
1240                  */
1241                 rq = elv_next_request(drive->queue);
1242                 if (!rq) {
1243                         hwgroup->busy = 0;
1244                         break;
1245                 }
1246
1247                 /*
1248                  * Sanity: don't accept a request that isn't a PM request
1249                  * if we are currently power managed. This is very important as
1250                  * blk_stop_queue() doesn't prevent the elv_next_request()
1251                  * above to return us whatever is in the queue. Since we call
1252                  * ide_do_request() ourselves, we end up taking requests while
1253                  * the queue is blocked...
1254                  * 
1255                  * We let requests forced at head of queue with ide-preempt
1256                  * though. I hope that doesn't happen too much, hopefully not
1257                  * unless the subdriver triggers such a thing in its own PM
1258                  * state machine.
1259                  *
1260                  * We count how many times we loop here to make sure we service
1261                  * all drives in the hwgroup without looping for ever
1262                  */
1263                 if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
1264                         drive = drive->next ? drive->next : hwgroup->drive;
1265                         if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1266                                 goto again;
1267                         /* We clear busy, there should be no pending ATA command at this point. */
1268                         hwgroup->busy = 0;
1269                         break;
1270                 }
1271
1272                 hwgroup->rq = rq;
1273
1274                 /*
1275                  * Some systems have trouble with IDE IRQs arriving while
1276                  * the driver is still setting things up.  So, here we disable
1277                  * the IRQ used by this interface while the request is being started.
1278                  * This may look bad at first, but pretty much the same thing
1279                  * happens anyway when any interrupt comes in, IDE or otherwise
1280                  *  -- the kernel masks the IRQ while it is being handled.
1281                  */
1282                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1283                         disable_irq_nosync(hwif->irq);
1284                 spin_unlock(&ide_lock);
1285                 local_irq_enable_in_hardirq();
1286                         /* allow other IRQs while we start this request */
1287                 startstop = start_request(drive, rq);
1288                 spin_lock_irq(&ide_lock);
1289                 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1290                         enable_irq(hwif->irq);
1291                 if (startstop == ide_stopped)
1292                         hwgroup->busy = 0;
1293         }
1294 }
1295
1296 /*
1297  * Passes the stuff to ide_do_request
1298  */
1299 void do_ide_request(struct request_queue *q)
1300 {
1301         ide_drive_t *drive = q->queuedata;
1302
1303         ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1304 }
1305
1306 /*
1307  * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1308  * retry the current request in pio mode instead of risking tossing it
1309  * all away
1310  */
1311 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1312 {
1313         ide_hwif_t *hwif = HWIF(drive);
1314         struct request *rq;
1315         ide_startstop_t ret = ide_stopped;
1316
1317         /*
1318          * end current dma transaction
1319          */
1320
1321         if (error < 0) {
1322                 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1323                 (void)HWIF(drive)->ide_dma_end(drive);
1324                 ret = ide_error(drive, "dma timeout error",
1325                                                 hwif->INB(IDE_STATUS_REG));
1326         } else {
1327                 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1328                 hwif->dma_timeout(drive);
1329         }
1330
1331         /*
1332          * disable dma for now, but remember that we did so because of
1333          * a timeout -- we'll reenable after we finish this next request
1334          * (or rather the first chunk of it) in pio.
1335          */
1336         drive->retry_pio++;
1337         drive->state = DMA_PIO_RETRY;
1338         ide_dma_off_quietly(drive);
1339
1340         /*
1341          * un-busy drive etc (hwgroup->busy is cleared on return) and
1342          * make sure request is sane
1343          */
1344         rq = HWGROUP(drive)->rq;
1345
1346         if (!rq)
1347                 goto out;
1348
1349         HWGROUP(drive)->rq = NULL;
1350
1351         rq->errors = 0;
1352
1353         if (!rq->bio)
1354                 goto out;
1355
1356         rq->sector = rq->bio->bi_sector;
1357         rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1358         rq->hard_cur_sectors = rq->current_nr_sectors;
1359         rq->buffer = bio_data(rq->bio);
1360 out:
1361         return ret;
1362 }
1363
1364 /**
1365  *      ide_timer_expiry        -       handle lack of an IDE interrupt
1366  *      @data: timer callback magic (hwgroup)
1367  *
1368  *      An IDE command has timed out before the expected drive return
1369  *      occurred. At this point we attempt to clean up the current
1370  *      mess. If the current handler includes an expiry handler then
1371  *      we invoke the expiry handler, and providing it is happy the
1372  *      work is done. If that fails we apply generic recovery rules
1373  *      invoking the handler and checking the drive DMA status. We
1374  *      have an excessively incestuous relationship with the DMA
1375  *      logic that wants cleaning up.
1376  */
1377  
1378 void ide_timer_expiry (unsigned long data)
1379 {
1380         ide_hwgroup_t   *hwgroup = (ide_hwgroup_t *) data;
1381         ide_handler_t   *handler;
1382         ide_expiry_t    *expiry;
1383         unsigned long   flags;
1384         unsigned long   wait = -1;
1385
1386         spin_lock_irqsave(&ide_lock, flags);
1387
1388         if (((handler = hwgroup->handler) == NULL) ||
1389             (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1390                 /*
1391                  * Either a marginal timeout occurred
1392                  * (got the interrupt just as timer expired),
1393                  * or we were "sleeping" to give other devices a chance.
1394                  * Either way, we don't really want to complain about anything.
1395                  */
1396                 if (hwgroup->sleeping) {
1397                         hwgroup->sleeping = 0;
1398                         hwgroup->busy = 0;
1399                 }
1400         } else {
1401                 ide_drive_t *drive = hwgroup->drive;
1402                 if (!drive) {
1403                         printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1404                         hwgroup->handler = NULL;
1405                 } else {
1406                         ide_hwif_t *hwif;
1407                         ide_startstop_t startstop = ide_stopped;
1408                         if (!hwgroup->busy) {
1409                                 hwgroup->busy = 1;      /* paranoia */
1410                                 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1411                         }
1412                         if ((expiry = hwgroup->expiry) != NULL) {
1413                                 /* continue */
1414                                 if ((wait = expiry(drive)) > 0) {
1415                                         /* reset timer */
1416                                         hwgroup->timer.expires  = jiffies + wait;
1417                                         hwgroup->req_gen_timer = hwgroup->req_gen;
1418                                         add_timer(&hwgroup->timer);
1419                                         spin_unlock_irqrestore(&ide_lock, flags);
1420                                         return;
1421                                 }
1422                         }
1423                         hwgroup->handler = NULL;
1424                         /*
1425                          * We need to simulate a real interrupt when invoking
1426                          * the handler() function, which means we need to
1427                          * globally mask the specific IRQ:
1428                          */
1429                         spin_unlock(&ide_lock);
1430                         hwif  = HWIF(drive);
1431                         /* disable_irq_nosync ?? */
1432                         disable_irq(hwif->irq);
1433                         /* local CPU only,
1434                          * as if we were handling an interrupt */
1435                         local_irq_disable();
1436                         if (hwgroup->polling) {
1437                                 startstop = handler(drive);
1438                         } else if (drive_is_ready(drive)) {
1439                                 if (drive->waiting_for_dma)
1440                                         hwgroup->hwif->dma_lost_irq(drive);
1441                                 (void)ide_ack_intr(hwif);
1442                                 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1443                                 startstop = handler(drive);
1444                         } else {
1445                                 if (drive->waiting_for_dma) {
1446                                         startstop = ide_dma_timeout_retry(drive, wait);
1447                                 } else
1448                                         startstop =
1449                                         ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
1450                         }
1451                         drive->service_time = jiffies - drive->service_start;
1452                         spin_lock_irq(&ide_lock);
1453                         enable_irq(hwif->irq);
1454                         if (startstop == ide_stopped)
1455                                 hwgroup->busy = 0;
1456                 }
1457         }
1458         ide_do_request(hwgroup, IDE_NO_IRQ);
1459         spin_unlock_irqrestore(&ide_lock, flags);
1460 }
1461
1462 /**
1463  *      unexpected_intr         -       handle an unexpected IDE interrupt
1464  *      @irq: interrupt line
1465  *      @hwgroup: hwgroup being processed
1466  *
1467  *      There's nothing really useful we can do with an unexpected interrupt,
1468  *      other than reading the status register (to clear it), and logging it.
1469  *      There should be no way that an irq can happen before we're ready for it,
1470  *      so we needn't worry much about losing an "important" interrupt here.
1471  *
1472  *      On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1473  *      the drive enters "idle", "standby", or "sleep" mode, so if the status
1474  *      looks "good", we just ignore the interrupt completely.
1475  *
1476  *      This routine assumes __cli() is in effect when called.
1477  *
1478  *      If an unexpected interrupt happens on irq15 while we are handling irq14
1479  *      and if the two interfaces are "serialized" (CMD640), then it looks like
1480  *      we could screw up by interfering with a new request being set up for 
1481  *      irq15.
1482  *
1483  *      In reality, this is a non-issue.  The new command is not sent unless 
1484  *      the drive is ready to accept one, in which case we know the drive is
1485  *      not trying to interrupt us.  And ide_set_handler() is always invoked
1486  *      before completing the issuance of any new drive command, so we will not
1487  *      be accidentally invoked as a result of any valid command completion
1488  *      interrupt.
1489  *
1490  *      Note that we must walk the entire hwgroup here. We know which hwif
1491  *      is doing the current command, but we don't know which hwif burped
1492  *      mysteriously.
1493  */
1494  
1495 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1496 {
1497         u8 stat;
1498         ide_hwif_t *hwif = hwgroup->hwif;
1499
1500         /*
1501          * handle the unexpected interrupt
1502          */
1503         do {
1504                 if (hwif->irq == irq) {
1505                         stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1506                         if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1507                                 /* Try to not flood the console with msgs */
1508                                 static unsigned long last_msgtime, count;
1509                                 ++count;
1510                                 if (time_after(jiffies, last_msgtime + HZ)) {
1511                                         last_msgtime = jiffies;
1512                                         printk(KERN_ERR "%s%s: unexpected interrupt, "
1513                                                 "status=0x%02x, count=%ld\n",
1514                                                 hwif->name,
1515                                                 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1516                                 }
1517                         }
1518                 }
1519         } while ((hwif = hwif->next) != hwgroup->hwif);
1520 }
1521
1522 /**
1523  *      ide_intr        -       default IDE interrupt handler
1524  *      @irq: interrupt number
1525  *      @dev_id: hwif group
1526  *      @regs: unused weirdness from the kernel irq layer
1527  *
1528  *      This is the default IRQ handler for the IDE layer. You should
1529  *      not need to override it. If you do be aware it is subtle in
1530  *      places
1531  *
1532  *      hwgroup->hwif is the interface in the group currently performing
1533  *      a command. hwgroup->drive is the drive and hwgroup->handler is
1534  *      the IRQ handler to call. As we issue a command the handlers
1535  *      step through multiple states, reassigning the handler to the
1536  *      next step in the process. Unlike a smart SCSI controller IDE
1537  *      expects the main processor to sequence the various transfer
1538  *      stages. We also manage a poll timer to catch up with most
1539  *      timeout situations. There are still a few where the handlers
1540  *      don't ever decide to give up.
1541  *
1542  *      The handler eventually returns ide_stopped to indicate the
1543  *      request completed. At this point we issue the next request
1544  *      on the hwgroup and the process begins again.
1545  */
1546  
1547 irqreturn_t ide_intr (int irq, void *dev_id)
1548 {
1549         unsigned long flags;
1550         ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1551         ide_hwif_t *hwif;
1552         ide_drive_t *drive;
1553         ide_handler_t *handler;
1554         ide_startstop_t startstop;
1555
1556         spin_lock_irqsave(&ide_lock, flags);
1557         hwif = hwgroup->hwif;
1558
1559         if (!ide_ack_intr(hwif)) {
1560                 spin_unlock_irqrestore(&ide_lock, flags);
1561                 return IRQ_NONE;
1562         }
1563
1564         if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1565                 /*
1566                  * Not expecting an interrupt from this drive.
1567                  * That means this could be:
1568                  *      (1) an interrupt from another PCI device
1569                  *      sharing the same PCI INT# as us.
1570                  * or   (2) a drive just entered sleep or standby mode,
1571                  *      and is interrupting to let us know.
1572                  * or   (3) a spurious interrupt of unknown origin.
1573                  *
1574                  * For PCI, we cannot tell the difference,
1575                  * so in that case we just ignore it and hope it goes away.
1576                  *
1577                  * FIXME: unexpected_intr should be hwif-> then we can
1578                  * remove all the ifdef PCI crap
1579                  */
1580 #ifdef CONFIG_BLK_DEV_IDEPCI
1581                 if (hwif->pci_dev && !hwif->pci_dev->vendor)
1582 #endif  /* CONFIG_BLK_DEV_IDEPCI */
1583                 {
1584                         /*
1585                          * Probably not a shared PCI interrupt,
1586                          * so we can safely try to do something about it:
1587                          */
1588                         unexpected_intr(irq, hwgroup);
1589 #ifdef CONFIG_BLK_DEV_IDEPCI
1590                 } else {
1591                         /*
1592                          * Whack the status register, just in case
1593                          * we have a leftover pending IRQ.
1594                          */
1595                         (void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1596 #endif /* CONFIG_BLK_DEV_IDEPCI */
1597                 }
1598                 spin_unlock_irqrestore(&ide_lock, flags);
1599                 return IRQ_NONE;
1600         }
1601         drive = hwgroup->drive;
1602         if (!drive) {
1603                 /*
1604                  * This should NEVER happen, and there isn't much
1605                  * we could do about it here.
1606                  *
1607                  * [Note - this can occur if the drive is hot unplugged]
1608                  */
1609                 spin_unlock_irqrestore(&ide_lock, flags);
1610                 return IRQ_HANDLED;
1611         }
1612         if (!drive_is_ready(drive)) {
1613                 /*
1614                  * This happens regularly when we share a PCI IRQ with
1615                  * another device.  Unfortunately, it can also happen
1616                  * with some buggy drives that trigger the IRQ before
1617                  * their status register is up to date.  Hopefully we have
1618                  * enough advance overhead that the latter isn't a problem.
1619                  */
1620                 spin_unlock_irqrestore(&ide_lock, flags);
1621                 return IRQ_NONE;
1622         }
1623         if (!hwgroup->busy) {
1624                 hwgroup->busy = 1;      /* paranoia */
1625                 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1626         }
1627         hwgroup->handler = NULL;
1628         hwgroup->req_gen++;
1629         del_timer(&hwgroup->timer);
1630         spin_unlock(&ide_lock);
1631
1632         /* Some controllers might set DMA INTR no matter DMA or PIO;
1633          * bmdma status might need to be cleared even for
1634          * PIO interrupts to prevent spurious/lost irq.
1635          */
1636         if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1637                 /* ide_dma_end() needs bmdma status for error checking.
1638                  * So, skip clearing bmdma status here and leave it
1639                  * to ide_dma_end() if this is dma interrupt.
1640                  */
1641                 hwif->ide_dma_clear_irq(drive);
1642
1643         if (drive->unmask)
1644                 local_irq_enable_in_hardirq();
1645         /* service this interrupt, may set handler for next interrupt */
1646         startstop = handler(drive);
1647         spin_lock_irq(&ide_lock);
1648
1649         /*
1650          * Note that handler() may have set things up for another
1651          * interrupt to occur soon, but it cannot happen until
1652          * we exit from this routine, because it will be the
1653          * same irq as is currently being serviced here, and Linux
1654          * won't allow another of the same (on any CPU) until we return.
1655          */
1656         drive->service_time = jiffies - drive->service_start;
1657         if (startstop == ide_stopped) {
1658                 if (hwgroup->handler == NULL) { /* paranoia */
1659                         hwgroup->busy = 0;
1660                         ide_do_request(hwgroup, hwif->irq);
1661                 } else {
1662                         printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1663                                 "on exit\n", drive->name);
1664                 }
1665         }
1666         spin_unlock_irqrestore(&ide_lock, flags);
1667         return IRQ_HANDLED;
1668 }
1669
1670 /**
1671  *      ide_init_drive_cmd      -       initialize a drive command request
1672  *      @rq: request object
1673  *
1674  *      Initialize a request before we fill it in and send it down to
1675  *      ide_do_drive_cmd. Commands must be set up by this function. Right
1676  *      now it doesn't do a lot, but if that changes abusers will have a
1677  *      nasty surprise.
1678  */
1679
1680 void ide_init_drive_cmd (struct request *rq)
1681 {
1682         memset(rq, 0, sizeof(*rq));
1683         rq->ref_count = 1;
1684 }
1685
1686 EXPORT_SYMBOL(ide_init_drive_cmd);
1687
1688 /**
1689  *      ide_do_drive_cmd        -       issue IDE special command
1690  *      @drive: device to issue command
1691  *      @rq: request to issue
1692  *      @action: action for processing
1693  *
1694  *      This function issues a special IDE device request
1695  *      onto the request queue.
1696  *
1697  *      If action is ide_wait, then the rq is queued at the end of the
1698  *      request queue, and the function sleeps until it has been processed.
1699  *      This is for use when invoked from an ioctl handler.
1700  *
1701  *      If action is ide_preempt, then the rq is queued at the head of
1702  *      the request queue, displacing the currently-being-processed
1703  *      request and this function returns immediately without waiting
1704  *      for the new rq to be completed.  This is VERY DANGEROUS, and is
1705  *      intended for careful use by the ATAPI tape/cdrom driver code.
1706  *
1707  *      If action is ide_end, then the rq is queued at the end of the
1708  *      request queue, and the function returns immediately without waiting
1709  *      for the new rq to be completed. This is again intended for careful
1710  *      use by the ATAPI tape/cdrom driver code.
1711  */
1712  
1713 int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1714 {
1715         unsigned long flags;
1716         ide_hwgroup_t *hwgroup = HWGROUP(drive);
1717         DECLARE_COMPLETION_ONSTACK(wait);
1718         int where = ELEVATOR_INSERT_BACK, err;
1719         int must_wait = (action == ide_wait || action == ide_head_wait);
1720
1721         rq->errors = 0;
1722
1723         /*
1724          * we need to hold an extra reference to request for safe inspection
1725          * after completion
1726          */
1727         if (must_wait) {
1728                 rq->ref_count++;
1729                 rq->end_io_data = &wait;
1730                 rq->end_io = blk_end_sync_rq;
1731         }
1732
1733         spin_lock_irqsave(&ide_lock, flags);
1734         if (action == ide_preempt)
1735                 hwgroup->rq = NULL;
1736         if (action == ide_preempt || action == ide_head_wait) {
1737                 where = ELEVATOR_INSERT_FRONT;
1738                 rq->cmd_flags |= REQ_PREEMPT;
1739         }
1740         __elv_add_request(drive->queue, rq, where, 0);
1741         ide_do_request(hwgroup, IDE_NO_IRQ);
1742         spin_unlock_irqrestore(&ide_lock, flags);
1743
1744         err = 0;
1745         if (must_wait) {
1746                 wait_for_completion(&wait);
1747                 if (rq->errors)
1748                         err = -EIO;
1749
1750                 blk_put_request(rq);
1751         }
1752
1753         return err;
1754 }
1755
1756 EXPORT_SYMBOL(ide_do_drive_cmd);
1757
1758 void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1759 {
1760         ide_task_t task;
1761
1762         memset(&task, 0, sizeof(task));
1763         task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1764                         IDE_TFLAG_OUT_FEATURE | tf_flags;
1765         task.tf.feature = dma;          /* Use PIO/DMA */
1766         task.tf.lbam    = bcount & 0xff;
1767         task.tf.lbah    = (bcount >> 8) & 0xff;
1768
1769         ide_tf_load(drive, &task);
1770 }
1771
1772 EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);