d42631cade5aac8f943ccc019e6f59937eb318fb
[pandora-kernel.git] / drivers / gpu / drm / ttm / ttm_bo.c
1 /**************************************************************************
2  *
3  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 /*
28  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29  */
30
31 #define pr_fmt(fmt) "[TTM] " fmt
32
33 #include <drm/ttm/ttm_module.h>
34 #include <drm/ttm/ttm_bo_driver.h>
35 #include <drm/ttm/ttm_placement.h>
36 #include <linux/jiffies.h>
37 #include <linux/slab.h>
38 #include <linux/sched.h>
39 #include <linux/mm.h>
40 #include <linux/file.h>
41 #include <linux/module.h>
42 #include <linux/atomic.h>
43
44 #define TTM_ASSERT_LOCKED(param)
45 #define TTM_DEBUG(fmt, arg...)
46 #define TTM_BO_HASH_ORDER 13
47
48 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo);
49 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
50 static void ttm_bo_global_kobj_release(struct kobject *kobj);
51
52 static struct attribute ttm_bo_count = {
53         .name = "bo_count",
54         .mode = S_IRUGO
55 };
56
57 static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type)
58 {
59         int i;
60
61         for (i = 0; i <= TTM_PL_PRIV5; i++)
62                 if (flags & (1 << i)) {
63                         *mem_type = i;
64                         return 0;
65                 }
66         return -EINVAL;
67 }
68
69 static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
70 {
71         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
72
73         pr_err("    has_type: %d\n", man->has_type);
74         pr_err("    use_type: %d\n", man->use_type);
75         pr_err("    flags: 0x%08X\n", man->flags);
76         pr_err("    gpu_offset: 0x%08lX\n", man->gpu_offset);
77         pr_err("    size: %llu\n", man->size);
78         pr_err("    available_caching: 0x%08X\n", man->available_caching);
79         pr_err("    default_caching: 0x%08X\n", man->default_caching);
80         if (mem_type != TTM_PL_SYSTEM)
81                 (*man->func->debug)(man, TTM_PFX);
82 }
83
84 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
85                                         struct ttm_placement *placement)
86 {
87         int i, ret, mem_type;
88
89         pr_err("No space for %p (%lu pages, %luK, %luM)\n",
90                bo, bo->mem.num_pages, bo->mem.size >> 10,
91                bo->mem.size >> 20);
92         for (i = 0; i < placement->num_placement; i++) {
93                 ret = ttm_mem_type_from_flags(placement->placement[i],
94                                                 &mem_type);
95                 if (ret)
96                         return;
97                 pr_err("  placement[%d]=0x%08X (%d)\n",
98                        i, placement->placement[i], mem_type);
99                 ttm_mem_type_debug(bo->bdev, mem_type);
100         }
101 }
102
103 static ssize_t ttm_bo_global_show(struct kobject *kobj,
104                                   struct attribute *attr,
105                                   char *buffer)
106 {
107         struct ttm_bo_global *glob =
108                 container_of(kobj, struct ttm_bo_global, kobj);
109
110         return snprintf(buffer, PAGE_SIZE, "%lu\n",
111                         (unsigned long) atomic_read(&glob->bo_count));
112 }
113
114 static struct attribute *ttm_bo_global_attrs[] = {
115         &ttm_bo_count,
116         NULL
117 };
118
119 static const struct sysfs_ops ttm_bo_global_ops = {
120         .show = &ttm_bo_global_show
121 };
122
123 static struct kobj_type ttm_bo_glob_kobj_type  = {
124         .release = &ttm_bo_global_kobj_release,
125         .sysfs_ops = &ttm_bo_global_ops,
126         .default_attrs = ttm_bo_global_attrs
127 };
128
129
130 static inline uint32_t ttm_bo_type_flags(unsigned type)
131 {
132         return 1 << (type);
133 }
134
135 static void ttm_bo_release_list(struct kref *list_kref)
136 {
137         struct ttm_buffer_object *bo =
138             container_of(list_kref, struct ttm_buffer_object, list_kref);
139         struct ttm_bo_device *bdev = bo->bdev;
140         size_t acc_size = bo->acc_size;
141
142         BUG_ON(atomic_read(&bo->list_kref.refcount));
143         BUG_ON(atomic_read(&bo->kref.refcount));
144         BUG_ON(atomic_read(&bo->cpu_writers));
145         BUG_ON(bo->sync_obj != NULL);
146         BUG_ON(bo->mem.mm_node != NULL);
147         BUG_ON(!list_empty(&bo->lru));
148         BUG_ON(!list_empty(&bo->ddestroy));
149
150         if (bo->ttm)
151                 ttm_tt_destroy(bo->ttm);
152         atomic_dec(&bo->glob->bo_count);
153         if (bo->destroy)
154                 bo->destroy(bo);
155         else {
156                 kfree(bo);
157         }
158         ttm_mem_global_free(bdev->glob->mem_glob, acc_size);
159 }
160
161 int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo, bool interruptible)
162 {
163         if (interruptible) {
164                 return wait_event_interruptible(bo->event_queue,
165                                                atomic_read(&bo->reserved) == 0);
166         } else {
167                 wait_event(bo->event_queue, atomic_read(&bo->reserved) == 0);
168                 return 0;
169         }
170 }
171 EXPORT_SYMBOL(ttm_bo_wait_unreserved);
172
173 void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
174 {
175         struct ttm_bo_device *bdev = bo->bdev;
176         struct ttm_mem_type_manager *man;
177
178         BUG_ON(!atomic_read(&bo->reserved));
179
180         if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
181
182                 BUG_ON(!list_empty(&bo->lru));
183
184                 man = &bdev->man[bo->mem.mem_type];
185                 list_add_tail(&bo->lru, &man->lru);
186                 kref_get(&bo->list_kref);
187
188                 if (bo->ttm != NULL) {
189                         list_add_tail(&bo->swap, &bo->glob->swap_lru);
190                         kref_get(&bo->list_kref);
191                 }
192         }
193 }
194
195 int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
196 {
197         int put_count = 0;
198
199         if (!list_empty(&bo->swap)) {
200                 list_del_init(&bo->swap);
201                 ++put_count;
202         }
203         if (!list_empty(&bo->lru)) {
204                 list_del_init(&bo->lru);
205                 ++put_count;
206         }
207
208         /*
209          * TODO: Add a driver hook to delete from
210          * driver-specific LRU's here.
211          */
212
213         return put_count;
214 }
215
216 int ttm_bo_reserve_locked(struct ttm_buffer_object *bo,
217                           bool interruptible,
218                           bool no_wait, bool use_sequence, uint32_t sequence)
219 {
220         struct ttm_bo_global *glob = bo->glob;
221         int ret;
222
223         while (unlikely(atomic_cmpxchg(&bo->reserved, 0, 1) != 0)) {
224                 /**
225                  * Deadlock avoidance for multi-bo reserving.
226                  */
227                 if (use_sequence && bo->seq_valid) {
228                         /**
229                          * We've already reserved this one.
230                          */
231                         if (unlikely(sequence == bo->val_seq))
232                                 return -EDEADLK;
233                         /**
234                          * Already reserved by a thread that will not back
235                          * off for us. We need to back off.
236                          */
237                         if (unlikely(sequence - bo->val_seq < (1 << 31)))
238                                 return -EAGAIN;
239                 }
240
241                 if (no_wait)
242                         return -EBUSY;
243
244                 spin_unlock(&glob->lru_lock);
245                 ret = ttm_bo_wait_unreserved(bo, interruptible);
246                 spin_lock(&glob->lru_lock);
247
248                 if (unlikely(ret))
249                         return ret;
250         }
251
252         if (use_sequence) {
253                 /**
254                  * Wake up waiters that may need to recheck for deadlock,
255                  * if we decreased the sequence number.
256                  */
257                 if (unlikely((bo->val_seq - sequence < (1 << 31))
258                              || !bo->seq_valid))
259                         wake_up_all(&bo->event_queue);
260
261                 bo->val_seq = sequence;
262                 bo->seq_valid = true;
263         } else {
264                 bo->seq_valid = false;
265         }
266
267         return 0;
268 }
269 EXPORT_SYMBOL(ttm_bo_reserve);
270
271 static void ttm_bo_ref_bug(struct kref *list_kref)
272 {
273         BUG();
274 }
275
276 void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count,
277                          bool never_free)
278 {
279         kref_sub(&bo->list_kref, count,
280                  (never_free) ? ttm_bo_ref_bug : ttm_bo_release_list);
281 }
282
283 int ttm_bo_reserve(struct ttm_buffer_object *bo,
284                    bool interruptible,
285                    bool no_wait, bool use_sequence, uint32_t sequence)
286 {
287         struct ttm_bo_global *glob = bo->glob;
288         int put_count = 0;
289         int ret;
290
291         spin_lock(&glob->lru_lock);
292         ret = ttm_bo_reserve_locked(bo, interruptible, no_wait, use_sequence,
293                                     sequence);
294         if (likely(ret == 0))
295                 put_count = ttm_bo_del_from_lru(bo);
296         spin_unlock(&glob->lru_lock);
297
298         ttm_bo_list_ref_sub(bo, put_count, true);
299
300         return ret;
301 }
302
303 void ttm_bo_unreserve_locked(struct ttm_buffer_object *bo)
304 {
305         ttm_bo_add_to_lru(bo);
306         atomic_set(&bo->reserved, 0);
307         wake_up_all(&bo->event_queue);
308 }
309
310 void ttm_bo_unreserve(struct ttm_buffer_object *bo)
311 {
312         struct ttm_bo_global *glob = bo->glob;
313
314         spin_lock(&glob->lru_lock);
315         ttm_bo_unreserve_locked(bo);
316         spin_unlock(&glob->lru_lock);
317 }
318 EXPORT_SYMBOL(ttm_bo_unreserve);
319
320 /*
321  * Call bo->mutex locked.
322  */
323 static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
324 {
325         struct ttm_bo_device *bdev = bo->bdev;
326         struct ttm_bo_global *glob = bo->glob;
327         int ret = 0;
328         uint32_t page_flags = 0;
329
330         TTM_ASSERT_LOCKED(&bo->mutex);
331         bo->ttm = NULL;
332
333         if (bdev->need_dma32)
334                 page_flags |= TTM_PAGE_FLAG_DMA32;
335
336         switch (bo->type) {
337         case ttm_bo_type_device:
338                 if (zero_alloc)
339                         page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
340         case ttm_bo_type_kernel:
341                 bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
342                                                       page_flags, glob->dummy_read_page);
343                 if (unlikely(bo->ttm == NULL))
344                         ret = -ENOMEM;
345                 break;
346         case ttm_bo_type_sg:
347                 bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
348                                                       page_flags | TTM_PAGE_FLAG_SG,
349                                                       glob->dummy_read_page);
350                 if (unlikely(bo->ttm == NULL)) {
351                         ret = -ENOMEM;
352                         break;
353                 }
354                 bo->ttm->sg = bo->sg;
355                 break;
356         default:
357                 pr_err("Illegal buffer object type\n");
358                 ret = -EINVAL;
359                 break;
360         }
361
362         return ret;
363 }
364
365 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
366                                   struct ttm_mem_reg *mem,
367                                   bool evict, bool interruptible,
368                                   bool no_wait_reserve, bool no_wait_gpu)
369 {
370         struct ttm_bo_device *bdev = bo->bdev;
371         bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
372         bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
373         struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
374         struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
375         int ret = 0;
376
377         if (old_is_pci || new_is_pci ||
378             ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
379                 ret = ttm_mem_io_lock(old_man, true);
380                 if (unlikely(ret != 0))
381                         goto out_err;
382                 ttm_bo_unmap_virtual_locked(bo);
383                 ttm_mem_io_unlock(old_man);
384         }
385
386         /*
387          * Create and bind a ttm if required.
388          */
389
390         if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
391                 if (bo->ttm == NULL) {
392                         bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
393                         ret = ttm_bo_add_ttm(bo, zero);
394                         if (ret)
395                                 goto out_err;
396                 }
397
398                 ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
399                 if (ret)
400                         goto out_err;
401
402                 if (mem->mem_type != TTM_PL_SYSTEM) {
403                         ret = ttm_tt_bind(bo->ttm, mem);
404                         if (ret)
405                                 goto out_err;
406                 }
407
408                 if (bo->mem.mem_type == TTM_PL_SYSTEM) {
409                         if (bdev->driver->move_notify)
410                                 bdev->driver->move_notify(bo, mem);
411                         bo->mem = *mem;
412                         mem->mm_node = NULL;
413                         goto moved;
414                 }
415         }
416
417         if (bdev->driver->move_notify)
418                 bdev->driver->move_notify(bo, mem);
419
420         if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
421             !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
422                 ret = ttm_bo_move_ttm(bo, evict, no_wait_reserve, no_wait_gpu, mem);
423         else if (bdev->driver->move)
424                 ret = bdev->driver->move(bo, evict, interruptible,
425                                          no_wait_reserve, no_wait_gpu, mem);
426         else
427                 ret = ttm_bo_move_memcpy(bo, evict, no_wait_reserve, no_wait_gpu, mem);
428
429         if (ret) {
430                 if (bdev->driver->move_notify) {
431                         struct ttm_mem_reg tmp_mem = *mem;
432                         *mem = bo->mem;
433                         bo->mem = tmp_mem;
434                         bdev->driver->move_notify(bo, mem);
435                         bo->mem = *mem;
436                 }
437
438                 goto out_err;
439         }
440
441 moved:
442         if (bo->evicted) {
443                 ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
444                 if (ret)
445                         pr_err("Can not flush read caches\n");
446                 bo->evicted = false;
447         }
448
449         if (bo->mem.mm_node) {
450                 bo->offset = (bo->mem.start << PAGE_SHIFT) +
451                     bdev->man[bo->mem.mem_type].gpu_offset;
452                 bo->cur_placement = bo->mem.placement;
453         } else
454                 bo->offset = 0;
455
456         return 0;
457
458 out_err:
459         new_man = &bdev->man[bo->mem.mem_type];
460         if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) {
461                 ttm_tt_unbind(bo->ttm);
462                 ttm_tt_destroy(bo->ttm);
463                 bo->ttm = NULL;
464         }
465
466         return ret;
467 }
468
469 /**
470  * Call bo::reserved.
471  * Will release GPU memory type usage on destruction.
472  * This is the place to put in driver specific hooks to release
473  * driver private resources.
474  * Will release the bo::reserved lock.
475  */
476
477 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
478 {
479         if (bo->bdev->driver->move_notify)
480                 bo->bdev->driver->move_notify(bo, NULL);
481
482         if (bo->ttm) {
483                 ttm_tt_unbind(bo->ttm);
484                 ttm_tt_destroy(bo->ttm);
485                 bo->ttm = NULL;
486         }
487         ttm_bo_mem_put(bo, &bo->mem);
488
489         atomic_set(&bo->reserved, 0);
490
491         /*
492          * Make processes trying to reserve really pick it up.
493          */
494         smp_mb__after_atomic_dec();
495         wake_up_all(&bo->event_queue);
496 }
497
498 static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
499 {
500         struct ttm_bo_device *bdev = bo->bdev;
501         struct ttm_bo_global *glob = bo->glob;
502         struct ttm_bo_driver *driver;
503         void *sync_obj = NULL;
504         void *sync_obj_arg;
505         int put_count;
506         int ret;
507
508         spin_lock(&bdev->fence_lock);
509         (void) ttm_bo_wait(bo, false, false, true);
510         if (!bo->sync_obj) {
511
512                 spin_lock(&glob->lru_lock);
513
514                 /**
515                  * Lock inversion between bo:reserve and bdev::fence_lock here,
516                  * but that's OK, since we're only trylocking.
517                  */
518
519                 ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
520
521                 if (unlikely(ret == -EBUSY))
522                         goto queue;
523
524                 spin_unlock(&bdev->fence_lock);
525                 put_count = ttm_bo_del_from_lru(bo);
526
527                 spin_unlock(&glob->lru_lock);
528                 ttm_bo_cleanup_memtype_use(bo);
529
530                 ttm_bo_list_ref_sub(bo, put_count, true);
531
532                 return;
533         } else {
534                 spin_lock(&glob->lru_lock);
535         }
536 queue:
537         driver = bdev->driver;
538         if (bo->sync_obj)
539                 sync_obj = driver->sync_obj_ref(bo->sync_obj);
540         sync_obj_arg = bo->sync_obj_arg;
541
542         kref_get(&bo->list_kref);
543         list_add_tail(&bo->ddestroy, &bdev->ddestroy);
544         spin_unlock(&glob->lru_lock);
545         spin_unlock(&bdev->fence_lock);
546
547         if (sync_obj) {
548                 driver->sync_obj_flush(sync_obj, sync_obj_arg);
549                 driver->sync_obj_unref(&sync_obj);
550         }
551         schedule_delayed_work(&bdev->wq,
552                               ((HZ / 100) < 1) ? 1 : HZ / 100);
553 }
554
555 /**
556  * function ttm_bo_cleanup_refs
557  * If bo idle, remove from delayed- and lru lists, and unref.
558  * If not idle, do nothing.
559  *
560  * @interruptible         Any sleeps should occur interruptibly.
561  * @no_wait_reserve       Never wait for reserve. Return -EBUSY instead.
562  * @no_wait_gpu           Never wait for gpu. Return -EBUSY instead.
563  */
564
565 static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo,
566                                bool interruptible,
567                                bool no_wait_reserve,
568                                bool no_wait_gpu)
569 {
570         struct ttm_bo_device *bdev = bo->bdev;
571         struct ttm_bo_global *glob = bo->glob;
572         int put_count;
573         int ret = 0;
574
575 retry:
576         spin_lock(&bdev->fence_lock);
577         ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
578         spin_unlock(&bdev->fence_lock);
579
580         if (unlikely(ret != 0))
581                 return ret;
582
583         spin_lock(&glob->lru_lock);
584
585         if (unlikely(list_empty(&bo->ddestroy))) {
586                 spin_unlock(&glob->lru_lock);
587                 return 0;
588         }
589
590         ret = ttm_bo_reserve_locked(bo, interruptible,
591                                     no_wait_reserve, false, 0);
592
593         if (unlikely(ret != 0)) {
594                 spin_unlock(&glob->lru_lock);
595                 return ret;
596         }
597
598         /**
599          * We can re-check for sync object without taking
600          * the bo::lock since setting the sync object requires
601          * also bo::reserved. A busy object at this point may
602          * be caused by another thread recently starting an accelerated
603          * eviction.
604          */
605
606         if (unlikely(bo->sync_obj)) {
607                 atomic_set(&bo->reserved, 0);
608                 wake_up_all(&bo->event_queue);
609                 spin_unlock(&glob->lru_lock);
610                 goto retry;
611         }
612
613         put_count = ttm_bo_del_from_lru(bo);
614         list_del_init(&bo->ddestroy);
615         ++put_count;
616
617         spin_unlock(&glob->lru_lock);
618         ttm_bo_cleanup_memtype_use(bo);
619
620         ttm_bo_list_ref_sub(bo, put_count, true);
621
622         return 0;
623 }
624
625 /**
626  * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
627  * encountered buffers.
628  */
629
630 static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
631 {
632         struct ttm_bo_global *glob = bdev->glob;
633         struct ttm_buffer_object *entry = NULL;
634         int ret = 0;
635
636         spin_lock(&glob->lru_lock);
637         if (list_empty(&bdev->ddestroy))
638                 goto out_unlock;
639
640         entry = list_first_entry(&bdev->ddestroy,
641                 struct ttm_buffer_object, ddestroy);
642         kref_get(&entry->list_kref);
643
644         for (;;) {
645                 struct ttm_buffer_object *nentry = NULL;
646
647                 if (entry->ddestroy.next != &bdev->ddestroy) {
648                         nentry = list_first_entry(&entry->ddestroy,
649                                 struct ttm_buffer_object, ddestroy);
650                         kref_get(&nentry->list_kref);
651                 }
652
653                 spin_unlock(&glob->lru_lock);
654                 ret = ttm_bo_cleanup_refs(entry, false, !remove_all,
655                                           !remove_all);
656                 kref_put(&entry->list_kref, ttm_bo_release_list);
657                 entry = nentry;
658
659                 if (ret || !entry)
660                         goto out;
661
662                 spin_lock(&glob->lru_lock);
663                 if (list_empty(&entry->ddestroy))
664                         break;
665         }
666
667 out_unlock:
668         spin_unlock(&glob->lru_lock);
669 out:
670         if (entry)
671                 kref_put(&entry->list_kref, ttm_bo_release_list);
672         return ret;
673 }
674
675 static void ttm_bo_delayed_workqueue(struct work_struct *work)
676 {
677         struct ttm_bo_device *bdev =
678             container_of(work, struct ttm_bo_device, wq.work);
679
680         if (ttm_bo_delayed_delete(bdev, false)) {
681                 schedule_delayed_work(&bdev->wq,
682                                       ((HZ / 100) < 1) ? 1 : HZ / 100);
683         }
684 }
685
686 static void ttm_bo_release(struct kref *kref)
687 {
688         struct ttm_buffer_object *bo =
689             container_of(kref, struct ttm_buffer_object, kref);
690         struct ttm_bo_device *bdev = bo->bdev;
691         struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
692
693         if (likely(bo->vm_node != NULL)) {
694                 rb_erase(&bo->vm_rb, &bdev->addr_space_rb);
695                 drm_mm_put_block(bo->vm_node);
696                 bo->vm_node = NULL;
697         }
698         write_unlock(&bdev->vm_lock);
699         ttm_mem_io_lock(man, false);
700         ttm_mem_io_free_vm(bo);
701         ttm_mem_io_unlock(man);
702         ttm_bo_cleanup_refs_or_queue(bo);
703         kref_put(&bo->list_kref, ttm_bo_release_list);
704         write_lock(&bdev->vm_lock);
705 }
706
707 void ttm_bo_unref(struct ttm_buffer_object **p_bo)
708 {
709         struct ttm_buffer_object *bo = *p_bo;
710         struct ttm_bo_device *bdev = bo->bdev;
711
712         *p_bo = NULL;
713         write_lock(&bdev->vm_lock);
714         kref_put(&bo->kref, ttm_bo_release);
715         write_unlock(&bdev->vm_lock);
716 }
717 EXPORT_SYMBOL(ttm_bo_unref);
718
719 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
720 {
721         return cancel_delayed_work_sync(&bdev->wq);
722 }
723 EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
724
725 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
726 {
727         if (resched)
728                 schedule_delayed_work(&bdev->wq,
729                                       ((HZ / 100) < 1) ? 1 : HZ / 100);
730 }
731 EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
732
733 static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
734                         bool no_wait_reserve, bool no_wait_gpu)
735 {
736         struct ttm_bo_device *bdev = bo->bdev;
737         struct ttm_mem_reg evict_mem;
738         struct ttm_placement placement;
739         int ret = 0;
740
741         spin_lock(&bdev->fence_lock);
742         ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
743         spin_unlock(&bdev->fence_lock);
744
745         if (unlikely(ret != 0)) {
746                 if (ret != -ERESTARTSYS) {
747                         pr_err("Failed to expire sync object before buffer eviction\n");
748                 }
749                 goto out;
750         }
751
752         BUG_ON(!atomic_read(&bo->reserved));
753
754         evict_mem = bo->mem;
755         evict_mem.mm_node = NULL;
756         evict_mem.bus.io_reserved_vm = false;
757         evict_mem.bus.io_reserved_count = 0;
758
759         placement.fpfn = 0;
760         placement.lpfn = 0;
761         placement.num_placement = 0;
762         placement.num_busy_placement = 0;
763         bdev->driver->evict_flags(bo, &placement);
764         ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
765                                 no_wait_reserve, no_wait_gpu);
766         if (ret) {
767                 if (ret != -ERESTARTSYS) {
768                         pr_err("Failed to find memory space for buffer 0x%p eviction\n",
769                                bo);
770                         ttm_bo_mem_space_debug(bo, &placement);
771                 }
772                 goto out;
773         }
774
775         ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
776                                      no_wait_reserve, no_wait_gpu);
777         if (ret) {
778                 if (ret != -ERESTARTSYS)
779                         pr_err("Buffer eviction failed\n");
780                 ttm_bo_mem_put(bo, &evict_mem);
781                 goto out;
782         }
783         bo->evicted = true;
784 out:
785         return ret;
786 }
787
788 static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
789                                 uint32_t mem_type,
790                                 bool interruptible, bool no_wait_reserve,
791                                 bool no_wait_gpu)
792 {
793         struct ttm_bo_global *glob = bdev->glob;
794         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
795         struct ttm_buffer_object *bo;
796         int ret, put_count = 0;
797
798 retry:
799         spin_lock(&glob->lru_lock);
800         if (list_empty(&man->lru)) {
801                 spin_unlock(&glob->lru_lock);
802                 return -EBUSY;
803         }
804
805         bo = list_first_entry(&man->lru, struct ttm_buffer_object, lru);
806         kref_get(&bo->list_kref);
807
808         if (!list_empty(&bo->ddestroy)) {
809                 spin_unlock(&glob->lru_lock);
810                 ret = ttm_bo_cleanup_refs(bo, interruptible,
811                                           no_wait_reserve, no_wait_gpu);
812                 kref_put(&bo->list_kref, ttm_bo_release_list);
813
814                 if (likely(ret == 0 || ret == -ERESTARTSYS))
815                         return ret;
816
817                 goto retry;
818         }
819
820         ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
821
822         if (unlikely(ret == -EBUSY)) {
823                 spin_unlock(&glob->lru_lock);
824                 if (likely(!no_wait_reserve))
825                         ret = ttm_bo_wait_unreserved(bo, interruptible);
826
827                 kref_put(&bo->list_kref, ttm_bo_release_list);
828
829                 /**
830                  * We *need* to retry after releasing the lru lock.
831                  */
832
833                 if (unlikely(ret != 0))
834                         return ret;
835                 goto retry;
836         }
837
838         put_count = ttm_bo_del_from_lru(bo);
839         spin_unlock(&glob->lru_lock);
840
841         BUG_ON(ret != 0);
842
843         ttm_bo_list_ref_sub(bo, put_count, true);
844
845         ret = ttm_bo_evict(bo, interruptible, no_wait_reserve, no_wait_gpu);
846         ttm_bo_unreserve(bo);
847
848         kref_put(&bo->list_kref, ttm_bo_release_list);
849         return ret;
850 }
851
852 void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
853 {
854         struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
855
856         if (mem->mm_node)
857                 (*man->func->put_node)(man, mem);
858 }
859 EXPORT_SYMBOL(ttm_bo_mem_put);
860
861 /**
862  * Repeatedly evict memory from the LRU for @mem_type until we create enough
863  * space, or we've evicted everything and there isn't enough space.
864  */
865 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
866                                         uint32_t mem_type,
867                                         struct ttm_placement *placement,
868                                         struct ttm_mem_reg *mem,
869                                         bool interruptible,
870                                         bool no_wait_reserve,
871                                         bool no_wait_gpu)
872 {
873         struct ttm_bo_device *bdev = bo->bdev;
874         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
875         int ret;
876
877         do {
878                 ret = (*man->func->get_node)(man, bo, placement, mem);
879                 if (unlikely(ret != 0))
880                         return ret;
881                 if (mem->mm_node)
882                         break;
883                 ret = ttm_mem_evict_first(bdev, mem_type, interruptible,
884                                                 no_wait_reserve, no_wait_gpu);
885                 if (unlikely(ret != 0))
886                         return ret;
887         } while (1);
888         if (mem->mm_node == NULL)
889                 return -ENOMEM;
890         mem->mem_type = mem_type;
891         return 0;
892 }
893
894 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
895                                       uint32_t cur_placement,
896                                       uint32_t proposed_placement)
897 {
898         uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
899         uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
900
901         /**
902          * Keep current caching if possible.
903          */
904
905         if ((cur_placement & caching) != 0)
906                 result |= (cur_placement & caching);
907         else if ((man->default_caching & caching) != 0)
908                 result |= man->default_caching;
909         else if ((TTM_PL_FLAG_CACHED & caching) != 0)
910                 result |= TTM_PL_FLAG_CACHED;
911         else if ((TTM_PL_FLAG_WC & caching) != 0)
912                 result |= TTM_PL_FLAG_WC;
913         else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
914                 result |= TTM_PL_FLAG_UNCACHED;
915
916         return result;
917 }
918
919 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
920                                  uint32_t mem_type,
921                                  uint32_t proposed_placement,
922                                  uint32_t *masked_placement)
923 {
924         uint32_t cur_flags = ttm_bo_type_flags(mem_type);
925
926         if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0)
927                 return false;
928
929         if ((proposed_placement & man->available_caching) == 0)
930                 return false;
931
932         cur_flags |= (proposed_placement & man->available_caching);
933
934         *masked_placement = cur_flags;
935         return true;
936 }
937
938 /**
939  * Creates space for memory region @mem according to its type.
940  *
941  * This function first searches for free space in compatible memory types in
942  * the priority order defined by the driver.  If free space isn't found, then
943  * ttm_bo_mem_force_space is attempted in priority order to evict and find
944  * space.
945  */
946 int ttm_bo_mem_space(struct ttm_buffer_object *bo,
947                         struct ttm_placement *placement,
948                         struct ttm_mem_reg *mem,
949                         bool interruptible, bool no_wait_reserve,
950                         bool no_wait_gpu)
951 {
952         struct ttm_bo_device *bdev = bo->bdev;
953         struct ttm_mem_type_manager *man;
954         uint32_t mem_type = TTM_PL_SYSTEM;
955         uint32_t cur_flags = 0;
956         bool type_found = false;
957         bool type_ok = false;
958         bool has_erestartsys = false;
959         int i, ret;
960
961         mem->mm_node = NULL;
962         for (i = 0; i < placement->num_placement; ++i) {
963                 ret = ttm_mem_type_from_flags(placement->placement[i],
964                                                 &mem_type);
965                 if (ret)
966                         return ret;
967                 man = &bdev->man[mem_type];
968
969                 type_ok = ttm_bo_mt_compatible(man,
970                                                 mem_type,
971                                                 placement->placement[i],
972                                                 &cur_flags);
973
974                 if (!type_ok)
975                         continue;
976
977                 cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
978                                                   cur_flags);
979                 /*
980                  * Use the access and other non-mapping-related flag bits from
981                  * the memory placement flags to the current flags
982                  */
983                 ttm_flag_masked(&cur_flags, placement->placement[i],
984                                 ~TTM_PL_MASK_MEMTYPE);
985
986                 if (mem_type == TTM_PL_SYSTEM)
987                         break;
988
989                 if (man->has_type && man->use_type) {
990                         type_found = true;
991                         ret = (*man->func->get_node)(man, bo, placement, mem);
992                         if (unlikely(ret))
993                                 return ret;
994                 }
995                 if (mem->mm_node)
996                         break;
997         }
998
999         if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
1000                 mem->mem_type = mem_type;
1001                 mem->placement = cur_flags;
1002                 return 0;
1003         }
1004
1005         if (!type_found)
1006                 return -EINVAL;
1007
1008         for (i = 0; i < placement->num_busy_placement; ++i) {
1009                 ret = ttm_mem_type_from_flags(placement->busy_placement[i],
1010                                                 &mem_type);
1011                 if (ret)
1012                         return ret;
1013                 man = &bdev->man[mem_type];
1014                 if (!man->has_type)
1015                         continue;
1016                 if (!ttm_bo_mt_compatible(man,
1017                                                 mem_type,
1018                                                 placement->busy_placement[i],
1019                                                 &cur_flags))
1020                         continue;
1021
1022                 cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
1023                                                   cur_flags);
1024                 /*
1025                  * Use the access and other non-mapping-related flag bits from
1026                  * the memory placement flags to the current flags
1027                  */
1028                 ttm_flag_masked(&cur_flags, placement->busy_placement[i],
1029                                 ~TTM_PL_MASK_MEMTYPE);
1030
1031
1032                 if (mem_type == TTM_PL_SYSTEM) {
1033                         mem->mem_type = mem_type;
1034                         mem->placement = cur_flags;
1035                         mem->mm_node = NULL;
1036                         return 0;
1037                 }
1038
1039                 ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem,
1040                                                 interruptible, no_wait_reserve, no_wait_gpu);
1041                 if (ret == 0 && mem->mm_node) {
1042                         mem->placement = cur_flags;
1043                         return 0;
1044                 }
1045                 if (ret == -ERESTARTSYS)
1046                         has_erestartsys = true;
1047         }
1048         ret = (has_erestartsys) ? -ERESTARTSYS : -ENOMEM;
1049         return ret;
1050 }
1051 EXPORT_SYMBOL(ttm_bo_mem_space);
1052
1053 int ttm_bo_wait_cpu(struct ttm_buffer_object *bo, bool no_wait)
1054 {
1055         if ((atomic_read(&bo->cpu_writers) > 0) && no_wait)
1056                 return -EBUSY;
1057
1058         return wait_event_interruptible(bo->event_queue,
1059                                         atomic_read(&bo->cpu_writers) == 0);
1060 }
1061 EXPORT_SYMBOL(ttm_bo_wait_cpu);
1062
1063 int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1064                         struct ttm_placement *placement,
1065                         bool interruptible, bool no_wait_reserve,
1066                         bool no_wait_gpu)
1067 {
1068         int ret = 0;
1069         struct ttm_mem_reg mem;
1070         struct ttm_bo_device *bdev = bo->bdev;
1071
1072         BUG_ON(!atomic_read(&bo->reserved));
1073
1074         /*
1075          * FIXME: It's possible to pipeline buffer moves.
1076          * Have the driver move function wait for idle when necessary,
1077          * instead of doing it here.
1078          */
1079         spin_lock(&bdev->fence_lock);
1080         ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
1081         spin_unlock(&bdev->fence_lock);
1082         if (ret)
1083                 return ret;
1084         mem.num_pages = bo->num_pages;
1085         mem.size = mem.num_pages << PAGE_SHIFT;
1086         mem.page_alignment = bo->mem.page_alignment;
1087         mem.bus.io_reserved_vm = false;
1088         mem.bus.io_reserved_count = 0;
1089         /*
1090          * Determine where to move the buffer.
1091          */
1092         ret = ttm_bo_mem_space(bo, placement, &mem, interruptible, no_wait_reserve, no_wait_gpu);
1093         if (ret)
1094                 goto out_unlock;
1095         ret = ttm_bo_handle_move_mem(bo, &mem, false, interruptible, no_wait_reserve, no_wait_gpu);
1096 out_unlock:
1097         if (ret && mem.mm_node)
1098                 ttm_bo_mem_put(bo, &mem);
1099         return ret;
1100 }
1101
1102 static int ttm_bo_mem_compat(struct ttm_placement *placement,
1103                              struct ttm_mem_reg *mem)
1104 {
1105         int i;
1106
1107         if (mem->mm_node && placement->lpfn != 0 &&
1108             (mem->start < placement->fpfn ||
1109              mem->start + mem->num_pages > placement->lpfn))
1110                 return -1;
1111
1112         for (i = 0; i < placement->num_placement; i++) {
1113                 if ((placement->placement[i] & mem->placement &
1114                         TTM_PL_MASK_CACHING) &&
1115                         (placement->placement[i] & mem->placement &
1116                         TTM_PL_MASK_MEM))
1117                         return i;
1118         }
1119         return -1;
1120 }
1121
1122 int ttm_bo_validate(struct ttm_buffer_object *bo,
1123                         struct ttm_placement *placement,
1124                         bool interruptible, bool no_wait_reserve,
1125                         bool no_wait_gpu)
1126 {
1127         int ret;
1128
1129         BUG_ON(!atomic_read(&bo->reserved));
1130         /* Check that range is valid */
1131         if (placement->lpfn || placement->fpfn)
1132                 if (placement->fpfn > placement->lpfn ||
1133                         (placement->lpfn - placement->fpfn) < bo->num_pages)
1134                         return -EINVAL;
1135         /*
1136          * Check whether we need to move buffer.
1137          */
1138         ret = ttm_bo_mem_compat(placement, &bo->mem);
1139         if (ret < 0) {
1140                 ret = ttm_bo_move_buffer(bo, placement, interruptible, no_wait_reserve, no_wait_gpu);
1141                 if (ret)
1142                         return ret;
1143         } else {
1144                 /*
1145                  * Use the access and other non-mapping-related flag bits from
1146                  * the compatible memory placement flags to the active flags
1147                  */
1148                 ttm_flag_masked(&bo->mem.placement, placement->placement[ret],
1149                                 ~TTM_PL_MASK_MEMTYPE);
1150         }
1151         /*
1152          * We might need to add a TTM.
1153          */
1154         if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1155                 ret = ttm_bo_add_ttm(bo, true);
1156                 if (ret)
1157                         return ret;
1158         }
1159         return 0;
1160 }
1161 EXPORT_SYMBOL(ttm_bo_validate);
1162
1163 int ttm_bo_check_placement(struct ttm_buffer_object *bo,
1164                                 struct ttm_placement *placement)
1165 {
1166         BUG_ON((placement->fpfn || placement->lpfn) &&
1167                (bo->mem.num_pages > (placement->lpfn - placement->fpfn)));
1168
1169         return 0;
1170 }
1171
1172 int ttm_bo_init(struct ttm_bo_device *bdev,
1173                 struct ttm_buffer_object *bo,
1174                 unsigned long size,
1175                 enum ttm_bo_type type,
1176                 struct ttm_placement *placement,
1177                 uint32_t page_alignment,
1178                 unsigned long buffer_start,
1179                 bool interruptible,
1180                 struct file *persistent_swap_storage,
1181                 size_t acc_size,
1182                 struct sg_table *sg,
1183                 void (*destroy) (struct ttm_buffer_object *))
1184 {
1185         int ret = 0;
1186         unsigned long num_pages;
1187         struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1188
1189         ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
1190         if (ret) {
1191                 pr_err("Out of kernel memory\n");
1192                 if (destroy)
1193                         (*destroy)(bo);
1194                 else
1195                         kfree(bo);
1196                 return -ENOMEM;
1197         }
1198
1199         size += buffer_start & ~PAGE_MASK;
1200         num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1201         if (num_pages == 0) {
1202                 pr_err("Illegal buffer object size\n");
1203                 if (destroy)
1204                         (*destroy)(bo);
1205                 else
1206                         kfree(bo);
1207                 ttm_mem_global_free(mem_glob, acc_size);
1208                 return -EINVAL;
1209         }
1210         bo->destroy = destroy;
1211
1212         kref_init(&bo->kref);
1213         kref_init(&bo->list_kref);
1214         atomic_set(&bo->cpu_writers, 0);
1215         atomic_set(&bo->reserved, 1);
1216         init_waitqueue_head(&bo->event_queue);
1217         INIT_LIST_HEAD(&bo->lru);
1218         INIT_LIST_HEAD(&bo->ddestroy);
1219         INIT_LIST_HEAD(&bo->swap);
1220         INIT_LIST_HEAD(&bo->io_reserve_lru);
1221         bo->bdev = bdev;
1222         bo->glob = bdev->glob;
1223         bo->type = type;
1224         bo->num_pages = num_pages;
1225         bo->mem.size = num_pages << PAGE_SHIFT;
1226         bo->mem.mem_type = TTM_PL_SYSTEM;
1227         bo->mem.num_pages = bo->num_pages;
1228         bo->mem.mm_node = NULL;
1229         bo->mem.page_alignment = page_alignment;
1230         bo->mem.bus.io_reserved_vm = false;
1231         bo->mem.bus.io_reserved_count = 0;
1232         bo->buffer_start = buffer_start & PAGE_MASK;
1233         bo->priv_flags = 0;
1234         bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1235         bo->seq_valid = false;
1236         bo->persistent_swap_storage = persistent_swap_storage;
1237         bo->acc_size = acc_size;
1238         bo->sg = sg;
1239         atomic_inc(&bo->glob->bo_count);
1240
1241         ret = ttm_bo_check_placement(bo, placement);
1242         if (unlikely(ret != 0))
1243                 goto out_err;
1244
1245         /*
1246          * For ttm_bo_type_device buffers, allocate
1247          * address space from the device.
1248          */
1249         if (bo->type == ttm_bo_type_device ||
1250             bo->type == ttm_bo_type_sg) {
1251                 ret = ttm_bo_setup_vm(bo);
1252                 if (ret)
1253                         goto out_err;
1254         }
1255
1256         ret = ttm_bo_validate(bo, placement, interruptible, false, false);
1257         if (ret)
1258                 goto out_err;
1259
1260         ttm_bo_unreserve(bo);
1261         return 0;
1262
1263 out_err:
1264         ttm_bo_unreserve(bo);
1265         ttm_bo_unref(&bo);
1266
1267         return ret;
1268 }
1269 EXPORT_SYMBOL(ttm_bo_init);
1270
1271 size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
1272                        unsigned long bo_size,
1273                        unsigned struct_size)
1274 {
1275         unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1276         size_t size = 0;
1277
1278         size += ttm_round_pot(struct_size);
1279         size += PAGE_ALIGN(npages * sizeof(void *));
1280         size += ttm_round_pot(sizeof(struct ttm_tt));
1281         return size;
1282 }
1283 EXPORT_SYMBOL(ttm_bo_acc_size);
1284
1285 size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
1286                            unsigned long bo_size,
1287                            unsigned struct_size)
1288 {
1289         unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1290         size_t size = 0;
1291
1292         size += ttm_round_pot(struct_size);
1293         size += PAGE_ALIGN(npages * sizeof(void *));
1294         size += PAGE_ALIGN(npages * sizeof(dma_addr_t));
1295         size += ttm_round_pot(sizeof(struct ttm_dma_tt));
1296         return size;
1297 }
1298 EXPORT_SYMBOL(ttm_bo_dma_acc_size);
1299
1300 int ttm_bo_create(struct ttm_bo_device *bdev,
1301                         unsigned long size,
1302                         enum ttm_bo_type type,
1303                         struct ttm_placement *placement,
1304                         uint32_t page_alignment,
1305                         unsigned long buffer_start,
1306                         bool interruptible,
1307                         struct file *persistent_swap_storage,
1308                         struct ttm_buffer_object **p_bo)
1309 {
1310         struct ttm_buffer_object *bo;
1311         size_t acc_size;
1312         int ret;
1313
1314         bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1315         if (unlikely(bo == NULL))
1316                 return -ENOMEM;
1317
1318         acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
1319         ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1320                                 buffer_start, interruptible,
1321                           persistent_swap_storage, acc_size, NULL, NULL);
1322         if (likely(ret == 0))
1323                 *p_bo = bo;
1324
1325         return ret;
1326 }
1327 EXPORT_SYMBOL(ttm_bo_create);
1328
1329 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1330                                         unsigned mem_type, bool allow_errors)
1331 {
1332         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1333         struct ttm_bo_global *glob = bdev->glob;
1334         int ret;
1335
1336         /*
1337          * Can't use standard list traversal since we're unlocking.
1338          */
1339
1340         spin_lock(&glob->lru_lock);
1341         while (!list_empty(&man->lru)) {
1342                 spin_unlock(&glob->lru_lock);
1343                 ret = ttm_mem_evict_first(bdev, mem_type, false, false, false);
1344                 if (ret) {
1345                         if (allow_errors) {
1346                                 return ret;
1347                         } else {
1348                                 pr_err("Cleanup eviction failed\n");
1349                         }
1350                 }
1351                 spin_lock(&glob->lru_lock);
1352         }
1353         spin_unlock(&glob->lru_lock);
1354         return 0;
1355 }
1356
1357 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1358 {
1359         struct ttm_mem_type_manager *man;
1360         int ret = -EINVAL;
1361
1362         if (mem_type >= TTM_NUM_MEM_TYPES) {
1363                 pr_err("Illegal memory type %d\n", mem_type);
1364                 return ret;
1365         }
1366         man = &bdev->man[mem_type];
1367
1368         if (!man->has_type) {
1369                 pr_err("Trying to take down uninitialized memory manager type %u\n",
1370                        mem_type);
1371                 return ret;
1372         }
1373
1374         man->use_type = false;
1375         man->has_type = false;
1376
1377         ret = 0;
1378         if (mem_type > 0) {
1379                 ttm_bo_force_list_clean(bdev, mem_type, false);
1380
1381                 ret = (*man->func->takedown)(man);
1382         }
1383
1384         return ret;
1385 }
1386 EXPORT_SYMBOL(ttm_bo_clean_mm);
1387
1388 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1389 {
1390         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1391
1392         if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1393                 pr_err("Illegal memory manager memory type %u\n", mem_type);
1394                 return -EINVAL;
1395         }
1396
1397         if (!man->has_type) {
1398                 pr_err("Memory type %u has not been initialized\n", mem_type);
1399                 return 0;
1400         }
1401
1402         return ttm_bo_force_list_clean(bdev, mem_type, true);
1403 }
1404 EXPORT_SYMBOL(ttm_bo_evict_mm);
1405
1406 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1407                         unsigned long p_size)
1408 {
1409         int ret = -EINVAL;
1410         struct ttm_mem_type_manager *man;
1411
1412         BUG_ON(type >= TTM_NUM_MEM_TYPES);
1413         man = &bdev->man[type];
1414         BUG_ON(man->has_type);
1415         man->io_reserve_fastpath = true;
1416         man->use_io_reserve_lru = false;
1417         mutex_init(&man->io_reserve_mutex);
1418         INIT_LIST_HEAD(&man->io_reserve_lru);
1419
1420         ret = bdev->driver->init_mem_type(bdev, type, man);
1421         if (ret)
1422                 return ret;
1423         man->bdev = bdev;
1424
1425         ret = 0;
1426         if (type != TTM_PL_SYSTEM) {
1427                 ret = (*man->func->init)(man, p_size);
1428                 if (ret)
1429                         return ret;
1430         }
1431         man->has_type = true;
1432         man->use_type = true;
1433         man->size = p_size;
1434
1435         INIT_LIST_HEAD(&man->lru);
1436
1437         return 0;
1438 }
1439 EXPORT_SYMBOL(ttm_bo_init_mm);
1440
1441 static void ttm_bo_global_kobj_release(struct kobject *kobj)
1442 {
1443         struct ttm_bo_global *glob =
1444                 container_of(kobj, struct ttm_bo_global, kobj);
1445
1446         ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
1447         __free_page(glob->dummy_read_page);
1448         kfree(glob);
1449 }
1450
1451 void ttm_bo_global_release(struct drm_global_reference *ref)
1452 {
1453         struct ttm_bo_global *glob = ref->object;
1454
1455         kobject_del(&glob->kobj);
1456         kobject_put(&glob->kobj);
1457 }
1458 EXPORT_SYMBOL(ttm_bo_global_release);
1459
1460 int ttm_bo_global_init(struct drm_global_reference *ref)
1461 {
1462         struct ttm_bo_global_ref *bo_ref =
1463                 container_of(ref, struct ttm_bo_global_ref, ref);
1464         struct ttm_bo_global *glob = ref->object;
1465         int ret;
1466
1467         mutex_init(&glob->device_list_mutex);
1468         spin_lock_init(&glob->lru_lock);
1469         glob->mem_glob = bo_ref->mem_glob;
1470         glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1471
1472         if (unlikely(glob->dummy_read_page == NULL)) {
1473                 ret = -ENOMEM;
1474                 goto out_no_drp;
1475         }
1476
1477         INIT_LIST_HEAD(&glob->swap_lru);
1478         INIT_LIST_HEAD(&glob->device_list);
1479
1480         ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
1481         ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
1482         if (unlikely(ret != 0)) {
1483                 pr_err("Could not register buffer object swapout\n");
1484                 goto out_no_shrink;
1485         }
1486
1487         atomic_set(&glob->bo_count, 0);
1488
1489         ret = kobject_init_and_add(
1490                 &glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1491         if (unlikely(ret != 0))
1492                 kobject_put(&glob->kobj);
1493         return ret;
1494 out_no_shrink:
1495         __free_page(glob->dummy_read_page);
1496 out_no_drp:
1497         kfree(glob);
1498         return ret;
1499 }
1500 EXPORT_SYMBOL(ttm_bo_global_init);
1501
1502
1503 int ttm_bo_device_release(struct ttm_bo_device *bdev)
1504 {
1505         int ret = 0;
1506         unsigned i = TTM_NUM_MEM_TYPES;
1507         struct ttm_mem_type_manager *man;
1508         struct ttm_bo_global *glob = bdev->glob;
1509
1510         while (i--) {
1511                 man = &bdev->man[i];
1512                 if (man->has_type) {
1513                         man->use_type = false;
1514                         if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1515                                 ret = -EBUSY;
1516                                 pr_err("DRM memory manager type %d is not clean\n",
1517                                        i);
1518                         }
1519                         man->has_type = false;
1520                 }
1521         }
1522
1523         mutex_lock(&glob->device_list_mutex);
1524         list_del(&bdev->device_list);
1525         mutex_unlock(&glob->device_list_mutex);
1526
1527         cancel_delayed_work_sync(&bdev->wq);
1528
1529         while (ttm_bo_delayed_delete(bdev, true))
1530                 ;
1531
1532         spin_lock(&glob->lru_lock);
1533         if (list_empty(&bdev->ddestroy))
1534                 TTM_DEBUG("Delayed destroy list was clean\n");
1535
1536         if (list_empty(&bdev->man[0].lru))
1537                 TTM_DEBUG("Swap list was clean\n");
1538         spin_unlock(&glob->lru_lock);
1539
1540         BUG_ON(!drm_mm_clean(&bdev->addr_space_mm));
1541         write_lock(&bdev->vm_lock);
1542         drm_mm_takedown(&bdev->addr_space_mm);
1543         write_unlock(&bdev->vm_lock);
1544
1545         return ret;
1546 }
1547 EXPORT_SYMBOL(ttm_bo_device_release);
1548
1549 int ttm_bo_device_init(struct ttm_bo_device *bdev,
1550                        struct ttm_bo_global *glob,
1551                        struct ttm_bo_driver *driver,
1552                        uint64_t file_page_offset,
1553                        bool need_dma32)
1554 {
1555         int ret = -EINVAL;
1556
1557         rwlock_init(&bdev->vm_lock);
1558         bdev->driver = driver;
1559
1560         memset(bdev->man, 0, sizeof(bdev->man));
1561
1562         /*
1563          * Initialize the system memory buffer type.
1564          * Other types need to be driver / IOCTL initialized.
1565          */
1566         ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1567         if (unlikely(ret != 0))
1568                 goto out_no_sys;
1569
1570         bdev->addr_space_rb = RB_ROOT;
1571         ret = drm_mm_init(&bdev->addr_space_mm, file_page_offset, 0x10000000);
1572         if (unlikely(ret != 0))
1573                 goto out_no_addr_mm;
1574
1575         INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1576         bdev->nice_mode = true;
1577         INIT_LIST_HEAD(&bdev->ddestroy);
1578         bdev->dev_mapping = NULL;
1579         bdev->glob = glob;
1580         bdev->need_dma32 = need_dma32;
1581         bdev->val_seq = 0;
1582         spin_lock_init(&bdev->fence_lock);
1583         mutex_lock(&glob->device_list_mutex);
1584         list_add_tail(&bdev->device_list, &glob->device_list);
1585         mutex_unlock(&glob->device_list_mutex);
1586
1587         return 0;
1588 out_no_addr_mm:
1589         ttm_bo_clean_mm(bdev, 0);
1590 out_no_sys:
1591         return ret;
1592 }
1593 EXPORT_SYMBOL(ttm_bo_device_init);
1594
1595 /*
1596  * buffer object vm functions.
1597  */
1598
1599 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1600 {
1601         struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1602
1603         if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1604                 if (mem->mem_type == TTM_PL_SYSTEM)
1605                         return false;
1606
1607                 if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1608                         return false;
1609
1610                 if (mem->placement & TTM_PL_FLAG_CACHED)
1611                         return false;
1612         }
1613         return true;
1614 }
1615
1616 void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1617 {
1618         struct ttm_bo_device *bdev = bo->bdev;
1619         loff_t offset = (loff_t) bo->addr_space_offset;
1620         loff_t holelen = ((loff_t) bo->mem.num_pages) << PAGE_SHIFT;
1621
1622         if (!bdev->dev_mapping)
1623                 return;
1624         unmap_mapping_range(bdev->dev_mapping, offset, holelen, 1);
1625         ttm_mem_io_free_vm(bo);
1626 }
1627
1628 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1629 {
1630         struct ttm_bo_device *bdev = bo->bdev;
1631         struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1632
1633         ttm_mem_io_lock(man, false);
1634         ttm_bo_unmap_virtual_locked(bo);
1635         ttm_mem_io_unlock(man);
1636 }
1637
1638
1639 EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1640
1641 static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo)
1642 {
1643         struct ttm_bo_device *bdev = bo->bdev;
1644         struct rb_node **cur = &bdev->addr_space_rb.rb_node;
1645         struct rb_node *parent = NULL;
1646         struct ttm_buffer_object *cur_bo;
1647         unsigned long offset = bo->vm_node->start;
1648         unsigned long cur_offset;
1649
1650         while (*cur) {
1651                 parent = *cur;
1652                 cur_bo = rb_entry(parent, struct ttm_buffer_object, vm_rb);
1653                 cur_offset = cur_bo->vm_node->start;
1654                 if (offset < cur_offset)
1655                         cur = &parent->rb_left;
1656                 else if (offset > cur_offset)
1657                         cur = &parent->rb_right;
1658                 else
1659                         BUG();
1660         }
1661
1662         rb_link_node(&bo->vm_rb, parent, cur);
1663         rb_insert_color(&bo->vm_rb, &bdev->addr_space_rb);
1664 }
1665
1666 /**
1667  * ttm_bo_setup_vm:
1668  *
1669  * @bo: the buffer to allocate address space for
1670  *
1671  * Allocate address space in the drm device so that applications
1672  * can mmap the buffer and access the contents. This only
1673  * applies to ttm_bo_type_device objects as others are not
1674  * placed in the drm device address space.
1675  */
1676
1677 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo)
1678 {
1679         struct ttm_bo_device *bdev = bo->bdev;
1680         int ret;
1681
1682 retry_pre_get:
1683         ret = drm_mm_pre_get(&bdev->addr_space_mm);
1684         if (unlikely(ret != 0))
1685                 return ret;
1686
1687         write_lock(&bdev->vm_lock);
1688         bo->vm_node = drm_mm_search_free(&bdev->addr_space_mm,
1689                                          bo->mem.num_pages, 0, 0);
1690
1691         if (unlikely(bo->vm_node == NULL)) {
1692                 ret = -ENOMEM;
1693                 goto out_unlock;
1694         }
1695
1696         bo->vm_node = drm_mm_get_block_atomic(bo->vm_node,
1697                                               bo->mem.num_pages, 0);
1698
1699         if (unlikely(bo->vm_node == NULL)) {
1700                 write_unlock(&bdev->vm_lock);
1701                 goto retry_pre_get;
1702         }
1703
1704         ttm_bo_vm_insert_rb(bo);
1705         write_unlock(&bdev->vm_lock);
1706         bo->addr_space_offset = ((uint64_t) bo->vm_node->start) << PAGE_SHIFT;
1707
1708         return 0;
1709 out_unlock:
1710         write_unlock(&bdev->vm_lock);
1711         return ret;
1712 }
1713
1714 int ttm_bo_wait(struct ttm_buffer_object *bo,
1715                 bool lazy, bool interruptible, bool no_wait)
1716 {
1717         struct ttm_bo_driver *driver = bo->bdev->driver;
1718         struct ttm_bo_device *bdev = bo->bdev;
1719         void *sync_obj;
1720         void *sync_obj_arg;
1721         int ret = 0;
1722
1723         if (likely(bo->sync_obj == NULL))
1724                 return 0;
1725
1726         while (bo->sync_obj) {
1727
1728                 if (driver->sync_obj_signaled(bo->sync_obj, bo->sync_obj_arg)) {
1729                         void *tmp_obj = bo->sync_obj;
1730                         bo->sync_obj = NULL;
1731                         clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
1732                         spin_unlock(&bdev->fence_lock);
1733                         driver->sync_obj_unref(&tmp_obj);
1734                         spin_lock(&bdev->fence_lock);
1735                         continue;
1736                 }
1737
1738                 if (no_wait)
1739                         return -EBUSY;
1740
1741                 sync_obj = driver->sync_obj_ref(bo->sync_obj);
1742                 sync_obj_arg = bo->sync_obj_arg;
1743                 spin_unlock(&bdev->fence_lock);
1744                 ret = driver->sync_obj_wait(sync_obj, sync_obj_arg,
1745                                             lazy, interruptible);
1746                 if (unlikely(ret != 0)) {
1747                         driver->sync_obj_unref(&sync_obj);
1748                         spin_lock(&bdev->fence_lock);
1749                         return ret;
1750                 }
1751                 spin_lock(&bdev->fence_lock);
1752                 if (likely(bo->sync_obj == sync_obj &&
1753                            bo->sync_obj_arg == sync_obj_arg)) {
1754                         void *tmp_obj = bo->sync_obj;
1755                         bo->sync_obj = NULL;
1756                         clear_bit(TTM_BO_PRIV_FLAG_MOVING,
1757                                   &bo->priv_flags);
1758                         spin_unlock(&bdev->fence_lock);
1759                         driver->sync_obj_unref(&sync_obj);
1760                         driver->sync_obj_unref(&tmp_obj);
1761                         spin_lock(&bdev->fence_lock);
1762                 } else {
1763                         spin_unlock(&bdev->fence_lock);
1764                         driver->sync_obj_unref(&sync_obj);
1765                         spin_lock(&bdev->fence_lock);
1766                 }
1767         }
1768         return 0;
1769 }
1770 EXPORT_SYMBOL(ttm_bo_wait);
1771
1772 int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1773 {
1774         struct ttm_bo_device *bdev = bo->bdev;
1775         int ret = 0;
1776
1777         /*
1778          * Using ttm_bo_reserve makes sure the lru lists are updated.
1779          */
1780
1781         ret = ttm_bo_reserve(bo, true, no_wait, false, 0);
1782         if (unlikely(ret != 0))
1783                 return ret;
1784         spin_lock(&bdev->fence_lock);
1785         ret = ttm_bo_wait(bo, false, true, no_wait);
1786         spin_unlock(&bdev->fence_lock);
1787         if (likely(ret == 0))
1788                 atomic_inc(&bo->cpu_writers);
1789         ttm_bo_unreserve(bo);
1790         return ret;
1791 }
1792 EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
1793
1794 void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1795 {
1796         if (atomic_dec_and_test(&bo->cpu_writers))
1797                 wake_up_all(&bo->event_queue);
1798 }
1799 EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
1800
1801 /**
1802  * A buffer object shrink method that tries to swap out the first
1803  * buffer object on the bo_global::swap_lru list.
1804  */
1805
1806 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
1807 {
1808         struct ttm_bo_global *glob =
1809             container_of(shrink, struct ttm_bo_global, shrink);
1810         struct ttm_buffer_object *bo;
1811         int ret = -EBUSY;
1812         int put_count;
1813         uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);
1814
1815         spin_lock(&glob->lru_lock);
1816         while (ret == -EBUSY) {
1817                 if (unlikely(list_empty(&glob->swap_lru))) {
1818                         spin_unlock(&glob->lru_lock);
1819                         return -EBUSY;
1820                 }
1821
1822                 bo = list_first_entry(&glob->swap_lru,
1823                                       struct ttm_buffer_object, swap);
1824                 kref_get(&bo->list_kref);
1825
1826                 if (!list_empty(&bo->ddestroy)) {
1827                         spin_unlock(&glob->lru_lock);
1828                         (void) ttm_bo_cleanup_refs(bo, false, false, false);
1829                         kref_put(&bo->list_kref, ttm_bo_release_list);
1830                         spin_lock(&glob->lru_lock);
1831                         continue;
1832                 }
1833
1834                 /**
1835                  * Reserve buffer. Since we unlock while sleeping, we need
1836                  * to re-check that nobody removed us from the swap-list while
1837                  * we slept.
1838                  */
1839
1840                 ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
1841                 if (unlikely(ret == -EBUSY)) {
1842                         spin_unlock(&glob->lru_lock);
1843                         ttm_bo_wait_unreserved(bo, false);
1844                         kref_put(&bo->list_kref, ttm_bo_release_list);
1845                         spin_lock(&glob->lru_lock);
1846                 }
1847         }
1848
1849         BUG_ON(ret != 0);
1850         put_count = ttm_bo_del_from_lru(bo);
1851         spin_unlock(&glob->lru_lock);
1852
1853         ttm_bo_list_ref_sub(bo, put_count, true);
1854
1855         /**
1856          * Wait for GPU, then move to system cached.
1857          */
1858
1859         spin_lock(&bo->bdev->fence_lock);
1860         ret = ttm_bo_wait(bo, false, false, false);
1861         spin_unlock(&bo->bdev->fence_lock);
1862
1863         if (unlikely(ret != 0))
1864                 goto out;
1865
1866         if ((bo->mem.placement & swap_placement) != swap_placement) {
1867                 struct ttm_mem_reg evict_mem;
1868
1869                 evict_mem = bo->mem;
1870                 evict_mem.mm_node = NULL;
1871                 evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1872                 evict_mem.mem_type = TTM_PL_SYSTEM;
1873
1874                 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
1875                                              false, false, false);
1876                 if (unlikely(ret != 0))
1877                         goto out;
1878         }
1879
1880         ttm_bo_unmap_virtual(bo);
1881
1882         /**
1883          * Swap out. Buffer will be swapped in again as soon as
1884          * anyone tries to access a ttm page.
1885          */
1886
1887         if (bo->bdev->driver->swap_notify)
1888                 bo->bdev->driver->swap_notify(bo);
1889
1890         ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1891 out:
1892
1893         /**
1894          *
1895          * Unreserve without putting on LRU to avoid swapping out an
1896          * already swapped buffer.
1897          */
1898
1899         atomic_set(&bo->reserved, 0);
1900         wake_up_all(&bo->event_queue);
1901         kref_put(&bo->list_kref, ttm_bo_release_list);
1902         return ret;
1903 }
1904
1905 void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1906 {
1907         while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
1908                 ;
1909 }
1910 EXPORT_SYMBOL(ttm_bo_swapout_all);