ce464579c48567bf77fb16c7a7d46fa088afff5f
[pandora-kernel.git] / drivers / gpu / drm / ttm / ttm_bo.c
1 /**************************************************************************
2  *
3  * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4  * All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 /*
28  * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29  */
30
31 #include "ttm/ttm_module.h"
32 #include "ttm/ttm_bo_driver.h"
33 #include "ttm/ttm_placement.h"
34 #include <linux/jiffies.h>
35 #include <linux/slab.h>
36 #include <linux/sched.h>
37 #include <linux/mm.h>
38 #include <linux/file.h>
39 #include <linux/module.h>
40 #include <asm/atomic.h>
41
42 #define TTM_ASSERT_LOCKED(param)
43 #define TTM_DEBUG(fmt, arg...)
44 #define TTM_BO_HASH_ORDER 13
45
46 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo);
47 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
48 static void ttm_bo_global_kobj_release(struct kobject *kobj);
49
50 static struct attribute ttm_bo_count = {
51         .name = "bo_count",
52         .mode = S_IRUGO
53 };
54
55 static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type)
56 {
57         int i;
58
59         for (i = 0; i <= TTM_PL_PRIV5; i++)
60                 if (flags & (1 << i)) {
61                         *mem_type = i;
62                         return 0;
63                 }
64         return -EINVAL;
65 }
66
67 static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
68 {
69         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
70
71         printk(KERN_ERR TTM_PFX "    has_type: %d\n", man->has_type);
72         printk(KERN_ERR TTM_PFX "    use_type: %d\n", man->use_type);
73         printk(KERN_ERR TTM_PFX "    flags: 0x%08X\n", man->flags);
74         printk(KERN_ERR TTM_PFX "    gpu_offset: 0x%08lX\n", man->gpu_offset);
75         printk(KERN_ERR TTM_PFX "    size: %llu\n", man->size);
76         printk(KERN_ERR TTM_PFX "    available_caching: 0x%08X\n",
77                 man->available_caching);
78         printk(KERN_ERR TTM_PFX "    default_caching: 0x%08X\n",
79                 man->default_caching);
80         if (mem_type != TTM_PL_SYSTEM)
81                 (*man->func->debug)(man, TTM_PFX);
82 }
83
84 static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
85                                         struct ttm_placement *placement)
86 {
87         int i, ret, mem_type;
88
89         printk(KERN_ERR TTM_PFX "No space for %p (%lu pages, %luK, %luM)\n",
90                 bo, bo->mem.num_pages, bo->mem.size >> 10,
91                 bo->mem.size >> 20);
92         for (i = 0; i < placement->num_placement; i++) {
93                 ret = ttm_mem_type_from_flags(placement->placement[i],
94                                                 &mem_type);
95                 if (ret)
96                         return;
97                 printk(KERN_ERR TTM_PFX "  placement[%d]=0x%08X (%d)\n",
98                         i, placement->placement[i], mem_type);
99                 ttm_mem_type_debug(bo->bdev, mem_type);
100         }
101 }
102
103 static ssize_t ttm_bo_global_show(struct kobject *kobj,
104                                   struct attribute *attr,
105                                   char *buffer)
106 {
107         struct ttm_bo_global *glob =
108                 container_of(kobj, struct ttm_bo_global, kobj);
109
110         return snprintf(buffer, PAGE_SIZE, "%lu\n",
111                         (unsigned long) atomic_read(&glob->bo_count));
112 }
113
114 static struct attribute *ttm_bo_global_attrs[] = {
115         &ttm_bo_count,
116         NULL
117 };
118
119 static const struct sysfs_ops ttm_bo_global_ops = {
120         .show = &ttm_bo_global_show
121 };
122
123 static struct kobj_type ttm_bo_glob_kobj_type  = {
124         .release = &ttm_bo_global_kobj_release,
125         .sysfs_ops = &ttm_bo_global_ops,
126         .default_attrs = ttm_bo_global_attrs
127 };
128
129
130 static inline uint32_t ttm_bo_type_flags(unsigned type)
131 {
132         return 1 << (type);
133 }
134
135 static void ttm_bo_release_list(struct kref *list_kref)
136 {
137         struct ttm_buffer_object *bo =
138             container_of(list_kref, struct ttm_buffer_object, list_kref);
139         struct ttm_bo_device *bdev = bo->bdev;
140
141         BUG_ON(atomic_read(&bo->list_kref.refcount));
142         BUG_ON(atomic_read(&bo->kref.refcount));
143         BUG_ON(atomic_read(&bo->cpu_writers));
144         BUG_ON(bo->sync_obj != NULL);
145         BUG_ON(bo->mem.mm_node != NULL);
146         BUG_ON(!list_empty(&bo->lru));
147         BUG_ON(!list_empty(&bo->ddestroy));
148
149         if (bo->ttm)
150                 ttm_tt_destroy(bo->ttm);
151         atomic_dec(&bo->glob->bo_count);
152         if (bo->destroy)
153                 bo->destroy(bo);
154         else {
155                 ttm_mem_global_free(bdev->glob->mem_glob, bo->acc_size);
156                 kfree(bo);
157         }
158 }
159
160 int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo, bool interruptible)
161 {
162         if (interruptible) {
163                 return wait_event_interruptible(bo->event_queue,
164                                                atomic_read(&bo->reserved) == 0);
165         } else {
166                 wait_event(bo->event_queue, atomic_read(&bo->reserved) == 0);
167                 return 0;
168         }
169 }
170 EXPORT_SYMBOL(ttm_bo_wait_unreserved);
171
172 static void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
173 {
174         struct ttm_bo_device *bdev = bo->bdev;
175         struct ttm_mem_type_manager *man;
176
177         BUG_ON(!atomic_read(&bo->reserved));
178
179         if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
180
181                 BUG_ON(!list_empty(&bo->lru));
182
183                 man = &bdev->man[bo->mem.mem_type];
184                 list_add_tail(&bo->lru, &man->lru);
185                 kref_get(&bo->list_kref);
186
187                 if (bo->ttm != NULL) {
188                         list_add_tail(&bo->swap, &bo->glob->swap_lru);
189                         kref_get(&bo->list_kref);
190                 }
191         }
192 }
193
194 /**
195  * Call with the lru_lock held.
196  */
197
198 static int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
199 {
200         int put_count = 0;
201
202         if (!list_empty(&bo->swap)) {
203                 list_del_init(&bo->swap);
204                 ++put_count;
205         }
206         if (!list_empty(&bo->lru)) {
207                 list_del_init(&bo->lru);
208                 ++put_count;
209         }
210
211         /*
212          * TODO: Add a driver hook to delete from
213          * driver-specific LRU's here.
214          */
215
216         return put_count;
217 }
218
219 int ttm_bo_reserve_locked(struct ttm_buffer_object *bo,
220                           bool interruptible,
221                           bool no_wait, bool use_sequence, uint32_t sequence)
222 {
223         struct ttm_bo_global *glob = bo->glob;
224         int ret;
225
226         while (unlikely(atomic_cmpxchg(&bo->reserved, 0, 1) != 0)) {
227                 if (use_sequence && bo->seq_valid &&
228                         (sequence - bo->val_seq < (1 << 31))) {
229                         return -EAGAIN;
230                 }
231
232                 if (no_wait)
233                         return -EBUSY;
234
235                 spin_unlock(&glob->lru_lock);
236                 ret = ttm_bo_wait_unreserved(bo, interruptible);
237                 spin_lock(&glob->lru_lock);
238
239                 if (unlikely(ret))
240                         return ret;
241         }
242
243         if (use_sequence) {
244                 bo->val_seq = sequence;
245                 bo->seq_valid = true;
246         } else {
247                 bo->seq_valid = false;
248         }
249
250         return 0;
251 }
252 EXPORT_SYMBOL(ttm_bo_reserve);
253
254 static void ttm_bo_ref_bug(struct kref *list_kref)
255 {
256         BUG();
257 }
258
259 int ttm_bo_reserve(struct ttm_buffer_object *bo,
260                    bool interruptible,
261                    bool no_wait, bool use_sequence, uint32_t sequence)
262 {
263         struct ttm_bo_global *glob = bo->glob;
264         int put_count = 0;
265         int ret;
266
267         spin_lock(&glob->lru_lock);
268         ret = ttm_bo_reserve_locked(bo, interruptible, no_wait, use_sequence,
269                                     sequence);
270         if (likely(ret == 0))
271                 put_count = ttm_bo_del_from_lru(bo);
272         spin_unlock(&glob->lru_lock);
273
274         while (put_count--)
275                 kref_put(&bo->list_kref, ttm_bo_ref_bug);
276
277         return ret;
278 }
279
280 void ttm_bo_unreserve(struct ttm_buffer_object *bo)
281 {
282         struct ttm_bo_global *glob = bo->glob;
283
284         spin_lock(&glob->lru_lock);
285         ttm_bo_add_to_lru(bo);
286         atomic_set(&bo->reserved, 0);
287         wake_up_all(&bo->event_queue);
288         spin_unlock(&glob->lru_lock);
289 }
290 EXPORT_SYMBOL(ttm_bo_unreserve);
291
292 /*
293  * Call bo->mutex locked.
294  */
295 static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
296 {
297         struct ttm_bo_device *bdev = bo->bdev;
298         struct ttm_bo_global *glob = bo->glob;
299         int ret = 0;
300         uint32_t page_flags = 0;
301
302         TTM_ASSERT_LOCKED(&bo->mutex);
303         bo->ttm = NULL;
304
305         if (bdev->need_dma32)
306                 page_flags |= TTM_PAGE_FLAG_DMA32;
307
308         switch (bo->type) {
309         case ttm_bo_type_device:
310                 if (zero_alloc)
311                         page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
312         case ttm_bo_type_kernel:
313                 bo->ttm = ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
314                                         page_flags, glob->dummy_read_page);
315                 if (unlikely(bo->ttm == NULL))
316                         ret = -ENOMEM;
317                 break;
318         case ttm_bo_type_user:
319                 bo->ttm = ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
320                                         page_flags | TTM_PAGE_FLAG_USER,
321                                         glob->dummy_read_page);
322                 if (unlikely(bo->ttm == NULL)) {
323                         ret = -ENOMEM;
324                         break;
325                 }
326
327                 ret = ttm_tt_set_user(bo->ttm, current,
328                                       bo->buffer_start, bo->num_pages);
329                 if (unlikely(ret != 0))
330                         ttm_tt_destroy(bo->ttm);
331                 break;
332         default:
333                 printk(KERN_ERR TTM_PFX "Illegal buffer object type\n");
334                 ret = -EINVAL;
335                 break;
336         }
337
338         return ret;
339 }
340
341 static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
342                                   struct ttm_mem_reg *mem,
343                                   bool evict, bool interruptible,
344                                   bool no_wait_reserve, bool no_wait_gpu)
345 {
346         struct ttm_bo_device *bdev = bo->bdev;
347         bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
348         bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
349         struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
350         struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
351         int ret = 0;
352
353         if (old_is_pci || new_is_pci ||
354             ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0))
355                 ttm_bo_unmap_virtual(bo);
356
357         /*
358          * Create and bind a ttm if required.
359          */
360
361         if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && (bo->ttm == NULL)) {
362                 ret = ttm_bo_add_ttm(bo, false);
363                 if (ret)
364                         goto out_err;
365
366                 ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
367                 if (ret)
368                         goto out_err;
369
370                 if (mem->mem_type != TTM_PL_SYSTEM) {
371                         ret = ttm_tt_bind(bo->ttm, mem);
372                         if (ret)
373                                 goto out_err;
374                 }
375
376                 if (bo->mem.mem_type == TTM_PL_SYSTEM) {
377                         bo->mem = *mem;
378                         mem->mm_node = NULL;
379                         goto moved;
380                 }
381
382         }
383
384         if (bdev->driver->move_notify)
385                 bdev->driver->move_notify(bo, mem);
386
387         if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
388             !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
389                 ret = ttm_bo_move_ttm(bo, evict, no_wait_reserve, no_wait_gpu, mem);
390         else if (bdev->driver->move)
391                 ret = bdev->driver->move(bo, evict, interruptible,
392                                          no_wait_reserve, no_wait_gpu, mem);
393         else
394                 ret = ttm_bo_move_memcpy(bo, evict, no_wait_reserve, no_wait_gpu, mem);
395
396         if (ret)
397                 goto out_err;
398
399 moved:
400         if (bo->evicted) {
401                 ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
402                 if (ret)
403                         printk(KERN_ERR TTM_PFX "Can not flush read caches\n");
404                 bo->evicted = false;
405         }
406
407         if (bo->mem.mm_node) {
408                 spin_lock(&bo->lock);
409                 bo->offset = (bo->mem.start << PAGE_SHIFT) +
410                     bdev->man[bo->mem.mem_type].gpu_offset;
411                 bo->cur_placement = bo->mem.placement;
412                 spin_unlock(&bo->lock);
413         } else
414                 bo->offset = 0;
415
416         return 0;
417
418 out_err:
419         new_man = &bdev->man[bo->mem.mem_type];
420         if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) {
421                 ttm_tt_unbind(bo->ttm);
422                 ttm_tt_destroy(bo->ttm);
423                 bo->ttm = NULL;
424         }
425
426         return ret;
427 }
428
429 /**
430  * Call bo::reserved.
431  * Will release GPU memory type usage on destruction.
432  * This is the place to put in driver specific hooks to release
433  * driver private resources.
434  * Will release the bo::reserved lock.
435  */
436
437 static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
438 {
439         if (bo->ttm) {
440                 ttm_tt_unbind(bo->ttm);
441                 ttm_tt_destroy(bo->ttm);
442                 bo->ttm = NULL;
443         }
444
445         ttm_bo_mem_put(bo, &bo->mem);
446
447         atomic_set(&bo->reserved, 0);
448
449         /*
450          * Make processes trying to reserve really pick it up.
451          */
452         smp_mb__after_atomic_dec();
453         wake_up_all(&bo->event_queue);
454 }
455
456 static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
457 {
458         struct ttm_bo_device *bdev = bo->bdev;
459         struct ttm_bo_global *glob = bo->glob;
460         struct ttm_bo_driver *driver;
461         void *sync_obj = NULL;
462         void *sync_obj_arg;
463         int put_count;
464         int ret;
465
466         spin_lock(&bo->lock);
467         (void) ttm_bo_wait(bo, false, false, true);
468         if (!bo->sync_obj) {
469
470                 spin_lock(&glob->lru_lock);
471
472                 /**
473                  * Lock inversion between bo::reserve and bo::lock here,
474                  * but that's OK, since we're only trylocking.
475                  */
476
477                 ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
478
479                 if (unlikely(ret == -EBUSY))
480                         goto queue;
481
482                 spin_unlock(&bo->lock);
483                 put_count = ttm_bo_del_from_lru(bo);
484
485                 spin_unlock(&glob->lru_lock);
486                 ttm_bo_cleanup_memtype_use(bo);
487
488                 while (put_count--)
489                         kref_put(&bo->list_kref, ttm_bo_ref_bug);
490
491                 return;
492         } else {
493                 spin_lock(&glob->lru_lock);
494         }
495 queue:
496         driver = bdev->driver;
497         if (bo->sync_obj)
498                 sync_obj = driver->sync_obj_ref(bo->sync_obj);
499         sync_obj_arg = bo->sync_obj_arg;
500
501         kref_get(&bo->list_kref);
502         list_add_tail(&bo->ddestroy, &bdev->ddestroy);
503         spin_unlock(&glob->lru_lock);
504         spin_unlock(&bo->lock);
505
506         if (sync_obj) {
507                 driver->sync_obj_flush(sync_obj, sync_obj_arg);
508                 driver->sync_obj_unref(&sync_obj);
509         }
510         schedule_delayed_work(&bdev->wq,
511                               ((HZ / 100) < 1) ? 1 : HZ / 100);
512 }
513
514 /**
515  * function ttm_bo_cleanup_refs
516  * If bo idle, remove from delayed- and lru lists, and unref.
517  * If not idle, do nothing.
518  *
519  * @interruptible         Any sleeps should occur interruptibly.
520  * @no_wait_reserve       Never wait for reserve. Return -EBUSY instead.
521  * @no_wait_gpu           Never wait for gpu. Return -EBUSY instead.
522  */
523
524 static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo,
525                                bool interruptible,
526                                bool no_wait_reserve,
527                                bool no_wait_gpu)
528 {
529         struct ttm_bo_global *glob = bo->glob;
530         int put_count;
531         int ret = 0;
532
533 retry:
534         spin_lock(&bo->lock);
535         ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
536         spin_unlock(&bo->lock);
537
538         if (unlikely(ret != 0))
539                 return ret;
540
541         spin_lock(&glob->lru_lock);
542         ret = ttm_bo_reserve_locked(bo, interruptible,
543                                     no_wait_reserve, false, 0);
544
545         if (unlikely(ret != 0) || list_empty(&bo->ddestroy)) {
546                 spin_unlock(&glob->lru_lock);
547                 return ret;
548         }
549
550         /**
551          * We can re-check for sync object without taking
552          * the bo::lock since setting the sync object requires
553          * also bo::reserved. A busy object at this point may
554          * be caused by another thread recently starting an accelerated
555          * eviction.
556          */
557
558         if (unlikely(bo->sync_obj)) {
559                 atomic_set(&bo->reserved, 0);
560                 wake_up_all(&bo->event_queue);
561                 spin_unlock(&glob->lru_lock);
562                 goto retry;
563         }
564
565         put_count = ttm_bo_del_from_lru(bo);
566         list_del_init(&bo->ddestroy);
567         ++put_count;
568
569         spin_unlock(&glob->lru_lock);
570         ttm_bo_cleanup_memtype_use(bo);
571
572         while (put_count--)
573                 kref_put(&bo->list_kref, ttm_bo_ref_bug);
574
575         return 0;
576 }
577
578 /**
579  * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
580  * encountered buffers.
581  */
582
583 static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
584 {
585         struct ttm_bo_global *glob = bdev->glob;
586         struct ttm_buffer_object *entry = NULL;
587         int ret = 0;
588
589         spin_lock(&glob->lru_lock);
590         if (list_empty(&bdev->ddestroy))
591                 goto out_unlock;
592
593         entry = list_first_entry(&bdev->ddestroy,
594                 struct ttm_buffer_object, ddestroy);
595         kref_get(&entry->list_kref);
596
597         for (;;) {
598                 struct ttm_buffer_object *nentry = NULL;
599
600                 if (entry->ddestroy.next != &bdev->ddestroy) {
601                         nentry = list_first_entry(&entry->ddestroy,
602                                 struct ttm_buffer_object, ddestroy);
603                         kref_get(&nentry->list_kref);
604                 }
605
606                 spin_unlock(&glob->lru_lock);
607                 ret = ttm_bo_cleanup_refs(entry, false, !remove_all,
608                                           !remove_all);
609                 kref_put(&entry->list_kref, ttm_bo_release_list);
610                 entry = nentry;
611
612                 if (ret || !entry)
613                         goto out;
614
615                 spin_lock(&glob->lru_lock);
616                 if (list_empty(&entry->ddestroy))
617                         break;
618         }
619
620 out_unlock:
621         spin_unlock(&glob->lru_lock);
622 out:
623         if (entry)
624                 kref_put(&entry->list_kref, ttm_bo_release_list);
625         return ret;
626 }
627
628 static void ttm_bo_delayed_workqueue(struct work_struct *work)
629 {
630         struct ttm_bo_device *bdev =
631             container_of(work, struct ttm_bo_device, wq.work);
632
633         if (ttm_bo_delayed_delete(bdev, false)) {
634                 schedule_delayed_work(&bdev->wq,
635                                       ((HZ / 100) < 1) ? 1 : HZ / 100);
636         }
637 }
638
639 static void ttm_bo_release(struct kref *kref)
640 {
641         struct ttm_buffer_object *bo =
642             container_of(kref, struct ttm_buffer_object, kref);
643         struct ttm_bo_device *bdev = bo->bdev;
644
645         if (likely(bo->vm_node != NULL)) {
646                 rb_erase(&bo->vm_rb, &bdev->addr_space_rb);
647                 drm_mm_put_block(bo->vm_node);
648                 bo->vm_node = NULL;
649         }
650         write_unlock(&bdev->vm_lock);
651         ttm_bo_cleanup_refs_or_queue(bo);
652         kref_put(&bo->list_kref, ttm_bo_release_list);
653         write_lock(&bdev->vm_lock);
654 }
655
656 void ttm_bo_unref(struct ttm_buffer_object **p_bo)
657 {
658         struct ttm_buffer_object *bo = *p_bo;
659         struct ttm_bo_device *bdev = bo->bdev;
660
661         *p_bo = NULL;
662         write_lock(&bdev->vm_lock);
663         kref_put(&bo->kref, ttm_bo_release);
664         write_unlock(&bdev->vm_lock);
665 }
666 EXPORT_SYMBOL(ttm_bo_unref);
667
668 int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
669 {
670         return cancel_delayed_work_sync(&bdev->wq);
671 }
672 EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
673
674 void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
675 {
676         if (resched)
677                 schedule_delayed_work(&bdev->wq,
678                                       ((HZ / 100) < 1) ? 1 : HZ / 100);
679 }
680 EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
681
682 static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
683                         bool no_wait_reserve, bool no_wait_gpu)
684 {
685         struct ttm_bo_device *bdev = bo->bdev;
686         struct ttm_mem_reg evict_mem;
687         struct ttm_placement placement;
688         int ret = 0;
689
690         spin_lock(&bo->lock);
691         ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
692         spin_unlock(&bo->lock);
693
694         if (unlikely(ret != 0)) {
695                 if (ret != -ERESTARTSYS) {
696                         printk(KERN_ERR TTM_PFX
697                                "Failed to expire sync object before "
698                                "buffer eviction.\n");
699                 }
700                 goto out;
701         }
702
703         BUG_ON(!atomic_read(&bo->reserved));
704
705         evict_mem = bo->mem;
706         evict_mem.mm_node = NULL;
707         evict_mem.bus.io_reserved = false;
708
709         placement.fpfn = 0;
710         placement.lpfn = 0;
711         placement.num_placement = 0;
712         placement.num_busy_placement = 0;
713         bdev->driver->evict_flags(bo, &placement);
714         ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
715                                 no_wait_reserve, no_wait_gpu);
716         if (ret) {
717                 if (ret != -ERESTARTSYS) {
718                         printk(KERN_ERR TTM_PFX
719                                "Failed to find memory space for "
720                                "buffer 0x%p eviction.\n", bo);
721                         ttm_bo_mem_space_debug(bo, &placement);
722                 }
723                 goto out;
724         }
725
726         ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
727                                      no_wait_reserve, no_wait_gpu);
728         if (ret) {
729                 if (ret != -ERESTARTSYS)
730                         printk(KERN_ERR TTM_PFX "Buffer eviction failed\n");
731                 ttm_bo_mem_put(bo, &evict_mem);
732                 goto out;
733         }
734         bo->evicted = true;
735 out:
736         return ret;
737 }
738
739 static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
740                                 uint32_t mem_type,
741                                 bool interruptible, bool no_wait_reserve,
742                                 bool no_wait_gpu)
743 {
744         struct ttm_bo_global *glob = bdev->glob;
745         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
746         struct ttm_buffer_object *bo;
747         int ret, put_count = 0;
748
749 retry:
750         spin_lock(&glob->lru_lock);
751         if (list_empty(&man->lru)) {
752                 spin_unlock(&glob->lru_lock);
753                 return -EBUSY;
754         }
755
756         bo = list_first_entry(&man->lru, struct ttm_buffer_object, lru);
757         kref_get(&bo->list_kref);
758
759         if (!list_empty(&bo->ddestroy)) {
760                 spin_unlock(&glob->lru_lock);
761                 ret = ttm_bo_cleanup_refs(bo, interruptible,
762                                           no_wait_reserve, no_wait_gpu);
763                 kref_put(&bo->list_kref, ttm_bo_release_list);
764
765                 if (likely(ret == 0 || ret == -ERESTARTSYS))
766                         return ret;
767
768                 goto retry;
769         }
770
771         ret = ttm_bo_reserve_locked(bo, false, no_wait_reserve, false, 0);
772
773         if (unlikely(ret == -EBUSY)) {
774                 spin_unlock(&glob->lru_lock);
775                 if (likely(!no_wait_gpu))
776                         ret = ttm_bo_wait_unreserved(bo, interruptible);
777
778                 kref_put(&bo->list_kref, ttm_bo_release_list);
779
780                 /**
781                  * We *need* to retry after releasing the lru lock.
782                  */
783
784                 if (unlikely(ret != 0))
785                         return ret;
786                 goto retry;
787         }
788
789         put_count = ttm_bo_del_from_lru(bo);
790         spin_unlock(&glob->lru_lock);
791
792         BUG_ON(ret != 0);
793
794         while (put_count--)
795                 kref_put(&bo->list_kref, ttm_bo_ref_bug);
796
797         ret = ttm_bo_evict(bo, interruptible, no_wait_reserve, no_wait_gpu);
798         ttm_bo_unreserve(bo);
799
800         kref_put(&bo->list_kref, ttm_bo_release_list);
801         return ret;
802 }
803
804 void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
805 {
806         struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
807
808         if (mem->mm_node)
809                 (*man->func->put_node)(man, mem);
810 }
811 EXPORT_SYMBOL(ttm_bo_mem_put);
812
813 /**
814  * Repeatedly evict memory from the LRU for @mem_type until we create enough
815  * space, or we've evicted everything and there isn't enough space.
816  */
817 static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
818                                         uint32_t mem_type,
819                                         struct ttm_placement *placement,
820                                         struct ttm_mem_reg *mem,
821                                         bool interruptible,
822                                         bool no_wait_reserve,
823                                         bool no_wait_gpu)
824 {
825         struct ttm_bo_device *bdev = bo->bdev;
826         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
827         int ret;
828
829         do {
830                 ret = (*man->func->get_node)(man, bo, placement, mem);
831                 if (unlikely(ret != 0))
832                         return ret;
833                 if (mem->mm_node)
834                         break;
835                 ret = ttm_mem_evict_first(bdev, mem_type, interruptible,
836                                                 no_wait_reserve, no_wait_gpu);
837                 if (unlikely(ret != 0))
838                         return ret;
839         } while (1);
840         if (mem->mm_node == NULL)
841                 return -ENOMEM;
842         mem->mem_type = mem_type;
843         return 0;
844 }
845
846 static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
847                                       uint32_t cur_placement,
848                                       uint32_t proposed_placement)
849 {
850         uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
851         uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
852
853         /**
854          * Keep current caching if possible.
855          */
856
857         if ((cur_placement & caching) != 0)
858                 result |= (cur_placement & caching);
859         else if ((man->default_caching & caching) != 0)
860                 result |= man->default_caching;
861         else if ((TTM_PL_FLAG_CACHED & caching) != 0)
862                 result |= TTM_PL_FLAG_CACHED;
863         else if ((TTM_PL_FLAG_WC & caching) != 0)
864                 result |= TTM_PL_FLAG_WC;
865         else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
866                 result |= TTM_PL_FLAG_UNCACHED;
867
868         return result;
869 }
870
871 static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
872                                  bool disallow_fixed,
873                                  uint32_t mem_type,
874                                  uint32_t proposed_placement,
875                                  uint32_t *masked_placement)
876 {
877         uint32_t cur_flags = ttm_bo_type_flags(mem_type);
878
879         if ((man->flags & TTM_MEMTYPE_FLAG_FIXED) && disallow_fixed)
880                 return false;
881
882         if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0)
883                 return false;
884
885         if ((proposed_placement & man->available_caching) == 0)
886                 return false;
887
888         cur_flags |= (proposed_placement & man->available_caching);
889
890         *masked_placement = cur_flags;
891         return true;
892 }
893
894 /**
895  * Creates space for memory region @mem according to its type.
896  *
897  * This function first searches for free space in compatible memory types in
898  * the priority order defined by the driver.  If free space isn't found, then
899  * ttm_bo_mem_force_space is attempted in priority order to evict and find
900  * space.
901  */
902 int ttm_bo_mem_space(struct ttm_buffer_object *bo,
903                         struct ttm_placement *placement,
904                         struct ttm_mem_reg *mem,
905                         bool interruptible, bool no_wait_reserve,
906                         bool no_wait_gpu)
907 {
908         struct ttm_bo_device *bdev = bo->bdev;
909         struct ttm_mem_type_manager *man;
910         uint32_t mem_type = TTM_PL_SYSTEM;
911         uint32_t cur_flags = 0;
912         bool type_found = false;
913         bool type_ok = false;
914         bool has_erestartsys = false;
915         int i, ret;
916
917         mem->mm_node = NULL;
918         for (i = 0; i < placement->num_placement; ++i) {
919                 ret = ttm_mem_type_from_flags(placement->placement[i],
920                                                 &mem_type);
921                 if (ret)
922                         return ret;
923                 man = &bdev->man[mem_type];
924
925                 type_ok = ttm_bo_mt_compatible(man,
926                                                 bo->type == ttm_bo_type_user,
927                                                 mem_type,
928                                                 placement->placement[i],
929                                                 &cur_flags);
930
931                 if (!type_ok)
932                         continue;
933
934                 cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
935                                                   cur_flags);
936                 /*
937                  * Use the access and other non-mapping-related flag bits from
938                  * the memory placement flags to the current flags
939                  */
940                 ttm_flag_masked(&cur_flags, placement->placement[i],
941                                 ~TTM_PL_MASK_MEMTYPE);
942
943                 if (mem_type == TTM_PL_SYSTEM)
944                         break;
945
946                 if (man->has_type && man->use_type) {
947                         type_found = true;
948                         ret = (*man->func->get_node)(man, bo, placement, mem);
949                         if (unlikely(ret))
950                                 return ret;
951                 }
952                 if (mem->mm_node)
953                         break;
954         }
955
956         if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
957                 mem->mem_type = mem_type;
958                 mem->placement = cur_flags;
959                 return 0;
960         }
961
962         if (!type_found)
963                 return -EINVAL;
964
965         for (i = 0; i < placement->num_busy_placement; ++i) {
966                 ret = ttm_mem_type_from_flags(placement->busy_placement[i],
967                                                 &mem_type);
968                 if (ret)
969                         return ret;
970                 man = &bdev->man[mem_type];
971                 if (!man->has_type)
972                         continue;
973                 if (!ttm_bo_mt_compatible(man,
974                                                 bo->type == ttm_bo_type_user,
975                                                 mem_type,
976                                                 placement->busy_placement[i],
977                                                 &cur_flags))
978                         continue;
979
980                 cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
981                                                   cur_flags);
982                 /*
983                  * Use the access and other non-mapping-related flag bits from
984                  * the memory placement flags to the current flags
985                  */
986                 ttm_flag_masked(&cur_flags, placement->busy_placement[i],
987                                 ~TTM_PL_MASK_MEMTYPE);
988
989
990                 if (mem_type == TTM_PL_SYSTEM) {
991                         mem->mem_type = mem_type;
992                         mem->placement = cur_flags;
993                         mem->mm_node = NULL;
994                         return 0;
995                 }
996
997                 ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem,
998                                                 interruptible, no_wait_reserve, no_wait_gpu);
999                 if (ret == 0 && mem->mm_node) {
1000                         mem->placement = cur_flags;
1001                         return 0;
1002                 }
1003                 if (ret == -ERESTARTSYS)
1004                         has_erestartsys = true;
1005         }
1006         ret = (has_erestartsys) ? -ERESTARTSYS : -ENOMEM;
1007         return ret;
1008 }
1009 EXPORT_SYMBOL(ttm_bo_mem_space);
1010
1011 int ttm_bo_wait_cpu(struct ttm_buffer_object *bo, bool no_wait)
1012 {
1013         if ((atomic_read(&bo->cpu_writers) > 0) && no_wait)
1014                 return -EBUSY;
1015
1016         return wait_event_interruptible(bo->event_queue,
1017                                         atomic_read(&bo->cpu_writers) == 0);
1018 }
1019 EXPORT_SYMBOL(ttm_bo_wait_cpu);
1020
1021 int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1022                         struct ttm_placement *placement,
1023                         bool interruptible, bool no_wait_reserve,
1024                         bool no_wait_gpu)
1025 {
1026         int ret = 0;
1027         struct ttm_mem_reg mem;
1028
1029         BUG_ON(!atomic_read(&bo->reserved));
1030
1031         /*
1032          * FIXME: It's possible to pipeline buffer moves.
1033          * Have the driver move function wait for idle when necessary,
1034          * instead of doing it here.
1035          */
1036         spin_lock(&bo->lock);
1037         ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
1038         spin_unlock(&bo->lock);
1039         if (ret)
1040                 return ret;
1041         mem.num_pages = bo->num_pages;
1042         mem.size = mem.num_pages << PAGE_SHIFT;
1043         mem.page_alignment = bo->mem.page_alignment;
1044         mem.bus.io_reserved = false;
1045         /*
1046          * Determine where to move the buffer.
1047          */
1048         ret = ttm_bo_mem_space(bo, placement, &mem, interruptible, no_wait_reserve, no_wait_gpu);
1049         if (ret)
1050                 goto out_unlock;
1051         ret = ttm_bo_handle_move_mem(bo, &mem, false, interruptible, no_wait_reserve, no_wait_gpu);
1052 out_unlock:
1053         if (ret && mem.mm_node)
1054                 ttm_bo_mem_put(bo, &mem);
1055         return ret;
1056 }
1057
1058 static int ttm_bo_mem_compat(struct ttm_placement *placement,
1059                              struct ttm_mem_reg *mem)
1060 {
1061         int i;
1062
1063         if (mem->mm_node && placement->lpfn != 0 &&
1064             (mem->start < placement->fpfn ||
1065              mem->start + mem->num_pages > placement->lpfn))
1066                 return -1;
1067
1068         for (i = 0; i < placement->num_placement; i++) {
1069                 if ((placement->placement[i] & mem->placement &
1070                         TTM_PL_MASK_CACHING) &&
1071                         (placement->placement[i] & mem->placement &
1072                         TTM_PL_MASK_MEM))
1073                         return i;
1074         }
1075         return -1;
1076 }
1077
1078 int ttm_bo_validate(struct ttm_buffer_object *bo,
1079                         struct ttm_placement *placement,
1080                         bool interruptible, bool no_wait_reserve,
1081                         bool no_wait_gpu)
1082 {
1083         int ret;
1084
1085         BUG_ON(!atomic_read(&bo->reserved));
1086         /* Check that range is valid */
1087         if (placement->lpfn || placement->fpfn)
1088                 if (placement->fpfn > placement->lpfn ||
1089                         (placement->lpfn - placement->fpfn) < bo->num_pages)
1090                         return -EINVAL;
1091         /*
1092          * Check whether we need to move buffer.
1093          */
1094         ret = ttm_bo_mem_compat(placement, &bo->mem);
1095         if (ret < 0) {
1096                 ret = ttm_bo_move_buffer(bo, placement, interruptible, no_wait_reserve, no_wait_gpu);
1097                 if (ret)
1098                         return ret;
1099         } else {
1100                 /*
1101                  * Use the access and other non-mapping-related flag bits from
1102                  * the compatible memory placement flags to the active flags
1103                  */
1104                 ttm_flag_masked(&bo->mem.placement, placement->placement[ret],
1105                                 ~TTM_PL_MASK_MEMTYPE);
1106         }
1107         /*
1108          * We might need to add a TTM.
1109          */
1110         if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1111                 ret = ttm_bo_add_ttm(bo, true);
1112                 if (ret)
1113                         return ret;
1114         }
1115         return 0;
1116 }
1117 EXPORT_SYMBOL(ttm_bo_validate);
1118
1119 int ttm_bo_check_placement(struct ttm_buffer_object *bo,
1120                                 struct ttm_placement *placement)
1121 {
1122         BUG_ON((placement->fpfn || placement->lpfn) &&
1123                (bo->mem.num_pages > (placement->lpfn - placement->fpfn)));
1124
1125         return 0;
1126 }
1127
1128 int ttm_bo_init(struct ttm_bo_device *bdev,
1129                 struct ttm_buffer_object *bo,
1130                 unsigned long size,
1131                 enum ttm_bo_type type,
1132                 struct ttm_placement *placement,
1133                 uint32_t page_alignment,
1134                 unsigned long buffer_start,
1135                 bool interruptible,
1136                 struct file *persistant_swap_storage,
1137                 size_t acc_size,
1138                 void (*destroy) (struct ttm_buffer_object *))
1139 {
1140         int ret = 0;
1141         unsigned long num_pages;
1142
1143         size += buffer_start & ~PAGE_MASK;
1144         num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1145         if (num_pages == 0) {
1146                 printk(KERN_ERR TTM_PFX "Illegal buffer object size.\n");
1147                 return -EINVAL;
1148         }
1149         bo->destroy = destroy;
1150
1151         spin_lock_init(&bo->lock);
1152         kref_init(&bo->kref);
1153         kref_init(&bo->list_kref);
1154         atomic_set(&bo->cpu_writers, 0);
1155         atomic_set(&bo->reserved, 1);
1156         init_waitqueue_head(&bo->event_queue);
1157         INIT_LIST_HEAD(&bo->lru);
1158         INIT_LIST_HEAD(&bo->ddestroy);
1159         INIT_LIST_HEAD(&bo->swap);
1160         bo->bdev = bdev;
1161         bo->glob = bdev->glob;
1162         bo->type = type;
1163         bo->num_pages = num_pages;
1164         bo->mem.size = num_pages << PAGE_SHIFT;
1165         bo->mem.mem_type = TTM_PL_SYSTEM;
1166         bo->mem.num_pages = bo->num_pages;
1167         bo->mem.mm_node = NULL;
1168         bo->mem.page_alignment = page_alignment;
1169         bo->mem.bus.io_reserved = false;
1170         bo->buffer_start = buffer_start & PAGE_MASK;
1171         bo->priv_flags = 0;
1172         bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1173         bo->seq_valid = false;
1174         bo->persistant_swap_storage = persistant_swap_storage;
1175         bo->acc_size = acc_size;
1176         atomic_inc(&bo->glob->bo_count);
1177
1178         ret = ttm_bo_check_placement(bo, placement);
1179         if (unlikely(ret != 0))
1180                 goto out_err;
1181
1182         /*
1183          * For ttm_bo_type_device buffers, allocate
1184          * address space from the device.
1185          */
1186         if (bo->type == ttm_bo_type_device) {
1187                 ret = ttm_bo_setup_vm(bo);
1188                 if (ret)
1189                         goto out_err;
1190         }
1191
1192         ret = ttm_bo_validate(bo, placement, interruptible, false, false);
1193         if (ret)
1194                 goto out_err;
1195
1196         ttm_bo_unreserve(bo);
1197         return 0;
1198
1199 out_err:
1200         ttm_bo_unreserve(bo);
1201         ttm_bo_unref(&bo);
1202
1203         return ret;
1204 }
1205 EXPORT_SYMBOL(ttm_bo_init);
1206
1207 static inline size_t ttm_bo_size(struct ttm_bo_global *glob,
1208                                  unsigned long num_pages)
1209 {
1210         size_t page_array_size = (num_pages * sizeof(void *) + PAGE_SIZE - 1) &
1211             PAGE_MASK;
1212
1213         return glob->ttm_bo_size + 2 * page_array_size;
1214 }
1215
1216 int ttm_bo_create(struct ttm_bo_device *bdev,
1217                         unsigned long size,
1218                         enum ttm_bo_type type,
1219                         struct ttm_placement *placement,
1220                         uint32_t page_alignment,
1221                         unsigned long buffer_start,
1222                         bool interruptible,
1223                         struct file *persistant_swap_storage,
1224                         struct ttm_buffer_object **p_bo)
1225 {
1226         struct ttm_buffer_object *bo;
1227         struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1228         int ret;
1229
1230         size_t acc_size =
1231             ttm_bo_size(bdev->glob, (size + PAGE_SIZE - 1) >> PAGE_SHIFT);
1232         ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
1233         if (unlikely(ret != 0))
1234                 return ret;
1235
1236         bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1237
1238         if (unlikely(bo == NULL)) {
1239                 ttm_mem_global_free(mem_glob, acc_size);
1240                 return -ENOMEM;
1241         }
1242
1243         ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1244                                 buffer_start, interruptible,
1245                                 persistant_swap_storage, acc_size, NULL);
1246         if (likely(ret == 0))
1247                 *p_bo = bo;
1248
1249         return ret;
1250 }
1251
1252 static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1253                                         unsigned mem_type, bool allow_errors)
1254 {
1255         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1256         struct ttm_bo_global *glob = bdev->glob;
1257         int ret;
1258
1259         /*
1260          * Can't use standard list traversal since we're unlocking.
1261          */
1262
1263         spin_lock(&glob->lru_lock);
1264         while (!list_empty(&man->lru)) {
1265                 spin_unlock(&glob->lru_lock);
1266                 ret = ttm_mem_evict_first(bdev, mem_type, false, false, false);
1267                 if (ret) {
1268                         if (allow_errors) {
1269                                 return ret;
1270                         } else {
1271                                 printk(KERN_ERR TTM_PFX
1272                                         "Cleanup eviction failed\n");
1273                         }
1274                 }
1275                 spin_lock(&glob->lru_lock);
1276         }
1277         spin_unlock(&glob->lru_lock);
1278         return 0;
1279 }
1280
1281 int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1282 {
1283         struct ttm_mem_type_manager *man;
1284         int ret = -EINVAL;
1285
1286         if (mem_type >= TTM_NUM_MEM_TYPES) {
1287                 printk(KERN_ERR TTM_PFX "Illegal memory type %d\n", mem_type);
1288                 return ret;
1289         }
1290         man = &bdev->man[mem_type];
1291
1292         if (!man->has_type) {
1293                 printk(KERN_ERR TTM_PFX "Trying to take down uninitialized "
1294                        "memory manager type %u\n", mem_type);
1295                 return ret;
1296         }
1297
1298         man->use_type = false;
1299         man->has_type = false;
1300
1301         ret = 0;
1302         if (mem_type > 0) {
1303                 ttm_bo_force_list_clean(bdev, mem_type, false);
1304
1305                 ret = (*man->func->takedown)(man);
1306         }
1307
1308         return ret;
1309 }
1310 EXPORT_SYMBOL(ttm_bo_clean_mm);
1311
1312 int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1313 {
1314         struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1315
1316         if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1317                 printk(KERN_ERR TTM_PFX
1318                        "Illegal memory manager memory type %u.\n",
1319                        mem_type);
1320                 return -EINVAL;
1321         }
1322
1323         if (!man->has_type) {
1324                 printk(KERN_ERR TTM_PFX
1325                        "Memory type %u has not been initialized.\n",
1326                        mem_type);
1327                 return 0;
1328         }
1329
1330         return ttm_bo_force_list_clean(bdev, mem_type, true);
1331 }
1332 EXPORT_SYMBOL(ttm_bo_evict_mm);
1333
1334 int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1335                         unsigned long p_size)
1336 {
1337         int ret = -EINVAL;
1338         struct ttm_mem_type_manager *man;
1339
1340         BUG_ON(type >= TTM_NUM_MEM_TYPES);
1341         man = &bdev->man[type];
1342         BUG_ON(man->has_type);
1343
1344         ret = bdev->driver->init_mem_type(bdev, type, man);
1345         if (ret)
1346                 return ret;
1347         man->bdev = bdev;
1348
1349         ret = 0;
1350         if (type != TTM_PL_SYSTEM) {
1351                 ret = (*man->func->init)(man, p_size);
1352                 if (ret)
1353                         return ret;
1354         }
1355         man->has_type = true;
1356         man->use_type = true;
1357         man->size = p_size;
1358
1359         INIT_LIST_HEAD(&man->lru);
1360
1361         return 0;
1362 }
1363 EXPORT_SYMBOL(ttm_bo_init_mm);
1364
1365 static void ttm_bo_global_kobj_release(struct kobject *kobj)
1366 {
1367         struct ttm_bo_global *glob =
1368                 container_of(kobj, struct ttm_bo_global, kobj);
1369
1370         ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
1371         __free_page(glob->dummy_read_page);
1372         kfree(glob);
1373 }
1374
1375 void ttm_bo_global_release(struct drm_global_reference *ref)
1376 {
1377         struct ttm_bo_global *glob = ref->object;
1378
1379         kobject_del(&glob->kobj);
1380         kobject_put(&glob->kobj);
1381 }
1382 EXPORT_SYMBOL(ttm_bo_global_release);
1383
1384 int ttm_bo_global_init(struct drm_global_reference *ref)
1385 {
1386         struct ttm_bo_global_ref *bo_ref =
1387                 container_of(ref, struct ttm_bo_global_ref, ref);
1388         struct ttm_bo_global *glob = ref->object;
1389         int ret;
1390
1391         mutex_init(&glob->device_list_mutex);
1392         spin_lock_init(&glob->lru_lock);
1393         glob->mem_glob = bo_ref->mem_glob;
1394         glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1395
1396         if (unlikely(glob->dummy_read_page == NULL)) {
1397                 ret = -ENOMEM;
1398                 goto out_no_drp;
1399         }
1400
1401         INIT_LIST_HEAD(&glob->swap_lru);
1402         INIT_LIST_HEAD(&glob->device_list);
1403
1404         ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
1405         ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
1406         if (unlikely(ret != 0)) {
1407                 printk(KERN_ERR TTM_PFX
1408                        "Could not register buffer object swapout.\n");
1409                 goto out_no_shrink;
1410         }
1411
1412         glob->ttm_bo_extra_size =
1413                 ttm_round_pot(sizeof(struct ttm_tt)) +
1414                 ttm_round_pot(sizeof(struct ttm_backend));
1415
1416         glob->ttm_bo_size = glob->ttm_bo_extra_size +
1417                 ttm_round_pot(sizeof(struct ttm_buffer_object));
1418
1419         atomic_set(&glob->bo_count, 0);
1420
1421         ret = kobject_init_and_add(
1422                 &glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1423         if (unlikely(ret != 0))
1424                 kobject_put(&glob->kobj);
1425         return ret;
1426 out_no_shrink:
1427         __free_page(glob->dummy_read_page);
1428 out_no_drp:
1429         kfree(glob);
1430         return ret;
1431 }
1432 EXPORT_SYMBOL(ttm_bo_global_init);
1433
1434
1435 int ttm_bo_device_release(struct ttm_bo_device *bdev)
1436 {
1437         int ret = 0;
1438         unsigned i = TTM_NUM_MEM_TYPES;
1439         struct ttm_mem_type_manager *man;
1440         struct ttm_bo_global *glob = bdev->glob;
1441
1442         while (i--) {
1443                 man = &bdev->man[i];
1444                 if (man->has_type) {
1445                         man->use_type = false;
1446                         if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1447                                 ret = -EBUSY;
1448                                 printk(KERN_ERR TTM_PFX
1449                                        "DRM memory manager type %d "
1450                                        "is not clean.\n", i);
1451                         }
1452                         man->has_type = false;
1453                 }
1454         }
1455
1456         mutex_lock(&glob->device_list_mutex);
1457         list_del(&bdev->device_list);
1458         mutex_unlock(&glob->device_list_mutex);
1459
1460         if (!cancel_delayed_work(&bdev->wq))
1461                 flush_scheduled_work();
1462
1463         while (ttm_bo_delayed_delete(bdev, true))
1464                 ;
1465
1466         spin_lock(&glob->lru_lock);
1467         if (list_empty(&bdev->ddestroy))
1468                 TTM_DEBUG("Delayed destroy list was clean\n");
1469
1470         if (list_empty(&bdev->man[0].lru))
1471                 TTM_DEBUG("Swap list was clean\n");
1472         spin_unlock(&glob->lru_lock);
1473
1474         BUG_ON(!drm_mm_clean(&bdev->addr_space_mm));
1475         write_lock(&bdev->vm_lock);
1476         drm_mm_takedown(&bdev->addr_space_mm);
1477         write_unlock(&bdev->vm_lock);
1478
1479         return ret;
1480 }
1481 EXPORT_SYMBOL(ttm_bo_device_release);
1482
1483 int ttm_bo_device_init(struct ttm_bo_device *bdev,
1484                        struct ttm_bo_global *glob,
1485                        struct ttm_bo_driver *driver,
1486                        uint64_t file_page_offset,
1487                        bool need_dma32)
1488 {
1489         int ret = -EINVAL;
1490
1491         rwlock_init(&bdev->vm_lock);
1492         bdev->driver = driver;
1493
1494         memset(bdev->man, 0, sizeof(bdev->man));
1495
1496         /*
1497          * Initialize the system memory buffer type.
1498          * Other types need to be driver / IOCTL initialized.
1499          */
1500         ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1501         if (unlikely(ret != 0))
1502                 goto out_no_sys;
1503
1504         bdev->addr_space_rb = RB_ROOT;
1505         ret = drm_mm_init(&bdev->addr_space_mm, file_page_offset, 0x10000000);
1506         if (unlikely(ret != 0))
1507                 goto out_no_addr_mm;
1508
1509         INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1510         bdev->nice_mode = true;
1511         INIT_LIST_HEAD(&bdev->ddestroy);
1512         bdev->dev_mapping = NULL;
1513         bdev->glob = glob;
1514         bdev->need_dma32 = need_dma32;
1515
1516         mutex_lock(&glob->device_list_mutex);
1517         list_add_tail(&bdev->device_list, &glob->device_list);
1518         mutex_unlock(&glob->device_list_mutex);
1519
1520         return 0;
1521 out_no_addr_mm:
1522         ttm_bo_clean_mm(bdev, 0);
1523 out_no_sys:
1524         return ret;
1525 }
1526 EXPORT_SYMBOL(ttm_bo_device_init);
1527
1528 /*
1529  * buffer object vm functions.
1530  */
1531
1532 bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1533 {
1534         struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1535
1536         if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1537                 if (mem->mem_type == TTM_PL_SYSTEM)
1538                         return false;
1539
1540                 if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1541                         return false;
1542
1543                 if (mem->placement & TTM_PL_FLAG_CACHED)
1544                         return false;
1545         }
1546         return true;
1547 }
1548
1549 void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1550 {
1551         struct ttm_bo_device *bdev = bo->bdev;
1552         loff_t offset = (loff_t) bo->addr_space_offset;
1553         loff_t holelen = ((loff_t) bo->mem.num_pages) << PAGE_SHIFT;
1554
1555         if (!bdev->dev_mapping)
1556                 return;
1557         unmap_mapping_range(bdev->dev_mapping, offset, holelen, 1);
1558         ttm_mem_io_free(bdev, &bo->mem);
1559 }
1560 EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1561
1562 static void ttm_bo_vm_insert_rb(struct ttm_buffer_object *bo)
1563 {
1564         struct ttm_bo_device *bdev = bo->bdev;
1565         struct rb_node **cur = &bdev->addr_space_rb.rb_node;
1566         struct rb_node *parent = NULL;
1567         struct ttm_buffer_object *cur_bo;
1568         unsigned long offset = bo->vm_node->start;
1569         unsigned long cur_offset;
1570
1571         while (*cur) {
1572                 parent = *cur;
1573                 cur_bo = rb_entry(parent, struct ttm_buffer_object, vm_rb);
1574                 cur_offset = cur_bo->vm_node->start;
1575                 if (offset < cur_offset)
1576                         cur = &parent->rb_left;
1577                 else if (offset > cur_offset)
1578                         cur = &parent->rb_right;
1579                 else
1580                         BUG();
1581         }
1582
1583         rb_link_node(&bo->vm_rb, parent, cur);
1584         rb_insert_color(&bo->vm_rb, &bdev->addr_space_rb);
1585 }
1586
1587 /**
1588  * ttm_bo_setup_vm:
1589  *
1590  * @bo: the buffer to allocate address space for
1591  *
1592  * Allocate address space in the drm device so that applications
1593  * can mmap the buffer and access the contents. This only
1594  * applies to ttm_bo_type_device objects as others are not
1595  * placed in the drm device address space.
1596  */
1597
1598 static int ttm_bo_setup_vm(struct ttm_buffer_object *bo)
1599 {
1600         struct ttm_bo_device *bdev = bo->bdev;
1601         int ret;
1602
1603 retry_pre_get:
1604         ret = drm_mm_pre_get(&bdev->addr_space_mm);
1605         if (unlikely(ret != 0))
1606                 return ret;
1607
1608         write_lock(&bdev->vm_lock);
1609         bo->vm_node = drm_mm_search_free(&bdev->addr_space_mm,
1610                                          bo->mem.num_pages, 0, 0);
1611
1612         if (unlikely(bo->vm_node == NULL)) {
1613                 ret = -ENOMEM;
1614                 goto out_unlock;
1615         }
1616
1617         bo->vm_node = drm_mm_get_block_atomic(bo->vm_node,
1618                                               bo->mem.num_pages, 0);
1619
1620         if (unlikely(bo->vm_node == NULL)) {
1621                 write_unlock(&bdev->vm_lock);
1622                 goto retry_pre_get;
1623         }
1624
1625         ttm_bo_vm_insert_rb(bo);
1626         write_unlock(&bdev->vm_lock);
1627         bo->addr_space_offset = ((uint64_t) bo->vm_node->start) << PAGE_SHIFT;
1628
1629         return 0;
1630 out_unlock:
1631         write_unlock(&bdev->vm_lock);
1632         return ret;
1633 }
1634
1635 int ttm_bo_wait(struct ttm_buffer_object *bo,
1636                 bool lazy, bool interruptible, bool no_wait)
1637 {
1638         struct ttm_bo_driver *driver = bo->bdev->driver;
1639         void *sync_obj;
1640         void *sync_obj_arg;
1641         int ret = 0;
1642
1643         if (likely(bo->sync_obj == NULL))
1644                 return 0;
1645
1646         while (bo->sync_obj) {
1647
1648                 if (driver->sync_obj_signaled(bo->sync_obj, bo->sync_obj_arg)) {
1649                         void *tmp_obj = bo->sync_obj;
1650                         bo->sync_obj = NULL;
1651                         clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
1652                         spin_unlock(&bo->lock);
1653                         driver->sync_obj_unref(&tmp_obj);
1654                         spin_lock(&bo->lock);
1655                         continue;
1656                 }
1657
1658                 if (no_wait)
1659                         return -EBUSY;
1660
1661                 sync_obj = driver->sync_obj_ref(bo->sync_obj);
1662                 sync_obj_arg = bo->sync_obj_arg;
1663                 spin_unlock(&bo->lock);
1664                 ret = driver->sync_obj_wait(sync_obj, sync_obj_arg,
1665                                             lazy, interruptible);
1666                 if (unlikely(ret != 0)) {
1667                         driver->sync_obj_unref(&sync_obj);
1668                         spin_lock(&bo->lock);
1669                         return ret;
1670                 }
1671                 spin_lock(&bo->lock);
1672                 if (likely(bo->sync_obj == sync_obj &&
1673                            bo->sync_obj_arg == sync_obj_arg)) {
1674                         void *tmp_obj = bo->sync_obj;
1675                         bo->sync_obj = NULL;
1676                         clear_bit(TTM_BO_PRIV_FLAG_MOVING,
1677                                   &bo->priv_flags);
1678                         spin_unlock(&bo->lock);
1679                         driver->sync_obj_unref(&sync_obj);
1680                         driver->sync_obj_unref(&tmp_obj);
1681                         spin_lock(&bo->lock);
1682                 } else {
1683                         spin_unlock(&bo->lock);
1684                         driver->sync_obj_unref(&sync_obj);
1685                         spin_lock(&bo->lock);
1686                 }
1687         }
1688         return 0;
1689 }
1690 EXPORT_SYMBOL(ttm_bo_wait);
1691
1692 int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1693 {
1694         int ret = 0;
1695
1696         /*
1697          * Using ttm_bo_reserve makes sure the lru lists are updated.
1698          */
1699
1700         ret = ttm_bo_reserve(bo, true, no_wait, false, 0);
1701         if (unlikely(ret != 0))
1702                 return ret;
1703         spin_lock(&bo->lock);
1704         ret = ttm_bo_wait(bo, false, true, no_wait);
1705         spin_unlock(&bo->lock);
1706         if (likely(ret == 0))
1707                 atomic_inc(&bo->cpu_writers);
1708         ttm_bo_unreserve(bo);
1709         return ret;
1710 }
1711 EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
1712
1713 void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1714 {
1715         if (atomic_dec_and_test(&bo->cpu_writers))
1716                 wake_up_all(&bo->event_queue);
1717 }
1718 EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
1719
1720 /**
1721  * A buffer object shrink method that tries to swap out the first
1722  * buffer object on the bo_global::swap_lru list.
1723  */
1724
1725 static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
1726 {
1727         struct ttm_bo_global *glob =
1728             container_of(shrink, struct ttm_bo_global, shrink);
1729         struct ttm_buffer_object *bo;
1730         int ret = -EBUSY;
1731         int put_count;
1732         uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);
1733
1734         spin_lock(&glob->lru_lock);
1735         while (ret == -EBUSY) {
1736                 if (unlikely(list_empty(&glob->swap_lru))) {
1737                         spin_unlock(&glob->lru_lock);
1738                         return -EBUSY;
1739                 }
1740
1741                 bo = list_first_entry(&glob->swap_lru,
1742                                       struct ttm_buffer_object, swap);
1743                 kref_get(&bo->list_kref);
1744
1745                 if (!list_empty(&bo->ddestroy)) {
1746                         spin_unlock(&glob->lru_lock);
1747                         (void) ttm_bo_cleanup_refs(bo, false, false, false);
1748                         kref_put(&bo->list_kref, ttm_bo_release_list);
1749                         continue;
1750                 }
1751
1752                 /**
1753                  * Reserve buffer. Since we unlock while sleeping, we need
1754                  * to re-check that nobody removed us from the swap-list while
1755                  * we slept.
1756                  */
1757
1758                 ret = ttm_bo_reserve_locked(bo, false, true, false, 0);
1759                 if (unlikely(ret == -EBUSY)) {
1760                         spin_unlock(&glob->lru_lock);
1761                         ttm_bo_wait_unreserved(bo, false);
1762                         kref_put(&bo->list_kref, ttm_bo_release_list);
1763                         spin_lock(&glob->lru_lock);
1764                 }
1765         }
1766
1767         BUG_ON(ret != 0);
1768         put_count = ttm_bo_del_from_lru(bo);
1769         spin_unlock(&glob->lru_lock);
1770
1771         while (put_count--)
1772                 kref_put(&bo->list_kref, ttm_bo_ref_bug);
1773
1774         /**
1775          * Wait for GPU, then move to system cached.
1776          */
1777
1778         spin_lock(&bo->lock);
1779         ret = ttm_bo_wait(bo, false, false, false);
1780         spin_unlock(&bo->lock);
1781
1782         if (unlikely(ret != 0))
1783                 goto out;
1784
1785         if ((bo->mem.placement & swap_placement) != swap_placement) {
1786                 struct ttm_mem_reg evict_mem;
1787
1788                 evict_mem = bo->mem;
1789                 evict_mem.mm_node = NULL;
1790                 evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1791                 evict_mem.mem_type = TTM_PL_SYSTEM;
1792
1793                 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
1794                                              false, false, false);
1795                 if (unlikely(ret != 0))
1796                         goto out;
1797         }
1798
1799         ttm_bo_unmap_virtual(bo);
1800
1801         /**
1802          * Swap out. Buffer will be swapped in again as soon as
1803          * anyone tries to access a ttm page.
1804          */
1805
1806         if (bo->bdev->driver->swap_notify)
1807                 bo->bdev->driver->swap_notify(bo);
1808
1809         ret = ttm_tt_swapout(bo->ttm, bo->persistant_swap_storage);
1810 out:
1811
1812         /**
1813          *
1814          * Unreserve without putting on LRU to avoid swapping out an
1815          * already swapped buffer.
1816          */
1817
1818         atomic_set(&bo->reserved, 0);
1819         wake_up_all(&bo->event_queue);
1820         kref_put(&bo->list_kref, ttm_bo_release_list);
1821         return ret;
1822 }
1823
1824 void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1825 {
1826         while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
1827                 ;
1828 }
1829 EXPORT_SYMBOL(ttm_bo_swapout_all);