7259034b33d1d477dc36e10c433420f616f04fed
[pandora-kernel.git] / drivers / gpu / drm / i915 / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/i2c.h>
29 #include <linux/slab.h>
30 #include "drmP.h"
31 #include "drm.h"
32 #include "drm_crtc.h"
33 #include "drm_crtc_helper.h"
34 #include "intel_drv.h"
35 #include "i915_drm.h"
36 #include "i915_drv.h"
37 #include "drm_dp_helper.h"
38
39 #define DP_RECEIVER_CAP_SIZE    0xf
40 #define DP_LINK_STATUS_SIZE     6
41 #define DP_LINK_CHECK_TIMEOUT   (10 * 1000)
42
43 #define DP_LINK_CONFIGURATION_SIZE      9
44
45 struct intel_dp {
46         struct intel_encoder base;
47         uint32_t output_reg;
48         uint32_t DP;
49         uint8_t  link_configuration[DP_LINK_CONFIGURATION_SIZE];
50         bool has_audio;
51         int force_audio;
52         uint32_t color_range;
53         int dpms_mode;
54         uint8_t link_bw;
55         uint8_t lane_count;
56         uint8_t dpcd[DP_RECEIVER_CAP_SIZE];
57         struct i2c_adapter adapter;
58         struct i2c_algo_dp_aux_data algo;
59         bool is_pch_edp;
60         uint8_t train_set[4];
61         uint8_t link_status[DP_LINK_STATUS_SIZE];
62         int panel_power_up_delay;
63         int panel_power_down_delay;
64         int panel_power_cycle_delay;
65         int backlight_on_delay;
66         int backlight_off_delay;
67         struct drm_display_mode *panel_fixed_mode;  /* for eDP */
68         struct delayed_work panel_vdd_work;
69         bool want_panel_vdd;
70         unsigned long panel_off_jiffies;
71 };
72
73 /**
74  * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
75  * @intel_dp: DP struct
76  *
77  * If a CPU or PCH DP output is attached to an eDP panel, this function
78  * will return true, and false otherwise.
79  */
80 static bool is_edp(struct intel_dp *intel_dp)
81 {
82         return intel_dp->base.type == INTEL_OUTPUT_EDP;
83 }
84
85 /**
86  * is_pch_edp - is the port on the PCH and attached to an eDP panel?
87  * @intel_dp: DP struct
88  *
89  * Returns true if the given DP struct corresponds to a PCH DP port attached
90  * to an eDP panel, false otherwise.  Helpful for determining whether we
91  * may need FDI resources for a given DP output or not.
92  */
93 static bool is_pch_edp(struct intel_dp *intel_dp)
94 {
95         return intel_dp->is_pch_edp;
96 }
97
98 /**
99  * is_cpu_edp - is the port on the CPU and attached to an eDP panel?
100  * @intel_dp: DP struct
101  *
102  * Returns true if the given DP struct corresponds to a CPU eDP port.
103  */
104 static bool is_cpu_edp(struct intel_dp *intel_dp)
105 {
106         return is_edp(intel_dp) && !is_pch_edp(intel_dp);
107 }
108
109 static struct intel_dp *enc_to_intel_dp(struct drm_encoder *encoder)
110 {
111         return container_of(encoder, struct intel_dp, base.base);
112 }
113
114 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
115 {
116         return container_of(intel_attached_encoder(connector),
117                             struct intel_dp, base);
118 }
119
120 /**
121  * intel_encoder_is_pch_edp - is the given encoder a PCH attached eDP?
122  * @encoder: DRM encoder
123  *
124  * Return true if @encoder corresponds to a PCH attached eDP panel.  Needed
125  * by intel_display.c.
126  */
127 bool intel_encoder_is_pch_edp(struct drm_encoder *encoder)
128 {
129         struct intel_dp *intel_dp;
130
131         if (!encoder)
132                 return false;
133
134         intel_dp = enc_to_intel_dp(encoder);
135
136         return is_pch_edp(intel_dp);
137 }
138
139 static void intel_dp_start_link_train(struct intel_dp *intel_dp);
140 static void intel_dp_complete_link_train(struct intel_dp *intel_dp);
141 static void intel_dp_link_down(struct intel_dp *intel_dp);
142
143 void
144 intel_edp_link_config(struct intel_encoder *intel_encoder,
145                        int *lane_num, int *link_bw)
146 {
147         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
148
149         *lane_num = intel_dp->lane_count;
150         if (intel_dp->link_bw == DP_LINK_BW_1_62)
151                 *link_bw = 162000;
152         else if (intel_dp->link_bw == DP_LINK_BW_2_7)
153                 *link_bw = 270000;
154 }
155
156 static int
157 intel_dp_max_lane_count(struct intel_dp *intel_dp)
158 {
159         int max_lane_count = 4;
160
161         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
162                 max_lane_count = intel_dp->dpcd[DP_MAX_LANE_COUNT] & 0x1f;
163                 switch (max_lane_count) {
164                 case 1: case 2: case 4:
165                         break;
166                 default:
167                         max_lane_count = 4;
168                 }
169         }
170         return max_lane_count;
171 }
172
173 static int
174 intel_dp_max_link_bw(struct intel_dp *intel_dp)
175 {
176         int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
177
178         switch (max_link_bw) {
179         case DP_LINK_BW_1_62:
180         case DP_LINK_BW_2_7:
181                 break;
182         default:
183                 max_link_bw = DP_LINK_BW_1_62;
184                 break;
185         }
186         return max_link_bw;
187 }
188
189 static int
190 intel_dp_link_clock(uint8_t link_bw)
191 {
192         if (link_bw == DP_LINK_BW_2_7)
193                 return 270000;
194         else
195                 return 162000;
196 }
197
198 /*
199  * The units on the numbers in the next two are... bizarre.  Examples will
200  * make it clearer; this one parallels an example in the eDP spec.
201  *
202  * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
203  *
204  *     270000 * 1 * 8 / 10 == 216000
205  *
206  * The actual data capacity of that configuration is 2.16Gbit/s, so the
207  * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
208  * or equivalently, kilopixels per second - so for 1680x1050R it'd be
209  * 119000.  At 18bpp that's 2142000 kilobits per second.
210  *
211  * Thus the strange-looking division by 10 in intel_dp_link_required, to
212  * get the result in decakilobits instead of kilobits.
213  */
214
215 static int
216 intel_dp_link_required(struct intel_dp *intel_dp, int pixel_clock)
217 {
218         struct drm_crtc *crtc = intel_dp->base.base.crtc;
219         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
220         int bpp = 24;
221
222         if (intel_crtc)
223                 bpp = intel_crtc->bpp;
224
225         return (pixel_clock * bpp + 9) / 10;
226 }
227
228 static int
229 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
230 {
231         return (max_link_clock * max_lanes * 8) / 10;
232 }
233
234 static int
235 intel_dp_mode_valid(struct drm_connector *connector,
236                     struct drm_display_mode *mode)
237 {
238         struct intel_dp *intel_dp = intel_attached_dp(connector);
239         int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_dp));
240         int max_lanes = intel_dp_max_lane_count(intel_dp);
241
242         if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
243                 if (mode->hdisplay > intel_dp->panel_fixed_mode->hdisplay)
244                         return MODE_PANEL;
245
246                 if (mode->vdisplay > intel_dp->panel_fixed_mode->vdisplay)
247                         return MODE_PANEL;
248         }
249
250         if (intel_dp_link_required(intel_dp, mode->clock)
251             > intel_dp_max_data_rate(max_link_clock, max_lanes))
252                 return MODE_CLOCK_HIGH;
253
254         if (mode->clock < 10000)
255                 return MODE_CLOCK_LOW;
256
257         return MODE_OK;
258 }
259
260 static uint32_t
261 pack_aux(uint8_t *src, int src_bytes)
262 {
263         int     i;
264         uint32_t v = 0;
265
266         if (src_bytes > 4)
267                 src_bytes = 4;
268         for (i = 0; i < src_bytes; i++)
269                 v |= ((uint32_t) src[i]) << ((3-i) * 8);
270         return v;
271 }
272
273 static void
274 unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
275 {
276         int i;
277         if (dst_bytes > 4)
278                 dst_bytes = 4;
279         for (i = 0; i < dst_bytes; i++)
280                 dst[i] = src >> ((3-i) * 8);
281 }
282
283 /* hrawclock is 1/4 the FSB frequency */
284 static int
285 intel_hrawclk(struct drm_device *dev)
286 {
287         struct drm_i915_private *dev_priv = dev->dev_private;
288         uint32_t clkcfg;
289
290         clkcfg = I915_READ(CLKCFG);
291         switch (clkcfg & CLKCFG_FSB_MASK) {
292         case CLKCFG_FSB_400:
293                 return 100;
294         case CLKCFG_FSB_533:
295                 return 133;
296         case CLKCFG_FSB_667:
297                 return 166;
298         case CLKCFG_FSB_800:
299                 return 200;
300         case CLKCFG_FSB_1067:
301                 return 266;
302         case CLKCFG_FSB_1333:
303                 return 333;
304         /* these two are just a guess; one of them might be right */
305         case CLKCFG_FSB_1600:
306         case CLKCFG_FSB_1600_ALT:
307                 return 400;
308         default:
309                 return 133;
310         }
311 }
312
313 static bool ironlake_edp_have_panel_power(struct intel_dp *intel_dp)
314 {
315         struct drm_device *dev = intel_dp->base.base.dev;
316         struct drm_i915_private *dev_priv = dev->dev_private;
317
318         return (I915_READ(PCH_PP_STATUS) & PP_ON) != 0;
319 }
320
321 static bool ironlake_edp_have_panel_vdd(struct intel_dp *intel_dp)
322 {
323         struct drm_device *dev = intel_dp->base.base.dev;
324         struct drm_i915_private *dev_priv = dev->dev_private;
325
326         return (I915_READ(PCH_PP_CONTROL) & EDP_FORCE_VDD) != 0;
327 }
328
329 static void
330 intel_dp_check_edp(struct intel_dp *intel_dp)
331 {
332         struct drm_device *dev = intel_dp->base.base.dev;
333         struct drm_i915_private *dev_priv = dev->dev_private;
334
335         if (!is_edp(intel_dp))
336                 return;
337         if (!ironlake_edp_have_panel_power(intel_dp) && !ironlake_edp_have_panel_vdd(intel_dp)) {
338                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
339                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
340                               I915_READ(PCH_PP_STATUS),
341                               I915_READ(PCH_PP_CONTROL));
342         }
343 }
344
345 static int
346 intel_dp_aux_ch(struct intel_dp *intel_dp,
347                 uint8_t *send, int send_bytes,
348                 uint8_t *recv, int recv_size)
349 {
350         uint32_t output_reg = intel_dp->output_reg;
351         struct drm_device *dev = intel_dp->base.base.dev;
352         struct drm_i915_private *dev_priv = dev->dev_private;
353         uint32_t ch_ctl = output_reg + 0x10;
354         uint32_t ch_data = ch_ctl + 4;
355         int i;
356         int recv_bytes;
357         uint32_t status;
358         uint32_t aux_clock_divider;
359         int try, precharge;
360
361         intel_dp_check_edp(intel_dp);
362         /* The clock divider is based off the hrawclk,
363          * and would like to run at 2MHz. So, take the
364          * hrawclk value and divide by 2 and use that
365          *
366          * Note that PCH attached eDP panels should use a 125MHz input
367          * clock divider.
368          */
369         if (is_cpu_edp(intel_dp)) {
370                 if (IS_GEN6(dev))
371                         aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
372                 else
373                         aux_clock_divider = 225; /* eDP input clock at 450Mhz */
374         } else if (HAS_PCH_SPLIT(dev))
375                 aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
376         else
377                 aux_clock_divider = intel_hrawclk(dev) / 2;
378
379         if (IS_GEN6(dev))
380                 precharge = 3;
381         else
382                 precharge = 5;
383
384         /* Try to wait for any previous AUX channel activity */
385         for (try = 0; try < 3; try++) {
386                 status = I915_READ(ch_ctl);
387                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
388                         break;
389                 msleep(1);
390         }
391
392         if (try == 3) {
393                 WARN(1, "dp_aux_ch not started status 0x%08x\n",
394                      I915_READ(ch_ctl));
395                 return -EBUSY;
396         }
397
398         /* Must try at least 3 times according to DP spec */
399         for (try = 0; try < 5; try++) {
400                 /* Load the send data into the aux channel data registers */
401                 for (i = 0; i < send_bytes; i += 4)
402                         I915_WRITE(ch_data + i,
403                                    pack_aux(send + i, send_bytes - i));
404
405                 /* Send the command and wait for it to complete */
406                 I915_WRITE(ch_ctl,
407                            DP_AUX_CH_CTL_SEND_BUSY |
408                            DP_AUX_CH_CTL_TIME_OUT_400us |
409                            (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
410                            (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
411                            (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
412                            DP_AUX_CH_CTL_DONE |
413                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
414                            DP_AUX_CH_CTL_RECEIVE_ERROR);
415                 for (;;) {
416                         status = I915_READ(ch_ctl);
417                         if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
418                                 break;
419                         udelay(100);
420                 }
421
422                 /* Clear done status and any errors */
423                 I915_WRITE(ch_ctl,
424                            status |
425                            DP_AUX_CH_CTL_DONE |
426                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
427                            DP_AUX_CH_CTL_RECEIVE_ERROR);
428                 if (status & DP_AUX_CH_CTL_DONE)
429                         break;
430         }
431
432         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
433                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
434                 return -EBUSY;
435         }
436
437         /* Check for timeout or receive error.
438          * Timeouts occur when the sink is not connected
439          */
440         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
441                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
442                 return -EIO;
443         }
444
445         /* Timeouts occur when the device isn't connected, so they're
446          * "normal" -- don't fill the kernel log with these */
447         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
448                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
449                 return -ETIMEDOUT;
450         }
451
452         /* Unload any bytes sent back from the other side */
453         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
454                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
455         if (recv_bytes > recv_size)
456                 recv_bytes = recv_size;
457
458         for (i = 0; i < recv_bytes; i += 4)
459                 unpack_aux(I915_READ(ch_data + i),
460                            recv + i, recv_bytes - i);
461
462         return recv_bytes;
463 }
464
465 /* Write data to the aux channel in native mode */
466 static int
467 intel_dp_aux_native_write(struct intel_dp *intel_dp,
468                           uint16_t address, uint8_t *send, int send_bytes)
469 {
470         int ret;
471         uint8_t msg[20];
472         int msg_bytes;
473         uint8_t ack;
474
475         intel_dp_check_edp(intel_dp);
476         if (send_bytes > 16)
477                 return -1;
478         msg[0] = AUX_NATIVE_WRITE << 4;
479         msg[1] = address >> 8;
480         msg[2] = address & 0xff;
481         msg[3] = send_bytes - 1;
482         memcpy(&msg[4], send, send_bytes);
483         msg_bytes = send_bytes + 4;
484         for (;;) {
485                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes, &ack, 1);
486                 if (ret < 0)
487                         return ret;
488                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
489                         break;
490                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
491                         udelay(100);
492                 else
493                         return -EIO;
494         }
495         return send_bytes;
496 }
497
498 /* Write a single byte to the aux channel in native mode */
499 static int
500 intel_dp_aux_native_write_1(struct intel_dp *intel_dp,
501                             uint16_t address, uint8_t byte)
502 {
503         return intel_dp_aux_native_write(intel_dp, address, &byte, 1);
504 }
505
506 /* read bytes from a native aux channel */
507 static int
508 intel_dp_aux_native_read(struct intel_dp *intel_dp,
509                          uint16_t address, uint8_t *recv, int recv_bytes)
510 {
511         uint8_t msg[4];
512         int msg_bytes;
513         uint8_t reply[20];
514         int reply_bytes;
515         uint8_t ack;
516         int ret;
517
518         intel_dp_check_edp(intel_dp);
519         msg[0] = AUX_NATIVE_READ << 4;
520         msg[1] = address >> 8;
521         msg[2] = address & 0xff;
522         msg[3] = recv_bytes - 1;
523
524         msg_bytes = 4;
525         reply_bytes = recv_bytes + 1;
526
527         for (;;) {
528                 ret = intel_dp_aux_ch(intel_dp, msg, msg_bytes,
529                                       reply, reply_bytes);
530                 if (ret == 0)
531                         return -EPROTO;
532                 if (ret < 0)
533                         return ret;
534                 ack = reply[0];
535                 if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
536                         memcpy(recv, reply + 1, ret - 1);
537                         return ret - 1;
538                 }
539                 else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
540                         udelay(100);
541                 else
542                         return -EIO;
543         }
544 }
545
546 static int
547 intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
548                     uint8_t write_byte, uint8_t *read_byte)
549 {
550         struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
551         struct intel_dp *intel_dp = container_of(adapter,
552                                                 struct intel_dp,
553                                                 adapter);
554         uint16_t address = algo_data->address;
555         uint8_t msg[5];
556         uint8_t reply[2];
557         unsigned retry;
558         int msg_bytes;
559         int reply_bytes;
560         int ret;
561
562         intel_dp_check_edp(intel_dp);
563         /* Set up the command byte */
564         if (mode & MODE_I2C_READ)
565                 msg[0] = AUX_I2C_READ << 4;
566         else
567                 msg[0] = AUX_I2C_WRITE << 4;
568
569         if (!(mode & MODE_I2C_STOP))
570                 msg[0] |= AUX_I2C_MOT << 4;
571
572         msg[1] = address >> 8;
573         msg[2] = address;
574
575         switch (mode) {
576         case MODE_I2C_WRITE:
577                 msg[3] = 0;
578                 msg[4] = write_byte;
579                 msg_bytes = 5;
580                 reply_bytes = 1;
581                 break;
582         case MODE_I2C_READ:
583                 msg[3] = 0;
584                 msg_bytes = 4;
585                 reply_bytes = 2;
586                 break;
587         default:
588                 msg_bytes = 3;
589                 reply_bytes = 1;
590                 break;
591         }
592
593         for (retry = 0; retry < 5; retry++) {
594                 ret = intel_dp_aux_ch(intel_dp,
595                                       msg, msg_bytes,
596                                       reply, reply_bytes);
597                 if (ret < 0) {
598                         DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
599                         return ret;
600                 }
601
602                 switch (reply[0] & AUX_NATIVE_REPLY_MASK) {
603                 case AUX_NATIVE_REPLY_ACK:
604                         /* I2C-over-AUX Reply field is only valid
605                          * when paired with AUX ACK.
606                          */
607                         break;
608                 case AUX_NATIVE_REPLY_NACK:
609                         DRM_DEBUG_KMS("aux_ch native nack\n");
610                         return -EREMOTEIO;
611                 case AUX_NATIVE_REPLY_DEFER:
612                         udelay(100);
613                         continue;
614                 default:
615                         DRM_ERROR("aux_ch invalid native reply 0x%02x\n",
616                                   reply[0]);
617                         return -EREMOTEIO;
618                 }
619
620                 switch (reply[0] & AUX_I2C_REPLY_MASK) {
621                 case AUX_I2C_REPLY_ACK:
622                         if (mode == MODE_I2C_READ) {
623                                 *read_byte = reply[1];
624                         }
625                         return reply_bytes - 1;
626                 case AUX_I2C_REPLY_NACK:
627                         DRM_DEBUG_KMS("aux_i2c nack\n");
628                         return -EREMOTEIO;
629                 case AUX_I2C_REPLY_DEFER:
630                         DRM_DEBUG_KMS("aux_i2c defer\n");
631                         udelay(100);
632                         break;
633                 default:
634                         DRM_ERROR("aux_i2c invalid reply 0x%02x\n", reply[0]);
635                         return -EREMOTEIO;
636                 }
637         }
638
639         DRM_ERROR("too many retries, giving up\n");
640         return -EREMOTEIO;
641 }
642
643 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp);
644 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
645
646 static int
647 intel_dp_i2c_init(struct intel_dp *intel_dp,
648                   struct intel_connector *intel_connector, const char *name)
649 {
650         int     ret;
651
652         DRM_DEBUG_KMS("i2c_init %s\n", name);
653         intel_dp->algo.running = false;
654         intel_dp->algo.address = 0;
655         intel_dp->algo.aux_ch = intel_dp_i2c_aux_ch;
656
657         memset(&intel_dp->adapter, '\0', sizeof(intel_dp->adapter));
658         intel_dp->adapter.owner = THIS_MODULE;
659         intel_dp->adapter.class = I2C_CLASS_DDC;
660         strncpy(intel_dp->adapter.name, name, sizeof(intel_dp->adapter.name) - 1);
661         intel_dp->adapter.name[sizeof(intel_dp->adapter.name) - 1] = '\0';
662         intel_dp->adapter.algo_data = &intel_dp->algo;
663         intel_dp->adapter.dev.parent = &intel_connector->base.kdev;
664
665         ironlake_edp_panel_vdd_on(intel_dp);
666         ret = i2c_dp_aux_add_bus(&intel_dp->adapter);
667         ironlake_edp_panel_vdd_off(intel_dp, false);
668         return ret;
669 }
670
671 static bool
672 intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
673                     struct drm_display_mode *adjusted_mode)
674 {
675         struct drm_device *dev = encoder->dev;
676         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
677         int lane_count, clock;
678         int max_lane_count = intel_dp_max_lane_count(intel_dp);
679         int max_clock = intel_dp_max_link_bw(intel_dp) == DP_LINK_BW_2_7 ? 1 : 0;
680         static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
681
682         if (is_edp(intel_dp) && intel_dp->panel_fixed_mode) {
683                 intel_fixed_panel_mode(intel_dp->panel_fixed_mode, adjusted_mode);
684                 intel_pch_panel_fitting(dev, DRM_MODE_SCALE_FULLSCREEN,
685                                         mode, adjusted_mode);
686                 /*
687                  * the mode->clock is used to calculate the Data&Link M/N
688                  * of the pipe. For the eDP the fixed clock should be used.
689                  */
690                 mode->clock = intel_dp->panel_fixed_mode->clock;
691         }
692
693         for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
694                 for (clock = 0; clock <= max_clock; clock++) {
695                         int link_avail = intel_dp_max_data_rate(intel_dp_link_clock(bws[clock]), lane_count);
696
697                         if (intel_dp_link_required(intel_dp, mode->clock)
698                                         <= link_avail) {
699                                 intel_dp->link_bw = bws[clock];
700                                 intel_dp->lane_count = lane_count;
701                                 adjusted_mode->clock = intel_dp_link_clock(intel_dp->link_bw);
702                                 DRM_DEBUG_KMS("Display port link bw %02x lane "
703                                                 "count %d clock %d\n",
704                                        intel_dp->link_bw, intel_dp->lane_count,
705                                        adjusted_mode->clock);
706                                 return true;
707                         }
708                 }
709         }
710
711         return false;
712 }
713
714 struct intel_dp_m_n {
715         uint32_t        tu;
716         uint32_t        gmch_m;
717         uint32_t        gmch_n;
718         uint32_t        link_m;
719         uint32_t        link_n;
720 };
721
722 static void
723 intel_reduce_ratio(uint32_t *num, uint32_t *den)
724 {
725         while (*num > 0xffffff || *den > 0xffffff) {
726                 *num >>= 1;
727                 *den >>= 1;
728         }
729 }
730
731 static void
732 intel_dp_compute_m_n(int bpp,
733                      int nlanes,
734                      int pixel_clock,
735                      int link_clock,
736                      struct intel_dp_m_n *m_n)
737 {
738         m_n->tu = 64;
739         m_n->gmch_m = (pixel_clock * bpp) >> 3;
740         m_n->gmch_n = link_clock * nlanes;
741         intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
742         m_n->link_m = pixel_clock;
743         m_n->link_n = link_clock;
744         intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
745 }
746
747 void
748 intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
749                  struct drm_display_mode *adjusted_mode)
750 {
751         struct drm_device *dev = crtc->dev;
752         struct drm_mode_config *mode_config = &dev->mode_config;
753         struct drm_encoder *encoder;
754         struct drm_i915_private *dev_priv = dev->dev_private;
755         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756         int lane_count = 4;
757         struct intel_dp_m_n m_n;
758         int pipe = intel_crtc->pipe;
759
760         /*
761          * Find the lane count in the intel_encoder private
762          */
763         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
764                 struct intel_dp *intel_dp;
765
766                 if (encoder->crtc != crtc)
767                         continue;
768
769                 intel_dp = enc_to_intel_dp(encoder);
770                 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT) {
771                         lane_count = intel_dp->lane_count;
772                         break;
773                 } else if (is_edp(intel_dp)) {
774                         lane_count = dev_priv->edp.lanes;
775                         break;
776                 }
777         }
778
779         /*
780          * Compute the GMCH and Link ratios. The '3' here is
781          * the number of bytes_per_pixel post-LUT, which we always
782          * set up for 8-bits of R/G/B, or 3 bytes total.
783          */
784         intel_dp_compute_m_n(intel_crtc->bpp, lane_count,
785                              mode->clock, adjusted_mode->clock, &m_n);
786
787         if (HAS_PCH_SPLIT(dev)) {
788                 I915_WRITE(TRANSDATA_M1(pipe),
789                            ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
790                            m_n.gmch_m);
791                 I915_WRITE(TRANSDATA_N1(pipe), m_n.gmch_n);
792                 I915_WRITE(TRANSDPLINK_M1(pipe), m_n.link_m);
793                 I915_WRITE(TRANSDPLINK_N1(pipe), m_n.link_n);
794         } else {
795                 I915_WRITE(PIPE_GMCH_DATA_M(pipe),
796                            ((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
797                            m_n.gmch_m);
798                 I915_WRITE(PIPE_GMCH_DATA_N(pipe), m_n.gmch_n);
799                 I915_WRITE(PIPE_DP_LINK_M(pipe), m_n.link_m);
800                 I915_WRITE(PIPE_DP_LINK_N(pipe), m_n.link_n);
801         }
802 }
803
804 static void ironlake_edp_pll_on(struct drm_encoder *encoder);
805 static void ironlake_edp_pll_off(struct drm_encoder *encoder);
806
807 static void
808 intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
809                   struct drm_display_mode *adjusted_mode)
810 {
811         struct drm_device *dev = encoder->dev;
812         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
813         struct drm_crtc *crtc = intel_dp->base.base.crtc;
814         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
815
816         /* Turn on the eDP PLL if needed */
817         if (is_edp(intel_dp)) {
818                 if (!is_pch_edp(intel_dp))
819                         ironlake_edp_pll_on(encoder);
820                 else
821                         ironlake_edp_pll_off(encoder);
822         }
823
824         intel_dp->DP = DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
825         intel_dp->DP |= intel_dp->color_range;
826
827         if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
828                 intel_dp->DP |= DP_SYNC_HS_HIGH;
829         if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
830                 intel_dp->DP |= DP_SYNC_VS_HIGH;
831
832         if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
833                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
834         else
835                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
836
837         switch (intel_dp->lane_count) {
838         case 1:
839                 intel_dp->DP |= DP_PORT_WIDTH_1;
840                 break;
841         case 2:
842                 intel_dp->DP |= DP_PORT_WIDTH_2;
843                 break;
844         case 4:
845                 intel_dp->DP |= DP_PORT_WIDTH_4;
846                 break;
847         }
848         if (intel_dp->has_audio) {
849                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
850                                  pipe_name(intel_crtc->pipe));
851                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
852                 intel_write_eld(encoder, adjusted_mode);
853         }
854
855         memset(intel_dp->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
856         intel_dp->link_configuration[0] = intel_dp->link_bw;
857         intel_dp->link_configuration[1] = intel_dp->lane_count;
858         intel_dp->link_configuration[8] = DP_SET_ANSI_8B10B;
859
860         /*
861          * Check for DPCD version > 1.1 and enhanced framing support
862          */
863         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
864             (intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_ENHANCED_FRAME_CAP)) {
865                 intel_dp->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
866                 intel_dp->DP |= DP_ENHANCED_FRAMING;
867         }
868
869         /* CPT DP's pipe select is decided in TRANS_DP_CTL */
870         if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
871                 intel_dp->DP |= DP_PIPEB_SELECT;
872
873         if (is_cpu_edp(intel_dp)) {
874                 /* don't miss out required setting for eDP */
875                 intel_dp->DP |= DP_PLL_ENABLE;
876                 if (adjusted_mode->clock < 200000)
877                         intel_dp->DP |= DP_PLL_FREQ_160MHZ;
878                 else
879                         intel_dp->DP |= DP_PLL_FREQ_270MHZ;
880         }
881 }
882
883 static void ironlake_wait_panel_off(struct intel_dp *intel_dp)
884 {
885         unsigned long   off_time;
886         unsigned long   delay;
887
888         DRM_DEBUG_KMS("Wait for panel power off time\n");
889
890         if (ironlake_edp_have_panel_power(intel_dp) ||
891             ironlake_edp_have_panel_vdd(intel_dp))
892         {
893                 DRM_DEBUG_KMS("Panel still on, no delay needed\n");
894                 return;
895         }
896
897         off_time = intel_dp->panel_off_jiffies + msecs_to_jiffies(intel_dp->panel_power_down_delay);
898         if (time_after(jiffies, off_time)) {
899                 DRM_DEBUG_KMS("Time already passed");
900                 return;
901         }
902         delay = jiffies_to_msecs(off_time - jiffies);
903         if (delay > intel_dp->panel_power_down_delay)
904                 delay = intel_dp->panel_power_down_delay;
905         DRM_DEBUG_KMS("Waiting an additional %ld ms\n", delay);
906         msleep(delay);
907 }
908
909 static void ironlake_edp_panel_vdd_on(struct intel_dp *intel_dp)
910 {
911         struct drm_device *dev = intel_dp->base.base.dev;
912         struct drm_i915_private *dev_priv = dev->dev_private;
913         u32 pp;
914
915         if (!is_edp(intel_dp))
916                 return;
917         DRM_DEBUG_KMS("Turn eDP VDD on\n");
918
919         WARN(intel_dp->want_panel_vdd,
920              "eDP VDD already requested on\n");
921
922         intel_dp->want_panel_vdd = true;
923         if (ironlake_edp_have_panel_vdd(intel_dp)) {
924                 DRM_DEBUG_KMS("eDP VDD already on\n");
925                 return;
926         }
927
928         ironlake_wait_panel_off(intel_dp);
929         pp = I915_READ(PCH_PP_CONTROL);
930         pp &= ~PANEL_UNLOCK_MASK;
931         pp |= PANEL_UNLOCK_REGS;
932         pp |= EDP_FORCE_VDD;
933         I915_WRITE(PCH_PP_CONTROL, pp);
934         POSTING_READ(PCH_PP_CONTROL);
935         DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
936                       I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
937
938         /*
939          * If the panel wasn't on, delay before accessing aux channel
940          */
941         if (!ironlake_edp_have_panel_power(intel_dp)) {
942                 DRM_DEBUG_KMS("eDP was not running\n");
943                 msleep(intel_dp->panel_power_up_delay);
944         }
945 }
946
947 static void ironlake_panel_vdd_off_sync(struct intel_dp *intel_dp)
948 {
949         struct drm_device *dev = intel_dp->base.base.dev;
950         struct drm_i915_private *dev_priv = dev->dev_private;
951         u32 pp;
952
953         if (!intel_dp->want_panel_vdd && ironlake_edp_have_panel_vdd(intel_dp)) {
954                 pp = I915_READ(PCH_PP_CONTROL);
955                 pp &= ~PANEL_UNLOCK_MASK;
956                 pp |= PANEL_UNLOCK_REGS;
957                 pp &= ~EDP_FORCE_VDD;
958                 I915_WRITE(PCH_PP_CONTROL, pp);
959                 POSTING_READ(PCH_PP_CONTROL);
960
961                 /* Make sure sequencer is idle before allowing subsequent activity */
962                 DRM_DEBUG_KMS("PCH_PP_STATUS: 0x%08x PCH_PP_CONTROL: 0x%08x\n",
963                               I915_READ(PCH_PP_STATUS), I915_READ(PCH_PP_CONTROL));
964                 intel_dp->panel_off_jiffies = jiffies;
965         }
966 }
967
968 static void ironlake_panel_vdd_work(struct work_struct *__work)
969 {
970         struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
971                                                  struct intel_dp, panel_vdd_work);
972         struct drm_device *dev = intel_dp->base.base.dev;
973
974         mutex_lock(&dev->mode_config.mutex);
975         ironlake_panel_vdd_off_sync(intel_dp);
976         mutex_unlock(&dev->mode_config.mutex);
977 }
978
979 static void ironlake_edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
980 {
981         if (!is_edp(intel_dp))
982                 return;
983
984         DRM_DEBUG_KMS("Turn eDP VDD off %d\n", intel_dp->want_panel_vdd);
985         WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
986         
987         intel_dp->want_panel_vdd = false;
988
989         if (sync) {
990                 ironlake_panel_vdd_off_sync(intel_dp);
991         } else {
992                 /*
993                  * Queue the timer to fire a long
994                  * time from now (relative to the power down delay)
995                  * to keep the panel power up across a sequence of operations
996                  */
997                 schedule_delayed_work(&intel_dp->panel_vdd_work,
998                                       msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
999         }
1000 }
1001
1002 /* Returns true if the panel was already on when called */
1003 static void ironlake_edp_panel_on(struct intel_dp *intel_dp)
1004 {
1005         struct drm_device *dev = intel_dp->base.base.dev;
1006         struct drm_i915_private *dev_priv = dev->dev_private;
1007         u32 pp, idle_on_mask = PP_ON | PP_SEQUENCE_STATE_ON_IDLE;
1008
1009         if (!is_edp(intel_dp))
1010                 return;
1011         if (ironlake_edp_have_panel_power(intel_dp))
1012                 return;
1013
1014         ironlake_wait_panel_off(intel_dp);
1015         pp = I915_READ(PCH_PP_CONTROL);
1016         pp &= ~PANEL_UNLOCK_MASK;
1017         pp |= PANEL_UNLOCK_REGS;
1018
1019         if (IS_GEN5(dev)) {
1020                 /* ILK workaround: disable reset around power sequence */
1021                 pp &= ~PANEL_POWER_RESET;
1022                 I915_WRITE(PCH_PP_CONTROL, pp);
1023                 POSTING_READ(PCH_PP_CONTROL);
1024         }
1025
1026         pp |= POWER_TARGET_ON;
1027         I915_WRITE(PCH_PP_CONTROL, pp);
1028         POSTING_READ(PCH_PP_CONTROL);
1029
1030         if (wait_for((I915_READ(PCH_PP_STATUS) & idle_on_mask) == idle_on_mask,
1031                      5000))
1032                 DRM_ERROR("panel on wait timed out: 0x%08x\n",
1033                           I915_READ(PCH_PP_STATUS));
1034
1035         if (IS_GEN5(dev)) {
1036                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1037                 I915_WRITE(PCH_PP_CONTROL, pp);
1038                 POSTING_READ(PCH_PP_CONTROL);
1039         }
1040 }
1041
1042 static void ironlake_edp_panel_off(struct drm_encoder *encoder)
1043 {
1044         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1045         struct drm_device *dev = encoder->dev;
1046         struct drm_i915_private *dev_priv = dev->dev_private;
1047         u32 pp, idle_off_mask = PP_ON | PP_SEQUENCE_MASK |
1048                 PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK;
1049
1050         if (!is_edp(intel_dp))
1051                 return;
1052         pp = I915_READ(PCH_PP_CONTROL);
1053         pp &= ~PANEL_UNLOCK_MASK;
1054         pp |= PANEL_UNLOCK_REGS;
1055
1056         if (IS_GEN5(dev)) {
1057                 /* ILK workaround: disable reset around power sequence */
1058                 pp &= ~PANEL_POWER_RESET;
1059                 I915_WRITE(PCH_PP_CONTROL, pp);
1060                 POSTING_READ(PCH_PP_CONTROL);
1061         }
1062
1063         intel_dp->panel_off_jiffies = jiffies;
1064
1065         if (IS_GEN5(dev)) {
1066                 pp &= ~POWER_TARGET_ON;
1067                 I915_WRITE(PCH_PP_CONTROL, pp);
1068                 POSTING_READ(PCH_PP_CONTROL);
1069                 pp &= ~POWER_TARGET_ON;
1070                 I915_WRITE(PCH_PP_CONTROL, pp);
1071                 POSTING_READ(PCH_PP_CONTROL);
1072                 msleep(intel_dp->panel_power_cycle_delay);
1073
1074                 if (wait_for((I915_READ(PCH_PP_STATUS) & idle_off_mask) == 0, 5000))
1075                         DRM_ERROR("panel off wait timed out: 0x%08x\n",
1076                                   I915_READ(PCH_PP_STATUS));
1077
1078                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1079                 I915_WRITE(PCH_PP_CONTROL, pp);
1080                 POSTING_READ(PCH_PP_CONTROL);
1081         }
1082 }
1083
1084 static void ironlake_edp_backlight_on(struct intel_dp *intel_dp)
1085 {
1086         struct drm_device *dev = intel_dp->base.base.dev;
1087         struct drm_i915_private *dev_priv = dev->dev_private;
1088         u32 pp;
1089
1090         if (!is_edp(intel_dp))
1091                 return;
1092
1093         DRM_DEBUG_KMS("\n");
1094         /*
1095          * If we enable the backlight right away following a panel power
1096          * on, we may see slight flicker as the panel syncs with the eDP
1097          * link.  So delay a bit to make sure the image is solid before
1098          * allowing it to appear.
1099          */
1100         msleep(intel_dp->backlight_on_delay);
1101         pp = I915_READ(PCH_PP_CONTROL);
1102         pp &= ~PANEL_UNLOCK_MASK;
1103         pp |= PANEL_UNLOCK_REGS;
1104         pp |= EDP_BLC_ENABLE;
1105         I915_WRITE(PCH_PP_CONTROL, pp);
1106         POSTING_READ(PCH_PP_CONTROL);
1107 }
1108
1109 static void ironlake_edp_backlight_off(struct intel_dp *intel_dp)
1110 {
1111         struct drm_device *dev = intel_dp->base.base.dev;
1112         struct drm_i915_private *dev_priv = dev->dev_private;
1113         u32 pp;
1114
1115         if (!is_edp(intel_dp))
1116                 return;
1117
1118         DRM_DEBUG_KMS("\n");
1119         pp = I915_READ(PCH_PP_CONTROL);
1120         pp &= ~PANEL_UNLOCK_MASK;
1121         pp |= PANEL_UNLOCK_REGS;
1122         pp &= ~EDP_BLC_ENABLE;
1123         I915_WRITE(PCH_PP_CONTROL, pp);
1124         POSTING_READ(PCH_PP_CONTROL);
1125         msleep(intel_dp->backlight_off_delay);
1126 }
1127
1128 static void ironlake_edp_pll_on(struct drm_encoder *encoder)
1129 {
1130         struct drm_device *dev = encoder->dev;
1131         struct drm_i915_private *dev_priv = dev->dev_private;
1132         u32 dpa_ctl;
1133
1134         DRM_DEBUG_KMS("\n");
1135         dpa_ctl = I915_READ(DP_A);
1136         dpa_ctl |= DP_PLL_ENABLE;
1137         I915_WRITE(DP_A, dpa_ctl);
1138         POSTING_READ(DP_A);
1139         udelay(200);
1140 }
1141
1142 static void ironlake_edp_pll_off(struct drm_encoder *encoder)
1143 {
1144         struct drm_device *dev = encoder->dev;
1145         struct drm_i915_private *dev_priv = dev->dev_private;
1146         u32 dpa_ctl;
1147
1148         dpa_ctl = I915_READ(DP_A);
1149         dpa_ctl &= ~DP_PLL_ENABLE;
1150         I915_WRITE(DP_A, dpa_ctl);
1151         POSTING_READ(DP_A);
1152         udelay(200);
1153 }
1154
1155 /* If the sink supports it, try to set the power state appropriately */
1156 static void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1157 {
1158         int ret, i;
1159
1160         /* Should have a valid DPCD by this point */
1161         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
1162                 return;
1163
1164         if (mode != DRM_MODE_DPMS_ON) {
1165                 ret = intel_dp_aux_native_write_1(intel_dp, DP_SET_POWER,
1166                                                   DP_SET_POWER_D3);
1167                 if (ret != 1)
1168                         DRM_DEBUG_DRIVER("failed to write sink power state\n");
1169         } else {
1170                 /*
1171                  * When turning on, we need to retry for 1ms to give the sink
1172                  * time to wake up.
1173                  */
1174                 for (i = 0; i < 3; i++) {
1175                         ret = intel_dp_aux_native_write_1(intel_dp,
1176                                                           DP_SET_POWER,
1177                                                           DP_SET_POWER_D0);
1178                         if (ret == 1)
1179                                 break;
1180                         msleep(1);
1181                 }
1182         }
1183 }
1184
1185 static void intel_dp_prepare(struct drm_encoder *encoder)
1186 {
1187         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1188
1189         /* Wake up the sink first */
1190         ironlake_edp_panel_vdd_on(intel_dp);
1191         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1192         ironlake_edp_panel_vdd_off(intel_dp, false);
1193
1194         /* Make sure the panel is off before trying to
1195          * change the mode
1196          */
1197         ironlake_edp_backlight_off(intel_dp);
1198         intel_dp_link_down(intel_dp);
1199         ironlake_edp_panel_off(encoder);
1200 }
1201
1202 static void intel_dp_commit(struct drm_encoder *encoder)
1203 {
1204         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1205         struct drm_device *dev = encoder->dev;
1206         struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1207
1208         ironlake_edp_panel_vdd_on(intel_dp);
1209         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
1210         intel_dp_start_link_train(intel_dp);
1211         ironlake_edp_panel_on(intel_dp);
1212         ironlake_edp_panel_vdd_off(intel_dp, true);
1213
1214         intel_dp_complete_link_train(intel_dp);
1215         ironlake_edp_backlight_on(intel_dp);
1216
1217         intel_dp->dpms_mode = DRM_MODE_DPMS_ON;
1218
1219         if (HAS_PCH_CPT(dev))
1220                 intel_cpt_verify_modeset(dev, intel_crtc->pipe);
1221 }
1222
1223 static void
1224 intel_dp_dpms(struct drm_encoder *encoder, int mode)
1225 {
1226         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1227         struct drm_device *dev = encoder->dev;
1228         struct drm_i915_private *dev_priv = dev->dev_private;
1229         uint32_t dp_reg = I915_READ(intel_dp->output_reg);
1230
1231         if (mode != DRM_MODE_DPMS_ON) {
1232                 ironlake_edp_panel_vdd_on(intel_dp);
1233                 if (is_edp(intel_dp))
1234                         ironlake_edp_backlight_off(intel_dp);
1235                 intel_dp_sink_dpms(intel_dp, mode);
1236                 intel_dp_link_down(intel_dp);
1237                 ironlake_edp_panel_off(encoder);
1238                 if (is_edp(intel_dp) && !is_pch_edp(intel_dp))
1239                         ironlake_edp_pll_off(encoder);
1240                 ironlake_edp_panel_vdd_off(intel_dp, false);
1241         } else {
1242                 ironlake_edp_panel_vdd_on(intel_dp);
1243                 intel_dp_sink_dpms(intel_dp, mode);
1244                 if (!(dp_reg & DP_PORT_EN)) {
1245                         intel_dp_start_link_train(intel_dp);
1246                         ironlake_edp_panel_on(intel_dp);
1247                         ironlake_edp_panel_vdd_off(intel_dp, true);
1248                         intel_dp_complete_link_train(intel_dp);
1249                         ironlake_edp_backlight_on(intel_dp);
1250                 } else
1251                         ironlake_edp_panel_vdd_off(intel_dp, false);
1252                 ironlake_edp_backlight_on(intel_dp);
1253         }
1254         intel_dp->dpms_mode = mode;
1255 }
1256
1257 /*
1258  * Native read with retry for link status and receiver capability reads for
1259  * cases where the sink may still be asleep.
1260  */
1261 static bool
1262 intel_dp_aux_native_read_retry(struct intel_dp *intel_dp, uint16_t address,
1263                                uint8_t *recv, int recv_bytes)
1264 {
1265         int ret, i;
1266
1267         /*
1268          * Sinks are *supposed* to come up within 1ms from an off state,
1269          * but we're also supposed to retry 3 times per the spec.
1270          */
1271         for (i = 0; i < 3; i++) {
1272                 ret = intel_dp_aux_native_read(intel_dp, address, recv,
1273                                                recv_bytes);
1274                 if (ret == recv_bytes)
1275                         return true;
1276                 msleep(1);
1277         }
1278
1279         return false;
1280 }
1281
1282 /*
1283  * Fetch AUX CH registers 0x202 - 0x207 which contain
1284  * link status information
1285  */
1286 static bool
1287 intel_dp_get_link_status(struct intel_dp *intel_dp)
1288 {
1289         return intel_dp_aux_native_read_retry(intel_dp,
1290                                               DP_LANE0_1_STATUS,
1291                                               intel_dp->link_status,
1292                                               DP_LINK_STATUS_SIZE);
1293 }
1294
1295 static uint8_t
1296 intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1297                      int r)
1298 {
1299         return link_status[r - DP_LANE0_1_STATUS];
1300 }
1301
1302 static uint8_t
1303 intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
1304                                  int lane)
1305 {
1306         int         i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1307         int         s = ((lane & 1) ?
1308                          DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
1309                          DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
1310         uint8_t l = intel_dp_link_status(link_status, i);
1311
1312         return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
1313 }
1314
1315 static uint8_t
1316 intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
1317                                       int lane)
1318 {
1319         int         i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
1320         int         s = ((lane & 1) ?
1321                          DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
1322                          DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
1323         uint8_t l = intel_dp_link_status(link_status, i);
1324
1325         return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
1326 }
1327
1328
1329 #if 0
1330 static char     *voltage_names[] = {
1331         "0.4V", "0.6V", "0.8V", "1.2V"
1332 };
1333 static char     *pre_emph_names[] = {
1334         "0dB", "3.5dB", "6dB", "9.5dB"
1335 };
1336 static char     *link_train_names[] = {
1337         "pattern 1", "pattern 2", "idle", "off"
1338 };
1339 #endif
1340
1341 /*
1342  * These are source-specific values; current Intel hardware supports
1343  * a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
1344  */
1345 #define I830_DP_VOLTAGE_MAX         DP_TRAIN_VOLTAGE_SWING_800
1346
1347 static uint8_t
1348 intel_dp_pre_emphasis_max(uint8_t voltage_swing)
1349 {
1350         switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
1351         case DP_TRAIN_VOLTAGE_SWING_400:
1352                 return DP_TRAIN_PRE_EMPHASIS_6;
1353         case DP_TRAIN_VOLTAGE_SWING_600:
1354                 return DP_TRAIN_PRE_EMPHASIS_6;
1355         case DP_TRAIN_VOLTAGE_SWING_800:
1356                 return DP_TRAIN_PRE_EMPHASIS_3_5;
1357         case DP_TRAIN_VOLTAGE_SWING_1200:
1358         default:
1359                 return DP_TRAIN_PRE_EMPHASIS_0;
1360         }
1361 }
1362
1363 static void
1364 intel_get_adjust_train(struct intel_dp *intel_dp)
1365 {
1366         uint8_t v = 0;
1367         uint8_t p = 0;
1368         int lane;
1369
1370         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1371                 uint8_t this_v = intel_get_adjust_request_voltage(intel_dp->link_status, lane);
1372                 uint8_t this_p = intel_get_adjust_request_pre_emphasis(intel_dp->link_status, lane);
1373
1374                 if (this_v > v)
1375                         v = this_v;
1376                 if (this_p > p)
1377                         p = this_p;
1378         }
1379
1380         if (v >= I830_DP_VOLTAGE_MAX)
1381                 v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
1382
1383         if (p >= intel_dp_pre_emphasis_max(v))
1384                 p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
1385
1386         for (lane = 0; lane < 4; lane++)
1387                 intel_dp->train_set[lane] = v | p;
1388 }
1389
1390 static uint32_t
1391 intel_dp_signal_levels(uint8_t train_set, int lane_count)
1392 {
1393         uint32_t        signal_levels = 0;
1394
1395         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
1396         case DP_TRAIN_VOLTAGE_SWING_400:
1397         default:
1398                 signal_levels |= DP_VOLTAGE_0_4;
1399                 break;
1400         case DP_TRAIN_VOLTAGE_SWING_600:
1401                 signal_levels |= DP_VOLTAGE_0_6;
1402                 break;
1403         case DP_TRAIN_VOLTAGE_SWING_800:
1404                 signal_levels |= DP_VOLTAGE_0_8;
1405                 break;
1406         case DP_TRAIN_VOLTAGE_SWING_1200:
1407                 signal_levels |= DP_VOLTAGE_1_2;
1408                 break;
1409         }
1410         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
1411         case DP_TRAIN_PRE_EMPHASIS_0:
1412         default:
1413                 signal_levels |= DP_PRE_EMPHASIS_0;
1414                 break;
1415         case DP_TRAIN_PRE_EMPHASIS_3_5:
1416                 signal_levels |= DP_PRE_EMPHASIS_3_5;
1417                 break;
1418         case DP_TRAIN_PRE_EMPHASIS_6:
1419                 signal_levels |= DP_PRE_EMPHASIS_6;
1420                 break;
1421         case DP_TRAIN_PRE_EMPHASIS_9_5:
1422                 signal_levels |= DP_PRE_EMPHASIS_9_5;
1423                 break;
1424         }
1425         return signal_levels;
1426 }
1427
1428 /* Gen6's DP voltage swing and pre-emphasis control */
1429 static uint32_t
1430 intel_gen6_edp_signal_levels(uint8_t train_set)
1431 {
1432         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
1433                                          DP_TRAIN_PRE_EMPHASIS_MASK);
1434         switch (signal_levels) {
1435         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
1436         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
1437                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1438         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
1439                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
1440         case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
1441         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
1442                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
1443         case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
1444         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
1445                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
1446         case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
1447         case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
1448                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
1449         default:
1450                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
1451                               "0x%x\n", signal_levels);
1452                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
1453         }
1454 }
1455
1456 static uint8_t
1457 intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
1458                       int lane)
1459 {
1460         int i = DP_LANE0_1_STATUS + (lane >> 1);
1461         int s = (lane & 1) * 4;
1462         uint8_t l = intel_dp_link_status(link_status, i);
1463
1464         return (l >> s) & 0xf;
1465 }
1466
1467 /* Check for clock recovery is done on all channels */
1468 static bool
1469 intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
1470 {
1471         int lane;
1472         uint8_t lane_status;
1473
1474         for (lane = 0; lane < lane_count; lane++) {
1475                 lane_status = intel_get_lane_status(link_status, lane);
1476                 if ((lane_status & DP_LANE_CR_DONE) == 0)
1477                         return false;
1478         }
1479         return true;
1480 }
1481
1482 /* Check to see if channel eq is done on all channels */
1483 #define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
1484                          DP_LANE_CHANNEL_EQ_DONE|\
1485                          DP_LANE_SYMBOL_LOCKED)
1486 static bool
1487 intel_channel_eq_ok(struct intel_dp *intel_dp)
1488 {
1489         uint8_t lane_align;
1490         uint8_t lane_status;
1491         int lane;
1492
1493         lane_align = intel_dp_link_status(intel_dp->link_status,
1494                                           DP_LANE_ALIGN_STATUS_UPDATED);
1495         if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
1496                 return false;
1497         for (lane = 0; lane < intel_dp->lane_count; lane++) {
1498                 lane_status = intel_get_lane_status(intel_dp->link_status, lane);
1499                 if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
1500                         return false;
1501         }
1502         return true;
1503 }
1504
1505 static bool
1506 intel_dp_set_link_train(struct intel_dp *intel_dp,
1507                         uint32_t dp_reg_value,
1508                         uint8_t dp_train_pat)
1509 {
1510         struct drm_device *dev = intel_dp->base.base.dev;
1511         struct drm_i915_private *dev_priv = dev->dev_private;
1512         int ret;
1513
1514         I915_WRITE(intel_dp->output_reg, dp_reg_value);
1515         POSTING_READ(intel_dp->output_reg);
1516
1517         intel_dp_aux_native_write_1(intel_dp,
1518                                     DP_TRAINING_PATTERN_SET,
1519                                     dp_train_pat);
1520
1521         ret = intel_dp_aux_native_write(intel_dp,
1522                                         DP_TRAINING_LANE0_SET,
1523                                         intel_dp->train_set, 4);
1524         if (ret != 4)
1525                 return false;
1526
1527         return true;
1528 }
1529
1530 /* Enable corresponding port and start training pattern 1 */
1531 static void
1532 intel_dp_start_link_train(struct intel_dp *intel_dp)
1533 {
1534         struct drm_device *dev = intel_dp->base.base.dev;
1535         struct drm_i915_private *dev_priv = dev->dev_private;
1536         struct intel_crtc *intel_crtc = to_intel_crtc(intel_dp->base.base.crtc);
1537         int i;
1538         uint8_t voltage;
1539         bool clock_recovery = false;
1540         int tries;
1541         u32 reg;
1542         uint32_t DP = intel_dp->DP;
1543
1544         /*
1545          * On CPT we have to enable the port in training pattern 1, which
1546          * will happen below in intel_dp_set_link_train.  Otherwise, enable
1547          * the port and wait for it to become active.
1548          */
1549         if (!HAS_PCH_CPT(dev)) {
1550                 I915_WRITE(intel_dp->output_reg, intel_dp->DP);
1551                 POSTING_READ(intel_dp->output_reg);
1552                 intel_wait_for_vblank(dev, intel_crtc->pipe);
1553         }
1554
1555         /* Write the link configuration data */
1556         intel_dp_aux_native_write(intel_dp, DP_LINK_BW_SET,
1557                                   intel_dp->link_configuration,
1558                                   DP_LINK_CONFIGURATION_SIZE);
1559
1560         DP |= DP_PORT_EN;
1561         if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1562                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1563         else
1564                 DP &= ~DP_LINK_TRAIN_MASK;
1565         memset(intel_dp->train_set, 0, 4);
1566         voltage = 0xff;
1567         tries = 0;
1568         clock_recovery = false;
1569         for (;;) {
1570                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1571                 uint32_t    signal_levels;
1572                 if (IS_GEN6(dev) && is_edp(intel_dp)) {
1573                         signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1574                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1575                 } else {
1576                         signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
1577                         DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1578                 }
1579
1580                 if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1581                         reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
1582                 else
1583                         reg = DP | DP_LINK_TRAIN_PAT_1;
1584
1585                 if (!intel_dp_set_link_train(intel_dp, reg,
1586                                              DP_TRAINING_PATTERN_1 |
1587                                              DP_LINK_SCRAMBLING_DISABLE))
1588                         break;
1589                 /* Set training pattern 1 */
1590
1591                 udelay(100);
1592                 if (!intel_dp_get_link_status(intel_dp))
1593                         break;
1594
1595                 if (intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1596                         clock_recovery = true;
1597                         break;
1598                 }
1599
1600                 /* Check to see if we've tried the max voltage */
1601                 for (i = 0; i < intel_dp->lane_count; i++)
1602                         if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
1603                                 break;
1604                 if (i == intel_dp->lane_count)
1605                         break;
1606
1607                 /* Check to see if we've tried the same voltage 5 times */
1608                 if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
1609                         ++tries;
1610                         if (tries == 5)
1611                                 break;
1612                 } else
1613                         tries = 0;
1614                 voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
1615
1616                 /* Compute new intel_dp->train_set as requested by target */
1617                 intel_get_adjust_train(intel_dp);
1618         }
1619
1620         intel_dp->DP = DP;
1621 }
1622
1623 static void
1624 intel_dp_complete_link_train(struct intel_dp *intel_dp)
1625 {
1626         struct drm_device *dev = intel_dp->base.base.dev;
1627         struct drm_i915_private *dev_priv = dev->dev_private;
1628         bool channel_eq = false;
1629         int tries, cr_tries;
1630         u32 reg;
1631         uint32_t DP = intel_dp->DP;
1632
1633         /* channel equalization */
1634         tries = 0;
1635         cr_tries = 0;
1636         channel_eq = false;
1637         for (;;) {
1638                 /* Use intel_dp->train_set[0] to set the voltage and pre emphasis values */
1639                 uint32_t    signal_levels;
1640
1641                 if (cr_tries > 5) {
1642                         DRM_ERROR("failed to train DP, aborting\n");
1643                         intel_dp_link_down(intel_dp);
1644                         break;
1645                 }
1646
1647                 if (IS_GEN6(dev) && is_edp(intel_dp)) {
1648                         signal_levels = intel_gen6_edp_signal_levels(intel_dp->train_set[0]);
1649                         DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
1650                 } else {
1651                         signal_levels = intel_dp_signal_levels(intel_dp->train_set[0], intel_dp->lane_count);
1652                         DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
1653                 }
1654
1655                 if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1656                         reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
1657                 else
1658                         reg = DP | DP_LINK_TRAIN_PAT_2;
1659
1660                 /* channel eq pattern */
1661                 if (!intel_dp_set_link_train(intel_dp, reg,
1662                                              DP_TRAINING_PATTERN_2 |
1663                                              DP_LINK_SCRAMBLING_DISABLE))
1664                         break;
1665
1666                 udelay(400);
1667                 if (!intel_dp_get_link_status(intel_dp))
1668                         break;
1669
1670                 /* Make sure clock is still ok */
1671                 if (!intel_clock_recovery_ok(intel_dp->link_status, intel_dp->lane_count)) {
1672                         intel_dp_start_link_train(intel_dp);
1673                         cr_tries++;
1674                         continue;
1675                 }
1676
1677                 if (intel_channel_eq_ok(intel_dp)) {
1678                         channel_eq = true;
1679                         break;
1680                 }
1681
1682                 /* Try 5 times, then try clock recovery if that fails */
1683                 if (tries > 5) {
1684                         intel_dp_link_down(intel_dp);
1685                         intel_dp_start_link_train(intel_dp);
1686                         tries = 0;
1687                         cr_tries++;
1688                         continue;
1689                 }
1690
1691                 /* Compute new intel_dp->train_set as requested by target */
1692                 intel_get_adjust_train(intel_dp);
1693                 ++tries;
1694         }
1695
1696         if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp))
1697                 reg = DP | DP_LINK_TRAIN_OFF_CPT;
1698         else
1699                 reg = DP | DP_LINK_TRAIN_OFF;
1700
1701         I915_WRITE(intel_dp->output_reg, reg);
1702         POSTING_READ(intel_dp->output_reg);
1703         intel_dp_aux_native_write_1(intel_dp,
1704                                     DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
1705 }
1706
1707 static void
1708 intel_dp_link_down(struct intel_dp *intel_dp)
1709 {
1710         struct drm_device *dev = intel_dp->base.base.dev;
1711         struct drm_i915_private *dev_priv = dev->dev_private;
1712         uint32_t DP = intel_dp->DP;
1713
1714         if ((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0)
1715                 return;
1716
1717         DRM_DEBUG_KMS("\n");
1718
1719         if (is_edp(intel_dp)) {
1720                 DP &= ~DP_PLL_ENABLE;
1721                 I915_WRITE(intel_dp->output_reg, DP);
1722                 POSTING_READ(intel_dp->output_reg);
1723                 udelay(100);
1724         }
1725
1726         if (HAS_PCH_CPT(dev) && !is_cpu_edp(intel_dp)) {
1727                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
1728                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
1729         } else {
1730                 DP &= ~DP_LINK_TRAIN_MASK;
1731                 I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
1732         }
1733         POSTING_READ(intel_dp->output_reg);
1734
1735         msleep(17);
1736
1737         if (is_edp(intel_dp))
1738                 DP |= DP_LINK_TRAIN_OFF;
1739
1740         if (!HAS_PCH_CPT(dev) &&
1741             I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
1742                 struct drm_crtc *crtc = intel_dp->base.base.crtc;
1743
1744                 /* Hardware workaround: leaving our transcoder select
1745                  * set to transcoder B while it's off will prevent the
1746                  * corresponding HDMI output on transcoder A.
1747                  *
1748                  * Combine this with another hardware workaround:
1749                  * transcoder select bit can only be cleared while the
1750                  * port is enabled.
1751                  */
1752                 DP &= ~DP_PIPEB_SELECT;
1753                 I915_WRITE(intel_dp->output_reg, DP);
1754
1755                 /* Changes to enable or select take place the vblank
1756                  * after being written.
1757                  */
1758                 if (crtc == NULL) {
1759                         /* We can arrive here never having been attached
1760                          * to a CRTC, for instance, due to inheriting
1761                          * random state from the BIOS.
1762                          *
1763                          * If the pipe is not running, play safe and
1764                          * wait for the clocks to stabilise before
1765                          * continuing.
1766                          */
1767                         POSTING_READ(intel_dp->output_reg);
1768                         msleep(50);
1769                 } else
1770                         intel_wait_for_vblank(dev, to_intel_crtc(crtc)->pipe);
1771         }
1772
1773         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
1774         POSTING_READ(intel_dp->output_reg);
1775         msleep(intel_dp->panel_power_down_delay);
1776 }
1777
1778 static bool
1779 intel_dp_get_dpcd(struct intel_dp *intel_dp)
1780 {
1781         if (intel_dp_aux_native_read_retry(intel_dp, 0x000, intel_dp->dpcd,
1782                                            sizeof(intel_dp->dpcd)) &&
1783             (intel_dp->dpcd[DP_DPCD_REV] != 0)) {
1784                 return true;
1785         }
1786
1787         return false;
1788 }
1789
1790 static bool
1791 intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
1792 {
1793         int ret;
1794
1795         ret = intel_dp_aux_native_read_retry(intel_dp,
1796                                              DP_DEVICE_SERVICE_IRQ_VECTOR,
1797                                              sink_irq_vector, 1);
1798         if (!ret)
1799                 return false;
1800
1801         return true;
1802 }
1803
1804 static void
1805 intel_dp_handle_test_request(struct intel_dp *intel_dp)
1806 {
1807         /* NAK by default */
1808         intel_dp_aux_native_write_1(intel_dp, DP_TEST_RESPONSE, DP_TEST_ACK);
1809 }
1810
1811 /*
1812  * According to DP spec
1813  * 5.1.2:
1814  *  1. Read DPCD
1815  *  2. Configure link according to Receiver Capabilities
1816  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
1817  *  4. Check link status on receipt of hot-plug interrupt
1818  */
1819
1820 static void
1821 intel_dp_check_link_status(struct intel_dp *intel_dp)
1822 {
1823         u8 sink_irq_vector;
1824
1825         if (intel_dp->dpms_mode != DRM_MODE_DPMS_ON)
1826                 return;
1827
1828         if (!intel_dp->base.base.crtc)
1829                 return;
1830
1831         /* Try to read receiver status if the link appears to be up */
1832         if (!intel_dp_get_link_status(intel_dp)) {
1833                 intel_dp_link_down(intel_dp);
1834                 return;
1835         }
1836
1837         /* Now read the DPCD to see if it's actually running */
1838         if (!intel_dp_get_dpcd(intel_dp)) {
1839                 intel_dp_link_down(intel_dp);
1840                 return;
1841         }
1842
1843         /* Try to read the source of the interrupt */
1844         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
1845             intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
1846                 /* Clear interrupt source */
1847                 intel_dp_aux_native_write_1(intel_dp,
1848                                             DP_DEVICE_SERVICE_IRQ_VECTOR,
1849                                             sink_irq_vector);
1850
1851                 if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
1852                         intel_dp_handle_test_request(intel_dp);
1853                 if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
1854                         DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
1855         }
1856
1857         if (!intel_channel_eq_ok(intel_dp)) {
1858                 DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
1859                               drm_get_encoder_name(&intel_dp->base.base));
1860                 intel_dp_start_link_train(intel_dp);
1861                 intel_dp_complete_link_train(intel_dp);
1862         }
1863 }
1864
1865 static enum drm_connector_status
1866 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
1867 {
1868         if (intel_dp_get_dpcd(intel_dp))
1869                 return connector_status_connected;
1870         return connector_status_disconnected;
1871 }
1872
1873 static enum drm_connector_status
1874 ironlake_dp_detect(struct intel_dp *intel_dp)
1875 {
1876         enum drm_connector_status status;
1877
1878         /* Can't disconnect eDP, but you can close the lid... */
1879         if (is_edp(intel_dp)) {
1880                 status = intel_panel_detect(intel_dp->base.base.dev);
1881                 if (status == connector_status_unknown)
1882                         status = connector_status_connected;
1883                 return status;
1884         }
1885
1886         return intel_dp_detect_dpcd(intel_dp);
1887 }
1888
1889 static enum drm_connector_status
1890 g4x_dp_detect(struct intel_dp *intel_dp)
1891 {
1892         struct drm_device *dev = intel_dp->base.base.dev;
1893         struct drm_i915_private *dev_priv = dev->dev_private;
1894         uint32_t temp, bit;
1895
1896         switch (intel_dp->output_reg) {
1897         case DP_B:
1898                 bit = DPB_HOTPLUG_INT_STATUS;
1899                 break;
1900         case DP_C:
1901                 bit = DPC_HOTPLUG_INT_STATUS;
1902                 break;
1903         case DP_D:
1904                 bit = DPD_HOTPLUG_INT_STATUS;
1905                 break;
1906         default:
1907                 return connector_status_unknown;
1908         }
1909
1910         temp = I915_READ(PORT_HOTPLUG_STAT);
1911
1912         if ((temp & bit) == 0)
1913                 return connector_status_disconnected;
1914
1915         return intel_dp_detect_dpcd(intel_dp);
1916 }
1917
1918 static struct edid *
1919 intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
1920 {
1921         struct intel_dp *intel_dp = intel_attached_dp(connector);
1922         struct edid     *edid;
1923
1924         ironlake_edp_panel_vdd_on(intel_dp);
1925         edid = drm_get_edid(connector, adapter);
1926         ironlake_edp_panel_vdd_off(intel_dp, false);
1927         return edid;
1928 }
1929
1930 static int
1931 intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
1932 {
1933         struct intel_dp *intel_dp = intel_attached_dp(connector);
1934         int     ret;
1935
1936         ironlake_edp_panel_vdd_on(intel_dp);
1937         ret = intel_ddc_get_modes(connector, adapter);
1938         ironlake_edp_panel_vdd_off(intel_dp, false);
1939         return ret;
1940 }
1941
1942
1943 /**
1944  * Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
1945  *
1946  * \return true if DP port is connected.
1947  * \return false if DP port is disconnected.
1948  */
1949 static enum drm_connector_status
1950 intel_dp_detect(struct drm_connector *connector, bool force)
1951 {
1952         struct intel_dp *intel_dp = intel_attached_dp(connector);
1953         struct drm_device *dev = intel_dp->base.base.dev;
1954         enum drm_connector_status status;
1955         struct edid *edid = NULL;
1956
1957         intel_dp->has_audio = false;
1958
1959         if (HAS_PCH_SPLIT(dev))
1960                 status = ironlake_dp_detect(intel_dp);
1961         else
1962                 status = g4x_dp_detect(intel_dp);
1963
1964         DRM_DEBUG_KMS("DPCD: %02hx%02hx%02hx%02hx%02hx%02hx%02hx%02hx\n",
1965                       intel_dp->dpcd[0], intel_dp->dpcd[1], intel_dp->dpcd[2],
1966                       intel_dp->dpcd[3], intel_dp->dpcd[4], intel_dp->dpcd[5],
1967                       intel_dp->dpcd[6], intel_dp->dpcd[7]);
1968
1969         if (status != connector_status_connected)
1970                 return status;
1971
1972         if (intel_dp->force_audio) {
1973                 intel_dp->has_audio = intel_dp->force_audio > 0;
1974         } else {
1975                 edid = intel_dp_get_edid(connector, &intel_dp->adapter);
1976                 if (edid) {
1977                         intel_dp->has_audio = drm_detect_monitor_audio(edid);
1978                         connector->display_info.raw_edid = NULL;
1979                         kfree(edid);
1980                 }
1981         }
1982
1983         return connector_status_connected;
1984 }
1985
1986 static int intel_dp_get_modes(struct drm_connector *connector)
1987 {
1988         struct intel_dp *intel_dp = intel_attached_dp(connector);
1989         struct drm_device *dev = intel_dp->base.base.dev;
1990         struct drm_i915_private *dev_priv = dev->dev_private;
1991         int ret;
1992
1993         /* We should parse the EDID data and find out if it has an audio sink
1994          */
1995
1996         ret = intel_dp_get_edid_modes(connector, &intel_dp->adapter);
1997         if (ret) {
1998                 if (is_edp(intel_dp) && !intel_dp->panel_fixed_mode) {
1999                         struct drm_display_mode *newmode;
2000                         list_for_each_entry(newmode, &connector->probed_modes,
2001                                             head) {
2002                                 if ((newmode->type & DRM_MODE_TYPE_PREFERRED)) {
2003                                         intel_dp->panel_fixed_mode =
2004                                                 drm_mode_duplicate(dev, newmode);
2005                                         break;
2006                                 }
2007                         }
2008                 }
2009                 return ret;
2010         }
2011
2012         /* if eDP has no EDID, try to use fixed panel mode from VBT */
2013         if (is_edp(intel_dp)) {
2014                 /* initialize panel mode from VBT if available for eDP */
2015                 if (intel_dp->panel_fixed_mode == NULL && dev_priv->lfp_lvds_vbt_mode != NULL) {
2016                         intel_dp->panel_fixed_mode =
2017                                 drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
2018                         if (intel_dp->panel_fixed_mode) {
2019                                 intel_dp->panel_fixed_mode->type |=
2020                                         DRM_MODE_TYPE_PREFERRED;
2021                         }
2022                 }
2023                 if (intel_dp->panel_fixed_mode) {
2024                         struct drm_display_mode *mode;
2025                         mode = drm_mode_duplicate(dev, intel_dp->panel_fixed_mode);
2026                         drm_mode_probed_add(connector, mode);
2027                         return 1;
2028                 }
2029         }
2030         return 0;
2031 }
2032
2033 static bool
2034 intel_dp_detect_audio(struct drm_connector *connector)
2035 {
2036         struct intel_dp *intel_dp = intel_attached_dp(connector);
2037         struct edid *edid;
2038         bool has_audio = false;
2039
2040         edid = intel_dp_get_edid(connector, &intel_dp->adapter);
2041         if (edid) {
2042                 has_audio = drm_detect_monitor_audio(edid);
2043
2044                 connector->display_info.raw_edid = NULL;
2045                 kfree(edid);
2046         }
2047
2048         return has_audio;
2049 }
2050
2051 static int
2052 intel_dp_set_property(struct drm_connector *connector,
2053                       struct drm_property *property,
2054                       uint64_t val)
2055 {
2056         struct drm_i915_private *dev_priv = connector->dev->dev_private;
2057         struct intel_dp *intel_dp = intel_attached_dp(connector);
2058         int ret;
2059
2060         ret = drm_connector_property_set_value(connector, property, val);
2061         if (ret)
2062                 return ret;
2063
2064         if (property == dev_priv->force_audio_property) {
2065                 int i = val;
2066                 bool has_audio;
2067
2068                 if (i == intel_dp->force_audio)
2069                         return 0;
2070
2071                 intel_dp->force_audio = i;
2072
2073                 if (i == 0)
2074                         has_audio = intel_dp_detect_audio(connector);
2075                 else
2076                         has_audio = i > 0;
2077
2078                 if (has_audio == intel_dp->has_audio)
2079                         return 0;
2080
2081                 intel_dp->has_audio = has_audio;
2082                 goto done;
2083         }
2084
2085         if (property == dev_priv->broadcast_rgb_property) {
2086                 if (val == !!intel_dp->color_range)
2087                         return 0;
2088
2089                 intel_dp->color_range = val ? DP_COLOR_RANGE_16_235 : 0;
2090                 goto done;
2091         }
2092
2093         return -EINVAL;
2094
2095 done:
2096         if (intel_dp->base.base.crtc) {
2097                 struct drm_crtc *crtc = intel_dp->base.base.crtc;
2098                 drm_crtc_helper_set_mode(crtc, &crtc->mode,
2099                                          crtc->x, crtc->y,
2100                                          crtc->fb);
2101         }
2102
2103         return 0;
2104 }
2105
2106 static void
2107 intel_dp_destroy(struct drm_connector *connector)
2108 {
2109         struct drm_device *dev = connector->dev;
2110
2111         if (intel_dpd_is_edp(dev))
2112                 intel_panel_destroy_backlight(dev);
2113
2114         drm_sysfs_connector_remove(connector);
2115         drm_connector_cleanup(connector);
2116         kfree(connector);
2117 }
2118
2119 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
2120 {
2121         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2122
2123         i2c_del_adapter(&intel_dp->adapter);
2124         drm_encoder_cleanup(encoder);
2125         if (is_edp(intel_dp)) {
2126                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
2127                 ironlake_panel_vdd_off_sync(intel_dp);
2128         }
2129         kfree(intel_dp);
2130 }
2131
2132 static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
2133         .dpms = intel_dp_dpms,
2134         .mode_fixup = intel_dp_mode_fixup,
2135         .prepare = intel_dp_prepare,
2136         .mode_set = intel_dp_mode_set,
2137         .commit = intel_dp_commit,
2138 };
2139
2140 static const struct drm_connector_funcs intel_dp_connector_funcs = {
2141         .dpms = drm_helper_connector_dpms,
2142         .detect = intel_dp_detect,
2143         .fill_modes = drm_helper_probe_single_connector_modes,
2144         .set_property = intel_dp_set_property,
2145         .destroy = intel_dp_destroy,
2146 };
2147
2148 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
2149         .get_modes = intel_dp_get_modes,
2150         .mode_valid = intel_dp_mode_valid,
2151         .best_encoder = intel_best_encoder,
2152 };
2153
2154 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
2155         .destroy = intel_dp_encoder_destroy,
2156 };
2157
2158 static void
2159 intel_dp_hot_plug(struct intel_encoder *intel_encoder)
2160 {
2161         struct intel_dp *intel_dp = container_of(intel_encoder, struct intel_dp, base);
2162
2163         intel_dp_check_link_status(intel_dp);
2164 }
2165
2166 /* Return which DP Port should be selected for Transcoder DP control */
2167 int
2168 intel_trans_dp_port_sel(struct drm_crtc *crtc)
2169 {
2170         struct drm_device *dev = crtc->dev;
2171         struct drm_mode_config *mode_config = &dev->mode_config;
2172         struct drm_encoder *encoder;
2173
2174         list_for_each_entry(encoder, &mode_config->encoder_list, head) {
2175                 struct intel_dp *intel_dp;
2176
2177                 if (encoder->crtc != crtc)
2178                         continue;
2179
2180                 intel_dp = enc_to_intel_dp(encoder);
2181                 if (intel_dp->base.type == INTEL_OUTPUT_DISPLAYPORT)
2182                         return intel_dp->output_reg;
2183         }
2184
2185         return -1;
2186 }
2187
2188 /* check the VBT to see whether the eDP is on DP-D port */
2189 bool intel_dpd_is_edp(struct drm_device *dev)
2190 {
2191         struct drm_i915_private *dev_priv = dev->dev_private;
2192         struct child_device_config *p_child;
2193         int i;
2194
2195         if (!dev_priv->child_dev_num)
2196                 return false;
2197
2198         for (i = 0; i < dev_priv->child_dev_num; i++) {
2199                 p_child = dev_priv->child_dev + i;
2200
2201                 if (p_child->dvo_port == PORT_IDPD &&
2202                     p_child->device_type == DEVICE_TYPE_eDP)
2203                         return true;
2204         }
2205         return false;
2206 }
2207
2208 static void
2209 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
2210 {
2211         intel_attach_force_audio_property(connector);
2212         intel_attach_broadcast_rgb_property(connector);
2213 }
2214
2215 void
2216 intel_dp_init(struct drm_device *dev, int output_reg)
2217 {
2218         struct drm_i915_private *dev_priv = dev->dev_private;
2219         struct drm_connector *connector;
2220         struct intel_dp *intel_dp;
2221         struct intel_encoder *intel_encoder;
2222         struct intel_connector *intel_connector;
2223         const char *name = NULL;
2224         int type;
2225
2226         intel_dp = kzalloc(sizeof(struct intel_dp), GFP_KERNEL);
2227         if (!intel_dp)
2228                 return;
2229
2230         intel_dp->output_reg = output_reg;
2231         intel_dp->dpms_mode = -1;
2232
2233         intel_connector = kzalloc(sizeof(struct intel_connector), GFP_KERNEL);
2234         if (!intel_connector) {
2235                 kfree(intel_dp);
2236                 return;
2237         }
2238         intel_encoder = &intel_dp->base;
2239
2240         if (HAS_PCH_SPLIT(dev) && output_reg == PCH_DP_D)
2241                 if (intel_dpd_is_edp(dev))
2242                         intel_dp->is_pch_edp = true;
2243
2244         if (output_reg == DP_A || is_pch_edp(intel_dp)) {
2245                 type = DRM_MODE_CONNECTOR_eDP;
2246                 intel_encoder->type = INTEL_OUTPUT_EDP;
2247         } else {
2248                 type = DRM_MODE_CONNECTOR_DisplayPort;
2249                 intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
2250         }
2251
2252         connector = &intel_connector->base;
2253         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
2254         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
2255
2256         connector->polled = DRM_CONNECTOR_POLL_HPD;
2257
2258         if (output_reg == DP_B || output_reg == PCH_DP_B)
2259                 intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
2260         else if (output_reg == DP_C || output_reg == PCH_DP_C)
2261                 intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
2262         else if (output_reg == DP_D || output_reg == PCH_DP_D)
2263                 intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
2264
2265         if (is_edp(intel_dp)) {
2266                 intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
2267                 INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
2268                                   ironlake_panel_vdd_work);
2269         }
2270
2271         intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
2272         connector->interlace_allowed = true;
2273         connector->doublescan_allowed = 0;
2274
2275         drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
2276                          DRM_MODE_ENCODER_TMDS);
2277         drm_encoder_helper_add(&intel_encoder->base, &intel_dp_helper_funcs);
2278
2279         intel_connector_attach_encoder(intel_connector, intel_encoder);
2280         drm_sysfs_connector_add(connector);
2281
2282         /* Set up the DDC bus. */
2283         switch (output_reg) {
2284                 case DP_A:
2285                         name = "DPDDC-A";
2286                         break;
2287                 case DP_B:
2288                 case PCH_DP_B:
2289                         dev_priv->hotplug_supported_mask |=
2290                                 HDMIB_HOTPLUG_INT_STATUS;
2291                         name = "DPDDC-B";
2292                         break;
2293                 case DP_C:
2294                 case PCH_DP_C:
2295                         dev_priv->hotplug_supported_mask |=
2296                                 HDMIC_HOTPLUG_INT_STATUS;
2297                         name = "DPDDC-C";
2298                         break;
2299                 case DP_D:
2300                 case PCH_DP_D:
2301                         dev_priv->hotplug_supported_mask |=
2302                                 HDMID_HOTPLUG_INT_STATUS;
2303                         name = "DPDDC-D";
2304                         break;
2305         }
2306
2307         /* Cache some DPCD data in the eDP case */
2308         if (is_edp(intel_dp)) {
2309                 bool ret;
2310                 struct edp_power_seq    cur, vbt;
2311                 u32 pp_on, pp_off, pp_div;
2312
2313                 pp_on = I915_READ(PCH_PP_ON_DELAYS);
2314                 pp_off = I915_READ(PCH_PP_OFF_DELAYS);
2315                 pp_div = I915_READ(PCH_PP_DIVISOR);
2316
2317                 /* Pull timing values out of registers */
2318                 cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
2319                         PANEL_POWER_UP_DELAY_SHIFT;
2320
2321                 cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
2322                         PANEL_LIGHT_ON_DELAY_SHIFT;
2323                 
2324                 cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
2325                         PANEL_LIGHT_OFF_DELAY_SHIFT;
2326
2327                 cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
2328                         PANEL_POWER_DOWN_DELAY_SHIFT;
2329
2330                 cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
2331                                PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
2332
2333                 DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2334                               cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);
2335
2336                 vbt = dev_priv->edp.pps;
2337
2338                 DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
2339                               vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);
2340
2341 #define get_delay(field)        ((max(cur.field, vbt.field) + 9) / 10)
2342
2343                 intel_dp->panel_power_up_delay = get_delay(t1_t3);
2344                 intel_dp->backlight_on_delay = get_delay(t8);
2345                 intel_dp->backlight_off_delay = get_delay(t9);
2346                 intel_dp->panel_power_down_delay = get_delay(t10);
2347                 intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
2348
2349                 DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
2350                               intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
2351                               intel_dp->panel_power_cycle_delay);
2352
2353                 DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
2354                               intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
2355
2356                 intel_dp->panel_off_jiffies = jiffies - intel_dp->panel_power_down_delay;
2357
2358                 ironlake_edp_panel_vdd_on(intel_dp);
2359                 ret = intel_dp_get_dpcd(intel_dp);
2360                 ironlake_edp_panel_vdd_off(intel_dp, false);
2361                 if (ret) {
2362                         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
2363                                 dev_priv->no_aux_handshake =
2364                                         intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
2365                                         DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
2366                 } else {
2367                         /* if this fails, presume the device is a ghost */
2368                         DRM_INFO("failed to retrieve link info, disabling eDP\n");
2369                         intel_dp_encoder_destroy(&intel_dp->base.base);
2370                         intel_dp_destroy(&intel_connector->base);
2371                         return;
2372                 }
2373         }
2374
2375         intel_dp_i2c_init(intel_dp, intel_connector, name);
2376
2377         intel_encoder->hot_plug = intel_dp_hot_plug;
2378
2379         if (is_edp(intel_dp)) {
2380                 dev_priv->int_edp_connector = connector;
2381                 intel_panel_setup_backlight(dev);
2382         }
2383
2384         intel_dp_add_properties(intel_dp, connector);
2385
2386         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2387          * 0xd.  Failure to do so will result in spurious interrupts being
2388          * generated on the port when a cable is not attached.
2389          */
2390         if (IS_G4X(dev) && !IS_GM45(dev)) {
2391                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
2392                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
2393         }
2394 }