e99ae3bd10645df34d1243dba342aee86b8c6a8e
[pandora-kernel.git] / drivers / gpu / drm / i915 / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include <linux/vgaarb.h>
33 #include "drmP.h"
34 #include "intel_drv.h"
35 #include "i915_drm.h"
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "drm_dp_helper.h"
39
40 #include "drm_crtc_helper.h"
41
42 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
43
44 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
45 static void intel_update_watermarks(struct drm_device *dev);
46 static void intel_increase_pllclock(struct drm_crtc *crtc);
47 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
48
49 typedef struct {
50     /* given values */
51     int n;
52     int m1, m2;
53     int p1, p2;
54     /* derived values */
55     int dot;
56     int vco;
57     int m;
58     int p;
59 } intel_clock_t;
60
61 typedef struct {
62     int min, max;
63 } intel_range_t;
64
65 typedef struct {
66     int dot_limit;
67     int p2_slow, p2_fast;
68 } intel_p2_t;
69
70 #define INTEL_P2_NUM                  2
71 typedef struct intel_limit intel_limit_t;
72 struct intel_limit {
73     intel_range_t   dot, vco, n, m, m1, m2, p, p1;
74     intel_p2_t      p2;
75     bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
76                       int, int, intel_clock_t *);
77 };
78
79 /* FDI */
80 #define IRONLAKE_FDI_FREQ               2700000 /* in kHz for mode->clock */
81
82 static bool
83 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
84                     int target, int refclk, intel_clock_t *best_clock);
85 static bool
86 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
87                         int target, int refclk, intel_clock_t *best_clock);
88
89 static bool
90 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
91                       int target, int refclk, intel_clock_t *best_clock);
92 static bool
93 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
94                            int target, int refclk, intel_clock_t *best_clock);
95
96 static inline u32 /* units of 100MHz */
97 intel_fdi_link_freq(struct drm_device *dev)
98 {
99         if (IS_GEN5(dev)) {
100                 struct drm_i915_private *dev_priv = dev->dev_private;
101                 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
102         } else
103                 return 27;
104 }
105
106 static const intel_limit_t intel_limits_i8xx_dvo = {
107         .dot = { .min = 25000, .max = 350000 },
108         .vco = { .min = 930000, .max = 1400000 },
109         .n = { .min = 3, .max = 16 },
110         .m = { .min = 96, .max = 140 },
111         .m1 = { .min = 18, .max = 26 },
112         .m2 = { .min = 6, .max = 16 },
113         .p = { .min = 4, .max = 128 },
114         .p1 = { .min = 2, .max = 33 },
115         .p2 = { .dot_limit = 165000,
116                 .p2_slow = 4, .p2_fast = 2 },
117         .find_pll = intel_find_best_PLL,
118 };
119
120 static const intel_limit_t intel_limits_i8xx_lvds = {
121         .dot = { .min = 25000, .max = 350000 },
122         .vco = { .min = 930000, .max = 1400000 },
123         .n = { .min = 3, .max = 16 },
124         .m = { .min = 96, .max = 140 },
125         .m1 = { .min = 18, .max = 26 },
126         .m2 = { .min = 6, .max = 16 },
127         .p = { .min = 4, .max = 128 },
128         .p1 = { .min = 1, .max = 6 },
129         .p2 = { .dot_limit = 165000,
130                 .p2_slow = 14, .p2_fast = 7 },
131         .find_pll = intel_find_best_PLL,
132 };
133
134 static const intel_limit_t intel_limits_i9xx_sdvo = {
135         .dot = { .min = 20000, .max = 400000 },
136         .vco = { .min = 1400000, .max = 2800000 },
137         .n = { .min = 1, .max = 6 },
138         .m = { .min = 70, .max = 120 },
139         .m1 = { .min = 10, .max = 22 },
140         .m2 = { .min = 5, .max = 9 },
141         .p = { .min = 5, .max = 80 },
142         .p1 = { .min = 1, .max = 8 },
143         .p2 = { .dot_limit = 200000,
144                 .p2_slow = 10, .p2_fast = 5 },
145         .find_pll = intel_find_best_PLL,
146 };
147
148 static const intel_limit_t intel_limits_i9xx_lvds = {
149         .dot = { .min = 20000, .max = 400000 },
150         .vco = { .min = 1400000, .max = 2800000 },
151         .n = { .min = 1, .max = 6 },
152         .m = { .min = 70, .max = 120 },
153         .m1 = { .min = 10, .max = 22 },
154         .m2 = { .min = 5, .max = 9 },
155         .p = { .min = 7, .max = 98 },
156         .p1 = { .min = 1, .max = 8 },
157         .p2 = { .dot_limit = 112000,
158                 .p2_slow = 14, .p2_fast = 7 },
159         .find_pll = intel_find_best_PLL,
160 };
161
162
163 static const intel_limit_t intel_limits_g4x_sdvo = {
164         .dot = { .min = 25000, .max = 270000 },
165         .vco = { .min = 1750000, .max = 3500000},
166         .n = { .min = 1, .max = 4 },
167         .m = { .min = 104, .max = 138 },
168         .m1 = { .min = 17, .max = 23 },
169         .m2 = { .min = 5, .max = 11 },
170         .p = { .min = 10, .max = 30 },
171         .p1 = { .min = 1, .max = 3},
172         .p2 = { .dot_limit = 270000,
173                 .p2_slow = 10,
174                 .p2_fast = 10
175         },
176         .find_pll = intel_g4x_find_best_PLL,
177 };
178
179 static const intel_limit_t intel_limits_g4x_hdmi = {
180         .dot = { .min = 22000, .max = 400000 },
181         .vco = { .min = 1750000, .max = 3500000},
182         .n = { .min = 1, .max = 4 },
183         .m = { .min = 104, .max = 138 },
184         .m1 = { .min = 16, .max = 23 },
185         .m2 = { .min = 5, .max = 11 },
186         .p = { .min = 5, .max = 80 },
187         .p1 = { .min = 1, .max = 8},
188         .p2 = { .dot_limit = 165000,
189                 .p2_slow = 10, .p2_fast = 5 },
190         .find_pll = intel_g4x_find_best_PLL,
191 };
192
193 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
194         .dot = { .min = 20000, .max = 115000 },
195         .vco = { .min = 1750000, .max = 3500000 },
196         .n = { .min = 1, .max = 3 },
197         .m = { .min = 104, .max = 138 },
198         .m1 = { .min = 17, .max = 23 },
199         .m2 = { .min = 5, .max = 11 },
200         .p = { .min = 28, .max = 112 },
201         .p1 = { .min = 2, .max = 8 },
202         .p2 = { .dot_limit = 0,
203                 .p2_slow = 14, .p2_fast = 14
204         },
205         .find_pll = intel_g4x_find_best_PLL,
206 };
207
208 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
209         .dot = { .min = 80000, .max = 224000 },
210         .vco = { .min = 1750000, .max = 3500000 },
211         .n = { .min = 1, .max = 3 },
212         .m = { .min = 104, .max = 138 },
213         .m1 = { .min = 17, .max = 23 },
214         .m2 = { .min = 5, .max = 11 },
215         .p = { .min = 14, .max = 42 },
216         .p1 = { .min = 2, .max = 6 },
217         .p2 = { .dot_limit = 0,
218                 .p2_slow = 7, .p2_fast = 7
219         },
220         .find_pll = intel_g4x_find_best_PLL,
221 };
222
223 static const intel_limit_t intel_limits_g4x_display_port = {
224         .dot = { .min = 161670, .max = 227000 },
225         .vco = { .min = 1750000, .max = 3500000},
226         .n = { .min = 1, .max = 2 },
227         .m = { .min = 97, .max = 108 },
228         .m1 = { .min = 0x10, .max = 0x12 },
229         .m2 = { .min = 0x05, .max = 0x06 },
230         .p = { .min = 10, .max = 20 },
231         .p1 = { .min = 1, .max = 2},
232         .p2 = { .dot_limit = 0,
233                 .p2_slow = 10, .p2_fast = 10 },
234         .find_pll = intel_find_pll_g4x_dp,
235 };
236
237 static const intel_limit_t intel_limits_pineview_sdvo = {
238         .dot = { .min = 20000, .max = 400000},
239         .vco = { .min = 1700000, .max = 3500000 },
240         /* Pineview's Ncounter is a ring counter */
241         .n = { .min = 3, .max = 6 },
242         .m = { .min = 2, .max = 256 },
243         /* Pineview only has one combined m divider, which we treat as m2. */
244         .m1 = { .min = 0, .max = 0 },
245         .m2 = { .min = 0, .max = 254 },
246         .p = { .min = 5, .max = 80 },
247         .p1 = { .min = 1, .max = 8 },
248         .p2 = { .dot_limit = 200000,
249                 .p2_slow = 10, .p2_fast = 5 },
250         .find_pll = intel_find_best_PLL,
251 };
252
253 static const intel_limit_t intel_limits_pineview_lvds = {
254         .dot = { .min = 20000, .max = 400000 },
255         .vco = { .min = 1700000, .max = 3500000 },
256         .n = { .min = 3, .max = 6 },
257         .m = { .min = 2, .max = 256 },
258         .m1 = { .min = 0, .max = 0 },
259         .m2 = { .min = 0, .max = 254 },
260         .p = { .min = 7, .max = 112 },
261         .p1 = { .min = 1, .max = 8 },
262         .p2 = { .dot_limit = 112000,
263                 .p2_slow = 14, .p2_fast = 14 },
264         .find_pll = intel_find_best_PLL,
265 };
266
267 /* Ironlake / Sandybridge
268  *
269  * We calculate clock using (register_value + 2) for N/M1/M2, so here
270  * the range value for them is (actual_value - 2).
271  */
272 static const intel_limit_t intel_limits_ironlake_dac = {
273         .dot = { .min = 25000, .max = 350000 },
274         .vco = { .min = 1760000, .max = 3510000 },
275         .n = { .min = 1, .max = 5 },
276         .m = { .min = 79, .max = 127 },
277         .m1 = { .min = 12, .max = 22 },
278         .m2 = { .min = 5, .max = 9 },
279         .p = { .min = 5, .max = 80 },
280         .p1 = { .min = 1, .max = 8 },
281         .p2 = { .dot_limit = 225000,
282                 .p2_slow = 10, .p2_fast = 5 },
283         .find_pll = intel_g4x_find_best_PLL,
284 };
285
286 static const intel_limit_t intel_limits_ironlake_single_lvds = {
287         .dot = { .min = 25000, .max = 350000 },
288         .vco = { .min = 1760000, .max = 3510000 },
289         .n = { .min = 1, .max = 3 },
290         .m = { .min = 79, .max = 118 },
291         .m1 = { .min = 12, .max = 22 },
292         .m2 = { .min = 5, .max = 9 },
293         .p = { .min = 28, .max = 112 },
294         .p1 = { .min = 2, .max = 8 },
295         .p2 = { .dot_limit = 225000,
296                 .p2_slow = 14, .p2_fast = 14 },
297         .find_pll = intel_g4x_find_best_PLL,
298 };
299
300 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
301         .dot = { .min = 25000, .max = 350000 },
302         .vco = { .min = 1760000, .max = 3510000 },
303         .n = { .min = 1, .max = 3 },
304         .m = { .min = 79, .max = 127 },
305         .m1 = { .min = 12, .max = 22 },
306         .m2 = { .min = 5, .max = 9 },
307         .p = { .min = 14, .max = 56 },
308         .p1 = { .min = 2, .max = 8 },
309         .p2 = { .dot_limit = 225000,
310                 .p2_slow = 7, .p2_fast = 7 },
311         .find_pll = intel_g4x_find_best_PLL,
312 };
313
314 /* LVDS 100mhz refclk limits. */
315 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
316         .dot = { .min = 25000, .max = 350000 },
317         .vco = { .min = 1760000, .max = 3510000 },
318         .n = { .min = 1, .max = 2 },
319         .m = { .min = 79, .max = 126 },
320         .m1 = { .min = 12, .max = 22 },
321         .m2 = { .min = 5, .max = 9 },
322         .p = { .min = 28, .max = 112 },
323         .p1 = { .min = 2,.max = 8 },
324         .p2 = { .dot_limit = 225000,
325                 .p2_slow = 14, .p2_fast = 14 },
326         .find_pll = intel_g4x_find_best_PLL,
327 };
328
329 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
330         .dot = { .min = 25000, .max = 350000 },
331         .vco = { .min = 1760000, .max = 3510000 },
332         .n = { .min = 1, .max = 3 },
333         .m = { .min = 79, .max = 126 },
334         .m1 = { .min = 12, .max = 22 },
335         .m2 = { .min = 5, .max = 9 },
336         .p = { .min = 14, .max = 42 },
337         .p1 = { .min = 2,.max = 6 },
338         .p2 = { .dot_limit = 225000,
339                 .p2_slow = 7, .p2_fast = 7 },
340         .find_pll = intel_g4x_find_best_PLL,
341 };
342
343 static const intel_limit_t intel_limits_ironlake_display_port = {
344         .dot = { .min = 25000, .max = 350000 },
345         .vco = { .min = 1760000, .max = 3510000},
346         .n = { .min = 1, .max = 2 },
347         .m = { .min = 81, .max = 90 },
348         .m1 = { .min = 12, .max = 22 },
349         .m2 = { .min = 5, .max = 9 },
350         .p = { .min = 10, .max = 20 },
351         .p1 = { .min = 1, .max = 2},
352         .p2 = { .dot_limit = 0,
353                 .p2_slow = 10, .p2_fast = 10 },
354         .find_pll = intel_find_pll_ironlake_dp,
355 };
356
357 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
358                                                 int refclk)
359 {
360         struct drm_device *dev = crtc->dev;
361         struct drm_i915_private *dev_priv = dev->dev_private;
362         const intel_limit_t *limit;
363
364         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
365                 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
366                     LVDS_CLKB_POWER_UP) {
367                         /* LVDS dual channel */
368                         if (refclk == 100000)
369                                 limit = &intel_limits_ironlake_dual_lvds_100m;
370                         else
371                                 limit = &intel_limits_ironlake_dual_lvds;
372                 } else {
373                         if (refclk == 100000)
374                                 limit = &intel_limits_ironlake_single_lvds_100m;
375                         else
376                                 limit = &intel_limits_ironlake_single_lvds;
377                 }
378         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
379                         HAS_eDP)
380                 limit = &intel_limits_ironlake_display_port;
381         else
382                 limit = &intel_limits_ironlake_dac;
383
384         return limit;
385 }
386
387 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
388 {
389         struct drm_device *dev = crtc->dev;
390         struct drm_i915_private *dev_priv = dev->dev_private;
391         const intel_limit_t *limit;
392
393         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
394                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
395                     LVDS_CLKB_POWER_UP)
396                         /* LVDS with dual channel */
397                         limit = &intel_limits_g4x_dual_channel_lvds;
398                 else
399                         /* LVDS with dual channel */
400                         limit = &intel_limits_g4x_single_channel_lvds;
401         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
402                    intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
403                 limit = &intel_limits_g4x_hdmi;
404         } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
405                 limit = &intel_limits_g4x_sdvo;
406         } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
407                 limit = &intel_limits_g4x_display_port;
408         } else /* The option is for other outputs */
409                 limit = &intel_limits_i9xx_sdvo;
410
411         return limit;
412 }
413
414 static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
415 {
416         struct drm_device *dev = crtc->dev;
417         const intel_limit_t *limit;
418
419         if (HAS_PCH_SPLIT(dev))
420                 limit = intel_ironlake_limit(crtc, refclk);
421         else if (IS_G4X(dev)) {
422                 limit = intel_g4x_limit(crtc);
423         } else if (IS_PINEVIEW(dev)) {
424                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
425                         limit = &intel_limits_pineview_lvds;
426                 else
427                         limit = &intel_limits_pineview_sdvo;
428         } else if (!IS_GEN2(dev)) {
429                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
430                         limit = &intel_limits_i9xx_lvds;
431                 else
432                         limit = &intel_limits_i9xx_sdvo;
433         } else {
434                 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
435                         limit = &intel_limits_i8xx_lvds;
436                 else
437                         limit = &intel_limits_i8xx_dvo;
438         }
439         return limit;
440 }
441
442 /* m1 is reserved as 0 in Pineview, n is a ring counter */
443 static void pineview_clock(int refclk, intel_clock_t *clock)
444 {
445         clock->m = clock->m2 + 2;
446         clock->p = clock->p1 * clock->p2;
447         clock->vco = refclk * clock->m / clock->n;
448         clock->dot = clock->vco / clock->p;
449 }
450
451 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
452 {
453         if (IS_PINEVIEW(dev)) {
454                 pineview_clock(refclk, clock);
455                 return;
456         }
457         clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
458         clock->p = clock->p1 * clock->p2;
459         clock->vco = refclk * clock->m / (clock->n + 2);
460         clock->dot = clock->vco / clock->p;
461 }
462
463 /**
464  * Returns whether any output on the specified pipe is of the specified type
465  */
466 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
467 {
468         struct drm_device *dev = crtc->dev;
469         struct drm_mode_config *mode_config = &dev->mode_config;
470         struct intel_encoder *encoder;
471
472         list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
473                 if (encoder->base.crtc == crtc && encoder->type == type)
474                         return true;
475
476         return false;
477 }
478
479 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
480 /**
481  * Returns whether the given set of divisors are valid for a given refclk with
482  * the given connectors.
483  */
484
485 static bool intel_PLL_is_valid(struct drm_device *dev,
486                                const intel_limit_t *limit,
487                                const intel_clock_t *clock)
488 {
489         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
490                 INTELPllInvalid ("p1 out of range\n");
491         if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
492                 INTELPllInvalid ("p out of range\n");
493         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
494                 INTELPllInvalid ("m2 out of range\n");
495         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
496                 INTELPllInvalid ("m1 out of range\n");
497         if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
498                 INTELPllInvalid ("m1 <= m2\n");
499         if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
500                 INTELPllInvalid ("m out of range\n");
501         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
502                 INTELPllInvalid ("n out of range\n");
503         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
504                 INTELPllInvalid ("vco out of range\n");
505         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
506          * connector, etc., rather than just a single range.
507          */
508         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
509                 INTELPllInvalid ("dot out of range\n");
510
511         return true;
512 }
513
514 static bool
515 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
516                     int target, int refclk, intel_clock_t *best_clock)
517
518 {
519         struct drm_device *dev = crtc->dev;
520         struct drm_i915_private *dev_priv = dev->dev_private;
521         intel_clock_t clock;
522         int err = target;
523
524         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
525             (I915_READ(LVDS)) != 0) {
526                 /*
527                  * For LVDS, if the panel is on, just rely on its current
528                  * settings for dual-channel.  We haven't figured out how to
529                  * reliably set up different single/dual channel state, if we
530                  * even can.
531                  */
532                 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
533                     LVDS_CLKB_POWER_UP)
534                         clock.p2 = limit->p2.p2_fast;
535                 else
536                         clock.p2 = limit->p2.p2_slow;
537         } else {
538                 if (target < limit->p2.dot_limit)
539                         clock.p2 = limit->p2.p2_slow;
540                 else
541                         clock.p2 = limit->p2.p2_fast;
542         }
543
544         memset (best_clock, 0, sizeof (*best_clock));
545
546         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
547              clock.m1++) {
548                 for (clock.m2 = limit->m2.min;
549                      clock.m2 <= limit->m2.max; clock.m2++) {
550                         /* m1 is always 0 in Pineview */
551                         if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
552                                 break;
553                         for (clock.n = limit->n.min;
554                              clock.n <= limit->n.max; clock.n++) {
555                                 for (clock.p1 = limit->p1.min;
556                                         clock.p1 <= limit->p1.max; clock.p1++) {
557                                         int this_err;
558
559                                         intel_clock(dev, refclk, &clock);
560                                         if (!intel_PLL_is_valid(dev, limit,
561                                                                 &clock))
562                                                 continue;
563
564                                         this_err = abs(clock.dot - target);
565                                         if (this_err < err) {
566                                                 *best_clock = clock;
567                                                 err = this_err;
568                                         }
569                                 }
570                         }
571                 }
572         }
573
574         return (err != target);
575 }
576
577 static bool
578 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
579                         int target, int refclk, intel_clock_t *best_clock)
580 {
581         struct drm_device *dev = crtc->dev;
582         struct drm_i915_private *dev_priv = dev->dev_private;
583         intel_clock_t clock;
584         int max_n;
585         bool found;
586         /* approximately equals target * 0.00585 */
587         int err_most = (target >> 8) + (target >> 9);
588         found = false;
589
590         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
591                 int lvds_reg;
592
593                 if (HAS_PCH_SPLIT(dev))
594                         lvds_reg = PCH_LVDS;
595                 else
596                         lvds_reg = LVDS;
597                 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
598                     LVDS_CLKB_POWER_UP)
599                         clock.p2 = limit->p2.p2_fast;
600                 else
601                         clock.p2 = limit->p2.p2_slow;
602         } else {
603                 if (target < limit->p2.dot_limit)
604                         clock.p2 = limit->p2.p2_slow;
605                 else
606                         clock.p2 = limit->p2.p2_fast;
607         }
608
609         memset(best_clock, 0, sizeof(*best_clock));
610         max_n = limit->n.max;
611         /* based on hardware requirement, prefer smaller n to precision */
612         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
613                 /* based on hardware requirement, prefere larger m1,m2 */
614                 for (clock.m1 = limit->m1.max;
615                      clock.m1 >= limit->m1.min; clock.m1--) {
616                         for (clock.m2 = limit->m2.max;
617                              clock.m2 >= limit->m2.min; clock.m2--) {
618                                 for (clock.p1 = limit->p1.max;
619                                      clock.p1 >= limit->p1.min; clock.p1--) {
620                                         int this_err;
621
622                                         intel_clock(dev, refclk, &clock);
623                                         if (!intel_PLL_is_valid(dev, limit,
624                                                                 &clock))
625                                                 continue;
626
627                                         this_err = abs(clock.dot - target);
628                                         if (this_err < err_most) {
629                                                 *best_clock = clock;
630                                                 err_most = this_err;
631                                                 max_n = clock.n;
632                                                 found = true;
633                                         }
634                                 }
635                         }
636                 }
637         }
638         return found;
639 }
640
641 static bool
642 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
643                            int target, int refclk, intel_clock_t *best_clock)
644 {
645         struct drm_device *dev = crtc->dev;
646         intel_clock_t clock;
647
648         if (target < 200000) {
649                 clock.n = 1;
650                 clock.p1 = 2;
651                 clock.p2 = 10;
652                 clock.m1 = 12;
653                 clock.m2 = 9;
654         } else {
655                 clock.n = 2;
656                 clock.p1 = 1;
657                 clock.p2 = 10;
658                 clock.m1 = 14;
659                 clock.m2 = 8;
660         }
661         intel_clock(dev, refclk, &clock);
662         memcpy(best_clock, &clock, sizeof(intel_clock_t));
663         return true;
664 }
665
666 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
667 static bool
668 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
669                       int target, int refclk, intel_clock_t *best_clock)
670 {
671         intel_clock_t clock;
672         if (target < 200000) {
673                 clock.p1 = 2;
674                 clock.p2 = 10;
675                 clock.n = 2;
676                 clock.m1 = 23;
677                 clock.m2 = 8;
678         } else {
679                 clock.p1 = 1;
680                 clock.p2 = 10;
681                 clock.n = 1;
682                 clock.m1 = 14;
683                 clock.m2 = 2;
684         }
685         clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
686         clock.p = (clock.p1 * clock.p2);
687         clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
688         clock.vco = 0;
689         memcpy(best_clock, &clock, sizeof(intel_clock_t));
690         return true;
691 }
692
693 /**
694  * intel_wait_for_vblank - wait for vblank on a given pipe
695  * @dev: drm device
696  * @pipe: pipe to wait for
697  *
698  * Wait for vblank to occur on a given pipe.  Needed for various bits of
699  * mode setting code.
700  */
701 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
702 {
703         struct drm_i915_private *dev_priv = dev->dev_private;
704         int pipestat_reg = PIPESTAT(pipe);
705
706         /* Clear existing vblank status. Note this will clear any other
707          * sticky status fields as well.
708          *
709          * This races with i915_driver_irq_handler() with the result
710          * that either function could miss a vblank event.  Here it is not
711          * fatal, as we will either wait upon the next vblank interrupt or
712          * timeout.  Generally speaking intel_wait_for_vblank() is only
713          * called during modeset at which time the GPU should be idle and
714          * should *not* be performing page flips and thus not waiting on
715          * vblanks...
716          * Currently, the result of us stealing a vblank from the irq
717          * handler is that a single frame will be skipped during swapbuffers.
718          */
719         I915_WRITE(pipestat_reg,
720                    I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
721
722         /* Wait for vblank interrupt bit to set */
723         if (wait_for(I915_READ(pipestat_reg) &
724                      PIPE_VBLANK_INTERRUPT_STATUS,
725                      50))
726                 DRM_DEBUG_KMS("vblank wait timed out\n");
727 }
728
729 /*
730  * intel_wait_for_pipe_off - wait for pipe to turn off
731  * @dev: drm device
732  * @pipe: pipe to wait for
733  *
734  * After disabling a pipe, we can't wait for vblank in the usual way,
735  * spinning on the vblank interrupt status bit, since we won't actually
736  * see an interrupt when the pipe is disabled.
737  *
738  * On Gen4 and above:
739  *   wait for the pipe register state bit to turn off
740  *
741  * Otherwise:
742  *   wait for the display line value to settle (it usually
743  *   ends up stopping at the start of the next frame).
744  *
745  */
746 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
747 {
748         struct drm_i915_private *dev_priv = dev->dev_private;
749
750         if (INTEL_INFO(dev)->gen >= 4) {
751                 int reg = PIPECONF(pipe);
752
753                 /* Wait for the Pipe State to go off */
754                 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
755                              100))
756                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
757         } else {
758                 u32 last_line;
759                 int reg = PIPEDSL(pipe);
760                 unsigned long timeout = jiffies + msecs_to_jiffies(100);
761
762                 /* Wait for the display line to settle */
763                 do {
764                         last_line = I915_READ(reg) & DSL_LINEMASK;
765                         mdelay(5);
766                 } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
767                          time_after(timeout, jiffies));
768                 if (time_after(jiffies, timeout))
769                         DRM_DEBUG_KMS("pipe_off wait timed out\n");
770         }
771 }
772
773 static const char *state_string(bool enabled)
774 {
775         return enabled ? "on" : "off";
776 }
777
778 /* Only for pre-ILK configs */
779 static void assert_pll(struct drm_i915_private *dev_priv,
780                        enum pipe pipe, bool state)
781 {
782         int reg;
783         u32 val;
784         bool cur_state;
785
786         reg = DPLL(pipe);
787         val = I915_READ(reg);
788         cur_state = !!(val & DPLL_VCO_ENABLE);
789         WARN(cur_state != state,
790              "PLL state assertion failure (expected %s, current %s)\n",
791              state_string(state), state_string(cur_state));
792 }
793 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
794 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
795
796 /* For ILK+ */
797 static void assert_pch_pll(struct drm_i915_private *dev_priv,
798                            enum pipe pipe, bool state)
799 {
800         int reg;
801         u32 val;
802         bool cur_state;
803
804         reg = PCH_DPLL(pipe);
805         val = I915_READ(reg);
806         cur_state = !!(val & DPLL_VCO_ENABLE);
807         WARN(cur_state != state,
808              "PCH PLL state assertion failure (expected %s, current %s)\n",
809              state_string(state), state_string(cur_state));
810 }
811 #define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
812 #define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
813
814 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
815                           enum pipe pipe, bool state)
816 {
817         int reg;
818         u32 val;
819         bool cur_state;
820
821         reg = FDI_TX_CTL(pipe);
822         val = I915_READ(reg);
823         cur_state = !!(val & FDI_TX_ENABLE);
824         WARN(cur_state != state,
825              "FDI TX state assertion failure (expected %s, current %s)\n",
826              state_string(state), state_string(cur_state));
827 }
828 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
829 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
830
831 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
832                           enum pipe pipe, bool state)
833 {
834         int reg;
835         u32 val;
836         bool cur_state;
837
838         reg = FDI_RX_CTL(pipe);
839         val = I915_READ(reg);
840         cur_state = !!(val & FDI_RX_ENABLE);
841         WARN(cur_state != state,
842              "FDI RX state assertion failure (expected %s, current %s)\n",
843              state_string(state), state_string(cur_state));
844 }
845 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
846 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
847
848 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
849                                       enum pipe pipe)
850 {
851         int reg;
852         u32 val;
853
854         /* ILK FDI PLL is always enabled */
855         if (dev_priv->info->gen == 5)
856                 return;
857
858         reg = FDI_TX_CTL(pipe);
859         val = I915_READ(reg);
860         WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
861 }
862
863 static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
864                                       enum pipe pipe)
865 {
866         int reg;
867         u32 val;
868
869         reg = FDI_RX_CTL(pipe);
870         val = I915_READ(reg);
871         WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
872 }
873
874 static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
875                                   enum pipe pipe)
876 {
877         int pp_reg, lvds_reg;
878         u32 val;
879         enum pipe panel_pipe = PIPE_A;
880         bool locked = locked;
881
882         if (HAS_PCH_SPLIT(dev_priv->dev)) {
883                 pp_reg = PCH_PP_CONTROL;
884                 lvds_reg = PCH_LVDS;
885         } else {
886                 pp_reg = PP_CONTROL;
887                 lvds_reg = LVDS;
888         }
889
890         val = I915_READ(pp_reg);
891         if (!(val & PANEL_POWER_ON) ||
892             ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
893                 locked = false;
894
895         if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
896                 panel_pipe = PIPE_B;
897
898         WARN(panel_pipe == pipe && locked,
899              "panel assertion failure, pipe %c regs locked\n",
900              pipe_name(pipe));
901 }
902
903 static void assert_pipe(struct drm_i915_private *dev_priv,
904                         enum pipe pipe, bool state)
905 {
906         int reg;
907         u32 val;
908         bool cur_state;
909
910         reg = PIPECONF(pipe);
911         val = I915_READ(reg);
912         cur_state = !!(val & PIPECONF_ENABLE);
913         WARN(cur_state != state,
914              "pipe %c assertion failure (expected %s, current %s)\n",
915              pipe_name(pipe), state_string(state), state_string(cur_state));
916 }
917 #define assert_pipe_enabled(d, p) assert_pipe(d, p, true)
918 #define assert_pipe_disabled(d, p) assert_pipe(d, p, false)
919
920 static void assert_plane_enabled(struct drm_i915_private *dev_priv,
921                                  enum plane plane)
922 {
923         int reg;
924         u32 val;
925
926         reg = DSPCNTR(plane);
927         val = I915_READ(reg);
928         WARN(!(val & DISPLAY_PLANE_ENABLE),
929              "plane %c assertion failure, should be active but is disabled\n",
930              plane_name(plane));
931 }
932
933 static void assert_planes_disabled(struct drm_i915_private *dev_priv,
934                                    enum pipe pipe)
935 {
936         int reg, i;
937         u32 val;
938         int cur_pipe;
939
940         /* Planes are fixed to pipes on ILK+ */
941         if (HAS_PCH_SPLIT(dev_priv->dev))
942                 return;
943
944         /* Need to check both planes against the pipe */
945         for (i = 0; i < 2; i++) {
946                 reg = DSPCNTR(i);
947                 val = I915_READ(reg);
948                 cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
949                         DISPPLANE_SEL_PIPE_SHIFT;
950                 WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
951                      "plane %c assertion failure, should be off on pipe %c but is still active\n",
952                      plane_name(i), pipe_name(pipe));
953         }
954 }
955
956 static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
957 {
958         u32 val;
959         bool enabled;
960
961         val = I915_READ(PCH_DREF_CONTROL);
962         enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
963                             DREF_SUPERSPREAD_SOURCE_MASK));
964         WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
965 }
966
967 static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
968                                        enum pipe pipe)
969 {
970         int reg;
971         u32 val;
972         bool enabled;
973
974         reg = TRANSCONF(pipe);
975         val = I915_READ(reg);
976         enabled = !!(val & TRANS_ENABLE);
977         WARN(enabled,
978              "transcoder assertion failed, should be off on pipe %c but is still active\n",
979              pipe_name(pipe));
980 }
981
982 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
983                                    enum pipe pipe, int reg)
984 {
985         u32 val = I915_READ(reg);
986         WARN(DP_PIPE_ENABLED(val, pipe),
987              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
988              reg, pipe_name(pipe));
989 }
990
991 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
992                                      enum pipe pipe, int reg)
993 {
994         u32 val = I915_READ(reg);
995         WARN(HDMI_PIPE_ENABLED(val, pipe),
996              "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
997              reg, pipe_name(pipe));
998 }
999
1000 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1001                                       enum pipe pipe)
1002 {
1003         int reg;
1004         u32 val;
1005
1006         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B);
1007         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C);
1008         assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D);
1009
1010         reg = PCH_ADPA;
1011         val = I915_READ(reg);
1012         WARN(ADPA_PIPE_ENABLED(val, pipe),
1013              "PCH VGA enabled on transcoder %c, should be disabled\n",
1014              pipe_name(pipe));
1015
1016         reg = PCH_LVDS;
1017         val = I915_READ(reg);
1018         WARN(LVDS_PIPE_ENABLED(val, pipe),
1019              "PCH LVDS enabled on transcoder %c, should be disabled\n",
1020              pipe_name(pipe));
1021
1022         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
1023         assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
1024         assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
1025 }
1026
1027 /**
1028  * intel_enable_pll - enable a PLL
1029  * @dev_priv: i915 private structure
1030  * @pipe: pipe PLL to enable
1031  *
1032  * Enable @pipe's PLL so we can start pumping pixels from a plane.  Check to
1033  * make sure the PLL reg is writable first though, since the panel write
1034  * protect mechanism may be enabled.
1035  *
1036  * Note!  This is for pre-ILK only.
1037  */
1038 static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1039 {
1040         int reg;
1041         u32 val;
1042
1043         /* No really, not for ILK+ */
1044         BUG_ON(dev_priv->info->gen >= 5);
1045
1046         /* PLL is protected by panel, make sure we can write it */
1047         if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
1048                 assert_panel_unlocked(dev_priv, pipe);
1049
1050         reg = DPLL(pipe);
1051         val = I915_READ(reg);
1052         val |= DPLL_VCO_ENABLE;
1053
1054         /* We do this three times for luck */
1055         I915_WRITE(reg, val);
1056         POSTING_READ(reg);
1057         udelay(150); /* wait for warmup */
1058         I915_WRITE(reg, val);
1059         POSTING_READ(reg);
1060         udelay(150); /* wait for warmup */
1061         I915_WRITE(reg, val);
1062         POSTING_READ(reg);
1063         udelay(150); /* wait for warmup */
1064 }
1065
1066 /**
1067  * intel_disable_pll - disable a PLL
1068  * @dev_priv: i915 private structure
1069  * @pipe: pipe PLL to disable
1070  *
1071  * Disable the PLL for @pipe, making sure the pipe is off first.
1072  *
1073  * Note!  This is for pre-ILK only.
1074  */
1075 static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1076 {
1077         int reg;
1078         u32 val;
1079
1080         /* Don't disable pipe A or pipe A PLLs if needed */
1081         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1082                 return;
1083
1084         /* Make sure the pipe isn't still relying on us */
1085         assert_pipe_disabled(dev_priv, pipe);
1086
1087         reg = DPLL(pipe);
1088         val = I915_READ(reg);
1089         val &= ~DPLL_VCO_ENABLE;
1090         I915_WRITE(reg, val);
1091         POSTING_READ(reg);
1092 }
1093
1094 /**
1095  * intel_enable_pch_pll - enable PCH PLL
1096  * @dev_priv: i915 private structure
1097  * @pipe: pipe PLL to enable
1098  *
1099  * The PCH PLL needs to be enabled before the PCH transcoder, since it
1100  * drives the transcoder clock.
1101  */
1102 static void intel_enable_pch_pll(struct drm_i915_private *dev_priv,
1103                                  enum pipe pipe)
1104 {
1105         int reg;
1106         u32 val;
1107
1108         /* PCH only available on ILK+ */
1109         BUG_ON(dev_priv->info->gen < 5);
1110
1111         /* PCH refclock must be enabled first */
1112         assert_pch_refclk_enabled(dev_priv);
1113
1114         reg = PCH_DPLL(pipe);
1115         val = I915_READ(reg);
1116         val |= DPLL_VCO_ENABLE;
1117         I915_WRITE(reg, val);
1118         POSTING_READ(reg);
1119         udelay(200);
1120 }
1121
1122 static void intel_disable_pch_pll(struct drm_i915_private *dev_priv,
1123                                   enum pipe pipe)
1124 {
1125         int reg;
1126         u32 val;
1127
1128         /* PCH only available on ILK+ */
1129         BUG_ON(dev_priv->info->gen < 5);
1130
1131         /* Make sure transcoder isn't still depending on us */
1132         assert_transcoder_disabled(dev_priv, pipe);
1133
1134         reg = PCH_DPLL(pipe);
1135         val = I915_READ(reg);
1136         val &= ~DPLL_VCO_ENABLE;
1137         I915_WRITE(reg, val);
1138         POSTING_READ(reg);
1139         udelay(200);
1140 }
1141
1142 static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
1143                                     enum pipe pipe)
1144 {
1145         int reg;
1146         u32 val;
1147
1148         /* PCH only available on ILK+ */
1149         BUG_ON(dev_priv->info->gen < 5);
1150
1151         /* Make sure PCH DPLL is enabled */
1152         assert_pch_pll_enabled(dev_priv, pipe);
1153
1154         /* FDI must be feeding us bits for PCH ports */
1155         assert_fdi_tx_enabled(dev_priv, pipe);
1156         assert_fdi_rx_enabled(dev_priv, pipe);
1157
1158         reg = TRANSCONF(pipe);
1159         val = I915_READ(reg);
1160         /*
1161          * make the BPC in transcoder be consistent with
1162          * that in pipeconf reg.
1163          */
1164         val &= ~PIPE_BPC_MASK;
1165         val |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
1166         I915_WRITE(reg, val | TRANS_ENABLE);
1167         if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
1168                 DRM_ERROR("failed to enable transcoder %d\n", pipe);
1169 }
1170
1171 static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
1172                                      enum pipe pipe)
1173 {
1174         int reg;
1175         u32 val;
1176
1177         /* FDI relies on the transcoder */
1178         assert_fdi_tx_disabled(dev_priv, pipe);
1179         assert_fdi_rx_disabled(dev_priv, pipe);
1180
1181         /* Ports must be off as well */
1182         assert_pch_ports_disabled(dev_priv, pipe);
1183
1184         reg = TRANSCONF(pipe);
1185         val = I915_READ(reg);
1186         val &= ~TRANS_ENABLE;
1187         I915_WRITE(reg, val);
1188         /* wait for PCH transcoder off, transcoder state */
1189         if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
1190                 DRM_ERROR("failed to disable transcoder\n");
1191 }
1192
1193 /**
1194  * intel_enable_pipe - enable a pipe, asserting requirements
1195  * @dev_priv: i915 private structure
1196  * @pipe: pipe to enable
1197  * @pch_port: on ILK+, is this pipe driving a PCH port or not
1198  *
1199  * Enable @pipe, making sure that various hardware specific requirements
1200  * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1201  *
1202  * @pipe should be %PIPE_A or %PIPE_B.
1203  *
1204  * Will wait until the pipe is actually running (i.e. first vblank) before
1205  * returning.
1206  */
1207 static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
1208                               bool pch_port)
1209 {
1210         int reg;
1211         u32 val;
1212
1213         /*
1214          * A pipe without a PLL won't actually be able to drive bits from
1215          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1216          * need the check.
1217          */
1218         if (!HAS_PCH_SPLIT(dev_priv->dev))
1219                 assert_pll_enabled(dev_priv, pipe);
1220         else {
1221                 if (pch_port) {
1222                         /* if driving the PCH, we need FDI enabled */
1223                         assert_fdi_rx_pll_enabled(dev_priv, pipe);
1224                         assert_fdi_tx_pll_enabled(dev_priv, pipe);
1225                 }
1226                 /* FIXME: assert CPU port conditions for SNB+ */
1227         }
1228
1229         reg = PIPECONF(pipe);
1230         val = I915_READ(reg);
1231         if (val & PIPECONF_ENABLE)
1232                 return;
1233
1234         I915_WRITE(reg, val | PIPECONF_ENABLE);
1235         intel_wait_for_vblank(dev_priv->dev, pipe);
1236 }
1237
1238 /**
1239  * intel_disable_pipe - disable a pipe, asserting requirements
1240  * @dev_priv: i915 private structure
1241  * @pipe: pipe to disable
1242  *
1243  * Disable @pipe, making sure that various hardware specific requirements
1244  * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1245  *
1246  * @pipe should be %PIPE_A or %PIPE_B.
1247  *
1248  * Will wait until the pipe has shut down before returning.
1249  */
1250 static void intel_disable_pipe(struct drm_i915_private *dev_priv,
1251                                enum pipe pipe)
1252 {
1253         int reg;
1254         u32 val;
1255
1256         /*
1257          * Make sure planes won't keep trying to pump pixels to us,
1258          * or we might hang the display.
1259          */
1260         assert_planes_disabled(dev_priv, pipe);
1261
1262         /* Don't disable pipe A or pipe A PLLs if needed */
1263         if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
1264                 return;
1265
1266         reg = PIPECONF(pipe);
1267         val = I915_READ(reg);
1268         if ((val & PIPECONF_ENABLE) == 0)
1269                 return;
1270
1271         I915_WRITE(reg, val & ~PIPECONF_ENABLE);
1272         intel_wait_for_pipe_off(dev_priv->dev, pipe);
1273 }
1274
1275 /**
1276  * intel_enable_plane - enable a display plane on a given pipe
1277  * @dev_priv: i915 private structure
1278  * @plane: plane to enable
1279  * @pipe: pipe being fed
1280  *
1281  * Enable @plane on @pipe, making sure that @pipe is running first.
1282  */
1283 static void intel_enable_plane(struct drm_i915_private *dev_priv,
1284                                enum plane plane, enum pipe pipe)
1285 {
1286         int reg;
1287         u32 val;
1288
1289         /* If the pipe isn't enabled, we can't pump pixels and may hang */
1290         assert_pipe_enabled(dev_priv, pipe);
1291
1292         reg = DSPCNTR(plane);
1293         val = I915_READ(reg);
1294         if (val & DISPLAY_PLANE_ENABLE)
1295                 return;
1296
1297         I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
1298         intel_wait_for_vblank(dev_priv->dev, pipe);
1299 }
1300
1301 /*
1302  * Plane regs are double buffered, going from enabled->disabled needs a
1303  * trigger in order to latch.  The display address reg provides this.
1304  */
1305 static void intel_flush_display_plane(struct drm_i915_private *dev_priv,
1306                                       enum plane plane)
1307 {
1308         u32 reg = DSPADDR(plane);
1309         I915_WRITE(reg, I915_READ(reg));
1310 }
1311
1312 /**
1313  * intel_disable_plane - disable a display plane
1314  * @dev_priv: i915 private structure
1315  * @plane: plane to disable
1316  * @pipe: pipe consuming the data
1317  *
1318  * Disable @plane; should be an independent operation.
1319  */
1320 static void intel_disable_plane(struct drm_i915_private *dev_priv,
1321                                 enum plane plane, enum pipe pipe)
1322 {
1323         int reg;
1324         u32 val;
1325
1326         reg = DSPCNTR(plane);
1327         val = I915_READ(reg);
1328         if ((val & DISPLAY_PLANE_ENABLE) == 0)
1329                 return;
1330
1331         I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
1332         intel_flush_display_plane(dev_priv, plane);
1333         intel_wait_for_vblank(dev_priv->dev, pipe);
1334 }
1335
1336 static void disable_pch_dp(struct drm_i915_private *dev_priv,
1337                            enum pipe pipe, int reg)
1338 {
1339         u32 val = I915_READ(reg);
1340         if (DP_PIPE_ENABLED(val, pipe))
1341                 I915_WRITE(reg, val & ~DP_PORT_EN);
1342 }
1343
1344 static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
1345                              enum pipe pipe, int reg)
1346 {
1347         u32 val = I915_READ(reg);
1348         if (HDMI_PIPE_ENABLED(val, pipe))
1349                 I915_WRITE(reg, val & ~PORT_ENABLE);
1350 }
1351
1352 /* Disable any ports connected to this transcoder */
1353 static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
1354                                     enum pipe pipe)
1355 {
1356         u32 reg, val;
1357
1358         val = I915_READ(PCH_PP_CONTROL);
1359         I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
1360
1361         disable_pch_dp(dev_priv, pipe, PCH_DP_B);
1362         disable_pch_dp(dev_priv, pipe, PCH_DP_C);
1363         disable_pch_dp(dev_priv, pipe, PCH_DP_D);
1364
1365         reg = PCH_ADPA;
1366         val = I915_READ(reg);
1367         if (ADPA_PIPE_ENABLED(val, pipe))
1368                 I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
1369
1370         reg = PCH_LVDS;
1371         val = I915_READ(reg);
1372         if (LVDS_PIPE_ENABLED(val, pipe)) {
1373                 I915_WRITE(reg, val & ~LVDS_PORT_EN);
1374                 POSTING_READ(reg);
1375                 udelay(100);
1376         }
1377
1378         disable_pch_hdmi(dev_priv, pipe, HDMIB);
1379         disable_pch_hdmi(dev_priv, pipe, HDMIC);
1380         disable_pch_hdmi(dev_priv, pipe, HDMID);
1381 }
1382
1383 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1384 {
1385         struct drm_device *dev = crtc->dev;
1386         struct drm_i915_private *dev_priv = dev->dev_private;
1387         struct drm_framebuffer *fb = crtc->fb;
1388         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1389         struct drm_i915_gem_object *obj = intel_fb->obj;
1390         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1391         int plane, i;
1392         u32 fbc_ctl, fbc_ctl2;
1393
1394         if (fb->pitch == dev_priv->cfb_pitch &&
1395             obj->fence_reg == dev_priv->cfb_fence &&
1396             intel_crtc->plane == dev_priv->cfb_plane &&
1397             I915_READ(FBC_CONTROL) & FBC_CTL_EN)
1398                 return;
1399
1400         i8xx_disable_fbc(dev);
1401
1402         dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1403
1404         if (fb->pitch < dev_priv->cfb_pitch)
1405                 dev_priv->cfb_pitch = fb->pitch;
1406
1407         /* FBC_CTL wants 64B units */
1408         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1409         dev_priv->cfb_fence = obj->fence_reg;
1410         dev_priv->cfb_plane = intel_crtc->plane;
1411         plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1412
1413         /* Clear old tags */
1414         for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1415                 I915_WRITE(FBC_TAG + (i * 4), 0);
1416
1417         /* Set it up... */
1418         fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
1419         if (obj->tiling_mode != I915_TILING_NONE)
1420                 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
1421         I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1422         I915_WRITE(FBC_FENCE_OFF, crtc->y);
1423
1424         /* enable it... */
1425         fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1426         if (IS_I945GM(dev))
1427                 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1428         fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1429         fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1430         if (obj->tiling_mode != I915_TILING_NONE)
1431                 fbc_ctl |= dev_priv->cfb_fence;
1432         I915_WRITE(FBC_CONTROL, fbc_ctl);
1433
1434         DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1435                       dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
1436 }
1437
1438 void i8xx_disable_fbc(struct drm_device *dev)
1439 {
1440         struct drm_i915_private *dev_priv = dev->dev_private;
1441         u32 fbc_ctl;
1442
1443         /* Disable compression */
1444         fbc_ctl = I915_READ(FBC_CONTROL);
1445         if ((fbc_ctl & FBC_CTL_EN) == 0)
1446                 return;
1447
1448         fbc_ctl &= ~FBC_CTL_EN;
1449         I915_WRITE(FBC_CONTROL, fbc_ctl);
1450
1451         /* Wait for compressing bit to clear */
1452         if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
1453                 DRM_DEBUG_KMS("FBC idle timed out\n");
1454                 return;
1455         }
1456
1457         DRM_DEBUG_KMS("disabled FBC\n");
1458 }
1459
1460 static bool i8xx_fbc_enabled(struct drm_device *dev)
1461 {
1462         struct drm_i915_private *dev_priv = dev->dev_private;
1463
1464         return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1465 }
1466
1467 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1468 {
1469         struct drm_device *dev = crtc->dev;
1470         struct drm_i915_private *dev_priv = dev->dev_private;
1471         struct drm_framebuffer *fb = crtc->fb;
1472         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1473         struct drm_i915_gem_object *obj = intel_fb->obj;
1474         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1475         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1476         unsigned long stall_watermark = 200;
1477         u32 dpfc_ctl;
1478
1479         dpfc_ctl = I915_READ(DPFC_CONTROL);
1480         if (dpfc_ctl & DPFC_CTL_EN) {
1481                 if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
1482                     dev_priv->cfb_fence == obj->fence_reg &&
1483                     dev_priv->cfb_plane == intel_crtc->plane &&
1484                     dev_priv->cfb_y == crtc->y)
1485                         return;
1486
1487                 I915_WRITE(DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
1488                 intel_wait_for_vblank(dev, intel_crtc->pipe);
1489         }
1490
1491         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1492         dev_priv->cfb_fence = obj->fence_reg;
1493         dev_priv->cfb_plane = intel_crtc->plane;
1494         dev_priv->cfb_y = crtc->y;
1495
1496         dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1497         if (obj->tiling_mode != I915_TILING_NONE) {
1498                 dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
1499                 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1500         } else {
1501                 I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1502         }
1503
1504         I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1505                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1506                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1507         I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1508
1509         /* enable it... */
1510         I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1511
1512         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1513 }
1514
1515 void g4x_disable_fbc(struct drm_device *dev)
1516 {
1517         struct drm_i915_private *dev_priv = dev->dev_private;
1518         u32 dpfc_ctl;
1519
1520         /* Disable compression */
1521         dpfc_ctl = I915_READ(DPFC_CONTROL);
1522         if (dpfc_ctl & DPFC_CTL_EN) {
1523                 dpfc_ctl &= ~DPFC_CTL_EN;
1524                 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1525
1526                 DRM_DEBUG_KMS("disabled FBC\n");
1527         }
1528 }
1529
1530 static bool g4x_fbc_enabled(struct drm_device *dev)
1531 {
1532         struct drm_i915_private *dev_priv = dev->dev_private;
1533
1534         return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1535 }
1536
1537 static void sandybridge_blit_fbc_update(struct drm_device *dev)
1538 {
1539         struct drm_i915_private *dev_priv = dev->dev_private;
1540         u32 blt_ecoskpd;
1541
1542         /* Make sure blitter notifies FBC of writes */
1543         __gen6_gt_force_wake_get(dev_priv);
1544         blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
1545         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
1546                 GEN6_BLITTER_LOCK_SHIFT;
1547         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1548         blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
1549         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1550         blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
1551                          GEN6_BLITTER_LOCK_SHIFT);
1552         I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
1553         POSTING_READ(GEN6_BLITTER_ECOSKPD);
1554         __gen6_gt_force_wake_put(dev_priv);
1555 }
1556
1557 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1558 {
1559         struct drm_device *dev = crtc->dev;
1560         struct drm_i915_private *dev_priv = dev->dev_private;
1561         struct drm_framebuffer *fb = crtc->fb;
1562         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1563         struct drm_i915_gem_object *obj = intel_fb->obj;
1564         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1565         int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1566         unsigned long stall_watermark = 200;
1567         u32 dpfc_ctl;
1568
1569         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1570         if (dpfc_ctl & DPFC_CTL_EN) {
1571                 if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
1572                     dev_priv->cfb_fence == obj->fence_reg &&
1573                     dev_priv->cfb_plane == intel_crtc->plane &&
1574                     dev_priv->cfb_offset == obj->gtt_offset &&
1575                     dev_priv->cfb_y == crtc->y)
1576                         return;
1577
1578                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
1579                 intel_wait_for_vblank(dev, intel_crtc->pipe);
1580         }
1581
1582         dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1583         dev_priv->cfb_fence = obj->fence_reg;
1584         dev_priv->cfb_plane = intel_crtc->plane;
1585         dev_priv->cfb_offset = obj->gtt_offset;
1586         dev_priv->cfb_y = crtc->y;
1587
1588         dpfc_ctl &= DPFC_RESERVED;
1589         dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1590         if (obj->tiling_mode != I915_TILING_NONE) {
1591                 dpfc_ctl |= (DPFC_CTL_FENCE_EN | dev_priv->cfb_fence);
1592                 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1593         } else {
1594                 I915_WRITE(ILK_DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1595         }
1596
1597         I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1598                    (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1599                    (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1600         I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1601         I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
1602         /* enable it... */
1603         I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
1604
1605         if (IS_GEN6(dev)) {
1606                 I915_WRITE(SNB_DPFC_CTL_SA,
1607                            SNB_CPU_FENCE_ENABLE | dev_priv->cfb_fence);
1608                 I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
1609                 sandybridge_blit_fbc_update(dev);
1610         }
1611
1612         DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1613 }
1614
1615 void ironlake_disable_fbc(struct drm_device *dev)
1616 {
1617         struct drm_i915_private *dev_priv = dev->dev_private;
1618         u32 dpfc_ctl;
1619
1620         /* Disable compression */
1621         dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1622         if (dpfc_ctl & DPFC_CTL_EN) {
1623                 dpfc_ctl &= ~DPFC_CTL_EN;
1624                 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1625
1626                 DRM_DEBUG_KMS("disabled FBC\n");
1627         }
1628 }
1629
1630 static bool ironlake_fbc_enabled(struct drm_device *dev)
1631 {
1632         struct drm_i915_private *dev_priv = dev->dev_private;
1633
1634         return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1635 }
1636
1637 bool intel_fbc_enabled(struct drm_device *dev)
1638 {
1639         struct drm_i915_private *dev_priv = dev->dev_private;
1640
1641         if (!dev_priv->display.fbc_enabled)
1642                 return false;
1643
1644         return dev_priv->display.fbc_enabled(dev);
1645 }
1646
1647 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1648 {
1649         struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1650
1651         if (!dev_priv->display.enable_fbc)
1652                 return;
1653
1654         dev_priv->display.enable_fbc(crtc, interval);
1655 }
1656
1657 void intel_disable_fbc(struct drm_device *dev)
1658 {
1659         struct drm_i915_private *dev_priv = dev->dev_private;
1660
1661         if (!dev_priv->display.disable_fbc)
1662                 return;
1663
1664         dev_priv->display.disable_fbc(dev);
1665 }
1666
1667 /**
1668  * intel_update_fbc - enable/disable FBC as needed
1669  * @dev: the drm_device
1670  *
1671  * Set up the framebuffer compression hardware at mode set time.  We
1672  * enable it if possible:
1673  *   - plane A only (on pre-965)
1674  *   - no pixel mulitply/line duplication
1675  *   - no alpha buffer discard
1676  *   - no dual wide
1677  *   - framebuffer <= 2048 in width, 1536 in height
1678  *
1679  * We can't assume that any compression will take place (worst case),
1680  * so the compressed buffer has to be the same size as the uncompressed
1681  * one.  It also must reside (along with the line length buffer) in
1682  * stolen memory.
1683  *
1684  * We need to enable/disable FBC on a global basis.
1685  */
1686 static void intel_update_fbc(struct drm_device *dev)
1687 {
1688         struct drm_i915_private *dev_priv = dev->dev_private;
1689         struct drm_crtc *crtc = NULL, *tmp_crtc;
1690         struct intel_crtc *intel_crtc;
1691         struct drm_framebuffer *fb;
1692         struct intel_framebuffer *intel_fb;
1693         struct drm_i915_gem_object *obj;
1694
1695         DRM_DEBUG_KMS("\n");
1696
1697         if (!i915_powersave)
1698                 return;
1699
1700         if (!I915_HAS_FBC(dev))
1701                 return;
1702
1703         /*
1704          * If FBC is already on, we just have to verify that we can
1705          * keep it that way...
1706          * Need to disable if:
1707          *   - more than one pipe is active
1708          *   - changing FBC params (stride, fence, mode)
1709          *   - new fb is too large to fit in compressed buffer
1710          *   - going to an unsupported config (interlace, pixel multiply, etc.)
1711          */
1712         list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1713                 if (tmp_crtc->enabled && tmp_crtc->fb) {
1714                         if (crtc) {
1715                                 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1716                                 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1717                                 goto out_disable;
1718                         }
1719                         crtc = tmp_crtc;
1720                 }
1721         }
1722
1723         if (!crtc || crtc->fb == NULL) {
1724                 DRM_DEBUG_KMS("no output, disabling\n");
1725                 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
1726                 goto out_disable;
1727         }
1728
1729         intel_crtc = to_intel_crtc(crtc);
1730         fb = crtc->fb;
1731         intel_fb = to_intel_framebuffer(fb);
1732         obj = intel_fb->obj;
1733
1734         if (intel_fb->obj->base.size > dev_priv->cfb_size) {
1735                 DRM_DEBUG_KMS("framebuffer too large, disabling "
1736                               "compression\n");
1737                 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1738                 goto out_disable;
1739         }
1740         if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
1741             (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
1742                 DRM_DEBUG_KMS("mode incompatible with compression, "
1743                               "disabling\n");
1744                 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1745                 goto out_disable;
1746         }
1747         if ((crtc->mode.hdisplay > 2048) ||
1748             (crtc->mode.vdisplay > 1536)) {
1749                 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1750                 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1751                 goto out_disable;
1752         }
1753         if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
1754                 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1755                 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1756                 goto out_disable;
1757         }
1758         if (obj->tiling_mode != I915_TILING_X) {
1759                 DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
1760                 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1761                 goto out_disable;
1762         }
1763
1764         /* If the kernel debugger is active, always disable compression */
1765         if (in_dbg_master())
1766                 goto out_disable;
1767
1768         intel_enable_fbc(crtc, 500);
1769         return;
1770
1771 out_disable:
1772         /* Multiple disables should be harmless */
1773         if (intel_fbc_enabled(dev)) {
1774                 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1775                 intel_disable_fbc(dev);
1776         }
1777 }
1778
1779 int
1780 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1781                            struct drm_i915_gem_object *obj,
1782                            struct intel_ring_buffer *pipelined)
1783 {
1784         struct drm_i915_private *dev_priv = dev->dev_private;
1785         u32 alignment;
1786         int ret;
1787
1788         switch (obj->tiling_mode) {
1789         case I915_TILING_NONE:
1790                 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1791                         alignment = 128 * 1024;
1792                 else if (INTEL_INFO(dev)->gen >= 4)
1793                         alignment = 4 * 1024;
1794                 else
1795                         alignment = 64 * 1024;
1796                 break;
1797         case I915_TILING_X:
1798                 /* pin() will align the object as required by fence */
1799                 alignment = 0;
1800                 break;
1801         case I915_TILING_Y:
1802                 /* FIXME: Is this true? */
1803                 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1804                 return -EINVAL;
1805         default:
1806                 BUG();
1807         }
1808
1809         dev_priv->mm.interruptible = false;
1810         ret = i915_gem_object_pin(obj, alignment, true);
1811         if (ret)
1812                 goto err_interruptible;
1813
1814         ret = i915_gem_object_set_to_display_plane(obj, pipelined);
1815         if (ret)
1816                 goto err_unpin;
1817
1818         /* Install a fence for tiled scan-out. Pre-i965 always needs a
1819          * fence, whereas 965+ only requires a fence if using
1820          * framebuffer compression.  For simplicity, we always install
1821          * a fence as the cost is not that onerous.
1822          */
1823         if (obj->tiling_mode != I915_TILING_NONE) {
1824                 ret = i915_gem_object_get_fence(obj, pipelined);
1825                 if (ret)
1826                         goto err_unpin;
1827         }
1828
1829         dev_priv->mm.interruptible = true;
1830         return 0;
1831
1832 err_unpin:
1833         i915_gem_object_unpin(obj);
1834 err_interruptible:
1835         dev_priv->mm.interruptible = true;
1836         return ret;
1837 }
1838
1839 /* Assume fb object is pinned & idle & fenced and just update base pointers */
1840 static int
1841 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1842                            int x, int y, enum mode_set_atomic state)
1843 {
1844         struct drm_device *dev = crtc->dev;
1845         struct drm_i915_private *dev_priv = dev->dev_private;
1846         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1847         struct intel_framebuffer *intel_fb;
1848         struct drm_i915_gem_object *obj;
1849         int plane = intel_crtc->plane;
1850         unsigned long Start, Offset;
1851         u32 dspcntr;
1852         u32 reg;
1853
1854         switch (plane) {
1855         case 0:
1856         case 1:
1857                 break;
1858         default:
1859                 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1860                 return -EINVAL;
1861         }
1862
1863         intel_fb = to_intel_framebuffer(fb);
1864         obj = intel_fb->obj;
1865
1866         reg = DSPCNTR(plane);
1867         dspcntr = I915_READ(reg);
1868         /* Mask out pixel format bits in case we change it */
1869         dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1870         switch (fb->bits_per_pixel) {
1871         case 8:
1872                 dspcntr |= DISPPLANE_8BPP;
1873                 break;
1874         case 16:
1875                 if (fb->depth == 15)
1876                         dspcntr |= DISPPLANE_15_16BPP;
1877                 else
1878                         dspcntr |= DISPPLANE_16BPP;
1879                 break;
1880         case 24:
1881         case 32:
1882                 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1883                 break;
1884         default:
1885                 DRM_ERROR("Unknown color depth\n");
1886                 return -EINVAL;
1887         }
1888         if (INTEL_INFO(dev)->gen >= 4) {
1889                 if (obj->tiling_mode != I915_TILING_NONE)
1890                         dspcntr |= DISPPLANE_TILED;
1891                 else
1892                         dspcntr &= ~DISPPLANE_TILED;
1893         }
1894
1895         if (HAS_PCH_SPLIT(dev))
1896                 /* must disable */
1897                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1898
1899         I915_WRITE(reg, dspcntr);
1900
1901         Start = obj->gtt_offset;
1902         Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
1903
1904         DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
1905                       Start, Offset, x, y, fb->pitch);
1906         I915_WRITE(DSPSTRIDE(plane), fb->pitch);
1907         if (INTEL_INFO(dev)->gen >= 4) {
1908                 I915_WRITE(DSPSURF(plane), Start);
1909                 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
1910                 I915_WRITE(DSPADDR(plane), Offset);
1911         } else
1912                 I915_WRITE(DSPADDR(plane), Start + Offset);
1913         POSTING_READ(reg);
1914
1915         intel_update_fbc(dev);
1916         intel_increase_pllclock(crtc);
1917
1918         return 0;
1919 }
1920
1921 static int
1922 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1923                     struct drm_framebuffer *old_fb)
1924 {
1925         struct drm_device *dev = crtc->dev;
1926         struct drm_i915_master_private *master_priv;
1927         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1928         int ret;
1929
1930         /* no fb bound */
1931         if (!crtc->fb) {
1932                 DRM_DEBUG_KMS("No FB bound\n");
1933                 return 0;
1934         }
1935
1936         switch (intel_crtc->plane) {
1937         case 0:
1938         case 1:
1939                 break;
1940         default:
1941                 return -EINVAL;
1942         }
1943
1944         mutex_lock(&dev->struct_mutex);
1945         ret = intel_pin_and_fence_fb_obj(dev,
1946                                          to_intel_framebuffer(crtc->fb)->obj,
1947                                          NULL);
1948         if (ret != 0) {
1949                 mutex_unlock(&dev->struct_mutex);
1950                 return ret;
1951         }
1952
1953         if (old_fb) {
1954                 struct drm_i915_private *dev_priv = dev->dev_private;
1955                 struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
1956
1957                 wait_event(dev_priv->pending_flip_queue,
1958                            atomic_read(&dev_priv->mm.wedged) ||
1959                            atomic_read(&obj->pending_flip) == 0);
1960
1961                 /* Big Hammer, we also need to ensure that any pending
1962                  * MI_WAIT_FOR_EVENT inside a user batch buffer on the
1963                  * current scanout is retired before unpinning the old
1964                  * framebuffer.
1965                  *
1966                  * This should only fail upon a hung GPU, in which case we
1967                  * can safely continue.
1968                  */
1969                 ret = i915_gem_object_flush_gpu(obj);
1970                 (void) ret;
1971         }
1972
1973         ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y,
1974                                          LEAVE_ATOMIC_MODE_SET);
1975         if (ret) {
1976                 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
1977                 mutex_unlock(&dev->struct_mutex);
1978                 return ret;
1979         }
1980
1981         if (old_fb) {
1982                 intel_wait_for_vblank(dev, intel_crtc->pipe);
1983                 i915_gem_object_unpin(to_intel_framebuffer(old_fb)->obj);
1984         }
1985
1986         mutex_unlock(&dev->struct_mutex);
1987
1988         if (!dev->primary->master)
1989                 return 0;
1990
1991         master_priv = dev->primary->master->driver_priv;
1992         if (!master_priv->sarea_priv)
1993                 return 0;
1994
1995         if (intel_crtc->pipe) {
1996                 master_priv->sarea_priv->pipeB_x = x;
1997                 master_priv->sarea_priv->pipeB_y = y;
1998         } else {
1999                 master_priv->sarea_priv->pipeA_x = x;
2000                 master_priv->sarea_priv->pipeA_y = y;
2001         }
2002
2003         return 0;
2004 }
2005
2006 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
2007 {
2008         struct drm_device *dev = crtc->dev;
2009         struct drm_i915_private *dev_priv = dev->dev_private;
2010         u32 dpa_ctl;
2011
2012         DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
2013         dpa_ctl = I915_READ(DP_A);
2014         dpa_ctl &= ~DP_PLL_FREQ_MASK;
2015
2016         if (clock < 200000) {
2017                 u32 temp;
2018                 dpa_ctl |= DP_PLL_FREQ_160MHZ;
2019                 /* workaround for 160Mhz:
2020                    1) program 0x4600c bits 15:0 = 0x8124
2021                    2) program 0x46010 bit 0 = 1
2022                    3) program 0x46034 bit 24 = 1
2023                    4) program 0x64000 bit 14 = 1
2024                    */
2025                 temp = I915_READ(0x4600c);
2026                 temp &= 0xffff0000;
2027                 I915_WRITE(0x4600c, temp | 0x8124);
2028
2029                 temp = I915_READ(0x46010);
2030                 I915_WRITE(0x46010, temp | 1);
2031
2032                 temp = I915_READ(0x46034);
2033                 I915_WRITE(0x46034, temp | (1 << 24));
2034         } else {
2035                 dpa_ctl |= DP_PLL_FREQ_270MHZ;
2036         }
2037         I915_WRITE(DP_A, dpa_ctl);
2038
2039         POSTING_READ(DP_A);
2040         udelay(500);
2041 }
2042
2043 static void intel_fdi_normal_train(struct drm_crtc *crtc)
2044 {
2045         struct drm_device *dev = crtc->dev;
2046         struct drm_i915_private *dev_priv = dev->dev_private;
2047         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2048         int pipe = intel_crtc->pipe;
2049         u32 reg, temp;
2050
2051         /* enable normal train */
2052         reg = FDI_TX_CTL(pipe);
2053         temp = I915_READ(reg);
2054         temp &= ~FDI_LINK_TRAIN_NONE;
2055         temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
2056         I915_WRITE(reg, temp);
2057
2058         reg = FDI_RX_CTL(pipe);
2059         temp = I915_READ(reg);
2060         if (HAS_PCH_CPT(dev)) {
2061                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2062                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
2063         } else {
2064                 temp &= ~FDI_LINK_TRAIN_NONE;
2065                 temp |= FDI_LINK_TRAIN_NONE;
2066         }
2067         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
2068
2069         /* wait one idle pattern time */
2070         POSTING_READ(reg);
2071         udelay(1000);
2072 }
2073
2074 /* The FDI link training functions for ILK/Ibexpeak. */
2075 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
2076 {
2077         struct drm_device *dev = crtc->dev;
2078         struct drm_i915_private *dev_priv = dev->dev_private;
2079         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2080         int pipe = intel_crtc->pipe;
2081         int plane = intel_crtc->plane;
2082         u32 reg, temp, tries;
2083
2084         /* FDI needs bits from pipe & plane first */
2085         assert_pipe_enabled(dev_priv, pipe);
2086         assert_plane_enabled(dev_priv, plane);
2087
2088         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2089            for train result */
2090         reg = FDI_RX_IMR(pipe);
2091         temp = I915_READ(reg);
2092         temp &= ~FDI_RX_SYMBOL_LOCK;
2093         temp &= ~FDI_RX_BIT_LOCK;
2094         I915_WRITE(reg, temp);
2095         I915_READ(reg);
2096         udelay(150);
2097
2098         /* enable CPU FDI TX and PCH FDI RX */
2099         reg = FDI_TX_CTL(pipe);
2100         temp = I915_READ(reg);
2101         temp &= ~(7 << 19);
2102         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2103         temp &= ~FDI_LINK_TRAIN_NONE;
2104         temp |= FDI_LINK_TRAIN_PATTERN_1;
2105         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2106
2107         reg = FDI_RX_CTL(pipe);
2108         temp = I915_READ(reg);
2109         temp &= ~FDI_LINK_TRAIN_NONE;
2110         temp |= FDI_LINK_TRAIN_PATTERN_1;
2111         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2112
2113         POSTING_READ(reg);
2114         udelay(150);
2115
2116         /* Ironlake workaround, enable clock pointer after FDI enable*/
2117         if (HAS_PCH_IBX(dev)) {
2118                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2119                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
2120                            FDI_RX_PHASE_SYNC_POINTER_EN);
2121         }
2122
2123         reg = FDI_RX_IIR(pipe);
2124         for (tries = 0; tries < 5; tries++) {
2125                 temp = I915_READ(reg);
2126                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2127
2128                 if ((temp & FDI_RX_BIT_LOCK)) {
2129                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2130                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2131                         break;
2132                 }
2133         }
2134         if (tries == 5)
2135                 DRM_ERROR("FDI train 1 fail!\n");
2136
2137         /* Train 2 */
2138         reg = FDI_TX_CTL(pipe);
2139         temp = I915_READ(reg);
2140         temp &= ~FDI_LINK_TRAIN_NONE;
2141         temp |= FDI_LINK_TRAIN_PATTERN_2;
2142         I915_WRITE(reg, temp);
2143
2144         reg = FDI_RX_CTL(pipe);
2145         temp = I915_READ(reg);
2146         temp &= ~FDI_LINK_TRAIN_NONE;
2147         temp |= FDI_LINK_TRAIN_PATTERN_2;
2148         I915_WRITE(reg, temp);
2149
2150         POSTING_READ(reg);
2151         udelay(150);
2152
2153         reg = FDI_RX_IIR(pipe);
2154         for (tries = 0; tries < 5; tries++) {
2155                 temp = I915_READ(reg);
2156                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2157
2158                 if (temp & FDI_RX_SYMBOL_LOCK) {
2159                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2160                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2161                         break;
2162                 }
2163         }
2164         if (tries == 5)
2165                 DRM_ERROR("FDI train 2 fail!\n");
2166
2167         DRM_DEBUG_KMS("FDI train done\n");
2168
2169 }
2170
2171 static const int snb_b_fdi_train_param [] = {
2172         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
2173         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
2174         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
2175         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
2176 };
2177
2178 /* The FDI link training functions for SNB/Cougarpoint. */
2179 static void gen6_fdi_link_train(struct drm_crtc *crtc)
2180 {
2181         struct drm_device *dev = crtc->dev;
2182         struct drm_i915_private *dev_priv = dev->dev_private;
2183         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2184         int pipe = intel_crtc->pipe;
2185         u32 reg, temp, i;
2186
2187         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2188            for train result */
2189         reg = FDI_RX_IMR(pipe);
2190         temp = I915_READ(reg);
2191         temp &= ~FDI_RX_SYMBOL_LOCK;
2192         temp &= ~FDI_RX_BIT_LOCK;
2193         I915_WRITE(reg, temp);
2194
2195         POSTING_READ(reg);
2196         udelay(150);
2197
2198         /* enable CPU FDI TX and PCH FDI RX */
2199         reg = FDI_TX_CTL(pipe);
2200         temp = I915_READ(reg);
2201         temp &= ~(7 << 19);
2202         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2203         temp &= ~FDI_LINK_TRAIN_NONE;
2204         temp |= FDI_LINK_TRAIN_PATTERN_1;
2205         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2206         /* SNB-B */
2207         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2208         I915_WRITE(reg, temp | FDI_TX_ENABLE);
2209
2210         reg = FDI_RX_CTL(pipe);
2211         temp = I915_READ(reg);
2212         if (HAS_PCH_CPT(dev)) {
2213                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2214                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2215         } else {
2216                 temp &= ~FDI_LINK_TRAIN_NONE;
2217                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2218         }
2219         I915_WRITE(reg, temp | FDI_RX_ENABLE);
2220
2221         POSTING_READ(reg);
2222         udelay(150);
2223
2224         for (i = 0; i < 4; i++ ) {
2225                 reg = FDI_TX_CTL(pipe);
2226                 temp = I915_READ(reg);
2227                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2228                 temp |= snb_b_fdi_train_param[i];
2229                 I915_WRITE(reg, temp);
2230
2231                 POSTING_READ(reg);
2232                 udelay(500);
2233
2234                 reg = FDI_RX_IIR(pipe);
2235                 temp = I915_READ(reg);
2236                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2237
2238                 if (temp & FDI_RX_BIT_LOCK) {
2239                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
2240                         DRM_DEBUG_KMS("FDI train 1 done.\n");
2241                         break;
2242                 }
2243         }
2244         if (i == 4)
2245                 DRM_ERROR("FDI train 1 fail!\n");
2246
2247         /* Train 2 */
2248         reg = FDI_TX_CTL(pipe);
2249         temp = I915_READ(reg);
2250         temp &= ~FDI_LINK_TRAIN_NONE;
2251         temp |= FDI_LINK_TRAIN_PATTERN_2;
2252         if (IS_GEN6(dev)) {
2253                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2254                 /* SNB-B */
2255                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
2256         }
2257         I915_WRITE(reg, temp);
2258
2259         reg = FDI_RX_CTL(pipe);
2260         temp = I915_READ(reg);
2261         if (HAS_PCH_CPT(dev)) {
2262                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2263                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
2264         } else {
2265                 temp &= ~FDI_LINK_TRAIN_NONE;
2266                 temp |= FDI_LINK_TRAIN_PATTERN_2;
2267         }
2268         I915_WRITE(reg, temp);
2269
2270         POSTING_READ(reg);
2271         udelay(150);
2272
2273         for (i = 0; i < 4; i++ ) {
2274                 reg = FDI_TX_CTL(pipe);
2275                 temp = I915_READ(reg);
2276                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
2277                 temp |= snb_b_fdi_train_param[i];
2278                 I915_WRITE(reg, temp);
2279
2280                 POSTING_READ(reg);
2281                 udelay(500);
2282
2283                 reg = FDI_RX_IIR(pipe);
2284                 temp = I915_READ(reg);
2285                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
2286
2287                 if (temp & FDI_RX_SYMBOL_LOCK) {
2288                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
2289                         DRM_DEBUG_KMS("FDI train 2 done.\n");
2290                         break;
2291                 }
2292         }
2293         if (i == 4)
2294                 DRM_ERROR("FDI train 2 fail!\n");
2295
2296         DRM_DEBUG_KMS("FDI train done.\n");
2297 }
2298
2299 static void ironlake_fdi_enable(struct drm_crtc *crtc)
2300 {
2301         struct drm_device *dev = crtc->dev;
2302         struct drm_i915_private *dev_priv = dev->dev_private;
2303         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2304         int pipe = intel_crtc->pipe;
2305         u32 reg, temp;
2306
2307         /* Write the TU size bits so error detection works */
2308         I915_WRITE(FDI_RX_TUSIZE1(pipe),
2309                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
2310
2311         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2312         reg = FDI_RX_CTL(pipe);
2313         temp = I915_READ(reg);
2314         temp &= ~((0x7 << 19) | (0x7 << 16));
2315         temp |= (intel_crtc->fdi_lanes - 1) << 19;
2316         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2317         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
2318
2319         POSTING_READ(reg);
2320         udelay(200);
2321
2322         /* Switch from Rawclk to PCDclk */
2323         temp = I915_READ(reg);
2324         I915_WRITE(reg, temp | FDI_PCDCLK);
2325
2326         POSTING_READ(reg);
2327         udelay(200);
2328
2329         /* Enable CPU FDI TX PLL, always on for Ironlake */
2330         reg = FDI_TX_CTL(pipe);
2331         temp = I915_READ(reg);
2332         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
2333                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
2334
2335                 POSTING_READ(reg);
2336                 udelay(100);
2337         }
2338 }
2339
2340 static void ironlake_fdi_disable(struct drm_crtc *crtc)
2341 {
2342         struct drm_device *dev = crtc->dev;
2343         struct drm_i915_private *dev_priv = dev->dev_private;
2344         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2345         int pipe = intel_crtc->pipe;
2346         u32 reg, temp;
2347
2348         /* disable CPU FDI tx and PCH FDI rx */
2349         reg = FDI_TX_CTL(pipe);
2350         temp = I915_READ(reg);
2351         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2352         POSTING_READ(reg);
2353
2354         reg = FDI_RX_CTL(pipe);
2355         temp = I915_READ(reg);
2356         temp &= ~(0x7 << 16);
2357         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2358         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2359
2360         POSTING_READ(reg);
2361         udelay(100);
2362
2363         /* Ironlake workaround, disable clock pointer after downing FDI */
2364         if (HAS_PCH_IBX(dev)) {
2365                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
2366                 I915_WRITE(FDI_RX_CHICKEN(pipe),
2367                            I915_READ(FDI_RX_CHICKEN(pipe) &
2368                                      ~FDI_RX_PHASE_SYNC_POINTER_EN));
2369         }
2370
2371         /* still set train pattern 1 */
2372         reg = FDI_TX_CTL(pipe);
2373         temp = I915_READ(reg);
2374         temp &= ~FDI_LINK_TRAIN_NONE;
2375         temp |= FDI_LINK_TRAIN_PATTERN_1;
2376         I915_WRITE(reg, temp);
2377
2378         reg = FDI_RX_CTL(pipe);
2379         temp = I915_READ(reg);
2380         if (HAS_PCH_CPT(dev)) {
2381                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2382                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2383         } else {
2384                 temp &= ~FDI_LINK_TRAIN_NONE;
2385                 temp |= FDI_LINK_TRAIN_PATTERN_1;
2386         }
2387         /* BPC in FDI rx is consistent with that in PIPECONF */
2388         temp &= ~(0x07 << 16);
2389         temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2390         I915_WRITE(reg, temp);
2391
2392         POSTING_READ(reg);
2393         udelay(100);
2394 }
2395
2396 /*
2397  * When we disable a pipe, we need to clear any pending scanline wait events
2398  * to avoid hanging the ring, which we assume we are waiting on.
2399  */
2400 static void intel_clear_scanline_wait(struct drm_device *dev)
2401 {
2402         struct drm_i915_private *dev_priv = dev->dev_private;
2403         struct intel_ring_buffer *ring;
2404         u32 tmp;
2405
2406         if (IS_GEN2(dev))
2407                 /* Can't break the hang on i8xx */
2408                 return;
2409
2410         ring = LP_RING(dev_priv);
2411         tmp = I915_READ_CTL(ring);
2412         if (tmp & RING_WAIT)
2413                 I915_WRITE_CTL(ring, tmp);
2414 }
2415
2416 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
2417 {
2418         struct drm_i915_gem_object *obj;
2419         struct drm_i915_private *dev_priv;
2420
2421         if (crtc->fb == NULL)
2422                 return;
2423
2424         obj = to_intel_framebuffer(crtc->fb)->obj;
2425         dev_priv = crtc->dev->dev_private;
2426         wait_event(dev_priv->pending_flip_queue,
2427                    atomic_read(&obj->pending_flip) == 0);
2428 }
2429
2430 static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
2431 {
2432         struct drm_device *dev = crtc->dev;
2433         struct drm_mode_config *mode_config = &dev->mode_config;
2434         struct intel_encoder *encoder;
2435
2436         /*
2437          * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2438          * must be driven by its own crtc; no sharing is possible.
2439          */
2440         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
2441                 if (encoder->base.crtc != crtc)
2442                         continue;
2443
2444                 switch (encoder->type) {
2445                 case INTEL_OUTPUT_EDP:
2446                         if (!intel_encoder_is_pch_edp(&encoder->base))
2447                                 return false;
2448                         continue;
2449                 }
2450         }
2451
2452         return true;
2453 }
2454
2455 /*
2456  * Enable PCH resources required for PCH ports:
2457  *   - PCH PLLs
2458  *   - FDI training & RX/TX
2459  *   - update transcoder timings
2460  *   - DP transcoding bits
2461  *   - transcoder
2462  */
2463 static void ironlake_pch_enable(struct drm_crtc *crtc)
2464 {
2465         struct drm_device *dev = crtc->dev;
2466         struct drm_i915_private *dev_priv = dev->dev_private;
2467         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2468         int pipe = intel_crtc->pipe;
2469         u32 reg, temp;
2470
2471         /* For PCH output, training FDI link */
2472         if (IS_GEN6(dev))
2473                 gen6_fdi_link_train(crtc);
2474         else
2475                 ironlake_fdi_link_train(crtc);
2476
2477         intel_enable_pch_pll(dev_priv, pipe);
2478
2479         if (HAS_PCH_CPT(dev)) {
2480                 /* Be sure PCH DPLL SEL is set */
2481                 temp = I915_READ(PCH_DPLL_SEL);
2482                 if (pipe == 0 && (temp & TRANSA_DPLL_ENABLE) == 0)
2483                         temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2484                 else if (pipe == 1 && (temp & TRANSB_DPLL_ENABLE) == 0)
2485                         temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2486                 I915_WRITE(PCH_DPLL_SEL, temp);
2487         }
2488
2489         /* set transcoder timing, panel must allow it */
2490         assert_panel_unlocked(dev_priv, pipe);
2491         I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2492         I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2493         I915_WRITE(TRANS_HSYNC(pipe),  I915_READ(HSYNC(pipe)));
2494
2495         I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2496         I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2497         I915_WRITE(TRANS_VSYNC(pipe),  I915_READ(VSYNC(pipe)));
2498
2499         intel_fdi_normal_train(crtc);
2500
2501         /* For PCH DP, enable TRANS_DP_CTL */
2502         if (HAS_PCH_CPT(dev) &&
2503             intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
2504                 reg = TRANS_DP_CTL(pipe);
2505                 temp = I915_READ(reg);
2506                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
2507                           TRANS_DP_SYNC_MASK |
2508                           TRANS_DP_BPC_MASK);
2509                 temp |= (TRANS_DP_OUTPUT_ENABLE |
2510                          TRANS_DP_ENH_FRAMING);
2511                 temp |= TRANS_DP_8BPC;
2512
2513                 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2514                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2515                 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2516                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2517
2518                 switch (intel_trans_dp_port_sel(crtc)) {
2519                 case PCH_DP_B:
2520                         temp |= TRANS_DP_PORT_SEL_B;
2521                         break;
2522                 case PCH_DP_C:
2523                         temp |= TRANS_DP_PORT_SEL_C;
2524                         break;
2525                 case PCH_DP_D:
2526                         temp |= TRANS_DP_PORT_SEL_D;
2527                         break;
2528                 default:
2529                         DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2530                         temp |= TRANS_DP_PORT_SEL_B;
2531                         break;
2532                 }
2533
2534                 I915_WRITE(reg, temp);
2535         }
2536
2537         intel_enable_transcoder(dev_priv, pipe);
2538 }
2539
2540 static void ironlake_crtc_enable(struct drm_crtc *crtc)
2541 {
2542         struct drm_device *dev = crtc->dev;
2543         struct drm_i915_private *dev_priv = dev->dev_private;
2544         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2545         int pipe = intel_crtc->pipe;
2546         int plane = intel_crtc->plane;
2547         u32 temp;
2548         bool is_pch_port;
2549
2550         if (intel_crtc->active)
2551                 return;
2552
2553         intel_crtc->active = true;
2554         intel_update_watermarks(dev);
2555
2556         if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2557                 temp = I915_READ(PCH_LVDS);
2558                 if ((temp & LVDS_PORT_EN) == 0)
2559                         I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
2560         }
2561
2562         is_pch_port = intel_crtc_driving_pch(crtc);
2563
2564         if (is_pch_port)
2565                 ironlake_fdi_enable(crtc);
2566         else
2567                 ironlake_fdi_disable(crtc);
2568
2569         /* Enable panel fitting for LVDS */
2570         if (dev_priv->pch_pf_size &&
2571             (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
2572                 /* Force use of hard-coded filter coefficients
2573                  * as some pre-programmed values are broken,
2574                  * e.g. x201.
2575                  */
2576                 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
2577                 I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
2578                 I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
2579         }
2580
2581         intel_enable_pipe(dev_priv, pipe, is_pch_port);
2582         intel_enable_plane(dev_priv, plane, pipe);
2583
2584         if (is_pch_port)
2585                 ironlake_pch_enable(crtc);
2586
2587         intel_crtc_load_lut(crtc);
2588         intel_update_fbc(dev);
2589         intel_crtc_update_cursor(crtc, true);
2590 }
2591
2592 static void ironlake_crtc_disable(struct drm_crtc *crtc)
2593 {
2594         struct drm_device *dev = crtc->dev;
2595         struct drm_i915_private *dev_priv = dev->dev_private;
2596         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2597         int pipe = intel_crtc->pipe;
2598         int plane = intel_crtc->plane;
2599         u32 reg, temp;
2600
2601         if (!intel_crtc->active)
2602                 return;
2603
2604         intel_crtc_wait_for_pending_flips(crtc);
2605         drm_vblank_off(dev, pipe);
2606         intel_crtc_update_cursor(crtc, false);
2607
2608         intel_disable_plane(dev_priv, plane, pipe);
2609
2610         if (dev_priv->cfb_plane == plane &&
2611             dev_priv->display.disable_fbc)
2612                 dev_priv->display.disable_fbc(dev);
2613
2614         intel_disable_pipe(dev_priv, pipe);
2615
2616         /* Disable PF */
2617         I915_WRITE(PF_CTL(pipe), 0);
2618         I915_WRITE(PF_WIN_SZ(pipe), 0);
2619
2620         ironlake_fdi_disable(crtc);
2621
2622         /* This is a horrible layering violation; we should be doing this in
2623          * the connector/encoder ->prepare instead, but we don't always have
2624          * enough information there about the config to know whether it will
2625          * actually be necessary or just cause undesired flicker.
2626          */
2627         intel_disable_pch_ports(dev_priv, pipe);
2628
2629         intel_disable_transcoder(dev_priv, pipe);
2630
2631         if (HAS_PCH_CPT(dev)) {
2632                 /* disable TRANS_DP_CTL */
2633                 reg = TRANS_DP_CTL(pipe);
2634                 temp = I915_READ(reg);
2635                 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
2636                 temp |= TRANS_DP_PORT_SEL_NONE;
2637                 I915_WRITE(reg, temp);
2638
2639                 /* disable DPLL_SEL */
2640                 temp = I915_READ(PCH_DPLL_SEL);
2641                 switch (pipe) {
2642                 case 0:
2643                         temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2644                         break;
2645                 case 1:
2646                         temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2647                         break;
2648                 case 2:
2649                         /* FIXME: manage transcoder PLLs? */
2650                         temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
2651                         break;
2652                 default:
2653                         BUG(); /* wtf */
2654                 }
2655                 I915_WRITE(PCH_DPLL_SEL, temp);
2656         }
2657
2658         /* disable PCH DPLL */
2659         intel_disable_pch_pll(dev_priv, pipe);
2660
2661         /* Switch from PCDclk to Rawclk */
2662         reg = FDI_RX_CTL(pipe);
2663         temp = I915_READ(reg);
2664         I915_WRITE(reg, temp & ~FDI_PCDCLK);
2665
2666         /* Disable CPU FDI TX PLL */
2667         reg = FDI_TX_CTL(pipe);
2668         temp = I915_READ(reg);
2669         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2670
2671         POSTING_READ(reg);
2672         udelay(100);
2673
2674         reg = FDI_RX_CTL(pipe);
2675         temp = I915_READ(reg);
2676         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2677
2678         /* Wait for the clocks to turn off. */
2679         POSTING_READ(reg);
2680         udelay(100);
2681
2682         intel_crtc->active = false;
2683         intel_update_watermarks(dev);
2684         intel_update_fbc(dev);
2685         intel_clear_scanline_wait(dev);
2686 }
2687
2688 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
2689 {
2690         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2691         int pipe = intel_crtc->pipe;
2692         int plane = intel_crtc->plane;
2693
2694         /* XXX: When our outputs are all unaware of DPMS modes other than off
2695          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2696          */
2697         switch (mode) {
2698         case DRM_MODE_DPMS_ON:
2699         case DRM_MODE_DPMS_STANDBY:
2700         case DRM_MODE_DPMS_SUSPEND:
2701                 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
2702                 ironlake_crtc_enable(crtc);
2703                 break;
2704
2705         case DRM_MODE_DPMS_OFF:
2706                 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
2707                 ironlake_crtc_disable(crtc);
2708                 break;
2709         }
2710 }
2711
2712 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
2713 {
2714         if (!enable && intel_crtc->overlay) {
2715                 struct drm_device *dev = intel_crtc->base.dev;
2716                 struct drm_i915_private *dev_priv = dev->dev_private;
2717
2718                 mutex_lock(&dev->struct_mutex);
2719                 dev_priv->mm.interruptible = false;
2720                 (void) intel_overlay_switch_off(intel_crtc->overlay);
2721                 dev_priv->mm.interruptible = true;
2722                 mutex_unlock(&dev->struct_mutex);
2723         }
2724
2725         /* Let userspace switch the overlay on again. In most cases userspace
2726          * has to recompute where to put it anyway.
2727          */
2728 }
2729
2730 static void i9xx_crtc_enable(struct drm_crtc *crtc)
2731 {
2732         struct drm_device *dev = crtc->dev;
2733         struct drm_i915_private *dev_priv = dev->dev_private;
2734         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2735         int pipe = intel_crtc->pipe;
2736         int plane = intel_crtc->plane;
2737
2738         if (intel_crtc->active)
2739                 return;
2740
2741         intel_crtc->active = true;
2742         intel_update_watermarks(dev);
2743
2744         intel_enable_pll(dev_priv, pipe);
2745         intel_enable_pipe(dev_priv, pipe, false);
2746         intel_enable_plane(dev_priv, plane, pipe);
2747
2748         intel_crtc_load_lut(crtc);
2749         intel_update_fbc(dev);
2750
2751         /* Give the overlay scaler a chance to enable if it's on this pipe */
2752         intel_crtc_dpms_overlay(intel_crtc, true);
2753         intel_crtc_update_cursor(crtc, true);
2754 }
2755
2756 static void i9xx_crtc_disable(struct drm_crtc *crtc)
2757 {
2758         struct drm_device *dev = crtc->dev;
2759         struct drm_i915_private *dev_priv = dev->dev_private;
2760         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2761         int pipe = intel_crtc->pipe;
2762         int plane = intel_crtc->plane;
2763
2764         if (!intel_crtc->active)
2765                 return;
2766
2767         /* Give the overlay scaler a chance to disable if it's on this pipe */
2768         intel_crtc_wait_for_pending_flips(crtc);
2769         drm_vblank_off(dev, pipe);
2770         intel_crtc_dpms_overlay(intel_crtc, false);
2771         intel_crtc_update_cursor(crtc, false);
2772
2773         if (dev_priv->cfb_plane == plane &&
2774             dev_priv->display.disable_fbc)
2775                 dev_priv->display.disable_fbc(dev);
2776
2777         intel_disable_plane(dev_priv, plane, pipe);
2778         intel_disable_pipe(dev_priv, pipe);
2779         intel_disable_pll(dev_priv, pipe);
2780
2781         intel_crtc->active = false;
2782         intel_update_fbc(dev);
2783         intel_update_watermarks(dev);
2784         intel_clear_scanline_wait(dev);
2785 }
2786
2787 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
2788 {
2789         /* XXX: When our outputs are all unaware of DPMS modes other than off
2790          * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2791          */
2792         switch (mode) {
2793         case DRM_MODE_DPMS_ON:
2794         case DRM_MODE_DPMS_STANDBY:
2795         case DRM_MODE_DPMS_SUSPEND:
2796                 i9xx_crtc_enable(crtc);
2797                 break;
2798         case DRM_MODE_DPMS_OFF:
2799                 i9xx_crtc_disable(crtc);
2800                 break;
2801         }
2802 }
2803
2804 /**
2805  * Sets the power management mode of the pipe and plane.
2806  */
2807 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
2808 {
2809         struct drm_device *dev = crtc->dev;
2810         struct drm_i915_private *dev_priv = dev->dev_private;
2811         struct drm_i915_master_private *master_priv;
2812         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2813         int pipe = intel_crtc->pipe;
2814         bool enabled;
2815
2816         if (intel_crtc->dpms_mode == mode)
2817                 return;
2818
2819         intel_crtc->dpms_mode = mode;
2820
2821         dev_priv->display.dpms(crtc, mode);
2822
2823         if (!dev->primary->master)
2824                 return;
2825
2826         master_priv = dev->primary->master->driver_priv;
2827         if (!master_priv->sarea_priv)
2828                 return;
2829
2830         enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
2831
2832         switch (pipe) {
2833         case 0:
2834                 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
2835                 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
2836                 break;
2837         case 1:
2838                 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
2839                 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
2840                 break;
2841         default:
2842                 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
2843                 break;
2844         }
2845 }
2846
2847 static void intel_crtc_disable(struct drm_crtc *crtc)
2848 {
2849         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2850         struct drm_device *dev = crtc->dev;
2851
2852         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
2853
2854         if (crtc->fb) {
2855                 mutex_lock(&dev->struct_mutex);
2856                 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
2857                 mutex_unlock(&dev->struct_mutex);
2858         }
2859 }
2860
2861 /* Prepare for a mode set.
2862  *
2863  * Note we could be a lot smarter here.  We need to figure out which outputs
2864  * will be enabled, which disabled (in short, how the config will changes)
2865  * and perform the minimum necessary steps to accomplish that, e.g. updating
2866  * watermarks, FBC configuration, making sure PLLs are programmed correctly,
2867  * panel fitting is in the proper state, etc.
2868  */
2869 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
2870 {
2871         i9xx_crtc_disable(crtc);
2872 }
2873
2874 static void i9xx_crtc_commit(struct drm_crtc *crtc)
2875 {
2876         i9xx_crtc_enable(crtc);
2877 }
2878
2879 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
2880 {
2881         ironlake_crtc_disable(crtc);
2882 }
2883
2884 static void ironlake_crtc_commit(struct drm_crtc *crtc)
2885 {
2886         ironlake_crtc_enable(crtc);
2887 }
2888
2889 void intel_encoder_prepare (struct drm_encoder *encoder)
2890 {
2891         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2892         /* lvds has its own version of prepare see intel_lvds_prepare */
2893         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
2894 }
2895
2896 void intel_encoder_commit (struct drm_encoder *encoder)
2897 {
2898         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2899         /* lvds has its own version of commit see intel_lvds_commit */
2900         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
2901 }
2902
2903 void intel_encoder_destroy(struct drm_encoder *encoder)
2904 {
2905         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
2906
2907         drm_encoder_cleanup(encoder);
2908         kfree(intel_encoder);
2909 }
2910
2911 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
2912                                   struct drm_display_mode *mode,
2913                                   struct drm_display_mode *adjusted_mode)
2914 {
2915         struct drm_device *dev = crtc->dev;
2916
2917         if (HAS_PCH_SPLIT(dev)) {
2918                 /* FDI link clock is fixed at 2.7G */
2919                 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
2920                         return false;
2921         }
2922
2923         /* XXX some encoders set the crtcinfo, others don't.
2924          * Obviously we need some form of conflict resolution here...
2925          */
2926         if (adjusted_mode->crtc_htotal == 0)
2927                 drm_mode_set_crtcinfo(adjusted_mode, 0);
2928
2929         return true;
2930 }
2931
2932 static int i945_get_display_clock_speed(struct drm_device *dev)
2933 {
2934         return 400000;
2935 }
2936
2937 static int i915_get_display_clock_speed(struct drm_device *dev)
2938 {
2939         return 333000;
2940 }
2941
2942 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
2943 {
2944         return 200000;
2945 }
2946
2947 static int i915gm_get_display_clock_speed(struct drm_device *dev)
2948 {
2949         u16 gcfgc = 0;
2950
2951         pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
2952
2953         if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
2954                 return 133000;
2955         else {
2956                 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
2957                 case GC_DISPLAY_CLOCK_333_MHZ:
2958                         return 333000;
2959                 default:
2960                 case GC_DISPLAY_CLOCK_190_200_MHZ:
2961                         return 190000;
2962                 }
2963         }
2964 }
2965
2966 static int i865_get_display_clock_speed(struct drm_device *dev)
2967 {
2968         return 266000;
2969 }
2970
2971 static int i855_get_display_clock_speed(struct drm_device *dev)
2972 {
2973         u16 hpllcc = 0;
2974         /* Assume that the hardware is in the high speed state.  This
2975          * should be the default.
2976          */
2977         switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
2978         case GC_CLOCK_133_200:
2979         case GC_CLOCK_100_200:
2980                 return 200000;
2981         case GC_CLOCK_166_250:
2982                 return 250000;
2983         case GC_CLOCK_100_133:
2984                 return 133000;
2985         }
2986
2987         /* Shouldn't happen */
2988         return 0;
2989 }
2990
2991 static int i830_get_display_clock_speed(struct drm_device *dev)
2992 {
2993         return 133000;
2994 }
2995
2996 struct fdi_m_n {
2997         u32        tu;
2998         u32        gmch_m;
2999         u32        gmch_n;
3000         u32        link_m;
3001         u32        link_n;
3002 };
3003
3004 static void
3005 fdi_reduce_ratio(u32 *num, u32 *den)
3006 {
3007         while (*num > 0xffffff || *den > 0xffffff) {
3008                 *num >>= 1;
3009                 *den >>= 1;
3010         }
3011 }
3012
3013 static void
3014 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
3015                      int link_clock, struct fdi_m_n *m_n)
3016 {
3017         m_n->tu = 64; /* default size */
3018
3019         /* BUG_ON(pixel_clock > INT_MAX / 36); */
3020         m_n->gmch_m = bits_per_pixel * pixel_clock;
3021         m_n->gmch_n = link_clock * nlanes * 8;
3022         fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
3023
3024         m_n->link_m = pixel_clock;
3025         m_n->link_n = link_clock;
3026         fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
3027 }
3028
3029
3030 struct intel_watermark_params {
3031         unsigned long fifo_size;
3032         unsigned long max_wm;
3033         unsigned long default_wm;
3034         unsigned long guard_size;
3035         unsigned long cacheline_size;
3036 };
3037
3038 /* Pineview has different values for various configs */
3039 static const struct intel_watermark_params pineview_display_wm = {
3040         PINEVIEW_DISPLAY_FIFO,
3041         PINEVIEW_MAX_WM,
3042         PINEVIEW_DFT_WM,
3043         PINEVIEW_GUARD_WM,
3044         PINEVIEW_FIFO_LINE_SIZE
3045 };
3046 static const struct intel_watermark_params pineview_display_hplloff_wm = {
3047         PINEVIEW_DISPLAY_FIFO,
3048         PINEVIEW_MAX_WM,
3049         PINEVIEW_DFT_HPLLOFF_WM,
3050         PINEVIEW_GUARD_WM,
3051         PINEVIEW_FIFO_LINE_SIZE
3052 };
3053 static const struct intel_watermark_params pineview_cursor_wm = {
3054         PINEVIEW_CURSOR_FIFO,
3055         PINEVIEW_CURSOR_MAX_WM,
3056         PINEVIEW_CURSOR_DFT_WM,
3057         PINEVIEW_CURSOR_GUARD_WM,
3058         PINEVIEW_FIFO_LINE_SIZE,
3059 };
3060 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
3061         PINEVIEW_CURSOR_FIFO,
3062         PINEVIEW_CURSOR_MAX_WM,
3063         PINEVIEW_CURSOR_DFT_WM,
3064         PINEVIEW_CURSOR_GUARD_WM,
3065         PINEVIEW_FIFO_LINE_SIZE
3066 };
3067 static const struct intel_watermark_params g4x_wm_info = {
3068         G4X_FIFO_SIZE,
3069         G4X_MAX_WM,
3070         G4X_MAX_WM,
3071         2,
3072         G4X_FIFO_LINE_SIZE,
3073 };
3074 static const struct intel_watermark_params g4x_cursor_wm_info = {
3075         I965_CURSOR_FIFO,
3076         I965_CURSOR_MAX_WM,
3077         I965_CURSOR_DFT_WM,
3078         2,
3079         G4X_FIFO_LINE_SIZE,
3080 };
3081 static const struct intel_watermark_params i965_cursor_wm_info = {
3082         I965_CURSOR_FIFO,
3083         I965_CURSOR_MAX_WM,
3084         I965_CURSOR_DFT_WM,
3085         2,
3086         I915_FIFO_LINE_SIZE,
3087 };
3088 static const struct intel_watermark_params i945_wm_info = {
3089         I945_FIFO_SIZE,
3090         I915_MAX_WM,
3091         1,
3092         2,
3093         I915_FIFO_LINE_SIZE
3094 };
3095 static const struct intel_watermark_params i915_wm_info = {
3096         I915_FIFO_SIZE,
3097         I915_MAX_WM,
3098         1,
3099         2,
3100         I915_FIFO_LINE_SIZE
3101 };
3102 static const struct intel_watermark_params i855_wm_info = {
3103         I855GM_FIFO_SIZE,
3104         I915_MAX_WM,
3105         1,
3106         2,
3107         I830_FIFO_LINE_SIZE
3108 };
3109 static const struct intel_watermark_params i830_wm_info = {
3110         I830_FIFO_SIZE,
3111         I915_MAX_WM,
3112         1,
3113         2,
3114         I830_FIFO_LINE_SIZE
3115 };
3116
3117 static const struct intel_watermark_params ironlake_display_wm_info = {
3118         ILK_DISPLAY_FIFO,
3119         ILK_DISPLAY_MAXWM,
3120         ILK_DISPLAY_DFTWM,
3121         2,
3122         ILK_FIFO_LINE_SIZE
3123 };
3124 static const struct intel_watermark_params ironlake_cursor_wm_info = {
3125         ILK_CURSOR_FIFO,
3126         ILK_CURSOR_MAXWM,
3127         ILK_CURSOR_DFTWM,
3128         2,
3129         ILK_FIFO_LINE_SIZE
3130 };
3131 static const struct intel_watermark_params ironlake_display_srwm_info = {
3132         ILK_DISPLAY_SR_FIFO,
3133         ILK_DISPLAY_MAX_SRWM,
3134         ILK_DISPLAY_DFT_SRWM,
3135         2,
3136         ILK_FIFO_LINE_SIZE
3137 };
3138 static const struct intel_watermark_params ironlake_cursor_srwm_info = {
3139         ILK_CURSOR_SR_FIFO,
3140         ILK_CURSOR_MAX_SRWM,
3141         ILK_CURSOR_DFT_SRWM,
3142         2,
3143         ILK_FIFO_LINE_SIZE
3144 };
3145
3146 static const struct intel_watermark_params sandybridge_display_wm_info = {
3147         SNB_DISPLAY_FIFO,
3148         SNB_DISPLAY_MAXWM,
3149         SNB_DISPLAY_DFTWM,
3150         2,
3151         SNB_FIFO_LINE_SIZE
3152 };
3153 static const struct intel_watermark_params sandybridge_cursor_wm_info = {
3154         SNB_CURSOR_FIFO,
3155         SNB_CURSOR_MAXWM,
3156         SNB_CURSOR_DFTWM,
3157         2,
3158         SNB_FIFO_LINE_SIZE
3159 };
3160 static const struct intel_watermark_params sandybridge_display_srwm_info = {
3161         SNB_DISPLAY_SR_FIFO,
3162         SNB_DISPLAY_MAX_SRWM,
3163         SNB_DISPLAY_DFT_SRWM,
3164         2,
3165         SNB_FIFO_LINE_SIZE
3166 };
3167 static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
3168         SNB_CURSOR_SR_FIFO,
3169         SNB_CURSOR_MAX_SRWM,
3170         SNB_CURSOR_DFT_SRWM,
3171         2,
3172         SNB_FIFO_LINE_SIZE
3173 };
3174
3175
3176 /**
3177  * intel_calculate_wm - calculate watermark level
3178  * @clock_in_khz: pixel clock
3179  * @wm: chip FIFO params
3180  * @pixel_size: display pixel size
3181  * @latency_ns: memory latency for the platform
3182  *
3183  * Calculate the watermark level (the level at which the display plane will
3184  * start fetching from memory again).  Each chip has a different display
3185  * FIFO size and allocation, so the caller needs to figure that out and pass
3186  * in the correct intel_watermark_params structure.
3187  *
3188  * As the pixel clock runs, the FIFO will be drained at a rate that depends
3189  * on the pixel size.  When it reaches the watermark level, it'll start
3190  * fetching FIFO line sized based chunks from memory until the FIFO fills
3191  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
3192  * will occur, and a display engine hang could result.
3193  */
3194 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
3195                                         const struct intel_watermark_params *wm,
3196                                         int fifo_size,
3197                                         int pixel_size,
3198                                         unsigned long latency_ns)
3199 {
3200         long entries_required, wm_size;
3201
3202         /*
3203          * Note: we need to make sure we don't overflow for various clock &
3204          * latency values.
3205          * clocks go from a few thousand to several hundred thousand.
3206          * latency is usually a few thousand
3207          */
3208         entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
3209                 1000;
3210         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
3211
3212         DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);
3213
3214         wm_size = fifo_size - (entries_required + wm->guard_size);
3215
3216         DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
3217
3218         /* Don't promote wm_size to unsigned... */
3219         if (wm_size > (long)wm->max_wm)
3220                 wm_size = wm->max_wm;
3221         if (wm_size <= 0)
3222                 wm_size = wm->default_wm;
3223         return wm_size;
3224 }
3225
3226 struct cxsr_latency {
3227         int is_desktop;
3228         int is_ddr3;
3229         unsigned long fsb_freq;
3230         unsigned long mem_freq;
3231         unsigned long display_sr;
3232         unsigned long display_hpll_disable;
3233         unsigned long cursor_sr;
3234         unsigned long cursor_hpll_disable;
3235 };
3236
3237 static const struct cxsr_latency cxsr_latency_table[] = {
3238         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
3239         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
3240         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
3241         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
3242         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
3243
3244         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
3245         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
3246         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
3247         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
3248         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
3249
3250         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
3251         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
3252         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
3253         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
3254         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
3255
3256         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
3257         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
3258         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
3259         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
3260         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
3261
3262         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
3263         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
3264         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
3265         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
3266         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
3267
3268         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
3269         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
3270         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
3271         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
3272         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
3273 };
3274
3275 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
3276                                                          int is_ddr3,
3277                                                          int fsb,
3278                                                          int mem)
3279 {
3280         const struct cxsr_latency *latency;
3281         int i;
3282
3283         if (fsb == 0 || mem == 0)
3284                 return NULL;
3285
3286         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
3287                 latency = &cxsr_latency_table[i];
3288                 if (is_desktop == latency->is_desktop &&
3289                     is_ddr3 == latency->is_ddr3 &&
3290                     fsb == latency->fsb_freq && mem == latency->mem_freq)
3291                         return latency;
3292         }
3293
3294         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3295
3296         return NULL;
3297 }
3298
3299 static void pineview_disable_cxsr(struct drm_device *dev)
3300 {
3301         struct drm_i915_private *dev_priv = dev->dev_private;
3302
3303         /* deactivate cxsr */
3304         I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
3305 }
3306
3307 /*
3308  * Latency for FIFO fetches is dependent on several factors:
3309  *   - memory configuration (speed, channels)
3310  *   - chipset
3311  *   - current MCH state
3312  * It can be fairly high in some situations, so here we assume a fairly
3313  * pessimal value.  It's a tradeoff between extra memory fetches (if we
3314  * set this value too high, the FIFO will fetch frequently to stay full)
3315  * and power consumption (set it too low to save power and we might see
3316  * FIFO underruns and display "flicker").
3317  *
3318  * A value of 5us seems to be a good balance; safe for very low end
3319  * platforms but not overly aggressive on lower latency configs.
3320  */
3321 static const int latency_ns = 5000;
3322
3323 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
3324 {
3325         struct drm_i915_private *dev_priv = dev->dev_private;
3326         uint32_t dsparb = I915_READ(DSPARB);
3327         int size;
3328
3329         size = dsparb & 0x7f;
3330         if (plane)
3331                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
3332
3333         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3334                       plane ? "B" : "A", size);
3335
3336         return size;
3337 }
3338
3339 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
3340 {
3341         struct drm_i915_private *dev_priv = dev->dev_private;
3342         uint32_t dsparb = I915_READ(DSPARB);
3343         int size;
3344
3345         size = dsparb & 0x1ff;
3346         if (plane)
3347                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
3348         size >>= 1; /* Convert to cachelines */
3349
3350         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3351                       plane ? "B" : "A", size);
3352
3353         return size;
3354 }
3355
3356 static int i845_get_fifo_size(struct drm_device *dev, int plane)
3357 {
3358         struct drm_i915_private *dev_priv = dev->dev_private;
3359         uint32_t dsparb = I915_READ(DSPARB);
3360         int size;
3361
3362         size = dsparb & 0x7f;
3363         size >>= 2; /* Convert to cachelines */
3364
3365         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3366                       plane ? "B" : "A",
3367                       size);
3368
3369         return size;
3370 }
3371
3372 static int i830_get_fifo_size(struct drm_device *dev, int plane)
3373 {
3374         struct drm_i915_private *dev_priv = dev->dev_private;
3375         uint32_t dsparb = I915_READ(DSPARB);
3376         int size;
3377
3378         size = dsparb & 0x7f;
3379         size >>= 1; /* Convert to cachelines */
3380
3381         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3382                       plane ? "B" : "A", size);
3383
3384         return size;
3385 }
3386
3387 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
3388 {
3389         struct drm_crtc *crtc, *enabled = NULL;
3390
3391         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3392                 if (crtc->enabled && crtc->fb) {
3393                         if (enabled)
3394                                 return NULL;
3395                         enabled = crtc;
3396                 }
3397         }
3398
3399         return enabled;
3400 }
3401
3402 static void pineview_update_wm(struct drm_device *dev)
3403 {
3404         struct drm_i915_private *dev_priv = dev->dev_private;
3405         struct drm_crtc *crtc;
3406         const struct cxsr_latency *latency;
3407         u32 reg;
3408         unsigned long wm;
3409
3410         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
3411                                          dev_priv->fsb_freq, dev_priv->mem_freq);
3412         if (!latency) {
3413                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3414                 pineview_disable_cxsr(dev);
3415                 return;
3416         }
3417
3418         crtc = single_enabled_crtc(dev);
3419         if (crtc) {
3420                 int clock = crtc->mode.clock;
3421                 int pixel_size = crtc->fb->bits_per_pixel / 8;
3422
3423                 /* Display SR */
3424                 wm = intel_calculate_wm(clock, &pineview_display_wm,
3425                                         pineview_display_wm.fifo_size,
3426                                         pixel_size, latency->display_sr);
3427                 reg = I915_READ(DSPFW1);
3428                 reg &= ~DSPFW_SR_MASK;
3429                 reg |= wm << DSPFW_SR_SHIFT;
3430                 I915_WRITE(DSPFW1, reg);
3431                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
3432
3433                 /* cursor SR */
3434                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
3435                                         pineview_display_wm.fifo_size,
3436                                         pixel_size, latency->cursor_sr);
3437                 reg = I915_READ(DSPFW3);
3438                 reg &= ~DSPFW_CURSOR_SR_MASK;
3439                 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
3440                 I915_WRITE(DSPFW3, reg);
3441
3442                 /* Display HPLL off SR */
3443                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
3444                                         pineview_display_hplloff_wm.fifo_size,
3445                                         pixel_size, latency->display_hpll_disable);
3446                 reg = I915_READ(DSPFW3);
3447                 reg &= ~DSPFW_HPLL_SR_MASK;
3448                 reg |= wm & DSPFW_HPLL_SR_MASK;
3449                 I915_WRITE(DSPFW3, reg);
3450
3451                 /* cursor HPLL off SR */
3452                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
3453                                         pineview_display_hplloff_wm.fifo_size,
3454                                         pixel_size, latency->cursor_hpll_disable);
3455                 reg = I915_READ(DSPFW3);
3456                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
3457                 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
3458                 I915_WRITE(DSPFW3, reg);
3459                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
3460
3461                 /* activate cxsr */
3462                 I915_WRITE(DSPFW3,
3463                            I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
3464                 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3465         } else {
3466                 pineview_disable_cxsr(dev);
3467                 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3468         }
3469 }
3470
3471 static bool g4x_compute_wm0(struct drm_device *dev,
3472                             int plane,
3473                             const struct intel_watermark_params *display,
3474                             int display_latency_ns,
3475                             const struct intel_watermark_params *cursor,
3476                             int cursor_latency_ns,
3477                             int *plane_wm,
3478                             int *cursor_wm)
3479 {
3480         struct drm_crtc *crtc;
3481         int htotal, hdisplay, clock, pixel_size;
3482         int line_time_us, line_count;
3483         int entries, tlb_miss;
3484
3485         crtc = intel_get_crtc_for_plane(dev, plane);
3486         if (crtc->fb == NULL || !crtc->enabled) {
3487                 *cursor_wm = cursor->guard_size;
3488                 *plane_wm = display->guard_size;
3489                 return false;
3490         }
3491
3492         htotal = crtc->mode.htotal;
3493         hdisplay = crtc->mode.hdisplay;
3494         clock = crtc->mode.clock;
3495         pixel_size = crtc->fb->bits_per_pixel / 8;
3496
3497         /* Use the small buffer method to calculate plane watermark */
3498         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
3499         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
3500         if (tlb_miss > 0)
3501                 entries += tlb_miss;
3502         entries = DIV_ROUND_UP(entries, display->cacheline_size);
3503         *plane_wm = entries + display->guard_size;
3504         if (*plane_wm > (int)display->max_wm)
3505                 *plane_wm = display->max_wm;
3506
3507         /* Use the large buffer method to calculate cursor watermark */
3508         line_time_us = ((htotal * 1000) / clock);
3509         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
3510         entries = line_count * 64 * pixel_size;
3511         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
3512         if (tlb_miss > 0)
3513                 entries += tlb_miss;
3514         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
3515         *cursor_wm = entries + cursor->guard_size;
3516         if (*cursor_wm > (int)cursor->max_wm)
3517                 *cursor_wm = (int)cursor->max_wm;
3518
3519         return true;
3520 }
3521
3522 /*
3523  * Check the wm result.
3524  *
3525  * If any calculated watermark values is larger than the maximum value that
3526  * can be programmed into the associated watermark register, that watermark
3527  * must be disabled.
3528  */
3529 static bool g4x_check_srwm(struct drm_device *dev,
3530                            int display_wm, int cursor_wm,
3531                            const struct intel_watermark_params *display,
3532                            const struct intel_watermark_params *cursor)
3533 {
3534         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
3535                       display_wm, cursor_wm);
3536
3537         if (display_wm > display->max_wm) {
3538                 DRM_DEBUG_KMS("display watermark is too large(%d), disabling\n",
3539                               display_wm, display->max_wm);
3540                 return false;
3541         }
3542
3543         if (cursor_wm > cursor->max_wm) {
3544                 DRM_DEBUG_KMS("cursor watermark is too large(%d), disabling\n",
3545                               cursor_wm, cursor->max_wm);
3546                 return false;
3547         }
3548
3549         if (!(display_wm || cursor_wm)) {
3550                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
3551                 return false;
3552         }
3553
3554         return true;
3555 }
3556
3557 static bool g4x_compute_srwm(struct drm_device *dev,
3558                              int plane,
3559                              int latency_ns,
3560                              const struct intel_watermark_params *display,
3561                              const struct intel_watermark_params *cursor,
3562                              int *display_wm, int *cursor_wm)
3563 {
3564         struct drm_crtc *crtc;
3565         int hdisplay, htotal, pixel_size, clock;
3566         unsigned long line_time_us;
3567         int line_count, line_size;
3568         int small, large;
3569         int entries;
3570
3571         if (!latency_ns) {
3572                 *display_wm = *cursor_wm = 0;
3573                 return false;
3574         }
3575
3576         crtc = intel_get_crtc_for_plane(dev, plane);
3577         hdisplay = crtc->mode.hdisplay;
3578         htotal = crtc->mode.htotal;
3579         clock = crtc->mode.clock;
3580         pixel_size = crtc->fb->bits_per_pixel / 8;
3581
3582         line_time_us = (htotal * 1000) / clock;
3583         line_count = (latency_ns / line_time_us + 1000) / 1000;
3584         line_size = hdisplay * pixel_size;
3585
3586         /* Use the minimum of the small and large buffer method for primary */
3587         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
3588         large = line_count * line_size;
3589
3590         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
3591         *display_wm = entries + display->guard_size;
3592
3593         /* calculate the self-refresh watermark for display cursor */
3594         entries = line_count * pixel_size * 64;
3595         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
3596         *cursor_wm = entries + cursor->guard_size;
3597
3598         return g4x_check_srwm(dev,
3599                               *display_wm, *cursor_wm,
3600                               display, cursor);
3601 }
3602
3603 #define single_plane_enabled(mask) is_power_of_2(mask)
3604
3605 static void g4x_update_wm(struct drm_device *dev)
3606 {
3607         static const int sr_latency_ns = 12000;
3608         struct drm_i915_private *dev_priv = dev->dev_private;
3609         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
3610         int plane_sr, cursor_sr;
3611         unsigned int enabled = 0;
3612
3613         if (g4x_compute_wm0(dev, 0,
3614                             &g4x_wm_info, latency_ns,
3615                             &g4x_cursor_wm_info, latency_ns,
3616                             &planea_wm, &cursora_wm))
3617                 enabled |= 1;
3618
3619         if (g4x_compute_wm0(dev, 1,
3620                             &g4x_wm_info, latency_ns,
3621                             &g4x_cursor_wm_info, latency_ns,
3622                             &planeb_wm, &cursorb_wm))
3623                 enabled |= 2;
3624
3625         plane_sr = cursor_sr = 0;
3626         if (single_plane_enabled(enabled) &&
3627             g4x_compute_srwm(dev, ffs(enabled) - 1,
3628                              sr_latency_ns,
3629                              &g4x_wm_info,
3630                              &g4x_cursor_wm_info,
3631                              &plane_sr, &cursor_sr))
3632                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3633         else
3634                 I915_WRITE(FW_BLC_SELF,
3635                            I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
3636
3637         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
3638                       planea_wm, cursora_wm,
3639                       planeb_wm, cursorb_wm,
3640                       plane_sr, cursor_sr);
3641
3642         I915_WRITE(DSPFW1,
3643                    (plane_sr << DSPFW_SR_SHIFT) |
3644                    (cursorb_wm << DSPFW_CURSORB_SHIFT) |
3645                    (planeb_wm << DSPFW_PLANEB_SHIFT) |
3646                    planea_wm);
3647         I915_WRITE(DSPFW2,
3648                    (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
3649                    (cursora_wm << DSPFW_CURSORA_SHIFT));
3650         /* HPLL off in SR has some issues on G4x... disable it */
3651         I915_WRITE(DSPFW3,
3652                    (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
3653                    (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3654 }
3655
3656 static void i965_update_wm(struct drm_device *dev)
3657 {
3658         struct drm_i915_private *dev_priv = dev->dev_private;
3659         struct drm_crtc *crtc;
3660         int srwm = 1;
3661         int cursor_sr = 16;
3662
3663         /* Calc sr entries for one plane configs */
3664         crtc = single_enabled_crtc(dev);
3665         if (crtc) {
3666                 /* self-refresh has much higher latency */
3667                 static const int sr_latency_ns = 12000;
3668                 int clock = crtc->mode.clock;
3669                 int htotal = crtc->mode.htotal;
3670                 int hdisplay = crtc->mode.hdisplay;
3671                 int pixel_size = crtc->fb->bits_per_pixel / 8;
3672                 unsigned long line_time_us;
3673                 int entries;
3674
3675                 line_time_us = ((htotal * 1000) / clock);
3676
3677                 /* Use ns/us then divide to preserve precision */
3678                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3679                         pixel_size * hdisplay;
3680                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
3681                 srwm = I965_FIFO_SIZE - entries;
3682                 if (srwm < 0)
3683                         srwm = 1;
3684                 srwm &= 0x1ff;
3685                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
3686                               entries, srwm);
3687
3688                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3689                         pixel_size * 64;
3690                 entries = DIV_ROUND_UP(entries,
3691                                           i965_cursor_wm_info.cacheline_size);
3692                 cursor_sr = i965_cursor_wm_info.fifo_size -
3693                         (entries + i965_cursor_wm_info.guard_size);
3694
3695                 if (cursor_sr > i965_cursor_wm_info.max_wm)
3696                         cursor_sr = i965_cursor_wm_info.max_wm;
3697
3698                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3699                               "cursor %d\n", srwm, cursor_sr);
3700
3701                 if (IS_CRESTLINE(dev))
3702                         I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3703         } else {
3704                 /* Turn off self refresh if both pipes are enabled */
3705                 if (IS_CRESTLINE(dev))
3706                         I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3707                                    & ~FW_BLC_SELF_EN);
3708         }
3709
3710         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
3711                       srwm);
3712
3713         /* 965 has limitations... */
3714         I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
3715                    (8 << 16) | (8 << 8) | (8 << 0));
3716         I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
3717         /* update cursor SR watermark */
3718         I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3719 }
3720
3721 static void i9xx_update_wm(struct drm_device *dev)
3722 {
3723         struct drm_i915_private *dev_priv = dev->dev_private;
3724         const struct intel_watermark_params *wm_info;
3725         uint32_t fwater_lo;
3726         uint32_t fwater_hi;
3727         int cwm, srwm = 1;
3728         int fifo_size;
3729         int planea_wm, planeb_wm;
3730         struct drm_crtc *crtc, *enabled = NULL;
3731
3732         if (IS_I945GM(dev))
3733                 wm_info = &i945_wm_info;
3734         else if (!IS_GEN2(dev))
3735                 wm_info = &i915_wm_info;
3736         else
3737                 wm_info = &i855_wm_info;
3738
3739         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3740         crtc = intel_get_crtc_for_plane(dev, 0);
3741         if (crtc->enabled && crtc->fb) {
3742                 planea_wm = intel_calculate_wm(crtc->mode.clock,
3743                                                wm_info, fifo_size,
3744                                                crtc->fb->bits_per_pixel / 8,
3745                                                latency_ns);
3746                 enabled = crtc;
3747         } else
3748                 planea_wm = fifo_size - wm_info->guard_size;
3749
3750         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
3751         crtc = intel_get_crtc_for_plane(dev, 1);
3752         if (crtc->enabled && crtc->fb) {
3753                 planeb_wm = intel_calculate_wm(crtc->mode.clock,
3754                                                wm_info, fifo_size,
3755                                                crtc->fb->bits_per_pixel / 8,
3756                                                latency_ns);
3757                 if (enabled == NULL)
3758                         enabled = crtc;
3759                 else
3760                         enabled = NULL;
3761         } else
3762                 planeb_wm = fifo_size - wm_info->guard_size;
3763
3764         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3765
3766         /*
3767          * Overlay gets an aggressive default since video jitter is bad.
3768          */
3769         cwm = 2;
3770
3771         /* Play safe and disable self-refresh before adjusting watermarks. */
3772         if (IS_I945G(dev) || IS_I945GM(dev))
3773                 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
3774         else if (IS_I915GM(dev))
3775                 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
3776
3777         /* Calc sr entries for one plane configs */
3778         if (HAS_FW_BLC(dev) && enabled) {
3779                 /* self-refresh has much higher latency */
3780                 static const int sr_latency_ns = 6000;
3781                 int clock = enabled->mode.clock;
3782                 int htotal = enabled->mode.htotal;
3783                 int hdisplay = enabled->mode.hdisplay;
3784                 int pixel_size = enabled->fb->bits_per_pixel / 8;
3785                 unsigned long line_time_us;
3786                 int entries;
3787
3788                 line_time_us = (htotal * 1000) / clock;
3789
3790                 /* Use ns/us then divide to preserve precision */
3791                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3792                         pixel_size * hdisplay;
3793                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
3794                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
3795                 srwm = wm_info->fifo_size - entries;
3796                 if (srwm < 0)
3797                         srwm = 1;
3798
3799                 if (IS_I945G(dev) || IS_I945GM(dev))
3800                         I915_WRITE(FW_BLC_SELF,
3801                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
3802                 else if (IS_I915GM(dev))
3803                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
3804         }
3805
3806         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
3807                       planea_wm, planeb_wm, cwm, srwm);
3808
3809         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
3810         fwater_hi = (cwm & 0x1f);
3811
3812         /* Set request length to 8 cachelines per fetch */
3813         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
3814         fwater_hi = fwater_hi | (1 << 8);
3815
3816         I915_WRITE(FW_BLC, fwater_lo);
3817         I915_WRITE(FW_BLC2, fwater_hi);
3818
3819         if (HAS_FW_BLC(dev)) {
3820                 if (enabled) {
3821                         if (IS_I945G(dev) || IS_I945GM(dev))
3822                                 I915_WRITE(FW_BLC_SELF,
3823                                            FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
3824                         else if (IS_I915GM(dev))
3825                                 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
3826                         DRM_DEBUG_KMS("memory self refresh enabled\n");
3827                 } else
3828                         DRM_DEBUG_KMS("memory self refresh disabled\n");
3829         }
3830 }
3831
3832 static void i830_update_wm(struct drm_device *dev)
3833 {
3834         struct drm_i915_private *dev_priv = dev->dev_private;
3835         struct drm_crtc *crtc;
3836         uint32_t fwater_lo;
3837         int planea_wm;
3838
3839         crtc = single_enabled_crtc(dev);
3840         if (crtc == NULL)
3841                 return;
3842
3843         planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
3844                                        dev_priv->display.get_fifo_size(dev, 0),
3845                                        crtc->fb->bits_per_pixel / 8,
3846                                        latency_ns);
3847         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
3848         fwater_lo |= (3<<8) | planea_wm;
3849
3850         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
3851
3852         I915_WRITE(FW_BLC, fwater_lo);
3853 }
3854
3855 #define ILK_LP0_PLANE_LATENCY           700
3856 #define ILK_LP0_CURSOR_LATENCY          1300
3857
3858 static bool ironlake_compute_wm0(struct drm_device *dev,
3859                                  int pipe,
3860                                  const struct intel_watermark_params *display,
3861                                  int display_latency_ns,
3862                                  const struct intel_watermark_params *cursor,
3863                                  int cursor_latency_ns,
3864                                  int *plane_wm,
3865                                  int *cursor_wm)
3866 {
3867         struct drm_crtc *crtc;
3868         int htotal, hdisplay, clock, pixel_size;
3869         int line_time_us, line_count;
3870         int entries, tlb_miss;
3871
3872         crtc = intel_get_crtc_for_pipe(dev, pipe);
3873         if (crtc->fb == NULL || !crtc->enabled)
3874                 return false;
3875
3876         htotal = crtc->mode.htotal;
3877         hdisplay = crtc->mode.hdisplay;
3878         clock = crtc->mode.clock;
3879         pixel_size = crtc->fb->bits_per_pixel / 8;
3880
3881         /* Use the small buffer method to calculate plane watermark */
3882         entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
3883         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
3884         if (tlb_miss > 0)
3885                 entries += tlb_miss;
3886         entries = DIV_ROUND_UP(entries, display->cacheline_size);
3887         *plane_wm = entries + display->guard_size;
3888         if (*plane_wm > (int)display->max_wm)
3889                 *plane_wm = display->max_wm;
3890
3891         /* Use the large buffer method to calculate cursor watermark */
3892         line_time_us = ((htotal * 1000) / clock);
3893         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
3894         entries = line_count * 64 * pixel_size;
3895         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
3896         if (tlb_miss > 0)
3897                 entries += tlb_miss;
3898         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
3899         *cursor_wm = entries + cursor->guard_size;
3900         if (*cursor_wm > (int)cursor->max_wm)
3901                 *cursor_wm = (int)cursor->max_wm;
3902
3903         return true;
3904 }
3905
3906 /*
3907  * Check the wm result.
3908  *
3909  * If any calculated watermark values is larger than the maximum value that
3910  * can be programmed into the associated watermark register, that watermark
3911  * must be disabled.
3912  */
3913 static bool ironlake_check_srwm(struct drm_device *dev, int level,
3914                                 int fbc_wm, int display_wm, int cursor_wm,
3915                                 const struct intel_watermark_params *display,
3916                                 const struct intel_watermark_params *cursor)
3917 {
3918         struct drm_i915_private *dev_priv = dev->dev_private;
3919
3920         DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
3921                       " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
3922
3923         if (fbc_wm > SNB_FBC_MAX_SRWM) {
3924                 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
3925                               fbc_wm, SNB_FBC_MAX_SRWM, level);
3926
3927                 /* fbc has it's own way to disable FBC WM */
3928                 I915_WRITE(DISP_ARB_CTL,
3929                            I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
3930                 return false;
3931         }
3932
3933         if (display_wm > display->max_wm) {
3934                 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
3935                               display_wm, SNB_DISPLAY_MAX_SRWM, level);
3936                 return false;
3937         }
3938
3939         if (cursor_wm > cursor->max_wm) {
3940                 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
3941                               cursor_wm, SNB_CURSOR_MAX_SRWM, level);
3942                 return false;
3943         }
3944
3945         if (!(fbc_wm || display_wm || cursor_wm)) {
3946                 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
3947                 return false;
3948         }
3949
3950         return true;
3951 }
3952
3953 /*
3954  * Compute watermark values of WM[1-3],
3955  */
3956 static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
3957                                   int latency_ns,
3958                                   const struct intel_watermark_params *display,
3959                                   const struct intel_watermark_params *cursor,
3960                                   int *fbc_wm, int *display_wm, int *cursor_wm)
3961 {
3962         struct drm_crtc *crtc;
3963         unsigned long line_time_us;
3964         int hdisplay, htotal, pixel_size, clock;
3965         int line_count, line_size;
3966         int small, large;
3967         int entries;
3968
3969         if (!latency_ns) {
3970                 *fbc_wm = *display_wm = *cursor_wm = 0;
3971                 return false;
3972         }
3973
3974         crtc = intel_get_crtc_for_plane(dev, plane);
3975         hdisplay = crtc->mode.hdisplay;
3976         htotal = crtc->mode.htotal;
3977         clock = crtc->mode.clock;
3978         pixel_size = crtc->fb->bits_per_pixel / 8;
3979
3980         line_time_us = (htotal * 1000) / clock;
3981         line_count = (latency_ns / line_time_us + 1000) / 1000;
3982         line_size = hdisplay * pixel_size;
3983
3984         /* Use the minimum of the small and large buffer method for primary */
3985         small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
3986         large = line_count * line_size;
3987
3988         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
3989         *display_wm = entries + display->guard_size;
3990
3991         /*
3992          * Spec says:
3993          * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
3994          */
3995         *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
3996
3997         /* calculate the self-refresh watermark for display cursor */
3998         entries = line_count * pixel_size * 64;
3999         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
4000         *cursor_wm = entries + cursor->guard_size;
4001
4002         return ironlake_check_srwm(dev, level,
4003                                    *fbc_wm, *display_wm, *cursor_wm,
4004                                    display, cursor);
4005 }
4006
4007 static void ironlake_update_wm(struct drm_device *dev)
4008 {
4009         struct drm_i915_private *dev_priv = dev->dev_private;
4010         int fbc_wm, plane_wm, cursor_wm;
4011         unsigned int enabled;
4012
4013         enabled = 0;
4014         if (ironlake_compute_wm0(dev, 0,
4015                                  &ironlake_display_wm_info,
4016                                  ILK_LP0_PLANE_LATENCY,
4017                                  &ironlake_cursor_wm_info,
4018                                  ILK_LP0_CURSOR_LATENCY,
4019                                  &plane_wm, &cursor_wm)) {
4020                 I915_WRITE(WM0_PIPEA_ILK,
4021                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4022                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4023                               " plane %d, " "cursor: %d\n",
4024                               plane_wm, cursor_wm);
4025                 enabled |= 1;
4026         }
4027
4028         if (ironlake_compute_wm0(dev, 1,
4029                                  &ironlake_display_wm_info,
4030                                  ILK_LP0_PLANE_LATENCY,
4031                                  &ironlake_cursor_wm_info,
4032                                  ILK_LP0_CURSOR_LATENCY,
4033                                  &plane_wm, &cursor_wm)) {
4034                 I915_WRITE(WM0_PIPEB_ILK,
4035                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4036                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4037                               " plane %d, cursor: %d\n",
4038                               plane_wm, cursor_wm);
4039                 enabled |= 2;
4040         }
4041
4042         /*
4043          * Calculate and update the self-refresh watermark only when one
4044          * display plane is used.
4045          */
4046         I915_WRITE(WM3_LP_ILK, 0);
4047         I915_WRITE(WM2_LP_ILK, 0);
4048         I915_WRITE(WM1_LP_ILK, 0);
4049
4050         if (!single_plane_enabled(enabled))
4051                 return;
4052         enabled = ffs(enabled) - 1;
4053
4054         /* WM1 */
4055         if (!ironlake_compute_srwm(dev, 1, enabled,
4056                                    ILK_READ_WM1_LATENCY() * 500,
4057                                    &ironlake_display_srwm_info,
4058                                    &ironlake_cursor_srwm_info,
4059                                    &fbc_wm, &plane_wm, &cursor_wm))
4060                 return;
4061
4062         I915_WRITE(WM1_LP_ILK,
4063                    WM1_LP_SR_EN |
4064                    (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4065                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4066                    (plane_wm << WM1_LP_SR_SHIFT) |
4067                    cursor_wm);
4068
4069         /* WM2 */
4070         if (!ironlake_compute_srwm(dev, 2, enabled,
4071                                    ILK_READ_WM2_LATENCY() * 500,
4072                                    &ironlake_display_srwm_info,
4073                                    &ironlake_cursor_srwm_info,
4074                                    &fbc_wm, &plane_wm, &cursor_wm))
4075                 return;
4076
4077         I915_WRITE(WM2_LP_ILK,
4078                    WM2_LP_EN |
4079                    (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4080                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4081                    (plane_wm << WM1_LP_SR_SHIFT) |
4082                    cursor_wm);
4083
4084         /*
4085          * WM3 is unsupported on ILK, probably because we don't have latency
4086          * data for that power state
4087          */
4088 }
4089
4090 static void sandybridge_update_wm(struct drm_device *dev)
4091 {
4092         struct drm_i915_private *dev_priv = dev->dev_private;
4093         int latency = SNB_READ_WM0_LATENCY() * 100;     /* In unit 0.1us */
4094         int fbc_wm, plane_wm, cursor_wm;
4095         unsigned int enabled;
4096
4097         enabled = 0;
4098         if (ironlake_compute_wm0(dev, 0,
4099                                  &sandybridge_display_wm_info, latency,
4100                                  &sandybridge_cursor_wm_info, latency,
4101                                  &plane_wm, &cursor_wm)) {
4102                 I915_WRITE(WM0_PIPEA_ILK,
4103                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4104                 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4105                               " plane %d, " "cursor: %d\n",
4106                               plane_wm, cursor_wm);
4107                 enabled |= 1;
4108         }
4109
4110         if (ironlake_compute_wm0(dev, 1,
4111                                  &sandybridge_display_wm_info, latency,
4112                                  &sandybridge_cursor_wm_info, latency,
4113                                  &plane_wm, &cursor_wm)) {
4114                 I915_WRITE(WM0_PIPEB_ILK,
4115                            (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
4116                 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4117                               " plane %d, cursor: %d\n",
4118                               plane_wm, cursor_wm);
4119                 enabled |= 2;
4120         }
4121
4122         /*
4123          * Calculate and update the self-refresh watermark only when one
4124          * display plane is used.
4125          *
4126          * SNB support 3 levels of watermark.
4127          *
4128          * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
4129          * and disabled in the descending order
4130          *
4131          */
4132         I915_WRITE(WM3_LP_ILK, 0);
4133         I915_WRITE(WM2_LP_ILK, 0);
4134         I915_WRITE(WM1_LP_ILK, 0);
4135
4136         if (!single_plane_enabled(enabled))
4137                 return;
4138         enabled = ffs(enabled) - 1;
4139
4140         /* WM1 */
4141         if (!ironlake_compute_srwm(dev, 1, enabled,
4142                                    SNB_READ_WM1_LATENCY() * 500,
4143                                    &sandybridge_display_srwm_info,
4144                                    &sandybridge_cursor_srwm_info,
4145                                    &fbc_wm, &plane_wm, &cursor_wm))
4146                 return;
4147
4148         I915_WRITE(WM1_LP_ILK,
4149                    WM1_LP_SR_EN |
4150                    (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4151                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4152                    (plane_wm << WM1_LP_SR_SHIFT) |
4153                    cursor_wm);
4154
4155         /* WM2 */
4156         if (!ironlake_compute_srwm(dev, 2, enabled,
4157                                    SNB_READ_WM2_LATENCY() * 500,
4158                                    &sandybridge_display_srwm_info,
4159                                    &sandybridge_cursor_srwm_info,
4160                                    &fbc_wm, &plane_wm, &cursor_wm))
4161                 return;
4162
4163         I915_WRITE(WM2_LP_ILK,
4164                    WM2_LP_EN |
4165                    (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4166                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4167                    (plane_wm << WM1_LP_SR_SHIFT) |
4168                    cursor_wm);
4169
4170         /* WM3 */
4171         if (!ironlake_compute_srwm(dev, 3, enabled,
4172                                    SNB_READ_WM3_LATENCY() * 500,
4173                                    &sandybridge_display_srwm_info,
4174                                    &sandybridge_cursor_srwm_info,
4175                                    &fbc_wm, &plane_wm, &cursor_wm))
4176                 return;
4177
4178         I915_WRITE(WM3_LP_ILK,
4179                    WM3_LP_EN |
4180                    (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
4181                    (fbc_wm << WM1_LP_FBC_SHIFT) |
4182                    (plane_wm << WM1_LP_SR_SHIFT) |
4183                    cursor_wm);
4184 }
4185
4186 /**
4187  * intel_update_watermarks - update FIFO watermark values based on current modes
4188  *
4189  * Calculate watermark values for the various WM regs based on current mode
4190  * and plane configuration.
4191  *
4192  * There are several cases to deal with here:
4193  *   - normal (i.e. non-self-refresh)
4194  *   - self-refresh (SR) mode
4195  *   - lines are large relative to FIFO size (buffer can hold up to 2)
4196  *   - lines are small relative to FIFO size (buffer can hold more than 2
4197  *     lines), so need to account for TLB latency
4198  *
4199  *   The normal calculation is:
4200  *     watermark = dotclock * bytes per pixel * latency
4201  *   where latency is platform & configuration dependent (we assume pessimal
4202  *   values here).
4203  *
4204  *   The SR calculation is:
4205  *     watermark = (trunc(latency/line time)+1) * surface width *
4206  *       bytes per pixel
4207  *   where
4208  *     line time = htotal / dotclock
4209  *     surface width = hdisplay for normal plane and 64 for cursor
4210  *   and latency is assumed to be high, as above.
4211  *
4212  * The final value programmed to the register should always be rounded up,
4213  * and include an extra 2 entries to account for clock crossings.
4214  *
4215  * We don't use the sprite, so we can ignore that.  And on Crestline we have
4216  * to set the non-SR watermarks to 8.
4217  */
4218 static void intel_update_watermarks(struct drm_device *dev)
4219 {
4220         struct drm_i915_private *dev_priv = dev->dev_private;
4221
4222         if (dev_priv->display.update_wm)
4223                 dev_priv->display.update_wm(dev);
4224 }
4225
4226 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
4227 {
4228         return dev_priv->lvds_use_ssc && i915_panel_use_ssc;
4229 }
4230
4231 static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
4232                               struct drm_display_mode *mode,
4233                               struct drm_display_mode *adjusted_mode,
4234                               int x, int y,
4235                               struct drm_framebuffer *old_fb)
4236 {
4237         struct drm_device *dev = crtc->dev;
4238         struct drm_i915_private *dev_priv = dev->dev_private;
4239         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4240         int pipe = intel_crtc->pipe;
4241         int plane = intel_crtc->plane;
4242         int refclk, num_connectors = 0;
4243         intel_clock_t clock, reduced_clock;
4244         u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
4245         bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
4246         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
4247         struct drm_mode_config *mode_config = &dev->mode_config;
4248         struct intel_encoder *encoder;
4249         const intel_limit_t *limit;
4250         int ret;
4251         u32 temp;
4252         u32 lvds_sync = 0;
4253
4254         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4255                 if (encoder->base.crtc != crtc)
4256                         continue;
4257
4258                 switch (encoder->type) {
4259                 case INTEL_OUTPUT_LVDS:
4260                         is_lvds = true;
4261                         break;
4262                 case INTEL_OUTPUT_SDVO:
4263                 case INTEL_OUTPUT_HDMI:
4264                         is_sdvo = true;
4265                         if (encoder->needs_tv_clock)
4266                                 is_tv = true;
4267                         break;
4268                 case INTEL_OUTPUT_DVO:
4269                         is_dvo = true;
4270                         break;
4271                 case INTEL_OUTPUT_TVOUT:
4272                         is_tv = true;
4273                         break;
4274                 case INTEL_OUTPUT_ANALOG:
4275                         is_crt = true;
4276                         break;
4277                 case INTEL_OUTPUT_DISPLAYPORT:
4278                         is_dp = true;
4279                         break;
4280                 }
4281
4282                 num_connectors++;
4283         }
4284
4285         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4286                 refclk = dev_priv->lvds_ssc_freq * 1000;
4287                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4288                               refclk / 1000);
4289         } else if (!IS_GEN2(dev)) {
4290                 refclk = 96000;
4291         } else {
4292                 refclk = 48000;
4293         }
4294
4295         /*
4296          * Returns a set of divisors for the desired target clock with the given
4297          * refclk, or FALSE.  The returned values represent the clock equation:
4298          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4299          */
4300         limit = intel_limit(crtc, refclk);
4301         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
4302         if (!ok) {
4303                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4304                 return -EINVAL;
4305         }
4306
4307         /* Ensure that the cursor is valid for the new mode before changing... */
4308         intel_crtc_update_cursor(crtc, true);
4309
4310         if (is_lvds && dev_priv->lvds_downclock_avail) {
4311                 has_reduced_clock = limit->find_pll(limit, crtc,
4312                                                     dev_priv->lvds_downclock,
4313                                                     refclk,
4314                                                     &reduced_clock);
4315                 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
4316                         /*
4317                          * If the different P is found, it means that we can't
4318                          * switch the display clock by using the FP0/FP1.
4319                          * In such case we will disable the LVDS downclock
4320                          * feature.
4321                          */
4322                         DRM_DEBUG_KMS("Different P is found for "
4323                                       "LVDS clock/downclock\n");
4324                         has_reduced_clock = 0;
4325                 }
4326         }
4327         /* SDVO TV has fixed PLL values depend on its clock range,
4328            this mirrors vbios setting. */
4329         if (is_sdvo && is_tv) {
4330                 if (adjusted_mode->clock >= 100000
4331                     && adjusted_mode->clock < 140500) {
4332                         clock.p1 = 2;
4333                         clock.p2 = 10;
4334                         clock.n = 3;
4335                         clock.m1 = 16;
4336                         clock.m2 = 8;
4337                 } else if (adjusted_mode->clock >= 140500
4338                            && adjusted_mode->clock <= 200000) {
4339                         clock.p1 = 1;
4340                         clock.p2 = 10;
4341                         clock.n = 6;
4342                         clock.m1 = 12;
4343                         clock.m2 = 8;
4344                 }
4345         }
4346
4347         if (IS_PINEVIEW(dev)) {
4348                 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
4349                 if (has_reduced_clock)
4350                         fp2 = (1 << reduced_clock.n) << 16 |
4351                                 reduced_clock.m1 << 8 | reduced_clock.m2;
4352         } else {
4353                 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
4354                 if (has_reduced_clock)
4355                         fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
4356                                 reduced_clock.m2;
4357         }
4358
4359         dpll = DPLL_VGA_MODE_DIS;
4360
4361         if (!IS_GEN2(dev)) {
4362                 if (is_lvds)
4363                         dpll |= DPLLB_MODE_LVDS;
4364                 else
4365                         dpll |= DPLLB_MODE_DAC_SERIAL;
4366                 if (is_sdvo) {
4367                         int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4368                         if (pixel_multiplier > 1) {
4369                                 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4370                                         dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
4371                         }
4372                         dpll |= DPLL_DVO_HIGH_SPEED;
4373                 }
4374                 if (is_dp)
4375                         dpll |= DPLL_DVO_HIGH_SPEED;
4376
4377                 /* compute bitmask from p1 value */
4378                 if (IS_PINEVIEW(dev))
4379                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
4380                 else {
4381                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4382                         if (IS_G4X(dev) && has_reduced_clock)
4383                                 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4384                 }
4385                 switch (clock.p2) {
4386                 case 5:
4387                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4388                         break;
4389                 case 7:
4390                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4391                         break;
4392                 case 10:
4393                         dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4394                         break;
4395                 case 14:
4396                         dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4397                         break;
4398                 }
4399                 if (INTEL_INFO(dev)->gen >= 4)
4400                         dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
4401         } else {
4402                 if (is_lvds) {
4403                         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4404                 } else {
4405                         if (clock.p1 == 2)
4406                                 dpll |= PLL_P1_DIVIDE_BY_TWO;
4407                         else
4408                                 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4409                         if (clock.p2 == 4)
4410                                 dpll |= PLL_P2_DIVIDE_BY_4;
4411                 }
4412         }
4413
4414         if (is_sdvo && is_tv)
4415                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4416         else if (is_tv)
4417                 /* XXX: just matching BIOS for now */
4418                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4419                 dpll |= 3;
4420         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4421                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4422         else
4423                 dpll |= PLL_REF_INPUT_DREFCLK;
4424
4425         /* setup pipeconf */
4426         pipeconf = I915_READ(PIPECONF(pipe));
4427
4428         /* Set up the display plane register */
4429         dspcntr = DISPPLANE_GAMMA_ENABLE;
4430
4431         /* Ironlake's plane is forced to pipe, bit 24 is to
4432            enable color space conversion */
4433         if (pipe == 0)
4434                 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
4435         else
4436                 dspcntr |= DISPPLANE_SEL_PIPE_B;
4437
4438         if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
4439                 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4440                  * core speed.
4441                  *
4442                  * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4443                  * pipe == 0 check?
4444                  */
4445                 if (mode->clock >
4446                     dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
4447                         pipeconf |= PIPECONF_DOUBLE_WIDE;
4448                 else
4449                         pipeconf &= ~PIPECONF_DOUBLE_WIDE;
4450         }
4451
4452         dpll |= DPLL_VCO_ENABLE;
4453
4454         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4455         drm_mode_debug_printmodeline(mode);
4456
4457         I915_WRITE(FP0(pipe), fp);
4458         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4459
4460         POSTING_READ(DPLL(pipe));
4461         udelay(150);
4462
4463         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4464          * This is an exception to the general rule that mode_set doesn't turn
4465          * things on.
4466          */
4467         if (is_lvds) {
4468                 temp = I915_READ(LVDS);
4469                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4470                 if (pipe == 1) {
4471                         temp |= LVDS_PIPEB_SELECT;
4472                 } else {
4473                         temp &= ~LVDS_PIPEB_SELECT;
4474                 }
4475                 /* set the corresponsding LVDS_BORDER bit */
4476                 temp |= dev_priv->lvds_border_bits;
4477                 /* Set the B0-B3 data pairs corresponding to whether we're going to
4478                  * set the DPLLs for dual-channel mode or not.
4479                  */
4480                 if (clock.p2 == 7)
4481                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
4482                 else
4483                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
4484
4485                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4486                  * appropriately here, but we need to look more thoroughly into how
4487                  * panels behave in the two modes.
4488                  */
4489                 /* set the dithering flag on LVDS as needed */
4490                 if (INTEL_INFO(dev)->gen >= 4) {
4491                         if (dev_priv->lvds_dither)
4492                                 temp |= LVDS_ENABLE_DITHER;
4493                         else
4494                                 temp &= ~LVDS_ENABLE_DITHER;
4495                 }
4496                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
4497                         lvds_sync |= LVDS_HSYNC_POLARITY;
4498                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
4499                         lvds_sync |= LVDS_VSYNC_POLARITY;
4500                 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
4501                     != lvds_sync) {
4502                         char flags[2] = "-+";
4503                         DRM_INFO("Changing LVDS panel from "
4504                                  "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
4505                                  flags[!(temp & LVDS_HSYNC_POLARITY)],
4506                                  flags[!(temp & LVDS_VSYNC_POLARITY)],
4507                                  flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
4508                                  flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
4509                         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
4510                         temp |= lvds_sync;
4511                 }
4512                 I915_WRITE(LVDS, temp);
4513         }
4514
4515         if (is_dp) {
4516                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4517         }
4518
4519         I915_WRITE(DPLL(pipe), dpll);
4520
4521         /* Wait for the clocks to stabilize. */
4522         POSTING_READ(DPLL(pipe));
4523         udelay(150);
4524
4525         if (INTEL_INFO(dev)->gen >= 4) {
4526                 temp = 0;
4527                 if (is_sdvo) {
4528                         temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4529                         if (temp > 1)
4530                                 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4531                         else
4532                                 temp = 0;
4533                 }
4534                 I915_WRITE(DPLL_MD(pipe), temp);
4535         } else {
4536                 /* The pixel multiplier can only be updated once the
4537                  * DPLL is enabled and the clocks are stable.
4538                  *
4539                  * So write it again.
4540                  */
4541                 I915_WRITE(DPLL(pipe), dpll);
4542         }
4543
4544         intel_crtc->lowfreq_avail = false;
4545         if (is_lvds && has_reduced_clock && i915_powersave) {
4546                 I915_WRITE(FP1(pipe), fp2);
4547                 intel_crtc->lowfreq_avail = true;
4548                 if (HAS_PIPE_CXSR(dev)) {
4549                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4550                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4551                 }
4552         } else {
4553                 I915_WRITE(FP1(pipe), fp);
4554                 if (HAS_PIPE_CXSR(dev)) {
4555                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4556                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4557                 }
4558         }
4559
4560         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4561                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4562                 /* the chip adds 2 halflines automatically */
4563                 adjusted_mode->crtc_vdisplay -= 1;
4564                 adjusted_mode->crtc_vtotal -= 1;
4565                 adjusted_mode->crtc_vblank_start -= 1;
4566                 adjusted_mode->crtc_vblank_end -= 1;
4567                 adjusted_mode->crtc_vsync_end -= 1;
4568                 adjusted_mode->crtc_vsync_start -= 1;
4569         } else
4570                 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
4571
4572         I915_WRITE(HTOTAL(pipe),
4573                    (adjusted_mode->crtc_hdisplay - 1) |
4574                    ((adjusted_mode->crtc_htotal - 1) << 16));
4575         I915_WRITE(HBLANK(pipe),
4576                    (adjusted_mode->crtc_hblank_start - 1) |
4577                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
4578         I915_WRITE(HSYNC(pipe),
4579                    (adjusted_mode->crtc_hsync_start - 1) |
4580                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
4581
4582         I915_WRITE(VTOTAL(pipe),
4583                    (adjusted_mode->crtc_vdisplay - 1) |
4584                    ((adjusted_mode->crtc_vtotal - 1) << 16));
4585         I915_WRITE(VBLANK(pipe),
4586                    (adjusted_mode->crtc_vblank_start - 1) |
4587                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
4588         I915_WRITE(VSYNC(pipe),
4589                    (adjusted_mode->crtc_vsync_start - 1) |
4590                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
4591
4592         /* pipesrc and dspsize control the size that is scaled from,
4593          * which should always be the user's requested size.
4594          */
4595         I915_WRITE(DSPSIZE(plane),
4596                    ((mode->vdisplay - 1) << 16) |
4597                    (mode->hdisplay - 1));
4598         I915_WRITE(DSPPOS(plane), 0);
4599         I915_WRITE(PIPESRC(pipe),
4600                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4601
4602         I915_WRITE(PIPECONF(pipe), pipeconf);
4603         POSTING_READ(PIPECONF(pipe));
4604         intel_enable_pipe(dev_priv, pipe, false);
4605
4606         intel_wait_for_vblank(dev, pipe);
4607
4608         I915_WRITE(DSPCNTR(plane), dspcntr);
4609         POSTING_READ(DSPCNTR(plane));
4610
4611         ret = intel_pipe_set_base(crtc, x, y, old_fb);
4612
4613         intel_update_watermarks(dev);
4614
4615         return ret;
4616 }
4617
4618 static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
4619                                   struct drm_display_mode *mode,
4620                                   struct drm_display_mode *adjusted_mode,
4621                                   int x, int y,
4622                                   struct drm_framebuffer *old_fb)
4623 {
4624         struct drm_device *dev = crtc->dev;
4625         struct drm_i915_private *dev_priv = dev->dev_private;
4626         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4627         int pipe = intel_crtc->pipe;
4628         int plane = intel_crtc->plane;
4629         int refclk, num_connectors = 0;
4630         intel_clock_t clock, reduced_clock;
4631         u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
4632         bool ok, has_reduced_clock = false, is_sdvo = false;
4633         bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
4634         struct intel_encoder *has_edp_encoder = NULL;
4635         struct drm_mode_config *mode_config = &dev->mode_config;
4636         struct intel_encoder *encoder;
4637         const intel_limit_t *limit;
4638         int ret;
4639         struct fdi_m_n m_n = {0};
4640         u32 temp;
4641         u32 lvds_sync = 0;
4642         int target_clock, pixel_multiplier, lane, link_bw, bpp, factor;
4643
4644         list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
4645                 if (encoder->base.crtc != crtc)
4646                         continue;
4647
4648                 switch (encoder->type) {
4649                 case INTEL_OUTPUT_LVDS:
4650                         is_lvds = true;
4651                         break;
4652                 case INTEL_OUTPUT_SDVO:
4653                 case INTEL_OUTPUT_HDMI:
4654                         is_sdvo = true;
4655                         if (encoder->needs_tv_clock)
4656                                 is_tv = true;
4657                         break;
4658                 case INTEL_OUTPUT_TVOUT:
4659                         is_tv = true;
4660                         break;
4661                 case INTEL_OUTPUT_ANALOG:
4662                         is_crt = true;
4663                         break;
4664                 case INTEL_OUTPUT_DISPLAYPORT:
4665                         is_dp = true;
4666                         break;
4667                 case INTEL_OUTPUT_EDP:
4668                         has_edp_encoder = encoder;
4669                         break;
4670                 }
4671
4672                 num_connectors++;
4673         }
4674
4675         if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
4676                 refclk = dev_priv->lvds_ssc_freq * 1000;
4677                 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4678                               refclk / 1000);
4679         } else {
4680                 refclk = 96000;
4681                 if (!has_edp_encoder ||
4682                     intel_encoder_is_pch_edp(&has_edp_encoder->base))
4683                         refclk = 120000; /* 120Mhz refclk */
4684         }
4685
4686         /*
4687          * Returns a set of divisors for the desired target clock with the given
4688          * refclk, or FALSE.  The returned values represent the clock equation:
4689          * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4690          */
4691         limit = intel_limit(crtc, refclk);
4692         ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
4693         if (!ok) {
4694                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4695                 return -EINVAL;
4696         }
4697
4698         /* Ensure that the cursor is valid for the new mode before changing... */
4699         intel_crtc_update_cursor(crtc, true);
4700
4701         if (is_lvds && dev_priv->lvds_downclock_avail) {
4702                 has_reduced_clock = limit->find_pll(limit, crtc,
4703                                                     dev_priv->lvds_downclock,
4704                                                     refclk,
4705                                                     &reduced_clock);
4706                 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
4707                         /*
4708                          * If the different P is found, it means that we can't
4709                          * switch the display clock by using the FP0/FP1.
4710                          * In such case we will disable the LVDS downclock
4711                          * feature.
4712                          */
4713                         DRM_DEBUG_KMS("Different P is found for "
4714                                       "LVDS clock/downclock\n");
4715                         has_reduced_clock = 0;
4716                 }
4717         }
4718         /* SDVO TV has fixed PLL values depend on its clock range,
4719            this mirrors vbios setting. */
4720         if (is_sdvo && is_tv) {
4721                 if (adjusted_mode->clock >= 100000
4722                     && adjusted_mode->clock < 140500) {
4723                         clock.p1 = 2;
4724                         clock.p2 = 10;
4725                         clock.n = 3;
4726                         clock.m1 = 16;
4727                         clock.m2 = 8;
4728                 } else if (adjusted_mode->clock >= 140500
4729                            && adjusted_mode->clock <= 200000) {
4730                         clock.p1 = 1;
4731                         clock.p2 = 10;
4732                         clock.n = 6;
4733                         clock.m1 = 12;
4734                         clock.m2 = 8;
4735                 }
4736         }
4737
4738         /* FDI link */
4739         pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4740         lane = 0;
4741         /* CPU eDP doesn't require FDI link, so just set DP M/N
4742            according to current link config */
4743         if (has_edp_encoder &&
4744             !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4745                 target_clock = mode->clock;
4746                 intel_edp_link_config(has_edp_encoder,
4747                                       &lane, &link_bw);
4748         } else {
4749                 /* [e]DP over FDI requires target mode clock
4750                    instead of link clock */
4751                 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
4752                         target_clock = mode->clock;
4753                 else
4754                         target_clock = adjusted_mode->clock;
4755
4756                 /* FDI is a binary signal running at ~2.7GHz, encoding
4757                  * each output octet as 10 bits. The actual frequency
4758                  * is stored as a divider into a 100MHz clock, and the
4759                  * mode pixel clock is stored in units of 1KHz.
4760                  * Hence the bw of each lane in terms of the mode signal
4761                  * is:
4762                  */
4763                 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
4764         }
4765
4766         /* determine panel color depth */
4767         temp = I915_READ(PIPECONF(pipe));
4768         temp &= ~PIPE_BPC_MASK;
4769         if (is_lvds) {
4770                 /* the BPC will be 6 if it is 18-bit LVDS panel */
4771                 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
4772                         temp |= PIPE_8BPC;
4773                 else
4774                         temp |= PIPE_6BPC;
4775         } else if (has_edp_encoder) {
4776                 switch (dev_priv->edp.bpp/3) {
4777                 case 8:
4778                         temp |= PIPE_8BPC;
4779                         break;
4780                 case 10:
4781                         temp |= PIPE_10BPC;
4782                         break;
4783                 case 6:
4784                         temp |= PIPE_6BPC;
4785                         break;
4786                 case 12:
4787                         temp |= PIPE_12BPC;
4788                         break;
4789                 }
4790         } else
4791                 temp |= PIPE_8BPC;
4792         I915_WRITE(PIPECONF(pipe), temp);
4793
4794         switch (temp & PIPE_BPC_MASK) {
4795         case PIPE_8BPC:
4796                 bpp = 24;
4797                 break;
4798         case PIPE_10BPC:
4799                 bpp = 30;
4800                 break;
4801         case PIPE_6BPC:
4802                 bpp = 18;
4803                 break;
4804         case PIPE_12BPC:
4805                 bpp = 36;
4806                 break;
4807         default:
4808                 DRM_ERROR("unknown pipe bpc value\n");
4809                 bpp = 24;
4810         }
4811
4812         if (!lane) {
4813                 /*
4814                  * Account for spread spectrum to avoid
4815                  * oversubscribing the link. Max center spread
4816                  * is 2.5%; use 5% for safety's sake.
4817                  */
4818                 u32 bps = target_clock * bpp * 21 / 20;
4819                 lane = bps / (link_bw * 8) + 1;
4820         }
4821
4822         intel_crtc->fdi_lanes = lane;
4823
4824         if (pixel_multiplier > 1)
4825                 link_bw *= pixel_multiplier;
4826         ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n);
4827
4828         /* Ironlake: try to setup display ref clock before DPLL
4829          * enabling. This is only under driver's control after
4830          * PCH B stepping, previous chipset stepping should be
4831          * ignoring this setting.
4832          */
4833         temp = I915_READ(PCH_DREF_CONTROL);
4834         /* Always enable nonspread source */
4835         temp &= ~DREF_NONSPREAD_SOURCE_MASK;
4836         temp |= DREF_NONSPREAD_SOURCE_ENABLE;
4837         temp &= ~DREF_SSC_SOURCE_MASK;
4838         temp |= DREF_SSC_SOURCE_ENABLE;
4839         I915_WRITE(PCH_DREF_CONTROL, temp);
4840
4841         POSTING_READ(PCH_DREF_CONTROL);
4842         udelay(200);
4843
4844         if (has_edp_encoder) {
4845                 if (intel_panel_use_ssc(dev_priv)) {
4846                         temp |= DREF_SSC1_ENABLE;
4847                         I915_WRITE(PCH_DREF_CONTROL, temp);
4848
4849                         POSTING_READ(PCH_DREF_CONTROL);
4850                         udelay(200);
4851                 }
4852                 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
4853
4854                 /* Enable CPU source on CPU attached eDP */
4855                 if (!intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4856                         if (intel_panel_use_ssc(dev_priv))
4857                                 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
4858                         else
4859                                 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
4860                 } else {
4861                         /* Enable SSC on PCH eDP if needed */
4862                         if (intel_panel_use_ssc(dev_priv)) {
4863                                 DRM_ERROR("enabling SSC on PCH\n");
4864                                 temp |= DREF_SUPERSPREAD_SOURCE_ENABLE;
4865                         }
4866                 }
4867                 I915_WRITE(PCH_DREF_CONTROL, temp);
4868                 POSTING_READ(PCH_DREF_CONTROL);
4869                 udelay(200);
4870         }
4871
4872         fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
4873         if (has_reduced_clock)
4874                 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
4875                         reduced_clock.m2;
4876
4877         /* Enable autotuning of the PLL clock (if permissible) */
4878         factor = 21;
4879         if (is_lvds) {
4880                 if ((intel_panel_use_ssc(dev_priv) &&
4881                      dev_priv->lvds_ssc_freq == 100) ||
4882                     (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
4883                         factor = 25;
4884         } else if (is_sdvo && is_tv)
4885                 factor = 20;
4886
4887         if (clock.m1 < factor * clock.n)
4888                 fp |= FP_CB_TUNE;
4889
4890         dpll = 0;
4891
4892         if (is_lvds)
4893                 dpll |= DPLLB_MODE_LVDS;
4894         else
4895                 dpll |= DPLLB_MODE_DAC_SERIAL;
4896         if (is_sdvo) {
4897                 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
4898                 if (pixel_multiplier > 1) {
4899                         dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
4900                 }
4901                 dpll |= DPLL_DVO_HIGH_SPEED;
4902         }
4903         if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
4904                 dpll |= DPLL_DVO_HIGH_SPEED;
4905
4906         /* compute bitmask from p1 value */
4907         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
4908         /* also FPA1 */
4909         dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
4910
4911         switch (clock.p2) {
4912         case 5:
4913                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
4914                 break;
4915         case 7:
4916                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
4917                 break;
4918         case 10:
4919                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
4920                 break;
4921         case 14:
4922                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
4923                 break;
4924         }
4925
4926         if (is_sdvo && is_tv)
4927                 dpll |= PLL_REF_INPUT_TVCLKINBC;
4928         else if (is_tv)
4929                 /* XXX: just matching BIOS for now */
4930                 /*      dpll |= PLL_REF_INPUT_TVCLKINBC; */
4931                 dpll |= 3;
4932         else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
4933                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
4934         else
4935                 dpll |= PLL_REF_INPUT_DREFCLK;
4936
4937         /* setup pipeconf */
4938         pipeconf = I915_READ(PIPECONF(pipe));
4939
4940         /* Set up the display plane register */
4941         dspcntr = DISPPLANE_GAMMA_ENABLE;
4942
4943         DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
4944         drm_mode_debug_printmodeline(mode);
4945
4946         /* PCH eDP needs FDI, but CPU eDP does not */
4947         if (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4948                 I915_WRITE(PCH_FP0(pipe), fp);
4949                 I915_WRITE(PCH_DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
4950
4951                 POSTING_READ(PCH_DPLL(pipe));
4952                 udelay(150);
4953         }
4954
4955         /* enable transcoder DPLL */
4956         if (HAS_PCH_CPT(dev)) {
4957                 temp = I915_READ(PCH_DPLL_SEL);
4958                 switch (pipe) {
4959                 case 0:
4960                         temp |= TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL;
4961                         break;
4962                 case 1:
4963                         temp |= TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL;
4964                         break;
4965                 case 2:
4966                         /* FIXME: manage transcoder PLLs? */
4967                         temp |= TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL;
4968                         break;
4969                 default:
4970                         BUG();
4971                 }
4972                 I915_WRITE(PCH_DPLL_SEL, temp);
4973
4974                 POSTING_READ(PCH_DPLL_SEL);
4975                 udelay(150);
4976         }
4977
4978         /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4979          * This is an exception to the general rule that mode_set doesn't turn
4980          * things on.
4981          */
4982         if (is_lvds) {
4983                 temp = I915_READ(PCH_LVDS);
4984                 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
4985                 if (pipe == 1) {
4986                         if (HAS_PCH_CPT(dev))
4987                                 temp |= PORT_TRANS_B_SEL_CPT;
4988                         else
4989                                 temp |= LVDS_PIPEB_SELECT;
4990                 } else {
4991                         if (HAS_PCH_CPT(dev))
4992                                 temp &= ~PORT_TRANS_SEL_MASK;
4993                         else
4994                                 temp &= ~LVDS_PIPEB_SELECT;
4995                 }
4996                 /* set the corresponsding LVDS_BORDER bit */
4997                 temp |= dev_priv->lvds_border_bits;
4998                 /* Set the B0-B3 data pairs corresponding to whether we're going to
4999                  * set the DPLLs for dual-channel mode or not.
5000                  */
5001                 if (clock.p2 == 7)
5002                         temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
5003                 else
5004                         temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
5005
5006                 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5007                  * appropriately here, but we need to look more thoroughly into how
5008                  * panels behave in the two modes.
5009                  */
5010                 if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
5011                         lvds_sync |= LVDS_HSYNC_POLARITY;
5012                 if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
5013                         lvds_sync |= LVDS_VSYNC_POLARITY;
5014                 if ((temp & (LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY))
5015                     != lvds_sync) {
5016                         char flags[2] = "-+";
5017                         DRM_INFO("Changing LVDS panel from "
5018                                  "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5019                                  flags[!(temp & LVDS_HSYNC_POLARITY)],
5020                                  flags[!(temp & LVDS_VSYNC_POLARITY)],
5021                                  flags[!(lvds_sync & LVDS_HSYNC_POLARITY)],
5022                                  flags[!(lvds_sync & LVDS_VSYNC_POLARITY)]);
5023                         temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
5024                         temp |= lvds_sync;
5025                 }
5026                 I915_WRITE(PCH_LVDS, temp);
5027         }
5028
5029         /* set the dithering flag and clear for anything other than a panel. */
5030         pipeconf &= ~PIPECONF_DITHER_EN;
5031         pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
5032         if (dev_priv->lvds_dither && (is_lvds || has_edp_encoder)) {
5033                 pipeconf |= PIPECONF_DITHER_EN;
5034                 pipeconf |= PIPECONF_DITHER_TYPE_ST1;
5035         }
5036
5037         if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5038                 intel_dp_set_m_n(crtc, mode, adjusted_mode);
5039         } else {
5040                 /* For non-DP output, clear any trans DP clock recovery setting.*/
5041                 I915_WRITE(TRANSDATA_M1(pipe), 0);
5042                 I915_WRITE(TRANSDATA_N1(pipe), 0);
5043                 I915_WRITE(TRANSDPLINK_M1(pipe), 0);
5044                 I915_WRITE(TRANSDPLINK_N1(pipe), 0);
5045         }
5046
5047         if (!has_edp_encoder ||
5048             intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5049                 I915_WRITE(PCH_DPLL(pipe), dpll);
5050
5051                 /* Wait for the clocks to stabilize. */
5052                 POSTING_READ(PCH_DPLL(pipe));
5053                 udelay(150);
5054
5055                 /* The pixel multiplier can only be updated once the
5056                  * DPLL is enabled and the clocks are stable.
5057                  *
5058                  * So write it again.
5059                  */
5060                 I915_WRITE(PCH_DPLL(pipe), dpll);
5061         }
5062
5063         intel_crtc->lowfreq_avail = false;
5064         if (is_lvds && has_reduced_clock && i915_powersave) {
5065                 I915_WRITE(PCH_FP1(pipe), fp2);
5066                 intel_crtc->lowfreq_avail = true;
5067                 if (HAS_PIPE_CXSR(dev)) {
5068                         DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5069                         pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
5070                 }
5071         } else {
5072                 I915_WRITE(PCH_FP1(pipe), fp);
5073                 if (HAS_PIPE_CXSR(dev)) {
5074                         DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5075                         pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
5076                 }
5077         }
5078
5079         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5080                 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
5081                 /* the chip adds 2 halflines automatically */
5082                 adjusted_mode->crtc_vdisplay -= 1;
5083                 adjusted_mode->crtc_vtotal -= 1;
5084                 adjusted_mode->crtc_vblank_start -= 1;
5085                 adjusted_mode->crtc_vblank_end -= 1;
5086                 adjusted_mode->crtc_vsync_end -= 1;
5087                 adjusted_mode->crtc_vsync_start -= 1;
5088         } else
5089                 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
5090
5091         I915_WRITE(HTOTAL(pipe),
5092                    (adjusted_mode->crtc_hdisplay - 1) |
5093                    ((adjusted_mode->crtc_htotal - 1) << 16));
5094         I915_WRITE(HBLANK(pipe),
5095                    (adjusted_mode->crtc_hblank_start - 1) |
5096                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
5097         I915_WRITE(HSYNC(pipe),
5098                    (adjusted_mode->crtc_hsync_start - 1) |
5099                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
5100
5101         I915_WRITE(VTOTAL(pipe),
5102                    (adjusted_mode->crtc_vdisplay - 1) |
5103                    ((adjusted_mode->crtc_vtotal - 1) << 16));
5104         I915_WRITE(VBLANK(pipe),
5105                    (adjusted_mode->crtc_vblank_start - 1) |
5106                    ((adjusted_mode->crtc_vblank_end - 1) << 16));
5107         I915_WRITE(VSYNC(pipe),
5108                    (adjusted_mode->crtc_vsync_start - 1) |
5109                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
5110
5111         /* pipesrc controls the size that is scaled from, which should
5112          * always be the user's requested size.
5113          */
5114         I915_WRITE(PIPESRC(pipe),
5115                    ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
5116
5117         I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
5118         I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
5119         I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
5120         I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
5121
5122         if (has_edp_encoder &&
5123             !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
5124                 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
5125         }
5126
5127         I915_WRITE(PIPECONF(pipe), pipeconf);
5128         POSTING_READ(PIPECONF(pipe));
5129
5130         intel_wait_for_vblank(dev, pipe);
5131
5132         if (IS_GEN5(dev)) {
5133                 /* enable address swizzle for tiling buffer */
5134                 temp = I915_READ(DISP_ARB_CTL);
5135                 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
5136         }
5137
5138         I915_WRITE(DSPCNTR(plane), dspcntr);
5139         POSTING_READ(DSPCNTR(plane));
5140
5141         ret = intel_pipe_set_base(crtc, x, y, old_fb);
5142
5143         intel_update_watermarks(dev);
5144
5145         return ret;
5146 }
5147
5148 static int intel_crtc_mode_set(struct drm_crtc *crtc,
5149                                struct drm_display_mode *mode,
5150                                struct drm_display_mode *adjusted_mode,
5151                                int x, int y,
5152                                struct drm_framebuffer *old_fb)
5153 {
5154         struct drm_device *dev = crtc->dev;
5155         struct drm_i915_private *dev_priv = dev->dev_private;
5156         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5157         int pipe = intel_crtc->pipe;
5158         int ret;
5159
5160         drm_vblank_pre_modeset(dev, pipe);
5161
5162         ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
5163                                               x, y, old_fb);
5164
5165         drm_vblank_post_modeset(dev, pipe);
5166
5167         return ret;
5168 }
5169
5170 /** Loads the palette/gamma unit for the CRTC with the prepared values */
5171 void intel_crtc_load_lut(struct drm_crtc *crtc)
5172 {
5173         struct drm_device *dev = crtc->dev;
5174         struct drm_i915_private *dev_priv = dev->dev_private;
5175         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5176         int palreg = PALETTE(intel_crtc->pipe);
5177         int i;
5178
5179         /* The clocks have to be on to load the palette. */
5180         if (!crtc->enabled)
5181                 return;
5182
5183         /* use legacy palette for Ironlake */
5184         if (HAS_PCH_SPLIT(dev))
5185                 palreg = LGC_PALETTE(intel_crtc->pipe);
5186
5187         for (i = 0; i < 256; i++) {
5188                 I915_WRITE(palreg + 4 * i,
5189                            (intel_crtc->lut_r[i] << 16) |
5190                            (intel_crtc->lut_g[i] << 8) |
5191                            intel_crtc->lut_b[i]);
5192         }
5193 }
5194
5195 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
5196 {
5197         struct drm_device *dev = crtc->dev;
5198         struct drm_i915_private *dev_priv = dev->dev_private;
5199         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5200         bool visible = base != 0;
5201         u32 cntl;
5202
5203         if (intel_crtc->cursor_visible == visible)
5204                 return;
5205
5206         cntl = I915_READ(_CURACNTR);
5207         if (visible) {
5208                 /* On these chipsets we can only modify the base whilst
5209                  * the cursor is disabled.
5210                  */
5211                 I915_WRITE(_CURABASE, base);
5212
5213                 cntl &= ~(CURSOR_FORMAT_MASK);
5214                 /* XXX width must be 64, stride 256 => 0x00 << 28 */
5215                 cntl |= CURSOR_ENABLE |
5216                         CURSOR_GAMMA_ENABLE |
5217                         CURSOR_FORMAT_ARGB;
5218         } else
5219                 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
5220         I915_WRITE(_CURACNTR, cntl);
5221
5222         intel_crtc->cursor_visible = visible;
5223 }
5224
5225 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
5226 {
5227         struct drm_device *dev = crtc->dev;
5228         struct drm_i915_private *dev_priv = dev->dev_private;
5229         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5230         int pipe = intel_crtc->pipe;
5231         bool visible = base != 0;
5232
5233         if (intel_crtc->cursor_visible != visible) {
5234                 uint32_t cntl = I915_READ(CURCNTR(pipe));
5235                 if (base) {
5236                         cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
5237                         cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
5238                         cntl |= pipe << 28; /* Connect to correct pipe */
5239                 } else {
5240                         cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
5241                         cntl |= CURSOR_MODE_DISABLE;
5242                 }
5243                 I915_WRITE(CURCNTR(pipe), cntl);
5244
5245                 intel_crtc->cursor_visible = visible;
5246         }
5247         /* and commit changes on next vblank */
5248         I915_WRITE(CURBASE(pipe), base);
5249 }
5250
5251 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
5252 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
5253                                      bool on)
5254 {
5255         struct drm_device *dev = crtc->dev;
5256         struct drm_i915_private *dev_priv = dev->dev_private;
5257         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5258         int pipe = intel_crtc->pipe;
5259         int x = intel_crtc->cursor_x;
5260         int y = intel_crtc->cursor_y;
5261         u32 base, pos;
5262         bool visible;
5263
5264         pos = 0;
5265
5266         if (on && crtc->enabled && crtc->fb) {
5267                 base = intel_crtc->cursor_addr;
5268                 if (x > (int) crtc->fb->width)
5269                         base = 0;
5270
5271                 if (y > (int) crtc->fb->height)
5272                         base = 0;
5273         } else
5274                 base = 0;
5275
5276         if (x < 0) {
5277                 if (x + intel_crtc->cursor_width < 0)
5278                         base = 0;
5279
5280                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
5281                 x = -x;
5282         }
5283         pos |= x << CURSOR_X_SHIFT;
5284
5285         if (y < 0) {
5286                 if (y + intel_crtc->cursor_height < 0)
5287                         base = 0;
5288
5289                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
5290                 y = -y;
5291         }
5292         pos |= y << CURSOR_Y_SHIFT;
5293
5294         visible = base != 0;
5295         if (!visible && !intel_crtc->cursor_visible)
5296                 return;
5297
5298         I915_WRITE(CURPOS(pipe), pos);
5299         if (IS_845G(dev) || IS_I865G(dev))
5300                 i845_update_cursor(crtc, base);
5301         else
5302                 i9xx_update_cursor(crtc, base);
5303
5304         if (visible)
5305                 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
5306 }
5307
5308 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
5309                                  struct drm_file *file,
5310                                  uint32_t handle,
5311                                  uint32_t width, uint32_t height)
5312 {
5313         struct drm_device *dev = crtc->dev;
5314         struct drm_i915_private *dev_priv = dev->dev_private;
5315         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5316         struct drm_i915_gem_object *obj;
5317         uint32_t addr;
5318         int ret;
5319
5320         DRM_DEBUG_KMS("\n");
5321
5322         /* if we want to turn off the cursor ignore width and height */
5323         if (!handle) {
5324                 DRM_DEBUG_KMS("cursor off\n");
5325                 addr = 0;
5326                 obj = NULL;
5327                 mutex_lock(&dev->struct_mutex);
5328                 goto finish;
5329         }
5330
5331         /* Currently we only support 64x64 cursors */
5332         if (width != 64 || height != 64) {
5333                 DRM_ERROR("we currently only support 64x64 cursors\n");
5334                 return -EINVAL;
5335         }
5336
5337         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
5338         if (&obj->base == NULL)
5339                 return -ENOENT;
5340
5341         if (obj->base.size < width * height * 4) {
5342                 DRM_ERROR("buffer is to small\n");
5343                 ret = -ENOMEM;
5344                 goto fail;
5345         }
5346
5347         /* we only need to pin inside GTT if cursor is non-phy */
5348         mutex_lock(&dev->struct_mutex);
5349         if (!dev_priv->info->cursor_needs_physical) {
5350                 if (obj->tiling_mode) {
5351                         DRM_ERROR("cursor cannot be tiled\n");
5352                         ret = -EINVAL;
5353                         goto fail_locked;
5354                 }
5355
5356                 ret = i915_gem_object_pin(obj, PAGE_SIZE, true);
5357                 if (ret) {
5358                         DRM_ERROR("failed to pin cursor bo\n");
5359                         goto fail_locked;
5360                 }
5361
5362                 ret = i915_gem_object_set_to_gtt_domain(obj, 0);
5363                 if (ret) {
5364                         DRM_ERROR("failed to move cursor bo into the GTT\n");
5365                         goto fail_unpin;
5366                 }
5367
5368                 ret = i915_gem_object_put_fence(obj);
5369                 if (ret) {
5370                         DRM_ERROR("failed to move cursor bo into the GTT\n");
5371                         goto fail_unpin;
5372                 }
5373
5374                 addr = obj->gtt_offset;
5375         } else {
5376                 int align = IS_I830(dev) ? 16 * 1024 : 256;
5377                 ret = i915_gem_attach_phys_object(dev, obj,
5378                                                   (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
5379                                                   align);
5380                 if (ret) {
5381                         DRM_ERROR("failed to attach phys object\n");
5382                         goto fail_locked;
5383                 }
5384                 addr = obj->phys_obj->handle->busaddr;
5385         }
5386
5387         if (IS_GEN2(dev))
5388                 I915_WRITE(CURSIZE, (height << 12) | width);
5389
5390  finish:
5391         if (intel_crtc->cursor_bo) {
5392                 if (dev_priv->info->cursor_needs_physical) {
5393                         if (intel_crtc->cursor_bo != obj)
5394                                 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
5395                 } else
5396                         i915_gem_object_unpin(intel_crtc->cursor_bo);
5397                 drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
5398         }
5399
5400         mutex_unlock(&dev->struct_mutex);
5401
5402         intel_crtc->cursor_addr = addr;
5403         intel_crtc->cursor_bo = obj;
5404         intel_crtc->cursor_width = width;
5405         intel_crtc->cursor_height = height;
5406
5407         intel_crtc_update_cursor(crtc, true);
5408
5409         return 0;
5410 fail_unpin:
5411         i915_gem_object_unpin(obj);
5412 fail_locked:
5413         mutex_unlock(&dev->struct_mutex);
5414 fail:
5415         drm_gem_object_unreference_unlocked(&obj->base);
5416         return ret;
5417 }
5418
5419 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
5420 {
5421         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5422
5423         intel_crtc->cursor_x = x;
5424         intel_crtc->cursor_y = y;
5425
5426         intel_crtc_update_cursor(crtc, true);
5427
5428         return 0;
5429 }
5430
5431 /** Sets the color ramps on behalf of RandR */
5432 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
5433                                  u16 blue, int regno)
5434 {
5435         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5436
5437         intel_crtc->lut_r[regno] = red >> 8;
5438         intel_crtc->lut_g[regno] = green >> 8;
5439         intel_crtc->lut_b[regno] = blue >> 8;
5440 }
5441
5442 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
5443                              u16 *blue, int regno)
5444 {
5445         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5446
5447         *red = intel_crtc->lut_r[regno] << 8;
5448         *green = intel_crtc->lut_g[regno] << 8;
5449         *blue = intel_crtc->lut_b[regno] << 8;
5450 }
5451
5452 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
5453                                  u16 *blue, uint32_t start, uint32_t size)
5454 {
5455         int end = (start + size > 256) ? 256 : start + size, i;
5456         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5457
5458         for (i = start; i < end; i++) {
5459                 intel_crtc->lut_r[i] = red[i] >> 8;
5460                 intel_crtc->lut_g[i] = green[i] >> 8;
5461                 intel_crtc->lut_b[i] = blue[i] >> 8;
5462         }
5463
5464         intel_crtc_load_lut(crtc);
5465 }
5466
5467 /**
5468  * Get a pipe with a simple mode set on it for doing load-based monitor
5469  * detection.
5470  *
5471  * It will be up to the load-detect code to adjust the pipe as appropriate for
5472  * its requirements.  The pipe will be connected to no other encoders.
5473  *
5474  * Currently this code will only succeed if there is a pipe with no encoders
5475  * configured for it.  In the future, it could choose to temporarily disable
5476  * some outputs to free up a pipe for its use.
5477  *
5478  * \return crtc, or NULL if no pipes are available.
5479  */
5480
5481 /* VESA 640x480x72Hz mode to set on the pipe */
5482 static struct drm_display_mode load_detect_mode = {
5483         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
5484                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
5485 };
5486
5487 static struct drm_framebuffer *
5488 intel_framebuffer_create(struct drm_device *dev,
5489                          struct drm_mode_fb_cmd *mode_cmd,
5490                          struct drm_i915_gem_object *obj)
5491 {
5492         struct intel_framebuffer *intel_fb;
5493         int ret;
5494
5495         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5496         if (!intel_fb) {
5497                 drm_gem_object_unreference_unlocked(&obj->base);
5498                 return ERR_PTR(-ENOMEM);
5499         }
5500
5501         ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
5502         if (ret) {
5503                 drm_gem_object_unreference_unlocked(&obj->base);
5504                 kfree(intel_fb);
5505                 return ERR_PTR(ret);
5506         }
5507
5508         return &intel_fb->base;
5509 }
5510
5511 static u32
5512 intel_framebuffer_pitch_for_width(int width, int bpp)
5513 {
5514         u32 pitch = DIV_ROUND_UP(width * bpp, 8);
5515         return ALIGN(pitch, 64);
5516 }
5517
5518 static u32
5519 intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
5520 {
5521         u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
5522         return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
5523 }
5524
5525 static struct drm_framebuffer *
5526 intel_framebuffer_create_for_mode(struct drm_device *dev,
5527                                   struct drm_display_mode *mode,
5528                                   int depth, int bpp)
5529 {
5530         struct drm_i915_gem_object *obj;
5531         struct drm_mode_fb_cmd mode_cmd;
5532
5533         obj = i915_gem_alloc_object(dev,
5534                                     intel_framebuffer_size_for_mode(mode, bpp));
5535         if (obj == NULL)
5536                 return ERR_PTR(-ENOMEM);
5537
5538         mode_cmd.width = mode->hdisplay;
5539         mode_cmd.height = mode->vdisplay;
5540         mode_cmd.depth = depth;
5541         mode_cmd.bpp = bpp;
5542         mode_cmd.pitch = intel_framebuffer_pitch_for_width(mode_cmd.width, bpp);
5543
5544         return intel_framebuffer_create(dev, &mode_cmd, obj);
5545 }
5546
5547 static struct drm_framebuffer *
5548 mode_fits_in_fbdev(struct drm_device *dev,
5549                    struct drm_display_mode *mode)
5550 {
5551         struct drm_i915_private *dev_priv = dev->dev_private;
5552         struct drm_i915_gem_object *obj;
5553         struct drm_framebuffer *fb;
5554
5555         if (dev_priv->fbdev == NULL)
5556                 return NULL;
5557
5558         obj = dev_priv->fbdev->ifb.obj;
5559         if (obj == NULL)
5560                 return NULL;
5561
5562         fb = &dev_priv->fbdev->ifb.base;
5563         if (fb->pitch < intel_framebuffer_pitch_for_width(mode->hdisplay,
5564                                                           fb->bits_per_pixel))
5565                 return NULL;
5566
5567         if (obj->base.size < mode->vdisplay * fb->pitch)
5568                 return NULL;
5569
5570         return fb;
5571 }
5572
5573 bool intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
5574                                 struct drm_connector *connector,
5575                                 struct drm_display_mode *mode,
5576                                 struct intel_load_detect_pipe *old)
5577 {
5578         struct intel_crtc *intel_crtc;
5579         struct drm_crtc *possible_crtc;
5580         struct drm_encoder *encoder = &intel_encoder->base;
5581         struct drm_crtc *crtc = NULL;
5582         struct drm_device *dev = encoder->dev;
5583         struct drm_framebuffer *old_fb;
5584         int i = -1;
5585
5586         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5587                       connector->base.id, drm_get_connector_name(connector),
5588                       encoder->base.id, drm_get_encoder_name(encoder));
5589
5590         /*
5591          * Algorithm gets a little messy:
5592          *
5593          *   - if the connector already has an assigned crtc, use it (but make
5594          *     sure it's on first)
5595          *
5596          *   - try to find the first unused crtc that can drive this connector,
5597          *     and use that if we find one
5598          */
5599
5600         /* See if we already have a CRTC for this connector */
5601         if (encoder->crtc) {
5602                 crtc = encoder->crtc;
5603
5604                 intel_crtc = to_intel_crtc(crtc);
5605                 old->dpms_mode = intel_crtc->dpms_mode;
5606                 old->load_detect_temp = false;
5607
5608                 /* Make sure the crtc and connector are running */
5609                 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
5610                         struct drm_encoder_helper_funcs *encoder_funcs;
5611                         struct drm_crtc_helper_funcs *crtc_funcs;
5612
5613                         crtc_funcs = crtc->helper_private;
5614                         crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
5615
5616                         encoder_funcs = encoder->helper_private;
5617                         encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
5618                 }
5619
5620                 return true;
5621         }
5622
5623         /* Find an unused one (if possible) */
5624         list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
5625                 i++;
5626                 if (!(encoder->possible_crtcs & (1 << i)))
5627                         continue;
5628                 if (!possible_crtc->enabled) {
5629                         crtc = possible_crtc;
5630                         break;
5631                 }
5632         }
5633
5634         /*
5635          * If we didn't find an unused CRTC, don't use any.
5636          */
5637         if (!crtc) {
5638                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
5639                 return false;
5640         }
5641
5642         encoder->crtc = crtc;
5643         connector->encoder = encoder;
5644
5645         intel_crtc = to_intel_crtc(crtc);
5646         old->dpms_mode = intel_crtc->dpms_mode;
5647         old->load_detect_temp = true;
5648         old->release_fb = NULL;
5649
5650         if (!mode)
5651                 mode = &load_detect_mode;
5652
5653         old_fb = crtc->fb;
5654
5655         /* We need a framebuffer large enough to accommodate all accesses
5656          * that the plane may generate whilst we perform load detection.
5657          * We can not rely on the fbcon either being present (we get called
5658          * during its initialisation to detect all boot displays, or it may
5659          * not even exist) or that it is large enough to satisfy the
5660          * requested mode.
5661          */
5662         crtc->fb = mode_fits_in_fbdev(dev, mode);
5663         if (crtc->fb == NULL) {
5664                 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
5665                 crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
5666                 old->release_fb = crtc->fb;
5667         } else
5668                 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
5669         if (IS_ERR(crtc->fb)) {
5670                 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
5671                 crtc->fb = old_fb;
5672                 return false;
5673         }
5674
5675         if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
5676                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
5677                 if (old->release_fb)
5678                         old->release_fb->funcs->destroy(old->release_fb);
5679                 crtc->fb = old_fb;
5680                 return false;
5681         }
5682
5683         /* let the connector get through one full cycle before testing */
5684         intel_wait_for_vblank(dev, intel_crtc->pipe);
5685
5686         return true;
5687 }
5688
5689 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
5690                                     struct drm_connector *connector,
5691                                     struct intel_load_detect_pipe *old)
5692 {
5693         struct drm_encoder *encoder = &intel_encoder->base;
5694         struct drm_device *dev = encoder->dev;
5695         struct drm_crtc *crtc = encoder->crtc;
5696         struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
5697         struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
5698
5699         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
5700                       connector->base.id, drm_get_connector_name(connector),
5701                       encoder->base.id, drm_get_encoder_name(encoder));
5702
5703         if (old->load_detect_temp) {
5704                 connector->encoder = NULL;
5705                 drm_helper_disable_unused_functions(dev);
5706
5707                 if (old->release_fb)
5708                         old->release_fb->funcs->destroy(old->release_fb);
5709
5710                 return;
5711         }
5712
5713         /* Switch crtc and encoder back off if necessary */
5714         if (old->dpms_mode != DRM_MODE_DPMS_ON) {
5715                 encoder_funcs->dpms(encoder, old->dpms_mode);
5716                 crtc_funcs->dpms(crtc, old->dpms_mode);
5717         }
5718 }
5719
5720 /* Returns the clock of the currently programmed mode of the given pipe. */
5721 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
5722 {
5723         struct drm_i915_private *dev_priv = dev->dev_private;
5724         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5725         int pipe = intel_crtc->pipe;
5726         u32 dpll = I915_READ(DPLL(pipe));
5727         u32 fp;
5728         intel_clock_t clock;
5729
5730         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
5731                 fp = I915_READ(FP0(pipe));
5732         else
5733                 fp = I915_READ(FP1(pipe));
5734
5735         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
5736         if (IS_PINEVIEW(dev)) {
5737                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
5738                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
5739         } else {
5740                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
5741                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
5742         }
5743
5744         if (!IS_GEN2(dev)) {
5745                 if (IS_PINEVIEW(dev))
5746                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
5747                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
5748                 else
5749                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
5750                                DPLL_FPA01_P1_POST_DIV_SHIFT);
5751
5752                 switch (dpll & DPLL_MODE_MASK) {
5753                 case DPLLB_MODE_DAC_SERIAL:
5754                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
5755                                 5 : 10;
5756                         break;
5757                 case DPLLB_MODE_LVDS:
5758                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
5759                                 7 : 14;
5760                         break;
5761                 default:
5762                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
5763                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
5764                         return 0;
5765                 }
5766
5767                 /* XXX: Handle the 100Mhz refclk */
5768                 intel_clock(dev, 96000, &clock);
5769         } else {
5770                 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
5771
5772                 if (is_lvds) {
5773                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
5774                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
5775                         clock.p2 = 14;
5776
5777                         if ((dpll & PLL_REF_INPUT_MASK) ==
5778                             PLLB_REF_INPUT_SPREADSPECTRUMIN) {
5779                                 /* XXX: might not be 66MHz */
5780                                 intel_clock(dev, 66000, &clock);
5781                         } else
5782                                 intel_clock(dev, 48000, &clock);
5783                 } else {
5784                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
5785                                 clock.p1 = 2;
5786                         else {
5787                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
5788                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
5789                         }
5790                         if (dpll & PLL_P2_DIVIDE_BY_4)
5791                                 clock.p2 = 4;
5792                         else
5793                                 clock.p2 = 2;
5794
5795                         intel_clock(dev, 48000, &clock);
5796                 }
5797         }
5798
5799         /* XXX: It would be nice to validate the clocks, but we can't reuse
5800          * i830PllIsValid() because it relies on the xf86_config connector
5801          * configuration being accurate, which it isn't necessarily.
5802          */
5803
5804         return clock.dot;
5805 }
5806
5807 /** Returns the currently programmed mode of the given pipe. */
5808 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
5809                                              struct drm_crtc *crtc)
5810 {
5811         struct drm_i915_private *dev_priv = dev->dev_private;
5812         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5813         int pipe = intel_crtc->pipe;
5814         struct drm_display_mode *mode;
5815         int htot = I915_READ(HTOTAL(pipe));
5816         int hsync = I915_READ(HSYNC(pipe));
5817         int vtot = I915_READ(VTOTAL(pipe));
5818         int vsync = I915_READ(VSYNC(pipe));
5819
5820         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
5821         if (!mode)
5822                 return NULL;
5823
5824         mode->clock = intel_crtc_clock_get(dev, crtc);
5825         mode->hdisplay = (htot & 0xffff) + 1;
5826         mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
5827         mode->hsync_start = (hsync & 0xffff) + 1;
5828         mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
5829         mode->vdisplay = (vtot & 0xffff) + 1;
5830         mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
5831         mode->vsync_start = (vsync & 0xffff) + 1;
5832         mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
5833
5834         drm_mode_set_name(mode);
5835         drm_mode_set_crtcinfo(mode, 0);
5836
5837         return mode;
5838 }
5839
5840 #define GPU_IDLE_TIMEOUT 500 /* ms */
5841
5842 /* When this timer fires, we've been idle for awhile */
5843 static void intel_gpu_idle_timer(unsigned long arg)
5844 {
5845         struct drm_device *dev = (struct drm_device *)arg;
5846         drm_i915_private_t *dev_priv = dev->dev_private;
5847
5848         if (!list_empty(&dev_priv->mm.active_list)) {
5849                 /* Still processing requests, so just re-arm the timer. */
5850                 mod_timer(&dev_priv->idle_timer, jiffies +
5851                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
5852                 return;
5853         }
5854
5855         dev_priv->busy = false;
5856         queue_work(dev_priv->wq, &dev_priv->idle_work);
5857 }
5858
5859 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
5860
5861 static void intel_crtc_idle_timer(unsigned long arg)
5862 {
5863         struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
5864         struct drm_crtc *crtc = &intel_crtc->base;
5865         drm_i915_private_t *dev_priv = crtc->dev->dev_private;
5866         struct intel_framebuffer *intel_fb;
5867
5868         intel_fb = to_intel_framebuffer(crtc->fb);
5869         if (intel_fb && intel_fb->obj->active) {
5870                 /* The framebuffer is still being accessed by the GPU. */
5871                 mod_timer(&intel_crtc->idle_timer, jiffies +
5872                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
5873                 return;
5874         }
5875
5876         intel_crtc->busy = false;
5877         queue_work(dev_priv->wq, &dev_priv->idle_work);
5878 }
5879
5880 static void intel_increase_pllclock(struct drm_crtc *crtc)
5881 {
5882         struct drm_device *dev = crtc->dev;
5883         drm_i915_private_t *dev_priv = dev->dev_private;
5884         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5885         int pipe = intel_crtc->pipe;
5886         int dpll_reg = DPLL(pipe);
5887         int dpll;
5888
5889         if (HAS_PCH_SPLIT(dev))
5890                 return;
5891
5892         if (!dev_priv->lvds_downclock_avail)
5893                 return;
5894
5895         dpll = I915_READ(dpll_reg);
5896         if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
5897                 DRM_DEBUG_DRIVER("upclocking LVDS\n");
5898
5899                 /* Unlock panel regs */
5900                 I915_WRITE(PP_CONTROL,
5901                            I915_READ(PP_CONTROL) | PANEL_UNLOCK_REGS);
5902
5903                 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
5904                 I915_WRITE(dpll_reg, dpll);
5905                 intel_wait_for_vblank(dev, pipe);
5906
5907                 dpll = I915_READ(dpll_reg);
5908                 if (dpll & DISPLAY_RATE_SELECT_FPA1)
5909                         DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
5910
5911                 /* ...and lock them again */
5912                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
5913         }
5914
5915         /* Schedule downclock */
5916         mod_timer(&intel_crtc->idle_timer, jiffies +
5917                   msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
5918 }
5919
5920 static void intel_decrease_pllclock(struct drm_crtc *crtc)
5921 {
5922         struct drm_device *dev = crtc->dev;
5923         drm_i915_private_t *dev_priv = dev->dev_private;
5924         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5925         int pipe = intel_crtc->pipe;
5926         int dpll_reg = DPLL(pipe);
5927         int dpll = I915_READ(dpll_reg);
5928
5929         if (HAS_PCH_SPLIT(dev))
5930                 return;
5931
5932         if (!dev_priv->lvds_downclock_avail)
5933                 return;
5934
5935         /*
5936          * Since this is called by a timer, we should never get here in
5937          * the manual case.
5938          */
5939         if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
5940                 DRM_DEBUG_DRIVER("downclocking LVDS\n");
5941
5942                 /* Unlock panel regs */
5943                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
5944                            PANEL_UNLOCK_REGS);
5945
5946                 dpll |= DISPLAY_RATE_SELECT_FPA1;
5947                 I915_WRITE(dpll_reg, dpll);
5948                 intel_wait_for_vblank(dev, pipe);
5949                 dpll = I915_READ(dpll_reg);
5950                 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
5951                         DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
5952
5953                 /* ...and lock them again */
5954                 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
5955         }
5956
5957 }
5958
5959 /**
5960  * intel_idle_update - adjust clocks for idleness
5961  * @work: work struct
5962  *
5963  * Either the GPU or display (or both) went idle.  Check the busy status
5964  * here and adjust the CRTC and GPU clocks as necessary.
5965  */
5966 static void intel_idle_update(struct work_struct *work)
5967 {
5968         drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
5969                                                     idle_work);
5970         struct drm_device *dev = dev_priv->dev;
5971         struct drm_crtc *crtc;
5972         struct intel_crtc *intel_crtc;
5973
5974         if (!i915_powersave)
5975                 return;
5976
5977         mutex_lock(&dev->struct_mutex);
5978
5979         i915_update_gfx_val(dev_priv);
5980
5981         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
5982                 /* Skip inactive CRTCs */
5983                 if (!crtc->fb)
5984                         continue;
5985
5986                 intel_crtc = to_intel_crtc(crtc);
5987                 if (!intel_crtc->busy)
5988                         intel_decrease_pllclock(crtc);
5989         }
5990
5991
5992         mutex_unlock(&dev->struct_mutex);
5993 }
5994
5995 /**
5996  * intel_mark_busy - mark the GPU and possibly the display busy
5997  * @dev: drm device
5998  * @obj: object we're operating on
5999  *
6000  * Callers can use this function to indicate that the GPU is busy processing
6001  * commands.  If @obj matches one of the CRTC objects (i.e. it's a scanout
6002  * buffer), we'll also mark the display as busy, so we know to increase its
6003  * clock frequency.
6004  */
6005 void intel_mark_busy(struct drm_device *dev, struct drm_i915_gem_object *obj)
6006 {
6007         drm_i915_private_t *dev_priv = dev->dev_private;
6008         struct drm_crtc *crtc = NULL;
6009         struct intel_framebuffer *intel_fb;
6010         struct intel_crtc *intel_crtc;
6011
6012         if (!drm_core_check_feature(dev, DRIVER_MODESET))
6013                 return;
6014
6015         if (!dev_priv->busy)
6016                 dev_priv->busy = true;
6017         else
6018                 mod_timer(&dev_priv->idle_timer, jiffies +
6019                           msecs_to_jiffies(GPU_IDLE_TIMEOUT));
6020
6021         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6022                 if (!crtc->fb)
6023                         continue;
6024
6025                 intel_crtc = to_intel_crtc(crtc);
6026                 intel_fb = to_intel_framebuffer(crtc->fb);
6027                 if (intel_fb->obj == obj) {
6028                         if (!intel_crtc->busy) {
6029                                 /* Non-busy -> busy, upclock */
6030                                 intel_increase_pllclock(crtc);
6031                                 intel_crtc->busy = true;
6032                         } else {
6033                                 /* Busy -> busy, put off timer */
6034                                 mod_timer(&intel_crtc->idle_timer, jiffies +
6035                                           msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
6036                         }
6037                 }
6038         }
6039 }
6040
6041 static void intel_crtc_destroy(struct drm_crtc *crtc)
6042 {
6043         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6044         struct drm_device *dev = crtc->dev;
6045         struct intel_unpin_work *work;
6046         unsigned long flags;
6047
6048         spin_lock_irqsave(&dev->event_lock, flags);
6049         work = intel_crtc->unpin_work;
6050         intel_crtc->unpin_work = NULL;
6051         spin_unlock_irqrestore(&dev->event_lock, flags);
6052
6053         if (work) {
6054                 cancel_work_sync(&work->work);
6055                 kfree(work);
6056         }
6057
6058         drm_crtc_cleanup(crtc);
6059
6060         kfree(intel_crtc);
6061 }
6062
6063 static void intel_unpin_work_fn(struct work_struct *__work)
6064 {
6065         struct intel_unpin_work *work =
6066                 container_of(__work, struct intel_unpin_work, work);
6067
6068         mutex_lock(&work->dev->struct_mutex);
6069         i915_gem_object_unpin(work->old_fb_obj);
6070         drm_gem_object_unreference(&work->pending_flip_obj->base);
6071         drm_gem_object_unreference(&work->old_fb_obj->base);
6072
6073         mutex_unlock(&work->dev->struct_mutex);
6074         kfree(work);
6075 }
6076
6077 static void do_intel_finish_page_flip(struct drm_device *dev,
6078                                       struct drm_crtc *crtc)
6079 {
6080         drm_i915_private_t *dev_priv = dev->dev_private;
6081         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6082         struct intel_unpin_work *work;
6083         struct drm_i915_gem_object *obj;
6084         struct drm_pending_vblank_event *e;
6085         struct timeval tnow, tvbl;
6086         unsigned long flags;
6087
6088         /* Ignore early vblank irqs */
6089         if (intel_crtc == NULL)
6090                 return;
6091
6092         do_gettimeofday(&tnow);
6093
6094         spin_lock_irqsave(&dev->event_lock, flags);
6095         work = intel_crtc->unpin_work;
6096         if (work == NULL || !work->pending) {
6097                 spin_unlock_irqrestore(&dev->event_lock, flags);
6098                 return;
6099         }
6100
6101         intel_crtc->unpin_work = NULL;
6102
6103         if (work->event) {
6104                 e = work->event;
6105                 e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
6106
6107                 /* Called before vblank count and timestamps have
6108                  * been updated for the vblank interval of flip
6109                  * completion? Need to increment vblank count and
6110                  * add one videorefresh duration to returned timestamp
6111                  * to account for this. We assume this happened if we
6112                  * get called over 0.9 frame durations after the last
6113                  * timestamped vblank.
6114                  *
6115                  * This calculation can not be used with vrefresh rates
6116                  * below 5Hz (10Hz to be on the safe side) without
6117                  * promoting to 64 integers.
6118                  */
6119                 if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
6120                     9 * crtc->framedur_ns) {
6121                         e->event.sequence++;
6122                         tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
6123                                              crtc->framedur_ns);
6124                 }
6125
6126                 e->event.tv_sec = tvbl.tv_sec;
6127                 e->event.tv_usec = tvbl.tv_usec;
6128
6129                 list_add_tail(&e->base.link,
6130                               &e->base.file_priv->event_list);
6131                 wake_up_interruptible(&e->base.file_priv->event_wait);
6132         }
6133
6134         drm_vblank_put(dev, intel_crtc->pipe);
6135
6136         spin_unlock_irqrestore(&dev->event_lock, flags);
6137
6138         obj = work->old_fb_obj;
6139
6140         atomic_clear_mask(1 << intel_crtc->plane,
6141                           &obj->pending_flip.counter);
6142         if (atomic_read(&obj->pending_flip) == 0)
6143                 wake_up(&dev_priv->pending_flip_queue);
6144
6145         schedule_work(&work->work);
6146
6147         trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
6148 }
6149
6150 void intel_finish_page_flip(struct drm_device *dev, int pipe)
6151 {
6152         drm_i915_private_t *dev_priv = dev->dev_private;
6153         struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
6154
6155         do_intel_finish_page_flip(dev, crtc);
6156 }
6157
6158 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
6159 {
6160         drm_i915_private_t *dev_priv = dev->dev_private;
6161         struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
6162
6163         do_intel_finish_page_flip(dev, crtc);
6164 }
6165
6166 void intel_prepare_page_flip(struct drm_device *dev, int plane)
6167 {
6168         drm_i915_private_t *dev_priv = dev->dev_private;
6169         struct intel_crtc *intel_crtc =
6170                 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
6171         unsigned long flags;
6172
6173         spin_lock_irqsave(&dev->event_lock, flags);
6174         if (intel_crtc->unpin_work) {
6175                 if ((++intel_crtc->unpin_work->pending) > 1)
6176                         DRM_ERROR("Prepared flip multiple times\n");
6177         } else {
6178                 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6179         }
6180         spin_unlock_irqrestore(&dev->event_lock, flags);
6181 }
6182
6183 static int intel_crtc_page_flip(struct drm_crtc *crtc,
6184                                 struct drm_framebuffer *fb,
6185                                 struct drm_pending_vblank_event *event)
6186 {
6187         struct drm_device *dev = crtc->dev;
6188         struct drm_i915_private *dev_priv = dev->dev_private;
6189         struct intel_framebuffer *intel_fb;
6190         struct drm_i915_gem_object *obj;
6191         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6192         struct intel_unpin_work *work;
6193         unsigned long flags, offset;
6194         int pipe = intel_crtc->pipe;
6195         u32 pf, pipesrc;
6196         int ret;
6197
6198         work = kzalloc(sizeof *work, GFP_KERNEL);
6199         if (work == NULL)
6200                 return -ENOMEM;
6201
6202         work->event = event;
6203         work->dev = crtc->dev;
6204         intel_fb = to_intel_framebuffer(crtc->fb);
6205         work->old_fb_obj = intel_fb->obj;
6206         INIT_WORK(&work->work, intel_unpin_work_fn);
6207
6208         /* We borrow the event spin lock for protecting unpin_work */
6209         spin_lock_irqsave(&dev->event_lock, flags);
6210         if (intel_crtc->unpin_work) {
6211                 spin_unlock_irqrestore(&dev->event_lock, flags);
6212                 kfree(work);
6213
6214                 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6215                 return -EBUSY;
6216         }
6217         intel_crtc->unpin_work = work;
6218         spin_unlock_irqrestore(&dev->event_lock, flags);
6219
6220         intel_fb = to_intel_framebuffer(fb);
6221         obj = intel_fb->obj;
6222
6223         mutex_lock(&dev->struct_mutex);
6224         ret = intel_pin_and_fence_fb_obj(dev, obj, LP_RING(dev_priv));
6225         if (ret)
6226                 goto cleanup_work;
6227
6228         /* Reference the objects for the scheduled work. */
6229         drm_gem_object_reference(&work->old_fb_obj->base);
6230         drm_gem_object_reference(&obj->base);
6231
6232         crtc->fb = fb;
6233
6234         ret = drm_vblank_get(dev, intel_crtc->pipe);
6235         if (ret)
6236                 goto cleanup_objs;
6237
6238         if (IS_GEN3(dev) || IS_GEN2(dev)) {
6239                 u32 flip_mask;
6240
6241                 /* Can't queue multiple flips, so wait for the previous
6242                  * one to finish before executing the next.
6243                  */
6244                 ret = BEGIN_LP_RING(2);
6245                 if (ret)
6246                         goto cleanup_objs;
6247
6248                 if (intel_crtc->plane)
6249                         flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
6250                 else
6251                         flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
6252                 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
6253                 OUT_RING(MI_NOOP);
6254                 ADVANCE_LP_RING();
6255         }
6256
6257         work->pending_flip_obj = obj;
6258
6259         work->enable_stall_check = true;
6260
6261         /* Offset into the new buffer for cases of shared fbs between CRTCs */
6262         offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
6263
6264         ret = BEGIN_LP_RING(4);
6265         if (ret)
6266                 goto cleanup_objs;
6267
6268         /* Block clients from rendering to the new back buffer until
6269          * the flip occurs and the object is no longer visible.
6270          */
6271         atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
6272
6273         switch (INTEL_INFO(dev)->gen) {
6274         case 2:
6275                 OUT_RING(MI_DISPLAY_FLIP |
6276                          MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6277                 OUT_RING(fb->pitch);
6278                 OUT_RING(obj->gtt_offset + offset);
6279                 OUT_RING(MI_NOOP);
6280                 break;
6281
6282         case 3:
6283                 OUT_RING(MI_DISPLAY_FLIP_I915 |
6284                          MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6285                 OUT_RING(fb->pitch);
6286                 OUT_RING(obj->gtt_offset + offset);
6287                 OUT_RING(MI_NOOP);
6288                 break;
6289
6290         case 4:
6291         case 5:
6292                 /* i965+ uses the linear or tiled offsets from the
6293                  * Display Registers (which do not change across a page-flip)
6294                  * so we need only reprogram the base address.
6295                  */
6296                 OUT_RING(MI_DISPLAY_FLIP |
6297                          MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6298                 OUT_RING(fb->pitch);
6299                 OUT_RING(obj->gtt_offset | obj->tiling_mode);
6300
6301                 /* XXX Enabling the panel-fitter across page-flip is so far
6302                  * untested on non-native modes, so ignore it for now.
6303                  * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
6304                  */
6305                 pf = 0;
6306                 pipesrc = I915_READ(PIPESRC(pipe)) & 0x0fff0fff;
6307                 OUT_RING(pf | pipesrc);
6308                 break;
6309
6310         case 6:
6311                 OUT_RING(MI_DISPLAY_FLIP |
6312                          MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
6313                 OUT_RING(fb->pitch | obj->tiling_mode);
6314                 OUT_RING(obj->gtt_offset);
6315
6316                 pf = I915_READ(PF_CTL(pipe)) & PF_ENABLE;
6317                 pipesrc = I915_READ(PIPESRC(pipe)) & 0x0fff0fff;
6318                 OUT_RING(pf | pipesrc);
6319                 break;
6320         }
6321         ADVANCE_LP_RING();
6322
6323         mutex_unlock(&dev->struct_mutex);
6324
6325         trace_i915_flip_request(intel_crtc->plane, obj);
6326
6327         return 0;
6328
6329 cleanup_objs:
6330         drm_gem_object_unreference(&work->old_fb_obj->base);
6331         drm_gem_object_unreference(&obj->base);
6332 cleanup_work:
6333         mutex_unlock(&dev->struct_mutex);
6334
6335         spin_lock_irqsave(&dev->event_lock, flags);
6336         intel_crtc->unpin_work = NULL;
6337         spin_unlock_irqrestore(&dev->event_lock, flags);
6338
6339         kfree(work);
6340
6341         return ret;
6342 }
6343
6344 static void intel_sanitize_modesetting(struct drm_device *dev,
6345                                        int pipe, int plane)
6346 {
6347         struct drm_i915_private *dev_priv = dev->dev_private;
6348         u32 reg, val;
6349
6350         if (HAS_PCH_SPLIT(dev))
6351                 return;
6352
6353         /* Who knows what state these registers were left in by the BIOS or
6354          * grub?
6355          *
6356          * If we leave the registers in a conflicting state (e.g. with the
6357          * display plane reading from the other pipe than the one we intend
6358          * to use) then when we attempt to teardown the active mode, we will
6359          * not disable the pipes and planes in the correct order -- leaving
6360          * a plane reading from a disabled pipe and possibly leading to
6361          * undefined behaviour.
6362          */
6363
6364         reg = DSPCNTR(plane);
6365         val = I915_READ(reg);
6366
6367         if ((val & DISPLAY_PLANE_ENABLE) == 0)
6368                 return;
6369         if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
6370                 return;
6371
6372         /* This display plane is active and attached to the other CPU pipe. */
6373         pipe = !pipe;
6374
6375         /* Disable the plane and wait for it to stop reading from the pipe. */
6376         intel_disable_plane(dev_priv, plane, pipe);
6377         intel_disable_pipe(dev_priv, pipe);
6378 }
6379
6380 static void intel_crtc_reset(struct drm_crtc *crtc)
6381 {
6382         struct drm_device *dev = crtc->dev;
6383         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6384
6385         /* Reset flags back to the 'unknown' status so that they
6386          * will be correctly set on the initial modeset.
6387          */
6388         intel_crtc->dpms_mode = -1;
6389
6390         /* We need to fix up any BIOS configuration that conflicts with
6391          * our expectations.
6392          */
6393         intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
6394 }
6395
6396 static struct drm_crtc_helper_funcs intel_helper_funcs = {
6397         .dpms = intel_crtc_dpms,
6398         .mode_fixup = intel_crtc_mode_fixup,
6399         .mode_set = intel_crtc_mode_set,
6400         .mode_set_base = intel_pipe_set_base,
6401         .mode_set_base_atomic = intel_pipe_set_base_atomic,
6402         .load_lut = intel_crtc_load_lut,
6403         .disable = intel_crtc_disable,
6404 };
6405
6406 static const struct drm_crtc_funcs intel_crtc_funcs = {
6407         .reset = intel_crtc_reset,
6408         .cursor_set = intel_crtc_cursor_set,
6409         .cursor_move = intel_crtc_cursor_move,
6410         .gamma_set = intel_crtc_gamma_set,
6411         .set_config = drm_crtc_helper_set_config,
6412         .destroy = intel_crtc_destroy,
6413         .page_flip = intel_crtc_page_flip,
6414 };
6415
6416 static void intel_crtc_init(struct drm_device *dev, int pipe)
6417 {
6418         drm_i915_private_t *dev_priv = dev->dev_private;
6419         struct intel_crtc *intel_crtc;
6420         int i;
6421
6422         intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
6423         if (intel_crtc == NULL)
6424                 return;
6425
6426         drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
6427
6428         drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
6429         for (i = 0; i < 256; i++) {
6430                 intel_crtc->lut_r[i] = i;
6431                 intel_crtc->lut_g[i] = i;
6432                 intel_crtc->lut_b[i] = i;
6433         }
6434
6435         /* Swap pipes & planes for FBC on pre-965 */
6436         intel_crtc->pipe = pipe;
6437         intel_crtc->plane = pipe;
6438         if (IS_MOBILE(dev) && IS_GEN3(dev)) {
6439                 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
6440                 intel_crtc->plane = !pipe;
6441         }
6442
6443         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
6444                dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
6445         dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
6446         dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
6447
6448         intel_crtc_reset(&intel_crtc->base);
6449         intel_crtc->active = true; /* force the pipe off on setup_init_config */
6450
6451         if (HAS_PCH_SPLIT(dev)) {
6452                 intel_helper_funcs.prepare = ironlake_crtc_prepare;
6453                 intel_helper_funcs.commit = ironlake_crtc_commit;
6454         } else {
6455                 intel_helper_funcs.prepare = i9xx_crtc_prepare;
6456                 intel_helper_funcs.commit = i9xx_crtc_commit;
6457         }
6458
6459         drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
6460
6461         intel_crtc->busy = false;
6462
6463         setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
6464                     (unsigned long)intel_crtc);
6465 }
6466
6467 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
6468                                 struct drm_file *file)
6469 {
6470         drm_i915_private_t *dev_priv = dev->dev_private;
6471         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
6472         struct drm_mode_object *drmmode_obj;
6473         struct intel_crtc *crtc;
6474
6475         if (!dev_priv) {
6476                 DRM_ERROR("called with no initialization\n");
6477                 return -EINVAL;
6478         }
6479
6480         drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
6481                         DRM_MODE_OBJECT_CRTC);
6482
6483         if (!drmmode_obj) {
6484                 DRM_ERROR("no such CRTC id\n");
6485                 return -EINVAL;
6486         }
6487
6488         crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
6489         pipe_from_crtc_id->pipe = crtc->pipe;
6490
6491         return 0;
6492 }
6493
6494 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
6495 {
6496         struct intel_encoder *encoder;
6497         int index_mask = 0;
6498         int entry = 0;
6499
6500         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
6501                 if (type_mask & encoder->clone_mask)
6502                         index_mask |= (1 << entry);
6503                 entry++;
6504         }
6505
6506         return index_mask;
6507 }
6508
6509 static bool has_edp_a(struct drm_device *dev)
6510 {
6511         struct drm_i915_private *dev_priv = dev->dev_private;
6512
6513         if (!IS_MOBILE(dev))
6514                 return false;
6515
6516         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
6517                 return false;
6518
6519         if (IS_GEN5(dev) &&
6520             (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
6521                 return false;
6522
6523         return true;
6524 }
6525
6526 static void intel_setup_outputs(struct drm_device *dev)
6527 {
6528         struct drm_i915_private *dev_priv = dev->dev_private;
6529         struct intel_encoder *encoder;
6530         bool dpd_is_edp = false;
6531         bool has_lvds = false;
6532
6533         if (IS_MOBILE(dev) && !IS_I830(dev))
6534                 has_lvds = intel_lvds_init(dev);
6535         if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
6536                 /* disable the panel fitter on everything but LVDS */
6537                 I915_WRITE(PFIT_CONTROL, 0);
6538         }
6539
6540         if (HAS_PCH_SPLIT(dev)) {
6541                 dpd_is_edp = intel_dpd_is_edp(dev);
6542
6543                 if (has_edp_a(dev))
6544                         intel_dp_init(dev, DP_A);
6545
6546                 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
6547                         intel_dp_init(dev, PCH_DP_D);
6548         }
6549
6550         intel_crt_init(dev);
6551
6552         if (HAS_PCH_SPLIT(dev)) {
6553                 int found;
6554
6555                 if (I915_READ(HDMIB) & PORT_DETECTED) {
6556                         /* PCH SDVOB multiplex with HDMIB */
6557                         found = intel_sdvo_init(dev, PCH_SDVOB);
6558                         if (!found)
6559                                 intel_hdmi_init(dev, HDMIB);
6560                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
6561                                 intel_dp_init(dev, PCH_DP_B);
6562                 }
6563
6564                 if (I915_READ(HDMIC) & PORT_DETECTED)
6565                         intel_hdmi_init(dev, HDMIC);
6566
6567                 if (I915_READ(HDMID) & PORT_DETECTED)
6568                         intel_hdmi_init(dev, HDMID);
6569
6570                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
6571                         intel_dp_init(dev, PCH_DP_C);
6572
6573                 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
6574                         intel_dp_init(dev, PCH_DP_D);
6575
6576         } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
6577                 bool found = false;
6578
6579                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
6580                         DRM_DEBUG_KMS("probing SDVOB\n");
6581                         found = intel_sdvo_init(dev, SDVOB);
6582                         if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
6583                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
6584                                 intel_hdmi_init(dev, SDVOB);
6585                         }
6586
6587                         if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
6588                                 DRM_DEBUG_KMS("probing DP_B\n");
6589                                 intel_dp_init(dev, DP_B);
6590                         }
6591                 }
6592
6593                 /* Before G4X SDVOC doesn't have its own detect register */
6594
6595                 if (I915_READ(SDVOB) & SDVO_DETECTED) {
6596                         DRM_DEBUG_KMS("probing SDVOC\n");
6597                         found = intel_sdvo_init(dev, SDVOC);
6598                 }
6599
6600                 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
6601
6602                         if (SUPPORTS_INTEGRATED_HDMI(dev)) {
6603                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
6604                                 intel_hdmi_init(dev, SDVOC);
6605                         }
6606                         if (SUPPORTS_INTEGRATED_DP(dev)) {
6607                                 DRM_DEBUG_KMS("probing DP_C\n");
6608                                 intel_dp_init(dev, DP_C);
6609                         }
6610                 }
6611
6612                 if (SUPPORTS_INTEGRATED_DP(dev) &&
6613                     (I915_READ(DP_D) & DP_DETECTED)) {
6614                         DRM_DEBUG_KMS("probing DP_D\n");
6615                         intel_dp_init(dev, DP_D);
6616                 }
6617         } else if (IS_GEN2(dev))
6618                 intel_dvo_init(dev);
6619
6620         if (SUPPORTS_TV(dev))
6621                 intel_tv_init(dev);
6622
6623         list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
6624                 encoder->base.possible_crtcs = encoder->crtc_mask;
6625                 encoder->base.possible_clones =
6626                         intel_encoder_clones(dev, encoder->clone_mask);
6627         }
6628
6629         intel_panel_setup_backlight(dev);
6630 }
6631
6632 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
6633 {
6634         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
6635
6636         drm_framebuffer_cleanup(fb);
6637         drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
6638
6639         kfree(intel_fb);
6640 }
6641
6642 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
6643                                                 struct drm_file *file,
6644                                                 unsigned int *handle)
6645 {
6646         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
6647         struct drm_i915_gem_object *obj = intel_fb->obj;
6648
6649         return drm_gem_handle_create(file, &obj->base, handle);
6650 }
6651
6652 static const struct drm_framebuffer_funcs intel_fb_funcs = {
6653         .destroy = intel_user_framebuffer_destroy,
6654         .create_handle = intel_user_framebuffer_create_handle,
6655 };
6656
6657 int intel_framebuffer_init(struct drm_device *dev,
6658                            struct intel_framebuffer *intel_fb,
6659                            struct drm_mode_fb_cmd *mode_cmd,
6660                            struct drm_i915_gem_object *obj)
6661 {
6662         int ret;
6663
6664         if (obj->tiling_mode == I915_TILING_Y)
6665                 return -EINVAL;
6666
6667         if (mode_cmd->pitch & 63)
6668                 return -EINVAL;
6669
6670         switch (mode_cmd->bpp) {
6671         case 8:
6672         case 16:
6673         case 24:
6674         case 32:
6675                 break;
6676         default:
6677                 return -EINVAL;
6678         }
6679
6680         ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
6681         if (ret) {
6682                 DRM_ERROR("framebuffer init failed %d\n", ret);
6683                 return ret;
6684         }
6685
6686         drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
6687         intel_fb->obj = obj;
6688         return 0;
6689 }
6690
6691 static struct drm_framebuffer *
6692 intel_user_framebuffer_create(struct drm_device *dev,
6693                               struct drm_file *filp,
6694                               struct drm_mode_fb_cmd *mode_cmd)
6695 {
6696         struct drm_i915_gem_object *obj;
6697
6698         obj = to_intel_bo(drm_gem_object_lookup(dev, filp, mode_cmd->handle));
6699         if (&obj->base == NULL)
6700                 return ERR_PTR(-ENOENT);
6701
6702         return intel_framebuffer_create(dev, mode_cmd, obj);
6703 }
6704
6705 static const struct drm_mode_config_funcs intel_mode_funcs = {
6706         .fb_create = intel_user_framebuffer_create,
6707         .output_poll_changed = intel_fb_output_poll_changed,
6708 };
6709
6710 static struct drm_i915_gem_object *
6711 intel_alloc_context_page(struct drm_device *dev)
6712 {
6713         struct drm_i915_gem_object *ctx;
6714         int ret;
6715
6716         WARN_ON(!mutex_is_locked(&dev->struct_mutex));
6717
6718         ctx = i915_gem_alloc_object(dev, 4096);
6719         if (!ctx) {
6720                 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
6721                 return NULL;
6722         }
6723
6724         ret = i915_gem_object_pin(ctx, 4096, true);
6725         if (ret) {
6726                 DRM_ERROR("failed to pin power context: %d\n", ret);
6727                 goto err_unref;
6728         }
6729
6730         ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
6731         if (ret) {
6732                 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
6733                 goto err_unpin;
6734         }
6735
6736         return ctx;
6737
6738 err_unpin:
6739         i915_gem_object_unpin(ctx);
6740 err_unref:
6741         drm_gem_object_unreference(&ctx->base);
6742         mutex_unlock(&dev->struct_mutex);
6743         return NULL;
6744 }
6745
6746 bool ironlake_set_drps(struct drm_device *dev, u8 val)
6747 {
6748         struct drm_i915_private *dev_priv = dev->dev_private;
6749         u16 rgvswctl;
6750
6751         rgvswctl = I915_READ16(MEMSWCTL);
6752         if (rgvswctl & MEMCTL_CMD_STS) {
6753                 DRM_DEBUG("gpu busy, RCS change rejected\n");
6754                 return false; /* still busy with another command */
6755         }
6756
6757         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
6758                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
6759         I915_WRITE16(MEMSWCTL, rgvswctl);
6760         POSTING_READ16(MEMSWCTL);
6761
6762         rgvswctl |= MEMCTL_CMD_STS;
6763         I915_WRITE16(MEMSWCTL, rgvswctl);
6764
6765         return true;
6766 }
6767
6768 void ironlake_enable_drps(struct drm_device *dev)
6769 {
6770         struct drm_i915_private *dev_priv = dev->dev_private;
6771         u32 rgvmodectl = I915_READ(MEMMODECTL);
6772         u8 fmax, fmin, fstart, vstart;
6773
6774         /* Enable temp reporting */
6775         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
6776         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
6777
6778         /* 100ms RC evaluation intervals */
6779         I915_WRITE(RCUPEI, 100000);
6780         I915_WRITE(RCDNEI, 100000);
6781
6782         /* Set max/min thresholds to 90ms and 80ms respectively */
6783         I915_WRITE(RCBMAXAVG, 90000);
6784         I915_WRITE(RCBMINAVG, 80000);
6785
6786         I915_WRITE(MEMIHYST, 1);
6787
6788         /* Set up min, max, and cur for interrupt handling */
6789         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
6790         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
6791         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
6792                 MEMMODE_FSTART_SHIFT;
6793
6794         vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
6795                 PXVFREQ_PX_SHIFT;
6796
6797         dev_priv->fmax = fmax; /* IPS callback will increase this */
6798         dev_priv->fstart = fstart;
6799
6800         dev_priv->max_delay = fstart;
6801         dev_priv->min_delay = fmin;
6802         dev_priv->cur_delay = fstart;
6803
6804         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
6805                          fmax, fmin, fstart);
6806
6807         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
6808
6809         /*
6810          * Interrupts will be enabled in ironlake_irq_postinstall
6811          */
6812
6813         I915_WRITE(VIDSTART, vstart);
6814         POSTING_READ(VIDSTART);
6815
6816         rgvmodectl |= MEMMODE_SWMODE_EN;
6817         I915_WRITE(MEMMODECTL, rgvmodectl);
6818
6819         if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
6820                 DRM_ERROR("stuck trying to change perf mode\n");
6821         msleep(1);
6822
6823         ironlake_set_drps(dev, fstart);
6824
6825         dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
6826                 I915_READ(0x112e0);
6827         dev_priv->last_time1 = jiffies_to_msecs(jiffies);
6828         dev_priv->last_count2 = I915_READ(0x112f4);
6829         getrawmonotonic(&dev_priv->last_time2);
6830 }
6831
6832 void ironlake_disable_drps(struct drm_device *dev)
6833 {
6834         struct drm_i915_private *dev_priv = dev->dev_private;
6835         u16 rgvswctl = I915_READ16(MEMSWCTL);
6836
6837         /* Ack interrupts, disable EFC interrupt */
6838         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
6839         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
6840         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
6841         I915_WRITE(DEIIR, DE_PCU_EVENT);
6842         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
6843
6844         /* Go back to the starting frequency */
6845         ironlake_set_drps(dev, dev_priv->fstart);
6846         msleep(1);
6847         rgvswctl |= MEMCTL_CMD_STS;
6848         I915_WRITE(MEMSWCTL, rgvswctl);
6849         msleep(1);
6850
6851 }
6852
6853 void gen6_set_rps(struct drm_device *dev, u8 val)
6854 {
6855         struct drm_i915_private *dev_priv = dev->dev_private;
6856         u32 swreq;
6857
6858         swreq = (val & 0x3ff) << 25;
6859         I915_WRITE(GEN6_RPNSWREQ, swreq);
6860 }
6861
6862 void gen6_disable_rps(struct drm_device *dev)
6863 {
6864         struct drm_i915_private *dev_priv = dev->dev_private;
6865
6866         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
6867         I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
6868         I915_WRITE(GEN6_PMIER, 0);
6869         I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
6870 }
6871
6872 static unsigned long intel_pxfreq(u32 vidfreq)
6873 {
6874         unsigned long freq;
6875         int div = (vidfreq & 0x3f0000) >> 16;
6876         int post = (vidfreq & 0x3000) >> 12;
6877         int pre = (vidfreq & 0x7);
6878
6879         if (!pre)
6880                 return 0;
6881
6882         freq = ((div * 133333) / ((1<<post) * pre));
6883
6884         return freq;
6885 }
6886
6887 void intel_init_emon(struct drm_device *dev)
6888 {
6889         struct drm_i915_private *dev_priv = dev->dev_private;
6890         u32 lcfuse;
6891         u8 pxw[16];
6892         int i;
6893
6894         /* Disable to program */
6895         I915_WRITE(ECR, 0);
6896         POSTING_READ(ECR);
6897
6898         /* Program energy weights for various events */
6899         I915_WRITE(SDEW, 0x15040d00);
6900         I915_WRITE(CSIEW0, 0x007f0000);
6901         I915_WRITE(CSIEW1, 0x1e220004);
6902         I915_WRITE(CSIEW2, 0x04000004);
6903
6904         for (i = 0; i < 5; i++)
6905                 I915_WRITE(PEW + (i * 4), 0);
6906         for (i = 0; i < 3; i++)
6907                 I915_WRITE(DEW + (i * 4), 0);
6908
6909         /* Program P-state weights to account for frequency power adjustment */
6910         for (i = 0; i < 16; i++) {
6911                 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
6912                 unsigned long freq = intel_pxfreq(pxvidfreq);
6913                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6914                         PXVFREQ_PX_SHIFT;
6915                 unsigned long val;
6916
6917                 val = vid * vid;
6918                 val *= (freq / 1000);
6919                 val *= 255;
6920                 val /= (127*127*900);
6921                 if (val > 0xff)
6922                         DRM_ERROR("bad pxval: %ld\n", val);
6923                 pxw[i] = val;
6924         }
6925         /* Render standby states get 0 weight */
6926         pxw[14] = 0;
6927         pxw[15] = 0;
6928
6929         for (i = 0; i < 4; i++) {
6930                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6931                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6932                 I915_WRITE(PXW + (i * 4), val);
6933         }
6934
6935         /* Adjust magic regs to magic values (more experimental results) */
6936         I915_WRITE(OGW0, 0);
6937         I915_WRITE(OGW1, 0);
6938         I915_WRITE(EG0, 0x00007f00);
6939         I915_WRITE(EG1, 0x0000000e);
6940         I915_WRITE(EG2, 0x000e0000);
6941         I915_WRITE(EG3, 0x68000300);
6942         I915_WRITE(EG4, 0x42000000);
6943         I915_WRITE(EG5, 0x00140031);
6944         I915_WRITE(EG6, 0);
6945         I915_WRITE(EG7, 0);
6946
6947         for (i = 0; i < 8; i++)
6948                 I915_WRITE(PXWL + (i * 4), 0);
6949
6950         /* Enable PMON + select events */
6951         I915_WRITE(ECR, 0x80000019);
6952
6953         lcfuse = I915_READ(LCFUSE02);
6954
6955         dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
6956 }
6957
6958 void gen6_enable_rps(struct drm_i915_private *dev_priv)
6959 {
6960         u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
6961         u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
6962         u32 pcu_mbox, rc6_mask = 0;
6963         int cur_freq, min_freq, max_freq;
6964         int i;
6965
6966         /* Here begins a magic sequence of register writes to enable
6967          * auto-downclocking.
6968          *
6969          * Perhaps there might be some value in exposing these to
6970          * userspace...
6971          */
6972         I915_WRITE(GEN6_RC_STATE, 0);
6973         __gen6_gt_force_wake_get(dev_priv);
6974
6975         /* disable the counters and set deterministic thresholds */
6976         I915_WRITE(GEN6_RC_CONTROL, 0);
6977
6978         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
6979         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
6980         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
6981         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
6982         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
6983
6984         for (i = 0; i < I915_NUM_RINGS; i++)
6985                 I915_WRITE(RING_MAX_IDLE(dev_priv->ring[i].mmio_base), 10);
6986
6987         I915_WRITE(GEN6_RC_SLEEP, 0);
6988         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
6989         I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
6990         I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
6991         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
6992
6993         if (i915_enable_rc6)
6994                 rc6_mask = GEN6_RC_CTL_RC6p_ENABLE |
6995                         GEN6_RC_CTL_RC6_ENABLE;
6996
6997         I915_WRITE(GEN6_RC_CONTROL,
6998                    rc6_mask |
6999                    GEN6_RC_CTL_EI_MODE(1) |
7000                    GEN6_RC_CTL_HW_ENABLE);
7001
7002         I915_WRITE(GEN6_RPNSWREQ,
7003                    GEN6_FREQUENCY(10) |
7004                    GEN6_OFFSET(0) |
7005                    GEN6_AGGRESSIVE_TURBO);
7006         I915_WRITE(GEN6_RC_VIDEO_FREQ,
7007                    GEN6_FREQUENCY(12));
7008
7009         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7010         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
7011                    18 << 24 |
7012                    6 << 16);
7013         I915_WRITE(GEN6_RP_UP_THRESHOLD, 10000);
7014         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 1000000);
7015         I915_WRITE(GEN6_RP_UP_EI, 100000);
7016         I915_WRITE(GEN6_RP_DOWN_EI, 5000000);
7017         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7018         I915_WRITE(GEN6_RP_CONTROL,
7019                    GEN6_RP_MEDIA_TURBO |
7020                    GEN6_RP_USE_NORMAL_FREQ |
7021                    GEN6_RP_MEDIA_IS_GFX |
7022                    GEN6_RP_ENABLE |
7023                    GEN6_RP_UP_BUSY_AVG |
7024                    GEN6_RP_DOWN_IDLE_CONT);
7025
7026         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7027                      500))
7028                 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
7029
7030         I915_WRITE(GEN6_PCODE_DATA, 0);
7031         I915_WRITE(GEN6_PCODE_MAILBOX,
7032                    GEN6_PCODE_READY |
7033                    GEN6_PCODE_WRITE_MIN_FREQ_TABLE);
7034         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7035                      500))
7036                 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
7037
7038         min_freq = (rp_state_cap & 0xff0000) >> 16;
7039         max_freq = rp_state_cap & 0xff;
7040         cur_freq = (gt_perf_status & 0xff00) >> 8;
7041
7042         /* Check for overclock support */
7043         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7044                      500))
7045                 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
7046         I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_READ_OC_PARAMS);
7047         pcu_mbox = I915_READ(GEN6_PCODE_DATA);
7048         if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
7049                      500))
7050                 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
7051         if (pcu_mbox & (1<<31)) { /* OC supported */
7052                 max_freq = pcu_mbox & 0xff;
7053                 DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
7054         }
7055
7056         /* In units of 100MHz */
7057         dev_priv->max_delay = max_freq;
7058         dev_priv->min_delay = min_freq;
7059         dev_priv->cur_delay = cur_freq;
7060
7061         /* requires MSI enabled */
7062         I915_WRITE(GEN6_PMIER,
7063                    GEN6_PM_MBOX_EVENT |
7064                    GEN6_PM_THERMAL_EVENT |
7065                    GEN6_PM_RP_DOWN_TIMEOUT |
7066                    GEN6_PM_RP_UP_THRESHOLD |
7067                    GEN6_PM_RP_DOWN_THRESHOLD |
7068                    GEN6_PM_RP_UP_EI_EXPIRED |
7069                    GEN6_PM_RP_DOWN_EI_EXPIRED);
7070         I915_WRITE(GEN6_PMIMR, 0);
7071         /* enable all PM interrupts */
7072         I915_WRITE(GEN6_PMINTRMSK, 0);
7073
7074         __gen6_gt_force_wake_put(dev_priv);
7075 }
7076
7077 void intel_enable_clock_gating(struct drm_device *dev)
7078 {
7079         struct drm_i915_private *dev_priv = dev->dev_private;
7080         int pipe;
7081
7082         /*
7083          * Disable clock gating reported to work incorrectly according to the
7084          * specs, but enable as much else as we can.
7085          */
7086         if (HAS_PCH_SPLIT(dev)) {
7087                 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
7088
7089                 if (IS_GEN5(dev)) {
7090                         /* Required for FBC */
7091                         dspclk_gate |= DPFCUNIT_CLOCK_GATE_DISABLE |
7092                                 DPFCRUNIT_CLOCK_GATE_DISABLE |
7093                                 DPFDUNIT_CLOCK_GATE_DISABLE;
7094                         /* Required for CxSR */
7095                         dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
7096
7097                         I915_WRITE(PCH_3DCGDIS0,
7098                                    MARIUNIT_CLOCK_GATE_DISABLE |
7099                                    SVSMUNIT_CLOCK_GATE_DISABLE);
7100                         I915_WRITE(PCH_3DCGDIS1,
7101                                    VFMUNIT_CLOCK_GATE_DISABLE);
7102                 }
7103
7104                 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
7105
7106                 /*
7107                  * On Ibex Peak and Cougar Point, we need to disable clock
7108                  * gating for the panel power sequencer or it will fail to
7109                  * start up when no ports are active.
7110                  */
7111                 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
7112
7113                 /*
7114                  * According to the spec the following bits should be set in
7115                  * order to enable memory self-refresh
7116                  * The bit 22/21 of 0x42004
7117                  * The bit 5 of 0x42020
7118                  * The bit 15 of 0x45000
7119                  */
7120                 if (IS_GEN5(dev)) {
7121                         I915_WRITE(ILK_DISPLAY_CHICKEN2,
7122                                         (I915_READ(ILK_DISPLAY_CHICKEN2) |
7123                                         ILK_DPARB_GATE | ILK_VSDPFD_FULL));
7124                         I915_WRITE(ILK_DSPCLK_GATE,
7125                                         (I915_READ(ILK_DSPCLK_GATE) |
7126                                                 ILK_DPARB_CLK_GATE));
7127                         I915_WRITE(DISP_ARB_CTL,
7128                                         (I915_READ(DISP_ARB_CTL) |
7129                                                 DISP_FBC_WM_DIS));
7130                         I915_WRITE(WM3_LP_ILK, 0);
7131                         I915_WRITE(WM2_LP_ILK, 0);
7132                         I915_WRITE(WM1_LP_ILK, 0);
7133                 }
7134                 /*
7135                  * Based on the document from hardware guys the following bits
7136                  * should be set unconditionally in order to enable FBC.
7137                  * The bit 22 of 0x42000
7138                  * The bit 22 of 0x42004
7139                  * The bit 7,8,9 of 0x42020.
7140                  */
7141                 if (IS_IRONLAKE_M(dev)) {
7142                         I915_WRITE(ILK_DISPLAY_CHICKEN1,
7143                                    I915_READ(ILK_DISPLAY_CHICKEN1) |
7144                                    ILK_FBCQ_DIS);
7145                         I915_WRITE(ILK_DISPLAY_CHICKEN2,
7146                                    I915_READ(ILK_DISPLAY_CHICKEN2) |
7147                                    ILK_DPARB_GATE);
7148                         I915_WRITE(ILK_DSPCLK_GATE,
7149                                    I915_READ(ILK_DSPCLK_GATE) |
7150                                    ILK_DPFC_DIS1 |
7151                                    ILK_DPFC_DIS2 |
7152                                    ILK_CLK_FBC);
7153                 }
7154
7155                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
7156                            I915_READ(ILK_DISPLAY_CHICKEN2) |
7157                            ILK_ELPIN_409_SELECT);
7158
7159                 if (IS_GEN5(dev)) {
7160                         I915_WRITE(_3D_CHICKEN2,
7161                                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
7162                                    _3D_CHICKEN2_WM_READ_PIPELINED);
7163                 }
7164
7165                 if (IS_GEN6(dev)) {
7166                         I915_WRITE(WM3_LP_ILK, 0);
7167                         I915_WRITE(WM2_LP_ILK, 0);
7168                         I915_WRITE(WM1_LP_ILK, 0);
7169
7170                         /*
7171                          * According to the spec the following bits should be
7172                          * set in order to enable memory self-refresh and fbc:
7173                          * The bit21 and bit22 of 0x42000
7174                          * The bit21 and bit22 of 0x42004
7175                          * The bit5 and bit7 of 0x42020
7176                          * The bit14 of 0x70180
7177                          * The bit14 of 0x71180
7178                          */
7179                         I915_WRITE(ILK_DISPLAY_CHICKEN1,
7180                                    I915_READ(ILK_DISPLAY_CHICKEN1) |
7181                                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
7182                         I915_WRITE(ILK_DISPLAY_CHICKEN2,
7183                                    I915_READ(ILK_DISPLAY_CHICKEN2) |
7184                                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7185                         I915_WRITE(ILK_DSPCLK_GATE,
7186                                    I915_READ(ILK_DSPCLK_GATE) |
7187                                    ILK_DPARB_CLK_GATE  |
7188                                    ILK_DPFD_CLK_GATE);
7189
7190                         for_each_pipe(pipe)
7191                                 I915_WRITE(DSPCNTR(pipe),
7192                                            I915_READ(DSPCNTR(pipe)) |
7193                                            DISPPLANE_TRICKLE_FEED_DISABLE);
7194                 }
7195         } else if (IS_G4X(dev)) {
7196                 uint32_t dspclk_gate;
7197                 I915_WRITE(RENCLK_GATE_D1, 0);
7198                 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7199                        GS_UNIT_CLOCK_GATE_DISABLE |
7200                        CL_UNIT_CLOCK_GATE_DISABLE);
7201                 I915_WRITE(RAMCLK_GATE_D, 0);
7202                 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7203                         OVRUNIT_CLOCK_GATE_DISABLE |
7204                         OVCUNIT_CLOCK_GATE_DISABLE;
7205                 if (IS_GM45(dev))
7206                         dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7207                 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7208         } else if (IS_CRESTLINE(dev)) {
7209                 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7210                 I915_WRITE(RENCLK_GATE_D2, 0);
7211                 I915_WRITE(DSPCLK_GATE_D, 0);
7212                 I915_WRITE(RAMCLK_GATE_D, 0);
7213                 I915_WRITE16(DEUC, 0);
7214         } else if (IS_BROADWATER(dev)) {
7215                 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7216                        I965_RCC_CLOCK_GATE_DISABLE |
7217                        I965_RCPB_CLOCK_GATE_DISABLE |
7218                        I965_ISC_CLOCK_GATE_DISABLE |
7219                        I965_FBC_CLOCK_GATE_DISABLE);
7220                 I915_WRITE(RENCLK_GATE_D2, 0);
7221         } else if (IS_GEN3(dev)) {
7222                 u32 dstate = I915_READ(D_STATE);
7223
7224                 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7225                         DSTATE_DOT_CLOCK_GATING;
7226                 I915_WRITE(D_STATE, dstate);
7227         } else if (IS_I85X(dev) || IS_I865G(dev)) {
7228                 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7229         } else if (IS_I830(dev)) {
7230                 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7231         }
7232 }
7233
7234 static void ironlake_teardown_rc6(struct drm_device *dev)
7235 {
7236         struct drm_i915_private *dev_priv = dev->dev_private;
7237
7238         if (dev_priv->renderctx) {
7239                 i915_gem_object_unpin(dev_priv->renderctx);
7240                 drm_gem_object_unreference(&dev_priv->renderctx->base);
7241                 dev_priv->renderctx = NULL;
7242         }
7243
7244         if (dev_priv->pwrctx) {
7245                 i915_gem_object_unpin(dev_priv->pwrctx);
7246                 drm_gem_object_unreference(&dev_priv->pwrctx->base);
7247                 dev_priv->pwrctx = NULL;
7248         }
7249 }
7250
7251 static void ironlake_disable_rc6(struct drm_device *dev)
7252 {
7253         struct drm_i915_private *dev_priv = dev->dev_private;
7254
7255         if (I915_READ(PWRCTXA)) {
7256                 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
7257                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
7258                 wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
7259                          50);
7260
7261                 I915_WRITE(PWRCTXA, 0);
7262                 POSTING_READ(PWRCTXA);
7263
7264                 I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
7265                 POSTING_READ(RSTDBYCTL);
7266         }
7267
7268         ironlake_teardown_rc6(dev);
7269 }
7270
7271 static int ironlake_setup_rc6(struct drm_device *dev)
7272 {
7273         struct drm_i915_private *dev_priv = dev->dev_private;
7274
7275         if (dev_priv->renderctx == NULL)
7276                 dev_priv->renderctx = intel_alloc_context_page(dev);
7277         if (!dev_priv->renderctx)
7278                 return -ENOMEM;
7279
7280         if (dev_priv->pwrctx == NULL)
7281                 dev_priv->pwrctx = intel_alloc_context_page(dev);
7282         if (!dev_priv->pwrctx) {
7283                 ironlake_teardown_rc6(dev);
7284                 return -ENOMEM;
7285         }
7286
7287         return 0;
7288 }
7289
7290 void ironlake_enable_rc6(struct drm_device *dev)
7291 {
7292         struct drm_i915_private *dev_priv = dev->dev_private;
7293         int ret;
7294
7295         /* rc6 disabled by default due to repeated reports of hanging during
7296          * boot and resume.
7297          */
7298         if (!i915_enable_rc6)
7299                 return;
7300
7301         mutex_lock(&dev->struct_mutex);
7302         ret = ironlake_setup_rc6(dev);
7303         if (ret) {
7304                 mutex_unlock(&dev->struct_mutex);
7305                 return;
7306         }
7307
7308         /*
7309          * GPU can automatically power down the render unit if given a page
7310          * to save state.
7311          */
7312         ret = BEGIN_LP_RING(6);
7313         if (ret) {
7314                 ironlake_teardown_rc6(dev);
7315                 mutex_unlock(&dev->struct_mutex);
7316                 return;
7317         }
7318
7319         OUT_RING(MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
7320         OUT_RING(MI_SET_CONTEXT);
7321         OUT_RING(dev_priv->renderctx->gtt_offset |
7322                  MI_MM_SPACE_GTT |
7323                  MI_SAVE_EXT_STATE_EN |
7324                  MI_RESTORE_EXT_STATE_EN |
7325                  MI_RESTORE_INHIBIT);
7326         OUT_RING(MI_SUSPEND_FLUSH);
7327         OUT_RING(MI_NOOP);
7328         OUT_RING(MI_FLUSH);
7329         ADVANCE_LP_RING();
7330
7331         /*
7332          * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
7333          * does an implicit flush, combined with MI_FLUSH above, it should be
7334          * safe to assume that renderctx is valid
7335          */
7336         ret = intel_wait_ring_idle(LP_RING(dev_priv));
7337         if (ret) {
7338                 DRM_ERROR("failed to enable ironlake power power savings\n");
7339                 ironlake_teardown_rc6(dev);
7340                 mutex_unlock(&dev->struct_mutex);
7341                 return;
7342         }
7343
7344         I915_WRITE(PWRCTXA, dev_priv->pwrctx->gtt_offset | PWRCTX_EN);
7345         I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
7346         mutex_unlock(&dev->struct_mutex);
7347 }
7348
7349
7350 /* Set up chip specific display functions */
7351 static void intel_init_display(struct drm_device *dev)
7352 {
7353         struct drm_i915_private *dev_priv = dev->dev_private;
7354
7355         /* We always want a DPMS function */
7356         if (HAS_PCH_SPLIT(dev)) {
7357                 dev_priv->display.dpms = ironlake_crtc_dpms;
7358                 dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
7359         } else {
7360                 dev_priv->display.dpms = i9xx_crtc_dpms;
7361                 dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
7362         }
7363
7364         if (I915_HAS_FBC(dev)) {
7365                 if (HAS_PCH_SPLIT(dev)) {
7366                         dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
7367                         dev_priv->display.enable_fbc = ironlake_enable_fbc;
7368                         dev_priv->display.disable_fbc = ironlake_disable_fbc;
7369                 } else if (IS_GM45(dev)) {
7370                         dev_priv->display.fbc_enabled = g4x_fbc_enabled;
7371                         dev_priv->display.enable_fbc = g4x_enable_fbc;
7372                         dev_priv->display.disable_fbc = g4x_disable_fbc;
7373                 } else if (IS_CRESTLINE(dev)) {
7374                         dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
7375                         dev_priv->display.enable_fbc = i8xx_enable_fbc;
7376                         dev_priv->display.disable_fbc = i8xx_disable_fbc;
7377                 }
7378                 /* 855GM needs testing */
7379         }
7380
7381         /* Returns the core display clock speed */
7382         if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
7383                 dev_priv->display.get_display_clock_speed =
7384                         i945_get_display_clock_speed;
7385         else if (IS_I915G(dev))
7386                 dev_priv->display.get_display_clock_speed =
7387                         i915_get_display_clock_speed;
7388         else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
7389                 dev_priv->display.get_display_clock_speed =
7390                         i9xx_misc_get_display_clock_speed;
7391         else if (IS_I915GM(dev))
7392                 dev_priv->display.get_display_clock_speed =
7393                         i915gm_get_display_clock_speed;
7394         else if (IS_I865G(dev))
7395                 dev_priv->display.get_display_clock_speed =
7396                         i865_get_display_clock_speed;
7397         else if (IS_I85X(dev))
7398                 dev_priv->display.get_display_clock_speed =
7399                         i855_get_display_clock_speed;
7400         else /* 852, 830 */
7401                 dev_priv->display.get_display_clock_speed =
7402                         i830_get_display_clock_speed;
7403
7404         /* For FIFO watermark updates */
7405         if (HAS_PCH_SPLIT(dev)) {
7406                 if (IS_GEN5(dev)) {
7407                         if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
7408                                 dev_priv->display.update_wm = ironlake_update_wm;
7409                         else {
7410                                 DRM_DEBUG_KMS("Failed to get proper latency. "
7411                                               "Disable CxSR\n");
7412                                 dev_priv->display.update_wm = NULL;
7413                         }
7414                 } else if (IS_GEN6(dev)) {
7415                         if (SNB_READ_WM0_LATENCY()) {
7416                                 dev_priv->display.update_wm = sandybridge_update_wm;
7417                         } else {
7418                                 DRM_DEBUG_KMS("Failed to read display plane latency. "
7419                                               "Disable CxSR\n");
7420                                 dev_priv->display.update_wm = NULL;
7421                         }
7422                 } else
7423                         dev_priv->display.update_wm = NULL;
7424         } else if (IS_PINEVIEW(dev)) {
7425                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7426                                             dev_priv->is_ddr3,
7427                                             dev_priv->fsb_freq,
7428                                             dev_priv->mem_freq)) {
7429                         DRM_INFO("failed to find known CxSR latency "
7430                                  "(found ddr%s fsb freq %d, mem freq %d), "
7431                                  "disabling CxSR\n",
7432                                  (dev_priv->is_ddr3 == 1) ? "3": "2",
7433                                  dev_priv->fsb_freq, dev_priv->mem_freq);
7434                         /* Disable CxSR and never update its watermark again */
7435                         pineview_disable_cxsr(dev);
7436                         dev_priv->display.update_wm = NULL;
7437                 } else
7438                         dev_priv->display.update_wm = pineview_update_wm;
7439         } else if (IS_G4X(dev))
7440                 dev_priv->display.update_wm = g4x_update_wm;
7441         else if (IS_GEN4(dev))
7442                 dev_priv->display.update_wm = i965_update_wm;
7443         else if (IS_GEN3(dev)) {
7444                 dev_priv->display.update_wm = i9xx_update_wm;
7445                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7446         } else if (IS_I85X(dev)) {
7447                 dev_priv->display.update_wm = i9xx_update_wm;
7448                 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
7449         } else {
7450                 dev_priv->display.update_wm = i830_update_wm;
7451                 if (IS_845G(dev))
7452                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
7453                 else
7454                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
7455         }
7456 }
7457
7458 /*
7459  * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
7460  * resume, or other times.  This quirk makes sure that's the case for
7461  * affected systems.
7462  */
7463 static void quirk_pipea_force (struct drm_device *dev)
7464 {
7465         struct drm_i915_private *dev_priv = dev->dev_private;
7466
7467         dev_priv->quirks |= QUIRK_PIPEA_FORCE;
7468         DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
7469 }
7470
7471 struct intel_quirk {
7472         int device;
7473         int subsystem_vendor;
7474         int subsystem_device;
7475         void (*hook)(struct drm_device *dev);
7476 };
7477
7478 struct intel_quirk intel_quirks[] = {
7479         /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
7480         { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
7481         /* HP Mini needs pipe A force quirk (LP: #322104) */
7482         { 0x27ae,0x103c, 0x361a, quirk_pipea_force },
7483
7484         /* Thinkpad R31 needs pipe A force quirk */
7485         { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
7486         /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
7487         { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
7488
7489         /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
7490         { 0x3577,  0x1014, 0x0513, quirk_pipea_force },
7491         /* ThinkPad X40 needs pipe A force quirk */
7492
7493         /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
7494         { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
7495
7496         /* 855 & before need to leave pipe A & dpll A up */
7497         { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
7498         { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
7499 };
7500
7501 static void intel_init_quirks(struct drm_device *dev)
7502 {
7503         struct pci_dev *d = dev->pdev;
7504         int i;
7505
7506         for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
7507                 struct intel_quirk *q = &intel_quirks[i];
7508
7509                 if (d->device == q->device &&
7510                     (d->subsystem_vendor == q->subsystem_vendor ||
7511                      q->subsystem_vendor == PCI_ANY_ID) &&
7512                     (d->subsystem_device == q->subsystem_device ||
7513                      q->subsystem_device == PCI_ANY_ID))
7514                         q->hook(dev);
7515         }
7516 }
7517
7518 /* Disable the VGA plane that we never use */
7519 static void i915_disable_vga(struct drm_device *dev)
7520 {
7521         struct drm_i915_private *dev_priv = dev->dev_private;
7522         u8 sr1;
7523         u32 vga_reg;
7524
7525         if (HAS_PCH_SPLIT(dev))
7526                 vga_reg = CPU_VGACNTRL;
7527         else
7528                 vga_reg = VGACNTRL;
7529
7530         vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
7531         outb(1, VGA_SR_INDEX);
7532         sr1 = inb(VGA_SR_DATA);
7533         outb(sr1 | 1<<5, VGA_SR_DATA);
7534         vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
7535         udelay(300);
7536
7537         I915_WRITE(vga_reg, VGA_DISP_DISABLE);
7538         POSTING_READ(vga_reg);
7539 }
7540
7541 void intel_modeset_init(struct drm_device *dev)
7542 {
7543         struct drm_i915_private *dev_priv = dev->dev_private;
7544         int i;
7545
7546         drm_mode_config_init(dev);
7547
7548         dev->mode_config.min_width = 0;
7549         dev->mode_config.min_height = 0;
7550
7551         dev->mode_config.funcs = (void *)&intel_mode_funcs;
7552
7553         intel_init_quirks(dev);
7554
7555         intel_init_display(dev);
7556
7557         if (IS_GEN2(dev)) {
7558                 dev->mode_config.max_width = 2048;
7559                 dev->mode_config.max_height = 2048;
7560         } else if (IS_GEN3(dev)) {
7561                 dev->mode_config.max_width = 4096;
7562                 dev->mode_config.max_height = 4096;
7563         } else {
7564                 dev->mode_config.max_width = 8192;
7565                 dev->mode_config.max_height = 8192;
7566         }
7567         dev->mode_config.fb_base = dev->agp->base;
7568
7569         DRM_DEBUG_KMS("%d display pipe%s available.\n",
7570                       dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
7571
7572         for (i = 0; i < dev_priv->num_pipe; i++) {
7573                 intel_crtc_init(dev, i);
7574         }
7575
7576         intel_setup_outputs(dev);
7577
7578         intel_enable_clock_gating(dev);
7579
7580         /* Just disable it once at startup */
7581         i915_disable_vga(dev);
7582
7583         if (IS_IRONLAKE_M(dev)) {
7584                 ironlake_enable_drps(dev);
7585                 intel_init_emon(dev);
7586         }
7587
7588         if (IS_GEN6(dev))
7589                 gen6_enable_rps(dev_priv);
7590
7591         if (IS_IRONLAKE_M(dev))
7592                 ironlake_enable_rc6(dev);
7593
7594         INIT_WORK(&dev_priv->idle_work, intel_idle_update);
7595         setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
7596                     (unsigned long)dev);
7597
7598         intel_setup_overlay(dev);
7599 }
7600
7601 void intel_modeset_cleanup(struct drm_device *dev)
7602 {
7603         struct drm_i915_private *dev_priv = dev->dev_private;
7604         struct drm_crtc *crtc;
7605         struct intel_crtc *intel_crtc;
7606
7607         drm_kms_helper_poll_fini(dev);
7608         mutex_lock(&dev->struct_mutex);
7609
7610         intel_unregister_dsm_handler();
7611
7612
7613         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7614                 /* Skip inactive CRTCs */
7615                 if (!crtc->fb)
7616                         continue;
7617
7618                 intel_crtc = to_intel_crtc(crtc);
7619                 intel_increase_pllclock(crtc);
7620         }
7621
7622         if (dev_priv->display.disable_fbc)
7623                 dev_priv->display.disable_fbc(dev);
7624
7625         if (IS_IRONLAKE_M(dev))
7626                 ironlake_disable_drps(dev);
7627         if (IS_GEN6(dev))
7628                 gen6_disable_rps(dev);
7629
7630         if (IS_IRONLAKE_M(dev))
7631                 ironlake_disable_rc6(dev);
7632
7633         mutex_unlock(&dev->struct_mutex);
7634
7635         /* Disable the irq before mode object teardown, for the irq might
7636          * enqueue unpin/hotplug work. */
7637         drm_irq_uninstall(dev);
7638         cancel_work_sync(&dev_priv->hotplug_work);
7639
7640         /* Shut off idle work before the crtcs get freed. */
7641         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
7642                 intel_crtc = to_intel_crtc(crtc);
7643                 del_timer_sync(&intel_crtc->idle_timer);
7644         }
7645         del_timer_sync(&dev_priv->idle_timer);
7646         cancel_work_sync(&dev_priv->idle_work);
7647
7648         drm_mode_config_cleanup(dev);
7649 }
7650
7651 /*
7652  * Return which encoder is currently attached for connector.
7653  */
7654 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
7655 {
7656         return &intel_attached_encoder(connector)->base;
7657 }
7658
7659 void intel_connector_attach_encoder(struct intel_connector *connector,
7660                                     struct intel_encoder *encoder)
7661 {
7662         connector->encoder = encoder;
7663         drm_mode_connector_attach_encoder(&connector->base,
7664                                           &encoder->base);
7665 }
7666
7667 /*
7668  * set vga decode state - true == enable VGA decode
7669  */
7670 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
7671 {
7672         struct drm_i915_private *dev_priv = dev->dev_private;
7673         u16 gmch_ctrl;
7674
7675         pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
7676         if (state)
7677                 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
7678         else
7679                 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
7680         pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
7681         return 0;
7682 }
7683
7684 #ifdef CONFIG_DEBUG_FS
7685 #include <linux/seq_file.h>
7686
7687 struct intel_display_error_state {
7688         struct intel_cursor_error_state {
7689                 u32 control;
7690                 u32 position;
7691                 u32 base;
7692                 u32 size;
7693         } cursor[2];
7694
7695         struct intel_pipe_error_state {
7696                 u32 conf;
7697                 u32 source;
7698
7699                 u32 htotal;
7700                 u32 hblank;
7701                 u32 hsync;
7702                 u32 vtotal;
7703                 u32 vblank;
7704                 u32 vsync;
7705         } pipe[2];
7706
7707         struct intel_plane_error_state {
7708                 u32 control;
7709                 u32 stride;
7710                 u32 size;
7711                 u32 pos;
7712                 u32 addr;
7713                 u32 surface;
7714                 u32 tile_offset;
7715         } plane[2];
7716 };
7717
7718 struct intel_display_error_state *
7719 intel_display_capture_error_state(struct drm_device *dev)
7720 {
7721         drm_i915_private_t *dev_priv = dev->dev_private;
7722         struct intel_display_error_state *error;
7723         int i;
7724
7725         error = kmalloc(sizeof(*error), GFP_ATOMIC);
7726         if (error == NULL)
7727                 return NULL;
7728
7729         for (i = 0; i < 2; i++) {
7730                 error->cursor[i].control = I915_READ(CURCNTR(i));
7731                 error->cursor[i].position = I915_READ(CURPOS(i));
7732                 error->cursor[i].base = I915_READ(CURBASE(i));
7733
7734                 error->plane[i].control = I915_READ(DSPCNTR(i));
7735                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
7736                 error->plane[i].size = I915_READ(DSPSIZE(i));
7737                 error->plane[i].pos= I915_READ(DSPPOS(i));
7738                 error->plane[i].addr = I915_READ(DSPADDR(i));
7739                 if (INTEL_INFO(dev)->gen >= 4) {
7740                         error->plane[i].surface = I915_READ(DSPSURF(i));
7741                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
7742                 }
7743
7744                 error->pipe[i].conf = I915_READ(PIPECONF(i));
7745                 error->pipe[i].source = I915_READ(PIPESRC(i));
7746                 error->pipe[i].htotal = I915_READ(HTOTAL(i));
7747                 error->pipe[i].hblank = I915_READ(HBLANK(i));
7748                 error->pipe[i].hsync = I915_READ(HSYNC(i));
7749                 error->pipe[i].vtotal = I915_READ(VTOTAL(i));
7750                 error->pipe[i].vblank = I915_READ(VBLANK(i));
7751                 error->pipe[i].vsync = I915_READ(VSYNC(i));
7752         }
7753
7754         return error;
7755 }
7756
7757 void
7758 intel_display_print_error_state(struct seq_file *m,
7759                                 struct drm_device *dev,
7760                                 struct intel_display_error_state *error)
7761 {
7762         int i;
7763
7764         for (i = 0; i < 2; i++) {
7765                 seq_printf(m, "Pipe [%d]:\n", i);
7766                 seq_printf(m, "  CONF: %08x\n", error->pipe[i].conf);
7767                 seq_printf(m, "  SRC: %08x\n", error->pipe[i].source);
7768                 seq_printf(m, "  HTOTAL: %08x\n", error->pipe[i].htotal);
7769                 seq_printf(m, "  HBLANK: %08x\n", error->pipe[i].hblank);
7770                 seq_printf(m, "  HSYNC: %08x\n", error->pipe[i].hsync);
7771                 seq_printf(m, "  VTOTAL: %08x\n", error->pipe[i].vtotal);
7772                 seq_printf(m, "  VBLANK: %08x\n", error->pipe[i].vblank);
7773                 seq_printf(m, "  VSYNC: %08x\n", error->pipe[i].vsync);
7774
7775                 seq_printf(m, "Plane [%d]:\n", i);
7776                 seq_printf(m, "  CNTR: %08x\n", error->plane[i].control);
7777                 seq_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
7778                 seq_printf(m, "  SIZE: %08x\n", error->plane[i].size);
7779                 seq_printf(m, "  POS: %08x\n", error->plane[i].pos);
7780                 seq_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
7781                 if (INTEL_INFO(dev)->gen >= 4) {
7782                         seq_printf(m, "  SURF: %08x\n", error->plane[i].surface);
7783                         seq_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
7784                 }
7785
7786                 seq_printf(m, "Cursor [%d]:\n", i);
7787                 seq_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
7788                 seq_printf(m, "  POS: %08x\n", error->cursor[i].position);
7789                 seq_printf(m, "  BASE: %08x\n", error->cursor[i].base);
7790         }
7791 }
7792 #endif