a4eff32621b50cf13aa7e01ae0d3cb604d97062f
[pandora-kernel.git] / drivers / firewire / fw-ohci.c
1 /*
2  * Driver for OHCI 1394 controllers
3  *
4  * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software Foundation,
18  * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19  */
20
21 #include <linux/compiler.h>
22 #include <linux/delay.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/gfp.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/kernel.h>
28 #include <linux/mm.h>
29 #include <linux/module.h>
30 #include <linux/moduleparam.h>
31 #include <linux/pci.h>
32 #include <linux/spinlock.h>
33
34 #include <asm/page.h>
35 #include <asm/system.h>
36
37 #ifdef CONFIG_PPC_PMAC
38 #include <asm/pmac_feature.h>
39 #endif
40
41 #include "fw-ohci.h"
42 #include "fw-transaction.h"
43
44 #define DESCRIPTOR_OUTPUT_MORE          0
45 #define DESCRIPTOR_OUTPUT_LAST          (1 << 12)
46 #define DESCRIPTOR_INPUT_MORE           (2 << 12)
47 #define DESCRIPTOR_INPUT_LAST           (3 << 12)
48 #define DESCRIPTOR_STATUS               (1 << 11)
49 #define DESCRIPTOR_KEY_IMMEDIATE        (2 << 8)
50 #define DESCRIPTOR_PING                 (1 << 7)
51 #define DESCRIPTOR_YY                   (1 << 6)
52 #define DESCRIPTOR_NO_IRQ               (0 << 4)
53 #define DESCRIPTOR_IRQ_ERROR            (1 << 4)
54 #define DESCRIPTOR_IRQ_ALWAYS           (3 << 4)
55 #define DESCRIPTOR_BRANCH_ALWAYS        (3 << 2)
56 #define DESCRIPTOR_WAIT                 (3 << 0)
57
58 struct descriptor {
59         __le16 req_count;
60         __le16 control;
61         __le32 data_address;
62         __le32 branch_address;
63         __le16 res_count;
64         __le16 transfer_status;
65 } __attribute__((aligned(16)));
66
67 struct db_descriptor {
68         __le16 first_size;
69         __le16 control;
70         __le16 second_req_count;
71         __le16 first_req_count;
72         __le32 branch_address;
73         __le16 second_res_count;
74         __le16 first_res_count;
75         __le32 reserved0;
76         __le32 first_buffer;
77         __le32 second_buffer;
78         __le32 reserved1;
79 } __attribute__((aligned(16)));
80
81 #define CONTROL_SET(regs)       (regs)
82 #define CONTROL_CLEAR(regs)     ((regs) + 4)
83 #define COMMAND_PTR(regs)       ((regs) + 12)
84 #define CONTEXT_MATCH(regs)     ((regs) + 16)
85
86 struct ar_buffer {
87         struct descriptor descriptor;
88         struct ar_buffer *next;
89         __le32 data[0];
90 };
91
92 struct ar_context {
93         struct fw_ohci *ohci;
94         struct ar_buffer *current_buffer;
95         struct ar_buffer *last_buffer;
96         void *pointer;
97         u32 regs;
98         struct tasklet_struct tasklet;
99 };
100
101 struct context;
102
103 typedef int (*descriptor_callback_t)(struct context *ctx,
104                                      struct descriptor *d,
105                                      struct descriptor *last);
106
107 /*
108  * A buffer that contains a block of DMA-able coherent memory used for
109  * storing a portion of a DMA descriptor program.
110  */
111 struct descriptor_buffer {
112         struct list_head list;
113         dma_addr_t buffer_bus;
114         size_t buffer_size;
115         size_t used;
116         struct descriptor buffer[0];
117 };
118
119 struct context {
120         struct fw_ohci *ohci;
121         u32 regs;
122         int total_allocation;
123
124         /*
125          * List of page-sized buffers for storing DMA descriptors.
126          * Head of list contains buffers in use and tail of list contains
127          * free buffers.
128          */
129         struct list_head buffer_list;
130
131         /*
132          * Pointer to a buffer inside buffer_list that contains the tail
133          * end of the current DMA program.
134          */
135         struct descriptor_buffer *buffer_tail;
136
137         /*
138          * The descriptor containing the branch address of the first
139          * descriptor that has not yet been filled by the device.
140          */
141         struct descriptor *last;
142
143         /*
144          * The last descriptor in the DMA program.  It contains the branch
145          * address that must be updated upon appending a new descriptor.
146          */
147         struct descriptor *prev;
148
149         descriptor_callback_t callback;
150
151         struct tasklet_struct tasklet;
152 };
153
154 #define IT_HEADER_SY(v)          ((v) <<  0)
155 #define IT_HEADER_TCODE(v)       ((v) <<  4)
156 #define IT_HEADER_CHANNEL(v)     ((v) <<  8)
157 #define IT_HEADER_TAG(v)         ((v) << 14)
158 #define IT_HEADER_SPEED(v)       ((v) << 16)
159 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
160
161 struct iso_context {
162         struct fw_iso_context base;
163         struct context context;
164         int excess_bytes;
165         void *header;
166         size_t header_length;
167 };
168
169 #define CONFIG_ROM_SIZE 1024
170
171 struct fw_ohci {
172         struct fw_card card;
173
174         __iomem char *registers;
175         dma_addr_t self_id_bus;
176         __le32 *self_id_cpu;
177         struct tasklet_struct bus_reset_tasklet;
178         int node_id;
179         int generation;
180         int request_generation; /* for timestamping incoming requests */
181         u32 bus_seconds;
182
183         bool use_dualbuffer;
184         bool old_uninorth;
185         bool bus_reset_packet_quirk;
186
187         /*
188          * Spinlock for accessing fw_ohci data.  Never call out of
189          * this driver with this lock held.
190          */
191         spinlock_t lock;
192         u32 self_id_buffer[512];
193
194         /* Config rom buffers */
195         __be32 *config_rom;
196         dma_addr_t config_rom_bus;
197         __be32 *next_config_rom;
198         dma_addr_t next_config_rom_bus;
199         u32 next_header;
200
201         struct ar_context ar_request_ctx;
202         struct ar_context ar_response_ctx;
203         struct context at_request_ctx;
204         struct context at_response_ctx;
205
206         u32 it_context_mask;
207         struct iso_context *it_context_list;
208         u32 ir_context_mask;
209         struct iso_context *ir_context_list;
210 };
211
212 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
213 {
214         return container_of(card, struct fw_ohci, card);
215 }
216
217 #define IT_CONTEXT_CYCLE_MATCH_ENABLE   0x80000000
218 #define IR_CONTEXT_BUFFER_FILL          0x80000000
219 #define IR_CONTEXT_ISOCH_HEADER         0x40000000
220 #define IR_CONTEXT_CYCLE_MATCH_ENABLE   0x20000000
221 #define IR_CONTEXT_MULTI_CHANNEL_MODE   0x10000000
222 #define IR_CONTEXT_DUAL_BUFFER_MODE     0x08000000
223
224 #define CONTEXT_RUN     0x8000
225 #define CONTEXT_WAKE    0x1000
226 #define CONTEXT_DEAD    0x0800
227 #define CONTEXT_ACTIVE  0x0400
228
229 #define OHCI1394_MAX_AT_REQ_RETRIES     0x2
230 #define OHCI1394_MAX_AT_RESP_RETRIES    0x2
231 #define OHCI1394_MAX_PHYS_RESP_RETRIES  0x8
232
233 #define FW_OHCI_MAJOR                   240
234 #define OHCI1394_REGISTER_SIZE          0x800
235 #define OHCI_LOOP_COUNT                 500
236 #define OHCI1394_PCI_HCI_Control        0x40
237 #define SELF_ID_BUF_SIZE                0x800
238 #define OHCI_TCODE_PHY_PACKET           0x0e
239 #define OHCI_VERSION_1_1                0x010010
240
241 static char ohci_driver_name[] = KBUILD_MODNAME;
242
243 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
244
245 #define OHCI_PARAM_DEBUG_AT_AR          1
246 #define OHCI_PARAM_DEBUG_SELFIDS        2
247 #define OHCI_PARAM_DEBUG_IRQS           4
248 #define OHCI_PARAM_DEBUG_BUSRESETS      8 /* only effective before chip init */
249
250 static int param_debug;
251 module_param_named(debug, param_debug, int, 0644);
252 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
253         ", AT/AR events = "     __stringify(OHCI_PARAM_DEBUG_AT_AR)
254         ", self-IDs = "         __stringify(OHCI_PARAM_DEBUG_SELFIDS)
255         ", IRQs = "             __stringify(OHCI_PARAM_DEBUG_IRQS)
256         ", busReset events = "  __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
257         ", or a combination, or all = -1)");
258
259 static void log_irqs(u32 evt)
260 {
261         if (likely(!(param_debug &
262                         (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
263                 return;
264
265         if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
266             !(evt & OHCI1394_busReset))
267                 return;
268
269         fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
270             evt & OHCI1394_selfIDComplete       ? " selfID"             : "",
271             evt & OHCI1394_RQPkt                ? " AR_req"             : "",
272             evt & OHCI1394_RSPkt                ? " AR_resp"            : "",
273             evt & OHCI1394_reqTxComplete        ? " AT_req"             : "",
274             evt & OHCI1394_respTxComplete       ? " AT_resp"            : "",
275             evt & OHCI1394_isochRx              ? " IR"                 : "",
276             evt & OHCI1394_isochTx              ? " IT"                 : "",
277             evt & OHCI1394_postedWriteErr       ? " postedWriteErr"     : "",
278             evt & OHCI1394_cycleTooLong         ? " cycleTooLong"       : "",
279             evt & OHCI1394_cycle64Seconds       ? " cycle64Seconds"     : "",
280             evt & OHCI1394_regAccessFail        ? " regAccessFail"      : "",
281             evt & OHCI1394_busReset             ? " busReset"           : "",
282             evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
283                     OHCI1394_RSPkt | OHCI1394_reqTxComplete |
284                     OHCI1394_respTxComplete | OHCI1394_isochRx |
285                     OHCI1394_isochTx | OHCI1394_postedWriteErr |
286                     OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
287                     OHCI1394_regAccessFail | OHCI1394_busReset)
288                                                 ? " ?"                  : "");
289 }
290
291 static const char *speed[] = {
292         [0] = "S100", [1] = "S200", [2] = "S400",    [3] = "beta",
293 };
294 static const char *power[] = {
295         [0] = "+0W",  [1] = "+15W", [2] = "+30W",    [3] = "+45W",
296         [4] = "-3W",  [5] = " ?W",  [6] = "-3..-6W", [7] = "-3..-10W",
297 };
298 static const char port[] = { '.', '-', 'p', 'c', };
299
300 static char _p(u32 *s, int shift)
301 {
302         return port[*s >> shift & 3];
303 }
304
305 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
306 {
307         if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
308                 return;
309
310         fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
311                   self_id_count, generation, node_id);
312
313         for (; self_id_count--; ++s)
314                 if ((*s & 1 << 23) == 0)
315                         fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
316                             "%s gc=%d %s %s%s%s\n",
317                             *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
318                             speed[*s >> 14 & 3], *s >> 16 & 63,
319                             power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
320                             *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
321                 else
322                         fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
323                             *s, *s >> 24 & 63,
324                             _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
325                             _p(s,  8), _p(s,  6), _p(s,  4), _p(s,  2));
326 }
327
328 static const char *evts[] = {
329         [0x00] = "evt_no_status",       [0x01] = "-reserved-",
330         [0x02] = "evt_long_packet",     [0x03] = "evt_missing_ack",
331         [0x04] = "evt_underrun",        [0x05] = "evt_overrun",
332         [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
333         [0x08] = "evt_data_write",      [0x09] = "evt_bus_reset",
334         [0x0a] = "evt_timeout",         [0x0b] = "evt_tcode_err",
335         [0x0c] = "-reserved-",          [0x0d] = "-reserved-",
336         [0x0e] = "evt_unknown",         [0x0f] = "evt_flushed",
337         [0x10] = "-reserved-",          [0x11] = "ack_complete",
338         [0x12] = "ack_pending ",        [0x13] = "-reserved-",
339         [0x14] = "ack_busy_X",          [0x15] = "ack_busy_A",
340         [0x16] = "ack_busy_B",          [0x17] = "-reserved-",
341         [0x18] = "-reserved-",          [0x19] = "-reserved-",
342         [0x1a] = "-reserved-",          [0x1b] = "ack_tardy",
343         [0x1c] = "-reserved-",          [0x1d] = "ack_data_error",
344         [0x1e] = "ack_type_error",      [0x1f] = "-reserved-",
345         [0x20] = "pending/cancelled",
346 };
347 static const char *tcodes[] = {
348         [0x0] = "QW req",               [0x1] = "BW req",
349         [0x2] = "W resp",               [0x3] = "-reserved-",
350         [0x4] = "QR req",               [0x5] = "BR req",
351         [0x6] = "QR resp",              [0x7] = "BR resp",
352         [0x8] = "cycle start",          [0x9] = "Lk req",
353         [0xa] = "async stream packet",  [0xb] = "Lk resp",
354         [0xc] = "-reserved-",           [0xd] = "-reserved-",
355         [0xe] = "link internal",        [0xf] = "-reserved-",
356 };
357 static const char *phys[] = {
358         [0x0] = "phy config packet",    [0x1] = "link-on packet",
359         [0x2] = "self-id packet",       [0x3] = "-reserved-",
360 };
361
362 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
363 {
364         int tcode = header[0] >> 4 & 0xf;
365         char specific[12];
366
367         if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
368                 return;
369
370         if (unlikely(evt >= ARRAY_SIZE(evts)))
371                         evt = 0x1f;
372
373         if (evt == OHCI1394_evt_bus_reset) {
374                 fw_notify("A%c evt_bus_reset, generation %d\n",
375                     dir, (header[2] >> 16) & 0xff);
376                 return;
377         }
378
379         if (header[0] == ~header[1]) {
380                 fw_notify("A%c %s, %s, %08x\n",
381                     dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
382                 return;
383         }
384
385         switch (tcode) {
386         case 0x0: case 0x6: case 0x8:
387                 snprintf(specific, sizeof(specific), " = %08x",
388                          be32_to_cpu((__force __be32)header[3]));
389                 break;
390         case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
391                 snprintf(specific, sizeof(specific), " %x,%x",
392                          header[3] >> 16, header[3] & 0xffff);
393                 break;
394         default:
395                 specific[0] = '\0';
396         }
397
398         switch (tcode) {
399         case 0xe: case 0xa:
400                 fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
401                 break;
402         case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
403                 fw_notify("A%c spd %x tl %02x, "
404                     "%04x -> %04x, %s, "
405                     "%s, %04x%08x%s\n",
406                     dir, speed, header[0] >> 10 & 0x3f,
407                     header[1] >> 16, header[0] >> 16, evts[evt],
408                     tcodes[tcode], header[1] & 0xffff, header[2], specific);
409                 break;
410         default:
411                 fw_notify("A%c spd %x tl %02x, "
412                     "%04x -> %04x, %s, "
413                     "%s%s\n",
414                     dir, speed, header[0] >> 10 & 0x3f,
415                     header[1] >> 16, header[0] >> 16, evts[evt],
416                     tcodes[tcode], specific);
417         }
418 }
419
420 #else
421
422 #define log_irqs(evt)
423 #define log_selfids(node_id, generation, self_id_count, sid)
424 #define log_ar_at_event(dir, speed, header, evt)
425
426 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
427
428 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
429 {
430         writel(data, ohci->registers + offset);
431 }
432
433 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
434 {
435         return readl(ohci->registers + offset);
436 }
437
438 static inline void flush_writes(const struct fw_ohci *ohci)
439 {
440         /* Do a dummy read to flush writes. */
441         reg_read(ohci, OHCI1394_Version);
442 }
443
444 static int
445 ohci_update_phy_reg(struct fw_card *card, int addr,
446                     int clear_bits, int set_bits)
447 {
448         struct fw_ohci *ohci = fw_ohci(card);
449         u32 val, old;
450
451         reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
452         flush_writes(ohci);
453         msleep(2);
454         val = reg_read(ohci, OHCI1394_PhyControl);
455         if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
456                 fw_error("failed to set phy reg bits.\n");
457                 return -EBUSY;
458         }
459
460         old = OHCI1394_PhyControl_ReadData(val);
461         old = (old & ~clear_bits) | set_bits;
462         reg_write(ohci, OHCI1394_PhyControl,
463                   OHCI1394_PhyControl_Write(addr, old));
464
465         return 0;
466 }
467
468 static int ar_context_add_page(struct ar_context *ctx)
469 {
470         struct device *dev = ctx->ohci->card.device;
471         struct ar_buffer *ab;
472         dma_addr_t uninitialized_var(ab_bus);
473         size_t offset;
474
475         ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
476         if (ab == NULL)
477                 return -ENOMEM;
478
479         memset(&ab->descriptor, 0, sizeof(ab->descriptor));
480         ab->descriptor.control        = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
481                                                     DESCRIPTOR_STATUS |
482                                                     DESCRIPTOR_BRANCH_ALWAYS);
483         offset = offsetof(struct ar_buffer, data);
484         ab->descriptor.req_count      = cpu_to_le16(PAGE_SIZE - offset);
485         ab->descriptor.data_address   = cpu_to_le32(ab_bus + offset);
486         ab->descriptor.res_count      = cpu_to_le16(PAGE_SIZE - offset);
487         ab->descriptor.branch_address = 0;
488
489         ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
490         ctx->last_buffer->next = ab;
491         ctx->last_buffer = ab;
492
493         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
494         flush_writes(ctx->ohci);
495
496         return 0;
497 }
498
499 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
500 #define cond_le32_to_cpu(v) \
501         (ohci->old_uninorth ? (__force __u32)(v) : le32_to_cpu(v))
502 #else
503 #define cond_le32_to_cpu(v) le32_to_cpu(v)
504 #endif
505
506 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
507 {
508         struct fw_ohci *ohci = ctx->ohci;
509         struct fw_packet p;
510         u32 status, length, tcode;
511         int evt;
512
513         p.header[0] = cond_le32_to_cpu(buffer[0]);
514         p.header[1] = cond_le32_to_cpu(buffer[1]);
515         p.header[2] = cond_le32_to_cpu(buffer[2]);
516
517         tcode = (p.header[0] >> 4) & 0x0f;
518         switch (tcode) {
519         case TCODE_WRITE_QUADLET_REQUEST:
520         case TCODE_READ_QUADLET_RESPONSE:
521                 p.header[3] = (__force __u32) buffer[3];
522                 p.header_length = 16;
523                 p.payload_length = 0;
524                 break;
525
526         case TCODE_READ_BLOCK_REQUEST :
527                 p.header[3] = cond_le32_to_cpu(buffer[3]);
528                 p.header_length = 16;
529                 p.payload_length = 0;
530                 break;
531
532         case TCODE_WRITE_BLOCK_REQUEST:
533         case TCODE_READ_BLOCK_RESPONSE:
534         case TCODE_LOCK_REQUEST:
535         case TCODE_LOCK_RESPONSE:
536                 p.header[3] = cond_le32_to_cpu(buffer[3]);
537                 p.header_length = 16;
538                 p.payload_length = p.header[3] >> 16;
539                 break;
540
541         case TCODE_WRITE_RESPONSE:
542         case TCODE_READ_QUADLET_REQUEST:
543         case OHCI_TCODE_PHY_PACKET:
544                 p.header_length = 12;
545                 p.payload_length = 0;
546                 break;
547
548         default:
549                 /* FIXME: Stop context, discard everything, and restart? */
550                 p.header_length = 0;
551                 p.payload_length = 0;
552         }
553
554         p.payload = (void *) buffer + p.header_length;
555
556         /* FIXME: What to do about evt_* errors? */
557         length = (p.header_length + p.payload_length + 3) / 4;
558         status = cond_le32_to_cpu(buffer[length]);
559         evt    = (status >> 16) & 0x1f;
560
561         p.ack        = evt - 16;
562         p.speed      = (status >> 21) & 0x7;
563         p.timestamp  = status & 0xffff;
564         p.generation = ohci->request_generation;
565
566         log_ar_at_event('R', p.speed, p.header, evt);
567
568         /*
569          * The OHCI bus reset handler synthesizes a phy packet with
570          * the new generation number when a bus reset happens (see
571          * section 8.4.2.3).  This helps us determine when a request
572          * was received and make sure we send the response in the same
573          * generation.  We only need this for requests; for responses
574          * we use the unique tlabel for finding the matching
575          * request.
576          *
577          * Alas some chips sometimes emit bus reset packets with a
578          * wrong generation.  We set the correct generation for these
579          * at a slightly incorrect time (in bus_reset_tasklet).
580          */
581         if (evt == OHCI1394_evt_bus_reset) {
582                 if (!ohci->bus_reset_packet_quirk)
583                         ohci->request_generation = (p.header[2] >> 16) & 0xff;
584         } else if (ctx == &ohci->ar_request_ctx) {
585                 fw_core_handle_request(&ohci->card, &p);
586         } else {
587                 fw_core_handle_response(&ohci->card, &p);
588         }
589
590         return buffer + length + 1;
591 }
592
593 static void ar_context_tasklet(unsigned long data)
594 {
595         struct ar_context *ctx = (struct ar_context *)data;
596         struct fw_ohci *ohci = ctx->ohci;
597         struct ar_buffer *ab;
598         struct descriptor *d;
599         void *buffer, *end;
600
601         ab = ctx->current_buffer;
602         d = &ab->descriptor;
603
604         if (d->res_count == 0) {
605                 size_t size, rest, offset;
606                 dma_addr_t start_bus;
607                 void *start;
608
609                 /*
610                  * This descriptor is finished and we may have a
611                  * packet split across this and the next buffer. We
612                  * reuse the page for reassembling the split packet.
613                  */
614
615                 offset = offsetof(struct ar_buffer, data);
616                 start = buffer = ab;
617                 start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
618
619                 ab = ab->next;
620                 d = &ab->descriptor;
621                 size = buffer + PAGE_SIZE - ctx->pointer;
622                 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
623                 memmove(buffer, ctx->pointer, size);
624                 memcpy(buffer + size, ab->data, rest);
625                 ctx->current_buffer = ab;
626                 ctx->pointer = (void *) ab->data + rest;
627                 end = buffer + size + rest;
628
629                 while (buffer < end)
630                         buffer = handle_ar_packet(ctx, buffer);
631
632                 dma_free_coherent(ohci->card.device, PAGE_SIZE,
633                                   start, start_bus);
634                 ar_context_add_page(ctx);
635         } else {
636                 buffer = ctx->pointer;
637                 ctx->pointer = end =
638                         (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
639
640                 while (buffer < end)
641                         buffer = handle_ar_packet(ctx, buffer);
642         }
643 }
644
645 static int
646 ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 regs)
647 {
648         struct ar_buffer ab;
649
650         ctx->regs        = regs;
651         ctx->ohci        = ohci;
652         ctx->last_buffer = &ab;
653         tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
654
655         ar_context_add_page(ctx);
656         ar_context_add_page(ctx);
657         ctx->current_buffer = ab.next;
658         ctx->pointer = ctx->current_buffer->data;
659
660         return 0;
661 }
662
663 static void ar_context_run(struct ar_context *ctx)
664 {
665         struct ar_buffer *ab = ctx->current_buffer;
666         dma_addr_t ab_bus;
667         size_t offset;
668
669         offset = offsetof(struct ar_buffer, data);
670         ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
671
672         reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
673         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
674         flush_writes(ctx->ohci);
675 }
676
677 static struct descriptor *
678 find_branch_descriptor(struct descriptor *d, int z)
679 {
680         int b, key;
681
682         b   = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
683         key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
684
685         /* figure out which descriptor the branch address goes in */
686         if (z == 2 && (b == 3 || key == 2))
687                 return d;
688         else
689                 return d + z - 1;
690 }
691
692 static void context_tasklet(unsigned long data)
693 {
694         struct context *ctx = (struct context *) data;
695         struct descriptor *d, *last;
696         u32 address;
697         int z;
698         struct descriptor_buffer *desc;
699
700         desc = list_entry(ctx->buffer_list.next,
701                         struct descriptor_buffer, list);
702         last = ctx->last;
703         while (last->branch_address != 0) {
704                 struct descriptor_buffer *old_desc = desc;
705                 address = le32_to_cpu(last->branch_address);
706                 z = address & 0xf;
707                 address &= ~0xf;
708
709                 /* If the branch address points to a buffer outside of the
710                  * current buffer, advance to the next buffer. */
711                 if (address < desc->buffer_bus ||
712                                 address >= desc->buffer_bus + desc->used)
713                         desc = list_entry(desc->list.next,
714                                         struct descriptor_buffer, list);
715                 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
716                 last = find_branch_descriptor(d, z);
717
718                 if (!ctx->callback(ctx, d, last))
719                         break;
720
721                 if (old_desc != desc) {
722                         /* If we've advanced to the next buffer, move the
723                          * previous buffer to the free list. */
724                         unsigned long flags;
725                         old_desc->used = 0;
726                         spin_lock_irqsave(&ctx->ohci->lock, flags);
727                         list_move_tail(&old_desc->list, &ctx->buffer_list);
728                         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
729                 }
730                 ctx->last = last;
731         }
732 }
733
734 /*
735  * Allocate a new buffer and add it to the list of free buffers for this
736  * context.  Must be called with ohci->lock held.
737  */
738 static int
739 context_add_buffer(struct context *ctx)
740 {
741         struct descriptor_buffer *desc;
742         dma_addr_t uninitialized_var(bus_addr);
743         int offset;
744
745         /*
746          * 16MB of descriptors should be far more than enough for any DMA
747          * program.  This will catch run-away userspace or DoS attacks.
748          */
749         if (ctx->total_allocation >= 16*1024*1024)
750                 return -ENOMEM;
751
752         desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
753                         &bus_addr, GFP_ATOMIC);
754         if (!desc)
755                 return -ENOMEM;
756
757         offset = (void *)&desc->buffer - (void *)desc;
758         desc->buffer_size = PAGE_SIZE - offset;
759         desc->buffer_bus = bus_addr + offset;
760         desc->used = 0;
761
762         list_add_tail(&desc->list, &ctx->buffer_list);
763         ctx->total_allocation += PAGE_SIZE;
764
765         return 0;
766 }
767
768 static int
769 context_init(struct context *ctx, struct fw_ohci *ohci,
770              u32 regs, descriptor_callback_t callback)
771 {
772         ctx->ohci = ohci;
773         ctx->regs = regs;
774         ctx->total_allocation = 0;
775
776         INIT_LIST_HEAD(&ctx->buffer_list);
777         if (context_add_buffer(ctx) < 0)
778                 return -ENOMEM;
779
780         ctx->buffer_tail = list_entry(ctx->buffer_list.next,
781                         struct descriptor_buffer, list);
782
783         tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
784         ctx->callback = callback;
785
786         /*
787          * We put a dummy descriptor in the buffer that has a NULL
788          * branch address and looks like it's been sent.  That way we
789          * have a descriptor to append DMA programs to.
790          */
791         memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
792         ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
793         ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
794         ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
795         ctx->last = ctx->buffer_tail->buffer;
796         ctx->prev = ctx->buffer_tail->buffer;
797
798         return 0;
799 }
800
801 static void
802 context_release(struct context *ctx)
803 {
804         struct fw_card *card = &ctx->ohci->card;
805         struct descriptor_buffer *desc, *tmp;
806
807         list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
808                 dma_free_coherent(card->device, PAGE_SIZE, desc,
809                         desc->buffer_bus -
810                         ((void *)&desc->buffer - (void *)desc));
811 }
812
813 /* Must be called with ohci->lock held */
814 static struct descriptor *
815 context_get_descriptors(struct context *ctx, int z, dma_addr_t *d_bus)
816 {
817         struct descriptor *d = NULL;
818         struct descriptor_buffer *desc = ctx->buffer_tail;
819
820         if (z * sizeof(*d) > desc->buffer_size)
821                 return NULL;
822
823         if (z * sizeof(*d) > desc->buffer_size - desc->used) {
824                 /* No room for the descriptor in this buffer, so advance to the
825                  * next one. */
826
827                 if (desc->list.next == &ctx->buffer_list) {
828                         /* If there is no free buffer next in the list,
829                          * allocate one. */
830                         if (context_add_buffer(ctx) < 0)
831                                 return NULL;
832                 }
833                 desc = list_entry(desc->list.next,
834                                 struct descriptor_buffer, list);
835                 ctx->buffer_tail = desc;
836         }
837
838         d = desc->buffer + desc->used / sizeof(*d);
839         memset(d, 0, z * sizeof(*d));
840         *d_bus = desc->buffer_bus + desc->used;
841
842         return d;
843 }
844
845 static void context_run(struct context *ctx, u32 extra)
846 {
847         struct fw_ohci *ohci = ctx->ohci;
848
849         reg_write(ohci, COMMAND_PTR(ctx->regs),
850                   le32_to_cpu(ctx->last->branch_address));
851         reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
852         reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
853         flush_writes(ohci);
854 }
855
856 static void context_append(struct context *ctx,
857                            struct descriptor *d, int z, int extra)
858 {
859         dma_addr_t d_bus;
860         struct descriptor_buffer *desc = ctx->buffer_tail;
861
862         d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
863
864         desc->used += (z + extra) * sizeof(*d);
865         ctx->prev->branch_address = cpu_to_le32(d_bus | z);
866         ctx->prev = find_branch_descriptor(d, z);
867
868         reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
869         flush_writes(ctx->ohci);
870 }
871
872 static void context_stop(struct context *ctx)
873 {
874         u32 reg;
875         int i;
876
877         reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
878         flush_writes(ctx->ohci);
879
880         for (i = 0; i < 10; i++) {
881                 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
882                 if ((reg & CONTEXT_ACTIVE) == 0)
883                         break;
884
885                 fw_notify("context_stop: still active (0x%08x)\n", reg);
886                 mdelay(1);
887         }
888 }
889
890 struct driver_data {
891         struct fw_packet *packet;
892 };
893
894 /*
895  * This function apppends a packet to the DMA queue for transmission.
896  * Must always be called with the ochi->lock held to ensure proper
897  * generation handling and locking around packet queue manipulation.
898  */
899 static int
900 at_context_queue_packet(struct context *ctx, struct fw_packet *packet)
901 {
902         struct fw_ohci *ohci = ctx->ohci;
903         dma_addr_t d_bus, uninitialized_var(payload_bus);
904         struct driver_data *driver_data;
905         struct descriptor *d, *last;
906         __le32 *header;
907         int z, tcode;
908         u32 reg;
909
910         d = context_get_descriptors(ctx, 4, &d_bus);
911         if (d == NULL) {
912                 packet->ack = RCODE_SEND_ERROR;
913                 return -1;
914         }
915
916         d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
917         d[0].res_count = cpu_to_le16(packet->timestamp);
918
919         /*
920          * The DMA format for asyncronous link packets is different
921          * from the IEEE1394 layout, so shift the fields around
922          * accordingly.  If header_length is 8, it's a PHY packet, to
923          * which we need to prepend an extra quadlet.
924          */
925
926         header = (__le32 *) &d[1];
927         if (packet->header_length > 8) {
928                 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
929                                         (packet->speed << 16));
930                 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
931                                         (packet->header[0] & 0xffff0000));
932                 header[2] = cpu_to_le32(packet->header[2]);
933
934                 tcode = (packet->header[0] >> 4) & 0x0f;
935                 if (TCODE_IS_BLOCK_PACKET(tcode))
936                         header[3] = cpu_to_le32(packet->header[3]);
937                 else
938                         header[3] = (__force __le32) packet->header[3];
939
940                 d[0].req_count = cpu_to_le16(packet->header_length);
941         } else {
942                 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
943                                         (packet->speed << 16));
944                 header[1] = cpu_to_le32(packet->header[0]);
945                 header[2] = cpu_to_le32(packet->header[1]);
946                 d[0].req_count = cpu_to_le16(12);
947         }
948
949         driver_data = (struct driver_data *) &d[3];
950         driver_data->packet = packet;
951         packet->driver_data = driver_data;
952
953         if (packet->payload_length > 0) {
954                 payload_bus =
955                         dma_map_single(ohci->card.device, packet->payload,
956                                        packet->payload_length, DMA_TO_DEVICE);
957                 if (dma_mapping_error(payload_bus)) {
958                         packet->ack = RCODE_SEND_ERROR;
959                         return -1;
960                 }
961
962                 d[2].req_count    = cpu_to_le16(packet->payload_length);
963                 d[2].data_address = cpu_to_le32(payload_bus);
964                 last = &d[2];
965                 z = 3;
966         } else {
967                 last = &d[0];
968                 z = 2;
969         }
970
971         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
972                                      DESCRIPTOR_IRQ_ALWAYS |
973                                      DESCRIPTOR_BRANCH_ALWAYS);
974
975         /*
976          * If the controller and packet generations don't match, we need to
977          * bail out and try again.  If IntEvent.busReset is set, the AT context
978          * is halted, so appending to the context and trying to run it is
979          * futile.  Most controllers do the right thing and just flush the AT
980          * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
981          * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
982          * up stalling out.  So we just bail out in software and try again
983          * later, and everyone is happy.
984          * FIXME: Document how the locking works.
985          */
986         if (ohci->generation != packet->generation ||
987             reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
988                 if (packet->payload_length > 0)
989                         dma_unmap_single(ohci->card.device, payload_bus,
990                                          packet->payload_length, DMA_TO_DEVICE);
991                 packet->ack = RCODE_GENERATION;
992                 return -1;
993         }
994
995         context_append(ctx, d, z, 4 - z);
996
997         /* If the context isn't already running, start it up. */
998         reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
999         if ((reg & CONTEXT_RUN) == 0)
1000                 context_run(ctx, 0);
1001
1002         return 0;
1003 }
1004
1005 static int handle_at_packet(struct context *context,
1006                             struct descriptor *d,
1007                             struct descriptor *last)
1008 {
1009         struct driver_data *driver_data;
1010         struct fw_packet *packet;
1011         struct fw_ohci *ohci = context->ohci;
1012         dma_addr_t payload_bus;
1013         int evt;
1014
1015         if (last->transfer_status == 0)
1016                 /* This descriptor isn't done yet, stop iteration. */
1017                 return 0;
1018
1019         driver_data = (struct driver_data *) &d[3];
1020         packet = driver_data->packet;
1021         if (packet == NULL)
1022                 /* This packet was cancelled, just continue. */
1023                 return 1;
1024
1025         payload_bus = le32_to_cpu(last->data_address);
1026         if (payload_bus != 0)
1027                 dma_unmap_single(ohci->card.device, payload_bus,
1028                                  packet->payload_length, DMA_TO_DEVICE);
1029
1030         evt = le16_to_cpu(last->transfer_status) & 0x1f;
1031         packet->timestamp = le16_to_cpu(last->res_count);
1032
1033         log_ar_at_event('T', packet->speed, packet->header, evt);
1034
1035         switch (evt) {
1036         case OHCI1394_evt_timeout:
1037                 /* Async response transmit timed out. */
1038                 packet->ack = RCODE_CANCELLED;
1039                 break;
1040
1041         case OHCI1394_evt_flushed:
1042                 /*
1043                  * The packet was flushed should give same error as
1044                  * when we try to use a stale generation count.
1045                  */
1046                 packet->ack = RCODE_GENERATION;
1047                 break;
1048
1049         case OHCI1394_evt_missing_ack:
1050                 /*
1051                  * Using a valid (current) generation count, but the
1052                  * node is not on the bus or not sending acks.
1053                  */
1054                 packet->ack = RCODE_NO_ACK;
1055                 break;
1056
1057         case ACK_COMPLETE + 0x10:
1058         case ACK_PENDING + 0x10:
1059         case ACK_BUSY_X + 0x10:
1060         case ACK_BUSY_A + 0x10:
1061         case ACK_BUSY_B + 0x10:
1062         case ACK_DATA_ERROR + 0x10:
1063         case ACK_TYPE_ERROR + 0x10:
1064                 packet->ack = evt - 0x10;
1065                 break;
1066
1067         default:
1068                 packet->ack = RCODE_SEND_ERROR;
1069                 break;
1070         }
1071
1072         packet->callback(packet, &ohci->card, packet->ack);
1073
1074         return 1;
1075 }
1076
1077 #define HEADER_GET_DESTINATION(q)       (((q) >> 16) & 0xffff)
1078 #define HEADER_GET_TCODE(q)             (((q) >> 4) & 0x0f)
1079 #define HEADER_GET_OFFSET_HIGH(q)       (((q) >> 0) & 0xffff)
1080 #define HEADER_GET_DATA_LENGTH(q)       (((q) >> 16) & 0xffff)
1081 #define HEADER_GET_EXTENDED_TCODE(q)    (((q) >> 0) & 0xffff)
1082
1083 static void
1084 handle_local_rom(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
1085 {
1086         struct fw_packet response;
1087         int tcode, length, i;
1088
1089         tcode = HEADER_GET_TCODE(packet->header[0]);
1090         if (TCODE_IS_BLOCK_PACKET(tcode))
1091                 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1092         else
1093                 length = 4;
1094
1095         i = csr - CSR_CONFIG_ROM;
1096         if (i + length > CONFIG_ROM_SIZE) {
1097                 fw_fill_response(&response, packet->header,
1098                                  RCODE_ADDRESS_ERROR, NULL, 0);
1099         } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1100                 fw_fill_response(&response, packet->header,
1101                                  RCODE_TYPE_ERROR, NULL, 0);
1102         } else {
1103                 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1104                                  (void *) ohci->config_rom + i, length);
1105         }
1106
1107         fw_core_handle_response(&ohci->card, &response);
1108 }
1109
1110 static void
1111 handle_local_lock(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
1112 {
1113         struct fw_packet response;
1114         int tcode, length, ext_tcode, sel;
1115         __be32 *payload, lock_old;
1116         u32 lock_arg, lock_data;
1117
1118         tcode = HEADER_GET_TCODE(packet->header[0]);
1119         length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1120         payload = packet->payload;
1121         ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1122
1123         if (tcode == TCODE_LOCK_REQUEST &&
1124             ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1125                 lock_arg = be32_to_cpu(payload[0]);
1126                 lock_data = be32_to_cpu(payload[1]);
1127         } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1128                 lock_arg = 0;
1129                 lock_data = 0;
1130         } else {
1131                 fw_fill_response(&response, packet->header,
1132                                  RCODE_TYPE_ERROR, NULL, 0);
1133                 goto out;
1134         }
1135
1136         sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1137         reg_write(ohci, OHCI1394_CSRData, lock_data);
1138         reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1139         reg_write(ohci, OHCI1394_CSRControl, sel);
1140
1141         if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
1142                 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
1143         else
1144                 fw_notify("swap not done yet\n");
1145
1146         fw_fill_response(&response, packet->header,
1147                          RCODE_COMPLETE, &lock_old, sizeof(lock_old));
1148  out:
1149         fw_core_handle_response(&ohci->card, &response);
1150 }
1151
1152 static void
1153 handle_local_request(struct context *ctx, struct fw_packet *packet)
1154 {
1155         u64 offset;
1156         u32 csr;
1157
1158         if (ctx == &ctx->ohci->at_request_ctx) {
1159                 packet->ack = ACK_PENDING;
1160                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1161         }
1162
1163         offset =
1164                 ((unsigned long long)
1165                  HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1166                 packet->header[2];
1167         csr = offset - CSR_REGISTER_BASE;
1168
1169         /* Handle config rom reads. */
1170         if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1171                 handle_local_rom(ctx->ohci, packet, csr);
1172         else switch (csr) {
1173         case CSR_BUS_MANAGER_ID:
1174         case CSR_BANDWIDTH_AVAILABLE:
1175         case CSR_CHANNELS_AVAILABLE_HI:
1176         case CSR_CHANNELS_AVAILABLE_LO:
1177                 handle_local_lock(ctx->ohci, packet, csr);
1178                 break;
1179         default:
1180                 if (ctx == &ctx->ohci->at_request_ctx)
1181                         fw_core_handle_request(&ctx->ohci->card, packet);
1182                 else
1183                         fw_core_handle_response(&ctx->ohci->card, packet);
1184                 break;
1185         }
1186
1187         if (ctx == &ctx->ohci->at_response_ctx) {
1188                 packet->ack = ACK_COMPLETE;
1189                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1190         }
1191 }
1192
1193 static void
1194 at_context_transmit(struct context *ctx, struct fw_packet *packet)
1195 {
1196         unsigned long flags;
1197         int retval;
1198
1199         spin_lock_irqsave(&ctx->ohci->lock, flags);
1200
1201         if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1202             ctx->ohci->generation == packet->generation) {
1203                 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1204                 handle_local_request(ctx, packet);
1205                 return;
1206         }
1207
1208         retval = at_context_queue_packet(ctx, packet);
1209         spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1210
1211         if (retval < 0)
1212                 packet->callback(packet, &ctx->ohci->card, packet->ack);
1213
1214 }
1215
1216 static void bus_reset_tasklet(unsigned long data)
1217 {
1218         struct fw_ohci *ohci = (struct fw_ohci *)data;
1219         int self_id_count, i, j, reg;
1220         int generation, new_generation;
1221         unsigned long flags;
1222         void *free_rom = NULL;
1223         dma_addr_t free_rom_bus = 0;
1224
1225         reg = reg_read(ohci, OHCI1394_NodeID);
1226         if (!(reg & OHCI1394_NodeID_idValid)) {
1227                 fw_notify("node ID not valid, new bus reset in progress\n");
1228                 return;
1229         }
1230         if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1231                 fw_notify("malconfigured bus\n");
1232                 return;
1233         }
1234         ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1235                                OHCI1394_NodeID_nodeNumber);
1236
1237         reg = reg_read(ohci, OHCI1394_SelfIDCount);
1238         if (reg & OHCI1394_SelfIDCount_selfIDError) {
1239                 fw_notify("inconsistent self IDs\n");
1240                 return;
1241         }
1242         /*
1243          * The count in the SelfIDCount register is the number of
1244          * bytes in the self ID receive buffer.  Since we also receive
1245          * the inverted quadlets and a header quadlet, we shift one
1246          * bit extra to get the actual number of self IDs.
1247          */
1248         self_id_count = (reg >> 3) & 0x3ff;
1249         if (self_id_count == 0) {
1250                 fw_notify("inconsistent self IDs\n");
1251                 return;
1252         }
1253         generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1254         rmb();
1255
1256         for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1257                 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1258                         fw_notify("inconsistent self IDs\n");
1259                         return;
1260                 }
1261                 ohci->self_id_buffer[j] =
1262                                 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1263         }
1264         rmb();
1265
1266         /*
1267          * Check the consistency of the self IDs we just read.  The
1268          * problem we face is that a new bus reset can start while we
1269          * read out the self IDs from the DMA buffer. If this happens,
1270          * the DMA buffer will be overwritten with new self IDs and we
1271          * will read out inconsistent data.  The OHCI specification
1272          * (section 11.2) recommends a technique similar to
1273          * linux/seqlock.h, where we remember the generation of the
1274          * self IDs in the buffer before reading them out and compare
1275          * it to the current generation after reading them out.  If
1276          * the two generations match we know we have a consistent set
1277          * of self IDs.
1278          */
1279
1280         new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1281         if (new_generation != generation) {
1282                 fw_notify("recursive bus reset detected, "
1283                           "discarding self ids\n");
1284                 return;
1285         }
1286
1287         /* FIXME: Document how the locking works. */
1288         spin_lock_irqsave(&ohci->lock, flags);
1289
1290         ohci->generation = generation;
1291         context_stop(&ohci->at_request_ctx);
1292         context_stop(&ohci->at_response_ctx);
1293         reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1294
1295         if (ohci->bus_reset_packet_quirk)
1296                 ohci->request_generation = generation;
1297
1298         /*
1299          * This next bit is unrelated to the AT context stuff but we
1300          * have to do it under the spinlock also.  If a new config rom
1301          * was set up before this reset, the old one is now no longer
1302          * in use and we can free it. Update the config rom pointers
1303          * to point to the current config rom and clear the
1304          * next_config_rom pointer so a new udpate can take place.
1305          */
1306
1307         if (ohci->next_config_rom != NULL) {
1308                 if (ohci->next_config_rom != ohci->config_rom) {
1309                         free_rom      = ohci->config_rom;
1310                         free_rom_bus  = ohci->config_rom_bus;
1311                 }
1312                 ohci->config_rom      = ohci->next_config_rom;
1313                 ohci->config_rom_bus  = ohci->next_config_rom_bus;
1314                 ohci->next_config_rom = NULL;
1315
1316                 /*
1317                  * Restore config_rom image and manually update
1318                  * config_rom registers.  Writing the header quadlet
1319                  * will indicate that the config rom is ready, so we
1320                  * do that last.
1321                  */
1322                 reg_write(ohci, OHCI1394_BusOptions,
1323                           be32_to_cpu(ohci->config_rom[2]));
1324                 ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
1325                 reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
1326         }
1327
1328 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1329         reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1330         reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1331 #endif
1332
1333         spin_unlock_irqrestore(&ohci->lock, flags);
1334
1335         if (free_rom)
1336                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1337                                   free_rom, free_rom_bus);
1338
1339         log_selfids(ohci->node_id, generation,
1340                     self_id_count, ohci->self_id_buffer);
1341
1342         fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1343                                  self_id_count, ohci->self_id_buffer);
1344 }
1345
1346 static irqreturn_t irq_handler(int irq, void *data)
1347 {
1348         struct fw_ohci *ohci = data;
1349         u32 event, iso_event, cycle_time;
1350         int i;
1351
1352         event = reg_read(ohci, OHCI1394_IntEventClear);
1353
1354         if (!event || !~event)
1355                 return IRQ_NONE;
1356
1357         /* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
1358         reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1359         log_irqs(event);
1360
1361         if (event & OHCI1394_selfIDComplete)
1362                 tasklet_schedule(&ohci->bus_reset_tasklet);
1363
1364         if (event & OHCI1394_RQPkt)
1365                 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1366
1367         if (event & OHCI1394_RSPkt)
1368                 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1369
1370         if (event & OHCI1394_reqTxComplete)
1371                 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1372
1373         if (event & OHCI1394_respTxComplete)
1374                 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1375
1376         iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1377         reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1378
1379         while (iso_event) {
1380                 i = ffs(iso_event) - 1;
1381                 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1382                 iso_event &= ~(1 << i);
1383         }
1384
1385         iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1386         reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1387
1388         while (iso_event) {
1389                 i = ffs(iso_event) - 1;
1390                 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1391                 iso_event &= ~(1 << i);
1392         }
1393
1394         if (unlikely(event & OHCI1394_regAccessFail))
1395                 fw_error("Register access failure - "
1396                          "please notify linux1394-devel@lists.sf.net\n");
1397
1398         if (unlikely(event & OHCI1394_postedWriteErr))
1399                 fw_error("PCI posted write error\n");
1400
1401         if (unlikely(event & OHCI1394_cycleTooLong)) {
1402                 if (printk_ratelimit())
1403                         fw_notify("isochronous cycle too long\n");
1404                 reg_write(ohci, OHCI1394_LinkControlSet,
1405                           OHCI1394_LinkControl_cycleMaster);
1406         }
1407
1408         if (event & OHCI1394_cycle64Seconds) {
1409                 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1410                 if ((cycle_time & 0x80000000) == 0)
1411                         ohci->bus_seconds++;
1412         }
1413
1414         return IRQ_HANDLED;
1415 }
1416
1417 static int software_reset(struct fw_ohci *ohci)
1418 {
1419         int i;
1420
1421         reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1422
1423         for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1424                 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1425                      OHCI1394_HCControl_softReset) == 0)
1426                         return 0;
1427                 msleep(1);
1428         }
1429
1430         return -EBUSY;
1431 }
1432
1433 static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
1434 {
1435         struct fw_ohci *ohci = fw_ohci(card);
1436         struct pci_dev *dev = to_pci_dev(card->device);
1437         u32 lps;
1438         int i;
1439
1440         if (software_reset(ohci)) {
1441                 fw_error("Failed to reset ohci card.\n");
1442                 return -EBUSY;
1443         }
1444
1445         /*
1446          * Now enable LPS, which we need in order to start accessing
1447          * most of the registers.  In fact, on some cards (ALI M5251),
1448          * accessing registers in the SClk domain without LPS enabled
1449          * will lock up the machine.  Wait 50msec to make sure we have
1450          * full link enabled.  However, with some cards (well, at least
1451          * a JMicron PCIe card), we have to try again sometimes.
1452          */
1453         reg_write(ohci, OHCI1394_HCControlSet,
1454                   OHCI1394_HCControl_LPS |
1455                   OHCI1394_HCControl_postedWriteEnable);
1456         flush_writes(ohci);
1457
1458         for (lps = 0, i = 0; !lps && i < 3; i++) {
1459                 msleep(50);
1460                 lps = reg_read(ohci, OHCI1394_HCControlSet) &
1461                       OHCI1394_HCControl_LPS;
1462         }
1463
1464         if (!lps) {
1465                 fw_error("Failed to set Link Power Status\n");
1466                 return -EIO;
1467         }
1468
1469         reg_write(ohci, OHCI1394_HCControlClear,
1470                   OHCI1394_HCControl_noByteSwapData);
1471
1472         reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1473         reg_write(ohci, OHCI1394_LinkControlClear,
1474                   OHCI1394_LinkControl_rcvPhyPkt);
1475         reg_write(ohci, OHCI1394_LinkControlSet,
1476                   OHCI1394_LinkControl_rcvSelfID |
1477                   OHCI1394_LinkControl_cycleTimerEnable |
1478                   OHCI1394_LinkControl_cycleMaster);
1479
1480         reg_write(ohci, OHCI1394_ATRetries,
1481                   OHCI1394_MAX_AT_REQ_RETRIES |
1482                   (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1483                   (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1484
1485         ar_context_run(&ohci->ar_request_ctx);
1486         ar_context_run(&ohci->ar_response_ctx);
1487
1488         reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1489         reg_write(ohci, OHCI1394_IntEventClear, ~0);
1490         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1491         reg_write(ohci, OHCI1394_IntMaskSet,
1492                   OHCI1394_selfIDComplete |
1493                   OHCI1394_RQPkt | OHCI1394_RSPkt |
1494                   OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1495                   OHCI1394_isochRx | OHCI1394_isochTx |
1496                   OHCI1394_postedWriteErr | OHCI1394_cycleTooLong |
1497                   OHCI1394_cycle64Seconds | OHCI1394_regAccessFail |
1498                   OHCI1394_masterIntEnable);
1499         if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
1500                 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
1501
1502         /* Activate link_on bit and contender bit in our self ID packets.*/
1503         if (ohci_update_phy_reg(card, 4, 0,
1504                                 PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
1505                 return -EIO;
1506
1507         /*
1508          * When the link is not yet enabled, the atomic config rom
1509          * update mechanism described below in ohci_set_config_rom()
1510          * is not active.  We have to update ConfigRomHeader and
1511          * BusOptions manually, and the write to ConfigROMmap takes
1512          * effect immediately.  We tie this to the enabling of the
1513          * link, so we have a valid config rom before enabling - the
1514          * OHCI requires that ConfigROMhdr and BusOptions have valid
1515          * values before enabling.
1516          *
1517          * However, when the ConfigROMmap is written, some controllers
1518          * always read back quadlets 0 and 2 from the config rom to
1519          * the ConfigRomHeader and BusOptions registers on bus reset.
1520          * They shouldn't do that in this initial case where the link
1521          * isn't enabled.  This means we have to use the same
1522          * workaround here, setting the bus header to 0 and then write
1523          * the right values in the bus reset tasklet.
1524          */
1525
1526         if (config_rom) {
1527                 ohci->next_config_rom =
1528                         dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1529                                            &ohci->next_config_rom_bus,
1530                                            GFP_KERNEL);
1531                 if (ohci->next_config_rom == NULL)
1532                         return -ENOMEM;
1533
1534                 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1535                 fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
1536         } else {
1537                 /*
1538                  * In the suspend case, config_rom is NULL, which
1539                  * means that we just reuse the old config rom.
1540                  */
1541                 ohci->next_config_rom = ohci->config_rom;
1542                 ohci->next_config_rom_bus = ohci->config_rom_bus;
1543         }
1544
1545         ohci->next_header = be32_to_cpu(ohci->next_config_rom[0]);
1546         ohci->next_config_rom[0] = 0;
1547         reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1548         reg_write(ohci, OHCI1394_BusOptions,
1549                   be32_to_cpu(ohci->next_config_rom[2]));
1550         reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1551
1552         reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1553
1554         if (request_irq(dev->irq, irq_handler,
1555                         IRQF_SHARED, ohci_driver_name, ohci)) {
1556                 fw_error("Failed to allocate shared interrupt %d.\n",
1557                          dev->irq);
1558                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1559                                   ohci->config_rom, ohci->config_rom_bus);
1560                 return -EIO;
1561         }
1562
1563         reg_write(ohci, OHCI1394_HCControlSet,
1564                   OHCI1394_HCControl_linkEnable |
1565                   OHCI1394_HCControl_BIBimageValid);
1566         flush_writes(ohci);
1567
1568         /*
1569          * We are ready to go, initiate bus reset to finish the
1570          * initialization.
1571          */
1572
1573         fw_core_initiate_bus_reset(&ohci->card, 1);
1574
1575         return 0;
1576 }
1577
1578 static int
1579 ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
1580 {
1581         struct fw_ohci *ohci;
1582         unsigned long flags;
1583         int retval = -EBUSY;
1584         __be32 *next_config_rom;
1585         dma_addr_t uninitialized_var(next_config_rom_bus);
1586
1587         ohci = fw_ohci(card);
1588
1589         /*
1590          * When the OHCI controller is enabled, the config rom update
1591          * mechanism is a bit tricky, but easy enough to use.  See
1592          * section 5.5.6 in the OHCI specification.
1593          *
1594          * The OHCI controller caches the new config rom address in a
1595          * shadow register (ConfigROMmapNext) and needs a bus reset
1596          * for the changes to take place.  When the bus reset is
1597          * detected, the controller loads the new values for the
1598          * ConfigRomHeader and BusOptions registers from the specified
1599          * config rom and loads ConfigROMmap from the ConfigROMmapNext
1600          * shadow register. All automatically and atomically.
1601          *
1602          * Now, there's a twist to this story.  The automatic load of
1603          * ConfigRomHeader and BusOptions doesn't honor the
1604          * noByteSwapData bit, so with a be32 config rom, the
1605          * controller will load be32 values in to these registers
1606          * during the atomic update, even on litte endian
1607          * architectures.  The workaround we use is to put a 0 in the
1608          * header quadlet; 0 is endian agnostic and means that the
1609          * config rom isn't ready yet.  In the bus reset tasklet we
1610          * then set up the real values for the two registers.
1611          *
1612          * We use ohci->lock to avoid racing with the code that sets
1613          * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1614          */
1615
1616         next_config_rom =
1617                 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1618                                    &next_config_rom_bus, GFP_KERNEL);
1619         if (next_config_rom == NULL)
1620                 return -ENOMEM;
1621
1622         spin_lock_irqsave(&ohci->lock, flags);
1623
1624         if (ohci->next_config_rom == NULL) {
1625                 ohci->next_config_rom = next_config_rom;
1626                 ohci->next_config_rom_bus = next_config_rom_bus;
1627
1628                 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1629                 fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
1630                                   length * 4);
1631
1632                 ohci->next_header = config_rom[0];
1633                 ohci->next_config_rom[0] = 0;
1634
1635                 reg_write(ohci, OHCI1394_ConfigROMmap,
1636                           ohci->next_config_rom_bus);
1637                 retval = 0;
1638         }
1639
1640         spin_unlock_irqrestore(&ohci->lock, flags);
1641
1642         /*
1643          * Now initiate a bus reset to have the changes take
1644          * effect. We clean up the old config rom memory and DMA
1645          * mappings in the bus reset tasklet, since the OHCI
1646          * controller could need to access it before the bus reset
1647          * takes effect.
1648          */
1649         if (retval == 0)
1650                 fw_core_initiate_bus_reset(&ohci->card, 1);
1651         else
1652                 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1653                                   next_config_rom, next_config_rom_bus);
1654
1655         return retval;
1656 }
1657
1658 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1659 {
1660         struct fw_ohci *ohci = fw_ohci(card);
1661
1662         at_context_transmit(&ohci->at_request_ctx, packet);
1663 }
1664
1665 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1666 {
1667         struct fw_ohci *ohci = fw_ohci(card);
1668
1669         at_context_transmit(&ohci->at_response_ctx, packet);
1670 }
1671
1672 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1673 {
1674         struct fw_ohci *ohci = fw_ohci(card);
1675         struct context *ctx = &ohci->at_request_ctx;
1676         struct driver_data *driver_data = packet->driver_data;
1677         int retval = -ENOENT;
1678
1679         tasklet_disable(&ctx->tasklet);
1680
1681         if (packet->ack != 0)
1682                 goto out;
1683
1684         log_ar_at_event('T', packet->speed, packet->header, 0x20);
1685         driver_data->packet = NULL;
1686         packet->ack = RCODE_CANCELLED;
1687         packet->callback(packet, &ohci->card, packet->ack);
1688         retval = 0;
1689
1690  out:
1691         tasklet_enable(&ctx->tasklet);
1692
1693         return retval;
1694 }
1695
1696 static int
1697 ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
1698 {
1699 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1700         return 0;
1701 #else
1702         struct fw_ohci *ohci = fw_ohci(card);
1703         unsigned long flags;
1704         int n, retval = 0;
1705
1706         /*
1707          * FIXME:  Make sure this bitmask is cleared when we clear the busReset
1708          * interrupt bit.  Clear physReqResourceAllBuses on bus reset.
1709          */
1710
1711         spin_lock_irqsave(&ohci->lock, flags);
1712
1713         if (ohci->generation != generation) {
1714                 retval = -ESTALE;
1715                 goto out;
1716         }
1717
1718         /*
1719          * Note, if the node ID contains a non-local bus ID, physical DMA is
1720          * enabled for _all_ nodes on remote buses.
1721          */
1722
1723         n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1724         if (n < 32)
1725                 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1726         else
1727                 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1728
1729         flush_writes(ohci);
1730  out:
1731         spin_unlock_irqrestore(&ohci->lock, flags);
1732         return retval;
1733 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
1734 }
1735
1736 static u64
1737 ohci_get_bus_time(struct fw_card *card)
1738 {
1739         struct fw_ohci *ohci = fw_ohci(card);
1740         u32 cycle_time;
1741         u64 bus_time;
1742
1743         cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1744         bus_time = ((u64) ohci->bus_seconds << 32) | cycle_time;
1745
1746         return bus_time;
1747 }
1748
1749 static int handle_ir_dualbuffer_packet(struct context *context,
1750                                        struct descriptor *d,
1751                                        struct descriptor *last)
1752 {
1753         struct iso_context *ctx =
1754                 container_of(context, struct iso_context, context);
1755         struct db_descriptor *db = (struct db_descriptor *) d;
1756         __le32 *ir_header;
1757         size_t header_length;
1758         void *p, *end;
1759         int i;
1760
1761         if (db->first_res_count != 0 && db->second_res_count != 0) {
1762                 if (ctx->excess_bytes <= le16_to_cpu(db->second_req_count)) {
1763                         /* This descriptor isn't done yet, stop iteration. */
1764                         return 0;
1765                 }
1766                 ctx->excess_bytes -= le16_to_cpu(db->second_req_count);
1767         }
1768
1769         header_length = le16_to_cpu(db->first_req_count) -
1770                 le16_to_cpu(db->first_res_count);
1771
1772         i = ctx->header_length;
1773         p = db + 1;
1774         end = p + header_length;
1775         while (p < end && i + ctx->base.header_size <= PAGE_SIZE) {
1776                 /*
1777                  * The iso header is byteswapped to little endian by
1778                  * the controller, but the remaining header quadlets
1779                  * are big endian.  We want to present all the headers
1780                  * as big endian, so we have to swap the first
1781                  * quadlet.
1782                  */
1783                 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1784                 memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1785                 i += ctx->base.header_size;
1786                 ctx->excess_bytes +=
1787                         (le32_to_cpu(*(__le32 *)(p + 4)) >> 16) & 0xffff;
1788                 p += ctx->base.header_size + 4;
1789         }
1790         ctx->header_length = i;
1791
1792         ctx->excess_bytes -= le16_to_cpu(db->second_req_count) -
1793                 le16_to_cpu(db->second_res_count);
1794
1795         if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
1796                 ir_header = (__le32 *) (db + 1);
1797                 ctx->base.callback(&ctx->base,
1798                                    le32_to_cpu(ir_header[0]) & 0xffff,
1799                                    ctx->header_length, ctx->header,
1800                                    ctx->base.callback_data);
1801                 ctx->header_length = 0;
1802         }
1803
1804         return 1;
1805 }
1806
1807 static int handle_ir_packet_per_buffer(struct context *context,
1808                                        struct descriptor *d,
1809                                        struct descriptor *last)
1810 {
1811         struct iso_context *ctx =
1812                 container_of(context, struct iso_context, context);
1813         struct descriptor *pd;
1814         __le32 *ir_header;
1815         void *p;
1816         int i;
1817
1818         for (pd = d; pd <= last; pd++) {
1819                 if (pd->transfer_status)
1820                         break;
1821         }
1822         if (pd > last)
1823                 /* Descriptor(s) not done yet, stop iteration */
1824                 return 0;
1825
1826         i   = ctx->header_length;
1827         p   = last + 1;
1828
1829         if (ctx->base.header_size > 0 &&
1830                         i + ctx->base.header_size <= PAGE_SIZE) {
1831                 /*
1832                  * The iso header is byteswapped to little endian by
1833                  * the controller, but the remaining header quadlets
1834                  * are big endian.  We want to present all the headers
1835                  * as big endian, so we have to swap the first quadlet.
1836                  */
1837                 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1838                 memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1839                 ctx->header_length += ctx->base.header_size;
1840         }
1841
1842         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1843                 ir_header = (__le32 *) p;
1844                 ctx->base.callback(&ctx->base,
1845                                    le32_to_cpu(ir_header[0]) & 0xffff,
1846                                    ctx->header_length, ctx->header,
1847                                    ctx->base.callback_data);
1848                 ctx->header_length = 0;
1849         }
1850
1851         return 1;
1852 }
1853
1854 static int handle_it_packet(struct context *context,
1855                             struct descriptor *d,
1856                             struct descriptor *last)
1857 {
1858         struct iso_context *ctx =
1859                 container_of(context, struct iso_context, context);
1860
1861         if (last->transfer_status == 0)
1862                 /* This descriptor isn't done yet, stop iteration. */
1863                 return 0;
1864
1865         if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
1866                 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1867                                    0, NULL, ctx->base.callback_data);
1868
1869         return 1;
1870 }
1871
1872 static struct fw_iso_context *
1873 ohci_allocate_iso_context(struct fw_card *card, int type, size_t header_size)
1874 {
1875         struct fw_ohci *ohci = fw_ohci(card);
1876         struct iso_context *ctx, *list;
1877         descriptor_callback_t callback;
1878         u32 *mask, regs;
1879         unsigned long flags;
1880         int index, retval = -ENOMEM;
1881
1882         if (type == FW_ISO_CONTEXT_TRANSMIT) {
1883                 mask = &ohci->it_context_mask;
1884                 list = ohci->it_context_list;
1885                 callback = handle_it_packet;
1886         } else {
1887                 mask = &ohci->ir_context_mask;
1888                 list = ohci->ir_context_list;
1889                 if (ohci->use_dualbuffer)
1890                         callback = handle_ir_dualbuffer_packet;
1891                 else
1892                         callback = handle_ir_packet_per_buffer;
1893         }
1894
1895         spin_lock_irqsave(&ohci->lock, flags);
1896         index = ffs(*mask) - 1;
1897         if (index >= 0)
1898                 *mask &= ~(1 << index);
1899         spin_unlock_irqrestore(&ohci->lock, flags);
1900
1901         if (index < 0)
1902                 return ERR_PTR(-EBUSY);
1903
1904         if (type == FW_ISO_CONTEXT_TRANSMIT)
1905                 regs = OHCI1394_IsoXmitContextBase(index);
1906         else
1907                 regs = OHCI1394_IsoRcvContextBase(index);
1908
1909         ctx = &list[index];
1910         memset(ctx, 0, sizeof(*ctx));
1911         ctx->header_length = 0;
1912         ctx->header = (void *) __get_free_page(GFP_KERNEL);
1913         if (ctx->header == NULL)
1914                 goto out;
1915
1916         retval = context_init(&ctx->context, ohci, regs, callback);
1917         if (retval < 0)
1918                 goto out_with_header;
1919
1920         return &ctx->base;
1921
1922  out_with_header:
1923         free_page((unsigned long)ctx->header);
1924  out:
1925         spin_lock_irqsave(&ohci->lock, flags);
1926         *mask |= 1 << index;
1927         spin_unlock_irqrestore(&ohci->lock, flags);
1928
1929         return ERR_PTR(retval);
1930 }
1931
1932 static int ohci_start_iso(struct fw_iso_context *base,
1933                           s32 cycle, u32 sync, u32 tags)
1934 {
1935         struct iso_context *ctx = container_of(base, struct iso_context, base);
1936         struct fw_ohci *ohci = ctx->context.ohci;
1937         u32 control, match;
1938         int index;
1939
1940         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1941                 index = ctx - ohci->it_context_list;
1942                 match = 0;
1943                 if (cycle >= 0)
1944                         match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
1945                                 (cycle & 0x7fff) << 16;
1946
1947                 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
1948                 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1949                 context_run(&ctx->context, match);
1950         } else {
1951                 index = ctx - ohci->ir_context_list;
1952                 control = IR_CONTEXT_ISOCH_HEADER;
1953                 if (ohci->use_dualbuffer)
1954                         control |= IR_CONTEXT_DUAL_BUFFER_MODE;
1955                 match = (tags << 28) | (sync << 8) | ctx->base.channel;
1956                 if (cycle >= 0) {
1957                         match |= (cycle & 0x07fff) << 12;
1958                         control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
1959                 }
1960
1961                 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
1962                 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
1963                 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
1964                 context_run(&ctx->context, control);
1965         }
1966
1967         return 0;
1968 }
1969
1970 static int ohci_stop_iso(struct fw_iso_context *base)
1971 {
1972         struct fw_ohci *ohci = fw_ohci(base->card);
1973         struct iso_context *ctx = container_of(base, struct iso_context, base);
1974         int index;
1975
1976         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1977                 index = ctx - ohci->it_context_list;
1978                 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
1979         } else {
1980                 index = ctx - ohci->ir_context_list;
1981                 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
1982         }
1983         flush_writes(ohci);
1984         context_stop(&ctx->context);
1985
1986         return 0;
1987 }
1988
1989 static void ohci_free_iso_context(struct fw_iso_context *base)
1990 {
1991         struct fw_ohci *ohci = fw_ohci(base->card);
1992         struct iso_context *ctx = container_of(base, struct iso_context, base);
1993         unsigned long flags;
1994         int index;
1995
1996         ohci_stop_iso(base);
1997         context_release(&ctx->context);
1998         free_page((unsigned long)ctx->header);
1999
2000         spin_lock_irqsave(&ohci->lock, flags);
2001
2002         if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2003                 index = ctx - ohci->it_context_list;
2004                 ohci->it_context_mask |= 1 << index;
2005         } else {
2006                 index = ctx - ohci->ir_context_list;
2007                 ohci->ir_context_mask |= 1 << index;
2008         }
2009
2010         spin_unlock_irqrestore(&ohci->lock, flags);
2011 }
2012
2013 static int
2014 ohci_queue_iso_transmit(struct fw_iso_context *base,
2015                         struct fw_iso_packet *packet,
2016                         struct fw_iso_buffer *buffer,
2017                         unsigned long payload)
2018 {
2019         struct iso_context *ctx = container_of(base, struct iso_context, base);
2020         struct descriptor *d, *last, *pd;
2021         struct fw_iso_packet *p;
2022         __le32 *header;
2023         dma_addr_t d_bus, page_bus;
2024         u32 z, header_z, payload_z, irq;
2025         u32 payload_index, payload_end_index, next_page_index;
2026         int page, end_page, i, length, offset;
2027
2028         /*
2029          * FIXME: Cycle lost behavior should be configurable: lose
2030          * packet, retransmit or terminate..
2031          */
2032
2033         p = packet;
2034         payload_index = payload;
2035
2036         if (p->skip)
2037                 z = 1;
2038         else
2039                 z = 2;
2040         if (p->header_length > 0)
2041                 z++;
2042
2043         /* Determine the first page the payload isn't contained in. */
2044         end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2045         if (p->payload_length > 0)
2046                 payload_z = end_page - (payload_index >> PAGE_SHIFT);
2047         else
2048                 payload_z = 0;
2049
2050         z += payload_z;
2051
2052         /* Get header size in number of descriptors. */
2053         header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2054
2055         d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2056         if (d == NULL)
2057                 return -ENOMEM;
2058
2059         if (!p->skip) {
2060                 d[0].control   = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2061                 d[0].req_count = cpu_to_le16(8);
2062
2063                 header = (__le32 *) &d[1];
2064                 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2065                                         IT_HEADER_TAG(p->tag) |
2066                                         IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2067                                         IT_HEADER_CHANNEL(ctx->base.channel) |
2068                                         IT_HEADER_SPEED(ctx->base.speed));
2069                 header[1] =
2070                         cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2071                                                           p->payload_length));
2072         }
2073
2074         if (p->header_length > 0) {
2075                 d[2].req_count    = cpu_to_le16(p->header_length);
2076                 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2077                 memcpy(&d[z], p->header, p->header_length);
2078         }
2079
2080         pd = d + z - payload_z;
2081         payload_end_index = payload_index + p->payload_length;
2082         for (i = 0; i < payload_z; i++) {
2083                 page               = payload_index >> PAGE_SHIFT;
2084                 offset             = payload_index & ~PAGE_MASK;
2085                 next_page_index    = (page + 1) << PAGE_SHIFT;
2086                 length             =
2087                         min(next_page_index, payload_end_index) - payload_index;
2088                 pd[i].req_count    = cpu_to_le16(length);
2089
2090                 page_bus = page_private(buffer->pages[page]);
2091                 pd[i].data_address = cpu_to_le32(page_bus + offset);
2092
2093                 payload_index += length;
2094         }
2095
2096         if (p->interrupt)
2097                 irq = DESCRIPTOR_IRQ_ALWAYS;
2098         else
2099                 irq = DESCRIPTOR_NO_IRQ;
2100
2101         last = z == 2 ? d : d + z - 1;
2102         last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2103                                      DESCRIPTOR_STATUS |
2104                                      DESCRIPTOR_BRANCH_ALWAYS |
2105                                      irq);
2106
2107         context_append(&ctx->context, d, z, header_z);
2108
2109         return 0;
2110 }
2111
2112 static int
2113 ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
2114                                   struct fw_iso_packet *packet,
2115                                   struct fw_iso_buffer *buffer,
2116                                   unsigned long payload)
2117 {
2118         struct iso_context *ctx = container_of(base, struct iso_context, base);
2119         struct db_descriptor *db = NULL;
2120         struct descriptor *d;
2121         struct fw_iso_packet *p;
2122         dma_addr_t d_bus, page_bus;
2123         u32 z, header_z, length, rest;
2124         int page, offset, packet_count, header_size;
2125
2126         /*
2127          * FIXME: Cycle lost behavior should be configurable: lose
2128          * packet, retransmit or terminate..
2129          */
2130
2131         p = packet;
2132         z = 2;
2133
2134         /*
2135          * The OHCI controller puts the status word in the header
2136          * buffer too, so we need 4 extra bytes per packet.
2137          */
2138         packet_count = p->header_length / ctx->base.header_size;
2139         header_size = packet_count * (ctx->base.header_size + 4);
2140
2141         /* Get header size in number of descriptors. */
2142         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2143         page     = payload >> PAGE_SHIFT;
2144         offset   = payload & ~PAGE_MASK;
2145         rest     = p->payload_length;
2146
2147         /* FIXME: make packet-per-buffer/dual-buffer a context option */
2148         while (rest > 0) {
2149                 d = context_get_descriptors(&ctx->context,
2150                                             z + header_z, &d_bus);
2151                 if (d == NULL)
2152                         return -ENOMEM;
2153
2154                 db = (struct db_descriptor *) d;
2155                 db->control = cpu_to_le16(DESCRIPTOR_STATUS |
2156                                           DESCRIPTOR_BRANCH_ALWAYS);
2157                 db->first_size = cpu_to_le16(ctx->base.header_size + 4);
2158                 if (p->skip && rest == p->payload_length) {
2159                         db->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2160                         db->first_req_count = db->first_size;
2161                 } else {
2162                         db->first_req_count = cpu_to_le16(header_size);
2163                 }
2164                 db->first_res_count = db->first_req_count;
2165                 db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
2166
2167                 if (p->skip && rest == p->payload_length)
2168                         length = 4;
2169                 else if (offset + rest < PAGE_SIZE)
2170                         length = rest;
2171                 else
2172                         length = PAGE_SIZE - offset;
2173
2174                 db->second_req_count = cpu_to_le16(length);
2175                 db->second_res_count = db->second_req_count;
2176                 page_bus = page_private(buffer->pages[page]);
2177                 db->second_buffer = cpu_to_le32(page_bus + offset);
2178
2179                 if (p->interrupt && length == rest)
2180                         db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2181
2182                 context_append(&ctx->context, d, z, header_z);
2183                 offset = (offset + length) & ~PAGE_MASK;
2184                 rest -= length;
2185                 if (offset == 0)
2186                         page++;
2187         }
2188
2189         return 0;
2190 }
2191
2192 static int
2193 ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
2194                                          struct fw_iso_packet *packet,
2195                                          struct fw_iso_buffer *buffer,
2196                                          unsigned long payload)
2197 {
2198         struct iso_context *ctx = container_of(base, struct iso_context, base);
2199         struct descriptor *d = NULL, *pd = NULL;
2200         struct fw_iso_packet *p = packet;
2201         dma_addr_t d_bus, page_bus;
2202         u32 z, header_z, rest;
2203         int i, j, length;
2204         int page, offset, packet_count, header_size, payload_per_buffer;
2205
2206         /*
2207          * The OHCI controller puts the status word in the
2208          * buffer too, so we need 4 extra bytes per packet.
2209          */
2210         packet_count = p->header_length / ctx->base.header_size;
2211         header_size  = ctx->base.header_size + 4;
2212
2213         /* Get header size in number of descriptors. */
2214         header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2215         page     = payload >> PAGE_SHIFT;
2216         offset   = payload & ~PAGE_MASK;
2217         payload_per_buffer = p->payload_length / packet_count;
2218
2219         for (i = 0; i < packet_count; i++) {
2220                 /* d points to the header descriptor */
2221                 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2222                 d = context_get_descriptors(&ctx->context,
2223                                 z + header_z, &d_bus);
2224                 if (d == NULL)
2225                         return -ENOMEM;
2226
2227                 d->control      = cpu_to_le16(DESCRIPTOR_STATUS |
2228                                               DESCRIPTOR_INPUT_MORE);
2229                 if (p->skip && i == 0)
2230                         d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2231                 d->req_count    = cpu_to_le16(header_size);
2232                 d->res_count    = d->req_count;
2233                 d->transfer_status = 0;
2234                 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2235
2236                 rest = payload_per_buffer;
2237                 for (j = 1; j < z; j++) {
2238                         pd = d + j;
2239                         pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2240                                                   DESCRIPTOR_INPUT_MORE);
2241
2242                         if (offset + rest < PAGE_SIZE)
2243                                 length = rest;
2244                         else
2245                                 length = PAGE_SIZE - offset;
2246                         pd->req_count = cpu_to_le16(length);
2247                         pd->res_count = pd->req_count;
2248                         pd->transfer_status = 0;
2249
2250                         page_bus = page_private(buffer->pages[page]);
2251                         pd->data_address = cpu_to_le32(page_bus + offset);
2252
2253                         offset = (offset + length) & ~PAGE_MASK;
2254                         rest -= length;
2255                         if (offset == 0)
2256                                 page++;
2257                 }
2258                 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2259                                           DESCRIPTOR_INPUT_LAST |
2260                                           DESCRIPTOR_BRANCH_ALWAYS);
2261                 if (p->interrupt && i == packet_count - 1)
2262                         pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2263
2264                 context_append(&ctx->context, d, z, header_z);
2265         }
2266
2267         return 0;
2268 }
2269
2270 static int
2271 ohci_queue_iso(struct fw_iso_context *base,
2272                struct fw_iso_packet *packet,
2273                struct fw_iso_buffer *buffer,
2274                unsigned long payload)
2275 {
2276         struct iso_context *ctx = container_of(base, struct iso_context, base);
2277         unsigned long flags;
2278         int retval;
2279
2280         spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2281         if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2282                 retval = ohci_queue_iso_transmit(base, packet, buffer, payload);
2283         else if (ctx->context.ohci->use_dualbuffer)
2284                 retval = ohci_queue_iso_receive_dualbuffer(base, packet,
2285                                                          buffer, payload);
2286         else
2287                 retval = ohci_queue_iso_receive_packet_per_buffer(base, packet,
2288                                                                 buffer,
2289                                                                 payload);
2290         spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2291
2292         return retval;
2293 }
2294
2295 static const struct fw_card_driver ohci_driver = {
2296         .enable                 = ohci_enable,
2297         .update_phy_reg         = ohci_update_phy_reg,
2298         .set_config_rom         = ohci_set_config_rom,
2299         .send_request           = ohci_send_request,
2300         .send_response          = ohci_send_response,
2301         .cancel_packet          = ohci_cancel_packet,
2302         .enable_phys_dma        = ohci_enable_phys_dma,
2303         .get_bus_time           = ohci_get_bus_time,
2304
2305         .allocate_iso_context   = ohci_allocate_iso_context,
2306         .free_iso_context       = ohci_free_iso_context,
2307         .queue_iso              = ohci_queue_iso,
2308         .start_iso              = ohci_start_iso,
2309         .stop_iso               = ohci_stop_iso,
2310 };
2311
2312 #ifdef CONFIG_PPC_PMAC
2313 static void ohci_pmac_on(struct pci_dev *dev)
2314 {
2315         if (machine_is(powermac)) {
2316                 struct device_node *ofn = pci_device_to_OF_node(dev);
2317
2318                 if (ofn) {
2319                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
2320                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2321                 }
2322         }
2323 }
2324
2325 static void ohci_pmac_off(struct pci_dev *dev)
2326 {
2327         if (machine_is(powermac)) {
2328                 struct device_node *ofn = pci_device_to_OF_node(dev);
2329
2330                 if (ofn) {
2331                         pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2332                         pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
2333                 }
2334         }
2335 }
2336 #else
2337 #define ohci_pmac_on(dev)
2338 #define ohci_pmac_off(dev)
2339 #endif /* CONFIG_PPC_PMAC */
2340
2341 static int __devinit
2342 pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
2343 {
2344         struct fw_ohci *ohci;
2345         u32 bus_options, max_receive, link_speed, version;
2346         u64 guid;
2347         int err;
2348         size_t size;
2349
2350         ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2351         if (ohci == NULL) {
2352                 fw_error("Could not malloc fw_ohci data.\n");
2353                 return -ENOMEM;
2354         }
2355
2356         fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2357
2358         ohci_pmac_on(dev);
2359
2360         err = pci_enable_device(dev);
2361         if (err) {
2362                 fw_error("Failed to enable OHCI hardware.\n");
2363                 goto fail_free;
2364         }
2365
2366         pci_set_master(dev);
2367         pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2368         pci_set_drvdata(dev, ohci);
2369
2370         spin_lock_init(&ohci->lock);
2371
2372         tasklet_init(&ohci->bus_reset_tasklet,
2373                      bus_reset_tasklet, (unsigned long)ohci);
2374
2375         err = pci_request_region(dev, 0, ohci_driver_name);
2376         if (err) {
2377                 fw_error("MMIO resource unavailable\n");
2378                 goto fail_disable;
2379         }
2380
2381         ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2382         if (ohci->registers == NULL) {
2383                 fw_error("Failed to remap registers\n");
2384                 err = -ENXIO;
2385                 goto fail_iomem;
2386         }
2387
2388         version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2389         ohci->use_dualbuffer = version >= OHCI_VERSION_1_1;
2390
2391 /* x86-32 currently doesn't use highmem for dma_alloc_coherent */
2392 #if !defined(CONFIG_X86_32)
2393         /* dual-buffer mode is broken with descriptor addresses above 2G */
2394         if (dev->vendor == PCI_VENDOR_ID_TI &&
2395             dev->device == PCI_DEVICE_ID_TI_TSB43AB22)
2396                 ohci->use_dualbuffer = false;
2397 #endif
2398
2399 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
2400         ohci->old_uninorth = dev->vendor == PCI_VENDOR_ID_APPLE &&
2401                              dev->device == PCI_DEVICE_ID_APPLE_UNI_N_FW;
2402 #endif
2403         ohci->bus_reset_packet_quirk = dev->vendor == PCI_VENDOR_ID_TI;
2404
2405         ar_context_init(&ohci->ar_request_ctx, ohci,
2406                         OHCI1394_AsReqRcvContextControlSet);
2407
2408         ar_context_init(&ohci->ar_response_ctx, ohci,
2409                         OHCI1394_AsRspRcvContextControlSet);
2410
2411         context_init(&ohci->at_request_ctx, ohci,
2412                      OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2413
2414         context_init(&ohci->at_response_ctx, ohci,
2415                      OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2416
2417         reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2418         ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2419         reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2420         size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
2421         ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2422
2423         reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2424         ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2425         reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2426         size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
2427         ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2428
2429         if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2430                 fw_error("Out of memory for it/ir contexts.\n");
2431                 err = -ENOMEM;
2432                 goto fail_registers;
2433         }
2434
2435         /* self-id dma buffer allocation */
2436         ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2437                                                SELF_ID_BUF_SIZE,
2438                                                &ohci->self_id_bus,
2439                                                GFP_KERNEL);
2440         if (ohci->self_id_cpu == NULL) {
2441                 fw_error("Out of memory for self ID buffer.\n");
2442                 err = -ENOMEM;
2443                 goto fail_registers;
2444         }
2445
2446         bus_options = reg_read(ohci, OHCI1394_BusOptions);
2447         max_receive = (bus_options >> 12) & 0xf;
2448         link_speed = bus_options & 0x7;
2449         guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2450                 reg_read(ohci, OHCI1394_GUIDLo);
2451
2452         err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2453         if (err < 0)
2454                 goto fail_self_id;
2455
2456         fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
2457                   dev->dev.bus_id, version >> 16, version & 0xff);
2458         return 0;
2459
2460  fail_self_id:
2461         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2462                           ohci->self_id_cpu, ohci->self_id_bus);
2463  fail_registers:
2464         kfree(ohci->it_context_list);
2465         kfree(ohci->ir_context_list);
2466         pci_iounmap(dev, ohci->registers);
2467  fail_iomem:
2468         pci_release_region(dev, 0);
2469  fail_disable:
2470         pci_disable_device(dev);
2471  fail_free:
2472         kfree(&ohci->card);
2473         ohci_pmac_off(dev);
2474
2475         return err;
2476 }
2477
2478 static void pci_remove(struct pci_dev *dev)
2479 {
2480         struct fw_ohci *ohci;
2481
2482         ohci = pci_get_drvdata(dev);
2483         reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2484         flush_writes(ohci);
2485         fw_core_remove_card(&ohci->card);
2486
2487         /*
2488          * FIXME: Fail all pending packets here, now that the upper
2489          * layers can't queue any more.
2490          */
2491
2492         software_reset(ohci);
2493         free_irq(dev->irq, ohci);
2494         dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2495                           ohci->self_id_cpu, ohci->self_id_bus);
2496         kfree(ohci->it_context_list);
2497         kfree(ohci->ir_context_list);
2498         pci_iounmap(dev, ohci->registers);
2499         pci_release_region(dev, 0);
2500         pci_disable_device(dev);
2501         kfree(&ohci->card);
2502         ohci_pmac_off(dev);
2503
2504         fw_notify("Removed fw-ohci device.\n");
2505 }
2506
2507 #ifdef CONFIG_PM
2508 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2509 {
2510         struct fw_ohci *ohci = pci_get_drvdata(dev);
2511         int err;
2512
2513         software_reset(ohci);
2514         free_irq(dev->irq, ohci);
2515         err = pci_save_state(dev);
2516         if (err) {
2517                 fw_error("pci_save_state failed\n");
2518                 return err;
2519         }
2520         err = pci_set_power_state(dev, pci_choose_state(dev, state));
2521         if (err)
2522                 fw_error("pci_set_power_state failed with %d\n", err);
2523         ohci_pmac_off(dev);
2524
2525         return 0;
2526 }
2527
2528 static int pci_resume(struct pci_dev *dev)
2529 {
2530         struct fw_ohci *ohci = pci_get_drvdata(dev);
2531         int err;
2532
2533         ohci_pmac_on(dev);
2534         pci_set_power_state(dev, PCI_D0);
2535         pci_restore_state(dev);
2536         err = pci_enable_device(dev);
2537         if (err) {
2538                 fw_error("pci_enable_device failed\n");
2539                 return err;
2540         }
2541
2542         return ohci_enable(&ohci->card, NULL, 0);
2543 }
2544 #endif
2545
2546 static struct pci_device_id pci_table[] = {
2547         { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
2548         { }
2549 };
2550
2551 MODULE_DEVICE_TABLE(pci, pci_table);
2552
2553 static struct pci_driver fw_ohci_pci_driver = {
2554         .name           = ohci_driver_name,
2555         .id_table       = pci_table,
2556         .probe          = pci_probe,
2557         .remove         = pci_remove,
2558 #ifdef CONFIG_PM
2559         .resume         = pci_resume,
2560         .suspend        = pci_suspend,
2561 #endif
2562 };
2563
2564 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2565 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2566 MODULE_LICENSE("GPL");
2567
2568 /* Provide a module alias so root-on-sbp2 initrds don't break. */
2569 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2570 MODULE_ALIAS("ohci1394");
2571 #endif
2572
2573 static int __init fw_ohci_init(void)
2574 {
2575         return pci_register_driver(&fw_ohci_pci_driver);
2576 }
2577
2578 static void __exit fw_ohci_cleanup(void)
2579 {
2580         pci_unregister_driver(&fw_ohci_pci_driver);
2581 }
2582
2583 module_init(fw_ohci_init);
2584 module_exit(fw_ohci_cleanup);