b8cce85a95583cac93fe26e855751b0d3d7f8262
[pandora-kernel.git] / drivers / dma / ste_dma40.c
1 /*
2  * Copyright (C) Ericsson AB 2007-2008
3  * Copyright (C) ST-Ericsson SA 2008-2010
4  * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
5  * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
6  * License terms: GNU General Public License (GPL) version 2
7  */
8
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/dmaengine.h>
12 #include <linux/platform_device.h>
13 #include <linux/clk.h>
14 #include <linux/delay.h>
15 #include <linux/err.h>
16
17 #include <plat/ste_dma40.h>
18
19 #include "ste_dma40_ll.h"
20
21 #define D40_NAME "dma40"
22
23 #define D40_PHY_CHAN -1
24
25 /* For masking out/in 2 bit channel positions */
26 #define D40_CHAN_POS(chan)  (2 * (chan / 2))
27 #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
28
29 /* Maximum iterations taken before giving up suspending a channel */
30 #define D40_SUSPEND_MAX_IT 500
31
32 /* Hardware requirement on LCLA alignment */
33 #define LCLA_ALIGNMENT 0x40000
34
35 /* Max number of links per event group */
36 #define D40_LCLA_LINK_PER_EVENT_GRP 128
37 #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
38
39 /* Attempts before giving up to trying to get pages that are aligned */
40 #define MAX_LCLA_ALLOC_ATTEMPTS 256
41
42 /* Bit markings for allocation map */
43 #define D40_ALLOC_FREE          (1 << 31)
44 #define D40_ALLOC_PHY           (1 << 30)
45 #define D40_ALLOC_LOG_FREE      0
46
47 /* Hardware designer of the block */
48 #define D40_HW_DESIGNER 0x8
49
50 /**
51  * enum 40_command - The different commands and/or statuses.
52  *
53  * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
54  * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
55  * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
56  * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
57  */
58 enum d40_command {
59         D40_DMA_STOP            = 0,
60         D40_DMA_RUN             = 1,
61         D40_DMA_SUSPEND_REQ     = 2,
62         D40_DMA_SUSPENDED       = 3
63 };
64
65 /**
66  * struct d40_lli_pool - Structure for keeping LLIs in memory
67  *
68  * @base: Pointer to memory area when the pre_alloc_lli's are not large
69  * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
70  * pre_alloc_lli is used.
71  * @dma_addr: DMA address, if mapped
72  * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
73  * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
74  * one buffer to one buffer.
75  */
76 struct d40_lli_pool {
77         void    *base;
78         int      size;
79         dma_addr_t      dma_addr;
80         /* Space for dst and src, plus an extra for padding */
81         u8       pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
82 };
83
84 /**
85  * struct d40_desc - A descriptor is one DMA job.
86  *
87  * @lli_phy: LLI settings for physical channel. Both src and dst=
88  * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
89  * lli_len equals one.
90  * @lli_log: Same as above but for logical channels.
91  * @lli_pool: The pool with two entries pre-allocated.
92  * @lli_len: Number of llis of current descriptor.
93  * @lli_current: Number of transfered llis.
94  * @lcla_alloc: Number of LCLA entries allocated.
95  * @txd: DMA engine struct. Used for among other things for communication
96  * during a transfer.
97  * @node: List entry.
98  * @is_in_client_list: true if the client owns this descriptor.
99  * the previous one.
100  *
101  * This descriptor is used for both logical and physical transfers.
102  */
103 struct d40_desc {
104         /* LLI physical */
105         struct d40_phy_lli_bidir         lli_phy;
106         /* LLI logical */
107         struct d40_log_lli_bidir         lli_log;
108
109         struct d40_lli_pool              lli_pool;
110         int                              lli_len;
111         int                              lli_current;
112         int                              lcla_alloc;
113
114         struct dma_async_tx_descriptor   txd;
115         struct list_head                 node;
116
117         bool                             is_in_client_list;
118 };
119
120 /**
121  * struct d40_lcla_pool - LCLA pool settings and data.
122  *
123  * @base: The virtual address of LCLA. 18 bit aligned.
124  * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
125  * This pointer is only there for clean-up on error.
126  * @pages: The number of pages needed for all physical channels.
127  * Only used later for clean-up on error
128  * @lock: Lock to protect the content in this struct.
129  * @alloc_map: big map over which LCLA entry is own by which job.
130  */
131 struct d40_lcla_pool {
132         void            *base;
133         dma_addr_t      dma_addr;
134         void            *base_unaligned;
135         int              pages;
136         spinlock_t       lock;
137         struct d40_desc **alloc_map;
138 };
139
140 /**
141  * struct d40_phy_res - struct for handling eventlines mapped to physical
142  * channels.
143  *
144  * @lock: A lock protection this entity.
145  * @num: The physical channel number of this entity.
146  * @allocated_src: Bit mapped to show which src event line's are mapped to
147  * this physical channel. Can also be free or physically allocated.
148  * @allocated_dst: Same as for src but is dst.
149  * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
150  * event line number.
151  */
152 struct d40_phy_res {
153         spinlock_t lock;
154         int        num;
155         u32        allocated_src;
156         u32        allocated_dst;
157 };
158
159 struct d40_base;
160
161 /**
162  * struct d40_chan - Struct that describes a channel.
163  *
164  * @lock: A spinlock to protect this struct.
165  * @log_num: The logical number, if any of this channel.
166  * @completed: Starts with 1, after first interrupt it is set to dma engine's
167  * current cookie.
168  * @pending_tx: The number of pending transfers. Used between interrupt handler
169  * and tasklet.
170  * @busy: Set to true when transfer is ongoing on this channel.
171  * @phy_chan: Pointer to physical channel which this instance runs on. If this
172  * point is NULL, then the channel is not allocated.
173  * @chan: DMA engine handle.
174  * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
175  * transfer and call client callback.
176  * @client: Cliented owned descriptor list.
177  * @active: Active descriptor.
178  * @queue: Queued jobs.
179  * @dma_cfg: The client configuration of this dma channel.
180  * @configured: whether the dma_cfg configuration is valid
181  * @base: Pointer to the device instance struct.
182  * @src_def_cfg: Default cfg register setting for src.
183  * @dst_def_cfg: Default cfg register setting for dst.
184  * @log_def: Default logical channel settings.
185  * @lcla: Space for one dst src pair for logical channel transfers.
186  * @lcpa: Pointer to dst and src lcpa settings.
187  *
188  * This struct can either "be" a logical or a physical channel.
189  */
190 struct d40_chan {
191         spinlock_t                       lock;
192         int                              log_num;
193         /* ID of the most recent completed transfer */
194         int                              completed;
195         int                              pending_tx;
196         bool                             busy;
197         struct d40_phy_res              *phy_chan;
198         struct dma_chan                  chan;
199         struct tasklet_struct            tasklet;
200         struct list_head                 client;
201         struct list_head                 active;
202         struct list_head                 queue;
203         struct stedma40_chan_cfg         dma_cfg;
204         bool                             configured;
205         struct d40_base                 *base;
206         /* Default register configurations */
207         u32                              src_def_cfg;
208         u32                              dst_def_cfg;
209         struct d40_def_lcsp              log_def;
210         struct d40_log_lli_full         *lcpa;
211         /* Runtime reconfiguration */
212         dma_addr_t                      runtime_addr;
213         enum dma_data_direction         runtime_direction;
214 };
215
216 /**
217  * struct d40_base - The big global struct, one for each probe'd instance.
218  *
219  * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
220  * @execmd_lock: Lock for execute command usage since several channels share
221  * the same physical register.
222  * @dev: The device structure.
223  * @virtbase: The virtual base address of the DMA's register.
224  * @rev: silicon revision detected.
225  * @clk: Pointer to the DMA clock structure.
226  * @phy_start: Physical memory start of the DMA registers.
227  * @phy_size: Size of the DMA register map.
228  * @irq: The IRQ number.
229  * @num_phy_chans: The number of physical channels. Read from HW. This
230  * is the number of available channels for this driver, not counting "Secure
231  * mode" allocated physical channels.
232  * @num_log_chans: The number of logical channels. Calculated from
233  * num_phy_chans.
234  * @dma_both: dma_device channels that can do both memcpy and slave transfers.
235  * @dma_slave: dma_device channels that can do only do slave transfers.
236  * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
237  * @log_chans: Room for all possible logical channels in system.
238  * @lookup_log_chans: Used to map interrupt number to logical channel. Points
239  * to log_chans entries.
240  * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
241  * to phy_chans entries.
242  * @plat_data: Pointer to provided platform_data which is the driver
243  * configuration.
244  * @phy_res: Vector containing all physical channels.
245  * @lcla_pool: lcla pool settings and data.
246  * @lcpa_base: The virtual mapped address of LCPA.
247  * @phy_lcpa: The physical address of the LCPA.
248  * @lcpa_size: The size of the LCPA area.
249  * @desc_slab: cache for descriptors.
250  */
251 struct d40_base {
252         spinlock_t                       interrupt_lock;
253         spinlock_t                       execmd_lock;
254         struct device                    *dev;
255         void __iomem                     *virtbase;
256         u8                                rev:4;
257         struct clk                       *clk;
258         phys_addr_t                       phy_start;
259         resource_size_t                   phy_size;
260         int                               irq;
261         int                               num_phy_chans;
262         int                               num_log_chans;
263         struct dma_device                 dma_both;
264         struct dma_device                 dma_slave;
265         struct dma_device                 dma_memcpy;
266         struct d40_chan                  *phy_chans;
267         struct d40_chan                  *log_chans;
268         struct d40_chan                 **lookup_log_chans;
269         struct d40_chan                 **lookup_phy_chans;
270         struct stedma40_platform_data    *plat_data;
271         /* Physical half channels */
272         struct d40_phy_res               *phy_res;
273         struct d40_lcla_pool              lcla_pool;
274         void                             *lcpa_base;
275         dma_addr_t                        phy_lcpa;
276         resource_size_t                   lcpa_size;
277         struct kmem_cache                *desc_slab;
278 };
279
280 /**
281  * struct d40_interrupt_lookup - lookup table for interrupt handler
282  *
283  * @src: Interrupt mask register.
284  * @clr: Interrupt clear register.
285  * @is_error: true if this is an error interrupt.
286  * @offset: start delta in the lookup_log_chans in d40_base. If equals to
287  * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
288  */
289 struct d40_interrupt_lookup {
290         u32 src;
291         u32 clr;
292         bool is_error;
293         int offset;
294 };
295
296 /**
297  * struct d40_reg_val - simple lookup struct
298  *
299  * @reg: The register.
300  * @val: The value that belongs to the register in reg.
301  */
302 struct d40_reg_val {
303         unsigned int reg;
304         unsigned int val;
305 };
306
307 static struct device *chan2dev(struct d40_chan *d40c)
308 {
309         return &d40c->chan.dev->device;
310 }
311
312 static bool chan_is_physical(struct d40_chan *chan)
313 {
314         return chan->log_num == D40_PHY_CHAN;
315 }
316
317 static bool chan_is_logical(struct d40_chan *chan)
318 {
319         return !chan_is_physical(chan);
320 }
321
322 static void __iomem *chan_base(struct d40_chan *chan)
323 {
324         return chan->base->virtbase + D40_DREG_PCBASE +
325                chan->phy_chan->num * D40_DREG_PCDELTA;
326 }
327
328 #define d40_err(dev, format, arg...)            \
329         dev_err(dev, "[%s] " format, __func__, ## arg)
330
331 #define chan_err(d40c, format, arg...)          \
332         d40_err(chan2dev(d40c), format, ## arg)
333
334 static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
335                               int lli_len)
336 {
337         bool is_log = chan_is_logical(d40c);
338         u32 align;
339         void *base;
340
341         if (is_log)
342                 align = sizeof(struct d40_log_lli);
343         else
344                 align = sizeof(struct d40_phy_lli);
345
346         if (lli_len == 1) {
347                 base = d40d->lli_pool.pre_alloc_lli;
348                 d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
349                 d40d->lli_pool.base = NULL;
350         } else {
351                 d40d->lli_pool.size = lli_len * 2 * align;
352
353                 base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
354                 d40d->lli_pool.base = base;
355
356                 if (d40d->lli_pool.base == NULL)
357                         return -ENOMEM;
358         }
359
360         if (is_log) {
361                 d40d->lli_log.src = PTR_ALIGN(base, align);
362                 d40d->lli_log.dst = d40d->lli_log.src + lli_len;
363
364                 d40d->lli_pool.dma_addr = 0;
365         } else {
366                 d40d->lli_phy.src = PTR_ALIGN(base, align);
367                 d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
368
369                 d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
370                                                          d40d->lli_phy.src,
371                                                          d40d->lli_pool.size,
372                                                          DMA_TO_DEVICE);
373
374                 if (dma_mapping_error(d40c->base->dev,
375                                       d40d->lli_pool.dma_addr)) {
376                         kfree(d40d->lli_pool.base);
377                         d40d->lli_pool.base = NULL;
378                         d40d->lli_pool.dma_addr = 0;
379                         return -ENOMEM;
380                 }
381         }
382
383         return 0;
384 }
385
386 static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
387 {
388         if (d40d->lli_pool.dma_addr)
389                 dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
390                                  d40d->lli_pool.size, DMA_TO_DEVICE);
391
392         kfree(d40d->lli_pool.base);
393         d40d->lli_pool.base = NULL;
394         d40d->lli_pool.size = 0;
395         d40d->lli_log.src = NULL;
396         d40d->lli_log.dst = NULL;
397         d40d->lli_phy.src = NULL;
398         d40d->lli_phy.dst = NULL;
399 }
400
401 static int d40_lcla_alloc_one(struct d40_chan *d40c,
402                               struct d40_desc *d40d)
403 {
404         unsigned long flags;
405         int i;
406         int ret = -EINVAL;
407         int p;
408
409         spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
410
411         p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;
412
413         /*
414          * Allocate both src and dst at the same time, therefore the half
415          * start on 1 since 0 can't be used since zero is used as end marker.
416          */
417         for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
418                 if (!d40c->base->lcla_pool.alloc_map[p + i]) {
419                         d40c->base->lcla_pool.alloc_map[p + i] = d40d;
420                         d40d->lcla_alloc++;
421                         ret = i;
422                         break;
423                 }
424         }
425
426         spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
427
428         return ret;
429 }
430
431 static int d40_lcla_free_all(struct d40_chan *d40c,
432                              struct d40_desc *d40d)
433 {
434         unsigned long flags;
435         int i;
436         int ret = -EINVAL;
437
438         if (chan_is_physical(d40c))
439                 return 0;
440
441         spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
442
443         for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
444                 if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
445                                                     D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
446                         d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
447                                                         D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
448                         d40d->lcla_alloc--;
449                         if (d40d->lcla_alloc == 0) {
450                                 ret = 0;
451                                 break;
452                         }
453                 }
454         }
455
456         spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
457
458         return ret;
459
460 }
461
462 static void d40_desc_remove(struct d40_desc *d40d)
463 {
464         list_del(&d40d->node);
465 }
466
467 static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
468 {
469         struct d40_desc *desc = NULL;
470
471         if (!list_empty(&d40c->client)) {
472                 struct d40_desc *d;
473                 struct d40_desc *_d;
474
475                 list_for_each_entry_safe(d, _d, &d40c->client, node)
476                         if (async_tx_test_ack(&d->txd)) {
477                                 d40_pool_lli_free(d40c, d);
478                                 d40_desc_remove(d);
479                                 desc = d;
480                                 memset(desc, 0, sizeof(*desc));
481                                 break;
482                         }
483         }
484
485         if (!desc)
486                 desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
487
488         if (desc)
489                 INIT_LIST_HEAD(&desc->node);
490
491         return desc;
492 }
493
494 static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
495 {
496
497         d40_pool_lli_free(d40c, d40d);
498         d40_lcla_free_all(d40c, d40d);
499         kmem_cache_free(d40c->base->desc_slab, d40d);
500 }
501
502 static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
503 {
504         list_add_tail(&desc->node, &d40c->active);
505 }
506
507 static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
508 {
509         struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
510         struct d40_phy_lli *lli_src = desc->lli_phy.src;
511         void __iomem *base = chan_base(chan);
512
513         writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
514         writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
515         writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
516         writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
517
518         writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
519         writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
520         writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
521         writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
522 }
523
524 static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
525 {
526         struct d40_lcla_pool *pool = &chan->base->lcla_pool;
527         struct d40_log_lli_bidir *lli = &desc->lli_log;
528         int lli_current = desc->lli_current;
529         int lli_len = desc->lli_len;
530         int curr_lcla = -EINVAL;
531
532         if (lli_len - lli_current > 1)
533                 curr_lcla = d40_lcla_alloc_one(chan, desc);
534
535         d40_log_lli_lcpa_write(chan->lcpa,
536                                &lli->dst[lli_current],
537                                &lli->src[lli_current],
538                                curr_lcla);
539
540         lli_current++;
541
542         if (curr_lcla < 0)
543                 goto out;
544
545         for (; lli_current < lli_len; lli_current++) {
546                 unsigned int lcla_offset = chan->phy_chan->num * 1024 +
547                                            8 * curr_lcla * 2;
548                 struct d40_log_lli *lcla = pool->base + lcla_offset;
549                 int next_lcla;
550
551                 if (lli_current + 1 < lli_len)
552                         next_lcla = d40_lcla_alloc_one(chan, desc);
553                 else
554                         next_lcla = -EINVAL;
555
556                 d40_log_lli_lcla_write(lcla,
557                                        &lli->dst[lli_current],
558                                        &lli->src[lli_current],
559                                        next_lcla);
560
561                 dma_sync_single_range_for_device(chan->base->dev,
562                                         pool->dma_addr, lcla_offset,
563                                         2 * sizeof(struct d40_log_lli),
564                                         DMA_TO_DEVICE);
565
566                 curr_lcla = next_lcla;
567
568                 if (curr_lcla == -EINVAL) {
569                         lli_current++;
570                         break;
571                 }
572         }
573
574 out:
575         desc->lli_current = lli_current;
576 }
577
578 static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
579 {
580         if (chan_is_physical(d40c)) {
581                 d40_phy_lli_load(d40c, d40d);
582                 d40d->lli_current = d40d->lli_len;
583         } else
584                 d40_log_lli_to_lcxa(d40c, d40d);
585 }
586
587 static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
588 {
589         struct d40_desc *d;
590
591         if (list_empty(&d40c->active))
592                 return NULL;
593
594         d = list_first_entry(&d40c->active,
595                              struct d40_desc,
596                              node);
597         return d;
598 }
599
600 static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
601 {
602         list_add_tail(&desc->node, &d40c->queue);
603 }
604
605 static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
606 {
607         struct d40_desc *d;
608
609         if (list_empty(&d40c->queue))
610                 return NULL;
611
612         d = list_first_entry(&d40c->queue,
613                              struct d40_desc,
614                              node);
615         return d;
616 }
617
618 static int d40_psize_2_burst_size(bool is_log, int psize)
619 {
620         if (is_log) {
621                 if (psize == STEDMA40_PSIZE_LOG_1)
622                         return 1;
623         } else {
624                 if (psize == STEDMA40_PSIZE_PHY_1)
625                         return 1;
626         }
627
628         return 2 << psize;
629 }
630
631 /*
632  * The dma only supports transmitting packages up to
633  * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
634  * dma elements required to send the entire sg list
635  */
636 static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
637 {
638         int dmalen;
639         u32 max_w = max(data_width1, data_width2);
640         u32 min_w = min(data_width1, data_width2);
641         u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);
642
643         if (seg_max > STEDMA40_MAX_SEG_SIZE)
644                 seg_max -= (1 << max_w);
645
646         if (!IS_ALIGNED(size, 1 << max_w))
647                 return -EINVAL;
648
649         if (size <= seg_max)
650                 dmalen = 1;
651         else {
652                 dmalen = size / seg_max;
653                 if (dmalen * seg_max < size)
654                         dmalen++;
655         }
656         return dmalen;
657 }
658
659 static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
660                            u32 data_width1, u32 data_width2)
661 {
662         struct scatterlist *sg;
663         int i;
664         int len = 0;
665         int ret;
666
667         for_each_sg(sgl, sg, sg_len, i) {
668                 ret = d40_size_2_dmalen(sg_dma_len(sg),
669                                         data_width1, data_width2);
670                 if (ret < 0)
671                         return ret;
672                 len += ret;
673         }
674         return len;
675 }
676
677 /* Support functions for logical channels */
678
679 static int d40_channel_execute_command(struct d40_chan *d40c,
680                                        enum d40_command command)
681 {
682         u32 status;
683         int i;
684         void __iomem *active_reg;
685         int ret = 0;
686         unsigned long flags;
687         u32 wmask;
688
689         spin_lock_irqsave(&d40c->base->execmd_lock, flags);
690
691         if (d40c->phy_chan->num % 2 == 0)
692                 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
693         else
694                 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
695
696         if (command == D40_DMA_SUSPEND_REQ) {
697                 status = (readl(active_reg) &
698                           D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
699                         D40_CHAN_POS(d40c->phy_chan->num);
700
701                 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
702                         goto done;
703         }
704
705         wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
706         writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
707                active_reg);
708
709         if (command == D40_DMA_SUSPEND_REQ) {
710
711                 for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
712                         status = (readl(active_reg) &
713                                   D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
714                                 D40_CHAN_POS(d40c->phy_chan->num);
715
716                         cpu_relax();
717                         /*
718                          * Reduce the number of bus accesses while
719                          * waiting for the DMA to suspend.
720                          */
721                         udelay(3);
722
723                         if (status == D40_DMA_STOP ||
724                             status == D40_DMA_SUSPENDED)
725                                 break;
726                 }
727
728                 if (i == D40_SUSPEND_MAX_IT) {
729                         chan_err(d40c,
730                                 "unable to suspend the chl %d (log: %d) status %x\n",
731                                 d40c->phy_chan->num, d40c->log_num,
732                                 status);
733                         dump_stack();
734                         ret = -EBUSY;
735                 }
736
737         }
738 done:
739         spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
740         return ret;
741 }
742
743 static void d40_term_all(struct d40_chan *d40c)
744 {
745         struct d40_desc *d40d;
746
747         /* Release active descriptors */
748         while ((d40d = d40_first_active_get(d40c))) {
749                 d40_desc_remove(d40d);
750                 d40_desc_free(d40c, d40d);
751         }
752
753         /* Release queued descriptors waiting for transfer */
754         while ((d40d = d40_first_queued(d40c))) {
755                 d40_desc_remove(d40d);
756                 d40_desc_free(d40c, d40d);
757         }
758
759
760         d40c->pending_tx = 0;
761         d40c->busy = false;
762 }
763
764 static void __d40_config_set_event(struct d40_chan *d40c, bool enable,
765                                    u32 event, int reg)
766 {
767         void __iomem *addr = chan_base(d40c) + reg;
768         int tries;
769
770         if (!enable) {
771                 writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
772                        | ~D40_EVENTLINE_MASK(event), addr);
773                 return;
774         }
775
776         /*
777          * The hardware sometimes doesn't register the enable when src and dst
778          * event lines are active on the same logical channel.  Retry to ensure
779          * it does.  Usually only one retry is sufficient.
780          */
781         tries = 100;
782         while (--tries) {
783                 writel((D40_ACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
784                        | ~D40_EVENTLINE_MASK(event), addr);
785
786                 if (readl(addr) & D40_EVENTLINE_MASK(event))
787                         break;
788         }
789
790         if (tries != 99)
791                 dev_dbg(chan2dev(d40c),
792                         "[%s] workaround enable S%cLNK (%d tries)\n",
793                         __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
794                         100 - tries);
795
796         WARN_ON(!tries);
797 }
798
799 static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
800 {
801         unsigned long flags;
802
803         spin_lock_irqsave(&d40c->phy_chan->lock, flags);
804
805         /* Enable event line connected to device (or memcpy) */
806         if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
807             (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
808                 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
809
810                 __d40_config_set_event(d40c, do_enable, event,
811                                        D40_CHAN_REG_SSLNK);
812         }
813
814         if (d40c->dma_cfg.dir !=  STEDMA40_PERIPH_TO_MEM) {
815                 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
816
817                 __d40_config_set_event(d40c, do_enable, event,
818                                        D40_CHAN_REG_SDLNK);
819         }
820
821         spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
822 }
823
824 static u32 d40_chan_has_events(struct d40_chan *d40c)
825 {
826         void __iomem *chanbase = chan_base(d40c);
827         u32 val;
828
829         val = readl(chanbase + D40_CHAN_REG_SSLNK);
830         val |= readl(chanbase + D40_CHAN_REG_SDLNK);
831
832         return val;
833 }
834
835 static u32 d40_get_prmo(struct d40_chan *d40c)
836 {
837         static const unsigned int phy_map[] = {
838                 [STEDMA40_PCHAN_BASIC_MODE]
839                         = D40_DREG_PRMO_PCHAN_BASIC,
840                 [STEDMA40_PCHAN_MODULO_MODE]
841                         = D40_DREG_PRMO_PCHAN_MODULO,
842                 [STEDMA40_PCHAN_DOUBLE_DST_MODE]
843                         = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
844         };
845         static const unsigned int log_map[] = {
846                 [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
847                         = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
848                 [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
849                         = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
850                 [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
851                         = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
852         };
853
854         if (chan_is_physical(d40c))
855                 return phy_map[d40c->dma_cfg.mode_opt];
856         else
857                 return log_map[d40c->dma_cfg.mode_opt];
858 }
859
860 static void d40_config_write(struct d40_chan *d40c)
861 {
862         u32 addr_base;
863         u32 var;
864
865         /* Odd addresses are even addresses + 4 */
866         addr_base = (d40c->phy_chan->num % 2) * 4;
867         /* Setup channel mode to logical or physical */
868         var = ((u32)(chan_is_logical(d40c)) + 1) <<
869                 D40_CHAN_POS(d40c->phy_chan->num);
870         writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
871
872         /* Setup operational mode option register */
873         var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
874
875         writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
876
877         if (chan_is_logical(d40c)) {
878                 int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
879                            & D40_SREG_ELEM_LOG_LIDX_MASK;
880                 void __iomem *chanbase = chan_base(d40c);
881
882                 /* Set default config for CFG reg */
883                 writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
884                 writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
885
886                 /* Set LIDX for lcla */
887                 writel(lidx, chanbase + D40_CHAN_REG_SSELT);
888                 writel(lidx, chanbase + D40_CHAN_REG_SDELT);
889         }
890 }
891
892 static u32 d40_residue(struct d40_chan *d40c)
893 {
894         u32 num_elt;
895
896         if (chan_is_logical(d40c))
897                 num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
898                         >> D40_MEM_LCSP2_ECNT_POS;
899         else {
900                 u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
901                 num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
902                           >> D40_SREG_ELEM_PHY_ECNT_POS;
903         }
904
905         return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
906 }
907
908 static bool d40_tx_is_linked(struct d40_chan *d40c)
909 {
910         bool is_link;
911
912         if (chan_is_logical(d40c))
913                 is_link = readl(&d40c->lcpa->lcsp3) &  D40_MEM_LCSP3_DLOS_MASK;
914         else
915                 is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
916                           & D40_SREG_LNK_PHYS_LNK_MASK;
917
918         return is_link;
919 }
920
921 static int d40_pause(struct dma_chan *chan)
922 {
923         struct d40_chan *d40c =
924                 container_of(chan, struct d40_chan, chan);
925         int res = 0;
926         unsigned long flags;
927
928         if (!d40c->busy)
929                 return 0;
930
931         spin_lock_irqsave(&d40c->lock, flags);
932
933         res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
934         if (res == 0) {
935                 if (chan_is_logical(d40c)) {
936                         d40_config_set_event(d40c, false);
937                         /* Resume the other logical channels if any */
938                         if (d40_chan_has_events(d40c))
939                                 res = d40_channel_execute_command(d40c,
940                                                                   D40_DMA_RUN);
941                 }
942         }
943
944         spin_unlock_irqrestore(&d40c->lock, flags);
945         return res;
946 }
947
948 static int d40_resume(struct dma_chan *chan)
949 {
950         struct d40_chan *d40c =
951                 container_of(chan, struct d40_chan, chan);
952         int res = 0;
953         unsigned long flags;
954
955         if (!d40c->busy)
956                 return 0;
957
958         spin_lock_irqsave(&d40c->lock, flags);
959
960         if (d40c->base->rev == 0)
961                 if (chan_is_logical(d40c)) {
962                         res = d40_channel_execute_command(d40c,
963                                                           D40_DMA_SUSPEND_REQ);
964                         goto no_suspend;
965                 }
966
967         /* If bytes left to transfer or linked tx resume job */
968         if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
969
970                 if (chan_is_logical(d40c))
971                         d40_config_set_event(d40c, true);
972
973                 res = d40_channel_execute_command(d40c, D40_DMA_RUN);
974         }
975
976 no_suspend:
977         spin_unlock_irqrestore(&d40c->lock, flags);
978         return res;
979 }
980
981 static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
982 {
983         struct d40_chan *d40c = container_of(tx->chan,
984                                              struct d40_chan,
985                                              chan);
986         struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
987         unsigned long flags;
988
989         spin_lock_irqsave(&d40c->lock, flags);
990
991         d40c->chan.cookie++;
992
993         if (d40c->chan.cookie < 0)
994                 d40c->chan.cookie = 1;
995
996         d40d->txd.cookie = d40c->chan.cookie;
997
998         d40_desc_queue(d40c, d40d);
999
1000         spin_unlock_irqrestore(&d40c->lock, flags);
1001
1002         return tx->cookie;
1003 }
1004
1005 static int d40_start(struct d40_chan *d40c)
1006 {
1007         if (d40c->base->rev == 0) {
1008                 int err;
1009
1010                 if (chan_is_logical(d40c)) {
1011                         err = d40_channel_execute_command(d40c,
1012                                                           D40_DMA_SUSPEND_REQ);
1013                         if (err)
1014                                 return err;
1015                 }
1016         }
1017
1018         if (chan_is_logical(d40c))
1019                 d40_config_set_event(d40c, true);
1020
1021         return d40_channel_execute_command(d40c, D40_DMA_RUN);
1022 }
1023
1024 static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
1025 {
1026         struct d40_desc *d40d;
1027         int err;
1028
1029         /* Start queued jobs, if any */
1030         d40d = d40_first_queued(d40c);
1031
1032         if (d40d != NULL) {
1033                 d40c->busy = true;
1034
1035                 /* Remove from queue */
1036                 d40_desc_remove(d40d);
1037
1038                 /* Add to active queue */
1039                 d40_desc_submit(d40c, d40d);
1040
1041                 /* Initiate DMA job */
1042                 d40_desc_load(d40c, d40d);
1043
1044                 /* Start dma job */
1045                 err = d40_start(d40c);
1046
1047                 if (err)
1048                         return NULL;
1049         }
1050
1051         return d40d;
1052 }
1053
1054 /* called from interrupt context */
1055 static void dma_tc_handle(struct d40_chan *d40c)
1056 {
1057         struct d40_desc *d40d;
1058
1059         /* Get first active entry from list */
1060         d40d = d40_first_active_get(d40c);
1061
1062         if (d40d == NULL)
1063                 return;
1064
1065         d40_lcla_free_all(d40c, d40d);
1066
1067         if (d40d->lli_current < d40d->lli_len) {
1068                 d40_desc_load(d40c, d40d);
1069                 /* Start dma job */
1070                 (void) d40_start(d40c);
1071                 return;
1072         }
1073
1074         if (d40_queue_start(d40c) == NULL)
1075                 d40c->busy = false;
1076
1077         d40c->pending_tx++;
1078         tasklet_schedule(&d40c->tasklet);
1079
1080 }
1081
1082 static void dma_tasklet(unsigned long data)
1083 {
1084         struct d40_chan *d40c = (struct d40_chan *) data;
1085         struct d40_desc *d40d;
1086         unsigned long flags;
1087         dma_async_tx_callback callback;
1088         void *callback_param;
1089
1090         spin_lock_irqsave(&d40c->lock, flags);
1091
1092         /* Get first active entry from list */
1093         d40d = d40_first_active_get(d40c);
1094
1095         if (d40d == NULL)
1096                 goto err;
1097
1098         d40c->completed = d40d->txd.cookie;
1099
1100         /*
1101          * If terminating a channel pending_tx is set to zero.
1102          * This prevents any finished active jobs to return to the client.
1103          */
1104         if (d40c->pending_tx == 0) {
1105                 spin_unlock_irqrestore(&d40c->lock, flags);
1106                 return;
1107         }
1108
1109         /* Callback to client */
1110         callback = d40d->txd.callback;
1111         callback_param = d40d->txd.callback_param;
1112
1113         if (async_tx_test_ack(&d40d->txd)) {
1114                 d40_pool_lli_free(d40c, d40d);
1115                 d40_desc_remove(d40d);
1116                 d40_desc_free(d40c, d40d);
1117         } else {
1118                 if (!d40d->is_in_client_list) {
1119                         d40_desc_remove(d40d);
1120                         d40_lcla_free_all(d40c, d40d);
1121                         list_add_tail(&d40d->node, &d40c->client);
1122                         d40d->is_in_client_list = true;
1123                 }
1124         }
1125
1126         d40c->pending_tx--;
1127
1128         if (d40c->pending_tx)
1129                 tasklet_schedule(&d40c->tasklet);
1130
1131         spin_unlock_irqrestore(&d40c->lock, flags);
1132
1133         if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
1134                 callback(callback_param);
1135
1136         return;
1137
1138  err:
1139         /* Rescue manouver if receiving double interrupts */
1140         if (d40c->pending_tx > 0)
1141                 d40c->pending_tx--;
1142         spin_unlock_irqrestore(&d40c->lock, flags);
1143 }
1144
1145 static irqreturn_t d40_handle_interrupt(int irq, void *data)
1146 {
1147         static const struct d40_interrupt_lookup il[] = {
1148                 {D40_DREG_LCTIS0, D40_DREG_LCICR0, false,  0},
1149                 {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
1150                 {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
1151                 {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
1152                 {D40_DREG_LCEIS0, D40_DREG_LCICR0, true,   0},
1153                 {D40_DREG_LCEIS1, D40_DREG_LCICR1, true,  32},
1154                 {D40_DREG_LCEIS2, D40_DREG_LCICR2, true,  64},
1155                 {D40_DREG_LCEIS3, D40_DREG_LCICR3, true,  96},
1156                 {D40_DREG_PCTIS,  D40_DREG_PCICR,  false, D40_PHY_CHAN},
1157                 {D40_DREG_PCEIS,  D40_DREG_PCICR,  true,  D40_PHY_CHAN},
1158         };
1159
1160         int i;
1161         u32 regs[ARRAY_SIZE(il)];
1162         u32 idx;
1163         u32 row;
1164         long chan = -1;
1165         struct d40_chan *d40c;
1166         unsigned long flags;
1167         struct d40_base *base = data;
1168
1169         spin_lock_irqsave(&base->interrupt_lock, flags);
1170
1171         /* Read interrupt status of both logical and physical channels */
1172         for (i = 0; i < ARRAY_SIZE(il); i++)
1173                 regs[i] = readl(base->virtbase + il[i].src);
1174
1175         for (;;) {
1176
1177                 chan = find_next_bit((unsigned long *)regs,
1178                                      BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
1179
1180                 /* No more set bits found? */
1181                 if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
1182                         break;
1183
1184                 row = chan / BITS_PER_LONG;
1185                 idx = chan & (BITS_PER_LONG - 1);
1186
1187                 /* ACK interrupt */
1188                 writel(1 << idx, base->virtbase + il[row].clr);
1189
1190                 if (il[row].offset == D40_PHY_CHAN)
1191                         d40c = base->lookup_phy_chans[idx];
1192                 else
1193                         d40c = base->lookup_log_chans[il[row].offset + idx];
1194                 spin_lock(&d40c->lock);
1195
1196                 if (!il[row].is_error)
1197                         dma_tc_handle(d40c);
1198                 else
1199                         d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
1200                                 chan, il[row].offset, idx);
1201
1202                 spin_unlock(&d40c->lock);
1203         }
1204
1205         spin_unlock_irqrestore(&base->interrupt_lock, flags);
1206
1207         return IRQ_HANDLED;
1208 }
1209
1210 static int d40_validate_conf(struct d40_chan *d40c,
1211                              struct stedma40_chan_cfg *conf)
1212 {
1213         int res = 0;
1214         u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
1215         u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
1216         bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1217
1218         if (!conf->dir) {
1219                 chan_err(d40c, "Invalid direction.\n");
1220                 res = -EINVAL;
1221         }
1222
1223         if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
1224             d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
1225             d40c->runtime_addr == 0) {
1226
1227                 chan_err(d40c, "Invalid TX channel address (%d)\n",
1228                          conf->dst_dev_type);
1229                 res = -EINVAL;
1230         }
1231
1232         if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
1233             d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
1234             d40c->runtime_addr == 0) {
1235                 chan_err(d40c, "Invalid RX channel address (%d)\n",
1236                         conf->src_dev_type);
1237                 res = -EINVAL;
1238         }
1239
1240         if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
1241             dst_event_group == STEDMA40_DEV_DST_MEMORY) {
1242                 chan_err(d40c, "Invalid dst\n");
1243                 res = -EINVAL;
1244         }
1245
1246         if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
1247             src_event_group == STEDMA40_DEV_SRC_MEMORY) {
1248                 chan_err(d40c, "Invalid src\n");
1249                 res = -EINVAL;
1250         }
1251
1252         if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
1253             dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
1254                 chan_err(d40c, "No event line\n");
1255                 res = -EINVAL;
1256         }
1257
1258         if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
1259             (src_event_group != dst_event_group)) {
1260                 chan_err(d40c, "Invalid event group\n");
1261                 res = -EINVAL;
1262         }
1263
1264         if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
1265                 /*
1266                  * DMAC HW supports it. Will be added to this driver,
1267                  * in case any dma client requires it.
1268                  */
1269                 chan_err(d40c, "periph to periph not supported\n");
1270                 res = -EINVAL;
1271         }
1272
1273         if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1274             (1 << conf->src_info.data_width) !=
1275             d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1276             (1 << conf->dst_info.data_width)) {
1277                 /*
1278                  * The DMAC hardware only supports
1279                  * src (burst x width) == dst (burst x width)
1280                  */
1281
1282                 chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1283                 res = -EINVAL;
1284         }
1285
1286         return res;
1287 }
1288
1289 static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src,
1290                                int log_event_line, bool is_log)
1291 {
1292         unsigned long flags;
1293         spin_lock_irqsave(&phy->lock, flags);
1294         if (!is_log) {
1295                 /* Physical interrupts are masked per physical full channel */
1296                 if (phy->allocated_src == D40_ALLOC_FREE &&
1297                     phy->allocated_dst == D40_ALLOC_FREE) {
1298                         phy->allocated_dst = D40_ALLOC_PHY;
1299                         phy->allocated_src = D40_ALLOC_PHY;
1300                         goto found;
1301                 } else
1302                         goto not_found;
1303         }
1304
1305         /* Logical channel */
1306         if (is_src) {
1307                 if (phy->allocated_src == D40_ALLOC_PHY)
1308                         goto not_found;
1309
1310                 if (phy->allocated_src == D40_ALLOC_FREE)
1311                         phy->allocated_src = D40_ALLOC_LOG_FREE;
1312
1313                 if (!(phy->allocated_src & (1 << log_event_line))) {
1314                         phy->allocated_src |= 1 << log_event_line;
1315                         goto found;
1316                 } else
1317                         goto not_found;
1318         } else {
1319                 if (phy->allocated_dst == D40_ALLOC_PHY)
1320                         goto not_found;
1321
1322                 if (phy->allocated_dst == D40_ALLOC_FREE)
1323                         phy->allocated_dst = D40_ALLOC_LOG_FREE;
1324
1325                 if (!(phy->allocated_dst & (1 << log_event_line))) {
1326                         phy->allocated_dst |= 1 << log_event_line;
1327                         goto found;
1328                 } else
1329                         goto not_found;
1330         }
1331
1332 not_found:
1333         spin_unlock_irqrestore(&phy->lock, flags);
1334         return false;
1335 found:
1336         spin_unlock_irqrestore(&phy->lock, flags);
1337         return true;
1338 }
1339
1340 static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1341                                int log_event_line)
1342 {
1343         unsigned long flags;
1344         bool is_free = false;
1345
1346         spin_lock_irqsave(&phy->lock, flags);
1347         if (!log_event_line) {
1348                 phy->allocated_dst = D40_ALLOC_FREE;
1349                 phy->allocated_src = D40_ALLOC_FREE;
1350                 is_free = true;
1351                 goto out;
1352         }
1353
1354         /* Logical channel */
1355         if (is_src) {
1356                 phy->allocated_src &= ~(1 << log_event_line);
1357                 if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1358                         phy->allocated_src = D40_ALLOC_FREE;
1359         } else {
1360                 phy->allocated_dst &= ~(1 << log_event_line);
1361                 if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1362                         phy->allocated_dst = D40_ALLOC_FREE;
1363         }
1364
1365         is_free = ((phy->allocated_src | phy->allocated_dst) ==
1366                    D40_ALLOC_FREE);
1367
1368 out:
1369         spin_unlock_irqrestore(&phy->lock, flags);
1370
1371         return is_free;
1372 }
1373
1374 static int d40_allocate_channel(struct d40_chan *d40c)
1375 {
1376         int dev_type;
1377         int event_group;
1378         int event_line;
1379         struct d40_phy_res *phys;
1380         int i;
1381         int j;
1382         int log_num;
1383         bool is_src;
1384         bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1385
1386         phys = d40c->base->phy_res;
1387
1388         if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1389                 dev_type = d40c->dma_cfg.src_dev_type;
1390                 log_num = 2 * dev_type;
1391                 is_src = true;
1392         } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1393                    d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1394                 /* dst event lines are used for logical memcpy */
1395                 dev_type = d40c->dma_cfg.dst_dev_type;
1396                 log_num = 2 * dev_type + 1;
1397                 is_src = false;
1398         } else
1399                 return -EINVAL;
1400
1401         event_group = D40_TYPE_TO_GROUP(dev_type);
1402         event_line = D40_TYPE_TO_EVENT(dev_type);
1403
1404         if (!is_log) {
1405                 if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1406                         /* Find physical half channel */
1407                         for (i = 0; i < d40c->base->num_phy_chans; i++) {
1408
1409                                 if (d40_alloc_mask_set(&phys[i], is_src,
1410                                                        0, is_log))
1411                                         goto found_phy;
1412                         }
1413                 } else
1414                         for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1415                                 int phy_num = j  + event_group * 2;
1416                                 for (i = phy_num; i < phy_num + 2; i++) {
1417                                         if (d40_alloc_mask_set(&phys[i],
1418                                                                is_src,
1419                                                                0,
1420                                                                is_log))
1421                                                 goto found_phy;
1422                                 }
1423                         }
1424                 return -EINVAL;
1425 found_phy:
1426                 d40c->phy_chan = &phys[i];
1427                 d40c->log_num = D40_PHY_CHAN;
1428                 goto out;
1429         }
1430         if (dev_type == -1)
1431                 return -EINVAL;
1432
1433         /* Find logical channel */
1434         for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1435                 int phy_num = j + event_group * 2;
1436                 /*
1437                  * Spread logical channels across all available physical rather
1438                  * than pack every logical channel at the first available phy
1439                  * channels.
1440                  */
1441                 if (is_src) {
1442                         for (i = phy_num; i < phy_num + 2; i++) {
1443                                 if (d40_alloc_mask_set(&phys[i], is_src,
1444                                                        event_line, is_log))
1445                                         goto found_log;
1446                         }
1447                 } else {
1448                         for (i = phy_num + 1; i >= phy_num; i--) {
1449                                 if (d40_alloc_mask_set(&phys[i], is_src,
1450                                                        event_line, is_log))
1451                                         goto found_log;
1452                         }
1453                 }
1454         }
1455         return -EINVAL;
1456
1457 found_log:
1458         d40c->phy_chan = &phys[i];
1459         d40c->log_num = log_num;
1460 out:
1461
1462         if (is_log)
1463                 d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1464         else
1465                 d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1466
1467         return 0;
1468
1469 }
1470
1471 static int d40_config_memcpy(struct d40_chan *d40c)
1472 {
1473         dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1474
1475         if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1476                 d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
1477                 d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
1478                 d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
1479                         memcpy[d40c->chan.chan_id];
1480
1481         } else if (dma_has_cap(DMA_MEMCPY, cap) &&
1482                    dma_has_cap(DMA_SLAVE, cap)) {
1483                 d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
1484         } else {
1485                 chan_err(d40c, "No memcpy\n");
1486                 return -EINVAL;
1487         }
1488
1489         return 0;
1490 }
1491
1492
1493 static int d40_free_dma(struct d40_chan *d40c)
1494 {
1495
1496         int res = 0;
1497         u32 event;
1498         struct d40_phy_res *phy = d40c->phy_chan;
1499         bool is_src;
1500         struct d40_desc *d;
1501         struct d40_desc *_d;
1502
1503
1504         /* Terminate all queued and active transfers */
1505         d40_term_all(d40c);
1506
1507         /* Release client owned descriptors */
1508         if (!list_empty(&d40c->client))
1509                 list_for_each_entry_safe(d, _d, &d40c->client, node) {
1510                         d40_pool_lli_free(d40c, d);
1511                         d40_desc_remove(d);
1512                         d40_desc_free(d40c, d);
1513                 }
1514
1515         if (phy == NULL) {
1516                 chan_err(d40c, "phy == null\n");
1517                 return -EINVAL;
1518         }
1519
1520         if (phy->allocated_src == D40_ALLOC_FREE &&
1521             phy->allocated_dst == D40_ALLOC_FREE) {
1522                 chan_err(d40c, "channel already free\n");
1523                 return -EINVAL;
1524         }
1525
1526         if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1527             d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1528                 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1529                 is_src = false;
1530         } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1531                 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1532                 is_src = true;
1533         } else {
1534                 chan_err(d40c, "Unknown direction\n");
1535                 return -EINVAL;
1536         }
1537
1538         res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1539         if (res) {
1540                 chan_err(d40c, "suspend failed\n");
1541                 return res;
1542         }
1543
1544         if (chan_is_logical(d40c)) {
1545                 /* Release logical channel, deactivate the event line */
1546
1547                 d40_config_set_event(d40c, false);
1548                 d40c->base->lookup_log_chans[d40c->log_num] = NULL;
1549
1550                 /*
1551                  * Check if there are more logical allocation
1552                  * on this phy channel.
1553                  */
1554                 if (!d40_alloc_mask_free(phy, is_src, event)) {
1555                         /* Resume the other logical channels if any */
1556                         if (d40_chan_has_events(d40c)) {
1557                                 res = d40_channel_execute_command(d40c,
1558                                                                   D40_DMA_RUN);
1559                                 if (res) {
1560                                         chan_err(d40c,
1561                                                 "Executing RUN command\n");
1562                                         return res;
1563                                 }
1564                         }
1565                         return 0;
1566                 }
1567         } else {
1568                 (void) d40_alloc_mask_free(phy, is_src, 0);
1569         }
1570
1571         /* Release physical channel */
1572         res = d40_channel_execute_command(d40c, D40_DMA_STOP);
1573         if (res) {
1574                 chan_err(d40c, "Failed to stop channel\n");
1575                 return res;
1576         }
1577         d40c->phy_chan = NULL;
1578         d40c->configured = false;
1579         d40c->base->lookup_phy_chans[phy->num] = NULL;
1580
1581         return 0;
1582 }
1583
1584 static bool d40_is_paused(struct d40_chan *d40c)
1585 {
1586         void __iomem *chanbase = chan_base(d40c);
1587         bool is_paused = false;
1588         unsigned long flags;
1589         void __iomem *active_reg;
1590         u32 status;
1591         u32 event;
1592
1593         spin_lock_irqsave(&d40c->lock, flags);
1594
1595         if (chan_is_physical(d40c)) {
1596                 if (d40c->phy_chan->num % 2 == 0)
1597                         active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1598                 else
1599                         active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1600
1601                 status = (readl(active_reg) &
1602                           D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1603                         D40_CHAN_POS(d40c->phy_chan->num);
1604                 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1605                         is_paused = true;
1606
1607                 goto _exit;
1608         }
1609
1610         if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1611             d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1612                 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1613                 status = readl(chanbase + D40_CHAN_REG_SDLNK);
1614         } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1615                 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1616                 status = readl(chanbase + D40_CHAN_REG_SSLNK);
1617         } else {
1618                 chan_err(d40c, "Unknown direction\n");
1619                 goto _exit;
1620         }
1621
1622         status = (status & D40_EVENTLINE_MASK(event)) >>
1623                 D40_EVENTLINE_POS(event);
1624
1625         if (status != D40_DMA_RUN)
1626                 is_paused = true;
1627 _exit:
1628         spin_unlock_irqrestore(&d40c->lock, flags);
1629         return is_paused;
1630
1631 }
1632
1633
1634 static u32 stedma40_residue(struct dma_chan *chan)
1635 {
1636         struct d40_chan *d40c =
1637                 container_of(chan, struct d40_chan, chan);
1638         u32 bytes_left;
1639         unsigned long flags;
1640
1641         spin_lock_irqsave(&d40c->lock, flags);
1642         bytes_left = d40_residue(d40c);
1643         spin_unlock_irqrestore(&d40c->lock, flags);
1644
1645         return bytes_left;
1646 }
1647
1648 static int
1649 d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
1650                 struct scatterlist *sg_src, struct scatterlist *sg_dst,
1651                 unsigned int sg_len, dma_addr_t src_dev_addr,
1652                 dma_addr_t dst_dev_addr)
1653 {
1654         struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1655         struct stedma40_half_channel_info *src_info = &cfg->src_info;
1656         struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
1657         int ret;
1658
1659         ret = d40_log_sg_to_lli(sg_src, sg_len,
1660                                 src_dev_addr,
1661                                 desc->lli_log.src,
1662                                 chan->log_def.lcsp1,
1663                                 src_info->data_width,
1664                                 dst_info->data_width);
1665
1666         ret = d40_log_sg_to_lli(sg_dst, sg_len,
1667                                 dst_dev_addr,
1668                                 desc->lli_log.dst,
1669                                 chan->log_def.lcsp3,
1670                                 dst_info->data_width,
1671                                 src_info->data_width);
1672
1673         return ret < 0 ? ret : 0;
1674 }
1675
1676 static int
1677 d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
1678                 struct scatterlist *sg_src, struct scatterlist *sg_dst,
1679                 unsigned int sg_len, dma_addr_t src_dev_addr,
1680                 dma_addr_t dst_dev_addr)
1681 {
1682         struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1683         struct stedma40_half_channel_info *src_info = &cfg->src_info;
1684         struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
1685         int ret;
1686
1687         ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
1688                                 desc->lli_phy.src,
1689                                 virt_to_phys(desc->lli_phy.src),
1690                                 chan->src_def_cfg,
1691                                 src_info, dst_info);
1692
1693         ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
1694                                 desc->lli_phy.dst,
1695                                 virt_to_phys(desc->lli_phy.dst),
1696                                 chan->dst_def_cfg,
1697                                 dst_info, src_info);
1698
1699         dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
1700                                    desc->lli_pool.size, DMA_TO_DEVICE);
1701
1702         return ret < 0 ? ret : 0;
1703 }
1704
1705
1706 static struct d40_desc *
1707 d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
1708               unsigned int sg_len, unsigned long dma_flags)
1709 {
1710         struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1711         struct d40_desc *desc;
1712         int ret;
1713
1714         desc = d40_desc_get(chan);
1715         if (!desc)
1716                 return NULL;
1717
1718         desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
1719                                         cfg->dst_info.data_width);
1720         if (desc->lli_len < 0) {
1721                 chan_err(chan, "Unaligned size\n");
1722                 goto err;
1723         }
1724
1725         ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
1726         if (ret < 0) {
1727                 chan_err(chan, "Could not allocate lli\n");
1728                 goto err;
1729         }
1730
1731
1732         desc->lli_current = 0;
1733         desc->txd.flags = dma_flags;
1734         desc->txd.tx_submit = d40_tx_submit;
1735
1736         dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
1737
1738         return desc;
1739
1740 err:
1741         d40_desc_free(chan, desc);
1742         return NULL;
1743 }
1744
1745 static dma_addr_t
1746 d40_get_dev_addr(struct d40_chan *chan, enum dma_data_direction direction)
1747 {
1748         struct stedma40_platform_data *plat = chan->base->plat_data;
1749         struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1750         dma_addr_t addr;
1751
1752         if (chan->runtime_addr)
1753                 return chan->runtime_addr;
1754
1755         if (direction == DMA_FROM_DEVICE)
1756                 addr = plat->dev_rx[cfg->src_dev_type];
1757         else if (direction == DMA_TO_DEVICE)
1758                 addr = plat->dev_tx[cfg->dst_dev_type];
1759
1760         return addr;
1761 }
1762
1763 static struct dma_async_tx_descriptor *
1764 d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
1765             struct scatterlist *sg_dst, unsigned int sg_len,
1766             enum dma_data_direction direction, unsigned long dma_flags)
1767 {
1768         struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
1769         dma_addr_t src_dev_addr = 0;
1770         dma_addr_t dst_dev_addr = 0;
1771         struct d40_desc *desc;
1772         unsigned long flags;
1773         int ret;
1774
1775         if (!chan->phy_chan) {
1776                 chan_err(chan, "Cannot prepare unallocated channel\n");
1777                 return NULL;
1778         }
1779
1780         spin_lock_irqsave(&chan->lock, flags);
1781
1782         desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
1783         if (desc == NULL)
1784                 goto err;
1785
1786         if (direction != DMA_NONE) {
1787                 dma_addr_t dev_addr = d40_get_dev_addr(chan, direction);
1788
1789                 if (direction == DMA_FROM_DEVICE)
1790                         src_dev_addr = dev_addr;
1791                 else if (direction == DMA_TO_DEVICE)
1792                         dst_dev_addr = dev_addr;
1793         }
1794
1795         if (chan_is_logical(chan))
1796                 ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
1797                                       sg_len, src_dev_addr, dst_dev_addr);
1798         else
1799                 ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
1800                                       sg_len, src_dev_addr, dst_dev_addr);
1801
1802         if (ret) {
1803                 chan_err(chan, "Failed to prepare %s sg job: %d\n",
1804                          chan_is_logical(chan) ? "log" : "phy", ret);
1805                 goto err;
1806         }
1807
1808         spin_unlock_irqrestore(&chan->lock, flags);
1809
1810         return &desc->txd;
1811
1812 err:
1813         if (desc)
1814                 d40_desc_free(chan, desc);
1815         spin_unlock_irqrestore(&chan->lock, flags);
1816         return NULL;
1817 }
1818
1819 bool stedma40_filter(struct dma_chan *chan, void *data)
1820 {
1821         struct stedma40_chan_cfg *info = data;
1822         struct d40_chan *d40c =
1823                 container_of(chan, struct d40_chan, chan);
1824         int err;
1825
1826         if (data) {
1827                 err = d40_validate_conf(d40c, info);
1828                 if (!err)
1829                         d40c->dma_cfg = *info;
1830         } else
1831                 err = d40_config_memcpy(d40c);
1832
1833         if (!err)
1834                 d40c->configured = true;
1835
1836         return err == 0;
1837 }
1838 EXPORT_SYMBOL(stedma40_filter);
1839
1840 static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
1841 {
1842         bool realtime = d40c->dma_cfg.realtime;
1843         bool highprio = d40c->dma_cfg.high_priority;
1844         u32 prioreg = highprio ? D40_DREG_PSEG1 : D40_DREG_PCEG1;
1845         u32 rtreg = realtime ? D40_DREG_RSEG1 : D40_DREG_RCEG1;
1846         u32 event = D40_TYPE_TO_EVENT(dev_type);
1847         u32 group = D40_TYPE_TO_GROUP(dev_type);
1848         u32 bit = 1 << event;
1849
1850         /* Destination event lines are stored in the upper halfword */
1851         if (!src)
1852                 bit <<= 16;
1853
1854         writel(bit, d40c->base->virtbase + prioreg + group * 4);
1855         writel(bit, d40c->base->virtbase + rtreg + group * 4);
1856 }
1857
1858 static void d40_set_prio_realtime(struct d40_chan *d40c)
1859 {
1860         if (d40c->base->rev < 3)
1861                 return;
1862
1863         if ((d40c->dma_cfg.dir ==  STEDMA40_PERIPH_TO_MEM) ||
1864             (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
1865                 __d40_set_prio_rt(d40c, d40c->dma_cfg.src_dev_type, true);
1866
1867         if ((d40c->dma_cfg.dir ==  STEDMA40_MEM_TO_PERIPH) ||
1868             (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
1869                 __d40_set_prio_rt(d40c, d40c->dma_cfg.dst_dev_type, false);
1870 }
1871
1872 /* DMA ENGINE functions */
1873 static int d40_alloc_chan_resources(struct dma_chan *chan)
1874 {
1875         int err;
1876         unsigned long flags;
1877         struct d40_chan *d40c =
1878                 container_of(chan, struct d40_chan, chan);
1879         bool is_free_phy;
1880         spin_lock_irqsave(&d40c->lock, flags);
1881
1882         d40c->completed = chan->cookie = 1;
1883
1884         /* If no dma configuration is set use default configuration (memcpy) */
1885         if (!d40c->configured) {
1886                 err = d40_config_memcpy(d40c);
1887                 if (err) {
1888                         chan_err(d40c, "Failed to configure memcpy channel\n");
1889                         goto fail;
1890                 }
1891         }
1892         is_free_phy = (d40c->phy_chan == NULL);
1893
1894         err = d40_allocate_channel(d40c);
1895         if (err) {
1896                 chan_err(d40c, "Failed to allocate channel\n");
1897                 goto fail;
1898         }
1899
1900         /* Fill in basic CFG register values */
1901         d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
1902                     &d40c->dst_def_cfg, chan_is_logical(d40c));
1903
1904         d40_set_prio_realtime(d40c);
1905
1906         if (chan_is_logical(d40c)) {
1907                 d40_log_cfg(&d40c->dma_cfg,
1908                             &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
1909
1910                 if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
1911                         d40c->lcpa = d40c->base->lcpa_base +
1912                           d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
1913                 else
1914                         d40c->lcpa = d40c->base->lcpa_base +
1915                           d40c->dma_cfg.dst_dev_type *
1916                           D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
1917         }
1918
1919         /*
1920          * Only write channel configuration to the DMA if the physical
1921          * resource is free. In case of multiple logical channels
1922          * on the same physical resource, only the first write is necessary.
1923          */
1924         if (is_free_phy)
1925                 d40_config_write(d40c);
1926 fail:
1927         spin_unlock_irqrestore(&d40c->lock, flags);
1928         return err;
1929 }
1930
1931 static void d40_free_chan_resources(struct dma_chan *chan)
1932 {
1933         struct d40_chan *d40c =
1934                 container_of(chan, struct d40_chan, chan);
1935         int err;
1936         unsigned long flags;
1937
1938         if (d40c->phy_chan == NULL) {
1939                 chan_err(d40c, "Cannot free unallocated channel\n");
1940                 return;
1941         }
1942
1943
1944         spin_lock_irqsave(&d40c->lock, flags);
1945
1946         err = d40_free_dma(d40c);
1947
1948         if (err)
1949                 chan_err(d40c, "Failed to free channel\n");
1950         spin_unlock_irqrestore(&d40c->lock, flags);
1951 }
1952
1953 static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
1954                                                        dma_addr_t dst,
1955                                                        dma_addr_t src,
1956                                                        size_t size,
1957                                                        unsigned long dma_flags)
1958 {
1959         struct scatterlist dst_sg;
1960         struct scatterlist src_sg;
1961
1962         sg_init_table(&dst_sg, 1);
1963         sg_init_table(&src_sg, 1);
1964
1965         sg_dma_address(&dst_sg) = dst;
1966         sg_dma_address(&src_sg) = src;
1967
1968         sg_dma_len(&dst_sg) = size;
1969         sg_dma_len(&src_sg) = size;
1970
1971         return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
1972 }
1973
1974 static struct dma_async_tx_descriptor *
1975 d40_prep_memcpy_sg(struct dma_chan *chan,
1976                    struct scatterlist *dst_sg, unsigned int dst_nents,
1977                    struct scatterlist *src_sg, unsigned int src_nents,
1978                    unsigned long dma_flags)
1979 {
1980         if (dst_nents != src_nents)
1981                 return NULL;
1982
1983         return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
1984 }
1985
1986 static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
1987                                                          struct scatterlist *sgl,
1988                                                          unsigned int sg_len,
1989                                                          enum dma_data_direction direction,
1990                                                          unsigned long dma_flags)
1991 {
1992         if (direction != DMA_FROM_DEVICE && direction != DMA_TO_DEVICE)
1993                 return NULL;
1994
1995         return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
1996 }
1997
1998 static enum dma_status d40_tx_status(struct dma_chan *chan,
1999                                      dma_cookie_t cookie,
2000                                      struct dma_tx_state *txstate)
2001 {
2002         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2003         dma_cookie_t last_used;
2004         dma_cookie_t last_complete;
2005         int ret;
2006
2007         if (d40c->phy_chan == NULL) {
2008                 chan_err(d40c, "Cannot read status of unallocated channel\n");
2009                 return -EINVAL;
2010         }
2011
2012         last_complete = d40c->completed;
2013         last_used = chan->cookie;
2014
2015         if (d40_is_paused(d40c))
2016                 ret = DMA_PAUSED;
2017         else
2018                 ret = dma_async_is_complete(cookie, last_complete, last_used);
2019
2020         dma_set_tx_state(txstate, last_complete, last_used,
2021                          stedma40_residue(chan));
2022
2023         return ret;
2024 }
2025
2026 static void d40_issue_pending(struct dma_chan *chan)
2027 {
2028         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2029         unsigned long flags;
2030
2031         if (d40c->phy_chan == NULL) {
2032                 chan_err(d40c, "Channel is not allocated!\n");
2033                 return;
2034         }
2035
2036         spin_lock_irqsave(&d40c->lock, flags);
2037
2038         /* Busy means that pending jobs are already being processed */
2039         if (!d40c->busy)
2040                 (void) d40_queue_start(d40c);
2041
2042         spin_unlock_irqrestore(&d40c->lock, flags);
2043 }
2044
2045 /* Runtime reconfiguration extension */
2046 static void d40_set_runtime_config(struct dma_chan *chan,
2047                                struct dma_slave_config *config)
2048 {
2049         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2050         struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2051         enum dma_slave_buswidth config_addr_width;
2052         dma_addr_t config_addr;
2053         u32 config_maxburst;
2054         enum stedma40_periph_data_width addr_width;
2055         int psize;
2056
2057         if (config->direction == DMA_FROM_DEVICE) {
2058                 dma_addr_t dev_addr_rx =
2059                         d40c->base->plat_data->dev_rx[cfg->src_dev_type];
2060
2061                 config_addr = config->src_addr;
2062                 if (dev_addr_rx)
2063                         dev_dbg(d40c->base->dev,
2064                                 "channel has a pre-wired RX address %08x "
2065                                 "overriding with %08x\n",
2066                                 dev_addr_rx, config_addr);
2067                 if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
2068                         dev_dbg(d40c->base->dev,
2069                                 "channel was not configured for peripheral "
2070                                 "to memory transfer (%d) overriding\n",
2071                                 cfg->dir);
2072                 cfg->dir = STEDMA40_PERIPH_TO_MEM;
2073
2074                 config_addr_width = config->src_addr_width;
2075                 config_maxburst = config->src_maxburst;
2076
2077         } else if (config->direction == DMA_TO_DEVICE) {
2078                 dma_addr_t dev_addr_tx =
2079                         d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
2080
2081                 config_addr = config->dst_addr;
2082                 if (dev_addr_tx)
2083                         dev_dbg(d40c->base->dev,
2084                                 "channel has a pre-wired TX address %08x "
2085                                 "overriding with %08x\n",
2086                                 dev_addr_tx, config_addr);
2087                 if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
2088                         dev_dbg(d40c->base->dev,
2089                                 "channel was not configured for memory "
2090                                 "to peripheral transfer (%d) overriding\n",
2091                                 cfg->dir);
2092                 cfg->dir = STEDMA40_MEM_TO_PERIPH;
2093
2094                 config_addr_width = config->dst_addr_width;
2095                 config_maxburst = config->dst_maxburst;
2096
2097         } else {
2098                 dev_err(d40c->base->dev,
2099                         "unrecognized channel direction %d\n",
2100                         config->direction);
2101                 return;
2102         }
2103
2104         switch (config_addr_width) {
2105         case DMA_SLAVE_BUSWIDTH_1_BYTE:
2106                 addr_width = STEDMA40_BYTE_WIDTH;
2107                 break;
2108         case DMA_SLAVE_BUSWIDTH_2_BYTES:
2109                 addr_width = STEDMA40_HALFWORD_WIDTH;
2110                 break;
2111         case DMA_SLAVE_BUSWIDTH_4_BYTES:
2112                 addr_width = STEDMA40_WORD_WIDTH;
2113                 break;
2114         case DMA_SLAVE_BUSWIDTH_8_BYTES:
2115                 addr_width = STEDMA40_DOUBLEWORD_WIDTH;
2116                 break;
2117         default:
2118                 dev_err(d40c->base->dev,
2119                         "illegal peripheral address width "
2120                         "requested (%d)\n",
2121                         config->src_addr_width);
2122                 return;
2123         }
2124
2125         if (chan_is_logical(d40c)) {
2126                 if (config_maxburst >= 16)
2127                         psize = STEDMA40_PSIZE_LOG_16;
2128                 else if (config_maxburst >= 8)
2129                         psize = STEDMA40_PSIZE_LOG_8;
2130                 else if (config_maxburst >= 4)
2131                         psize = STEDMA40_PSIZE_LOG_4;
2132                 else
2133                         psize = STEDMA40_PSIZE_LOG_1;
2134         } else {
2135                 if (config_maxburst >= 16)
2136                         psize = STEDMA40_PSIZE_PHY_16;
2137                 else if (config_maxburst >= 8)
2138                         psize = STEDMA40_PSIZE_PHY_8;
2139                 else if (config_maxburst >= 4)
2140                         psize = STEDMA40_PSIZE_PHY_4;
2141                 else if (config_maxburst >= 2)
2142                         psize = STEDMA40_PSIZE_PHY_2;
2143                 else
2144                         psize = STEDMA40_PSIZE_PHY_1;
2145         }
2146
2147         /* Set up all the endpoint configs */
2148         cfg->src_info.data_width = addr_width;
2149         cfg->src_info.psize = psize;
2150         cfg->src_info.big_endian = false;
2151         cfg->src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2152         cfg->dst_info.data_width = addr_width;
2153         cfg->dst_info.psize = psize;
2154         cfg->dst_info.big_endian = false;
2155         cfg->dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2156
2157         /* Fill in register values */
2158         if (chan_is_logical(d40c))
2159                 d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2160         else
2161                 d40_phy_cfg(cfg, &d40c->src_def_cfg,
2162                             &d40c->dst_def_cfg, false);
2163
2164         /* These settings will take precedence later */
2165         d40c->runtime_addr = config_addr;
2166         d40c->runtime_direction = config->direction;
2167         dev_dbg(d40c->base->dev,
2168                 "configured channel %s for %s, data width %d, "
2169                 "maxburst %d bytes, LE, no flow control\n",
2170                 dma_chan_name(chan),
2171                 (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
2172                 config_addr_width,
2173                 config_maxburst);
2174 }
2175
2176 static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
2177                        unsigned long arg)
2178 {
2179         unsigned long flags;
2180         struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2181
2182         if (d40c->phy_chan == NULL) {
2183                 chan_err(d40c, "Channel is not allocated!\n");
2184                 return -EINVAL;
2185         }
2186
2187         switch (cmd) {
2188         case DMA_TERMINATE_ALL:
2189                 spin_lock_irqsave(&d40c->lock, flags);
2190                 d40_term_all(d40c);
2191                 spin_unlock_irqrestore(&d40c->lock, flags);
2192                 return 0;
2193         case DMA_PAUSE:
2194                 return d40_pause(chan);
2195         case DMA_RESUME:
2196                 return d40_resume(chan);
2197         case DMA_SLAVE_CONFIG:
2198                 d40_set_runtime_config(chan,
2199                         (struct dma_slave_config *) arg);
2200                 return 0;
2201         default:
2202                 break;
2203         }
2204
2205         /* Other commands are unimplemented */
2206         return -ENXIO;
2207 }
2208
2209 /* Initialization functions */
2210
2211 static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2212                                  struct d40_chan *chans, int offset,
2213                                  int num_chans)
2214 {
2215         int i = 0;
2216         struct d40_chan *d40c;
2217
2218         INIT_LIST_HEAD(&dma->channels);
2219
2220         for (i = offset; i < offset + num_chans; i++) {
2221                 d40c = &chans[i];
2222                 d40c->base = base;
2223                 d40c->chan.device = dma;
2224
2225                 spin_lock_init(&d40c->lock);
2226
2227                 d40c->log_num = D40_PHY_CHAN;
2228
2229                 INIT_LIST_HEAD(&d40c->active);
2230                 INIT_LIST_HEAD(&d40c->queue);
2231                 INIT_LIST_HEAD(&d40c->client);
2232
2233                 tasklet_init(&d40c->tasklet, dma_tasklet,
2234                              (unsigned long) d40c);
2235
2236                 list_add_tail(&d40c->chan.device_node,
2237                               &dma->channels);
2238         }
2239 }
2240
2241 static int __init d40_dmaengine_init(struct d40_base *base,
2242                                      int num_reserved_chans)
2243 {
2244         int err ;
2245
2246         d40_chan_init(base, &base->dma_slave, base->log_chans,
2247                       0, base->num_log_chans);
2248
2249         dma_cap_zero(base->dma_slave.cap_mask);
2250         dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2251
2252         base->dma_slave.device_alloc_chan_resources = d40_alloc_chan_resources;
2253         base->dma_slave.device_free_chan_resources = d40_free_chan_resources;
2254         base->dma_slave.device_prep_dma_memcpy = d40_prep_memcpy;
2255         base->dma_slave.device_prep_dma_sg = d40_prep_memcpy_sg;
2256         base->dma_slave.device_prep_slave_sg = d40_prep_slave_sg;
2257         base->dma_slave.device_tx_status = d40_tx_status;
2258         base->dma_slave.device_issue_pending = d40_issue_pending;
2259         base->dma_slave.device_control = d40_control;
2260         base->dma_slave.dev = base->dev;
2261
2262         err = dma_async_device_register(&base->dma_slave);
2263
2264         if (err) {
2265                 d40_err(base->dev, "Failed to register slave channels\n");
2266                 goto failure1;
2267         }
2268
2269         d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2270                       base->num_log_chans, base->plat_data->memcpy_len);
2271
2272         dma_cap_zero(base->dma_memcpy.cap_mask);
2273         dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2274         dma_cap_set(DMA_SG, base->dma_slave.cap_mask);
2275
2276         base->dma_memcpy.device_alloc_chan_resources = d40_alloc_chan_resources;
2277         base->dma_memcpy.device_free_chan_resources = d40_free_chan_resources;
2278         base->dma_memcpy.device_prep_dma_memcpy = d40_prep_memcpy;
2279         base->dma_slave.device_prep_dma_sg = d40_prep_memcpy_sg;
2280         base->dma_memcpy.device_prep_slave_sg = d40_prep_slave_sg;
2281         base->dma_memcpy.device_tx_status = d40_tx_status;
2282         base->dma_memcpy.device_issue_pending = d40_issue_pending;
2283         base->dma_memcpy.device_control = d40_control;
2284         base->dma_memcpy.dev = base->dev;
2285         /*
2286          * This controller can only access address at even
2287          * 32bit boundaries, i.e. 2^2
2288          */
2289         base->dma_memcpy.copy_align = 2;
2290
2291         err = dma_async_device_register(&base->dma_memcpy);
2292
2293         if (err) {
2294                 d40_err(base->dev,
2295                         "Failed to regsiter memcpy only channels\n");
2296                 goto failure2;
2297         }
2298
2299         d40_chan_init(base, &base->dma_both, base->phy_chans,
2300                       0, num_reserved_chans);
2301
2302         dma_cap_zero(base->dma_both.cap_mask);
2303         dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2304         dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2305         dma_cap_set(DMA_SG, base->dma_slave.cap_mask);
2306
2307         base->dma_both.device_alloc_chan_resources = d40_alloc_chan_resources;
2308         base->dma_both.device_free_chan_resources = d40_free_chan_resources;
2309         base->dma_both.device_prep_dma_memcpy = d40_prep_memcpy;
2310         base->dma_slave.device_prep_dma_sg = d40_prep_memcpy_sg;
2311         base->dma_both.device_prep_slave_sg = d40_prep_slave_sg;
2312         base->dma_both.device_tx_status = d40_tx_status;
2313         base->dma_both.device_issue_pending = d40_issue_pending;
2314         base->dma_both.device_control = d40_control;
2315         base->dma_both.dev = base->dev;
2316         base->dma_both.copy_align = 2;
2317         err = dma_async_device_register(&base->dma_both);
2318
2319         if (err) {
2320                 d40_err(base->dev,
2321                         "Failed to register logical and physical capable channels\n");
2322                 goto failure3;
2323         }
2324         return 0;
2325 failure3:
2326         dma_async_device_unregister(&base->dma_memcpy);
2327 failure2:
2328         dma_async_device_unregister(&base->dma_slave);
2329 failure1:
2330         return err;
2331 }
2332
2333 /* Initialization functions. */
2334
2335 static int __init d40_phy_res_init(struct d40_base *base)
2336 {
2337         int i;
2338         int num_phy_chans_avail = 0;
2339         u32 val[2];
2340         int odd_even_bit = -2;
2341
2342         val[0] = readl(base->virtbase + D40_DREG_PRSME);
2343         val[1] = readl(base->virtbase + D40_DREG_PRSMO);
2344
2345         for (i = 0; i < base->num_phy_chans; i++) {
2346                 base->phy_res[i].num = i;
2347                 odd_even_bit += 2 * ((i % 2) == 0);
2348                 if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
2349                         /* Mark security only channels as occupied */
2350                         base->phy_res[i].allocated_src = D40_ALLOC_PHY;
2351                         base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
2352                 } else {
2353                         base->phy_res[i].allocated_src = D40_ALLOC_FREE;
2354                         base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
2355                         num_phy_chans_avail++;
2356                 }
2357                 spin_lock_init(&base->phy_res[i].lock);
2358         }
2359
2360         /* Mark disabled channels as occupied */
2361         for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
2362                 int chan = base->plat_data->disabled_channels[i];
2363
2364                 base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
2365                 base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
2366                 num_phy_chans_avail--;
2367         }
2368
2369         dev_info(base->dev, "%d of %d physical DMA channels available\n",
2370                  num_phy_chans_avail, base->num_phy_chans);
2371
2372         /* Verify settings extended vs standard */
2373         val[0] = readl(base->virtbase + D40_DREG_PRTYP);
2374
2375         for (i = 0; i < base->num_phy_chans; i++) {
2376
2377                 if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
2378                     (val[0] & 0x3) != 1)
2379                         dev_info(base->dev,
2380                                  "[%s] INFO: channel %d is misconfigured (%d)\n",
2381                                  __func__, i, val[0] & 0x3);
2382
2383                 val[0] = val[0] >> 2;
2384         }
2385
2386         return num_phy_chans_avail;
2387 }
2388
2389 static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
2390 {
2391         static const struct d40_reg_val dma_id_regs[] = {
2392                 /* Peripheral Id */
2393                 { .reg = D40_DREG_PERIPHID0, .val = 0x0040},
2394                 { .reg = D40_DREG_PERIPHID1, .val = 0x0000},
2395                 /*
2396                  * D40_DREG_PERIPHID2 Depends on HW revision:
2397                  *  DB8500ed has 0x0008,
2398                  *  ? has 0x0018,
2399                  *  DB8500v1 has 0x0028
2400                  *  DB8500v2 has 0x0038
2401                  */
2402                 { .reg = D40_DREG_PERIPHID3, .val = 0x0000},
2403
2404                 /* PCell Id */
2405                 { .reg = D40_DREG_CELLID0, .val = 0x000d},
2406                 { .reg = D40_DREG_CELLID1, .val = 0x00f0},
2407                 { .reg = D40_DREG_CELLID2, .val = 0x0005},
2408                 { .reg = D40_DREG_CELLID3, .val = 0x00b1}
2409         };
2410         struct stedma40_platform_data *plat_data;
2411         struct clk *clk = NULL;
2412         void __iomem *virtbase = NULL;
2413         struct resource *res = NULL;
2414         struct d40_base *base = NULL;
2415         int num_log_chans = 0;
2416         int num_phy_chans;
2417         int i;
2418         u32 val;
2419         u32 rev;
2420
2421         clk = clk_get(&pdev->dev, NULL);
2422
2423         if (IS_ERR(clk)) {
2424                 d40_err(&pdev->dev, "No matching clock found\n");
2425                 goto failure;
2426         }
2427
2428         clk_enable(clk);
2429
2430         /* Get IO for DMAC base address */
2431         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
2432         if (!res)
2433                 goto failure;
2434
2435         if (request_mem_region(res->start, resource_size(res),
2436                                D40_NAME " I/O base") == NULL)
2437                 goto failure;
2438
2439         virtbase = ioremap(res->start, resource_size(res));
2440         if (!virtbase)
2441                 goto failure;
2442
2443         /* HW version check */
2444         for (i = 0; i < ARRAY_SIZE(dma_id_regs); i++) {
2445                 if (dma_id_regs[i].val !=
2446                     readl(virtbase + dma_id_regs[i].reg)) {
2447                         d40_err(&pdev->dev,
2448                                 "Unknown hardware! Expected 0x%x at 0x%x but got 0x%x\n",
2449                                 dma_id_regs[i].val,
2450                                 dma_id_regs[i].reg,
2451                                 readl(virtbase + dma_id_regs[i].reg));
2452                         goto failure;
2453                 }
2454         }
2455
2456         /* Get silicon revision and designer */
2457         val = readl(virtbase + D40_DREG_PERIPHID2);
2458
2459         if ((val & D40_DREG_PERIPHID2_DESIGNER_MASK) !=
2460             D40_HW_DESIGNER) {
2461                 d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
2462                         val & D40_DREG_PERIPHID2_DESIGNER_MASK,
2463                         D40_HW_DESIGNER);
2464                 goto failure;
2465         }
2466
2467         rev = (val & D40_DREG_PERIPHID2_REV_MASK) >>
2468                 D40_DREG_PERIPHID2_REV_POS;
2469
2470         /* The number of physical channels on this HW */
2471         num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
2472
2473         dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
2474                  rev, res->start);
2475
2476         plat_data = pdev->dev.platform_data;
2477
2478         /* Count the number of logical channels in use */
2479         for (i = 0; i < plat_data->dev_len; i++)
2480                 if (plat_data->dev_rx[i] != 0)
2481                         num_log_chans++;
2482
2483         for (i = 0; i < plat_data->dev_len; i++)
2484                 if (plat_data->dev_tx[i] != 0)
2485                         num_log_chans++;
2486
2487         base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
2488                        (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
2489                        sizeof(struct d40_chan), GFP_KERNEL);
2490
2491         if (base == NULL) {
2492                 d40_err(&pdev->dev, "Out of memory\n");
2493                 goto failure;
2494         }
2495
2496         base->rev = rev;
2497         base->clk = clk;
2498         base->num_phy_chans = num_phy_chans;
2499         base->num_log_chans = num_log_chans;
2500         base->phy_start = res->start;
2501         base->phy_size = resource_size(res);
2502         base->virtbase = virtbase;
2503         base->plat_data = plat_data;
2504         base->dev = &pdev->dev;
2505         base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
2506         base->log_chans = &base->phy_chans[num_phy_chans];
2507
2508         base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
2509                                 GFP_KERNEL);
2510         if (!base->phy_res)
2511                 goto failure;
2512
2513         base->lookup_phy_chans = kzalloc(num_phy_chans *
2514                                          sizeof(struct d40_chan *),
2515                                          GFP_KERNEL);
2516         if (!base->lookup_phy_chans)
2517                 goto failure;
2518
2519         if (num_log_chans + plat_data->memcpy_len) {
2520                 /*
2521                  * The max number of logical channels are event lines for all
2522                  * src devices and dst devices
2523                  */
2524                 base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
2525                                                  sizeof(struct d40_chan *),
2526                                                  GFP_KERNEL);
2527                 if (!base->lookup_log_chans)
2528                         goto failure;
2529         }
2530
2531         base->lcla_pool.alloc_map = kzalloc(num_phy_chans *
2532                                             sizeof(struct d40_desc *) *
2533                                             D40_LCLA_LINK_PER_EVENT_GRP,
2534                                             GFP_KERNEL);
2535         if (!base->lcla_pool.alloc_map)
2536                 goto failure;
2537
2538         base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
2539                                             0, SLAB_HWCACHE_ALIGN,
2540                                             NULL);
2541         if (base->desc_slab == NULL)
2542                 goto failure;
2543
2544         return base;
2545
2546 failure:
2547         if (!IS_ERR(clk)) {
2548                 clk_disable(clk);
2549                 clk_put(clk);
2550         }
2551         if (virtbase)
2552                 iounmap(virtbase);
2553         if (res)
2554                 release_mem_region(res->start,
2555                                    resource_size(res));
2556         if (virtbase)
2557                 iounmap(virtbase);
2558
2559         if (base) {
2560                 kfree(base->lcla_pool.alloc_map);
2561                 kfree(base->lookup_log_chans);
2562                 kfree(base->lookup_phy_chans);
2563                 kfree(base->phy_res);
2564                 kfree(base);
2565         }
2566
2567         return NULL;
2568 }
2569
2570 static void __init d40_hw_init(struct d40_base *base)
2571 {
2572
2573         static const struct d40_reg_val dma_init_reg[] = {
2574                 /* Clock every part of the DMA block from start */
2575                 { .reg = D40_DREG_GCC,    .val = 0x0000ff01},
2576
2577                 /* Interrupts on all logical channels */
2578                 { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
2579                 { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
2580                 { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
2581                 { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
2582                 { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
2583                 { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
2584                 { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
2585                 { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
2586                 { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
2587                 { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
2588                 { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
2589                 { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
2590         };
2591         int i;
2592         u32 prmseo[2] = {0, 0};
2593         u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
2594         u32 pcmis = 0;
2595         u32 pcicr = 0;
2596
2597         for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
2598                 writel(dma_init_reg[i].val,
2599                        base->virtbase + dma_init_reg[i].reg);
2600
2601         /* Configure all our dma channels to default settings */
2602         for (i = 0; i < base->num_phy_chans; i++) {
2603
2604                 activeo[i % 2] = activeo[i % 2] << 2;
2605
2606                 if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
2607                     == D40_ALLOC_PHY) {
2608                         activeo[i % 2] |= 3;
2609                         continue;
2610                 }
2611
2612                 /* Enable interrupt # */
2613                 pcmis = (pcmis << 1) | 1;
2614
2615                 /* Clear interrupt # */
2616                 pcicr = (pcicr << 1) | 1;
2617
2618                 /* Set channel to physical mode */
2619                 prmseo[i % 2] = prmseo[i % 2] << 2;
2620                 prmseo[i % 2] |= 1;
2621
2622         }
2623
2624         writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
2625         writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
2626         writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
2627         writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
2628
2629         /* Write which interrupt to enable */
2630         writel(pcmis, base->virtbase + D40_DREG_PCMIS);
2631
2632         /* Write which interrupt to clear */
2633         writel(pcicr, base->virtbase + D40_DREG_PCICR);
2634
2635 }
2636
2637 static int __init d40_lcla_allocate(struct d40_base *base)
2638 {
2639         struct d40_lcla_pool *pool = &base->lcla_pool;
2640         unsigned long *page_list;
2641         int i, j;
2642         int ret = 0;
2643
2644         /*
2645          * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
2646          * To full fill this hardware requirement without wasting 256 kb
2647          * we allocate pages until we get an aligned one.
2648          */
2649         page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
2650                             GFP_KERNEL);
2651
2652         if (!page_list) {
2653                 ret = -ENOMEM;
2654                 goto failure;
2655         }
2656
2657         /* Calculating how many pages that are required */
2658         base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
2659
2660         for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
2661                 page_list[i] = __get_free_pages(GFP_KERNEL,
2662                                                 base->lcla_pool.pages);
2663                 if (!page_list[i]) {
2664
2665                         d40_err(base->dev, "Failed to allocate %d pages.\n",
2666                                 base->lcla_pool.pages);
2667
2668                         for (j = 0; j < i; j++)
2669                                 free_pages(page_list[j], base->lcla_pool.pages);
2670                         goto failure;
2671                 }
2672
2673                 if ((virt_to_phys((void *)page_list[i]) &
2674                      (LCLA_ALIGNMENT - 1)) == 0)
2675                         break;
2676         }
2677
2678         for (j = 0; j < i; j++)
2679                 free_pages(page_list[j], base->lcla_pool.pages);
2680
2681         if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
2682                 base->lcla_pool.base = (void *)page_list[i];
2683         } else {
2684                 /*
2685                  * After many attempts and no succees with finding the correct
2686                  * alignment, try with allocating a big buffer.
2687                  */
2688                 dev_warn(base->dev,
2689                          "[%s] Failed to get %d pages @ 18 bit align.\n",
2690                          __func__, base->lcla_pool.pages);
2691                 base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
2692                                                          base->num_phy_chans +
2693                                                          LCLA_ALIGNMENT,
2694                                                          GFP_KERNEL);
2695                 if (!base->lcla_pool.base_unaligned) {
2696                         ret = -ENOMEM;
2697                         goto failure;
2698                 }
2699
2700                 base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
2701                                                  LCLA_ALIGNMENT);
2702         }
2703
2704         pool->dma_addr = dma_map_single(base->dev, pool->base,
2705                                         SZ_1K * base->num_phy_chans,
2706                                         DMA_TO_DEVICE);
2707         if (dma_mapping_error(base->dev, pool->dma_addr)) {
2708                 pool->dma_addr = 0;
2709                 ret = -ENOMEM;
2710                 goto failure;
2711         }
2712
2713         writel(virt_to_phys(base->lcla_pool.base),
2714                base->virtbase + D40_DREG_LCLA);
2715 failure:
2716         kfree(page_list);
2717         return ret;
2718 }
2719
2720 static int __init d40_probe(struct platform_device *pdev)
2721 {
2722         int err;
2723         int ret = -ENOENT;
2724         struct d40_base *base;
2725         struct resource *res = NULL;
2726         int num_reserved_chans;
2727         u32 val;
2728
2729         base = d40_hw_detect_init(pdev);
2730
2731         if (!base)
2732                 goto failure;
2733
2734         num_reserved_chans = d40_phy_res_init(base);
2735
2736         platform_set_drvdata(pdev, base);
2737
2738         spin_lock_init(&base->interrupt_lock);
2739         spin_lock_init(&base->execmd_lock);
2740
2741         /* Get IO for logical channel parameter address */
2742         res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
2743         if (!res) {
2744                 ret = -ENOENT;
2745                 d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
2746                 goto failure;
2747         }
2748         base->lcpa_size = resource_size(res);
2749         base->phy_lcpa = res->start;
2750
2751         if (request_mem_region(res->start, resource_size(res),
2752                                D40_NAME " I/O lcpa") == NULL) {
2753                 ret = -EBUSY;
2754                 d40_err(&pdev->dev,
2755                         "Failed to request LCPA region 0x%x-0x%x\n",
2756                         res->start, res->end);
2757                 goto failure;
2758         }
2759
2760         /* We make use of ESRAM memory for this. */
2761         val = readl(base->virtbase + D40_DREG_LCPA);
2762         if (res->start != val && val != 0) {
2763                 dev_warn(&pdev->dev,
2764                          "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
2765                          __func__, val, res->start);
2766         } else
2767                 writel(res->start, base->virtbase + D40_DREG_LCPA);
2768
2769         base->lcpa_base = ioremap(res->start, resource_size(res));
2770         if (!base->lcpa_base) {
2771                 ret = -ENOMEM;
2772                 d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
2773                 goto failure;
2774         }
2775
2776         ret = d40_lcla_allocate(base);
2777         if (ret) {
2778                 d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
2779                 goto failure;
2780         }
2781
2782         spin_lock_init(&base->lcla_pool.lock);
2783
2784         base->irq = platform_get_irq(pdev, 0);
2785
2786         ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
2787         if (ret) {
2788                 d40_err(&pdev->dev, "No IRQ defined\n");
2789                 goto failure;
2790         }
2791
2792         err = d40_dmaengine_init(base, num_reserved_chans);
2793         if (err)
2794                 goto failure;
2795
2796         d40_hw_init(base);
2797
2798         dev_info(base->dev, "initialized\n");
2799         return 0;
2800
2801 failure:
2802         if (base) {
2803                 if (base->desc_slab)
2804                         kmem_cache_destroy(base->desc_slab);
2805                 if (base->virtbase)
2806                         iounmap(base->virtbase);
2807
2808                 if (base->lcla_pool.dma_addr)
2809                         dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
2810                                          SZ_1K * base->num_phy_chans,
2811                                          DMA_TO_DEVICE);
2812
2813                 if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
2814                         free_pages((unsigned long)base->lcla_pool.base,
2815                                    base->lcla_pool.pages);
2816
2817                 kfree(base->lcla_pool.base_unaligned);
2818
2819                 if (base->phy_lcpa)
2820                         release_mem_region(base->phy_lcpa,
2821                                            base->lcpa_size);
2822                 if (base->phy_start)
2823                         release_mem_region(base->phy_start,
2824                                            base->phy_size);
2825                 if (base->clk) {
2826                         clk_disable(base->clk);
2827                         clk_put(base->clk);
2828                 }
2829
2830                 kfree(base->lcla_pool.alloc_map);
2831                 kfree(base->lookup_log_chans);
2832                 kfree(base->lookup_phy_chans);
2833                 kfree(base->phy_res);
2834                 kfree(base);
2835         }
2836
2837         d40_err(&pdev->dev, "probe failed\n");
2838         return ret;
2839 }
2840
2841 static struct platform_driver d40_driver = {
2842         .driver = {
2843                 .owner = THIS_MODULE,
2844                 .name  = D40_NAME,
2845         },
2846 };
2847
2848 static int __init stedma40_init(void)
2849 {
2850         return platform_driver_probe(&d40_driver, d40_probe);
2851 }
2852 arch_initcall(stedma40_init);