1e2413093615be802b2c8eb7c62940660b6c6c6a
[pandora-kernel.git] / drivers / char / tty_io.c
1 /*
2  *  linux/drivers/char/tty_io.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6
7 /*
8  * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9  * or rs-channels. It also implements echoing, cooked mode etc.
10  *
11  * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
12  *
13  * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14  * tty_struct and tty_queue structures.  Previously there was an array
15  * of 256 tty_struct's which was statically allocated, and the
16  * tty_queue structures were allocated at boot time.  Both are now
17  * dynamically allocated only when the tty is open.
18  *
19  * Also restructured routines so that there is more of a separation
20  * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21  * the low-level tty routines (serial.c, pty.c, console.c).  This
22  * makes for cleaner and more compact code.  -TYT, 9/17/92
23  *
24  * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25  * which can be dynamically activated and de-activated by the line
26  * discipline handling modules (like SLIP).
27  *
28  * NOTE: pay no attention to the line discipline code (yet); its
29  * interface is still subject to change in this version...
30  * -- TYT, 1/31/92
31  *
32  * Added functionality to the OPOST tty handling.  No delays, but all
33  * other bits should be there.
34  *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
35  *
36  * Rewrote canonical mode and added more termios flags.
37  *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
38  *
39  * Reorganized FASYNC support so mouse code can share it.
40  *      -- ctm@ardi.com, 9Sep95
41  *
42  * New TIOCLINUX variants added.
43  *      -- mj@k332.feld.cvut.cz, 19-Nov-95
44  *
45  * Restrict vt switching via ioctl()
46  *      -- grif@cs.ucr.edu, 5-Dec-95
47  *
48  * Move console and virtual terminal code to more appropriate files,
49  * implement CONFIG_VT and generalize console device interface.
50  *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
51  *
52  * Rewrote tty_init_dev and tty_release_dev to eliminate races.
53  *      -- Bill Hawes <whawes@star.net>, June 97
54  *
55  * Added devfs support.
56  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
57  *
58  * Added support for a Unix98-style ptmx device.
59  *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
60  *
61  * Reduced memory usage for older ARM systems
62  *      -- Russell King <rmk@arm.linux.org.uk>
63  *
64  * Move do_SAK() into process context.  Less stack use in devfs functions.
65  * alloc_tty_struct() always uses kmalloc()
66  *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
67  */
68
69 #include <linux/types.h>
70 #include <linux/major.h>
71 #include <linux/errno.h>
72 #include <linux/signal.h>
73 #include <linux/fcntl.h>
74 #include <linux/sched.h>
75 #include <linux/interrupt.h>
76 #include <linux/tty.h>
77 #include <linux/tty_driver.h>
78 #include <linux/tty_flip.h>
79 #include <linux/devpts_fs.h>
80 #include <linux/file.h>
81 #include <linux/fdtable.h>
82 #include <linux/console.h>
83 #include <linux/timer.h>
84 #include <linux/ctype.h>
85 #include <linux/kd.h>
86 #include <linux/mm.h>
87 #include <linux/string.h>
88 #include <linux/slab.h>
89 #include <linux/poll.h>
90 #include <linux/proc_fs.h>
91 #include <linux/init.h>
92 #include <linux/module.h>
93 #include <linux/smp_lock.h>
94 #include <linux/device.h>
95 #include <linux/wait.h>
96 #include <linux/bitops.h>
97 #include <linux/delay.h>
98 #include <linux/seq_file.h>
99
100 #include <linux/uaccess.h>
101 #include <asm/system.h>
102
103 #include <linux/kbd_kern.h>
104 #include <linux/vt_kern.h>
105 #include <linux/selection.h>
106
107 #include <linux/kmod.h>
108 #include <linux/nsproxy.h>
109
110 #undef TTY_DEBUG_HANGUP
111
112 #define TTY_PARANOIA_CHECK 1
113 #define CHECK_TTY_COUNT 1
114
115 struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
116         .c_iflag = ICRNL | IXON,
117         .c_oflag = OPOST | ONLCR,
118         .c_cflag = B38400 | CS8 | CREAD | HUPCL,
119         .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
120                    ECHOCTL | ECHOKE | IEXTEN,
121         .c_cc = INIT_C_CC,
122         .c_ispeed = 38400,
123         .c_ospeed = 38400
124 };
125
126 EXPORT_SYMBOL(tty_std_termios);
127
128 /* This list gets poked at by procfs and various bits of boot up code. This
129    could do with some rationalisation such as pulling the tty proc function
130    into this file */
131
132 LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
133
134 /* Mutex to protect creating and releasing a tty. This is shared with
135    vt.c for deeply disgusting hack reasons */
136 DEFINE_MUTEX(tty_mutex);
137 EXPORT_SYMBOL(tty_mutex);
138
139 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
140 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
141 ssize_t redirected_tty_write(struct file *, const char __user *,
142                                                         size_t, loff_t *);
143 static unsigned int tty_poll(struct file *, poll_table *);
144 static int tty_open(struct inode *, struct file *);
145 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
146 #ifdef CONFIG_COMPAT
147 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
148                                 unsigned long arg);
149 #else
150 #define tty_compat_ioctl NULL
151 #endif
152 static int tty_fasync(int fd, struct file *filp, int on);
153 static void release_tty(struct tty_struct *tty, int idx);
154 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
155 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
156
157 /**
158  *      alloc_tty_struct        -       allocate a tty object
159  *
160  *      Return a new empty tty structure. The data fields have not
161  *      been initialized in any way but has been zeroed
162  *
163  *      Locking: none
164  */
165
166 struct tty_struct *alloc_tty_struct(void)
167 {
168         return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
169 }
170
171 /**
172  *      free_tty_struct         -       free a disused tty
173  *      @tty: tty struct to free
174  *
175  *      Free the write buffers, tty queue and tty memory itself.
176  *
177  *      Locking: none. Must be called after tty is definitely unused
178  */
179
180 void free_tty_struct(struct tty_struct *tty)
181 {
182         kfree(tty->write_buf);
183         tty_buffer_free_all(tty);
184         kfree(tty);
185 }
186
187 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
188
189 /**
190  *      tty_name        -       return tty naming
191  *      @tty: tty structure
192  *      @buf: buffer for output
193  *
194  *      Convert a tty structure into a name. The name reflects the kernel
195  *      naming policy and if udev is in use may not reflect user space
196  *
197  *      Locking: none
198  */
199
200 char *tty_name(struct tty_struct *tty, char *buf)
201 {
202         if (!tty) /* Hmm.  NULL pointer.  That's fun. */
203                 strcpy(buf, "NULL tty");
204         else
205                 strcpy(buf, tty->name);
206         return buf;
207 }
208
209 EXPORT_SYMBOL(tty_name);
210
211 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
212                               const char *routine)
213 {
214 #ifdef TTY_PARANOIA_CHECK
215         if (!tty) {
216                 printk(KERN_WARNING
217                         "null TTY for (%d:%d) in %s\n",
218                         imajor(inode), iminor(inode), routine);
219                 return 1;
220         }
221         if (tty->magic != TTY_MAGIC) {
222                 printk(KERN_WARNING
223                         "bad magic number for tty struct (%d:%d) in %s\n",
224                         imajor(inode), iminor(inode), routine);
225                 return 1;
226         }
227 #endif
228         return 0;
229 }
230
231 static int check_tty_count(struct tty_struct *tty, const char *routine)
232 {
233 #ifdef CHECK_TTY_COUNT
234         struct list_head *p;
235         int count = 0;
236
237         file_list_lock();
238         list_for_each(p, &tty->tty_files) {
239                 count++;
240         }
241         file_list_unlock();
242         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
243             tty->driver->subtype == PTY_TYPE_SLAVE &&
244             tty->link && tty->link->count)
245                 count++;
246         if (tty->count != count) {
247                 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
248                                     "!= #fd's(%d) in %s\n",
249                        tty->name, tty->count, count, routine);
250                 return count;
251         }
252 #endif
253         return 0;
254 }
255
256 /**
257  *      get_tty_driver          -       find device of a tty
258  *      @dev_t: device identifier
259  *      @index: returns the index of the tty
260  *
261  *      This routine returns a tty driver structure, given a device number
262  *      and also passes back the index number.
263  *
264  *      Locking: caller must hold tty_mutex
265  */
266
267 static struct tty_driver *get_tty_driver(dev_t device, int *index)
268 {
269         struct tty_driver *p;
270
271         list_for_each_entry(p, &tty_drivers, tty_drivers) {
272                 dev_t base = MKDEV(p->major, p->minor_start);
273                 if (device < base || device >= base + p->num)
274                         continue;
275                 *index = device - base;
276                 return tty_driver_kref_get(p);
277         }
278         return NULL;
279 }
280
281 #ifdef CONFIG_CONSOLE_POLL
282
283 /**
284  *      tty_find_polling_driver -       find device of a polled tty
285  *      @name: name string to match
286  *      @line: pointer to resulting tty line nr
287  *
288  *      This routine returns a tty driver structure, given a name
289  *      and the condition that the tty driver is capable of polled
290  *      operation.
291  */
292 struct tty_driver *tty_find_polling_driver(char *name, int *line)
293 {
294         struct tty_driver *p, *res = NULL;
295         int tty_line = 0;
296         int len;
297         char *str, *stp;
298
299         for (str = name; *str; str++)
300                 if ((*str >= '0' && *str <= '9') || *str == ',')
301                         break;
302         if (!*str)
303                 return NULL;
304
305         len = str - name;
306         tty_line = simple_strtoul(str, &str, 10);
307
308         mutex_lock(&tty_mutex);
309         /* Search through the tty devices to look for a match */
310         list_for_each_entry(p, &tty_drivers, tty_drivers) {
311                 if (strncmp(name, p->name, len) != 0)
312                         continue;
313                 stp = str;
314                 if (*stp == ',')
315                         stp++;
316                 if (*stp == '\0')
317                         stp = NULL;
318
319                 if (tty_line >= 0 && tty_line <= p->num && p->ops &&
320                     p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
321                         res = tty_driver_kref_get(p);
322                         *line = tty_line;
323                         break;
324                 }
325         }
326         mutex_unlock(&tty_mutex);
327
328         return res;
329 }
330 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
331 #endif
332
333 /**
334  *      tty_check_change        -       check for POSIX terminal changes
335  *      @tty: tty to check
336  *
337  *      If we try to write to, or set the state of, a terminal and we're
338  *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
339  *      ignored, go ahead and perform the operation.  (POSIX 7.2)
340  *
341  *      Locking: ctrl_lock
342  */
343
344 int tty_check_change(struct tty_struct *tty)
345 {
346         unsigned long flags;
347         int ret = 0;
348
349         if (current->signal->tty != tty)
350                 return 0;
351
352         spin_lock_irqsave(&tty->ctrl_lock, flags);
353
354         if (!tty->pgrp) {
355                 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
356                 goto out_unlock;
357         }
358         if (task_pgrp(current) == tty->pgrp)
359                 goto out_unlock;
360         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
361         if (is_ignored(SIGTTOU))
362                 goto out;
363         if (is_current_pgrp_orphaned()) {
364                 ret = -EIO;
365                 goto out;
366         }
367         kill_pgrp(task_pgrp(current), SIGTTOU, 1);
368         set_thread_flag(TIF_SIGPENDING);
369         ret = -ERESTARTSYS;
370 out:
371         return ret;
372 out_unlock:
373         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
374         return ret;
375 }
376
377 EXPORT_SYMBOL(tty_check_change);
378
379 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
380                                 size_t count, loff_t *ppos)
381 {
382         return 0;
383 }
384
385 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
386                                  size_t count, loff_t *ppos)
387 {
388         return -EIO;
389 }
390
391 /* No kernel lock held - none needed ;) */
392 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
393 {
394         return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
395 }
396
397 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
398                 unsigned long arg)
399 {
400         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
401 }
402
403 static long hung_up_tty_compat_ioctl(struct file *file,
404                                      unsigned int cmd, unsigned long arg)
405 {
406         return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
407 }
408
409 static const struct file_operations tty_fops = {
410         .llseek         = no_llseek,
411         .read           = tty_read,
412         .write          = tty_write,
413         .poll           = tty_poll,
414         .unlocked_ioctl = tty_ioctl,
415         .compat_ioctl   = tty_compat_ioctl,
416         .open           = tty_open,
417         .release        = tty_release,
418         .fasync         = tty_fasync,
419 };
420
421 static const struct file_operations console_fops = {
422         .llseek         = no_llseek,
423         .read           = tty_read,
424         .write          = redirected_tty_write,
425         .poll           = tty_poll,
426         .unlocked_ioctl = tty_ioctl,
427         .compat_ioctl   = tty_compat_ioctl,
428         .open           = tty_open,
429         .release        = tty_release,
430         .fasync         = tty_fasync,
431 };
432
433 static const struct file_operations hung_up_tty_fops = {
434         .llseek         = no_llseek,
435         .read           = hung_up_tty_read,
436         .write          = hung_up_tty_write,
437         .poll           = hung_up_tty_poll,
438         .unlocked_ioctl = hung_up_tty_ioctl,
439         .compat_ioctl   = hung_up_tty_compat_ioctl,
440         .release        = tty_release,
441 };
442
443 static DEFINE_SPINLOCK(redirect_lock);
444 static struct file *redirect;
445
446 /**
447  *      tty_wakeup      -       request more data
448  *      @tty: terminal
449  *
450  *      Internal and external helper for wakeups of tty. This function
451  *      informs the line discipline if present that the driver is ready
452  *      to receive more output data.
453  */
454
455 void tty_wakeup(struct tty_struct *tty)
456 {
457         struct tty_ldisc *ld;
458
459         if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
460                 ld = tty_ldisc_ref(tty);
461                 if (ld) {
462                         if (ld->ops->write_wakeup)
463                                 ld->ops->write_wakeup(tty);
464                         tty_ldisc_deref(ld);
465                 }
466         }
467         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
468 }
469
470 EXPORT_SYMBOL_GPL(tty_wakeup);
471
472 /**
473  *      do_tty_hangup           -       actual handler for hangup events
474  *      @work: tty device
475  *
476  *      This can be called by the "eventd" kernel thread.  That is process
477  *      synchronous but doesn't hold any locks, so we need to make sure we
478  *      have the appropriate locks for what we're doing.
479  *
480  *      The hangup event clears any pending redirections onto the hung up
481  *      device. It ensures future writes will error and it does the needed
482  *      line discipline hangup and signal delivery. The tty object itself
483  *      remains intact.
484  *
485  *      Locking:
486  *              BKL
487  *                redirect lock for undoing redirection
488  *                file list lock for manipulating list of ttys
489  *                tty_ldisc_lock from called functions
490  *                termios_mutex resetting termios data
491  *                tasklist_lock to walk task list for hangup event
492  *                  ->siglock to protect ->signal/->sighand
493  */
494 static void do_tty_hangup(struct work_struct *work)
495 {
496         struct tty_struct *tty =
497                 container_of(work, struct tty_struct, hangup_work);
498         struct file *cons_filp = NULL;
499         struct file *filp, *f = NULL;
500         struct task_struct *p;
501         int    closecount = 0, n;
502         unsigned long flags;
503         int refs = 0;
504
505         if (!tty)
506                 return;
507
508         /* inuse_filps is protected by the single kernel lock */
509         lock_kernel();
510
511         spin_lock(&redirect_lock);
512         if (redirect && redirect->private_data == tty) {
513                 f = redirect;
514                 redirect = NULL;
515         }
516         spin_unlock(&redirect_lock);
517
518         check_tty_count(tty, "do_tty_hangup");
519         file_list_lock();
520         /* This breaks for file handles being sent over AF_UNIX sockets ? */
521         list_for_each_entry(filp, &tty->tty_files, f_u.fu_list) {
522                 if (filp->f_op->write == redirected_tty_write)
523                         cons_filp = filp;
524                 if (filp->f_op->write != tty_write)
525                         continue;
526                 closecount++;
527                 tty_fasync(-1, filp, 0);        /* can't block */
528                 filp->f_op = &hung_up_tty_fops;
529         }
530         file_list_unlock();
531
532         tty_ldisc_hangup(tty);
533
534         read_lock(&tasklist_lock);
535         if (tty->session) {
536                 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
537                         spin_lock_irq(&p->sighand->siglock);
538                         if (p->signal->tty == tty) {
539                                 p->signal->tty = NULL;
540                                 /* We defer the dereferences outside fo
541                                    the tasklist lock */
542                                 refs++;
543                         }
544                         if (!p->signal->leader) {
545                                 spin_unlock_irq(&p->sighand->siglock);
546                                 continue;
547                         }
548                         __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
549                         __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
550                         put_pid(p->signal->tty_old_pgrp);  /* A noop */
551                         spin_lock_irqsave(&tty->ctrl_lock, flags);
552                         if (tty->pgrp)
553                                 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
554                         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
555                         spin_unlock_irq(&p->sighand->siglock);
556                 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
557         }
558         read_unlock(&tasklist_lock);
559
560         spin_lock_irqsave(&tty->ctrl_lock, flags);
561         clear_bit(TTY_THROTTLED, &tty->flags);
562         clear_bit(TTY_PUSH, &tty->flags);
563         clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
564         put_pid(tty->session);
565         put_pid(tty->pgrp);
566         tty->session = NULL;
567         tty->pgrp = NULL;
568         tty->ctrl_status = 0;
569         set_bit(TTY_HUPPED, &tty->flags);
570         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
571
572         /* Account for the p->signal references we killed */
573         while (refs--)
574                 tty_kref_put(tty);
575
576         /*
577          * If one of the devices matches a console pointer, we
578          * cannot just call hangup() because that will cause
579          * tty->count and state->count to go out of sync.
580          * So we just call close() the right number of times.
581          */
582         if (cons_filp) {
583                 if (tty->ops->close)
584                         for (n = 0; n < closecount; n++)
585                                 tty->ops->close(tty, cons_filp);
586         } else if (tty->ops->hangup)
587                 (tty->ops->hangup)(tty);
588         /*
589          * We don't want to have driver/ldisc interactions beyond
590          * the ones we did here. The driver layer expects no
591          * calls after ->hangup() from the ldisc side. However we
592          * can't yet guarantee all that.
593          */
594         set_bit(TTY_HUPPED, &tty->flags);
595         tty_ldisc_enable(tty);
596         unlock_kernel();
597         if (f)
598                 fput(f);
599 }
600
601 /**
602  *      tty_hangup              -       trigger a hangup event
603  *      @tty: tty to hangup
604  *
605  *      A carrier loss (virtual or otherwise) has occurred on this like
606  *      schedule a hangup sequence to run after this event.
607  */
608
609 void tty_hangup(struct tty_struct *tty)
610 {
611 #ifdef TTY_DEBUG_HANGUP
612         char    buf[64];
613         printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
614 #endif
615         schedule_work(&tty->hangup_work);
616 }
617
618 EXPORT_SYMBOL(tty_hangup);
619
620 /**
621  *      tty_vhangup             -       process vhangup
622  *      @tty: tty to hangup
623  *
624  *      The user has asked via system call for the terminal to be hung up.
625  *      We do this synchronously so that when the syscall returns the process
626  *      is complete. That guarantee is necessary for security reasons.
627  */
628
629 void tty_vhangup(struct tty_struct *tty)
630 {
631 #ifdef TTY_DEBUG_HANGUP
632         char    buf[64];
633
634         printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
635 #endif
636         do_tty_hangup(&tty->hangup_work);
637 }
638
639 EXPORT_SYMBOL(tty_vhangup);
640
641 /**
642  *      tty_vhangup_self        -       process vhangup for own ctty
643  *
644  *      Perform a vhangup on the current controlling tty
645  */
646
647 void tty_vhangup_self(void)
648 {
649         struct tty_struct *tty;
650
651         tty = get_current_tty();
652         if (tty) {
653                 tty_vhangup(tty);
654                 tty_kref_put(tty);
655         }
656 }
657
658 /**
659  *      tty_hung_up_p           -       was tty hung up
660  *      @filp: file pointer of tty
661  *
662  *      Return true if the tty has been subject to a vhangup or a carrier
663  *      loss
664  */
665
666 int tty_hung_up_p(struct file *filp)
667 {
668         return (filp->f_op == &hung_up_tty_fops);
669 }
670
671 EXPORT_SYMBOL(tty_hung_up_p);
672
673 static void session_clear_tty(struct pid *session)
674 {
675         struct task_struct *p;
676         do_each_pid_task(session, PIDTYPE_SID, p) {
677                 proc_clear_tty(p);
678         } while_each_pid_task(session, PIDTYPE_SID, p);
679 }
680
681 /**
682  *      disassociate_ctty       -       disconnect controlling tty
683  *      @on_exit: true if exiting so need to "hang up" the session
684  *
685  *      This function is typically called only by the session leader, when
686  *      it wants to disassociate itself from its controlling tty.
687  *
688  *      It performs the following functions:
689  *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
690  *      (2)  Clears the tty from being controlling the session
691  *      (3)  Clears the controlling tty for all processes in the
692  *              session group.
693  *
694  *      The argument on_exit is set to 1 if called when a process is
695  *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
696  *
697  *      Locking:
698  *              BKL is taken for hysterical raisins
699  *                tty_mutex is taken to protect tty
700  *                ->siglock is taken to protect ->signal/->sighand
701  *                tasklist_lock is taken to walk process list for sessions
702  *                  ->siglock is taken to protect ->signal/->sighand
703  */
704
705 void disassociate_ctty(int on_exit)
706 {
707         struct tty_struct *tty;
708         struct pid *tty_pgrp = NULL;
709
710
711         tty = get_current_tty();
712         if (tty) {
713                 tty_pgrp = get_pid(tty->pgrp);
714                 lock_kernel();
715                 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY)
716                         tty_vhangup(tty);
717                 unlock_kernel();
718                 tty_kref_put(tty);
719         } else if (on_exit) {
720                 struct pid *old_pgrp;
721                 spin_lock_irq(&current->sighand->siglock);
722                 old_pgrp = current->signal->tty_old_pgrp;
723                 current->signal->tty_old_pgrp = NULL;
724                 spin_unlock_irq(&current->sighand->siglock);
725                 if (old_pgrp) {
726                         kill_pgrp(old_pgrp, SIGHUP, on_exit);
727                         kill_pgrp(old_pgrp, SIGCONT, on_exit);
728                         put_pid(old_pgrp);
729                 }
730                 return;
731         }
732         if (tty_pgrp) {
733                 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
734                 if (!on_exit)
735                         kill_pgrp(tty_pgrp, SIGCONT, on_exit);
736                 put_pid(tty_pgrp);
737         }
738
739         spin_lock_irq(&current->sighand->siglock);
740         put_pid(current->signal->tty_old_pgrp);
741         current->signal->tty_old_pgrp = NULL;
742         spin_unlock_irq(&current->sighand->siglock);
743
744         tty = get_current_tty();
745         if (tty) {
746                 unsigned long flags;
747                 spin_lock_irqsave(&tty->ctrl_lock, flags);
748                 put_pid(tty->session);
749                 put_pid(tty->pgrp);
750                 tty->session = NULL;
751                 tty->pgrp = NULL;
752                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
753                 tty_kref_put(tty);
754         } else {
755 #ifdef TTY_DEBUG_HANGUP
756                 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
757                        " = NULL", tty);
758 #endif
759         }
760
761         /* Now clear signal->tty under the lock */
762         read_lock(&tasklist_lock);
763         session_clear_tty(task_session(current));
764         read_unlock(&tasklist_lock);
765 }
766
767 /**
768  *
769  *      no_tty  - Ensure the current process does not have a controlling tty
770  */
771 void no_tty(void)
772 {
773         struct task_struct *tsk = current;
774         lock_kernel();
775         if (tsk->signal->leader)
776                 disassociate_ctty(0);
777         unlock_kernel();
778         proc_clear_tty(tsk);
779 }
780
781
782 /**
783  *      stop_tty        -       propagate flow control
784  *      @tty: tty to stop
785  *
786  *      Perform flow control to the driver. For PTY/TTY pairs we
787  *      must also propagate the TIOCKPKT status. May be called
788  *      on an already stopped device and will not re-call the driver
789  *      method.
790  *
791  *      This functionality is used by both the line disciplines for
792  *      halting incoming flow and by the driver. It may therefore be
793  *      called from any context, may be under the tty atomic_write_lock
794  *      but not always.
795  *
796  *      Locking:
797  *              Uses the tty control lock internally
798  */
799
800 void stop_tty(struct tty_struct *tty)
801 {
802         unsigned long flags;
803         spin_lock_irqsave(&tty->ctrl_lock, flags);
804         if (tty->stopped) {
805                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
806                 return;
807         }
808         tty->stopped = 1;
809         if (tty->link && tty->link->packet) {
810                 tty->ctrl_status &= ~TIOCPKT_START;
811                 tty->ctrl_status |= TIOCPKT_STOP;
812                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
813         }
814         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
815         if (tty->ops->stop)
816                 (tty->ops->stop)(tty);
817 }
818
819 EXPORT_SYMBOL(stop_tty);
820
821 /**
822  *      start_tty       -       propagate flow control
823  *      @tty: tty to start
824  *
825  *      Start a tty that has been stopped if at all possible. Perform
826  *      any necessary wakeups and propagate the TIOCPKT status. If this
827  *      is the tty was previous stopped and is being started then the
828  *      driver start method is invoked and the line discipline woken.
829  *
830  *      Locking:
831  *              ctrl_lock
832  */
833
834 void start_tty(struct tty_struct *tty)
835 {
836         unsigned long flags;
837         spin_lock_irqsave(&tty->ctrl_lock, flags);
838         if (!tty->stopped || tty->flow_stopped) {
839                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
840                 return;
841         }
842         tty->stopped = 0;
843         if (tty->link && tty->link->packet) {
844                 tty->ctrl_status &= ~TIOCPKT_STOP;
845                 tty->ctrl_status |= TIOCPKT_START;
846                 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
847         }
848         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
849         if (tty->ops->start)
850                 (tty->ops->start)(tty);
851         /* If we have a running line discipline it may need kicking */
852         tty_wakeup(tty);
853 }
854
855 EXPORT_SYMBOL(start_tty);
856
857 /**
858  *      tty_read        -       read method for tty device files
859  *      @file: pointer to tty file
860  *      @buf: user buffer
861  *      @count: size of user buffer
862  *      @ppos: unused
863  *
864  *      Perform the read system call function on this terminal device. Checks
865  *      for hung up devices before calling the line discipline method.
866  *
867  *      Locking:
868  *              Locks the line discipline internally while needed. Multiple
869  *      read calls may be outstanding in parallel.
870  */
871
872 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
873                         loff_t *ppos)
874 {
875         int i;
876         struct tty_struct *tty;
877         struct inode *inode;
878         struct tty_ldisc *ld;
879
880         tty = (struct tty_struct *)file->private_data;
881         inode = file->f_path.dentry->d_inode;
882         if (tty_paranoia_check(tty, inode, "tty_read"))
883                 return -EIO;
884         if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
885                 return -EIO;
886
887         /* We want to wait for the line discipline to sort out in this
888            situation */
889         ld = tty_ldisc_ref_wait(tty);
890         if (ld->ops->read)
891                 i = (ld->ops->read)(tty, file, buf, count);
892         else
893                 i = -EIO;
894         tty_ldisc_deref(ld);
895         if (i > 0)
896                 inode->i_atime = current_fs_time(inode->i_sb);
897         return i;
898 }
899
900 void tty_write_unlock(struct tty_struct *tty)
901 {
902         mutex_unlock(&tty->atomic_write_lock);
903         wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
904 }
905
906 int tty_write_lock(struct tty_struct *tty, int ndelay)
907 {
908         if (!mutex_trylock(&tty->atomic_write_lock)) {
909                 if (ndelay)
910                         return -EAGAIN;
911                 if (mutex_lock_interruptible(&tty->atomic_write_lock))
912                         return -ERESTARTSYS;
913         }
914         return 0;
915 }
916
917 /*
918  * Split writes up in sane blocksizes to avoid
919  * denial-of-service type attacks
920  */
921 static inline ssize_t do_tty_write(
922         ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
923         struct tty_struct *tty,
924         struct file *file,
925         const char __user *buf,
926         size_t count)
927 {
928         ssize_t ret, written = 0;
929         unsigned int chunk;
930
931         ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
932         if (ret < 0)
933                 return ret;
934
935         /*
936          * We chunk up writes into a temporary buffer. This
937          * simplifies low-level drivers immensely, since they
938          * don't have locking issues and user mode accesses.
939          *
940          * But if TTY_NO_WRITE_SPLIT is set, we should use a
941          * big chunk-size..
942          *
943          * The default chunk-size is 2kB, because the NTTY
944          * layer has problems with bigger chunks. It will
945          * claim to be able to handle more characters than
946          * it actually does.
947          *
948          * FIXME: This can probably go away now except that 64K chunks
949          * are too likely to fail unless switched to vmalloc...
950          */
951         chunk = 2048;
952         if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
953                 chunk = 65536;
954         if (count < chunk)
955                 chunk = count;
956
957         /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
958         if (tty->write_cnt < chunk) {
959                 unsigned char *buf_chunk;
960
961                 if (chunk < 1024)
962                         chunk = 1024;
963
964                 buf_chunk = kmalloc(chunk, GFP_KERNEL);
965                 if (!buf_chunk) {
966                         ret = -ENOMEM;
967                         goto out;
968                 }
969                 kfree(tty->write_buf);
970                 tty->write_cnt = chunk;
971                 tty->write_buf = buf_chunk;
972         }
973
974         /* Do the write .. */
975         for (;;) {
976                 size_t size = count;
977                 if (size > chunk)
978                         size = chunk;
979                 ret = -EFAULT;
980                 if (copy_from_user(tty->write_buf, buf, size))
981                         break;
982                 ret = write(tty, file, tty->write_buf, size);
983                 if (ret <= 0)
984                         break;
985                 written += ret;
986                 buf += ret;
987                 count -= ret;
988                 if (!count)
989                         break;
990                 ret = -ERESTARTSYS;
991                 if (signal_pending(current))
992                         break;
993                 cond_resched();
994         }
995         if (written) {
996                 struct inode *inode = file->f_path.dentry->d_inode;
997                 inode->i_mtime = current_fs_time(inode->i_sb);
998                 ret = written;
999         }
1000 out:
1001         tty_write_unlock(tty);
1002         return ret;
1003 }
1004
1005 /**
1006  * tty_write_message - write a message to a certain tty, not just the console.
1007  * @tty: the destination tty_struct
1008  * @msg: the message to write
1009  *
1010  * This is used for messages that need to be redirected to a specific tty.
1011  * We don't put it into the syslog queue right now maybe in the future if
1012  * really needed.
1013  *
1014  * We must still hold the BKL and test the CLOSING flag for the moment.
1015  */
1016
1017 void tty_write_message(struct tty_struct *tty, char *msg)
1018 {
1019         if (tty) {
1020                 mutex_lock(&tty->atomic_write_lock);
1021                 lock_kernel();
1022                 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1023                         unlock_kernel();
1024                         tty->ops->write(tty, msg, strlen(msg));
1025                 } else
1026                         unlock_kernel();
1027                 tty_write_unlock(tty);
1028         }
1029         return;
1030 }
1031
1032
1033 /**
1034  *      tty_write               -       write method for tty device file
1035  *      @file: tty file pointer
1036  *      @buf: user data to write
1037  *      @count: bytes to write
1038  *      @ppos: unused
1039  *
1040  *      Write data to a tty device via the line discipline.
1041  *
1042  *      Locking:
1043  *              Locks the line discipline as required
1044  *              Writes to the tty driver are serialized by the atomic_write_lock
1045  *      and are then processed in chunks to the device. The line discipline
1046  *      write method will not be invoked in parallel for each device.
1047  */
1048
1049 static ssize_t tty_write(struct file *file, const char __user *buf,
1050                                                 size_t count, loff_t *ppos)
1051 {
1052         struct tty_struct *tty;
1053         struct inode *inode = file->f_path.dentry->d_inode;
1054         ssize_t ret;
1055         struct tty_ldisc *ld;
1056
1057         tty = (struct tty_struct *)file->private_data;
1058         if (tty_paranoia_check(tty, inode, "tty_write"))
1059                 return -EIO;
1060         if (!tty || !tty->ops->write ||
1061                 (test_bit(TTY_IO_ERROR, &tty->flags)))
1062                         return -EIO;
1063         /* Short term debug to catch buggy drivers */
1064         if (tty->ops->write_room == NULL)
1065                 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1066                         tty->driver->name);
1067         ld = tty_ldisc_ref_wait(tty);
1068         if (!ld->ops->write)
1069                 ret = -EIO;
1070         else
1071                 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1072         tty_ldisc_deref(ld);
1073         return ret;
1074 }
1075
1076 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1077                                                 size_t count, loff_t *ppos)
1078 {
1079         struct file *p = NULL;
1080
1081         spin_lock(&redirect_lock);
1082         if (redirect) {
1083                 get_file(redirect);
1084                 p = redirect;
1085         }
1086         spin_unlock(&redirect_lock);
1087
1088         if (p) {
1089                 ssize_t res;
1090                 res = vfs_write(p, buf, count, &p->f_pos);
1091                 fput(p);
1092                 return res;
1093         }
1094         return tty_write(file, buf, count, ppos);
1095 }
1096
1097 static char ptychar[] = "pqrstuvwxyzabcde";
1098
1099 /**
1100  *      pty_line_name   -       generate name for a pty
1101  *      @driver: the tty driver in use
1102  *      @index: the minor number
1103  *      @p: output buffer of at least 6 bytes
1104  *
1105  *      Generate a name from a driver reference and write it to the output
1106  *      buffer.
1107  *
1108  *      Locking: None
1109  */
1110 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1111 {
1112         int i = index + driver->name_base;
1113         /* ->name is initialized to "ttyp", but "tty" is expected */
1114         sprintf(p, "%s%c%x",
1115                 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1116                 ptychar[i >> 4 & 0xf], i & 0xf);
1117 }
1118
1119 /**
1120  *      tty_line_name   -       generate name for a tty
1121  *      @driver: the tty driver in use
1122  *      @index: the minor number
1123  *      @p: output buffer of at least 7 bytes
1124  *
1125  *      Generate a name from a driver reference and write it to the output
1126  *      buffer.
1127  *
1128  *      Locking: None
1129  */
1130 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1131 {
1132         sprintf(p, "%s%d", driver->name, index + driver->name_base);
1133 }
1134
1135 /**
1136  *      tty_driver_lookup_tty() - find an existing tty, if any
1137  *      @driver: the driver for the tty
1138  *      @idx:    the minor number
1139  *
1140  *      Return the tty, if found or ERR_PTR() otherwise.
1141  *
1142  *      Locking: tty_mutex must be held. If tty is found, the mutex must
1143  *      be held until the 'fast-open' is also done. Will change once we
1144  *      have refcounting in the driver and per driver locking
1145  */
1146 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1147                 struct inode *inode, int idx)
1148 {
1149         struct tty_struct *tty;
1150
1151         if (driver->ops->lookup)
1152                 return driver->ops->lookup(driver, inode, idx);
1153
1154         tty = driver->ttys[idx];
1155         return tty;
1156 }
1157
1158 /**
1159  *      tty_init_termios        -  helper for termios setup
1160  *      @tty: the tty to set up
1161  *
1162  *      Initialise the termios structures for this tty. Thus runs under
1163  *      the tty_mutex currently so we can be relaxed about ordering.
1164  */
1165
1166 int tty_init_termios(struct tty_struct *tty)
1167 {
1168         struct ktermios *tp;
1169         int idx = tty->index;
1170
1171         tp = tty->driver->termios[idx];
1172         if (tp == NULL) {
1173                 tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1174                 if (tp == NULL)
1175                         return -ENOMEM;
1176                 memcpy(tp, &tty->driver->init_termios,
1177                                                 sizeof(struct ktermios));
1178                 tty->driver->termios[idx] = tp;
1179         }
1180         tty->termios = tp;
1181         tty->termios_locked = tp + 1;
1182
1183         /* Compatibility until drivers always set this */
1184         tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1185         tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1186         return 0;
1187 }
1188 EXPORT_SYMBOL_GPL(tty_init_termios);
1189
1190 /**
1191  *      tty_driver_install_tty() - install a tty entry in the driver
1192  *      @driver: the driver for the tty
1193  *      @tty: the tty
1194  *
1195  *      Install a tty object into the driver tables. The tty->index field
1196  *      will be set by the time this is called. This method is responsible
1197  *      for ensuring any need additional structures are allocated and
1198  *      configured.
1199  *
1200  *      Locking: tty_mutex for now
1201  */
1202 static int tty_driver_install_tty(struct tty_driver *driver,
1203                                                 struct tty_struct *tty)
1204 {
1205         int idx = tty->index;
1206         int ret;
1207
1208         if (driver->ops->install) {
1209                 lock_kernel();
1210                 ret = driver->ops->install(driver, tty);
1211                 unlock_kernel();
1212                 return ret;
1213         }
1214
1215         if (tty_init_termios(tty) == 0) {
1216                 lock_kernel();
1217                 tty_driver_kref_get(driver);
1218                 tty->count++;
1219                 driver->ttys[idx] = tty;
1220                 unlock_kernel();
1221                 return 0;
1222         }
1223         return -ENOMEM;
1224 }
1225
1226 /**
1227  *      tty_driver_remove_tty() - remove a tty from the driver tables
1228  *      @driver: the driver for the tty
1229  *      @idx:    the minor number
1230  *
1231  *      Remvoe a tty object from the driver tables. The tty->index field
1232  *      will be set by the time this is called.
1233  *
1234  *      Locking: tty_mutex for now
1235  */
1236 static void tty_driver_remove_tty(struct tty_driver *driver,
1237                                                 struct tty_struct *tty)
1238 {
1239         if (driver->ops->remove)
1240                 driver->ops->remove(driver, tty);
1241         else
1242                 driver->ttys[tty->index] = NULL;
1243 }
1244
1245 /*
1246  *      tty_reopen()    - fast re-open of an open tty
1247  *      @tty    - the tty to open
1248  *
1249  *      Return 0 on success, -errno on error.
1250  *
1251  *      Locking: tty_mutex must be held from the time the tty was found
1252  *               till this open completes.
1253  */
1254 static int tty_reopen(struct tty_struct *tty)
1255 {
1256         struct tty_driver *driver = tty->driver;
1257
1258         if (test_bit(TTY_CLOSING, &tty->flags))
1259                 return -EIO;
1260
1261         if (driver->type == TTY_DRIVER_TYPE_PTY &&
1262             driver->subtype == PTY_TYPE_MASTER) {
1263                 /*
1264                  * special case for PTY masters: only one open permitted,
1265                  * and the slave side open count is incremented as well.
1266                  */
1267                 if (tty->count)
1268                         return -EIO;
1269
1270                 tty->link->count++;
1271         }
1272         tty->count++;
1273         tty->driver = driver; /* N.B. why do this every time?? */
1274
1275         mutex_lock(&tty->ldisc_mutex);
1276         WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1277         mutex_unlock(&tty->ldisc_mutex);
1278
1279         return 0;
1280 }
1281
1282 /**
1283  *      tty_init_dev            -       initialise a tty device
1284  *      @driver: tty driver we are opening a device on
1285  *      @idx: device index
1286  *      @ret_tty: returned tty structure
1287  *      @first_ok: ok to open a new device (used by ptmx)
1288  *
1289  *      Prepare a tty device. This may not be a "new" clean device but
1290  *      could also be an active device. The pty drivers require special
1291  *      handling because of this.
1292  *
1293  *      Locking:
1294  *              The function is called under the tty_mutex, which
1295  *      protects us from the tty struct or driver itself going away.
1296  *
1297  *      On exit the tty device has the line discipline attached and
1298  *      a reference count of 1. If a pair was created for pty/tty use
1299  *      and the other was a pty master then it too has a reference count of 1.
1300  *
1301  * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1302  * failed open.  The new code protects the open with a mutex, so it's
1303  * really quite straightforward.  The mutex locking can probably be
1304  * relaxed for the (most common) case of reopening a tty.
1305  */
1306
1307 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx,
1308                                                                 int first_ok)
1309 {
1310         struct tty_struct *tty;
1311         int retval;
1312
1313         lock_kernel();
1314         /* Check if pty master is being opened multiple times */
1315         if (driver->subtype == PTY_TYPE_MASTER &&
1316                 (driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok) {
1317                 unlock_kernel();
1318                 return ERR_PTR(-EIO);
1319         }
1320         unlock_kernel();
1321
1322         /*
1323          * First time open is complex, especially for PTY devices.
1324          * This code guarantees that either everything succeeds and the
1325          * TTY is ready for operation, or else the table slots are vacated
1326          * and the allocated memory released.  (Except that the termios
1327          * and locked termios may be retained.)
1328          */
1329
1330         if (!try_module_get(driver->owner))
1331                 return ERR_PTR(-ENODEV);
1332
1333         tty = alloc_tty_struct();
1334         if (!tty)
1335                 goto fail_no_mem;
1336         initialize_tty_struct(tty, driver, idx);
1337
1338         retval = tty_driver_install_tty(driver, tty);
1339         if (retval < 0) {
1340                 free_tty_struct(tty);
1341                 module_put(driver->owner);
1342                 return ERR_PTR(retval);
1343         }
1344
1345         /*
1346          * Structures all installed ... call the ldisc open routines.
1347          * If we fail here just call release_tty to clean up.  No need
1348          * to decrement the use counts, as release_tty doesn't care.
1349          */
1350         lock_kernel();
1351         retval = tty_ldisc_setup(tty, tty->link);
1352         unlock_kernel();
1353         if (retval)
1354                 goto release_mem_out;
1355         return tty;
1356
1357 fail_no_mem:
1358         module_put(driver->owner);
1359         return ERR_PTR(-ENOMEM);
1360
1361         /* call the tty release_tty routine to clean out this slot */
1362 release_mem_out:
1363         if (printk_ratelimit())
1364                 printk(KERN_INFO "tty_init_dev: ldisc open failed, "
1365                                  "clearing slot %d\n", idx);
1366         lock_kernel();
1367         release_tty(tty, idx);
1368         unlock_kernel();
1369         return ERR_PTR(retval);
1370 }
1371
1372 void tty_free_termios(struct tty_struct *tty)
1373 {
1374         struct ktermios *tp;
1375         int idx = tty->index;
1376         /* Kill this flag and push into drivers for locking etc */
1377         if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1378                 /* FIXME: Locking on ->termios array */
1379                 tp = tty->termios;
1380                 tty->driver->termios[idx] = NULL;
1381                 kfree(tp);
1382         }
1383 }
1384 EXPORT_SYMBOL(tty_free_termios);
1385
1386 void tty_shutdown(struct tty_struct *tty)
1387 {
1388         tty_driver_remove_tty(tty->driver, tty);
1389         tty_free_termios(tty);
1390 }
1391 EXPORT_SYMBOL(tty_shutdown);
1392
1393 /**
1394  *      release_one_tty         -       release tty structure memory
1395  *      @kref: kref of tty we are obliterating
1396  *
1397  *      Releases memory associated with a tty structure, and clears out the
1398  *      driver table slots. This function is called when a device is no longer
1399  *      in use. It also gets called when setup of a device fails.
1400  *
1401  *      Locking:
1402  *              tty_mutex - sometimes only
1403  *              takes the file list lock internally when working on the list
1404  *      of ttys that the driver keeps.
1405  *
1406  *      This method gets called from a work queue so that the driver private
1407  *      cleanup ops can sleep (needed for USB at least)
1408  */
1409 static void release_one_tty(struct work_struct *work)
1410 {
1411         struct tty_struct *tty =
1412                 container_of(work, struct tty_struct, hangup_work);
1413         struct tty_driver *driver = tty->driver;
1414
1415         if (tty->ops->cleanup)
1416                 tty->ops->cleanup(tty);
1417
1418         tty->magic = 0;
1419         tty_driver_kref_put(driver);
1420         module_put(driver->owner);
1421
1422         file_list_lock();
1423         list_del_init(&tty->tty_files);
1424         file_list_unlock();
1425
1426         free_tty_struct(tty);
1427 }
1428
1429 static void queue_release_one_tty(struct kref *kref)
1430 {
1431         struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1432
1433         if (tty->ops->shutdown)
1434                 tty->ops->shutdown(tty);
1435         else
1436                 tty_shutdown(tty);
1437
1438         /* The hangup queue is now free so we can reuse it rather than
1439            waste a chunk of memory for each port */
1440         INIT_WORK(&tty->hangup_work, release_one_tty);
1441         schedule_work(&tty->hangup_work);
1442 }
1443
1444 /**
1445  *      tty_kref_put            -       release a tty kref
1446  *      @tty: tty device
1447  *
1448  *      Release a reference to a tty device and if need be let the kref
1449  *      layer destruct the object for us
1450  */
1451
1452 void tty_kref_put(struct tty_struct *tty)
1453 {
1454         if (tty)
1455                 kref_put(&tty->kref, queue_release_one_tty);
1456 }
1457 EXPORT_SYMBOL(tty_kref_put);
1458
1459 /**
1460  *      release_tty             -       release tty structure memory
1461  *
1462  *      Release both @tty and a possible linked partner (think pty pair),
1463  *      and decrement the refcount of the backing module.
1464  *
1465  *      Locking:
1466  *              tty_mutex - sometimes only
1467  *              takes the file list lock internally when working on the list
1468  *      of ttys that the driver keeps.
1469  *              FIXME: should we require tty_mutex is held here ??
1470  *
1471  */
1472 static void release_tty(struct tty_struct *tty, int idx)
1473 {
1474         /* This should always be true but check for the moment */
1475         WARN_ON(tty->index != idx);
1476
1477         if (tty->link)
1478                 tty_kref_put(tty->link);
1479         tty_kref_put(tty);
1480 }
1481
1482 /**
1483  *      tty_release             -       vfs callback for close
1484  *      @inode: inode of tty
1485  *      @filp: file pointer for handle to tty
1486  *
1487  *      Called the last time each file handle is closed that references
1488  *      this tty. There may however be several such references.
1489  *
1490  *      Locking:
1491  *              Takes bkl. See tty_release_dev
1492  *
1493  * Even releasing the tty structures is a tricky business.. We have
1494  * to be very careful that the structures are all released at the
1495  * same time, as interrupts might otherwise get the wrong pointers.
1496  *
1497  * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1498  * lead to double frees or releasing memory still in use.
1499  */
1500
1501 int tty_release(struct inode *inode, struct file *filp)
1502 {
1503         struct tty_struct *tty, *o_tty;
1504         int     pty_master, tty_closing, o_tty_closing, do_sleep;
1505         int     devpts;
1506         int     idx;
1507         char    buf[64];
1508
1509         tty = (struct tty_struct *)filp->private_data;
1510         if (tty_paranoia_check(tty, inode, "tty_release_dev"))
1511                 return 0;
1512
1513         lock_kernel();
1514         check_tty_count(tty, "tty_release_dev");
1515
1516         tty_fasync(-1, filp, 0);
1517
1518         idx = tty->index;
1519         pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1520                       tty->driver->subtype == PTY_TYPE_MASTER);
1521         devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1522         o_tty = tty->link;
1523
1524 #ifdef TTY_PARANOIA_CHECK
1525         if (idx < 0 || idx >= tty->driver->num) {
1526                 printk(KERN_DEBUG "tty_release_dev: bad idx when trying to "
1527                                   "free (%s)\n", tty->name);
1528                 unlock_kernel();
1529                 return 0;
1530         }
1531         if (!devpts) {
1532                 if (tty != tty->driver->ttys[idx]) {
1533                         unlock_kernel();
1534                         printk(KERN_DEBUG "tty_release_dev: driver.table[%d] not tty "
1535                                "for (%s)\n", idx, tty->name);
1536                         return 0;
1537                 }
1538                 if (tty->termios != tty->driver->termios[idx]) {
1539                         unlock_kernel();
1540                         printk(KERN_DEBUG "tty_release_dev: driver.termios[%d] not termios "
1541                                "for (%s)\n",
1542                                idx, tty->name);
1543                         return 0;
1544                 }
1545         }
1546 #endif
1547
1548 #ifdef TTY_DEBUG_HANGUP
1549         printk(KERN_DEBUG "tty_release_dev of %s (tty count=%d)...",
1550                tty_name(tty, buf), tty->count);
1551 #endif
1552
1553 #ifdef TTY_PARANOIA_CHECK
1554         if (tty->driver->other &&
1555              !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1556                 if (o_tty != tty->driver->other->ttys[idx]) {
1557                         unlock_kernel();
1558                         printk(KERN_DEBUG "tty_release_dev: other->table[%d] "
1559                                           "not o_tty for (%s)\n",
1560                                idx, tty->name);
1561                         return 0 ;
1562                 }
1563                 if (o_tty->termios != tty->driver->other->termios[idx]) {
1564                         unlock_kernel();
1565                         printk(KERN_DEBUG "tty_release_dev: other->termios[%d] "
1566                                           "not o_termios for (%s)\n",
1567                                idx, tty->name);
1568                         return 0;
1569                 }
1570                 if (o_tty->link != tty) {
1571                         unlock_kernel();
1572                         printk(KERN_DEBUG "tty_release_dev: bad pty pointers\n");
1573                         return 0;
1574                 }
1575         }
1576 #endif
1577         if (tty->ops->close)
1578                 tty->ops->close(tty, filp);
1579
1580         unlock_kernel();
1581         /*
1582          * Sanity check: if tty->count is going to zero, there shouldn't be
1583          * any waiters on tty->read_wait or tty->write_wait.  We test the
1584          * wait queues and kick everyone out _before_ actually starting to
1585          * close.  This ensures that we won't block while releasing the tty
1586          * structure.
1587          *
1588          * The test for the o_tty closing is necessary, since the master and
1589          * slave sides may close in any order.  If the slave side closes out
1590          * first, its count will be one, since the master side holds an open.
1591          * Thus this test wouldn't be triggered at the time the slave closes,
1592          * so we do it now.
1593          *
1594          * Note that it's possible for the tty to be opened again while we're
1595          * flushing out waiters.  By recalculating the closing flags before
1596          * each iteration we avoid any problems.
1597          */
1598         while (1) {
1599                 /* Guard against races with tty->count changes elsewhere and
1600                    opens on /dev/tty */
1601
1602                 mutex_lock(&tty_mutex);
1603                 lock_kernel();
1604                 tty_closing = tty->count <= 1;
1605                 o_tty_closing = o_tty &&
1606                         (o_tty->count <= (pty_master ? 1 : 0));
1607                 do_sleep = 0;
1608
1609                 if (tty_closing) {
1610                         if (waitqueue_active(&tty->read_wait)) {
1611                                 wake_up_poll(&tty->read_wait, POLLIN);
1612                                 do_sleep++;
1613                         }
1614                         if (waitqueue_active(&tty->write_wait)) {
1615                                 wake_up_poll(&tty->write_wait, POLLOUT);
1616                                 do_sleep++;
1617                         }
1618                 }
1619                 if (o_tty_closing) {
1620                         if (waitqueue_active(&o_tty->read_wait)) {
1621                                 wake_up_poll(&o_tty->read_wait, POLLIN);
1622                                 do_sleep++;
1623                         }
1624                         if (waitqueue_active(&o_tty->write_wait)) {
1625                                 wake_up_poll(&o_tty->write_wait, POLLOUT);
1626                                 do_sleep++;
1627                         }
1628                 }
1629                 if (!do_sleep)
1630                         break;
1631
1632                 printk(KERN_WARNING "tty_release_dev: %s: read/write wait queue "
1633                                     "active!\n", tty_name(tty, buf));
1634                 unlock_kernel();
1635                 mutex_unlock(&tty_mutex);
1636                 schedule();
1637         }
1638
1639         /*
1640          * The closing flags are now consistent with the open counts on
1641          * both sides, and we've completed the last operation that could
1642          * block, so it's safe to proceed with closing.
1643          */
1644         if (pty_master) {
1645                 if (--o_tty->count < 0) {
1646                         printk(KERN_WARNING "tty_release_dev: bad pty slave count "
1647                                             "(%d) for %s\n",
1648                                o_tty->count, tty_name(o_tty, buf));
1649                         o_tty->count = 0;
1650                 }
1651         }
1652         if (--tty->count < 0) {
1653                 printk(KERN_WARNING "tty_release_dev: bad tty->count (%d) for %s\n",
1654                        tty->count, tty_name(tty, buf));
1655                 tty->count = 0;
1656         }
1657
1658         /*
1659          * We've decremented tty->count, so we need to remove this file
1660          * descriptor off the tty->tty_files list; this serves two
1661          * purposes:
1662          *  - check_tty_count sees the correct number of file descriptors
1663          *    associated with this tty.
1664          *  - do_tty_hangup no longer sees this file descriptor as
1665          *    something that needs to be handled for hangups.
1666          */
1667         file_kill(filp);
1668         filp->private_data = NULL;
1669
1670         /*
1671          * Perform some housekeeping before deciding whether to return.
1672          *
1673          * Set the TTY_CLOSING flag if this was the last open.  In the
1674          * case of a pty we may have to wait around for the other side
1675          * to close, and TTY_CLOSING makes sure we can't be reopened.
1676          */
1677         if (tty_closing)
1678                 set_bit(TTY_CLOSING, &tty->flags);
1679         if (o_tty_closing)
1680                 set_bit(TTY_CLOSING, &o_tty->flags);
1681
1682         /*
1683          * If _either_ side is closing, make sure there aren't any
1684          * processes that still think tty or o_tty is their controlling
1685          * tty.
1686          */
1687         if (tty_closing || o_tty_closing) {
1688                 read_lock(&tasklist_lock);
1689                 session_clear_tty(tty->session);
1690                 if (o_tty)
1691                         session_clear_tty(o_tty->session);
1692                 read_unlock(&tasklist_lock);
1693         }
1694
1695         mutex_unlock(&tty_mutex);
1696
1697         /* check whether both sides are closing ... */
1698         if (!tty_closing || (o_tty && !o_tty_closing)) {
1699                 unlock_kernel();
1700                 return 0;
1701         }
1702
1703 #ifdef TTY_DEBUG_HANGUP
1704         printk(KERN_DEBUG "freeing tty structure...");
1705 #endif
1706         /*
1707          * Ask the line discipline code to release its structures
1708          */
1709         tty_ldisc_release(tty, o_tty);
1710         /*
1711          * The release_tty function takes care of the details of clearing
1712          * the slots and preserving the termios structure.
1713          */
1714         release_tty(tty, idx);
1715
1716         /* Make this pty number available for reallocation */
1717         if (devpts)
1718                 devpts_kill_index(inode, idx);
1719         unlock_kernel();
1720         return 0;
1721 }
1722
1723 /**
1724  *      tty_open                -       open a tty device
1725  *      @inode: inode of device file
1726  *      @filp: file pointer to tty
1727  *
1728  *      tty_open and tty_release keep up the tty count that contains the
1729  *      number of opens done on a tty. We cannot use the inode-count, as
1730  *      different inodes might point to the same tty.
1731  *
1732  *      Open-counting is needed for pty masters, as well as for keeping
1733  *      track of serial lines: DTR is dropped when the last close happens.
1734  *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
1735  *
1736  *      The termios state of a pty is reset on first open so that
1737  *      settings don't persist across reuse.
1738  *
1739  *      Locking: tty_mutex protects tty, get_tty_driver and tty_init_dev work.
1740  *               tty->count should protect the rest.
1741  *               ->siglock protects ->signal/->sighand
1742  */
1743
1744 static int tty_open(struct inode *inode, struct file *filp)
1745 {
1746         struct tty_struct *tty = NULL;
1747         int noctty, retval;
1748         struct tty_driver *driver;
1749         int index;
1750         dev_t device = inode->i_rdev;
1751         unsigned saved_flags = filp->f_flags;
1752
1753         nonseekable_open(inode, filp);
1754
1755 retry_open:
1756         noctty = filp->f_flags & O_NOCTTY;
1757         index  = -1;
1758         retval = 0;
1759
1760         mutex_lock(&tty_mutex);
1761         lock_kernel();
1762
1763         if (device == MKDEV(TTYAUX_MAJOR, 0)) {
1764                 tty = get_current_tty();
1765                 if (!tty) {
1766                         unlock_kernel();
1767                         mutex_unlock(&tty_mutex);
1768                         return -ENXIO;
1769                 }
1770                 driver = tty_driver_kref_get(tty->driver);
1771                 index = tty->index;
1772                 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1773                 /* noctty = 1; */
1774                 /* FIXME: Should we take a driver reference ? */
1775                 tty_kref_put(tty);
1776                 goto got_driver;
1777         }
1778 #ifdef CONFIG_VT
1779         if (device == MKDEV(TTY_MAJOR, 0)) {
1780                 extern struct tty_driver *console_driver;
1781                 driver = tty_driver_kref_get(console_driver);
1782                 index = fg_console;
1783                 noctty = 1;
1784                 goto got_driver;
1785         }
1786 #endif
1787         if (device == MKDEV(TTYAUX_MAJOR, 1)) {
1788                 struct tty_driver *console_driver = console_device(&index);
1789                 if (console_driver) {
1790                         driver = tty_driver_kref_get(console_driver);
1791                         if (driver) {
1792                                 /* Don't let /dev/console block */
1793                                 filp->f_flags |= O_NONBLOCK;
1794                                 noctty = 1;
1795                                 goto got_driver;
1796                         }
1797                 }
1798                 unlock_kernel();
1799                 mutex_unlock(&tty_mutex);
1800                 return -ENODEV;
1801         }
1802
1803         driver = get_tty_driver(device, &index);
1804         if (!driver) {
1805                 unlock_kernel();
1806                 mutex_unlock(&tty_mutex);
1807                 return -ENODEV;
1808         }
1809 got_driver:
1810         if (!tty) {
1811                 /* check whether we're reopening an existing tty */
1812                 tty = tty_driver_lookup_tty(driver, inode, index);
1813
1814                 if (IS_ERR(tty)) {
1815                         unlock_kernel();
1816                         mutex_unlock(&tty_mutex);
1817                         return PTR_ERR(tty);
1818                 }
1819         }
1820
1821         if (tty) {
1822                 retval = tty_reopen(tty);
1823                 if (retval)
1824                         tty = ERR_PTR(retval);
1825         } else
1826                 tty = tty_init_dev(driver, index, 0);
1827
1828         mutex_unlock(&tty_mutex);
1829         tty_driver_kref_put(driver);
1830         if (IS_ERR(tty)) {
1831                 unlock_kernel();
1832                 return PTR_ERR(tty);
1833         }
1834
1835         filp->private_data = tty;
1836         file_move(filp, &tty->tty_files);
1837         check_tty_count(tty, "tty_open");
1838         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1839             tty->driver->subtype == PTY_TYPE_MASTER)
1840                 noctty = 1;
1841 #ifdef TTY_DEBUG_HANGUP
1842         printk(KERN_DEBUG "opening %s...", tty->name);
1843 #endif
1844         if (!retval) {
1845                 if (tty->ops->open)
1846                         retval = tty->ops->open(tty, filp);
1847                 else
1848                         retval = -ENODEV;
1849         }
1850         filp->f_flags = saved_flags;
1851
1852         if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1853                                                 !capable(CAP_SYS_ADMIN))
1854                 retval = -EBUSY;
1855
1856         if (retval) {
1857 #ifdef TTY_DEBUG_HANGUP
1858                 printk(KERN_DEBUG "error %d in opening %s...", retval,
1859                        tty->name);
1860 #endif
1861                 tty_release(inode, filp);
1862                 if (retval != -ERESTARTSYS) {
1863                         unlock_kernel();
1864                         return retval;
1865                 }
1866                 if (signal_pending(current)) {
1867                         unlock_kernel();
1868                         return retval;
1869                 }
1870                 schedule();
1871                 /*
1872                  * Need to reset f_op in case a hangup happened.
1873                  */
1874                 if (filp->f_op == &hung_up_tty_fops)
1875                         filp->f_op = &tty_fops;
1876                 goto retry_open;
1877         }
1878         unlock_kernel();
1879
1880
1881         mutex_lock(&tty_mutex);
1882         lock_kernel();
1883         spin_lock_irq(&current->sighand->siglock);
1884         if (!noctty &&
1885             current->signal->leader &&
1886             !current->signal->tty &&
1887             tty->session == NULL)
1888                 __proc_set_tty(current, tty);
1889         spin_unlock_irq(&current->sighand->siglock);
1890         unlock_kernel();
1891         mutex_unlock(&tty_mutex);
1892         return 0;
1893 }
1894
1895
1896
1897 /**
1898  *      tty_poll        -       check tty status
1899  *      @filp: file being polled
1900  *      @wait: poll wait structures to update
1901  *
1902  *      Call the line discipline polling method to obtain the poll
1903  *      status of the device.
1904  *
1905  *      Locking: locks called line discipline but ldisc poll method
1906  *      may be re-entered freely by other callers.
1907  */
1908
1909 static unsigned int tty_poll(struct file *filp, poll_table *wait)
1910 {
1911         struct tty_struct *tty;
1912         struct tty_ldisc *ld;
1913         int ret = 0;
1914
1915         tty = (struct tty_struct *)filp->private_data;
1916         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
1917                 return 0;
1918
1919         ld = tty_ldisc_ref_wait(tty);
1920         if (ld->ops->poll)
1921                 ret = (ld->ops->poll)(tty, filp, wait);
1922         tty_ldisc_deref(ld);
1923         return ret;
1924 }
1925
1926 static int tty_fasync(int fd, struct file *filp, int on)
1927 {
1928         struct tty_struct *tty;
1929         unsigned long flags;
1930         int retval = 0;
1931
1932         lock_kernel();
1933         tty = (struct tty_struct *)filp->private_data;
1934         if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
1935                 goto out;
1936
1937         retval = fasync_helper(fd, filp, on, &tty->fasync);
1938         if (retval <= 0)
1939                 goto out;
1940
1941         if (on) {
1942                 enum pid_type type;
1943                 struct pid *pid;
1944                 if (!waitqueue_active(&tty->read_wait))
1945                         tty->minimum_to_wake = 1;
1946                 spin_lock_irqsave(&tty->ctrl_lock, flags);
1947                 if (tty->pgrp) {
1948                         pid = tty->pgrp;
1949                         type = PIDTYPE_PGID;
1950                 } else {
1951                         pid = task_pid(current);
1952                         type = PIDTYPE_PID;
1953                 }
1954                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
1955                 retval = __f_setown(filp, pid, type, 0);
1956                 if (retval)
1957                         goto out;
1958         } else {
1959                 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
1960                         tty->minimum_to_wake = N_TTY_BUF_SIZE;
1961         }
1962         retval = 0;
1963 out:
1964         unlock_kernel();
1965         return retval;
1966 }
1967
1968 /**
1969  *      tiocsti                 -       fake input character
1970  *      @tty: tty to fake input into
1971  *      @p: pointer to character
1972  *
1973  *      Fake input to a tty device. Does the necessary locking and
1974  *      input management.
1975  *
1976  *      FIXME: does not honour flow control ??
1977  *
1978  *      Locking:
1979  *              Called functions take tty_ldisc_lock
1980  *              current->signal->tty check is safe without locks
1981  *
1982  *      FIXME: may race normal receive processing
1983  */
1984
1985 static int tiocsti(struct tty_struct *tty, char __user *p)
1986 {
1987         char ch, mbz = 0;
1988         struct tty_ldisc *ld;
1989
1990         if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
1991                 return -EPERM;
1992         if (get_user(ch, p))
1993                 return -EFAULT;
1994         tty_audit_tiocsti(tty, ch);
1995         ld = tty_ldisc_ref_wait(tty);
1996         ld->ops->receive_buf(tty, &ch, &mbz, 1);
1997         tty_ldisc_deref(ld);
1998         return 0;
1999 }
2000
2001 /**
2002  *      tiocgwinsz              -       implement window query ioctl
2003  *      @tty; tty
2004  *      @arg: user buffer for result
2005  *
2006  *      Copies the kernel idea of the window size into the user buffer.
2007  *
2008  *      Locking: tty->termios_mutex is taken to ensure the winsize data
2009  *              is consistent.
2010  */
2011
2012 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2013 {
2014         int err;
2015
2016         mutex_lock(&tty->termios_mutex);
2017         err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2018         mutex_unlock(&tty->termios_mutex);
2019
2020         return err ? -EFAULT: 0;
2021 }
2022
2023 /**
2024  *      tty_do_resize           -       resize event
2025  *      @tty: tty being resized
2026  *      @rows: rows (character)
2027  *      @cols: cols (character)
2028  *
2029  *      Update the termios variables and send the neccessary signals to
2030  *      peform a terminal resize correctly
2031  */
2032
2033 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2034 {
2035         struct pid *pgrp;
2036         unsigned long flags;
2037
2038         /* Lock the tty */
2039         mutex_lock(&tty->termios_mutex);
2040         if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2041                 goto done;
2042         /* Get the PID values and reference them so we can
2043            avoid holding the tty ctrl lock while sending signals */
2044         spin_lock_irqsave(&tty->ctrl_lock, flags);
2045         pgrp = get_pid(tty->pgrp);
2046         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2047
2048         if (pgrp)
2049                 kill_pgrp(pgrp, SIGWINCH, 1);
2050         put_pid(pgrp);
2051
2052         tty->winsize = *ws;
2053 done:
2054         mutex_unlock(&tty->termios_mutex);
2055         return 0;
2056 }
2057
2058 /**
2059  *      tiocswinsz              -       implement window size set ioctl
2060  *      @tty; tty side of tty
2061  *      @arg: user buffer for result
2062  *
2063  *      Copies the user idea of the window size to the kernel. Traditionally
2064  *      this is just advisory information but for the Linux console it
2065  *      actually has driver level meaning and triggers a VC resize.
2066  *
2067  *      Locking:
2068  *              Driver dependant. The default do_resize method takes the
2069  *      tty termios mutex and ctrl_lock. The console takes its own lock
2070  *      then calls into the default method.
2071  */
2072
2073 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2074 {
2075         struct winsize tmp_ws;
2076         if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2077                 return -EFAULT;
2078
2079         if (tty->ops->resize)
2080                 return tty->ops->resize(tty, &tmp_ws);
2081         else
2082                 return tty_do_resize(tty, &tmp_ws);
2083 }
2084
2085 /**
2086  *      tioccons        -       allow admin to move logical console
2087  *      @file: the file to become console
2088  *
2089  *      Allow the adminstrator to move the redirected console device
2090  *
2091  *      Locking: uses redirect_lock to guard the redirect information
2092  */
2093
2094 static int tioccons(struct file *file)
2095 {
2096         if (!capable(CAP_SYS_ADMIN))
2097                 return -EPERM;
2098         if (file->f_op->write == redirected_tty_write) {
2099                 struct file *f;
2100                 spin_lock(&redirect_lock);
2101                 f = redirect;
2102                 redirect = NULL;
2103                 spin_unlock(&redirect_lock);
2104                 if (f)
2105                         fput(f);
2106                 return 0;
2107         }
2108         spin_lock(&redirect_lock);
2109         if (redirect) {
2110                 spin_unlock(&redirect_lock);
2111                 return -EBUSY;
2112         }
2113         get_file(file);
2114         redirect = file;
2115         spin_unlock(&redirect_lock);
2116         return 0;
2117 }
2118
2119 /**
2120  *      fionbio         -       non blocking ioctl
2121  *      @file: file to set blocking value
2122  *      @p: user parameter
2123  *
2124  *      Historical tty interfaces had a blocking control ioctl before
2125  *      the generic functionality existed. This piece of history is preserved
2126  *      in the expected tty API of posix OS's.
2127  *
2128  *      Locking: none, the open file handle ensures it won't go away.
2129  */
2130
2131 static int fionbio(struct file *file, int __user *p)
2132 {
2133         int nonblock;
2134
2135         if (get_user(nonblock, p))
2136                 return -EFAULT;
2137
2138         spin_lock(&file->f_lock);
2139         if (nonblock)
2140                 file->f_flags |= O_NONBLOCK;
2141         else
2142                 file->f_flags &= ~O_NONBLOCK;
2143         spin_unlock(&file->f_lock);
2144         return 0;
2145 }
2146
2147 /**
2148  *      tiocsctty       -       set controlling tty
2149  *      @tty: tty structure
2150  *      @arg: user argument
2151  *
2152  *      This ioctl is used to manage job control. It permits a session
2153  *      leader to set this tty as the controlling tty for the session.
2154  *
2155  *      Locking:
2156  *              Takes tty_mutex() to protect tty instance
2157  *              Takes tasklist_lock internally to walk sessions
2158  *              Takes ->siglock() when updating signal->tty
2159  */
2160
2161 static int tiocsctty(struct tty_struct *tty, int arg)
2162 {
2163         int ret = 0;
2164         if (current->signal->leader && (task_session(current) == tty->session))
2165                 return ret;
2166
2167         mutex_lock(&tty_mutex);
2168         /*
2169          * The process must be a session leader and
2170          * not have a controlling tty already.
2171          */
2172         if (!current->signal->leader || current->signal->tty) {
2173                 ret = -EPERM;
2174                 goto unlock;
2175         }
2176
2177         if (tty->session) {
2178                 /*
2179                  * This tty is already the controlling
2180                  * tty for another session group!
2181                  */
2182                 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2183                         /*
2184                          * Steal it away
2185                          */
2186                         read_lock(&tasklist_lock);
2187                         session_clear_tty(tty->session);
2188                         read_unlock(&tasklist_lock);
2189                 } else {
2190                         ret = -EPERM;
2191                         goto unlock;
2192                 }
2193         }
2194         proc_set_tty(current, tty);
2195 unlock:
2196         mutex_unlock(&tty_mutex);
2197         return ret;
2198 }
2199
2200 /**
2201  *      tty_get_pgrp    -       return a ref counted pgrp pid
2202  *      @tty: tty to read
2203  *
2204  *      Returns a refcounted instance of the pid struct for the process
2205  *      group controlling the tty.
2206  */
2207
2208 struct pid *tty_get_pgrp(struct tty_struct *tty)
2209 {
2210         unsigned long flags;
2211         struct pid *pgrp;
2212
2213         spin_lock_irqsave(&tty->ctrl_lock, flags);
2214         pgrp = get_pid(tty->pgrp);
2215         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2216
2217         return pgrp;
2218 }
2219 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2220
2221 /**
2222  *      tiocgpgrp               -       get process group
2223  *      @tty: tty passed by user
2224  *      @real_tty: tty side of the tty pased by the user if a pty else the tty
2225  *      @p: returned pid
2226  *
2227  *      Obtain the process group of the tty. If there is no process group
2228  *      return an error.
2229  *
2230  *      Locking: none. Reference to current->signal->tty is safe.
2231  */
2232
2233 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2234 {
2235         struct pid *pid;
2236         int ret;
2237         /*
2238          * (tty == real_tty) is a cheap way of
2239          * testing if the tty is NOT a master pty.
2240          */
2241         if (tty == real_tty && current->signal->tty != real_tty)
2242                 return -ENOTTY;
2243         pid = tty_get_pgrp(real_tty);
2244         ret =  put_user(pid_vnr(pid), p);
2245         put_pid(pid);
2246         return ret;
2247 }
2248
2249 /**
2250  *      tiocspgrp               -       attempt to set process group
2251  *      @tty: tty passed by user
2252  *      @real_tty: tty side device matching tty passed by user
2253  *      @p: pid pointer
2254  *
2255  *      Set the process group of the tty to the session passed. Only
2256  *      permitted where the tty session is our session.
2257  *
2258  *      Locking: RCU, ctrl lock
2259  */
2260
2261 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2262 {
2263         struct pid *pgrp;
2264         pid_t pgrp_nr;
2265         int retval = tty_check_change(real_tty);
2266         unsigned long flags;
2267
2268         if (retval == -EIO)
2269                 return -ENOTTY;
2270         if (retval)
2271                 return retval;
2272         if (!current->signal->tty ||
2273             (current->signal->tty != real_tty) ||
2274             (real_tty->session != task_session(current)))
2275                 return -ENOTTY;
2276         if (get_user(pgrp_nr, p))
2277                 return -EFAULT;
2278         if (pgrp_nr < 0)
2279                 return -EINVAL;
2280         rcu_read_lock();
2281         pgrp = find_vpid(pgrp_nr);
2282         retval = -ESRCH;
2283         if (!pgrp)
2284                 goto out_unlock;
2285         retval = -EPERM;
2286         if (session_of_pgrp(pgrp) != task_session(current))
2287                 goto out_unlock;
2288         retval = 0;
2289         spin_lock_irqsave(&tty->ctrl_lock, flags);
2290         put_pid(real_tty->pgrp);
2291         real_tty->pgrp = get_pid(pgrp);
2292         spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2293 out_unlock:
2294         rcu_read_unlock();
2295         return retval;
2296 }
2297
2298 /**
2299  *      tiocgsid                -       get session id
2300  *      @tty: tty passed by user
2301  *      @real_tty: tty side of the tty pased by the user if a pty else the tty
2302  *      @p: pointer to returned session id
2303  *
2304  *      Obtain the session id of the tty. If there is no session
2305  *      return an error.
2306  *
2307  *      Locking: none. Reference to current->signal->tty is safe.
2308  */
2309
2310 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2311 {
2312         /*
2313          * (tty == real_tty) is a cheap way of
2314          * testing if the tty is NOT a master pty.
2315         */
2316         if (tty == real_tty && current->signal->tty != real_tty)
2317                 return -ENOTTY;
2318         if (!real_tty->session)
2319                 return -ENOTTY;
2320         return put_user(pid_vnr(real_tty->session), p);
2321 }
2322
2323 /**
2324  *      tiocsetd        -       set line discipline
2325  *      @tty: tty device
2326  *      @p: pointer to user data
2327  *
2328  *      Set the line discipline according to user request.
2329  *
2330  *      Locking: see tty_set_ldisc, this function is just a helper
2331  */
2332
2333 static int tiocsetd(struct tty_struct *tty, int __user *p)
2334 {
2335         int ldisc;
2336         int ret;
2337
2338         if (get_user(ldisc, p))
2339                 return -EFAULT;
2340
2341         ret = tty_set_ldisc(tty, ldisc);
2342
2343         return ret;
2344 }
2345
2346 /**
2347  *      send_break      -       performed time break
2348  *      @tty: device to break on
2349  *      @duration: timeout in mS
2350  *
2351  *      Perform a timed break on hardware that lacks its own driver level
2352  *      timed break functionality.
2353  *
2354  *      Locking:
2355  *              atomic_write_lock serializes
2356  *
2357  */
2358
2359 static int send_break(struct tty_struct *tty, unsigned int duration)
2360 {
2361         int retval;
2362
2363         if (tty->ops->break_ctl == NULL)
2364                 return 0;
2365
2366         if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2367                 retval = tty->ops->break_ctl(tty, duration);
2368         else {
2369                 /* Do the work ourselves */
2370                 if (tty_write_lock(tty, 0) < 0)
2371                         return -EINTR;
2372                 retval = tty->ops->break_ctl(tty, -1);
2373                 if (retval)
2374                         goto out;
2375                 if (!signal_pending(current))
2376                         msleep_interruptible(duration);
2377                 retval = tty->ops->break_ctl(tty, 0);
2378 out:
2379                 tty_write_unlock(tty);
2380                 if (signal_pending(current))
2381                         retval = -EINTR;
2382         }
2383         return retval;
2384 }
2385
2386 /**
2387  *      tty_tiocmget            -       get modem status
2388  *      @tty: tty device
2389  *      @file: user file pointer
2390  *      @p: pointer to result
2391  *
2392  *      Obtain the modem status bits from the tty driver if the feature
2393  *      is supported. Return -EINVAL if it is not available.
2394  *
2395  *      Locking: none (up to the driver)
2396  */
2397
2398 static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
2399 {
2400         int retval = -EINVAL;
2401
2402         if (tty->ops->tiocmget) {
2403                 retval = tty->ops->tiocmget(tty, file);
2404
2405                 if (retval >= 0)
2406                         retval = put_user(retval, p);
2407         }
2408         return retval;
2409 }
2410
2411 /**
2412  *      tty_tiocmset            -       set modem status
2413  *      @tty: tty device
2414  *      @file: user file pointer
2415  *      @cmd: command - clear bits, set bits or set all
2416  *      @p: pointer to desired bits
2417  *
2418  *      Set the modem status bits from the tty driver if the feature
2419  *      is supported. Return -EINVAL if it is not available.
2420  *
2421  *      Locking: none (up to the driver)
2422  */
2423
2424 static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
2425              unsigned __user *p)
2426 {
2427         int retval;
2428         unsigned int set, clear, val;
2429
2430         if (tty->ops->tiocmset == NULL)
2431                 return -EINVAL;
2432
2433         retval = get_user(val, p);
2434         if (retval)
2435                 return retval;
2436         set = clear = 0;
2437         switch (cmd) {
2438         case TIOCMBIS:
2439                 set = val;
2440                 break;
2441         case TIOCMBIC:
2442                 clear = val;
2443                 break;
2444         case TIOCMSET:
2445                 set = val;
2446                 clear = ~val;
2447                 break;
2448         }
2449         set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2450         clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2451         return tty->ops->tiocmset(tty, file, set, clear);
2452 }
2453
2454 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2455 {
2456         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2457             tty->driver->subtype == PTY_TYPE_MASTER)
2458                 tty = tty->link;
2459         return tty;
2460 }
2461 EXPORT_SYMBOL(tty_pair_get_tty);
2462
2463 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2464 {
2465         if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2466             tty->driver->subtype == PTY_TYPE_MASTER)
2467             return tty;
2468         return tty->link;
2469 }
2470 EXPORT_SYMBOL(tty_pair_get_pty);
2471
2472 /*
2473  * Split this up, as gcc can choke on it otherwise..
2474  */
2475 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2476 {
2477         struct tty_struct *tty, *real_tty;
2478         void __user *p = (void __user *)arg;
2479         int retval;
2480         struct tty_ldisc *ld;
2481         struct inode *inode = file->f_dentry->d_inode;
2482
2483         tty = (struct tty_struct *)file->private_data;
2484         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2485                 return -EINVAL;
2486
2487         real_tty = tty_pair_get_tty(tty);
2488
2489         /*
2490          * Factor out some common prep work
2491          */
2492         switch (cmd) {
2493         case TIOCSETD:
2494         case TIOCSBRK:
2495         case TIOCCBRK:
2496         case TCSBRK:
2497         case TCSBRKP:
2498                 retval = tty_check_change(tty);
2499                 if (retval)
2500                         return retval;
2501                 if (cmd != TIOCCBRK) {
2502                         tty_wait_until_sent(tty, 0);
2503                         if (signal_pending(current))
2504                                 return -EINTR;
2505                 }
2506                 break;
2507         }
2508
2509         /*
2510          *      Now do the stuff.
2511          */
2512         switch (cmd) {
2513         case TIOCSTI:
2514                 return tiocsti(tty, p);
2515         case TIOCGWINSZ:
2516                 return tiocgwinsz(real_tty, p);
2517         case TIOCSWINSZ:
2518                 return tiocswinsz(real_tty, p);
2519         case TIOCCONS:
2520                 return real_tty != tty ? -EINVAL : tioccons(file);
2521         case FIONBIO:
2522                 return fionbio(file, p);
2523         case TIOCEXCL:
2524                 set_bit(TTY_EXCLUSIVE, &tty->flags);
2525                 return 0;
2526         case TIOCNXCL:
2527                 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2528                 return 0;
2529         case TIOCNOTTY:
2530                 if (current->signal->tty != tty)
2531                         return -ENOTTY;
2532                 no_tty();
2533                 return 0;
2534         case TIOCSCTTY:
2535                 return tiocsctty(tty, arg);
2536         case TIOCGPGRP:
2537                 return tiocgpgrp(tty, real_tty, p);
2538         case TIOCSPGRP:
2539                 return tiocspgrp(tty, real_tty, p);
2540         case TIOCGSID:
2541                 return tiocgsid(tty, real_tty, p);
2542         case TIOCGETD:
2543                 return put_user(tty->ldisc->ops->num, (int __user *)p);
2544         case TIOCSETD:
2545                 return tiocsetd(tty, p);
2546         /*
2547          * Break handling
2548          */
2549         case TIOCSBRK:  /* Turn break on, unconditionally */
2550                 if (tty->ops->break_ctl)
2551                         return tty->ops->break_ctl(tty, -1);
2552                 return 0;
2553         case TIOCCBRK:  /* Turn break off, unconditionally */
2554                 if (tty->ops->break_ctl)
2555                         return tty->ops->break_ctl(tty, 0);
2556                 return 0;
2557         case TCSBRK:   /* SVID version: non-zero arg --> no break */
2558                 /* non-zero arg means wait for all output data
2559                  * to be sent (performed above) but don't send break.
2560                  * This is used by the tcdrain() termios function.
2561                  */
2562                 if (!arg)
2563                         return send_break(tty, 250);
2564                 return 0;
2565         case TCSBRKP:   /* support for POSIX tcsendbreak() */
2566                 return send_break(tty, arg ? arg*100 : 250);
2567
2568         case TIOCMGET:
2569                 return tty_tiocmget(tty, file, p);
2570         case TIOCMSET:
2571         case TIOCMBIC:
2572         case TIOCMBIS:
2573                 return tty_tiocmset(tty, file, cmd, p);
2574         case TCFLSH:
2575                 switch (arg) {
2576                 case TCIFLUSH:
2577                 case TCIOFLUSH:
2578                 /* flush tty buffer and allow ldisc to process ioctl */
2579                         tty_buffer_flush(tty);
2580                         break;
2581                 }
2582                 break;
2583         }
2584         if (tty->ops->ioctl) {
2585                 retval = (tty->ops->ioctl)(tty, file, cmd, arg);
2586                 if (retval != -ENOIOCTLCMD)
2587                         return retval;
2588         }
2589         ld = tty_ldisc_ref_wait(tty);
2590         retval = -EINVAL;
2591         if (ld->ops->ioctl) {
2592                 retval = ld->ops->ioctl(tty, file, cmd, arg);
2593                 if (retval == -ENOIOCTLCMD)
2594                         retval = -EINVAL;
2595         }
2596         tty_ldisc_deref(ld);
2597         return retval;
2598 }
2599
2600 #ifdef CONFIG_COMPAT
2601 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2602                                 unsigned long arg)
2603 {
2604         struct inode *inode = file->f_dentry->d_inode;
2605         struct tty_struct *tty = file->private_data;
2606         struct tty_ldisc *ld;
2607         int retval = -ENOIOCTLCMD;
2608
2609         if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2610                 return -EINVAL;
2611
2612         if (tty->ops->compat_ioctl) {
2613                 retval = (tty->ops->compat_ioctl)(tty, file, cmd, arg);
2614                 if (retval != -ENOIOCTLCMD)
2615                         return retval;
2616         }
2617
2618         ld = tty_ldisc_ref_wait(tty);
2619         if (ld->ops->compat_ioctl)
2620                 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2621         tty_ldisc_deref(ld);
2622
2623         return retval;
2624 }
2625 #endif
2626
2627 /*
2628  * This implements the "Secure Attention Key" ---  the idea is to
2629  * prevent trojan horses by killing all processes associated with this
2630  * tty when the user hits the "Secure Attention Key".  Required for
2631  * super-paranoid applications --- see the Orange Book for more details.
2632  *
2633  * This code could be nicer; ideally it should send a HUP, wait a few
2634  * seconds, then send a INT, and then a KILL signal.  But you then
2635  * have to coordinate with the init process, since all processes associated
2636  * with the current tty must be dead before the new getty is allowed
2637  * to spawn.
2638  *
2639  * Now, if it would be correct ;-/ The current code has a nasty hole -
2640  * it doesn't catch files in flight. We may send the descriptor to ourselves
2641  * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2642  *
2643  * Nasty bug: do_SAK is being called in interrupt context.  This can
2644  * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2645  */
2646 void __do_SAK(struct tty_struct *tty)
2647 {
2648 #ifdef TTY_SOFT_SAK
2649         tty_hangup(tty);
2650 #else
2651         struct task_struct *g, *p;
2652         struct pid *session;
2653         int             i;
2654         struct file     *filp;
2655         struct fdtable *fdt;
2656
2657         if (!tty)
2658                 return;
2659         session = tty->session;
2660
2661         tty_ldisc_flush(tty);
2662
2663         tty_driver_flush_buffer(tty);
2664
2665         read_lock(&tasklist_lock);
2666         /* Kill the entire session */
2667         do_each_pid_task(session, PIDTYPE_SID, p) {
2668                 printk(KERN_NOTICE "SAK: killed process %d"
2669                         " (%s): task_session(p)==tty->session\n",
2670                         task_pid_nr(p), p->comm);
2671                 send_sig(SIGKILL, p, 1);
2672         } while_each_pid_task(session, PIDTYPE_SID, p);
2673         /* Now kill any processes that happen to have the
2674          * tty open.
2675          */
2676         do_each_thread(g, p) {
2677                 if (p->signal->tty == tty) {
2678                         printk(KERN_NOTICE "SAK: killed process %d"
2679                             " (%s): task_session(p)==tty->session\n",
2680                             task_pid_nr(p), p->comm);
2681                         send_sig(SIGKILL, p, 1);
2682                         continue;
2683                 }
2684                 task_lock(p);
2685                 if (p->files) {
2686                         /*
2687                          * We don't take a ref to the file, so we must
2688                          * hold ->file_lock instead.
2689                          */
2690                         spin_lock(&p->files->file_lock);
2691                         fdt = files_fdtable(p->files);
2692                         for (i = 0; i < fdt->max_fds; i++) {
2693                                 filp = fcheck_files(p->files, i);
2694                                 if (!filp)
2695                                         continue;
2696                                 if (filp->f_op->read == tty_read &&
2697                                     filp->private_data == tty) {
2698                                         printk(KERN_NOTICE "SAK: killed process %d"
2699                                             " (%s): fd#%d opened to the tty\n",
2700                                             task_pid_nr(p), p->comm, i);
2701                                         force_sig(SIGKILL, p);
2702                                         break;
2703                                 }
2704                         }
2705                         spin_unlock(&p->files->file_lock);
2706                 }
2707                 task_unlock(p);
2708         } while_each_thread(g, p);
2709         read_unlock(&tasklist_lock);
2710 #endif
2711 }
2712
2713 static void do_SAK_work(struct work_struct *work)
2714 {
2715         struct tty_struct *tty =
2716                 container_of(work, struct tty_struct, SAK_work);
2717         __do_SAK(tty);
2718 }
2719
2720 /*
2721  * The tq handling here is a little racy - tty->SAK_work may already be queued.
2722  * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2723  * the values which we write to it will be identical to the values which it
2724  * already has. --akpm
2725  */
2726 void do_SAK(struct tty_struct *tty)
2727 {
2728         if (!tty)
2729                 return;
2730         schedule_work(&tty->SAK_work);
2731 }
2732
2733 EXPORT_SYMBOL(do_SAK);
2734
2735 /**
2736  *      initialize_tty_struct
2737  *      @tty: tty to initialize
2738  *
2739  *      This subroutine initializes a tty structure that has been newly
2740  *      allocated.
2741  *
2742  *      Locking: none - tty in question must not be exposed at this point
2743  */
2744
2745 void initialize_tty_struct(struct tty_struct *tty,
2746                 struct tty_driver *driver, int idx)
2747 {
2748         memset(tty, 0, sizeof(struct tty_struct));
2749         kref_init(&tty->kref);
2750         tty->magic = TTY_MAGIC;
2751         tty_ldisc_init(tty);
2752         tty->session = NULL;
2753         tty->pgrp = NULL;
2754         tty->overrun_time = jiffies;
2755         tty->buf.head = tty->buf.tail = NULL;
2756         tty_buffer_init(tty);
2757         mutex_init(&tty->termios_mutex);
2758         mutex_init(&tty->ldisc_mutex);
2759         init_waitqueue_head(&tty->write_wait);
2760         init_waitqueue_head(&tty->read_wait);
2761         INIT_WORK(&tty->hangup_work, do_tty_hangup);
2762         mutex_init(&tty->atomic_read_lock);
2763         mutex_init(&tty->atomic_write_lock);
2764         mutex_init(&tty->output_lock);
2765         mutex_init(&tty->echo_lock);
2766         spin_lock_init(&tty->read_lock);
2767         spin_lock_init(&tty->ctrl_lock);
2768         INIT_LIST_HEAD(&tty->tty_files);
2769         INIT_WORK(&tty->SAK_work, do_SAK_work);
2770
2771         tty->driver = driver;
2772         tty->ops = driver->ops;
2773         tty->index = idx;
2774         tty_line_name(driver, idx, tty->name);
2775 }
2776
2777 /**
2778  *      tty_put_char    -       write one character to a tty
2779  *      @tty: tty
2780  *      @ch: character
2781  *
2782  *      Write one byte to the tty using the provided put_char method
2783  *      if present. Returns the number of characters successfully output.
2784  *
2785  *      Note: the specific put_char operation in the driver layer may go
2786  *      away soon. Don't call it directly, use this method
2787  */
2788
2789 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2790 {
2791         if (tty->ops->put_char)
2792                 return tty->ops->put_char(tty, ch);
2793         return tty->ops->write(tty, &ch, 1);
2794 }
2795 EXPORT_SYMBOL_GPL(tty_put_char);
2796
2797 struct class *tty_class;
2798
2799 /**
2800  *      tty_register_device - register a tty device
2801  *      @driver: the tty driver that describes the tty device
2802  *      @index: the index in the tty driver for this tty device
2803  *      @device: a struct device that is associated with this tty device.
2804  *              This field is optional, if there is no known struct device
2805  *              for this tty device it can be set to NULL safely.
2806  *
2807  *      Returns a pointer to the struct device for this tty device
2808  *      (or ERR_PTR(-EFOO) on error).
2809  *
2810  *      This call is required to be made to register an individual tty device
2811  *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
2812  *      that bit is not set, this function should not be called by a tty
2813  *      driver.
2814  *
2815  *      Locking: ??
2816  */
2817
2818 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2819                                    struct device *device)
2820 {
2821         char name[64];
2822         dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
2823
2824         if (index >= driver->num) {
2825                 printk(KERN_ERR "Attempt to register invalid tty line number "
2826                        " (%d).\n", index);
2827                 return ERR_PTR(-EINVAL);
2828         }
2829
2830         if (driver->type == TTY_DRIVER_TYPE_PTY)
2831                 pty_line_name(driver, index, name);
2832         else
2833                 tty_line_name(driver, index, name);
2834
2835         return device_create(tty_class, device, dev, NULL, name);
2836 }
2837 EXPORT_SYMBOL(tty_register_device);
2838
2839 /**
2840  *      tty_unregister_device - unregister a tty device
2841  *      @driver: the tty driver that describes the tty device
2842  *      @index: the index in the tty driver for this tty device
2843  *
2844  *      If a tty device is registered with a call to tty_register_device() then
2845  *      this function must be called when the tty device is gone.
2846  *
2847  *      Locking: ??
2848  */
2849
2850 void tty_unregister_device(struct tty_driver *driver, unsigned index)
2851 {
2852         device_destroy(tty_class,
2853                 MKDEV(driver->major, driver->minor_start) + index);
2854 }
2855 EXPORT_SYMBOL(tty_unregister_device);
2856
2857 struct tty_driver *alloc_tty_driver(int lines)
2858 {
2859         struct tty_driver *driver;
2860
2861         driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
2862         if (driver) {
2863                 kref_init(&driver->kref);
2864                 driver->magic = TTY_DRIVER_MAGIC;
2865                 driver->num = lines;
2866                 /* later we'll move allocation of tables here */
2867         }
2868         return driver;
2869 }
2870 EXPORT_SYMBOL(alloc_tty_driver);
2871
2872 static void destruct_tty_driver(struct kref *kref)
2873 {
2874         struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
2875         int i;
2876         struct ktermios *tp;
2877         void *p;
2878
2879         if (driver->flags & TTY_DRIVER_INSTALLED) {
2880                 /*
2881                  * Free the termios and termios_locked structures because
2882                  * we don't want to get memory leaks when modular tty
2883                  * drivers are removed from the kernel.
2884                  */
2885                 for (i = 0; i < driver->num; i++) {
2886                         tp = driver->termios[i];
2887                         if (tp) {
2888                                 driver->termios[i] = NULL;
2889                                 kfree(tp);
2890                         }
2891                         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
2892                                 tty_unregister_device(driver, i);
2893                 }
2894                 p = driver->ttys;
2895                 proc_tty_unregister_driver(driver);
2896                 driver->ttys = NULL;
2897                 driver->termios = NULL;
2898                 kfree(p);
2899                 cdev_del(&driver->cdev);
2900         }
2901         kfree(driver);
2902 }
2903
2904 void tty_driver_kref_put(struct tty_driver *driver)
2905 {
2906         kref_put(&driver->kref, destruct_tty_driver);
2907 }
2908 EXPORT_SYMBOL(tty_driver_kref_put);
2909
2910 void tty_set_operations(struct tty_driver *driver,
2911                         const struct tty_operations *op)
2912 {
2913         driver->ops = op;
2914 };
2915 EXPORT_SYMBOL(tty_set_operations);
2916
2917 void put_tty_driver(struct tty_driver *d)
2918 {
2919         tty_driver_kref_put(d);
2920 }
2921 EXPORT_SYMBOL(put_tty_driver);
2922
2923 /*
2924  * Called by a tty driver to register itself.
2925  */
2926 int tty_register_driver(struct tty_driver *driver)
2927 {
2928         int error;
2929         int i;
2930         dev_t dev;
2931         void **p = NULL;
2932
2933         if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
2934                 p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
2935                 if (!p)
2936                         return -ENOMEM;
2937         }
2938
2939         if (!driver->major) {
2940                 error = alloc_chrdev_region(&dev, driver->minor_start,
2941                                                 driver->num, driver->name);
2942                 if (!error) {
2943                         driver->major = MAJOR(dev);
2944                         driver->minor_start = MINOR(dev);
2945                 }
2946         } else {
2947                 dev = MKDEV(driver->major, driver->minor_start);
2948                 error = register_chrdev_region(dev, driver->num, driver->name);
2949         }
2950         if (error < 0) {
2951                 kfree(p);
2952                 return error;
2953         }
2954
2955         if (p) {
2956                 driver->ttys = (struct tty_struct **)p;
2957                 driver->termios = (struct ktermios **)(p + driver->num);
2958         } else {
2959                 driver->ttys = NULL;
2960                 driver->termios = NULL;
2961         }
2962
2963         cdev_init(&driver->cdev, &tty_fops);
2964         driver->cdev.owner = driver->owner;
2965         error = cdev_add(&driver->cdev, dev, driver->num);
2966         if (error) {
2967                 unregister_chrdev_region(dev, driver->num);
2968                 driver->ttys = NULL;
2969                 driver->termios = NULL;
2970                 kfree(p);
2971                 return error;
2972         }
2973
2974         mutex_lock(&tty_mutex);
2975         list_add(&driver->tty_drivers, &tty_drivers);
2976         mutex_unlock(&tty_mutex);
2977
2978         if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
2979                 for (i = 0; i < driver->num; i++)
2980                     tty_register_device(driver, i, NULL);
2981         }
2982         proc_tty_register_driver(driver);
2983         driver->flags |= TTY_DRIVER_INSTALLED;
2984         return 0;
2985 }
2986
2987 EXPORT_SYMBOL(tty_register_driver);
2988
2989 /*
2990  * Called by a tty driver to unregister itself.
2991  */
2992 int tty_unregister_driver(struct tty_driver *driver)
2993 {
2994 #if 0
2995         /* FIXME */
2996         if (driver->refcount)
2997                 return -EBUSY;
2998 #endif
2999         unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3000                                 driver->num);
3001         mutex_lock(&tty_mutex);
3002         list_del(&driver->tty_drivers);
3003         mutex_unlock(&tty_mutex);
3004         return 0;
3005 }
3006
3007 EXPORT_SYMBOL(tty_unregister_driver);
3008
3009 dev_t tty_devnum(struct tty_struct *tty)
3010 {
3011         return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3012 }
3013 EXPORT_SYMBOL(tty_devnum);
3014
3015 void proc_clear_tty(struct task_struct *p)
3016 {
3017         unsigned long flags;
3018         struct tty_struct *tty;
3019         spin_lock_irqsave(&p->sighand->siglock, flags);
3020         tty = p->signal->tty;
3021         p->signal->tty = NULL;
3022         spin_unlock_irqrestore(&p->sighand->siglock, flags);
3023         tty_kref_put(tty);
3024 }
3025
3026 /* Called under the sighand lock */
3027
3028 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3029 {
3030         if (tty) {
3031                 unsigned long flags;
3032                 /* We should not have a session or pgrp to put here but.... */
3033                 spin_lock_irqsave(&tty->ctrl_lock, flags);
3034                 put_pid(tty->session);
3035                 put_pid(tty->pgrp);
3036                 tty->pgrp = get_pid(task_pgrp(tsk));
3037                 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3038                 tty->session = get_pid(task_session(tsk));
3039                 if (tsk->signal->tty) {
3040                         printk(KERN_DEBUG "tty not NULL!!\n");
3041                         tty_kref_put(tsk->signal->tty);
3042                 }
3043         }
3044         put_pid(tsk->signal->tty_old_pgrp);
3045         tsk->signal->tty = tty_kref_get(tty);
3046         tsk->signal->tty_old_pgrp = NULL;
3047 }
3048
3049 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3050 {
3051         spin_lock_irq(&tsk->sighand->siglock);
3052         __proc_set_tty(tsk, tty);
3053         spin_unlock_irq(&tsk->sighand->siglock);
3054 }
3055
3056 struct tty_struct *get_current_tty(void)
3057 {
3058         struct tty_struct *tty;
3059         unsigned long flags;
3060
3061         spin_lock_irqsave(&current->sighand->siglock, flags);
3062         tty = tty_kref_get(current->signal->tty);
3063         spin_unlock_irqrestore(&current->sighand->siglock, flags);
3064         return tty;
3065 }
3066 EXPORT_SYMBOL_GPL(get_current_tty);
3067
3068 void tty_default_fops(struct file_operations *fops)
3069 {
3070         *fops = tty_fops;
3071 }
3072
3073 /*
3074  * Initialize the console device. This is called *early*, so
3075  * we can't necessarily depend on lots of kernel help here.
3076  * Just do some early initializations, and do the complex setup
3077  * later.
3078  */
3079 void __init console_init(void)
3080 {
3081         initcall_t *call;
3082
3083         /* Setup the default TTY line discipline. */
3084         tty_ldisc_begin();
3085
3086         /*
3087          * set up the console device so that later boot sequences can
3088          * inform about problems etc..
3089          */
3090         call = __con_initcall_start;
3091         while (call < __con_initcall_end) {
3092                 (*call)();
3093                 call++;
3094         }
3095 }
3096
3097 static char *tty_devnode(struct device *dev, mode_t *mode)
3098 {
3099         if (!mode)
3100                 return NULL;
3101         if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3102             dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3103                 *mode = 0666;
3104         return NULL;
3105 }
3106
3107 static int __init tty_class_init(void)
3108 {
3109         tty_class = class_create(THIS_MODULE, "tty");
3110         if (IS_ERR(tty_class))
3111                 return PTR_ERR(tty_class);
3112         tty_class->devnode = tty_devnode;
3113         return 0;
3114 }
3115
3116 postcore_initcall(tty_class_init);
3117
3118 /* 3/2004 jmc: why do these devices exist? */
3119
3120 static struct cdev tty_cdev, console_cdev;
3121
3122 /*
3123  * Ok, now we can initialize the rest of the tty devices and can count
3124  * on memory allocations, interrupts etc..
3125  */
3126 static int __init tty_init(void)
3127 {
3128         cdev_init(&tty_cdev, &tty_fops);
3129         if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3130             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3131                 panic("Couldn't register /dev/tty driver\n");
3132         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL,
3133                               "tty");
3134
3135         cdev_init(&console_cdev, &console_fops);
3136         if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3137             register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3138                 panic("Couldn't register /dev/console driver\n");
3139         device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3140                               "console");
3141
3142 #ifdef CONFIG_VT
3143         vty_init(&console_fops);
3144 #endif
3145         return 0;
3146 }
3147 module_init(tty_init);