93ab75887fbf99db1db5acdde91000dcb21b475f
[pandora-kernel.git] / drivers / char / ipmi / ipmi_si_intf.c
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <asm/system.h>
45 #include <linux/sched.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi_smi.h>
61 #include <asm/io.h>
62 #include "ipmi_si_sm.h"
63 #include <linux/init.h>
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67 #include <linux/pnp.h>
68
69 #ifdef CONFIG_PPC_OF
70 #include <linux/of_device.h>
71 #include <linux/of_platform.h>
72 #endif
73
74 #define PFX "ipmi_si: "
75
76 /* Measure times between events in the driver. */
77 #undef DEBUG_TIMING
78
79 /* Call every 10 ms. */
80 #define SI_TIMEOUT_TIME_USEC    10000
81 #define SI_USEC_PER_JIFFY       (1000000/HZ)
82 #define SI_TIMEOUT_JIFFIES      (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
83 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
84                                       short timeout */
85
86 enum si_intf_state {
87         SI_NORMAL,
88         SI_GETTING_FLAGS,
89         SI_GETTING_EVENTS,
90         SI_CLEARING_FLAGS,
91         SI_CLEARING_FLAGS_THEN_SET_IRQ,
92         SI_GETTING_MESSAGES,
93         SI_ENABLE_INTERRUPTS1,
94         SI_ENABLE_INTERRUPTS2,
95         SI_DISABLE_INTERRUPTS1,
96         SI_DISABLE_INTERRUPTS2
97         /* FIXME - add watchdog stuff. */
98 };
99
100 /* Some BT-specific defines we need here. */
101 #define IPMI_BT_INTMASK_REG             2
102 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT   2
103 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT  1
104
105 enum si_type {
106     SI_KCS, SI_SMIC, SI_BT
107 };
108 static char *si_to_str[] = { "kcs", "smic", "bt" };
109
110 enum ipmi_addr_src {
111         SI_INVALID = 0, SI_HOTMOD, SI_HARDCODED, SI_SPMI, SI_ACPI, SI_SMBIOS,
112         SI_PCI, SI_DEVICETREE, SI_DEFAULT
113 };
114 static char *ipmi_addr_src_to_str[] = { NULL, "hotmod", "hardcoded", "SPMI",
115                                         "ACPI", "SMBIOS", "PCI",
116                                         "device-tree", "default" };
117
118 #define DEVICE_NAME "ipmi_si"
119
120 static struct platform_driver ipmi_driver = {
121         .driver = {
122                 .name = DEVICE_NAME,
123                 .bus = &platform_bus_type
124         }
125 };
126
127
128 /*
129  * Indexes into stats[] in smi_info below.
130  */
131 enum si_stat_indexes {
132         /*
133          * Number of times the driver requested a timer while an operation
134          * was in progress.
135          */
136         SI_STAT_short_timeouts = 0,
137
138         /*
139          * Number of times the driver requested a timer while nothing was in
140          * progress.
141          */
142         SI_STAT_long_timeouts,
143
144         /* Number of times the interface was idle while being polled. */
145         SI_STAT_idles,
146
147         /* Number of interrupts the driver handled. */
148         SI_STAT_interrupts,
149
150         /* Number of time the driver got an ATTN from the hardware. */
151         SI_STAT_attentions,
152
153         /* Number of times the driver requested flags from the hardware. */
154         SI_STAT_flag_fetches,
155
156         /* Number of times the hardware didn't follow the state machine. */
157         SI_STAT_hosed_count,
158
159         /* Number of completed messages. */
160         SI_STAT_complete_transactions,
161
162         /* Number of IPMI events received from the hardware. */
163         SI_STAT_events,
164
165         /* Number of watchdog pretimeouts. */
166         SI_STAT_watchdog_pretimeouts,
167
168         /* Number of asyncronous messages received. */
169         SI_STAT_incoming_messages,
170
171
172         /* This *must* remain last, add new values above this. */
173         SI_NUM_STATS
174 };
175
176 struct smi_info {
177         int                    intf_num;
178         ipmi_smi_t             intf;
179         struct si_sm_data      *si_sm;
180         struct si_sm_handlers  *handlers;
181         enum si_type           si_type;
182         spinlock_t             si_lock;
183         spinlock_t             msg_lock;
184         struct list_head       xmit_msgs;
185         struct list_head       hp_xmit_msgs;
186         struct ipmi_smi_msg    *curr_msg;
187         enum si_intf_state     si_state;
188
189         /*
190          * Used to handle the various types of I/O that can occur with
191          * IPMI
192          */
193         struct si_sm_io io;
194         int (*io_setup)(struct smi_info *info);
195         void (*io_cleanup)(struct smi_info *info);
196         int (*irq_setup)(struct smi_info *info);
197         void (*irq_cleanup)(struct smi_info *info);
198         unsigned int io_size;
199         enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
200         void (*addr_source_cleanup)(struct smi_info *info);
201         void *addr_source_data;
202
203         /*
204          * Per-OEM handler, called from handle_flags().  Returns 1
205          * when handle_flags() needs to be re-run or 0 indicating it
206          * set si_state itself.
207          */
208         int (*oem_data_avail_handler)(struct smi_info *smi_info);
209
210         /*
211          * Flags from the last GET_MSG_FLAGS command, used when an ATTN
212          * is set to hold the flags until we are done handling everything
213          * from the flags.
214          */
215 #define RECEIVE_MSG_AVAIL       0x01
216 #define EVENT_MSG_BUFFER_FULL   0x02
217 #define WDT_PRE_TIMEOUT_INT     0x08
218 #define OEM0_DATA_AVAIL     0x20
219 #define OEM1_DATA_AVAIL     0x40
220 #define OEM2_DATA_AVAIL     0x80
221 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
222                              OEM1_DATA_AVAIL | \
223                              OEM2_DATA_AVAIL)
224         unsigned char       msg_flags;
225
226         /* Does the BMC have an event buffer? */
227         char                has_event_buffer;
228
229         /*
230          * If set to true, this will request events the next time the
231          * state machine is idle.
232          */
233         atomic_t            req_events;
234
235         /*
236          * If true, run the state machine to completion on every send
237          * call.  Generally used after a panic to make sure stuff goes
238          * out.
239          */
240         int                 run_to_completion;
241
242         /* The I/O port of an SI interface. */
243         int                 port;
244
245         /*
246          * The space between start addresses of the two ports.  For
247          * instance, if the first port is 0xca2 and the spacing is 4, then
248          * the second port is 0xca6.
249          */
250         unsigned int        spacing;
251
252         /* zero if no irq; */
253         int                 irq;
254
255         /* The timer for this si. */
256         struct timer_list   si_timer;
257
258         /* The time (in jiffies) the last timeout occurred at. */
259         unsigned long       last_timeout_jiffies;
260
261         /* Used to gracefully stop the timer without race conditions. */
262         atomic_t            stop_operation;
263
264         /*
265          * The driver will disable interrupts when it gets into a
266          * situation where it cannot handle messages due to lack of
267          * memory.  Once that situation clears up, it will re-enable
268          * interrupts.
269          */
270         int interrupt_disabled;
271
272         /* From the get device id response... */
273         struct ipmi_device_id device_id;
274
275         /* Driver model stuff. */
276         struct device *dev;
277         struct platform_device *pdev;
278
279         /*
280          * True if we allocated the device, false if it came from
281          * someplace else (like PCI).
282          */
283         int dev_registered;
284
285         /* Slave address, could be reported from DMI. */
286         unsigned char slave_addr;
287
288         /* Counters and things for the proc filesystem. */
289         atomic_t stats[SI_NUM_STATS];
290
291         struct task_struct *thread;
292
293         struct list_head link;
294 };
295
296 #define smi_inc_stat(smi, stat) \
297         atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
298 #define smi_get_stat(smi, stat) \
299         ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
300
301 #define SI_MAX_PARMS 4
302
303 static int force_kipmid[SI_MAX_PARMS];
304 static int num_force_kipmid;
305
306 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
307 static int num_max_busy_us;
308
309 static int unload_when_empty = 1;
310
311 static int try_smi_init(struct smi_info *smi);
312 static void cleanup_one_si(struct smi_info *to_clean);
313
314 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
315 static int register_xaction_notifier(struct notifier_block *nb)
316 {
317         return atomic_notifier_chain_register(&xaction_notifier_list, nb);
318 }
319
320 static void deliver_recv_msg(struct smi_info *smi_info,
321                              struct ipmi_smi_msg *msg)
322 {
323         /* Deliver the message to the upper layer with the lock
324            released. */
325         spin_unlock(&(smi_info->si_lock));
326         ipmi_smi_msg_received(smi_info->intf, msg);
327         spin_lock(&(smi_info->si_lock));
328 }
329
330 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
331 {
332         struct ipmi_smi_msg *msg = smi_info->curr_msg;
333
334         if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
335                 cCode = IPMI_ERR_UNSPECIFIED;
336         /* else use it as is */
337
338         /* Make it a reponse */
339         msg->rsp[0] = msg->data[0] | 4;
340         msg->rsp[1] = msg->data[1];
341         msg->rsp[2] = cCode;
342         msg->rsp_size = 3;
343
344         smi_info->curr_msg = NULL;
345         deliver_recv_msg(smi_info, msg);
346 }
347
348 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
349 {
350         int              rv;
351         struct list_head *entry = NULL;
352 #ifdef DEBUG_TIMING
353         struct timeval t;
354 #endif
355
356         /*
357          * No need to save flags, we aleady have interrupts off and we
358          * already hold the SMI lock.
359          */
360         if (!smi_info->run_to_completion)
361                 spin_lock(&(smi_info->msg_lock));
362
363         /* Pick the high priority queue first. */
364         if (!list_empty(&(smi_info->hp_xmit_msgs))) {
365                 entry = smi_info->hp_xmit_msgs.next;
366         } else if (!list_empty(&(smi_info->xmit_msgs))) {
367                 entry = smi_info->xmit_msgs.next;
368         }
369
370         if (!entry) {
371                 smi_info->curr_msg = NULL;
372                 rv = SI_SM_IDLE;
373         } else {
374                 int err;
375
376                 list_del(entry);
377                 smi_info->curr_msg = list_entry(entry,
378                                                 struct ipmi_smi_msg,
379                                                 link);
380 #ifdef DEBUG_TIMING
381                 do_gettimeofday(&t);
382                 printk(KERN_DEBUG "**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
383 #endif
384                 err = atomic_notifier_call_chain(&xaction_notifier_list,
385                                 0, smi_info);
386                 if (err & NOTIFY_STOP_MASK) {
387                         rv = SI_SM_CALL_WITHOUT_DELAY;
388                         goto out;
389                 }
390                 err = smi_info->handlers->start_transaction(
391                         smi_info->si_sm,
392                         smi_info->curr_msg->data,
393                         smi_info->curr_msg->data_size);
394                 if (err)
395                         return_hosed_msg(smi_info, err);
396
397                 rv = SI_SM_CALL_WITHOUT_DELAY;
398         }
399  out:
400         if (!smi_info->run_to_completion)
401                 spin_unlock(&(smi_info->msg_lock));
402
403         return rv;
404 }
405
406 static void start_enable_irq(struct smi_info *smi_info)
407 {
408         unsigned char msg[2];
409
410         /*
411          * If we are enabling interrupts, we have to tell the
412          * BMC to use them.
413          */
414         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
415         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
416
417         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
418         smi_info->si_state = SI_ENABLE_INTERRUPTS1;
419 }
420
421 static void start_disable_irq(struct smi_info *smi_info)
422 {
423         unsigned char msg[2];
424
425         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
426         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
427
428         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
429         smi_info->si_state = SI_DISABLE_INTERRUPTS1;
430 }
431
432 static void start_clear_flags(struct smi_info *smi_info)
433 {
434         unsigned char msg[3];
435
436         /* Make sure the watchdog pre-timeout flag is not set at startup. */
437         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
438         msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
439         msg[2] = WDT_PRE_TIMEOUT_INT;
440
441         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
442         smi_info->si_state = SI_CLEARING_FLAGS;
443 }
444
445 /*
446  * When we have a situtaion where we run out of memory and cannot
447  * allocate messages, we just leave them in the BMC and run the system
448  * polled until we can allocate some memory.  Once we have some
449  * memory, we will re-enable the interrupt.
450  */
451 static inline void disable_si_irq(struct smi_info *smi_info)
452 {
453         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
454                 start_disable_irq(smi_info);
455                 smi_info->interrupt_disabled = 1;
456         }
457 }
458
459 static inline void enable_si_irq(struct smi_info *smi_info)
460 {
461         if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
462                 start_enable_irq(smi_info);
463                 smi_info->interrupt_disabled = 0;
464         }
465 }
466
467 static void handle_flags(struct smi_info *smi_info)
468 {
469  retry:
470         if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
471                 /* Watchdog pre-timeout */
472                 smi_inc_stat(smi_info, watchdog_pretimeouts);
473
474                 start_clear_flags(smi_info);
475                 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
476                 spin_unlock(&(smi_info->si_lock));
477                 ipmi_smi_watchdog_pretimeout(smi_info->intf);
478                 spin_lock(&(smi_info->si_lock));
479         } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
480                 /* Messages available. */
481                 smi_info->curr_msg = ipmi_alloc_smi_msg();
482                 if (!smi_info->curr_msg) {
483                         disable_si_irq(smi_info);
484                         smi_info->si_state = SI_NORMAL;
485                         return;
486                 }
487                 enable_si_irq(smi_info);
488
489                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
490                 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
491                 smi_info->curr_msg->data_size = 2;
492
493                 smi_info->handlers->start_transaction(
494                         smi_info->si_sm,
495                         smi_info->curr_msg->data,
496                         smi_info->curr_msg->data_size);
497                 smi_info->si_state = SI_GETTING_MESSAGES;
498         } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
499                 /* Events available. */
500                 smi_info->curr_msg = ipmi_alloc_smi_msg();
501                 if (!smi_info->curr_msg) {
502                         disable_si_irq(smi_info);
503                         smi_info->si_state = SI_NORMAL;
504                         return;
505                 }
506                 enable_si_irq(smi_info);
507
508                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
509                 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
510                 smi_info->curr_msg->data_size = 2;
511
512                 smi_info->handlers->start_transaction(
513                         smi_info->si_sm,
514                         smi_info->curr_msg->data,
515                         smi_info->curr_msg->data_size);
516                 smi_info->si_state = SI_GETTING_EVENTS;
517         } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
518                    smi_info->oem_data_avail_handler) {
519                 if (smi_info->oem_data_avail_handler(smi_info))
520                         goto retry;
521         } else
522                 smi_info->si_state = SI_NORMAL;
523 }
524
525 static void handle_transaction_done(struct smi_info *smi_info)
526 {
527         struct ipmi_smi_msg *msg;
528 #ifdef DEBUG_TIMING
529         struct timeval t;
530
531         do_gettimeofday(&t);
532         printk(KERN_DEBUG "**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
533 #endif
534         switch (smi_info->si_state) {
535         case SI_NORMAL:
536                 if (!smi_info->curr_msg)
537                         break;
538
539                 smi_info->curr_msg->rsp_size
540                         = smi_info->handlers->get_result(
541                                 smi_info->si_sm,
542                                 smi_info->curr_msg->rsp,
543                                 IPMI_MAX_MSG_LENGTH);
544
545                 /*
546                  * Do this here becase deliver_recv_msg() releases the
547                  * lock, and a new message can be put in during the
548                  * time the lock is released.
549                  */
550                 msg = smi_info->curr_msg;
551                 smi_info->curr_msg = NULL;
552                 deliver_recv_msg(smi_info, msg);
553                 break;
554
555         case SI_GETTING_FLAGS:
556         {
557                 unsigned char msg[4];
558                 unsigned int  len;
559
560                 /* We got the flags from the SMI, now handle them. */
561                 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
562                 if (msg[2] != 0) {
563                         /* Error fetching flags, just give up for now. */
564                         smi_info->si_state = SI_NORMAL;
565                 } else if (len < 4) {
566                         /*
567                          * Hmm, no flags.  That's technically illegal, but
568                          * don't use uninitialized data.
569                          */
570                         smi_info->si_state = SI_NORMAL;
571                 } else {
572                         smi_info->msg_flags = msg[3];
573                         handle_flags(smi_info);
574                 }
575                 break;
576         }
577
578         case SI_CLEARING_FLAGS:
579         case SI_CLEARING_FLAGS_THEN_SET_IRQ:
580         {
581                 unsigned char msg[3];
582
583                 /* We cleared the flags. */
584                 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
585                 if (msg[2] != 0) {
586                         /* Error clearing flags */
587                         printk(KERN_WARNING
588                                "ipmi_si: Error clearing flags: %2.2x\n",
589                                msg[2]);
590                 }
591                 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
592                         start_enable_irq(smi_info);
593                 else
594                         smi_info->si_state = SI_NORMAL;
595                 break;
596         }
597
598         case SI_GETTING_EVENTS:
599         {
600                 smi_info->curr_msg->rsp_size
601                         = smi_info->handlers->get_result(
602                                 smi_info->si_sm,
603                                 smi_info->curr_msg->rsp,
604                                 IPMI_MAX_MSG_LENGTH);
605
606                 /*
607                  * Do this here becase deliver_recv_msg() releases the
608                  * lock, and a new message can be put in during the
609                  * time the lock is released.
610                  */
611                 msg = smi_info->curr_msg;
612                 smi_info->curr_msg = NULL;
613                 if (msg->rsp[2] != 0) {
614                         /* Error getting event, probably done. */
615                         msg->done(msg);
616
617                         /* Take off the event flag. */
618                         smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
619                         handle_flags(smi_info);
620                 } else {
621                         smi_inc_stat(smi_info, events);
622
623                         /*
624                          * Do this before we deliver the message
625                          * because delivering the message releases the
626                          * lock and something else can mess with the
627                          * state.
628                          */
629                         handle_flags(smi_info);
630
631                         deliver_recv_msg(smi_info, msg);
632                 }
633                 break;
634         }
635
636         case SI_GETTING_MESSAGES:
637         {
638                 smi_info->curr_msg->rsp_size
639                         = smi_info->handlers->get_result(
640                                 smi_info->si_sm,
641                                 smi_info->curr_msg->rsp,
642                                 IPMI_MAX_MSG_LENGTH);
643
644                 /*
645                  * Do this here becase deliver_recv_msg() releases the
646                  * lock, and a new message can be put in during the
647                  * time the lock is released.
648                  */
649                 msg = smi_info->curr_msg;
650                 smi_info->curr_msg = NULL;
651                 if (msg->rsp[2] != 0) {
652                         /* Error getting event, probably done. */
653                         msg->done(msg);
654
655                         /* Take off the msg flag. */
656                         smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
657                         handle_flags(smi_info);
658                 } else {
659                         smi_inc_stat(smi_info, incoming_messages);
660
661                         /*
662                          * Do this before we deliver the message
663                          * because delivering the message releases the
664                          * lock and something else can mess with the
665                          * state.
666                          */
667                         handle_flags(smi_info);
668
669                         deliver_recv_msg(smi_info, msg);
670                 }
671                 break;
672         }
673
674         case SI_ENABLE_INTERRUPTS1:
675         {
676                 unsigned char msg[4];
677
678                 /* We got the flags from the SMI, now handle them. */
679                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
680                 if (msg[2] != 0) {
681                         printk(KERN_WARNING
682                                "ipmi_si: Could not enable interrupts"
683                                ", failed get, using polled mode.\n");
684                         smi_info->si_state = SI_NORMAL;
685                 } else {
686                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
687                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
688                         msg[2] = (msg[3] |
689                                   IPMI_BMC_RCV_MSG_INTR |
690                                   IPMI_BMC_EVT_MSG_INTR);
691                         smi_info->handlers->start_transaction(
692                                 smi_info->si_sm, msg, 3);
693                         smi_info->si_state = SI_ENABLE_INTERRUPTS2;
694                 }
695                 break;
696         }
697
698         case SI_ENABLE_INTERRUPTS2:
699         {
700                 unsigned char msg[4];
701
702                 /* We got the flags from the SMI, now handle them. */
703                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
704                 if (msg[2] != 0) {
705                         printk(KERN_WARNING
706                                "ipmi_si: Could not enable interrupts"
707                                ", failed set, using polled mode.\n");
708                 }
709                 smi_info->si_state = SI_NORMAL;
710                 break;
711         }
712
713         case SI_DISABLE_INTERRUPTS1:
714         {
715                 unsigned char msg[4];
716
717                 /* We got the flags from the SMI, now handle them. */
718                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
719                 if (msg[2] != 0) {
720                         printk(KERN_WARNING
721                                "ipmi_si: Could not disable interrupts"
722                                ", failed get.\n");
723                         smi_info->si_state = SI_NORMAL;
724                 } else {
725                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
726                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
727                         msg[2] = (msg[3] &
728                                   ~(IPMI_BMC_RCV_MSG_INTR |
729                                     IPMI_BMC_EVT_MSG_INTR));
730                         smi_info->handlers->start_transaction(
731                                 smi_info->si_sm, msg, 3);
732                         smi_info->si_state = SI_DISABLE_INTERRUPTS2;
733                 }
734                 break;
735         }
736
737         case SI_DISABLE_INTERRUPTS2:
738         {
739                 unsigned char msg[4];
740
741                 /* We got the flags from the SMI, now handle them. */
742                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
743                 if (msg[2] != 0) {
744                         printk(KERN_WARNING
745                                "ipmi_si: Could not disable interrupts"
746                                ", failed set.\n");
747                 }
748                 smi_info->si_state = SI_NORMAL;
749                 break;
750         }
751         }
752 }
753
754 /*
755  * Called on timeouts and events.  Timeouts should pass the elapsed
756  * time, interrupts should pass in zero.  Must be called with
757  * si_lock held and interrupts disabled.
758  */
759 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
760                                            int time)
761 {
762         enum si_sm_result si_sm_result;
763
764  restart:
765         /*
766          * There used to be a loop here that waited a little while
767          * (around 25us) before giving up.  That turned out to be
768          * pointless, the minimum delays I was seeing were in the 300us
769          * range, which is far too long to wait in an interrupt.  So
770          * we just run until the state machine tells us something
771          * happened or it needs a delay.
772          */
773         si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
774         time = 0;
775         while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
776                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
777
778         if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
779                 smi_inc_stat(smi_info, complete_transactions);
780
781                 handle_transaction_done(smi_info);
782                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
783         } else if (si_sm_result == SI_SM_HOSED) {
784                 smi_inc_stat(smi_info, hosed_count);
785
786                 /*
787                  * Do the before return_hosed_msg, because that
788                  * releases the lock.
789                  */
790                 smi_info->si_state = SI_NORMAL;
791                 if (smi_info->curr_msg != NULL) {
792                         /*
793                          * If we were handling a user message, format
794                          * a response to send to the upper layer to
795                          * tell it about the error.
796                          */
797                         return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
798                 }
799                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
800         }
801
802         /*
803          * We prefer handling attn over new messages.  But don't do
804          * this if there is not yet an upper layer to handle anything.
805          */
806         if (likely(smi_info->intf) && si_sm_result == SI_SM_ATTN) {
807                 unsigned char msg[2];
808
809                 smi_inc_stat(smi_info, attentions);
810
811                 /*
812                  * Got a attn, send down a get message flags to see
813                  * what's causing it.  It would be better to handle
814                  * this in the upper layer, but due to the way
815                  * interrupts work with the SMI, that's not really
816                  * possible.
817                  */
818                 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
819                 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
820
821                 smi_info->handlers->start_transaction(
822                         smi_info->si_sm, msg, 2);
823                 smi_info->si_state = SI_GETTING_FLAGS;
824                 goto restart;
825         }
826
827         /* If we are currently idle, try to start the next message. */
828         if (si_sm_result == SI_SM_IDLE) {
829                 smi_inc_stat(smi_info, idles);
830
831                 si_sm_result = start_next_msg(smi_info);
832                 if (si_sm_result != SI_SM_IDLE)
833                         goto restart;
834         }
835
836         if ((si_sm_result == SI_SM_IDLE)
837             && (atomic_read(&smi_info->req_events))) {
838                 /*
839                  * We are idle and the upper layer requested that I fetch
840                  * events, so do so.
841                  */
842                 atomic_set(&smi_info->req_events, 0);
843
844                 smi_info->curr_msg = ipmi_alloc_smi_msg();
845                 if (!smi_info->curr_msg)
846                         goto out;
847
848                 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
849                 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
850                 smi_info->curr_msg->data_size = 2;
851
852                 smi_info->handlers->start_transaction(
853                         smi_info->si_sm,
854                         smi_info->curr_msg->data,
855                         smi_info->curr_msg->data_size);
856                 smi_info->si_state = SI_GETTING_EVENTS;
857                 goto restart;
858         }
859  out:
860         return si_sm_result;
861 }
862
863 static void sender(void                *send_info,
864                    struct ipmi_smi_msg *msg,
865                    int                 priority)
866 {
867         struct smi_info   *smi_info = send_info;
868         enum si_sm_result result;
869         unsigned long     flags;
870 #ifdef DEBUG_TIMING
871         struct timeval    t;
872 #endif
873
874         if (atomic_read(&smi_info->stop_operation)) {
875                 msg->rsp[0] = msg->data[0] | 4;
876                 msg->rsp[1] = msg->data[1];
877                 msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
878                 msg->rsp_size = 3;
879                 deliver_recv_msg(smi_info, msg);
880                 return;
881         }
882
883 #ifdef DEBUG_TIMING
884         do_gettimeofday(&t);
885         printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
886 #endif
887
888         if (smi_info->run_to_completion) {
889                 /*
890                  * If we are running to completion, then throw it in
891                  * the list and run transactions until everything is
892                  * clear.  Priority doesn't matter here.
893                  */
894
895                 /*
896                  * Run to completion means we are single-threaded, no
897                  * need for locks.
898                  */
899                 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
900
901                 result = smi_event_handler(smi_info, 0);
902                 while (result != SI_SM_IDLE) {
903                         udelay(SI_SHORT_TIMEOUT_USEC);
904                         result = smi_event_handler(smi_info,
905                                                    SI_SHORT_TIMEOUT_USEC);
906                 }
907                 return;
908         }
909
910         spin_lock_irqsave(&smi_info->msg_lock, flags);
911         if (priority > 0)
912                 list_add_tail(&msg->link, &smi_info->hp_xmit_msgs);
913         else
914                 list_add_tail(&msg->link, &smi_info->xmit_msgs);
915         spin_unlock_irqrestore(&smi_info->msg_lock, flags);
916
917         spin_lock_irqsave(&smi_info->si_lock, flags);
918         if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL)
919                 start_next_msg(smi_info);
920         spin_unlock_irqrestore(&smi_info->si_lock, flags);
921 }
922
923 static void set_run_to_completion(void *send_info, int i_run_to_completion)
924 {
925         struct smi_info   *smi_info = send_info;
926         enum si_sm_result result;
927
928         smi_info->run_to_completion = i_run_to_completion;
929         if (i_run_to_completion) {
930                 result = smi_event_handler(smi_info, 0);
931                 while (result != SI_SM_IDLE) {
932                         udelay(SI_SHORT_TIMEOUT_USEC);
933                         result = smi_event_handler(smi_info,
934                                                    SI_SHORT_TIMEOUT_USEC);
935                 }
936         }
937 }
938
939 /*
940  * Use -1 in the nsec value of the busy waiting timespec to tell that
941  * we are spinning in kipmid looking for something and not delaying
942  * between checks
943  */
944 static inline void ipmi_si_set_not_busy(struct timespec *ts)
945 {
946         ts->tv_nsec = -1;
947 }
948 static inline int ipmi_si_is_busy(struct timespec *ts)
949 {
950         return ts->tv_nsec != -1;
951 }
952
953 static int ipmi_thread_busy_wait(enum si_sm_result smi_result,
954                                  const struct smi_info *smi_info,
955                                  struct timespec *busy_until)
956 {
957         unsigned int max_busy_us = 0;
958
959         if (smi_info->intf_num < num_max_busy_us)
960                 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
961         if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
962                 ipmi_si_set_not_busy(busy_until);
963         else if (!ipmi_si_is_busy(busy_until)) {
964                 getnstimeofday(busy_until);
965                 timespec_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
966         } else {
967                 struct timespec now;
968                 getnstimeofday(&now);
969                 if (unlikely(timespec_compare(&now, busy_until) > 0)) {
970                         ipmi_si_set_not_busy(busy_until);
971                         return 0;
972                 }
973         }
974         return 1;
975 }
976
977
978 /*
979  * A busy-waiting loop for speeding up IPMI operation.
980  *
981  * Lousy hardware makes this hard.  This is only enabled for systems
982  * that are not BT and do not have interrupts.  It starts spinning
983  * when an operation is complete or until max_busy tells it to stop
984  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
985  * Documentation/IPMI.txt for details.
986  */
987 static int ipmi_thread(void *data)
988 {
989         struct smi_info *smi_info = data;
990         unsigned long flags;
991         enum si_sm_result smi_result;
992         struct timespec busy_until;
993
994         ipmi_si_set_not_busy(&busy_until);
995         set_user_nice(current, 19);
996         while (!kthread_should_stop()) {
997                 int busy_wait;
998
999                 spin_lock_irqsave(&(smi_info->si_lock), flags);
1000                 smi_result = smi_event_handler(smi_info, 0);
1001                 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1002                 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1003                                                   &busy_until);
1004                 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1005                         ; /* do nothing */
1006                 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1007                         schedule();
1008                 else
1009                         schedule_timeout_interruptible(0);
1010         }
1011         return 0;
1012 }
1013
1014
1015 static void poll(void *send_info)
1016 {
1017         struct smi_info *smi_info = send_info;
1018         unsigned long flags;
1019
1020         /*
1021          * Make sure there is some delay in the poll loop so we can
1022          * drive time forward and timeout things.
1023          */
1024         udelay(10);
1025         spin_lock_irqsave(&smi_info->si_lock, flags);
1026         smi_event_handler(smi_info, 10);
1027         spin_unlock_irqrestore(&smi_info->si_lock, flags);
1028 }
1029
1030 static void request_events(void *send_info)
1031 {
1032         struct smi_info *smi_info = send_info;
1033
1034         if (atomic_read(&smi_info->stop_operation) ||
1035                                 !smi_info->has_event_buffer)
1036                 return;
1037
1038         atomic_set(&smi_info->req_events, 1);
1039 }
1040
1041 static int initialized;
1042
1043 static void smi_timeout(unsigned long data)
1044 {
1045         struct smi_info   *smi_info = (struct smi_info *) data;
1046         enum si_sm_result smi_result;
1047         unsigned long     flags;
1048         unsigned long     jiffies_now;
1049         long              time_diff;
1050 #ifdef DEBUG_TIMING
1051         struct timeval    t;
1052 #endif
1053
1054         spin_lock_irqsave(&(smi_info->si_lock), flags);
1055 #ifdef DEBUG_TIMING
1056         do_gettimeofday(&t);
1057         printk(KERN_DEBUG "**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1058 #endif
1059         jiffies_now = jiffies;
1060         time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1061                      * SI_USEC_PER_JIFFY);
1062         smi_result = smi_event_handler(smi_info, time_diff);
1063
1064         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1065
1066         smi_info->last_timeout_jiffies = jiffies_now;
1067
1068         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1069                 /* Running with interrupts, only do long timeouts. */
1070                 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
1071                 smi_inc_stat(smi_info, long_timeouts);
1072                 goto do_add_timer;
1073         }
1074
1075         /*
1076          * If the state machine asks for a short delay, then shorten
1077          * the timer timeout.
1078          */
1079         if (smi_result == SI_SM_CALL_WITH_DELAY) {
1080                 smi_inc_stat(smi_info, short_timeouts);
1081                 smi_info->si_timer.expires = jiffies + 1;
1082         } else {
1083                 smi_inc_stat(smi_info, long_timeouts);
1084                 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
1085         }
1086
1087  do_add_timer:
1088         add_timer(&(smi_info->si_timer));
1089 }
1090
1091 static irqreturn_t si_irq_handler(int irq, void *data)
1092 {
1093         struct smi_info *smi_info = data;
1094         unsigned long   flags;
1095 #ifdef DEBUG_TIMING
1096         struct timeval  t;
1097 #endif
1098
1099         spin_lock_irqsave(&(smi_info->si_lock), flags);
1100
1101         smi_inc_stat(smi_info, interrupts);
1102
1103 #ifdef DEBUG_TIMING
1104         do_gettimeofday(&t);
1105         printk(KERN_DEBUG "**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1106 #endif
1107         smi_event_handler(smi_info, 0);
1108         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1109         return IRQ_HANDLED;
1110 }
1111
1112 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1113 {
1114         struct smi_info *smi_info = data;
1115         /* We need to clear the IRQ flag for the BT interface. */
1116         smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1117                              IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1118                              | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1119         return si_irq_handler(irq, data);
1120 }
1121
1122 static int smi_start_processing(void       *send_info,
1123                                 ipmi_smi_t intf)
1124 {
1125         struct smi_info *new_smi = send_info;
1126         int             enable = 0;
1127
1128         new_smi->intf = intf;
1129
1130         /* Try to claim any interrupts. */
1131         if (new_smi->irq_setup)
1132                 new_smi->irq_setup(new_smi);
1133
1134         /* Set up the timer that drives the interface. */
1135         setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1136         new_smi->last_timeout_jiffies = jiffies;
1137         mod_timer(&new_smi->si_timer, jiffies + SI_TIMEOUT_JIFFIES);
1138
1139         /*
1140          * Check if the user forcefully enabled the daemon.
1141          */
1142         if (new_smi->intf_num < num_force_kipmid)
1143                 enable = force_kipmid[new_smi->intf_num];
1144         /*
1145          * The BT interface is efficient enough to not need a thread,
1146          * and there is no need for a thread if we have interrupts.
1147          */
1148         else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1149                 enable = 1;
1150
1151         if (enable) {
1152                 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1153                                               "kipmi%d", new_smi->intf_num);
1154                 if (IS_ERR(new_smi->thread)) {
1155                         printk(KERN_NOTICE "ipmi_si_intf: Could not start"
1156                                " kernel thread due to error %ld, only using"
1157                                " timers to drive the interface\n",
1158                                PTR_ERR(new_smi->thread));
1159                         new_smi->thread = NULL;
1160                 }
1161         }
1162
1163         return 0;
1164 }
1165
1166 static void set_maintenance_mode(void *send_info, int enable)
1167 {
1168         struct smi_info   *smi_info = send_info;
1169
1170         if (!enable)
1171                 atomic_set(&smi_info->req_events, 0);
1172 }
1173
1174 static struct ipmi_smi_handlers handlers = {
1175         .owner                  = THIS_MODULE,
1176         .start_processing       = smi_start_processing,
1177         .sender                 = sender,
1178         .request_events         = request_events,
1179         .set_maintenance_mode   = set_maintenance_mode,
1180         .set_run_to_completion  = set_run_to_completion,
1181         .poll                   = poll,
1182 };
1183
1184 /*
1185  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1186  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1187  */
1188
1189 static LIST_HEAD(smi_infos);
1190 static DEFINE_MUTEX(smi_infos_lock);
1191 static int smi_num; /* Used to sequence the SMIs */
1192
1193 #define DEFAULT_REGSPACING      1
1194 #define DEFAULT_REGSIZE         1
1195
1196 static int           si_trydefaults = 1;
1197 static char          *si_type[SI_MAX_PARMS];
1198 #define MAX_SI_TYPE_STR 30
1199 static char          si_type_str[MAX_SI_TYPE_STR];
1200 static unsigned long addrs[SI_MAX_PARMS];
1201 static unsigned int num_addrs;
1202 static unsigned int  ports[SI_MAX_PARMS];
1203 static unsigned int num_ports;
1204 static int           irqs[SI_MAX_PARMS];
1205 static unsigned int num_irqs;
1206 static int           regspacings[SI_MAX_PARMS];
1207 static unsigned int num_regspacings;
1208 static int           regsizes[SI_MAX_PARMS];
1209 static unsigned int num_regsizes;
1210 static int           regshifts[SI_MAX_PARMS];
1211 static unsigned int num_regshifts;
1212 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1213 static unsigned int num_slave_addrs;
1214
1215 #define IPMI_IO_ADDR_SPACE  0
1216 #define IPMI_MEM_ADDR_SPACE 1
1217 static char *addr_space_to_str[] = { "i/o", "mem" };
1218
1219 static int hotmod_handler(const char *val, struct kernel_param *kp);
1220
1221 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1222 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1223                  " Documentation/IPMI.txt in the kernel sources for the"
1224                  " gory details.");
1225
1226 module_param_named(trydefaults, si_trydefaults, bool, 0);
1227 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1228                  " default scan of the KCS and SMIC interface at the standard"
1229                  " address");
1230 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1231 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1232                  " interface separated by commas.  The types are 'kcs',"
1233                  " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1234                  " the first interface to kcs and the second to bt");
1235 module_param_array(addrs, ulong, &num_addrs, 0);
1236 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1237                  " addresses separated by commas.  Only use if an interface"
1238                  " is in memory.  Otherwise, set it to zero or leave"
1239                  " it blank.");
1240 module_param_array(ports, uint, &num_ports, 0);
1241 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1242                  " addresses separated by commas.  Only use if an interface"
1243                  " is a port.  Otherwise, set it to zero or leave"
1244                  " it blank.");
1245 module_param_array(irqs, int, &num_irqs, 0);
1246 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1247                  " addresses separated by commas.  Only use if an interface"
1248                  " has an interrupt.  Otherwise, set it to zero or leave"
1249                  " it blank.");
1250 module_param_array(regspacings, int, &num_regspacings, 0);
1251 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1252                  " and each successive register used by the interface.  For"
1253                  " instance, if the start address is 0xca2 and the spacing"
1254                  " is 2, then the second address is at 0xca4.  Defaults"
1255                  " to 1.");
1256 module_param_array(regsizes, int, &num_regsizes, 0);
1257 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1258                  " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1259                  " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1260                  " the 8-bit IPMI register has to be read from a larger"
1261                  " register.");
1262 module_param_array(regshifts, int, &num_regshifts, 0);
1263 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1264                  " IPMI register, in bits.  For instance, if the data"
1265                  " is read from a 32-bit word and the IPMI data is in"
1266                  " bit 8-15, then the shift would be 8");
1267 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1268 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1269                  " the controller.  Normally this is 0x20, but can be"
1270                  " overridden by this parm.  This is an array indexed"
1271                  " by interface number.");
1272 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1273 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1274                  " disabled(0).  Normally the IPMI driver auto-detects"
1275                  " this, but the value may be overridden by this parm.");
1276 module_param(unload_when_empty, int, 0);
1277 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1278                  " specified or found, default is 1.  Setting to 0"
1279                  " is useful for hot add of devices using hotmod.");
1280 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1281 MODULE_PARM_DESC(kipmid_max_busy_us,
1282                  "Max time (in microseconds) to busy-wait for IPMI data before"
1283                  " sleeping. 0 (default) means to wait forever. Set to 100-500"
1284                  " if kipmid is using up a lot of CPU time.");
1285
1286
1287 static void std_irq_cleanup(struct smi_info *info)
1288 {
1289         if (info->si_type == SI_BT)
1290                 /* Disable the interrupt in the BT interface. */
1291                 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1292         free_irq(info->irq, info);
1293 }
1294
1295 static int std_irq_setup(struct smi_info *info)
1296 {
1297         int rv;
1298
1299         if (!info->irq)
1300                 return 0;
1301
1302         if (info->si_type == SI_BT) {
1303                 rv = request_irq(info->irq,
1304                                  si_bt_irq_handler,
1305                                  IRQF_SHARED | IRQF_DISABLED,
1306                                  DEVICE_NAME,
1307                                  info);
1308                 if (!rv)
1309                         /* Enable the interrupt in the BT interface. */
1310                         info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1311                                          IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1312         } else
1313                 rv = request_irq(info->irq,
1314                                  si_irq_handler,
1315                                  IRQF_SHARED | IRQF_DISABLED,
1316                                  DEVICE_NAME,
1317                                  info);
1318         if (rv) {
1319                 printk(KERN_WARNING
1320                        "ipmi_si: %s unable to claim interrupt %d,"
1321                        " running polled\n",
1322                        DEVICE_NAME, info->irq);
1323                 info->irq = 0;
1324         } else {
1325                 info->irq_cleanup = std_irq_cleanup;
1326                 printk("  Using irq %d\n", info->irq);
1327         }
1328
1329         return rv;
1330 }
1331
1332 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1333 {
1334         unsigned int addr = io->addr_data;
1335
1336         return inb(addr + (offset * io->regspacing));
1337 }
1338
1339 static void port_outb(struct si_sm_io *io, unsigned int offset,
1340                       unsigned char b)
1341 {
1342         unsigned int addr = io->addr_data;
1343
1344         outb(b, addr + (offset * io->regspacing));
1345 }
1346
1347 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1348 {
1349         unsigned int addr = io->addr_data;
1350
1351         return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1352 }
1353
1354 static void port_outw(struct si_sm_io *io, unsigned int offset,
1355                       unsigned char b)
1356 {
1357         unsigned int addr = io->addr_data;
1358
1359         outw(b << io->regshift, addr + (offset * io->regspacing));
1360 }
1361
1362 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1363 {
1364         unsigned int addr = io->addr_data;
1365
1366         return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1367 }
1368
1369 static void port_outl(struct si_sm_io *io, unsigned int offset,
1370                       unsigned char b)
1371 {
1372         unsigned int addr = io->addr_data;
1373
1374         outl(b << io->regshift, addr+(offset * io->regspacing));
1375 }
1376
1377 static void port_cleanup(struct smi_info *info)
1378 {
1379         unsigned int addr = info->io.addr_data;
1380         int          idx;
1381
1382         if (addr) {
1383                 for (idx = 0; idx < info->io_size; idx++)
1384                         release_region(addr + idx * info->io.regspacing,
1385                                        info->io.regsize);
1386         }
1387 }
1388
1389 static int port_setup(struct smi_info *info)
1390 {
1391         unsigned int addr = info->io.addr_data;
1392         int          idx;
1393
1394         if (!addr)
1395                 return -ENODEV;
1396
1397         info->io_cleanup = port_cleanup;
1398
1399         /*
1400          * Figure out the actual inb/inw/inl/etc routine to use based
1401          * upon the register size.
1402          */
1403         switch (info->io.regsize) {
1404         case 1:
1405                 info->io.inputb = port_inb;
1406                 info->io.outputb = port_outb;
1407                 break;
1408         case 2:
1409                 info->io.inputb = port_inw;
1410                 info->io.outputb = port_outw;
1411                 break;
1412         case 4:
1413                 info->io.inputb = port_inl;
1414                 info->io.outputb = port_outl;
1415                 break;
1416         default:
1417                 printk(KERN_WARNING "ipmi_si: Invalid register size: %d\n",
1418                        info->io.regsize);
1419                 return -EINVAL;
1420         }
1421
1422         /*
1423          * Some BIOSes reserve disjoint I/O regions in their ACPI
1424          * tables.  This causes problems when trying to register the
1425          * entire I/O region.  Therefore we must register each I/O
1426          * port separately.
1427          */
1428         for (idx = 0; idx < info->io_size; idx++) {
1429                 if (request_region(addr + idx * info->io.regspacing,
1430                                    info->io.regsize, DEVICE_NAME) == NULL) {
1431                         /* Undo allocations */
1432                         while (idx--) {
1433                                 release_region(addr + idx * info->io.regspacing,
1434                                                info->io.regsize);
1435                         }
1436                         return -EIO;
1437                 }
1438         }
1439         return 0;
1440 }
1441
1442 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1443 {
1444         return readb((io->addr)+(offset * io->regspacing));
1445 }
1446
1447 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1448                      unsigned char b)
1449 {
1450         writeb(b, (io->addr)+(offset * io->regspacing));
1451 }
1452
1453 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1454 {
1455         return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1456                 & 0xff;
1457 }
1458
1459 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1460                      unsigned char b)
1461 {
1462         writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1463 }
1464
1465 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1466 {
1467         return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1468                 & 0xff;
1469 }
1470
1471 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1472                      unsigned char b)
1473 {
1474         writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1475 }
1476
1477 #ifdef readq
1478 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1479 {
1480         return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1481                 & 0xff;
1482 }
1483
1484 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1485                      unsigned char b)
1486 {
1487         writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1488 }
1489 #endif
1490
1491 static void mem_cleanup(struct smi_info *info)
1492 {
1493         unsigned long addr = info->io.addr_data;
1494         int           mapsize;
1495
1496         if (info->io.addr) {
1497                 iounmap(info->io.addr);
1498
1499                 mapsize = ((info->io_size * info->io.regspacing)
1500                            - (info->io.regspacing - info->io.regsize));
1501
1502                 release_mem_region(addr, mapsize);
1503         }
1504 }
1505
1506 static int mem_setup(struct smi_info *info)
1507 {
1508         unsigned long addr = info->io.addr_data;
1509         int           mapsize;
1510
1511         if (!addr)
1512                 return -ENODEV;
1513
1514         info->io_cleanup = mem_cleanup;
1515
1516         /*
1517          * Figure out the actual readb/readw/readl/etc routine to use based
1518          * upon the register size.
1519          */
1520         switch (info->io.regsize) {
1521         case 1:
1522                 info->io.inputb = intf_mem_inb;
1523                 info->io.outputb = intf_mem_outb;
1524                 break;
1525         case 2:
1526                 info->io.inputb = intf_mem_inw;
1527                 info->io.outputb = intf_mem_outw;
1528                 break;
1529         case 4:
1530                 info->io.inputb = intf_mem_inl;
1531                 info->io.outputb = intf_mem_outl;
1532                 break;
1533 #ifdef readq
1534         case 8:
1535                 info->io.inputb = mem_inq;
1536                 info->io.outputb = mem_outq;
1537                 break;
1538 #endif
1539         default:
1540                 printk(KERN_WARNING "ipmi_si: Invalid register size: %d\n",
1541                        info->io.regsize);
1542                 return -EINVAL;
1543         }
1544
1545         /*
1546          * Calculate the total amount of memory to claim.  This is an
1547          * unusual looking calculation, but it avoids claiming any
1548          * more memory than it has to.  It will claim everything
1549          * between the first address to the end of the last full
1550          * register.
1551          */
1552         mapsize = ((info->io_size * info->io.regspacing)
1553                    - (info->io.regspacing - info->io.regsize));
1554
1555         if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1556                 return -EIO;
1557
1558         info->io.addr = ioremap(addr, mapsize);
1559         if (info->io.addr == NULL) {
1560                 release_mem_region(addr, mapsize);
1561                 return -EIO;
1562         }
1563         return 0;
1564 }
1565
1566 /*
1567  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1568  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1569  * Options are:
1570  *   rsp=<regspacing>
1571  *   rsi=<regsize>
1572  *   rsh=<regshift>
1573  *   irq=<irq>
1574  *   ipmb=<ipmb addr>
1575  */
1576 enum hotmod_op { HM_ADD, HM_REMOVE };
1577 struct hotmod_vals {
1578         char *name;
1579         int  val;
1580 };
1581 static struct hotmod_vals hotmod_ops[] = {
1582         { "add",        HM_ADD },
1583         { "remove",     HM_REMOVE },
1584         { NULL }
1585 };
1586 static struct hotmod_vals hotmod_si[] = {
1587         { "kcs",        SI_KCS },
1588         { "smic",       SI_SMIC },
1589         { "bt",         SI_BT },
1590         { NULL }
1591 };
1592 static struct hotmod_vals hotmod_as[] = {
1593         { "mem",        IPMI_MEM_ADDR_SPACE },
1594         { "i/o",        IPMI_IO_ADDR_SPACE },
1595         { NULL }
1596 };
1597
1598 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1599 {
1600         char *s;
1601         int  i;
1602
1603         s = strchr(*curr, ',');
1604         if (!s) {
1605                 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1606                 return -EINVAL;
1607         }
1608         *s = '\0';
1609         s++;
1610         for (i = 0; hotmod_ops[i].name; i++) {
1611                 if (strcmp(*curr, v[i].name) == 0) {
1612                         *val = v[i].val;
1613                         *curr = s;
1614                         return 0;
1615                 }
1616         }
1617
1618         printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1619         return -EINVAL;
1620 }
1621
1622 static int check_hotmod_int_op(const char *curr, const char *option,
1623                                const char *name, int *val)
1624 {
1625         char *n;
1626
1627         if (strcmp(curr, name) == 0) {
1628                 if (!option) {
1629                         printk(KERN_WARNING PFX
1630                                "No option given for '%s'\n",
1631                                curr);
1632                         return -EINVAL;
1633                 }
1634                 *val = simple_strtoul(option, &n, 0);
1635                 if ((*n != '\0') || (*option == '\0')) {
1636                         printk(KERN_WARNING PFX
1637                                "Bad option given for '%s'\n",
1638                                curr);
1639                         return -EINVAL;
1640                 }
1641                 return 1;
1642         }
1643         return 0;
1644 }
1645
1646 static int hotmod_handler(const char *val, struct kernel_param *kp)
1647 {
1648         char *str = kstrdup(val, GFP_KERNEL);
1649         int  rv;
1650         char *next, *curr, *s, *n, *o;
1651         enum hotmod_op op;
1652         enum si_type si_type;
1653         int  addr_space;
1654         unsigned long addr;
1655         int regspacing;
1656         int regsize;
1657         int regshift;
1658         int irq;
1659         int ipmb;
1660         int ival;
1661         int len;
1662         struct smi_info *info;
1663
1664         if (!str)
1665                 return -ENOMEM;
1666
1667         /* Kill any trailing spaces, as we can get a "\n" from echo. */
1668         len = strlen(str);
1669         ival = len - 1;
1670         while ((ival >= 0) && isspace(str[ival])) {
1671                 str[ival] = '\0';
1672                 ival--;
1673         }
1674
1675         for (curr = str; curr; curr = next) {
1676                 regspacing = 1;
1677                 regsize = 1;
1678                 regshift = 0;
1679                 irq = 0;
1680                 ipmb = 0; /* Choose the default if not specified */
1681
1682                 next = strchr(curr, ':');
1683                 if (next) {
1684                         *next = '\0';
1685                         next++;
1686                 }
1687
1688                 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1689                 if (rv)
1690                         break;
1691                 op = ival;
1692
1693                 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1694                 if (rv)
1695                         break;
1696                 si_type = ival;
1697
1698                 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1699                 if (rv)
1700                         break;
1701
1702                 s = strchr(curr, ',');
1703                 if (s) {
1704                         *s = '\0';
1705                         s++;
1706                 }
1707                 addr = simple_strtoul(curr, &n, 0);
1708                 if ((*n != '\0') || (*curr == '\0')) {
1709                         printk(KERN_WARNING PFX "Invalid hotmod address"
1710                                " '%s'\n", curr);
1711                         break;
1712                 }
1713
1714                 while (s) {
1715                         curr = s;
1716                         s = strchr(curr, ',');
1717                         if (s) {
1718                                 *s = '\0';
1719                                 s++;
1720                         }
1721                         o = strchr(curr, '=');
1722                         if (o) {
1723                                 *o = '\0';
1724                                 o++;
1725                         }
1726                         rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1727                         if (rv < 0)
1728                                 goto out;
1729                         else if (rv)
1730                                 continue;
1731                         rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1732                         if (rv < 0)
1733                                 goto out;
1734                         else if (rv)
1735                                 continue;
1736                         rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1737                         if (rv < 0)
1738                                 goto out;
1739                         else if (rv)
1740                                 continue;
1741                         rv = check_hotmod_int_op(curr, o, "irq", &irq);
1742                         if (rv < 0)
1743                                 goto out;
1744                         else if (rv)
1745                                 continue;
1746                         rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1747                         if (rv < 0)
1748                                 goto out;
1749                         else if (rv)
1750                                 continue;
1751
1752                         rv = -EINVAL;
1753                         printk(KERN_WARNING PFX
1754                                "Invalid hotmod option '%s'\n",
1755                                curr);
1756                         goto out;
1757                 }
1758
1759                 if (op == HM_ADD) {
1760                         info = kzalloc(sizeof(*info), GFP_KERNEL);
1761                         if (!info) {
1762                                 rv = -ENOMEM;
1763                                 goto out;
1764                         }
1765
1766                         info->addr_source = SI_HOTMOD;
1767                         info->si_type = si_type;
1768                         info->io.addr_data = addr;
1769                         info->io.addr_type = addr_space;
1770                         if (addr_space == IPMI_MEM_ADDR_SPACE)
1771                                 info->io_setup = mem_setup;
1772                         else
1773                                 info->io_setup = port_setup;
1774
1775                         info->io.addr = NULL;
1776                         info->io.regspacing = regspacing;
1777                         if (!info->io.regspacing)
1778                                 info->io.regspacing = DEFAULT_REGSPACING;
1779                         info->io.regsize = regsize;
1780                         if (!info->io.regsize)
1781                                 info->io.regsize = DEFAULT_REGSPACING;
1782                         info->io.regshift = regshift;
1783                         info->irq = irq;
1784                         if (info->irq)
1785                                 info->irq_setup = std_irq_setup;
1786                         info->slave_addr = ipmb;
1787
1788                         try_smi_init(info);
1789                 } else {
1790                         /* remove */
1791                         struct smi_info *e, *tmp_e;
1792
1793                         mutex_lock(&smi_infos_lock);
1794                         list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1795                                 if (e->io.addr_type != addr_space)
1796                                         continue;
1797                                 if (e->si_type != si_type)
1798                                         continue;
1799                                 if (e->io.addr_data == addr)
1800                                         cleanup_one_si(e);
1801                         }
1802                         mutex_unlock(&smi_infos_lock);
1803                 }
1804         }
1805         rv = len;
1806  out:
1807         kfree(str);
1808         return rv;
1809 }
1810
1811 static __devinit void hardcode_find_bmc(void)
1812 {
1813         int             i;
1814         struct smi_info *info;
1815
1816         for (i = 0; i < SI_MAX_PARMS; i++) {
1817                 if (!ports[i] && !addrs[i])
1818                         continue;
1819
1820                 info = kzalloc(sizeof(*info), GFP_KERNEL);
1821                 if (!info)
1822                         return;
1823
1824                 info->addr_source = SI_HARDCODED;
1825
1826                 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1827                         info->si_type = SI_KCS;
1828                 } else if (strcmp(si_type[i], "smic") == 0) {
1829                         info->si_type = SI_SMIC;
1830                 } else if (strcmp(si_type[i], "bt") == 0) {
1831                         info->si_type = SI_BT;
1832                 } else {
1833                         printk(KERN_WARNING
1834                                "ipmi_si: Interface type specified "
1835                                "for interface %d, was invalid: %s\n",
1836                                i, si_type[i]);
1837                         kfree(info);
1838                         continue;
1839                 }
1840
1841                 if (ports[i]) {
1842                         /* An I/O port */
1843                         info->io_setup = port_setup;
1844                         info->io.addr_data = ports[i];
1845                         info->io.addr_type = IPMI_IO_ADDR_SPACE;
1846                 } else if (addrs[i]) {
1847                         /* A memory port */
1848                         info->io_setup = mem_setup;
1849                         info->io.addr_data = addrs[i];
1850                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1851                 } else {
1852                         printk(KERN_WARNING
1853                                "ipmi_si: Interface type specified "
1854                                "for interface %d, "
1855                                "but port and address were not set or "
1856                                "set to zero.\n", i);
1857                         kfree(info);
1858                         continue;
1859                 }
1860
1861                 info->io.addr = NULL;
1862                 info->io.regspacing = regspacings[i];
1863                 if (!info->io.regspacing)
1864                         info->io.regspacing = DEFAULT_REGSPACING;
1865                 info->io.regsize = regsizes[i];
1866                 if (!info->io.regsize)
1867                         info->io.regsize = DEFAULT_REGSPACING;
1868                 info->io.regshift = regshifts[i];
1869                 info->irq = irqs[i];
1870                 if (info->irq)
1871                         info->irq_setup = std_irq_setup;
1872                 info->slave_addr = slave_addrs[i];
1873
1874                 try_smi_init(info);
1875         }
1876 }
1877
1878 #ifdef CONFIG_ACPI
1879
1880 #include <linux/acpi.h>
1881
1882 /*
1883  * Once we get an ACPI failure, we don't try any more, because we go
1884  * through the tables sequentially.  Once we don't find a table, there
1885  * are no more.
1886  */
1887 static int acpi_failure;
1888
1889 /* For GPE-type interrupts. */
1890 static u32 ipmi_acpi_gpe(void *context)
1891 {
1892         struct smi_info *smi_info = context;
1893         unsigned long   flags;
1894 #ifdef DEBUG_TIMING
1895         struct timeval t;
1896 #endif
1897
1898         spin_lock_irqsave(&(smi_info->si_lock), flags);
1899
1900         smi_inc_stat(smi_info, interrupts);
1901
1902 #ifdef DEBUG_TIMING
1903         do_gettimeofday(&t);
1904         printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1905 #endif
1906         smi_event_handler(smi_info, 0);
1907         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1908
1909         return ACPI_INTERRUPT_HANDLED;
1910 }
1911
1912 static void acpi_gpe_irq_cleanup(struct smi_info *info)
1913 {
1914         if (!info->irq)
1915                 return;
1916
1917         acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1918 }
1919
1920 static int acpi_gpe_irq_setup(struct smi_info *info)
1921 {
1922         acpi_status status;
1923
1924         if (!info->irq)
1925                 return 0;
1926
1927         /* FIXME - is level triggered right? */
1928         status = acpi_install_gpe_handler(NULL,
1929                                           info->irq,
1930                                           ACPI_GPE_LEVEL_TRIGGERED,
1931                                           &ipmi_acpi_gpe,
1932                                           info);
1933         if (status != AE_OK) {
1934                 printk(KERN_WARNING
1935                        "ipmi_si: %s unable to claim ACPI GPE %d,"
1936                        " running polled\n",
1937                        DEVICE_NAME, info->irq);
1938                 info->irq = 0;
1939                 return -EINVAL;
1940         } else {
1941                 info->irq_cleanup = acpi_gpe_irq_cleanup;
1942                 printk("  Using ACPI GPE %d\n", info->irq);
1943                 return 0;
1944         }
1945 }
1946
1947 /*
1948  * Defined at
1949  * http://h21007.www2.hp.com/dspp/files/unprotected/devresource/
1950  * Docs/TechPapers/IA64/hpspmi.pdf
1951  */
1952 struct SPMITable {
1953         s8      Signature[4];
1954         u32     Length;
1955         u8      Revision;
1956         u8      Checksum;
1957         s8      OEMID[6];
1958         s8      OEMTableID[8];
1959         s8      OEMRevision[4];
1960         s8      CreatorID[4];
1961         s8      CreatorRevision[4];
1962         u8      InterfaceType;
1963         u8      IPMIlegacy;
1964         s16     SpecificationRevision;
1965
1966         /*
1967          * Bit 0 - SCI interrupt supported
1968          * Bit 1 - I/O APIC/SAPIC
1969          */
1970         u8      InterruptType;
1971
1972         /*
1973          * If bit 0 of InterruptType is set, then this is the SCI
1974          * interrupt in the GPEx_STS register.
1975          */
1976         u8      GPE;
1977
1978         s16     Reserved;
1979
1980         /*
1981          * If bit 1 of InterruptType is set, then this is the I/O
1982          * APIC/SAPIC interrupt.
1983          */
1984         u32     GlobalSystemInterrupt;
1985
1986         /* The actual register address. */
1987         struct acpi_generic_address addr;
1988
1989         u8      UID[4];
1990
1991         s8      spmi_id[1]; /* A '\0' terminated array starts here. */
1992 };
1993
1994 static __devinit int try_init_spmi(struct SPMITable *spmi)
1995 {
1996         struct smi_info  *info;
1997         u8               addr_space;
1998
1999         if (spmi->IPMIlegacy != 1) {
2000             printk(KERN_INFO "IPMI: Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2001             return -ENODEV;
2002         }
2003
2004         if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
2005                 addr_space = IPMI_MEM_ADDR_SPACE;
2006         else
2007                 addr_space = IPMI_IO_ADDR_SPACE;
2008
2009         info = kzalloc(sizeof(*info), GFP_KERNEL);
2010         if (!info) {
2011                 printk(KERN_ERR "ipmi_si: Could not allocate SI data (3)\n");
2012                 return -ENOMEM;
2013         }
2014
2015         info->addr_source = SI_SPMI;
2016
2017         /* Figure out the interface type. */
2018         switch (spmi->InterfaceType) {
2019         case 1: /* KCS */
2020                 info->si_type = SI_KCS;
2021                 break;
2022         case 2: /* SMIC */
2023                 info->si_type = SI_SMIC;
2024                 break;
2025         case 3: /* BT */
2026                 info->si_type = SI_BT;
2027                 break;
2028         default:
2029                 printk(KERN_INFO "ipmi_si: Unknown ACPI/SPMI SI type %d\n",
2030                         spmi->InterfaceType);
2031                 kfree(info);
2032                 return -EIO;
2033         }
2034
2035         if (spmi->InterruptType & 1) {
2036                 /* We've got a GPE interrupt. */
2037                 info->irq = spmi->GPE;
2038                 info->irq_setup = acpi_gpe_irq_setup;
2039         } else if (spmi->InterruptType & 2) {
2040                 /* We've got an APIC/SAPIC interrupt. */
2041                 info->irq = spmi->GlobalSystemInterrupt;
2042                 info->irq_setup = std_irq_setup;
2043         } else {
2044                 /* Use the default interrupt setting. */
2045                 info->irq = 0;
2046                 info->irq_setup = NULL;
2047         }
2048
2049         if (spmi->addr.bit_width) {
2050                 /* A (hopefully) properly formed register bit width. */
2051                 info->io.regspacing = spmi->addr.bit_width / 8;
2052         } else {
2053                 info->io.regspacing = DEFAULT_REGSPACING;
2054         }
2055         info->io.regsize = info->io.regspacing;
2056         info->io.regshift = spmi->addr.bit_offset;
2057
2058         if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2059                 info->io_setup = mem_setup;
2060                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2061         } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2062                 info->io_setup = port_setup;
2063                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2064         } else {
2065                 kfree(info);
2066                 printk(KERN_WARNING
2067                        "ipmi_si: Unknown ACPI I/O Address type\n");
2068                 return -EIO;
2069         }
2070         info->io.addr_data = spmi->addr.address;
2071
2072         try_smi_init(info);
2073
2074         return 0;
2075 }
2076
2077 static __devinit void spmi_find_bmc(void)
2078 {
2079         acpi_status      status;
2080         struct SPMITable *spmi;
2081         int              i;
2082
2083         if (acpi_disabled)
2084                 return;
2085
2086         if (acpi_failure)
2087                 return;
2088
2089         for (i = 0; ; i++) {
2090                 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2091                                         (struct acpi_table_header **)&spmi);
2092                 if (status != AE_OK)
2093                         return;
2094
2095                 try_init_spmi(spmi);
2096         }
2097 }
2098
2099 static int __devinit ipmi_pnp_probe(struct pnp_dev *dev,
2100                                     const struct pnp_device_id *dev_id)
2101 {
2102         struct acpi_device *acpi_dev;
2103         struct smi_info *info;
2104         acpi_handle handle;
2105         acpi_status status;
2106         unsigned long long tmp;
2107
2108         acpi_dev = pnp_acpi_device(dev);
2109         if (!acpi_dev)
2110                 return -ENODEV;
2111
2112         info = kzalloc(sizeof(*info), GFP_KERNEL);
2113         if (!info)
2114                 return -ENOMEM;
2115
2116         info->addr_source = SI_ACPI;
2117
2118         handle = acpi_dev->handle;
2119
2120         /* _IFT tells us the interface type: KCS, BT, etc */
2121         status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2122         if (ACPI_FAILURE(status))
2123                 goto err_free;
2124
2125         switch (tmp) {
2126         case 1:
2127                 info->si_type = SI_KCS;
2128                 break;
2129         case 2:
2130                 info->si_type = SI_SMIC;
2131                 break;
2132         case 3:
2133                 info->si_type = SI_BT;
2134                 break;
2135         default:
2136                 dev_info(&dev->dev, "unknown interface type %lld\n", tmp);
2137                 goto err_free;
2138         }
2139
2140         if (pnp_port_valid(dev, 0)) {
2141                 info->io_setup = port_setup;
2142                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2143                 info->io.addr_data = pnp_port_start(dev, 0);
2144         } else if (pnp_mem_valid(dev, 0)) {
2145                 info->io_setup = mem_setup;
2146                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2147                 info->io.addr_data = pnp_mem_start(dev, 0);
2148         } else {
2149                 dev_err(&dev->dev, "no I/O or memory address\n");
2150                 goto err_free;
2151         }
2152
2153         info->io.regspacing = DEFAULT_REGSPACING;
2154         info->io.regsize = DEFAULT_REGSPACING;
2155         info->io.regshift = 0;
2156
2157         /* If _GPE exists, use it; otherwise use standard interrupts */
2158         status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2159         if (ACPI_SUCCESS(status)) {
2160                 info->irq = tmp;
2161                 info->irq_setup = acpi_gpe_irq_setup;
2162         } else if (pnp_irq_valid(dev, 0)) {
2163                 info->irq = pnp_irq(dev, 0);
2164                 info->irq_setup = std_irq_setup;
2165         }
2166
2167         info->dev = &acpi_dev->dev;
2168         pnp_set_drvdata(dev, info);
2169
2170         return try_smi_init(info);
2171
2172 err_free:
2173         kfree(info);
2174         return -EINVAL;
2175 }
2176
2177 static void __devexit ipmi_pnp_remove(struct pnp_dev *dev)
2178 {
2179         struct smi_info *info = pnp_get_drvdata(dev);
2180
2181         cleanup_one_si(info);
2182 }
2183
2184 static const struct pnp_device_id pnp_dev_table[] = {
2185         {"IPI0001", 0},
2186         {"", 0},
2187 };
2188
2189 static struct pnp_driver ipmi_pnp_driver = {
2190         .name           = DEVICE_NAME,
2191         .probe          = ipmi_pnp_probe,
2192         .remove         = __devexit_p(ipmi_pnp_remove),
2193         .id_table       = pnp_dev_table,
2194 };
2195 #endif
2196
2197 #ifdef CONFIG_DMI
2198 struct dmi_ipmi_data {
2199         u8              type;
2200         u8              addr_space;
2201         unsigned long   base_addr;
2202         u8              irq;
2203         u8              offset;
2204         u8              slave_addr;
2205 };
2206
2207 static int __devinit decode_dmi(const struct dmi_header *dm,
2208                                 struct dmi_ipmi_data *dmi)
2209 {
2210         const u8        *data = (const u8 *)dm;
2211         unsigned long   base_addr;
2212         u8              reg_spacing;
2213         u8              len = dm->length;
2214
2215         dmi->type = data[4];
2216
2217         memcpy(&base_addr, data+8, sizeof(unsigned long));
2218         if (len >= 0x11) {
2219                 if (base_addr & 1) {
2220                         /* I/O */
2221                         base_addr &= 0xFFFE;
2222                         dmi->addr_space = IPMI_IO_ADDR_SPACE;
2223                 } else
2224                         /* Memory */
2225                         dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2226
2227                 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2228                    is odd. */
2229                 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2230
2231                 dmi->irq = data[0x11];
2232
2233                 /* The top two bits of byte 0x10 hold the register spacing. */
2234                 reg_spacing = (data[0x10] & 0xC0) >> 6;
2235                 switch (reg_spacing) {
2236                 case 0x00: /* Byte boundaries */
2237                     dmi->offset = 1;
2238                     break;
2239                 case 0x01: /* 32-bit boundaries */
2240                     dmi->offset = 4;
2241                     break;
2242                 case 0x02: /* 16-byte boundaries */
2243                     dmi->offset = 16;
2244                     break;
2245                 default:
2246                     /* Some other interface, just ignore it. */
2247                     return -EIO;
2248                 }
2249         } else {
2250                 /* Old DMI spec. */
2251                 /*
2252                  * Note that technically, the lower bit of the base
2253                  * address should be 1 if the address is I/O and 0 if
2254                  * the address is in memory.  So many systems get that
2255                  * wrong (and all that I have seen are I/O) so we just
2256                  * ignore that bit and assume I/O.  Systems that use
2257                  * memory should use the newer spec, anyway.
2258                  */
2259                 dmi->base_addr = base_addr & 0xfffe;
2260                 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2261                 dmi->offset = 1;
2262         }
2263
2264         dmi->slave_addr = data[6];
2265
2266         return 0;
2267 }
2268
2269 static __devinit void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2270 {
2271         struct smi_info *info;
2272
2273         info = kzalloc(sizeof(*info), GFP_KERNEL);
2274         if (!info) {
2275                 printk(KERN_ERR
2276                        "ipmi_si: Could not allocate SI data\n");
2277                 return;
2278         }
2279
2280         info->addr_source = SI_SMBIOS;
2281
2282         switch (ipmi_data->type) {
2283         case 0x01: /* KCS */
2284                 info->si_type = SI_KCS;
2285                 break;
2286         case 0x02: /* SMIC */
2287                 info->si_type = SI_SMIC;
2288                 break;
2289         case 0x03: /* BT */
2290                 info->si_type = SI_BT;
2291                 break;
2292         default:
2293                 kfree(info);
2294                 return;
2295         }
2296
2297         switch (ipmi_data->addr_space) {
2298         case IPMI_MEM_ADDR_SPACE:
2299                 info->io_setup = mem_setup;
2300                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2301                 break;
2302
2303         case IPMI_IO_ADDR_SPACE:
2304                 info->io_setup = port_setup;
2305                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2306                 break;
2307
2308         default:
2309                 kfree(info);
2310                 printk(KERN_WARNING
2311                        "ipmi_si: Unknown SMBIOS I/O Address type: %d.\n",
2312                        ipmi_data->addr_space);
2313                 return;
2314         }
2315         info->io.addr_data = ipmi_data->base_addr;
2316
2317         info->io.regspacing = ipmi_data->offset;
2318         if (!info->io.regspacing)
2319                 info->io.regspacing = DEFAULT_REGSPACING;
2320         info->io.regsize = DEFAULT_REGSPACING;
2321         info->io.regshift = 0;
2322
2323         info->slave_addr = ipmi_data->slave_addr;
2324
2325         info->irq = ipmi_data->irq;
2326         if (info->irq)
2327                 info->irq_setup = std_irq_setup;
2328
2329         try_smi_init(info);
2330 }
2331
2332 static void __devinit dmi_find_bmc(void)
2333 {
2334         const struct dmi_device *dev = NULL;
2335         struct dmi_ipmi_data data;
2336         int                  rv;
2337
2338         while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2339                 memset(&data, 0, sizeof(data));
2340                 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2341                                 &data);
2342                 if (!rv)
2343                         try_init_dmi(&data);
2344         }
2345 }
2346 #endif /* CONFIG_DMI */
2347
2348 #ifdef CONFIG_PCI
2349
2350 #define PCI_ERMC_CLASSCODE              0x0C0700
2351 #define PCI_ERMC_CLASSCODE_MASK         0xffffff00
2352 #define PCI_ERMC_CLASSCODE_TYPE_MASK    0xff
2353 #define PCI_ERMC_CLASSCODE_TYPE_SMIC    0x00
2354 #define PCI_ERMC_CLASSCODE_TYPE_KCS     0x01
2355 #define PCI_ERMC_CLASSCODE_TYPE_BT      0x02
2356
2357 #define PCI_HP_VENDOR_ID    0x103C
2358 #define PCI_MMC_DEVICE_ID   0x121A
2359 #define PCI_MMC_ADDR_CW     0x10
2360
2361 static void ipmi_pci_cleanup(struct smi_info *info)
2362 {
2363         struct pci_dev *pdev = info->addr_source_data;
2364
2365         pci_disable_device(pdev);
2366 }
2367
2368 static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
2369                                     const struct pci_device_id *ent)
2370 {
2371         int rv;
2372         int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2373         struct smi_info *info;
2374
2375         info = kzalloc(sizeof(*info), GFP_KERNEL);
2376         if (!info)
2377                 return -ENOMEM;
2378
2379         info->addr_source = SI_PCI;
2380
2381         switch (class_type) {
2382         case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2383                 info->si_type = SI_SMIC;
2384                 break;
2385
2386         case PCI_ERMC_CLASSCODE_TYPE_KCS:
2387                 info->si_type = SI_KCS;
2388                 break;
2389
2390         case PCI_ERMC_CLASSCODE_TYPE_BT:
2391                 info->si_type = SI_BT;
2392                 break;
2393
2394         default:
2395                 kfree(info);
2396                 printk(KERN_INFO "ipmi_si: %s: Unknown IPMI type: %d\n",
2397                        pci_name(pdev), class_type);
2398                 return -ENOMEM;
2399         }
2400
2401         rv = pci_enable_device(pdev);
2402         if (rv) {
2403                 printk(KERN_ERR "ipmi_si: %s: couldn't enable PCI device\n",
2404                        pci_name(pdev));
2405                 kfree(info);
2406                 return rv;
2407         }
2408
2409         info->addr_source_cleanup = ipmi_pci_cleanup;
2410         info->addr_source_data = pdev;
2411
2412         if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2413                 info->io_setup = port_setup;
2414                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2415         } else {
2416                 info->io_setup = mem_setup;
2417                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2418         }
2419         info->io.addr_data = pci_resource_start(pdev, 0);
2420
2421         info->io.regspacing = DEFAULT_REGSPACING;
2422         info->io.regsize = DEFAULT_REGSPACING;
2423         info->io.regshift = 0;
2424
2425         info->irq = pdev->irq;
2426         if (info->irq)
2427                 info->irq_setup = std_irq_setup;
2428
2429         info->dev = &pdev->dev;
2430         pci_set_drvdata(pdev, info);
2431
2432         return try_smi_init(info);
2433 }
2434
2435 static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
2436 {
2437         struct smi_info *info = pci_get_drvdata(pdev);
2438         cleanup_one_si(info);
2439 }
2440
2441 #ifdef CONFIG_PM
2442 static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
2443 {
2444         return 0;
2445 }
2446
2447 static int ipmi_pci_resume(struct pci_dev *pdev)
2448 {
2449         return 0;
2450 }
2451 #endif
2452
2453 static struct pci_device_id ipmi_pci_devices[] = {
2454         { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2455         { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2456         { 0, }
2457 };
2458 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2459
2460 static struct pci_driver ipmi_pci_driver = {
2461         .name =         DEVICE_NAME,
2462         .id_table =     ipmi_pci_devices,
2463         .probe =        ipmi_pci_probe,
2464         .remove =       __devexit_p(ipmi_pci_remove),
2465 #ifdef CONFIG_PM
2466         .suspend =      ipmi_pci_suspend,
2467         .resume =       ipmi_pci_resume,
2468 #endif
2469 };
2470 #endif /* CONFIG_PCI */
2471
2472
2473 #ifdef CONFIG_PPC_OF
2474 static int __devinit ipmi_of_probe(struct of_device *dev,
2475                          const struct of_device_id *match)
2476 {
2477         struct smi_info *info;
2478         struct resource resource;
2479         const int *regsize, *regspacing, *regshift;
2480         struct device_node *np = dev->dev.of_node;
2481         int ret;
2482         int proplen;
2483
2484         dev_info(&dev->dev, PFX "probing via device tree\n");
2485
2486         ret = of_address_to_resource(np, 0, &resource);
2487         if (ret) {
2488                 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2489                 return ret;
2490         }
2491
2492         regsize = of_get_property(np, "reg-size", &proplen);
2493         if (regsize && proplen != 4) {
2494                 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2495                 return -EINVAL;
2496         }
2497
2498         regspacing = of_get_property(np, "reg-spacing", &proplen);
2499         if (regspacing && proplen != 4) {
2500                 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2501                 return -EINVAL;
2502         }
2503
2504         regshift = of_get_property(np, "reg-shift", &proplen);
2505         if (regshift && proplen != 4) {
2506                 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2507                 return -EINVAL;
2508         }
2509
2510         info = kzalloc(sizeof(*info), GFP_KERNEL);
2511
2512         if (!info) {
2513                 dev_err(&dev->dev,
2514                         PFX "could not allocate memory for OF probe\n");
2515                 return -ENOMEM;
2516         }
2517
2518         info->si_type           = (enum si_type) match->data;
2519         info->addr_source       = SI_DEVICETREE;
2520         info->irq_setup         = std_irq_setup;
2521
2522         if (resource.flags & IORESOURCE_IO) {
2523                 info->io_setup          = port_setup;
2524                 info->io.addr_type      = IPMI_IO_ADDR_SPACE;
2525         } else {
2526                 info->io_setup          = mem_setup;
2527                 info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2528         }
2529
2530         info->io.addr_data      = resource.start;
2531
2532         info->io.regsize        = regsize ? *regsize : DEFAULT_REGSIZE;
2533         info->io.regspacing     = regspacing ? *regspacing : DEFAULT_REGSPACING;
2534         info->io.regshift       = regshift ? *regshift : 0;
2535
2536         info->irq               = irq_of_parse_and_map(dev->dev.of_node, 0);
2537         info->dev               = &dev->dev;
2538
2539         dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %x\n",
2540                 info->io.addr_data, info->io.regsize, info->io.regspacing,
2541                 info->irq);
2542
2543         dev_set_drvdata(&dev->dev, info);
2544
2545         return try_smi_init(info);
2546 }
2547
2548 static int __devexit ipmi_of_remove(struct of_device *dev)
2549 {
2550         cleanup_one_si(dev_get_drvdata(&dev->dev));
2551         return 0;
2552 }
2553
2554 static struct of_device_id ipmi_match[] =
2555 {
2556         { .type = "ipmi", .compatible = "ipmi-kcs",
2557           .data = (void *)(unsigned long) SI_KCS },
2558         { .type = "ipmi", .compatible = "ipmi-smic",
2559           .data = (void *)(unsigned long) SI_SMIC },
2560         { .type = "ipmi", .compatible = "ipmi-bt",
2561           .data = (void *)(unsigned long) SI_BT },
2562         {},
2563 };
2564
2565 static struct of_platform_driver ipmi_of_platform_driver = {
2566         .driver = {
2567                 .name = "ipmi",
2568                 .owner = THIS_MODULE,
2569                 .of_match_table = ipmi_match,
2570         },
2571         .probe          = ipmi_of_probe,
2572         .remove         = __devexit_p(ipmi_of_remove),
2573 };
2574 #endif /* CONFIG_PPC_OF */
2575
2576 static int wait_for_msg_done(struct smi_info *smi_info)
2577 {
2578         enum si_sm_result     smi_result;
2579
2580         smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2581         for (;;) {
2582                 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2583                     smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2584                         schedule_timeout_uninterruptible(1);
2585                         smi_result = smi_info->handlers->event(
2586                                 smi_info->si_sm, 100);
2587                 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2588                         smi_result = smi_info->handlers->event(
2589                                 smi_info->si_sm, 0);
2590                 } else
2591                         break;
2592         }
2593         if (smi_result == SI_SM_HOSED)
2594                 /*
2595                  * We couldn't get the state machine to run, so whatever's at
2596                  * the port is probably not an IPMI SMI interface.
2597                  */
2598                 return -ENODEV;
2599
2600         return 0;
2601 }
2602
2603 static int try_get_dev_id(struct smi_info *smi_info)
2604 {
2605         unsigned char         msg[2];
2606         unsigned char         *resp;
2607         unsigned long         resp_len;
2608         int                   rv = 0;
2609
2610         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2611         if (!resp)
2612                 return -ENOMEM;
2613
2614         /*
2615          * Do a Get Device ID command, since it comes back with some
2616          * useful info.
2617          */
2618         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2619         msg[1] = IPMI_GET_DEVICE_ID_CMD;
2620         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2621
2622         rv = wait_for_msg_done(smi_info);
2623         if (rv)
2624                 goto out;
2625
2626         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2627                                                   resp, IPMI_MAX_MSG_LENGTH);
2628
2629         /* Check and record info from the get device id, in case we need it. */
2630         rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2631
2632  out:
2633         kfree(resp);
2634         return rv;
2635 }
2636
2637 static int try_enable_event_buffer(struct smi_info *smi_info)
2638 {
2639         unsigned char         msg[3];
2640         unsigned char         *resp;
2641         unsigned long         resp_len;
2642         int                   rv = 0;
2643
2644         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2645         if (!resp)
2646                 return -ENOMEM;
2647
2648         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2649         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2650         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2651
2652         rv = wait_for_msg_done(smi_info);
2653         if (rv) {
2654                 printk(KERN_WARNING
2655                        "ipmi_si: Error getting response from get global,"
2656                        " enables command, the event buffer is not"
2657                        " enabled.\n");
2658                 goto out;
2659         }
2660
2661         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2662                                                   resp, IPMI_MAX_MSG_LENGTH);
2663
2664         if (resp_len < 4 ||
2665                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2666                         resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2667                         resp[2] != 0) {
2668                 printk(KERN_WARNING
2669                        "ipmi_si: Invalid return from get global"
2670                        " enables command, cannot enable the event"
2671                        " buffer.\n");
2672                 rv = -EINVAL;
2673                 goto out;
2674         }
2675
2676         if (resp[3] & IPMI_BMC_EVT_MSG_BUFF)
2677                 /* buffer is already enabled, nothing to do. */
2678                 goto out;
2679
2680         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2681         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2682         msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
2683         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2684
2685         rv = wait_for_msg_done(smi_info);
2686         if (rv) {
2687                 printk(KERN_WARNING
2688                        "ipmi_si: Error getting response from set global,"
2689                        " enables command, the event buffer is not"
2690                        " enabled.\n");
2691                 goto out;
2692         }
2693
2694         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2695                                                   resp, IPMI_MAX_MSG_LENGTH);
2696
2697         if (resp_len < 3 ||
2698                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2699                         resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2700                 printk(KERN_WARNING
2701                        "ipmi_si: Invalid return from get global,"
2702                        "enables command, not enable the event"
2703                        " buffer.\n");
2704                 rv = -EINVAL;
2705                 goto out;
2706         }
2707
2708         if (resp[2] != 0)
2709                 /*
2710                  * An error when setting the event buffer bit means
2711                  * that the event buffer is not supported.
2712                  */
2713                 rv = -ENOENT;
2714  out:
2715         kfree(resp);
2716         return rv;
2717 }
2718
2719 static int type_file_read_proc(char *page, char **start, off_t off,
2720                                int count, int *eof, void *data)
2721 {
2722         struct smi_info *smi = data;
2723
2724         return sprintf(page, "%s\n", si_to_str[smi->si_type]);
2725 }
2726
2727 static int stat_file_read_proc(char *page, char **start, off_t off,
2728                                int count, int *eof, void *data)
2729 {
2730         char            *out = (char *) page;
2731         struct smi_info *smi = data;
2732
2733         out += sprintf(out, "interrupts_enabled:    %d\n",
2734                        smi->irq && !smi->interrupt_disabled);
2735         out += sprintf(out, "short_timeouts:        %u\n",
2736                        smi_get_stat(smi, short_timeouts));
2737         out += sprintf(out, "long_timeouts:         %u\n",
2738                        smi_get_stat(smi, long_timeouts));
2739         out += sprintf(out, "idles:                 %u\n",
2740                        smi_get_stat(smi, idles));
2741         out += sprintf(out, "interrupts:            %u\n",
2742                        smi_get_stat(smi, interrupts));
2743         out += sprintf(out, "attentions:            %u\n",
2744                        smi_get_stat(smi, attentions));
2745         out += sprintf(out, "flag_fetches:          %u\n",
2746                        smi_get_stat(smi, flag_fetches));
2747         out += sprintf(out, "hosed_count:           %u\n",
2748                        smi_get_stat(smi, hosed_count));
2749         out += sprintf(out, "complete_transactions: %u\n",
2750                        smi_get_stat(smi, complete_transactions));
2751         out += sprintf(out, "events:                %u\n",
2752                        smi_get_stat(smi, events));
2753         out += sprintf(out, "watchdog_pretimeouts:  %u\n",
2754                        smi_get_stat(smi, watchdog_pretimeouts));
2755         out += sprintf(out, "incoming_messages:     %u\n",
2756                        smi_get_stat(smi, incoming_messages));
2757
2758         return out - page;
2759 }
2760
2761 static int param_read_proc(char *page, char **start, off_t off,
2762                            int count, int *eof, void *data)
2763 {
2764         struct smi_info *smi = data;
2765
2766         return sprintf(page,
2767                        "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
2768                        si_to_str[smi->si_type],
2769                        addr_space_to_str[smi->io.addr_type],
2770                        smi->io.addr_data,
2771                        smi->io.regspacing,
2772                        smi->io.regsize,
2773                        smi->io.regshift,
2774                        smi->irq,
2775                        smi->slave_addr);
2776 }
2777
2778 /*
2779  * oem_data_avail_to_receive_msg_avail
2780  * @info - smi_info structure with msg_flags set
2781  *
2782  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2783  * Returns 1 indicating need to re-run handle_flags().
2784  */
2785 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2786 {
2787         smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2788                                RECEIVE_MSG_AVAIL);
2789         return 1;
2790 }
2791
2792 /*
2793  * setup_dell_poweredge_oem_data_handler
2794  * @info - smi_info.device_id must be populated
2795  *
2796  * Systems that match, but have firmware version < 1.40 may assert
2797  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2798  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
2799  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2800  * as RECEIVE_MSG_AVAIL instead.
2801  *
2802  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2803  * assert the OEM[012] bits, and if it did, the driver would have to
2804  * change to handle that properly, we don't actually check for the
2805  * firmware version.
2806  * Device ID = 0x20                BMC on PowerEdge 8G servers
2807  * Device Revision = 0x80
2808  * Firmware Revision1 = 0x01       BMC version 1.40
2809  * Firmware Revision2 = 0x40       BCD encoded
2810  * IPMI Version = 0x51             IPMI 1.5
2811  * Manufacturer ID = A2 02 00      Dell IANA
2812  *
2813  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2814  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2815  *
2816  */
2817 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
2818 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2819 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2820 #define DELL_IANA_MFR_ID 0x0002a2
2821 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2822 {
2823         struct ipmi_device_id *id = &smi_info->device_id;
2824         if (id->manufacturer_id == DELL_IANA_MFR_ID) {
2825                 if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
2826                     id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2827                     id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2828                         smi_info->oem_data_avail_handler =
2829                                 oem_data_avail_to_receive_msg_avail;
2830                 } else if (ipmi_version_major(id) < 1 ||
2831                            (ipmi_version_major(id) == 1 &&
2832                             ipmi_version_minor(id) < 5)) {
2833                         smi_info->oem_data_avail_handler =
2834                                 oem_data_avail_to_receive_msg_avail;
2835                 }
2836         }
2837 }
2838
2839 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2840 static void return_hosed_msg_badsize(struct smi_info *smi_info)
2841 {
2842         struct ipmi_smi_msg *msg = smi_info->curr_msg;
2843
2844         /* Make it a reponse */
2845         msg->rsp[0] = msg->data[0] | 4;
2846         msg->rsp[1] = msg->data[1];
2847         msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2848         msg->rsp_size = 3;
2849         smi_info->curr_msg = NULL;
2850         deliver_recv_msg(smi_info, msg);
2851 }
2852
2853 /*
2854  * dell_poweredge_bt_xaction_handler
2855  * @info - smi_info.device_id must be populated
2856  *
2857  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2858  * not respond to a Get SDR command if the length of the data
2859  * requested is exactly 0x3A, which leads to command timeouts and no
2860  * data returned.  This intercepts such commands, and causes userspace
2861  * callers to try again with a different-sized buffer, which succeeds.
2862  */
2863
2864 #define STORAGE_NETFN 0x0A
2865 #define STORAGE_CMD_GET_SDR 0x23
2866 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2867                                              unsigned long unused,
2868                                              void *in)
2869 {
2870         struct smi_info *smi_info = in;
2871         unsigned char *data = smi_info->curr_msg->data;
2872         unsigned int size   = smi_info->curr_msg->data_size;
2873         if (size >= 8 &&
2874             (data[0]>>2) == STORAGE_NETFN &&
2875             data[1] == STORAGE_CMD_GET_SDR &&
2876             data[7] == 0x3A) {
2877                 return_hosed_msg_badsize(smi_info);
2878                 return NOTIFY_STOP;
2879         }
2880         return NOTIFY_DONE;
2881 }
2882
2883 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2884         .notifier_call  = dell_poweredge_bt_xaction_handler,
2885 };
2886
2887 /*
2888  * setup_dell_poweredge_bt_xaction_handler
2889  * @info - smi_info.device_id must be filled in already
2890  *
2891  * Fills in smi_info.device_id.start_transaction_pre_hook
2892  * when we know what function to use there.
2893  */
2894 static void
2895 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2896 {
2897         struct ipmi_device_id *id = &smi_info->device_id;
2898         if (id->manufacturer_id == DELL_IANA_MFR_ID &&
2899             smi_info->si_type == SI_BT)
2900                 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2901 }
2902
2903 /*
2904  * setup_oem_data_handler
2905  * @info - smi_info.device_id must be filled in already
2906  *
2907  * Fills in smi_info.device_id.oem_data_available_handler
2908  * when we know what function to use there.
2909  */
2910
2911 static void setup_oem_data_handler(struct smi_info *smi_info)
2912 {
2913         setup_dell_poweredge_oem_data_handler(smi_info);
2914 }
2915
2916 static void setup_xaction_handlers(struct smi_info *smi_info)
2917 {
2918         setup_dell_poweredge_bt_xaction_handler(smi_info);
2919 }
2920
2921 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
2922 {
2923         if (smi_info->intf) {
2924                 /*
2925                  * The timer and thread are only running if the
2926                  * interface has been started up and registered.
2927                  */
2928                 if (smi_info->thread != NULL)
2929                         kthread_stop(smi_info->thread);
2930                 del_timer_sync(&smi_info->si_timer);
2931         }
2932 }
2933
2934 static __devinitdata struct ipmi_default_vals
2935 {
2936         int type;
2937         int port;
2938 } ipmi_defaults[] =
2939 {
2940         { .type = SI_KCS, .port = 0xca2 },
2941         { .type = SI_SMIC, .port = 0xca9 },
2942         { .type = SI_BT, .port = 0xe4 },
2943         { .port = 0 }
2944 };
2945
2946 static __devinit void default_find_bmc(void)
2947 {
2948         struct smi_info *info;
2949         int             i;
2950
2951         for (i = 0; ; i++) {
2952                 if (!ipmi_defaults[i].port)
2953                         break;
2954 #ifdef CONFIG_PPC
2955                 if (check_legacy_ioport(ipmi_defaults[i].port))
2956                         continue;
2957 #endif
2958                 info = kzalloc(sizeof(*info), GFP_KERNEL);
2959                 if (!info)
2960                         return;
2961
2962                 info->addr_source = SI_DEFAULT;
2963
2964                 info->si_type = ipmi_defaults[i].type;
2965                 info->io_setup = port_setup;
2966                 info->io.addr_data = ipmi_defaults[i].port;
2967                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2968
2969                 info->io.addr = NULL;
2970                 info->io.regspacing = DEFAULT_REGSPACING;
2971                 info->io.regsize = DEFAULT_REGSPACING;
2972                 info->io.regshift = 0;
2973
2974                 if (try_smi_init(info) == 0) {
2975                         /* Found one... */
2976                         printk(KERN_INFO "ipmi_si: Found default %s state"
2977                                " machine at %s address 0x%lx\n",
2978                                si_to_str[info->si_type],
2979                                addr_space_to_str[info->io.addr_type],
2980                                info->io.addr_data);
2981                         return;
2982                 }
2983         }
2984 }
2985
2986 static int is_new_interface(struct smi_info *info)
2987 {
2988         struct smi_info *e;
2989
2990         list_for_each_entry(e, &smi_infos, link) {
2991                 if (e->io.addr_type != info->io.addr_type)
2992                         continue;
2993                 if (e->io.addr_data == info->io.addr_data)
2994                         return 0;
2995         }
2996
2997         return 1;
2998 }
2999
3000 static int try_smi_init(struct smi_info *new_smi)
3001 {
3002         int rv;
3003         int i;
3004
3005         printk(KERN_INFO "ipmi_si: Trying %s-specified %s state"
3006                " machine at %s address 0x%lx, slave address 0x%x,"
3007                " irq %d\n",
3008                ipmi_addr_src_to_str[new_smi->addr_source],
3009                si_to_str[new_smi->si_type],
3010                addr_space_to_str[new_smi->io.addr_type],
3011                new_smi->io.addr_data,
3012                new_smi->slave_addr, new_smi->irq);
3013
3014         mutex_lock(&smi_infos_lock);
3015         if (!is_new_interface(new_smi)) {
3016                 printk(KERN_WARNING "ipmi_si: duplicate interface\n");
3017                 rv = -EBUSY;
3018                 goto out_err;
3019         }
3020
3021         /* So we know not to free it unless we have allocated one. */
3022         new_smi->intf = NULL;
3023         new_smi->si_sm = NULL;
3024         new_smi->handlers = NULL;
3025
3026         switch (new_smi->si_type) {
3027         case SI_KCS:
3028                 new_smi->handlers = &kcs_smi_handlers;
3029                 break;
3030
3031         case SI_SMIC:
3032                 new_smi->handlers = &smic_smi_handlers;
3033                 break;
3034
3035         case SI_BT:
3036                 new_smi->handlers = &bt_smi_handlers;
3037                 break;
3038
3039         default:
3040                 /* No support for anything else yet. */
3041                 rv = -EIO;
3042                 goto out_err;
3043         }
3044
3045         /* Allocate the state machine's data and initialize it. */
3046         new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3047         if (!new_smi->si_sm) {
3048                 printk(KERN_ERR "Could not allocate state machine memory\n");
3049                 rv = -ENOMEM;
3050                 goto out_err;
3051         }
3052         new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3053                                                         &new_smi->io);
3054
3055         /* Now that we know the I/O size, we can set up the I/O. */
3056         rv = new_smi->io_setup(new_smi);
3057         if (rv) {
3058                 printk(KERN_ERR "Could not set up I/O space\n");
3059                 goto out_err;
3060         }
3061
3062         spin_lock_init(&(new_smi->si_lock));
3063         spin_lock_init(&(new_smi->msg_lock));
3064
3065         /* Do low-level detection first. */
3066         if (new_smi->handlers->detect(new_smi->si_sm)) {
3067                 if (new_smi->addr_source)
3068                         printk(KERN_INFO "ipmi_si: Interface detection"
3069                                " failed\n");
3070                 rv = -ENODEV;
3071                 goto out_err;
3072         }
3073
3074         /*
3075          * Attempt a get device id command.  If it fails, we probably
3076          * don't have a BMC here.
3077          */
3078         rv = try_get_dev_id(new_smi);
3079         if (rv) {
3080                 if (new_smi->addr_source)
3081                         printk(KERN_INFO "ipmi_si: There appears to be no BMC"
3082                                " at this location\n");
3083                 goto out_err;
3084         }
3085
3086         setup_oem_data_handler(new_smi);
3087         setup_xaction_handlers(new_smi);
3088
3089         INIT_LIST_HEAD(&(new_smi->xmit_msgs));
3090         INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
3091         new_smi->curr_msg = NULL;
3092         atomic_set(&new_smi->req_events, 0);
3093         new_smi->run_to_completion = 0;
3094         for (i = 0; i < SI_NUM_STATS; i++)
3095                 atomic_set(&new_smi->stats[i], 0);
3096
3097         new_smi->interrupt_disabled = 0;
3098         atomic_set(&new_smi->stop_operation, 0);
3099         new_smi->intf_num = smi_num;
3100         smi_num++;
3101
3102         rv = try_enable_event_buffer(new_smi);
3103         if (rv == 0)
3104                 new_smi->has_event_buffer = 1;
3105
3106         /*
3107          * Start clearing the flags before we enable interrupts or the
3108          * timer to avoid racing with the timer.
3109          */
3110         start_clear_flags(new_smi);
3111         /* IRQ is defined to be set when non-zero. */
3112         if (new_smi->irq)
3113                 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
3114
3115         if (!new_smi->dev) {
3116                 /*
3117                  * If we don't already have a device from something
3118                  * else (like PCI), then register a new one.
3119                  */
3120                 new_smi->pdev = platform_device_alloc("ipmi_si",
3121                                                       new_smi->intf_num);
3122                 if (!new_smi->pdev) {
3123                         printk(KERN_ERR
3124                                "ipmi_si_intf:"
3125                                " Unable to allocate platform device\n");
3126                         goto out_err;
3127                 }
3128                 new_smi->dev = &new_smi->pdev->dev;
3129                 new_smi->dev->driver = &ipmi_driver.driver;
3130
3131                 rv = platform_device_add(new_smi->pdev);
3132                 if (rv) {
3133                         printk(KERN_ERR
3134                                "ipmi_si_intf:"
3135                                " Unable to register system interface device:"
3136                                " %d\n",
3137                                rv);
3138                         goto out_err;
3139                 }
3140                 new_smi->dev_registered = 1;
3141         }
3142
3143         rv = ipmi_register_smi(&handlers,
3144                                new_smi,
3145                                &new_smi->device_id,
3146                                new_smi->dev,
3147                                "bmc",
3148                                new_smi->slave_addr);
3149         if (rv) {
3150                 printk(KERN_ERR
3151                        "ipmi_si: Unable to register device: error %d\n",
3152                        rv);
3153                 goto out_err_stop_timer;
3154         }
3155
3156         rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3157                                      type_file_read_proc,
3158                                      new_smi);
3159         if (rv) {
3160                 printk(KERN_ERR
3161                        "ipmi_si: Unable to create proc entry: %d\n",
3162                        rv);
3163                 goto out_err_stop_timer;
3164         }
3165
3166         rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3167                                      stat_file_read_proc,
3168                                      new_smi);
3169         if (rv) {
3170                 printk(KERN_ERR
3171                        "ipmi_si: Unable to create proc entry: %d\n",
3172                        rv);
3173                 goto out_err_stop_timer;
3174         }
3175
3176         rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3177                                      param_read_proc,
3178                                      new_smi);
3179         if (rv) {
3180                 printk(KERN_ERR
3181                        "ipmi_si: Unable to create proc entry: %d\n",
3182                        rv);
3183                 goto out_err_stop_timer;
3184         }
3185
3186         list_add_tail(&new_smi->link, &smi_infos);
3187
3188         mutex_unlock(&smi_infos_lock);
3189
3190         printk(KERN_INFO "IPMI %s interface initialized\n",
3191                si_to_str[new_smi->si_type]);
3192
3193         return 0;
3194
3195  out_err_stop_timer:
3196         atomic_inc(&new_smi->stop_operation);
3197         wait_for_timer_and_thread(new_smi);
3198
3199  out_err:
3200         if (new_smi->intf)
3201                 ipmi_unregister_smi(new_smi->intf);
3202
3203         if (new_smi->irq_cleanup)
3204                 new_smi->irq_cleanup(new_smi);
3205
3206         /*
3207          * Wait until we know that we are out of any interrupt
3208          * handlers might have been running before we freed the
3209          * interrupt.
3210          */
3211         synchronize_sched();
3212
3213         if (new_smi->si_sm) {
3214                 if (new_smi->handlers)
3215                         new_smi->handlers->cleanup(new_smi->si_sm);
3216                 kfree(new_smi->si_sm);
3217         }
3218         if (new_smi->addr_source_cleanup)
3219                 new_smi->addr_source_cleanup(new_smi);
3220         if (new_smi->io_cleanup)
3221                 new_smi->io_cleanup(new_smi);
3222
3223         if (new_smi->dev_registered)
3224                 platform_device_unregister(new_smi->pdev);
3225
3226         kfree(new_smi);
3227
3228         mutex_unlock(&smi_infos_lock);
3229
3230         return rv;
3231 }
3232
3233 static __devinit int init_ipmi_si(void)
3234 {
3235         int  i;
3236         char *str;
3237         int  rv;
3238
3239         if (initialized)
3240                 return 0;
3241         initialized = 1;
3242
3243         /* Register the device drivers. */
3244         rv = driver_register(&ipmi_driver.driver);
3245         if (rv) {
3246                 printk(KERN_ERR
3247                        "init_ipmi_si: Unable to register driver: %d\n",
3248                        rv);
3249                 return rv;
3250         }
3251
3252
3253         /* Parse out the si_type string into its components. */
3254         str = si_type_str;
3255         if (*str != '\0') {
3256                 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3257                         si_type[i] = str;
3258                         str = strchr(str, ',');
3259                         if (str) {
3260                                 *str = '\0';
3261                                 str++;
3262                         } else {
3263                                 break;
3264                         }
3265                 }
3266         }
3267
3268         printk(KERN_INFO "IPMI System Interface driver.\n");
3269
3270         hardcode_find_bmc();
3271
3272 #ifdef CONFIG_DMI
3273         dmi_find_bmc();
3274 #endif
3275
3276 #ifdef CONFIG_ACPI
3277         spmi_find_bmc();
3278 #endif
3279 #ifdef CONFIG_ACPI
3280         pnp_register_driver(&ipmi_pnp_driver);
3281 #endif
3282
3283 #ifdef CONFIG_PCI
3284         rv = pci_register_driver(&ipmi_pci_driver);
3285         if (rv)
3286                 printk(KERN_ERR
3287                        "init_ipmi_si: Unable to register PCI driver: %d\n",
3288                        rv);
3289 #endif
3290
3291 #ifdef CONFIG_PPC_OF
3292         of_register_platform_driver(&ipmi_of_platform_driver);
3293 #endif
3294
3295         if (si_trydefaults) {
3296                 mutex_lock(&smi_infos_lock);
3297                 if (list_empty(&smi_infos)) {
3298                         /* No BMC was found, try defaults. */
3299                         mutex_unlock(&smi_infos_lock);
3300                         default_find_bmc();
3301                 } else {
3302                         mutex_unlock(&smi_infos_lock);
3303                 }
3304         }
3305
3306         mutex_lock(&smi_infos_lock);
3307         if (unload_when_empty && list_empty(&smi_infos)) {
3308                 mutex_unlock(&smi_infos_lock);
3309 #ifdef CONFIG_PCI
3310                 pci_unregister_driver(&ipmi_pci_driver);
3311 #endif
3312
3313 #ifdef CONFIG_PPC_OF
3314                 of_unregister_platform_driver(&ipmi_of_platform_driver);
3315 #endif
3316                 driver_unregister(&ipmi_driver.driver);
3317                 printk(KERN_WARNING
3318                        "ipmi_si: Unable to find any System Interface(s)\n");
3319                 return -ENODEV;
3320         } else {
3321                 mutex_unlock(&smi_infos_lock);
3322                 return 0;
3323         }
3324 }
3325 module_init(init_ipmi_si);
3326
3327 static void cleanup_one_si(struct smi_info *to_clean)
3328 {
3329         int           rv;
3330         unsigned long flags;
3331
3332         if (!to_clean)
3333                 return;
3334
3335         list_del(&to_clean->link);
3336
3337         /* Tell the driver that we are shutting down. */
3338         atomic_inc(&to_clean->stop_operation);
3339
3340         /*
3341          * Make sure the timer and thread are stopped and will not run
3342          * again.
3343          */
3344         wait_for_timer_and_thread(to_clean);
3345
3346         /*
3347          * Timeouts are stopped, now make sure the interrupts are off
3348          * for the device.  A little tricky with locks to make sure
3349          * there are no races.
3350          */
3351         spin_lock_irqsave(&to_clean->si_lock, flags);
3352         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3353                 spin_unlock_irqrestore(&to_clean->si_lock, flags);
3354                 poll(to_clean);
3355                 schedule_timeout_uninterruptible(1);
3356                 spin_lock_irqsave(&to_clean->si_lock, flags);
3357         }
3358         disable_si_irq(to_clean);
3359         spin_unlock_irqrestore(&to_clean->si_lock, flags);
3360         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3361                 poll(to_clean);
3362                 schedule_timeout_uninterruptible(1);
3363         }
3364
3365         /* Clean up interrupts and make sure that everything is done. */
3366         if (to_clean->irq_cleanup)
3367                 to_clean->irq_cleanup(to_clean);
3368         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3369                 poll(to_clean);
3370                 schedule_timeout_uninterruptible(1);
3371         }
3372
3373         rv = ipmi_unregister_smi(to_clean->intf);
3374         if (rv) {
3375                 printk(KERN_ERR
3376                        "ipmi_si: Unable to unregister device: errno=%d\n",
3377                        rv);
3378         }
3379
3380         to_clean->handlers->cleanup(to_clean->si_sm);
3381
3382         kfree(to_clean->si_sm);
3383
3384         if (to_clean->addr_source_cleanup)
3385                 to_clean->addr_source_cleanup(to_clean);
3386         if (to_clean->io_cleanup)
3387                 to_clean->io_cleanup(to_clean);
3388
3389         if (to_clean->dev_registered)
3390                 platform_device_unregister(to_clean->pdev);
3391
3392         kfree(to_clean);
3393 }
3394
3395 static __exit void cleanup_ipmi_si(void)
3396 {
3397         struct smi_info *e, *tmp_e;
3398
3399         if (!initialized)
3400                 return;
3401
3402 #ifdef CONFIG_PCI
3403         pci_unregister_driver(&ipmi_pci_driver);
3404 #endif
3405 #ifdef CONFIG_ACPI
3406         pnp_unregister_driver(&ipmi_pnp_driver);
3407 #endif
3408
3409 #ifdef CONFIG_PPC_OF
3410         of_unregister_platform_driver(&ipmi_of_platform_driver);
3411 #endif
3412
3413         mutex_lock(&smi_infos_lock);
3414         list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3415                 cleanup_one_si(e);
3416         mutex_unlock(&smi_infos_lock);
3417
3418         driver_unregister(&ipmi_driver.driver);
3419 }
3420 module_exit(cleanup_ipmi_si);
3421
3422 MODULE_LICENSE("GPL");
3423 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3424 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3425                    " system interfaces.");