807b0df308f18d6a31fccb0a806cd7c03195c9f7
[pandora-kernel.git] / drivers / acpi / processor_idle.c
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004       Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *                      - Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *                      - Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  *  You should have received a copy of the GNU General Public License along
25  *  with this program; if not, write to the Free Software Foundation, Inc.,
26  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27  *
28  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29  */
30
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h>        /* need_resched() */
41
42 #include <asm/io.h>
43 #include <asm/uaccess.h>
44
45 #include <acpi/acpi_bus.h>
46 #include <acpi/processor.h>
47
48 #define ACPI_PROCESSOR_COMPONENT        0x01000000
49 #define ACPI_PROCESSOR_CLASS            "processor"
50 #define ACPI_PROCESSOR_DRIVER_NAME      "ACPI Processor Driver"
51 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
52 ACPI_MODULE_NAME("acpi_processor")
53 #define ACPI_PROCESSOR_FILE_POWER       "power"
54 #define US_TO_PM_TIMER_TICKS(t)         ((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
55 #define C2_OVERHEAD                     4       /* 1us (3.579 ticks per us) */
56 #define C3_OVERHEAD                     4       /* 1us (3.579 ticks per us) */
57 static void (*pm_idle_save) (void);
58 module_param(max_cstate, uint, 0644);
59
60 static unsigned int nocst = 0;
61 module_param(nocst, uint, 0000);
62
63 /*
64  * bm_history -- bit-mask with a bit per jiffy of bus-master activity
65  * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
66  * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
67  * 100 HZ: 0x0000000F: 4 jiffies = 40ms
68  * reduce history for more aggressive entry into C3
69  */
70 static unsigned int bm_history =
71     (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
72 module_param(bm_history, uint, 0644);
73 /* --------------------------------------------------------------------------
74                                 Power Management
75    -------------------------------------------------------------------------- */
76
77 /*
78  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
79  * For now disable this. Probably a bug somewhere else.
80  *
81  * To skip this limit, boot/load with a large max_cstate limit.
82  */
83 static int set_max_cstate(struct dmi_system_id *id)
84 {
85         if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
86                 return 0;
87
88         printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
89                " Override with \"processor.max_cstate=%d\"\n", id->ident,
90                (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
91
92         max_cstate = (long)id->driver_data;
93
94         return 0;
95 }
96
97 static struct dmi_system_id __initdata processor_power_dmi_table[] = {
98         {set_max_cstate, "IBM ThinkPad R40e", {
99                                                DMI_MATCH(DMI_BIOS_VENDOR,
100                                                          "IBM"),
101                                                DMI_MATCH(DMI_BIOS_VERSION,
102                                                          "1SET60WW")},
103          (void *)1},
104         {set_max_cstate, "Medion 41700", {
105                                           DMI_MATCH(DMI_BIOS_VENDOR,
106                                                     "Phoenix Technologies LTD"),
107                                           DMI_MATCH(DMI_BIOS_VERSION,
108                                                     "R01-A1J")}, (void *)1},
109         {set_max_cstate, "Clevo 5600D", {
110                                          DMI_MATCH(DMI_BIOS_VENDOR,
111                                                    "Phoenix Technologies LTD"),
112                                          DMI_MATCH(DMI_BIOS_VERSION,
113                                                    "SHE845M0.86C.0013.D.0302131307")},
114          (void *)2},
115         {},
116 };
117
118 static inline u32 ticks_elapsed(u32 t1, u32 t2)
119 {
120         if (t2 >= t1)
121                 return (t2 - t1);
122         else if (!acpi_fadt.tmr_val_ext)
123                 return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
124         else
125                 return ((0xFFFFFFFF - t1) + t2);
126 }
127
128 static void
129 acpi_processor_power_activate(struct acpi_processor *pr,
130                               struct acpi_processor_cx *new)
131 {
132         struct acpi_processor_cx *old;
133
134         if (!pr || !new)
135                 return;
136
137         old = pr->power.state;
138
139         if (old)
140                 old->promotion.count = 0;
141         new->demotion.count = 0;
142
143         /* Cleanup from old state. */
144         if (old) {
145                 switch (old->type) {
146                 case ACPI_STATE_C3:
147                         /* Disable bus master reload */
148                         if (new->type != ACPI_STATE_C3 && pr->flags.bm_check)
149                                 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0,
150                                                   ACPI_MTX_DO_NOT_LOCK);
151                         break;
152                 }
153         }
154
155         /* Prepare to use new state. */
156         switch (new->type) {
157         case ACPI_STATE_C3:
158                 /* Enable bus master reload */
159                 if (old->type != ACPI_STATE_C3 && pr->flags.bm_check)
160                         acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1,
161                                           ACPI_MTX_DO_NOT_LOCK);
162                 break;
163         }
164
165         pr->power.state = new;
166
167         return;
168 }
169
170 static void acpi_safe_halt(void)
171 {
172         clear_thread_flag(TIF_POLLING_NRFLAG);
173         smp_mb__after_clear_bit();
174         if (!need_resched())
175                 safe_halt();
176         set_thread_flag(TIF_POLLING_NRFLAG);
177 }
178
179 static atomic_t c3_cpu_count;
180
181 static void acpi_processor_idle(void)
182 {
183         struct acpi_processor *pr = NULL;
184         struct acpi_processor_cx *cx = NULL;
185         struct acpi_processor_cx *next_state = NULL;
186         int sleep_ticks = 0;
187         u32 t1, t2 = 0;
188
189         pr = processors[smp_processor_id()];
190         if (!pr)
191                 return;
192
193         /*
194          * Interrupts must be disabled during bus mastering calculations and
195          * for C2/C3 transitions.
196          */
197         local_irq_disable();
198
199         /*
200          * Check whether we truly need to go idle, or should
201          * reschedule:
202          */
203         if (unlikely(need_resched())) {
204                 local_irq_enable();
205                 return;
206         }
207
208         cx = pr->power.state;
209         if (!cx) {
210                 if (pm_idle_save)
211                         pm_idle_save();
212                 else
213                         acpi_safe_halt();
214                 return;
215         }
216
217         /*
218          * Check BM Activity
219          * -----------------
220          * Check for bus mastering activity (if required), record, and check
221          * for demotion.
222          */
223         if (pr->flags.bm_check) {
224                 u32 bm_status = 0;
225                 unsigned long diff = jiffies - pr->power.bm_check_timestamp;
226
227                 if (diff > 32)
228                         diff = 32;
229
230                 while (diff) {
231                         /* if we didn't get called, assume there was busmaster activity */
232                         diff--;
233                         if (diff)
234                                 pr->power.bm_activity |= 0x1;
235                         pr->power.bm_activity <<= 1;
236                 }
237
238                 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS,
239                                   &bm_status, ACPI_MTX_DO_NOT_LOCK);
240                 if (bm_status) {
241                         pr->power.bm_activity++;
242                         acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS,
243                                           1, ACPI_MTX_DO_NOT_LOCK);
244                 }
245                 /*
246                  * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
247                  * the true state of bus mastering activity; forcing us to
248                  * manually check the BMIDEA bit of each IDE channel.
249                  */
250                 else if (errata.piix4.bmisx) {
251                         if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
252                             || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
253                                 pr->power.bm_activity++;
254                 }
255
256                 pr->power.bm_check_timestamp = jiffies;
257
258                 /*
259                  * Apply bus mastering demotion policy.  Automatically demote
260                  * to avoid a faulty transition.  Note that the processor
261                  * won't enter a low-power state during this call (to this
262                  * funciton) but should upon the next.
263                  *
264                  * TBD: A better policy might be to fallback to the demotion
265                  *      state (use it for this quantum only) istead of
266                  *      demoting -- and rely on duration as our sole demotion
267                  *      qualification.  This may, however, introduce DMA
268                  *      issues (e.g. floppy DMA transfer overrun/underrun).
269                  */
270                 if (pr->power.bm_activity & cx->demotion.threshold.bm) {
271                         local_irq_enable();
272                         next_state = cx->demotion.state;
273                         goto end;
274                 }
275         }
276
277 #ifdef CONFIG_HOTPLUG_CPU
278         /*
279          * Check for P_LVL2_UP flag before entering C2 and above on
280          * an SMP system. We do it here instead of doing it at _CST/P_LVL
281          * detection phase, to work cleanly with logical CPU hotplug.
282          */
283         if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) && 
284             !pr->flags.has_cst && !acpi_fadt.plvl2_up)
285                 cx = &pr->power.states[ACPI_STATE_C1];
286 #endif
287
288         cx->usage++;
289
290         /*
291          * Sleep:
292          * ------
293          * Invoke the current Cx state to put the processor to sleep.
294          */
295         if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) {
296                 clear_thread_flag(TIF_POLLING_NRFLAG);
297                 smp_mb__after_clear_bit();
298                 if (need_resched()) {
299                         set_thread_flag(TIF_POLLING_NRFLAG);
300                         local_irq_enable();
301                         return;
302                 }
303         }
304
305         switch (cx->type) {
306
307         case ACPI_STATE_C1:
308                 /*
309                  * Invoke C1.
310                  * Use the appropriate idle routine, the one that would
311                  * be used without acpi C-states.
312                  */
313                 if (pm_idle_save)
314                         pm_idle_save();
315                 else
316                         acpi_safe_halt();
317
318                 /*
319                  * TBD: Can't get time duration while in C1, as resumes
320                  *      go to an ISR rather than here.  Need to instrument
321                  *      base interrupt handler.
322                  */
323                 sleep_ticks = 0xFFFFFFFF;
324                 break;
325
326         case ACPI_STATE_C2:
327                 /* Get start time (ticks) */
328                 t1 = inl(acpi_fadt.xpm_tmr_blk.address);
329                 /* Invoke C2 */
330                 inb(cx->address);
331                 /* Dummy op - must do something useless after P_LVL2 read */
332                 t2 = inl(acpi_fadt.xpm_tmr_blk.address);
333                 /* Get end time (ticks) */
334                 t2 = inl(acpi_fadt.xpm_tmr_blk.address);
335                 /* Re-enable interrupts */
336                 local_irq_enable();
337                 set_thread_flag(TIF_POLLING_NRFLAG);
338                 /* Compute time (ticks) that we were actually asleep */
339                 sleep_ticks =
340                     ticks_elapsed(t1, t2) - cx->latency_ticks - C2_OVERHEAD;
341                 break;
342
343         case ACPI_STATE_C3:
344
345                 if (pr->flags.bm_check) {
346                         if (atomic_inc_return(&c3_cpu_count) ==
347                             num_online_cpus()) {
348                                 /*
349                                  * All CPUs are trying to go to C3
350                                  * Disable bus master arbitration
351                                  */
352                                 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1,
353                                                   ACPI_MTX_DO_NOT_LOCK);
354                         }
355                 } else {
356                         /* SMP with no shared cache... Invalidate cache  */
357                         ACPI_FLUSH_CPU_CACHE();
358                 }
359
360                 /* Get start time (ticks) */
361                 t1 = inl(acpi_fadt.xpm_tmr_blk.address);
362                 /* Invoke C3 */
363                 inb(cx->address);
364                 /* Dummy op - must do something useless after P_LVL3 read */
365                 t2 = inl(acpi_fadt.xpm_tmr_blk.address);
366                 /* Get end time (ticks) */
367                 t2 = inl(acpi_fadt.xpm_tmr_blk.address);
368                 if (pr->flags.bm_check) {
369                         /* Enable bus master arbitration */
370                         atomic_dec(&c3_cpu_count);
371                         acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0,
372                                           ACPI_MTX_DO_NOT_LOCK);
373                 }
374
375                 /* Re-enable interrupts */
376                 local_irq_enable();
377                 set_thread_flag(TIF_POLLING_NRFLAG);
378                 /* Compute time (ticks) that we were actually asleep */
379                 sleep_ticks =
380                     ticks_elapsed(t1, t2) - cx->latency_ticks - C3_OVERHEAD;
381                 break;
382
383         default:
384                 local_irq_enable();
385                 return;
386         }
387
388         next_state = pr->power.state;
389
390 #ifdef CONFIG_HOTPLUG_CPU
391         /* Don't do promotion/demotion */
392         if ((cx->type == ACPI_STATE_C1) && (num_online_cpus() > 1) &&
393             !pr->flags.has_cst && !acpi_fadt.plvl2_up) {
394                 next_state = cx;
395                 goto end;
396         }
397 #endif
398
399         /*
400          * Promotion?
401          * ----------
402          * Track the number of longs (time asleep is greater than threshold)
403          * and promote when the count threshold is reached.  Note that bus
404          * mastering activity may prevent promotions.
405          * Do not promote above max_cstate.
406          */
407         if (cx->promotion.state &&
408             ((cx->promotion.state - pr->power.states) <= max_cstate)) {
409                 if (sleep_ticks > cx->promotion.threshold.ticks) {
410                         cx->promotion.count++;
411                         cx->demotion.count = 0;
412                         if (cx->promotion.count >=
413                             cx->promotion.threshold.count) {
414                                 if (pr->flags.bm_check) {
415                                         if (!
416                                             (pr->power.bm_activity & cx->
417                                              promotion.threshold.bm)) {
418                                                 next_state =
419                                                     cx->promotion.state;
420                                                 goto end;
421                                         }
422                                 } else {
423                                         next_state = cx->promotion.state;
424                                         goto end;
425                                 }
426                         }
427                 }
428         }
429
430         /*
431          * Demotion?
432          * ---------
433          * Track the number of shorts (time asleep is less than time threshold)
434          * and demote when the usage threshold is reached.
435          */
436         if (cx->demotion.state) {
437                 if (sleep_ticks < cx->demotion.threshold.ticks) {
438                         cx->demotion.count++;
439                         cx->promotion.count = 0;
440                         if (cx->demotion.count >= cx->demotion.threshold.count) {
441                                 next_state = cx->demotion.state;
442                                 goto end;
443                         }
444                 }
445         }
446
447       end:
448         /*
449          * Demote if current state exceeds max_cstate
450          */
451         if ((pr->power.state - pr->power.states) > max_cstate) {
452                 if (cx->demotion.state)
453                         next_state = cx->demotion.state;
454         }
455
456         /*
457          * New Cx State?
458          * -------------
459          * If we're going to start using a new Cx state we must clean up
460          * from the previous and prepare to use the new.
461          */
462         if (next_state != pr->power.state)
463                 acpi_processor_power_activate(pr, next_state);
464 }
465
466 static int acpi_processor_set_power_policy(struct acpi_processor *pr)
467 {
468         unsigned int i;
469         unsigned int state_is_set = 0;
470         struct acpi_processor_cx *lower = NULL;
471         struct acpi_processor_cx *higher = NULL;
472         struct acpi_processor_cx *cx;
473
474         ACPI_FUNCTION_TRACE("acpi_processor_set_power_policy");
475
476         if (!pr)
477                 return_VALUE(-EINVAL);
478
479         /*
480          * This function sets the default Cx state policy (OS idle handler).
481          * Our scheme is to promote quickly to C2 but more conservatively
482          * to C3.  We're favoring C2  for its characteristics of low latency
483          * (quick response), good power savings, and ability to allow bus
484          * mastering activity.  Note that the Cx state policy is completely
485          * customizable and can be altered dynamically.
486          */
487
488         /* startup state */
489         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
490                 cx = &pr->power.states[i];
491                 if (!cx->valid)
492                         continue;
493
494                 if (!state_is_set)
495                         pr->power.state = cx;
496                 state_is_set++;
497                 break;
498         }
499
500         if (!state_is_set)
501                 return_VALUE(-ENODEV);
502
503         /* demotion */
504         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
505                 cx = &pr->power.states[i];
506                 if (!cx->valid)
507                         continue;
508
509                 if (lower) {
510                         cx->demotion.state = lower;
511                         cx->demotion.threshold.ticks = cx->latency_ticks;
512                         cx->demotion.threshold.count = 1;
513                         if (cx->type == ACPI_STATE_C3)
514                                 cx->demotion.threshold.bm = bm_history;
515                 }
516
517                 lower = cx;
518         }
519
520         /* promotion */
521         for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
522                 cx = &pr->power.states[i];
523                 if (!cx->valid)
524                         continue;
525
526                 if (higher) {
527                         cx->promotion.state = higher;
528                         cx->promotion.threshold.ticks = cx->latency_ticks;
529                         if (cx->type >= ACPI_STATE_C2)
530                                 cx->promotion.threshold.count = 4;
531                         else
532                                 cx->promotion.threshold.count = 10;
533                         if (higher->type == ACPI_STATE_C3)
534                                 cx->promotion.threshold.bm = bm_history;
535                 }
536
537                 higher = cx;
538         }
539
540         return_VALUE(0);
541 }
542
543 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
544 {
545         ACPI_FUNCTION_TRACE("acpi_processor_get_power_info_fadt");
546
547         if (!pr)
548                 return_VALUE(-EINVAL);
549
550         if (!pr->pblk)
551                 return_VALUE(-ENODEV);
552
553         memset(pr->power.states, 0, sizeof(pr->power.states));
554
555         /* if info is obtained from pblk/fadt, type equals state */
556         pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
557         pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
558         pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
559
560         /* the C0 state only exists as a filler in our array,
561          * and all processors need to support C1 */
562         pr->power.states[ACPI_STATE_C0].valid = 1;
563         pr->power.states[ACPI_STATE_C1].valid = 1;
564
565 #ifndef CONFIG_HOTPLUG_CPU
566         /*
567          * Check for P_LVL2_UP flag before entering C2 and above on
568          * an SMP system. 
569          */
570         if ((num_online_cpus() > 1) && !acpi_fadt.plvl2_up)
571                 return_VALUE(-ENODEV);
572 #endif
573
574         /* determine C2 and C3 address from pblk */
575         pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
576         pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
577
578         /* determine latencies from FADT */
579         pr->power.states[ACPI_STATE_C2].latency = acpi_fadt.plvl2_lat;
580         pr->power.states[ACPI_STATE_C3].latency = acpi_fadt.plvl3_lat;
581
582         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
583                           "lvl2[0x%08x] lvl3[0x%08x]\n",
584                           pr->power.states[ACPI_STATE_C2].address,
585                           pr->power.states[ACPI_STATE_C3].address));
586
587         return_VALUE(0);
588 }
589
590 static int acpi_processor_get_power_info_default_c1(struct acpi_processor *pr)
591 {
592         ACPI_FUNCTION_TRACE("acpi_processor_get_power_info_default_c1");
593
594         memset(pr->power.states, 0, sizeof(pr->power.states));
595
596         /* if info is obtained from pblk/fadt, type equals state */
597         pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
598         pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
599         pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
600
601         /* the C0 state only exists as a filler in our array,
602          * and all processors need to support C1 */
603         pr->power.states[ACPI_STATE_C0].valid = 1;
604         pr->power.states[ACPI_STATE_C1].valid = 1;
605
606         return_VALUE(0);
607 }
608
609 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
610 {
611         acpi_status status = 0;
612         acpi_integer count;
613         int i;
614         struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
615         union acpi_object *cst;
616
617         ACPI_FUNCTION_TRACE("acpi_processor_get_power_info_cst");
618
619         if (nocst)
620                 return_VALUE(-ENODEV);
621
622         pr->power.count = 0;
623         for (i = 0; i < ACPI_PROCESSOR_MAX_POWER; i++)
624                 memset(&(pr->power.states[i]), 0,
625                        sizeof(struct acpi_processor_cx));
626
627         status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
628         if (ACPI_FAILURE(status)) {
629                 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
630                 return_VALUE(-ENODEV);
631         }
632
633         cst = (union acpi_object *)buffer.pointer;
634
635         /* There must be at least 2 elements */
636         if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
637                 ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
638                                   "not enough elements in _CST\n"));
639                 status = -EFAULT;
640                 goto end;
641         }
642
643         count = cst->package.elements[0].integer.value;
644
645         /* Validate number of power states. */
646         if (count < 1 || count != cst->package.count - 1) {
647                 ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
648                                   "count given by _CST is not valid\n"));
649                 status = -EFAULT;
650                 goto end;
651         }
652
653         /* We support up to ACPI_PROCESSOR_MAX_POWER. */
654         if (count > ACPI_PROCESSOR_MAX_POWER) {
655                 printk(KERN_WARNING
656                        "Limiting number of power states to max (%d)\n",
657                        ACPI_PROCESSOR_MAX_POWER);
658                 printk(KERN_WARNING
659                        "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
660                 count = ACPI_PROCESSOR_MAX_POWER;
661         }
662
663         /* Tell driver that at least _CST is supported. */
664         pr->flags.has_cst = 1;
665
666         for (i = 1; i <= count; i++) {
667                 union acpi_object *element;
668                 union acpi_object *obj;
669                 struct acpi_power_register *reg;
670                 struct acpi_processor_cx cx;
671
672                 memset(&cx, 0, sizeof(cx));
673
674                 element = (union acpi_object *)&(cst->package.elements[i]);
675                 if (element->type != ACPI_TYPE_PACKAGE)
676                         continue;
677
678                 if (element->package.count != 4)
679                         continue;
680
681                 obj = (union acpi_object *)&(element->package.elements[0]);
682
683                 if (obj->type != ACPI_TYPE_BUFFER)
684                         continue;
685
686                 reg = (struct acpi_power_register *)obj->buffer.pointer;
687
688                 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
689                     (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
690                         continue;
691
692                 cx.address = (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) ?
693                     0 : reg->address;
694
695                 /* There should be an easy way to extract an integer... */
696                 obj = (union acpi_object *)&(element->package.elements[1]);
697                 if (obj->type != ACPI_TYPE_INTEGER)
698                         continue;
699
700                 cx.type = obj->integer.value;
701
702                 if ((cx.type != ACPI_STATE_C1) &&
703                     (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO))
704                         continue;
705
706                 if ((cx.type < ACPI_STATE_C1) || (cx.type > ACPI_STATE_C3))
707                         continue;
708
709                 obj = (union acpi_object *)&(element->package.elements[2]);
710                 if (obj->type != ACPI_TYPE_INTEGER)
711                         continue;
712
713                 cx.latency = obj->integer.value;
714
715                 obj = (union acpi_object *)&(element->package.elements[3]);
716                 if (obj->type != ACPI_TYPE_INTEGER)
717                         continue;
718
719                 cx.power = obj->integer.value;
720
721                 (pr->power.count)++;
722                 memcpy(&(pr->power.states[pr->power.count]), &cx, sizeof(cx));
723         }
724
725         ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
726                           pr->power.count));
727
728         /* Validate number of power states discovered */
729         if (pr->power.count < 2)
730                 status = -EFAULT;
731
732       end:
733         acpi_os_free(buffer.pointer);
734
735         return_VALUE(status);
736 }
737
738 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
739 {
740         ACPI_FUNCTION_TRACE("acpi_processor_get_power_verify_c2");
741
742         if (!cx->address)
743                 return_VOID;
744
745         /*
746          * C2 latency must be less than or equal to 100
747          * microseconds.
748          */
749         else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
750                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
751                                   "latency too large [%d]\n", cx->latency));
752                 return_VOID;
753         }
754
755         /*
756          * Otherwise we've met all of our C2 requirements.
757          * Normalize the C2 latency to expidite policy
758          */
759         cx->valid = 1;
760         cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
761
762         return_VOID;
763 }
764
765 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
766                                            struct acpi_processor_cx *cx)
767 {
768         static int bm_check_flag;
769
770         ACPI_FUNCTION_TRACE("acpi_processor_get_power_verify_c3");
771
772         if (!cx->address)
773                 return_VOID;
774
775         /*
776          * C3 latency must be less than or equal to 1000
777          * microseconds.
778          */
779         else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
780                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
781                                   "latency too large [%d]\n", cx->latency));
782                 return_VOID;
783         }
784
785         /*
786          * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
787          * DMA transfers are used by any ISA device to avoid livelock.
788          * Note that we could disable Type-F DMA (as recommended by
789          * the erratum), but this is known to disrupt certain ISA
790          * devices thus we take the conservative approach.
791          */
792         else if (errata.piix4.fdma) {
793                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
794                                   "C3 not supported on PIIX4 with Type-F DMA\n"));
795                 return_VOID;
796         }
797
798         /* All the logic here assumes flags.bm_check is same across all CPUs */
799         if (!bm_check_flag) {
800                 /* Determine whether bm_check is needed based on CPU  */
801                 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
802                 bm_check_flag = pr->flags.bm_check;
803         } else {
804                 pr->flags.bm_check = bm_check_flag;
805         }
806
807         if (pr->flags.bm_check) {
808                 /* bus mastering control is necessary */
809                 if (!pr->flags.bm_control) {
810                         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
811                                           "C3 support requires bus mastering control\n"));
812                         return_VOID;
813                 }
814         } else {
815                 /*
816                  * WBINVD should be set in fadt, for C3 state to be
817                  * supported on when bm_check is not required.
818                  */
819                 if (acpi_fadt.wb_invd != 1) {
820                         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
821                                           "Cache invalidation should work properly"
822                                           " for C3 to be enabled on SMP systems\n"));
823                         return_VOID;
824                 }
825                 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD,
826                                   0, ACPI_MTX_DO_NOT_LOCK);
827         }
828
829         /*
830          * Otherwise we've met all of our C3 requirements.
831          * Normalize the C3 latency to expidite policy.  Enable
832          * checking of bus mastering status (bm_check) so we can
833          * use this in our C3 policy
834          */
835         cx->valid = 1;
836         cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
837
838         return_VOID;
839 }
840
841 static int acpi_processor_power_verify(struct acpi_processor *pr)
842 {
843         unsigned int i;
844         unsigned int working = 0;
845
846         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
847                 struct acpi_processor_cx *cx = &pr->power.states[i];
848
849                 switch (cx->type) {
850                 case ACPI_STATE_C1:
851                         cx->valid = 1;
852                         break;
853
854                 case ACPI_STATE_C2:
855                         acpi_processor_power_verify_c2(cx);
856                         break;
857
858                 case ACPI_STATE_C3:
859                         acpi_processor_power_verify_c3(pr, cx);
860                         break;
861                 }
862
863                 if (cx->valid)
864                         working++;
865         }
866
867         return (working);
868 }
869
870 static int acpi_processor_get_power_info(struct acpi_processor *pr)
871 {
872         unsigned int i;
873         int result;
874
875         ACPI_FUNCTION_TRACE("acpi_processor_get_power_info");
876
877         /* NOTE: the idle thread may not be running while calling
878          * this function */
879
880         result = acpi_processor_get_power_info_cst(pr);
881         if (result == -ENODEV)
882                 result = acpi_processor_get_power_info_fadt(pr);
883
884         if ((result) || (acpi_processor_power_verify(pr) < 2))
885                 result = acpi_processor_get_power_info_default_c1(pr);
886
887         /*
888          * Set Default Policy
889          * ------------------
890          * Now that we know which states are supported, set the default
891          * policy.  Note that this policy can be changed dynamically
892          * (e.g. encourage deeper sleeps to conserve battery life when
893          * not on AC).
894          */
895         result = acpi_processor_set_power_policy(pr);
896         if (result)
897                 return_VALUE(result);
898
899         /*
900          * if one state of type C2 or C3 is available, mark this
901          * CPU as being "idle manageable"
902          */
903         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
904                 if (pr->power.states[i].valid) {
905                         pr->power.count = i;
906                         if (pr->power.states[i].type >= ACPI_STATE_C2)
907                                 pr->flags.power = 1;
908                 }
909         }
910
911         return_VALUE(0);
912 }
913
914 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
915 {
916         int result = 0;
917
918         ACPI_FUNCTION_TRACE("acpi_processor_cst_has_changed");
919
920         if (!pr)
921                 return_VALUE(-EINVAL);
922
923         if (nocst) {
924                 return_VALUE(-ENODEV);
925         }
926
927         if (!pr->flags.power_setup_done)
928                 return_VALUE(-ENODEV);
929
930         /* Fall back to the default idle loop */
931         pm_idle = pm_idle_save;
932         synchronize_sched();    /* Relies on interrupts forcing exit from idle. */
933
934         pr->flags.power = 0;
935         result = acpi_processor_get_power_info(pr);
936         if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
937                 pm_idle = acpi_processor_idle;
938
939         return_VALUE(result);
940 }
941
942 /* proc interface */
943
944 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
945 {
946         struct acpi_processor *pr = (struct acpi_processor *)seq->private;
947         unsigned int i;
948
949         ACPI_FUNCTION_TRACE("acpi_processor_power_seq_show");
950
951         if (!pr)
952                 goto end;
953
954         seq_printf(seq, "active state:            C%zd\n"
955                    "max_cstate:              C%d\n"
956                    "bus master activity:     %08x\n",
957                    pr->power.state ? pr->power.state - pr->power.states : 0,
958                    max_cstate, (unsigned)pr->power.bm_activity);
959
960         seq_puts(seq, "states:\n");
961
962         for (i = 1; i <= pr->power.count; i++) {
963                 seq_printf(seq, "   %cC%d:                  ",
964                            (&pr->power.states[i] ==
965                             pr->power.state ? '*' : ' '), i);
966
967                 if (!pr->power.states[i].valid) {
968                         seq_puts(seq, "<not supported>\n");
969                         continue;
970                 }
971
972                 switch (pr->power.states[i].type) {
973                 case ACPI_STATE_C1:
974                         seq_printf(seq, "type[C1] ");
975                         break;
976                 case ACPI_STATE_C2:
977                         seq_printf(seq, "type[C2] ");
978                         break;
979                 case ACPI_STATE_C3:
980                         seq_printf(seq, "type[C3] ");
981                         break;
982                 default:
983                         seq_printf(seq, "type[--] ");
984                         break;
985                 }
986
987                 if (pr->power.states[i].promotion.state)
988                         seq_printf(seq, "promotion[C%zd] ",
989                                    (pr->power.states[i].promotion.state -
990                                     pr->power.states));
991                 else
992                         seq_puts(seq, "promotion[--] ");
993
994                 if (pr->power.states[i].demotion.state)
995                         seq_printf(seq, "demotion[C%zd] ",
996                                    (pr->power.states[i].demotion.state -
997                                     pr->power.states));
998                 else
999                         seq_puts(seq, "demotion[--] ");
1000
1001                 seq_printf(seq, "latency[%03d] usage[%08d]\n",
1002                            pr->power.states[i].latency,
1003                            pr->power.states[i].usage);
1004         }
1005
1006       end:
1007         return_VALUE(0);
1008 }
1009
1010 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
1011 {
1012         return single_open(file, acpi_processor_power_seq_show,
1013                            PDE(inode)->data);
1014 }
1015
1016 static struct file_operations acpi_processor_power_fops = {
1017         .open = acpi_processor_power_open_fs,
1018         .read = seq_read,
1019         .llseek = seq_lseek,
1020         .release = single_release,
1021 };
1022
1023 int acpi_processor_power_init(struct acpi_processor *pr,
1024                               struct acpi_device *device)
1025 {
1026         acpi_status status = 0;
1027         static int first_run = 0;
1028         struct proc_dir_entry *entry = NULL;
1029         unsigned int i;
1030
1031         ACPI_FUNCTION_TRACE("acpi_processor_power_init");
1032
1033         if (!first_run) {
1034                 dmi_check_system(processor_power_dmi_table);
1035                 if (max_cstate < ACPI_C_STATES_MAX)
1036                         printk(KERN_NOTICE
1037                                "ACPI: processor limited to max C-state %d\n",
1038                                max_cstate);
1039                 first_run++;
1040         }
1041
1042         if (!pr)
1043                 return_VALUE(-EINVAL);
1044
1045         if (acpi_fadt.cst_cnt && !nocst) {
1046                 status =
1047                     acpi_os_write_port(acpi_fadt.smi_cmd, acpi_fadt.cst_cnt, 8);
1048                 if (ACPI_FAILURE(status)) {
1049                         ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
1050                                           "Notifying BIOS of _CST ability failed\n"));
1051                 }
1052         }
1053
1054         acpi_processor_power_init_pdc(&(pr->power), pr->id);
1055         acpi_processor_set_pdc(pr, pr->power.pdc);
1056         acpi_processor_get_power_info(pr);
1057
1058         /*
1059          * Install the idle handler if processor power management is supported.
1060          * Note that we use previously set idle handler will be used on
1061          * platforms that only support C1.
1062          */
1063         if ((pr->flags.power) && (!boot_option_idle_override)) {
1064                 printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1065                 for (i = 1; i <= pr->power.count; i++)
1066                         if (pr->power.states[i].valid)
1067                                 printk(" C%d[C%d]", i,
1068                                        pr->power.states[i].type);
1069                 printk(")\n");
1070
1071                 if (pr->id == 0) {
1072                         pm_idle_save = pm_idle;
1073                         pm_idle = acpi_processor_idle;
1074                 }
1075         }
1076
1077         /* 'power' [R] */
1078         entry = create_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1079                                   S_IRUGO, acpi_device_dir(device));
1080         if (!entry)
1081                 ACPI_DEBUG_PRINT((ACPI_DB_ERROR,
1082                                   "Unable to create '%s' fs entry\n",
1083                                   ACPI_PROCESSOR_FILE_POWER));
1084         else {
1085                 entry->proc_fops = &acpi_processor_power_fops;
1086                 entry->data = acpi_driver_data(device);
1087                 entry->owner = THIS_MODULE;
1088         }
1089
1090         pr->flags.power_setup_done = 1;
1091
1092         return_VALUE(0);
1093 }
1094
1095 int acpi_processor_power_exit(struct acpi_processor *pr,
1096                               struct acpi_device *device)
1097 {
1098         ACPI_FUNCTION_TRACE("acpi_processor_power_exit");
1099
1100         pr->flags.power_setup_done = 0;
1101
1102         if (acpi_device_dir(device))
1103                 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1104                                   acpi_device_dir(device));
1105
1106         /* Unregister the idle handler when processor #0 is removed. */
1107         if (pr->id == 0) {
1108                 pm_idle = pm_idle_save;
1109
1110                 /*
1111                  * We are about to unload the current idle thread pm callback
1112                  * (pm_idle), Wait for all processors to update cached/local
1113                  * copies of pm_idle before proceeding.
1114                  */
1115                 cpu_idle_wait();
1116         }
1117
1118         return_VALUE(0);
1119 }