32488e6f76ab11c284f9e49fe97e47fcddd1ad16
[pandora-kernel.git] / drivers / acpi / processor_idle.c
1 /*
2  * processor_idle - idle state submodule to the ACPI processor driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2004  Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8  *                      - Added processor hotplug support
9  *  Copyright (C) 2005  Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10  *                      - Added support for C3 on SMP
11  *
12  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or (at
17  *  your option) any later version.
18  *
19  *  This program is distributed in the hope that it will be useful, but
20  *  WITHOUT ANY WARRANTY; without even the implied warranty of
21  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
22  *  General Public License for more details.
23  *
24  *  You should have received a copy of the GNU General Public License along
25  *  with this program; if not, write to the Free Software Foundation, Inc.,
26  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
27  *
28  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
29  */
30
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h>        /* need_resched() */
41 #include <linux/pm_qos_params.h>
42 #include <linux/clockchips.h>
43 #include <linux/cpuidle.h>
44
45 /*
46  * Include the apic definitions for x86 to have the APIC timer related defines
47  * available also for UP (on SMP it gets magically included via linux/smp.h).
48  * asm/acpi.h is not an option, as it would require more include magic. Also
49  * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
50  */
51 #ifdef CONFIG_X86
52 #include <asm/apic.h>
53 #endif
54
55 #include <asm/io.h>
56 #include <asm/uaccess.h>
57
58 #include <acpi/acpi_bus.h>
59 #include <acpi/processor.h>
60
61 #define ACPI_PROCESSOR_COMPONENT        0x01000000
62 #define ACPI_PROCESSOR_CLASS            "processor"
63 #define _COMPONENT              ACPI_PROCESSOR_COMPONENT
64 ACPI_MODULE_NAME("processor_idle");
65 #define ACPI_PROCESSOR_FILE_POWER       "power"
66 #define US_TO_PM_TIMER_TICKS(t)         ((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
67 #define PM_TIMER_TICK_NS                (1000000000ULL/PM_TIMER_FREQUENCY)
68 #ifndef CONFIG_CPU_IDLE
69 #define C2_OVERHEAD                     4       /* 1us (3.579 ticks per us) */
70 #define C3_OVERHEAD                     4       /* 1us (3.579 ticks per us) */
71 static void (*pm_idle_save) (void) __read_mostly;
72 #else
73 #define C2_OVERHEAD                     1       /* 1us */
74 #define C3_OVERHEAD                     1       /* 1us */
75 #endif
76 #define PM_TIMER_TICKS_TO_US(p)         (((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
77
78 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
79 #ifdef CONFIG_CPU_IDLE
80 module_param(max_cstate, uint, 0000);
81 #else
82 module_param(max_cstate, uint, 0644);
83 #endif
84 static unsigned int nocst __read_mostly;
85 module_param(nocst, uint, 0000);
86
87 #ifndef CONFIG_CPU_IDLE
88 /*
89  * bm_history -- bit-mask with a bit per jiffy of bus-master activity
90  * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
91  * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
92  * 100 HZ: 0x0000000F: 4 jiffies = 40ms
93  * reduce history for more aggressive entry into C3
94  */
95 static unsigned int bm_history __read_mostly =
96     (HZ >= 800 ? 0xFFFFFFFF : ((1U << (HZ / 25)) - 1));
97 module_param(bm_history, uint, 0644);
98
99 static int acpi_processor_set_power_policy(struct acpi_processor *pr);
100
101 #endif
102
103 /*
104  * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
105  * For now disable this. Probably a bug somewhere else.
106  *
107  * To skip this limit, boot/load with a large max_cstate limit.
108  */
109 static int set_max_cstate(const struct dmi_system_id *id)
110 {
111         if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
112                 return 0;
113
114         printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
115                " Override with \"processor.max_cstate=%d\"\n", id->ident,
116                (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
117
118         max_cstate = (long)id->driver_data;
119
120         return 0;
121 }
122
123 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
124    callers to only run once -AK */
125 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
126         { set_max_cstate, "IBM ThinkPad R40e", {
127           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
128           DMI_MATCH(DMI_BIOS_VERSION,"1SET70WW")}, (void *)1},
129         { set_max_cstate, "IBM ThinkPad R40e", {
130           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
131           DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW")}, (void *)1},
132         { set_max_cstate, "IBM ThinkPad R40e", {
133           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
134           DMI_MATCH(DMI_BIOS_VERSION,"1SET43WW") }, (void*)1},
135         { set_max_cstate, "IBM ThinkPad R40e", {
136           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
137           DMI_MATCH(DMI_BIOS_VERSION,"1SET45WW") }, (void*)1},
138         { set_max_cstate, "IBM ThinkPad R40e", {
139           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
140           DMI_MATCH(DMI_BIOS_VERSION,"1SET47WW") }, (void*)1},
141         { set_max_cstate, "IBM ThinkPad R40e", {
142           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
143           DMI_MATCH(DMI_BIOS_VERSION,"1SET50WW") }, (void*)1},
144         { set_max_cstate, "IBM ThinkPad R40e", {
145           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
146           DMI_MATCH(DMI_BIOS_VERSION,"1SET52WW") }, (void*)1},
147         { set_max_cstate, "IBM ThinkPad R40e", {
148           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
149           DMI_MATCH(DMI_BIOS_VERSION,"1SET55WW") }, (void*)1},
150         { set_max_cstate, "IBM ThinkPad R40e", {
151           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
152           DMI_MATCH(DMI_BIOS_VERSION,"1SET56WW") }, (void*)1},
153         { set_max_cstate, "IBM ThinkPad R40e", {
154           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
155           DMI_MATCH(DMI_BIOS_VERSION,"1SET59WW") }, (void*)1},
156         { set_max_cstate, "IBM ThinkPad R40e", {
157           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
158           DMI_MATCH(DMI_BIOS_VERSION,"1SET60WW") }, (void*)1},
159         { set_max_cstate, "IBM ThinkPad R40e", {
160           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
161           DMI_MATCH(DMI_BIOS_VERSION,"1SET61WW") }, (void*)1},
162         { set_max_cstate, "IBM ThinkPad R40e", {
163           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
164           DMI_MATCH(DMI_BIOS_VERSION,"1SET62WW") }, (void*)1},
165         { set_max_cstate, "IBM ThinkPad R40e", {
166           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
167           DMI_MATCH(DMI_BIOS_VERSION,"1SET64WW") }, (void*)1},
168         { set_max_cstate, "IBM ThinkPad R40e", {
169           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
170           DMI_MATCH(DMI_BIOS_VERSION,"1SET65WW") }, (void*)1},
171         { set_max_cstate, "IBM ThinkPad R40e", {
172           DMI_MATCH(DMI_BIOS_VENDOR,"IBM"),
173           DMI_MATCH(DMI_BIOS_VERSION,"1SET68WW") }, (void*)1},
174         { set_max_cstate, "Medion 41700", {
175           DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
176           DMI_MATCH(DMI_BIOS_VERSION,"R01-A1J")}, (void *)1},
177         { set_max_cstate, "Clevo 5600D", {
178           DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
179           DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
180          (void *)2},
181         {},
182 };
183
184 static inline u32 ticks_elapsed(u32 t1, u32 t2)
185 {
186         if (t2 >= t1)
187                 return (t2 - t1);
188         else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
189                 return (((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
190         else
191                 return ((0xFFFFFFFF - t1) + t2);
192 }
193
194 static inline u32 ticks_elapsed_in_us(u32 t1, u32 t2)
195 {
196         if (t2 >= t1)
197                 return PM_TIMER_TICKS_TO_US(t2 - t1);
198         else if (!(acpi_gbl_FADT.flags & ACPI_FADT_32BIT_TIMER))
199                 return PM_TIMER_TICKS_TO_US(((0x00FFFFFF - t1) + t2) & 0x00FFFFFF);
200         else
201                 return PM_TIMER_TICKS_TO_US((0xFFFFFFFF - t1) + t2);
202 }
203
204 /*
205  * Callers should disable interrupts before the call and enable
206  * interrupts after return.
207  */
208 static void acpi_safe_halt(void)
209 {
210         current_thread_info()->status &= ~TS_POLLING;
211         /*
212          * TS_POLLING-cleared state must be visible before we
213          * test NEED_RESCHED:
214          */
215         smp_mb();
216         if (!need_resched())
217                 safe_halt();
218         current_thread_info()->status |= TS_POLLING;
219 }
220
221 #ifndef CONFIG_CPU_IDLE
222
223 static void
224 acpi_processor_power_activate(struct acpi_processor *pr,
225                               struct acpi_processor_cx *new)
226 {
227         struct acpi_processor_cx *old;
228
229         if (!pr || !new)
230                 return;
231
232         old = pr->power.state;
233
234         if (old)
235                 old->promotion.count = 0;
236         new->demotion.count = 0;
237
238         /* Cleanup from old state. */
239         if (old) {
240                 switch (old->type) {
241                 case ACPI_STATE_C3:
242                         /* Disable bus master reload */
243                         if (new->type != ACPI_STATE_C3 && pr->flags.bm_check)
244                                 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
245                         break;
246                 }
247         }
248
249         /* Prepare to use new state. */
250         switch (new->type) {
251         case ACPI_STATE_C3:
252                 /* Enable bus master reload */
253                 if (old->type != ACPI_STATE_C3 && pr->flags.bm_check)
254                         acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
255                 break;
256         }
257
258         pr->power.state = new;
259
260         return;
261 }
262
263 static atomic_t c3_cpu_count;
264
265 /* Common C-state entry for C2, C3, .. */
266 static void acpi_cstate_enter(struct acpi_processor_cx *cstate)
267 {
268         if (cstate->entry_method == ACPI_CSTATE_FFH) {
269                 /* Call into architectural FFH based C-state */
270                 acpi_processor_ffh_cstate_enter(cstate);
271         } else {
272                 int unused;
273                 /* IO port based C-state */
274                 inb(cstate->address);
275                 /* Dummy wait op - must do something useless after P_LVL2 read
276                    because chipsets cannot guarantee that STPCLK# signal
277                    gets asserted in time to freeze execution properly. */
278                 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
279         }
280 }
281 #endif /* !CONFIG_CPU_IDLE */
282
283 #ifdef ARCH_APICTIMER_STOPS_ON_C3
284
285 /*
286  * Some BIOS implementations switch to C3 in the published C2 state.
287  * This seems to be a common problem on AMD boxen, but other vendors
288  * are affected too. We pick the most conservative approach: we assume
289  * that the local APIC stops in both C2 and C3.
290  */
291 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
292                                    struct acpi_processor_cx *cx)
293 {
294         struct acpi_processor_power *pwr = &pr->power;
295         u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
296
297         /*
298          * Check, if one of the previous states already marked the lapic
299          * unstable
300          */
301         if (pwr->timer_broadcast_on_state < state)
302                 return;
303
304         if (cx->type >= type)
305                 pr->power.timer_broadcast_on_state = state;
306 }
307
308 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr)
309 {
310         unsigned long reason;
311
312         reason = pr->power.timer_broadcast_on_state < INT_MAX ?
313                 CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
314
315         clockevents_notify(reason, &pr->id);
316 }
317
318 /* Power(C) State timer broadcast control */
319 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
320                                        struct acpi_processor_cx *cx,
321                                        int broadcast)
322 {
323         int state = cx - pr->power.states;
324
325         if (state >= pr->power.timer_broadcast_on_state) {
326                 unsigned long reason;
327
328                 reason = broadcast ?  CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
329                         CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
330                 clockevents_notify(reason, &pr->id);
331         }
332 }
333
334 #else
335
336 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
337                                    struct acpi_processor_cx *cstate) { }
338 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) { }
339 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
340                                        struct acpi_processor_cx *cx,
341                                        int broadcast)
342 {
343 }
344
345 #endif
346
347 /*
348  * Suspend / resume control
349  */
350 static int acpi_idle_suspend;
351
352 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
353 {
354         acpi_idle_suspend = 1;
355         return 0;
356 }
357
358 int acpi_processor_resume(struct acpi_device * device)
359 {
360         acpi_idle_suspend = 0;
361         return 0;
362 }
363
364 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
365 static int tsc_halts_in_c(int state)
366 {
367         switch (boot_cpu_data.x86_vendor) {
368         case X86_VENDOR_AMD:
369                 /*
370                  * AMD Fam10h TSC will tick in all
371                  * C/P/S0/S1 states when this bit is set.
372                  */
373                 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
374                         return 0;
375                 /*FALL THROUGH*/
376         case X86_VENDOR_INTEL:
377                 /* Several cases known where TSC halts in C2 too */
378         default:
379                 return state > ACPI_STATE_C1;
380         }
381 }
382 #endif
383
384 #ifndef CONFIG_CPU_IDLE
385 static void acpi_processor_idle(void)
386 {
387         struct acpi_processor *pr = NULL;
388         struct acpi_processor_cx *cx = NULL;
389         struct acpi_processor_cx *next_state = NULL;
390         int sleep_ticks = 0;
391         u32 t1, t2 = 0;
392
393         /*
394          * Interrupts must be disabled during bus mastering calculations and
395          * for C2/C3 transitions.
396          */
397         local_irq_disable();
398
399         pr = processors[smp_processor_id()];
400         if (!pr) {
401                 local_irq_enable();
402                 return;
403         }
404
405         /*
406          * Check whether we truly need to go idle, or should
407          * reschedule:
408          */
409         if (unlikely(need_resched())) {
410                 local_irq_enable();
411                 return;
412         }
413
414         cx = pr->power.state;
415         if (!cx || acpi_idle_suspend) {
416                 if (pm_idle_save)
417                         pm_idle_save();
418                 else
419                         acpi_safe_halt();
420
421                 local_irq_enable();
422                 return;
423         }
424
425         /*
426          * Check BM Activity
427          * -----------------
428          * Check for bus mastering activity (if required), record, and check
429          * for demotion.
430          */
431         if (pr->flags.bm_check) {
432                 u32 bm_status = 0;
433                 unsigned long diff = jiffies - pr->power.bm_check_timestamp;
434
435                 if (diff > 31)
436                         diff = 31;
437
438                 pr->power.bm_activity <<= diff;
439
440                 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
441                 if (bm_status) {
442                         pr->power.bm_activity |= 0x1;
443                         acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
444                 }
445                 /*
446                  * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
447                  * the true state of bus mastering activity; forcing us to
448                  * manually check the BMIDEA bit of each IDE channel.
449                  */
450                 else if (errata.piix4.bmisx) {
451                         if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
452                             || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
453                                 pr->power.bm_activity |= 0x1;
454                 }
455
456                 pr->power.bm_check_timestamp = jiffies;
457
458                 /*
459                  * If bus mastering is or was active this jiffy, demote
460                  * to avoid a faulty transition.  Note that the processor
461                  * won't enter a low-power state during this call (to this
462                  * function) but should upon the next.
463                  *
464                  * TBD: A better policy might be to fallback to the demotion
465                  *      state (use it for this quantum only) istead of
466                  *      demoting -- and rely on duration as our sole demotion
467                  *      qualification.  This may, however, introduce DMA
468                  *      issues (e.g. floppy DMA transfer overrun/underrun).
469                  */
470                 if ((pr->power.bm_activity & 0x1) &&
471                     cx->demotion.threshold.bm) {
472                         local_irq_enable();
473                         next_state = cx->demotion.state;
474                         goto end;
475                 }
476         }
477
478 #ifdef CONFIG_HOTPLUG_CPU
479         /*
480          * Check for P_LVL2_UP flag before entering C2 and above on
481          * an SMP system. We do it here instead of doing it at _CST/P_LVL
482          * detection phase, to work cleanly with logical CPU hotplug.
483          */
484         if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
485             !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
486                 cx = &pr->power.states[ACPI_STATE_C1];
487 #endif
488
489         /*
490          * Sleep:
491          * ------
492          * Invoke the current Cx state to put the processor to sleep.
493          */
494         if (cx->type == ACPI_STATE_C2 || cx->type == ACPI_STATE_C3) {
495                 current_thread_info()->status &= ~TS_POLLING;
496                 /*
497                  * TS_POLLING-cleared state must be visible before we
498                  * test NEED_RESCHED:
499                  */
500                 smp_mb();
501                 if (need_resched()) {
502                         current_thread_info()->status |= TS_POLLING;
503                         local_irq_enable();
504                         return;
505                 }
506         }
507
508         switch (cx->type) {
509
510         case ACPI_STATE_C1:
511                 /*
512                  * Invoke C1.
513                  * Use the appropriate idle routine, the one that would
514                  * be used without acpi C-states.
515                  */
516                 if (pm_idle_save)
517                         pm_idle_save();
518                 else
519                         acpi_safe_halt();
520
521                 /*
522                  * TBD: Can't get time duration while in C1, as resumes
523                  *      go to an ISR rather than here.  Need to instrument
524                  *      base interrupt handler.
525                  *
526                  * Note: the TSC better not stop in C1, sched_clock() will
527                  *       skew otherwise.
528                  */
529                 sleep_ticks = 0xFFFFFFFF;
530                 local_irq_enable();
531                 break;
532
533         case ACPI_STATE_C2:
534                 /* Get start time (ticks) */
535                 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
536                 /* Tell the scheduler that we are going deep-idle: */
537                 sched_clock_idle_sleep_event();
538                 /* Invoke C2 */
539                 acpi_state_timer_broadcast(pr, cx, 1);
540                 acpi_cstate_enter(cx);
541                 /* Get end time (ticks) */
542                 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
543
544 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
545                 /* TSC halts in C2, so notify users */
546                 if (tsc_halts_in_c(ACPI_STATE_C2))
547                         mark_tsc_unstable("possible TSC halt in C2");
548 #endif
549                 /* Compute time (ticks) that we were actually asleep */
550                 sleep_ticks = ticks_elapsed(t1, t2);
551
552                 /* Tell the scheduler how much we idled: */
553                 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
554
555                 /* Re-enable interrupts */
556                 local_irq_enable();
557                 /* Do not account our idle-switching overhead: */
558                 sleep_ticks -= cx->latency_ticks + C2_OVERHEAD;
559
560                 current_thread_info()->status |= TS_POLLING;
561                 acpi_state_timer_broadcast(pr, cx, 0);
562                 break;
563
564         case ACPI_STATE_C3:
565                 acpi_unlazy_tlb(smp_processor_id());
566                 /*
567                  * Must be done before busmaster disable as we might
568                  * need to access HPET !
569                  */
570                 acpi_state_timer_broadcast(pr, cx, 1);
571                 /*
572                  * disable bus master
573                  * bm_check implies we need ARB_DIS
574                  * !bm_check implies we need cache flush
575                  * bm_control implies whether we can do ARB_DIS
576                  *
577                  * That leaves a case where bm_check is set and bm_control is
578                  * not set. In that case we cannot do much, we enter C3
579                  * without doing anything.
580                  */
581                 if (pr->flags.bm_check && pr->flags.bm_control) {
582                         if (atomic_inc_return(&c3_cpu_count) ==
583                             num_online_cpus()) {
584                                 /*
585                                  * All CPUs are trying to go to C3
586                                  * Disable bus master arbitration
587                                  */
588                                 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
589                         }
590                 } else if (!pr->flags.bm_check) {
591                         /* SMP with no shared cache... Invalidate cache  */
592                         ACPI_FLUSH_CPU_CACHE();
593                 }
594
595                 /* Get start time (ticks) */
596                 t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
597                 /* Invoke C3 */
598                 /* Tell the scheduler that we are going deep-idle: */
599                 sched_clock_idle_sleep_event();
600                 acpi_cstate_enter(cx);
601                 /* Get end time (ticks) */
602                 t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
603                 if (pr->flags.bm_check && pr->flags.bm_control) {
604                         /* Enable bus master arbitration */
605                         atomic_dec(&c3_cpu_count);
606                         acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
607                 }
608
609 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
610                 /* TSC halts in C3, so notify users */
611                 if (tsc_halts_in_c(ACPI_STATE_C3))
612                         mark_tsc_unstable("TSC halts in C3");
613 #endif
614                 /* Compute time (ticks) that we were actually asleep */
615                 sleep_ticks = ticks_elapsed(t1, t2);
616                 /* Tell the scheduler how much we idled: */
617                 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
618
619                 /* Re-enable interrupts */
620                 local_irq_enable();
621                 /* Do not account our idle-switching overhead: */
622                 sleep_ticks -= cx->latency_ticks + C3_OVERHEAD;
623
624                 current_thread_info()->status |= TS_POLLING;
625                 acpi_state_timer_broadcast(pr, cx, 0);
626                 break;
627
628         default:
629                 local_irq_enable();
630                 return;
631         }
632         cx->usage++;
633         if ((cx->type != ACPI_STATE_C1) && (sleep_ticks > 0))
634                 cx->time += sleep_ticks;
635
636         next_state = pr->power.state;
637
638 #ifdef CONFIG_HOTPLUG_CPU
639         /* Don't do promotion/demotion */
640         if ((cx->type == ACPI_STATE_C1) && (num_online_cpus() > 1) &&
641             !pr->flags.has_cst && !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED)) {
642                 next_state = cx;
643                 goto end;
644         }
645 #endif
646
647         /*
648          * Promotion?
649          * ----------
650          * Track the number of longs (time asleep is greater than threshold)
651          * and promote when the count threshold is reached.  Note that bus
652          * mastering activity may prevent promotions.
653          * Do not promote above max_cstate.
654          */
655         if (cx->promotion.state &&
656             ((cx->promotion.state - pr->power.states) <= max_cstate)) {
657                 if (sleep_ticks > cx->promotion.threshold.ticks &&
658                   cx->promotion.state->latency <=
659                                 pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY)) {
660                         cx->promotion.count++;
661                         cx->demotion.count = 0;
662                         if (cx->promotion.count >=
663                             cx->promotion.threshold.count) {
664                                 if (pr->flags.bm_check) {
665                                         if (!
666                                             (pr->power.bm_activity & cx->
667                                              promotion.threshold.bm)) {
668                                                 next_state =
669                                                     cx->promotion.state;
670                                                 goto end;
671                                         }
672                                 } else {
673                                         next_state = cx->promotion.state;
674                                         goto end;
675                                 }
676                         }
677                 }
678         }
679
680         /*
681          * Demotion?
682          * ---------
683          * Track the number of shorts (time asleep is less than time threshold)
684          * and demote when the usage threshold is reached.
685          */
686         if (cx->demotion.state) {
687                 if (sleep_ticks < cx->demotion.threshold.ticks) {
688                         cx->demotion.count++;
689                         cx->promotion.count = 0;
690                         if (cx->demotion.count >= cx->demotion.threshold.count) {
691                                 next_state = cx->demotion.state;
692                                 goto end;
693                         }
694                 }
695         }
696
697       end:
698         /*
699          * Demote if current state exceeds max_cstate
700          * or if the latency of the current state is unacceptable
701          */
702         if ((pr->power.state - pr->power.states) > max_cstate ||
703                 pr->power.state->latency >
704                                 pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY)) {
705                 if (cx->demotion.state)
706                         next_state = cx->demotion.state;
707         }
708
709         /*
710          * New Cx State?
711          * -------------
712          * If we're going to start using a new Cx state we must clean up
713          * from the previous and prepare to use the new.
714          */
715         if (next_state != pr->power.state)
716                 acpi_processor_power_activate(pr, next_state);
717 }
718
719 static int acpi_processor_set_power_policy(struct acpi_processor *pr)
720 {
721         unsigned int i;
722         unsigned int state_is_set = 0;
723         struct acpi_processor_cx *lower = NULL;
724         struct acpi_processor_cx *higher = NULL;
725         struct acpi_processor_cx *cx;
726
727
728         if (!pr)
729                 return -EINVAL;
730
731         /*
732          * This function sets the default Cx state policy (OS idle handler).
733          * Our scheme is to promote quickly to C2 but more conservatively
734          * to C3.  We're favoring C2  for its characteristics of low latency
735          * (quick response), good power savings, and ability to allow bus
736          * mastering activity.  Note that the Cx state policy is completely
737          * customizable and can be altered dynamically.
738          */
739
740         /* startup state */
741         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
742                 cx = &pr->power.states[i];
743                 if (!cx->valid)
744                         continue;
745
746                 if (!state_is_set)
747                         pr->power.state = cx;
748                 state_is_set++;
749                 break;
750         }
751
752         if (!state_is_set)
753                 return -ENODEV;
754
755         /* demotion */
756         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
757                 cx = &pr->power.states[i];
758                 if (!cx->valid)
759                         continue;
760
761                 if (lower) {
762                         cx->demotion.state = lower;
763                         cx->demotion.threshold.ticks = cx->latency_ticks;
764                         cx->demotion.threshold.count = 1;
765                         if (cx->type == ACPI_STATE_C3)
766                                 cx->demotion.threshold.bm = bm_history;
767                 }
768
769                 lower = cx;
770         }
771
772         /* promotion */
773         for (i = (ACPI_PROCESSOR_MAX_POWER - 1); i > 0; i--) {
774                 cx = &pr->power.states[i];
775                 if (!cx->valid)
776                         continue;
777
778                 if (higher) {
779                         cx->promotion.state = higher;
780                         cx->promotion.threshold.ticks = cx->latency_ticks;
781                         if (cx->type >= ACPI_STATE_C2)
782                                 cx->promotion.threshold.count = 4;
783                         else
784                                 cx->promotion.threshold.count = 10;
785                         if (higher->type == ACPI_STATE_C3)
786                                 cx->promotion.threshold.bm = bm_history;
787                 }
788
789                 higher = cx;
790         }
791
792         return 0;
793 }
794 #endif /* !CONFIG_CPU_IDLE */
795
796 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
797 {
798
799         if (!pr)
800                 return -EINVAL;
801
802         if (!pr->pblk)
803                 return -ENODEV;
804
805         /* if info is obtained from pblk/fadt, type equals state */
806         pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
807         pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
808
809 #ifndef CONFIG_HOTPLUG_CPU
810         /*
811          * Check for P_LVL2_UP flag before entering C2 and above on
812          * an SMP system.
813          */
814         if ((num_online_cpus() > 1) &&
815             !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
816                 return -ENODEV;
817 #endif
818
819         /* determine C2 and C3 address from pblk */
820         pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
821         pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
822
823         /* determine latencies from FADT */
824         pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
825         pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
826
827         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
828                           "lvl2[0x%08x] lvl3[0x%08x]\n",
829                           pr->power.states[ACPI_STATE_C2].address,
830                           pr->power.states[ACPI_STATE_C3].address));
831
832         return 0;
833 }
834
835 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
836 {
837         if (!pr->power.states[ACPI_STATE_C1].valid) {
838                 /* set the first C-State to C1 */
839                 /* all processors need to support C1 */
840                 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
841                 pr->power.states[ACPI_STATE_C1].valid = 1;
842         }
843         /* the C0 state only exists as a filler in our array */
844         pr->power.states[ACPI_STATE_C0].valid = 1;
845         return 0;
846 }
847
848 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
849 {
850         acpi_status status = 0;
851         acpi_integer count;
852         int current_count;
853         int i;
854         struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
855         union acpi_object *cst;
856
857
858         if (nocst)
859                 return -ENODEV;
860
861         current_count = 0;
862
863         status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
864         if (ACPI_FAILURE(status)) {
865                 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
866                 return -ENODEV;
867         }
868
869         cst = buffer.pointer;
870
871         /* There must be at least 2 elements */
872         if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
873                 printk(KERN_ERR PREFIX "not enough elements in _CST\n");
874                 status = -EFAULT;
875                 goto end;
876         }
877
878         count = cst->package.elements[0].integer.value;
879
880         /* Validate number of power states. */
881         if (count < 1 || count != cst->package.count - 1) {
882                 printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
883                 status = -EFAULT;
884                 goto end;
885         }
886
887         /* Tell driver that at least _CST is supported. */
888         pr->flags.has_cst = 1;
889
890         for (i = 1; i <= count; i++) {
891                 union acpi_object *element;
892                 union acpi_object *obj;
893                 struct acpi_power_register *reg;
894                 struct acpi_processor_cx cx;
895
896                 memset(&cx, 0, sizeof(cx));
897
898                 element = &(cst->package.elements[i]);
899                 if (element->type != ACPI_TYPE_PACKAGE)
900                         continue;
901
902                 if (element->package.count != 4)
903                         continue;
904
905                 obj = &(element->package.elements[0]);
906
907                 if (obj->type != ACPI_TYPE_BUFFER)
908                         continue;
909
910                 reg = (struct acpi_power_register *)obj->buffer.pointer;
911
912                 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
913                     (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
914                         continue;
915
916                 /* There should be an easy way to extract an integer... */
917                 obj = &(element->package.elements[1]);
918                 if (obj->type != ACPI_TYPE_INTEGER)
919                         continue;
920
921                 cx.type = obj->integer.value;
922                 /*
923                  * Some buggy BIOSes won't list C1 in _CST -
924                  * Let acpi_processor_get_power_info_default() handle them later
925                  */
926                 if (i == 1 && cx.type != ACPI_STATE_C1)
927                         current_count++;
928
929                 cx.address = reg->address;
930                 cx.index = current_count + 1;
931
932                 cx.entry_method = ACPI_CSTATE_SYSTEMIO;
933                 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
934                         if (acpi_processor_ffh_cstate_probe
935                                         (pr->id, &cx, reg) == 0) {
936                                 cx.entry_method = ACPI_CSTATE_FFH;
937                         } else if (cx.type == ACPI_STATE_C1) {
938                                 /*
939                                  * C1 is a special case where FIXED_HARDWARE
940                                  * can be handled in non-MWAIT way as well.
941                                  * In that case, save this _CST entry info.
942                                  * Otherwise, ignore this info and continue.
943                                  */
944                                 cx.entry_method = ACPI_CSTATE_HALT;
945                         } else {
946                                 continue;
947                         }
948                 }
949
950                 obj = &(element->package.elements[2]);
951                 if (obj->type != ACPI_TYPE_INTEGER)
952                         continue;
953
954                 cx.latency = obj->integer.value;
955
956                 obj = &(element->package.elements[3]);
957                 if (obj->type != ACPI_TYPE_INTEGER)
958                         continue;
959
960                 cx.power = obj->integer.value;
961
962                 current_count++;
963                 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
964
965                 /*
966                  * We support total ACPI_PROCESSOR_MAX_POWER - 1
967                  * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
968                  */
969                 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
970                         printk(KERN_WARNING
971                                "Limiting number of power states to max (%d)\n",
972                                ACPI_PROCESSOR_MAX_POWER);
973                         printk(KERN_WARNING
974                                "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
975                         break;
976                 }
977         }
978
979         ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
980                           current_count));
981
982         /* Validate number of power states discovered */
983         if (current_count < 2)
984                 status = -EFAULT;
985
986       end:
987         kfree(buffer.pointer);
988
989         return status;
990 }
991
992 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
993 {
994
995         if (!cx->address)
996                 return;
997
998         /*
999          * C2 latency must be less than or equal to 100
1000          * microseconds.
1001          */
1002         else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
1003                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1004                                   "latency too large [%d]\n", cx->latency));
1005                 return;
1006         }
1007
1008         /*
1009          * Otherwise we've met all of our C2 requirements.
1010          * Normalize the C2 latency to expidite policy
1011          */
1012         cx->valid = 1;
1013
1014 #ifndef CONFIG_CPU_IDLE
1015         cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
1016 #else
1017         cx->latency_ticks = cx->latency;
1018 #endif
1019
1020         return;
1021 }
1022
1023 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
1024                                            struct acpi_processor_cx *cx)
1025 {
1026         static int bm_check_flag;
1027
1028
1029         if (!cx->address)
1030                 return;
1031
1032         /*
1033          * C3 latency must be less than or equal to 1000
1034          * microseconds.
1035          */
1036         else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
1037                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1038                                   "latency too large [%d]\n", cx->latency));
1039                 return;
1040         }
1041
1042         /*
1043          * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
1044          * DMA transfers are used by any ISA device to avoid livelock.
1045          * Note that we could disable Type-F DMA (as recommended by
1046          * the erratum), but this is known to disrupt certain ISA
1047          * devices thus we take the conservative approach.
1048          */
1049         else if (errata.piix4.fdma) {
1050                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1051                                   "C3 not supported on PIIX4 with Type-F DMA\n"));
1052                 return;
1053         }
1054
1055         /* All the logic here assumes flags.bm_check is same across all CPUs */
1056         if (!bm_check_flag) {
1057                 /* Determine whether bm_check is needed based on CPU  */
1058                 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
1059                 bm_check_flag = pr->flags.bm_check;
1060         } else {
1061                 pr->flags.bm_check = bm_check_flag;
1062         }
1063
1064         if (pr->flags.bm_check) {
1065                 if (!pr->flags.bm_control) {
1066                         if (pr->flags.has_cst != 1) {
1067                                 /* bus mastering control is necessary */
1068                                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1069                                         "C3 support requires BM control\n"));
1070                                 return;
1071                         } else {
1072                                 /* Here we enter C3 without bus mastering */
1073                                 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1074                                         "C3 support without BM control\n"));
1075                         }
1076                 }
1077         } else {
1078                 /*
1079                  * WBINVD should be set in fadt, for C3 state to be
1080                  * supported on when bm_check is not required.
1081                  */
1082                 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
1083                         ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1084                                           "Cache invalidation should work properly"
1085                                           " for C3 to be enabled on SMP systems\n"));
1086                         return;
1087                 }
1088                 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
1089         }
1090
1091         /*
1092          * Otherwise we've met all of our C3 requirements.
1093          * Normalize the C3 latency to expidite policy.  Enable
1094          * checking of bus mastering status (bm_check) so we can
1095          * use this in our C3 policy
1096          */
1097         cx->valid = 1;
1098
1099 #ifndef CONFIG_CPU_IDLE
1100         cx->latency_ticks = US_TO_PM_TIMER_TICKS(cx->latency);
1101 #else
1102         cx->latency_ticks = cx->latency;
1103 #endif
1104
1105         return;
1106 }
1107
1108 static int acpi_processor_power_verify(struct acpi_processor *pr)
1109 {
1110         unsigned int i;
1111         unsigned int working = 0;
1112
1113         pr->power.timer_broadcast_on_state = INT_MAX;
1114
1115         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1116                 struct acpi_processor_cx *cx = &pr->power.states[i];
1117
1118                 switch (cx->type) {
1119                 case ACPI_STATE_C1:
1120                         cx->valid = 1;
1121                         break;
1122
1123                 case ACPI_STATE_C2:
1124                         acpi_processor_power_verify_c2(cx);
1125                         if (cx->valid)
1126                                 acpi_timer_check_state(i, pr, cx);
1127                         break;
1128
1129                 case ACPI_STATE_C3:
1130                         acpi_processor_power_verify_c3(pr, cx);
1131                         if (cx->valid)
1132                                 acpi_timer_check_state(i, pr, cx);
1133                         break;
1134                 }
1135
1136                 if (cx->valid)
1137                         working++;
1138         }
1139
1140         acpi_propagate_timer_broadcast(pr);
1141
1142         return (working);
1143 }
1144
1145 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1146 {
1147         unsigned int i;
1148         int result;
1149
1150
1151         /* NOTE: the idle thread may not be running while calling
1152          * this function */
1153
1154         /* Zero initialize all the C-states info. */
1155         memset(pr->power.states, 0, sizeof(pr->power.states));
1156
1157         result = acpi_processor_get_power_info_cst(pr);
1158         if (result == -ENODEV)
1159                 result = acpi_processor_get_power_info_fadt(pr);
1160
1161         if (result)
1162                 return result;
1163
1164         acpi_processor_get_power_info_default(pr);
1165
1166         pr->power.count = acpi_processor_power_verify(pr);
1167
1168 #ifndef CONFIG_CPU_IDLE
1169         /*
1170          * Set Default Policy
1171          * ------------------
1172          * Now that we know which states are supported, set the default
1173          * policy.  Note that this policy can be changed dynamically
1174          * (e.g. encourage deeper sleeps to conserve battery life when
1175          * not on AC).
1176          */
1177         result = acpi_processor_set_power_policy(pr);
1178         if (result)
1179                 return result;
1180 #endif
1181
1182         /*
1183          * if one state of type C2 or C3 is available, mark this
1184          * CPU as being "idle manageable"
1185          */
1186         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
1187                 if (pr->power.states[i].valid) {
1188                         pr->power.count = i;
1189                         if (pr->power.states[i].type >= ACPI_STATE_C2)
1190                                 pr->flags.power = 1;
1191                 }
1192         }
1193
1194         return 0;
1195 }
1196
1197 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
1198 {
1199         struct acpi_processor *pr = seq->private;
1200         unsigned int i;
1201
1202
1203         if (!pr)
1204                 goto end;
1205
1206         seq_printf(seq, "active state:            C%zd\n"
1207                    "max_cstate:              C%d\n"
1208                    "bus master activity:     %08x\n"
1209                    "maximum allowed latency: %d usec\n",
1210                    pr->power.state ? pr->power.state - pr->power.states : 0,
1211                    max_cstate, (unsigned)pr->power.bm_activity,
1212                    pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY));
1213
1214         seq_puts(seq, "states:\n");
1215
1216         for (i = 1; i <= pr->power.count; i++) {
1217                 seq_printf(seq, "   %cC%d:                  ",
1218                            (&pr->power.states[i] ==
1219                             pr->power.state ? '*' : ' '), i);
1220
1221                 if (!pr->power.states[i].valid) {
1222                         seq_puts(seq, "<not supported>\n");
1223                         continue;
1224                 }
1225
1226                 switch (pr->power.states[i].type) {
1227                 case ACPI_STATE_C1:
1228                         seq_printf(seq, "type[C1] ");
1229                         break;
1230                 case ACPI_STATE_C2:
1231                         seq_printf(seq, "type[C2] ");
1232                         break;
1233                 case ACPI_STATE_C3:
1234                         seq_printf(seq, "type[C3] ");
1235                         break;
1236                 default:
1237                         seq_printf(seq, "type[--] ");
1238                         break;
1239                 }
1240
1241                 if (pr->power.states[i].promotion.state)
1242                         seq_printf(seq, "promotion[C%zd] ",
1243                                    (pr->power.states[i].promotion.state -
1244                                     pr->power.states));
1245                 else
1246                         seq_puts(seq, "promotion[--] ");
1247
1248                 if (pr->power.states[i].demotion.state)
1249                         seq_printf(seq, "demotion[C%zd] ",
1250                                    (pr->power.states[i].demotion.state -
1251                                     pr->power.states));
1252                 else
1253                         seq_puts(seq, "demotion[--] ");
1254
1255                 seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
1256                            pr->power.states[i].latency,
1257                            pr->power.states[i].usage,
1258                            (unsigned long long)pr->power.states[i].time);
1259         }
1260
1261       end:
1262         return 0;
1263 }
1264
1265 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
1266 {
1267         return single_open(file, acpi_processor_power_seq_show,
1268                            PDE(inode)->data);
1269 }
1270
1271 static const struct file_operations acpi_processor_power_fops = {
1272         .open = acpi_processor_power_open_fs,
1273         .read = seq_read,
1274         .llseek = seq_lseek,
1275         .release = single_release,
1276 };
1277
1278 #ifndef CONFIG_CPU_IDLE
1279
1280 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1281 {
1282         int result = 0;
1283
1284
1285         if (!pr)
1286                 return -EINVAL;
1287
1288         if (nocst) {
1289                 return -ENODEV;
1290         }
1291
1292         if (!pr->flags.power_setup_done)
1293                 return -ENODEV;
1294
1295         /* Fall back to the default idle loop */
1296         pm_idle = pm_idle_save;
1297         synchronize_sched();    /* Relies on interrupts forcing exit from idle. */
1298
1299         pr->flags.power = 0;
1300         result = acpi_processor_get_power_info(pr);
1301         if ((pr->flags.power == 1) && (pr->flags.power_setup_done))
1302                 pm_idle = acpi_processor_idle;
1303
1304         return result;
1305 }
1306
1307 #ifdef CONFIG_SMP
1308 static void smp_callback(void *v)
1309 {
1310         /* we already woke the CPU up, nothing more to do */
1311 }
1312
1313 /*
1314  * This function gets called when a part of the kernel has a new latency
1315  * requirement.  This means we need to get all processors out of their C-state,
1316  * and then recalculate a new suitable C-state. Just do a cross-cpu IPI; that
1317  * wakes them all right up.
1318  */
1319 static int acpi_processor_latency_notify(struct notifier_block *b,
1320                 unsigned long l, void *v)
1321 {
1322         smp_call_function(smp_callback, NULL, 0, 1);
1323         return NOTIFY_OK;
1324 }
1325
1326 static struct notifier_block acpi_processor_latency_notifier = {
1327         .notifier_call = acpi_processor_latency_notify,
1328 };
1329
1330 #endif
1331
1332 #else /* CONFIG_CPU_IDLE */
1333
1334 /**
1335  * acpi_idle_bm_check - checks if bus master activity was detected
1336  */
1337 static int acpi_idle_bm_check(void)
1338 {
1339         u32 bm_status = 0;
1340
1341         acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
1342         if (bm_status)
1343                 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
1344         /*
1345          * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
1346          * the true state of bus mastering activity; forcing us to
1347          * manually check the BMIDEA bit of each IDE channel.
1348          */
1349         else if (errata.piix4.bmisx) {
1350                 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
1351                     || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
1352                         bm_status = 1;
1353         }
1354         return bm_status;
1355 }
1356
1357 /**
1358  * acpi_idle_update_bm_rld - updates the BM_RLD bit depending on target state
1359  * @pr: the processor
1360  * @target: the new target state
1361  */
1362 static inline void acpi_idle_update_bm_rld(struct acpi_processor *pr,
1363                                            struct acpi_processor_cx *target)
1364 {
1365         if (pr->flags.bm_rld_set && target->type != ACPI_STATE_C3) {
1366                 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 0);
1367                 pr->flags.bm_rld_set = 0;
1368         }
1369
1370         if (!pr->flags.bm_rld_set && target->type == ACPI_STATE_C3) {
1371                 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
1372                 pr->flags.bm_rld_set = 1;
1373         }
1374 }
1375
1376 /**
1377  * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
1378  * @cx: cstate data
1379  *
1380  * Caller disables interrupt before call and enables interrupt after return.
1381  */
1382 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
1383 {
1384         if (cx->entry_method == ACPI_CSTATE_FFH) {
1385                 /* Call into architectural FFH based C-state */
1386                 acpi_processor_ffh_cstate_enter(cx);
1387         } else if (cx->entry_method == ACPI_CSTATE_HALT) {
1388                 acpi_safe_halt();
1389         } else {
1390                 int unused;
1391                 /* IO port based C-state */
1392                 inb(cx->address);
1393                 /* Dummy wait op - must do something useless after P_LVL2 read
1394                    because chipsets cannot guarantee that STPCLK# signal
1395                    gets asserted in time to freeze execution properly. */
1396                 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
1397         }
1398 }
1399
1400 /**
1401  * acpi_idle_enter_c1 - enters an ACPI C1 state-type
1402  * @dev: the target CPU
1403  * @state: the state data
1404  *
1405  * This is equivalent to the HALT instruction.
1406  */
1407 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
1408                               struct cpuidle_state *state)
1409 {
1410         u32 t1, t2;
1411         struct acpi_processor *pr;
1412         struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1413
1414         pr = processors[smp_processor_id()];
1415
1416         if (unlikely(!pr))
1417                 return 0;
1418
1419         local_irq_disable();
1420         if (pr->flags.bm_check)
1421                 acpi_idle_update_bm_rld(pr, cx);
1422
1423         t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1424         acpi_idle_do_entry(cx);
1425         t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1426
1427         local_irq_enable();
1428         cx->usage++;
1429
1430         return ticks_elapsed_in_us(t1, t2);
1431 }
1432
1433 /**
1434  * acpi_idle_enter_simple - enters an ACPI state without BM handling
1435  * @dev: the target CPU
1436  * @state: the state data
1437  */
1438 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
1439                                   struct cpuidle_state *state)
1440 {
1441         struct acpi_processor *pr;
1442         struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1443         u32 t1, t2;
1444         int sleep_ticks = 0;
1445
1446         pr = processors[smp_processor_id()];
1447
1448         if (unlikely(!pr))
1449                 return 0;
1450
1451         if (acpi_idle_suspend)
1452                 return(acpi_idle_enter_c1(dev, state));
1453
1454         local_irq_disable();
1455         current_thread_info()->status &= ~TS_POLLING;
1456         /*
1457          * TS_POLLING-cleared state must be visible before we test
1458          * NEED_RESCHED:
1459          */
1460         smp_mb();
1461
1462         if (unlikely(need_resched())) {
1463                 current_thread_info()->status |= TS_POLLING;
1464                 local_irq_enable();
1465                 return 0;
1466         }
1467
1468         acpi_unlazy_tlb(smp_processor_id());
1469         /*
1470          * Must be done before busmaster disable as we might need to
1471          * access HPET !
1472          */
1473         acpi_state_timer_broadcast(pr, cx, 1);
1474
1475         if (pr->flags.bm_check)
1476                 acpi_idle_update_bm_rld(pr, cx);
1477
1478         if (cx->type == ACPI_STATE_C3)
1479                 ACPI_FLUSH_CPU_CACHE();
1480
1481         t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1482         /* Tell the scheduler that we are going deep-idle: */
1483         sched_clock_idle_sleep_event();
1484         acpi_idle_do_entry(cx);
1485         t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1486
1487 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
1488         /* TSC could halt in idle, so notify users */
1489         if (tsc_halts_in_c(cx->type))
1490                 mark_tsc_unstable("TSC halts in idle");;
1491 #endif
1492         sleep_ticks = ticks_elapsed(t1, t2);
1493
1494         /* Tell the scheduler how much we idled: */
1495         sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1496
1497         local_irq_enable();
1498         current_thread_info()->status |= TS_POLLING;
1499
1500         cx->usage++;
1501
1502         acpi_state_timer_broadcast(pr, cx, 0);
1503         cx->time += sleep_ticks;
1504         return ticks_elapsed_in_us(t1, t2);
1505 }
1506
1507 static int c3_cpu_count;
1508 static DEFINE_SPINLOCK(c3_lock);
1509
1510 /**
1511  * acpi_idle_enter_bm - enters C3 with proper BM handling
1512  * @dev: the target CPU
1513  * @state: the state data
1514  *
1515  * If BM is detected, the deepest non-C3 idle state is entered instead.
1516  */
1517 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
1518                               struct cpuidle_state *state)
1519 {
1520         struct acpi_processor *pr;
1521         struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
1522         u32 t1, t2;
1523         int sleep_ticks = 0;
1524
1525         pr = processors[smp_processor_id()];
1526
1527         if (unlikely(!pr))
1528                 return 0;
1529
1530         if (acpi_idle_suspend)
1531                 return(acpi_idle_enter_c1(dev, state));
1532
1533         if (acpi_idle_bm_check()) {
1534                 if (dev->safe_state) {
1535                         return dev->safe_state->enter(dev, dev->safe_state);
1536                 } else {
1537                         local_irq_disable();
1538                         acpi_safe_halt();
1539                         local_irq_enable();
1540                         return 0;
1541                 }
1542         }
1543
1544         local_irq_disable();
1545         current_thread_info()->status &= ~TS_POLLING;
1546         /*
1547          * TS_POLLING-cleared state must be visible before we test
1548          * NEED_RESCHED:
1549          */
1550         smp_mb();
1551
1552         if (unlikely(need_resched())) {
1553                 current_thread_info()->status |= TS_POLLING;
1554                 local_irq_enable();
1555                 return 0;
1556         }
1557
1558         /* Tell the scheduler that we are going deep-idle: */
1559         sched_clock_idle_sleep_event();
1560         /*
1561          * Must be done before busmaster disable as we might need to
1562          * access HPET !
1563          */
1564         acpi_state_timer_broadcast(pr, cx, 1);
1565
1566         acpi_idle_update_bm_rld(pr, cx);
1567
1568         /*
1569          * disable bus master
1570          * bm_check implies we need ARB_DIS
1571          * !bm_check implies we need cache flush
1572          * bm_control implies whether we can do ARB_DIS
1573          *
1574          * That leaves a case where bm_check is set and bm_control is
1575          * not set. In that case we cannot do much, we enter C3
1576          * without doing anything.
1577          */
1578         if (pr->flags.bm_check && pr->flags.bm_control) {
1579                 spin_lock(&c3_lock);
1580                 c3_cpu_count++;
1581                 /* Disable bus master arbitration when all CPUs are in C3 */
1582                 if (c3_cpu_count == num_online_cpus())
1583                         acpi_set_register(ACPI_BITREG_ARB_DISABLE, 1);
1584                 spin_unlock(&c3_lock);
1585         } else if (!pr->flags.bm_check) {
1586                 ACPI_FLUSH_CPU_CACHE();
1587         }
1588
1589         t1 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1590         acpi_idle_do_entry(cx);
1591         t2 = inl(acpi_gbl_FADT.xpm_timer_block.address);
1592
1593         /* Re-enable bus master arbitration */
1594         if (pr->flags.bm_check && pr->flags.bm_control) {
1595                 spin_lock(&c3_lock);
1596                 acpi_set_register(ACPI_BITREG_ARB_DISABLE, 0);
1597                 c3_cpu_count--;
1598                 spin_unlock(&c3_lock);
1599         }
1600
1601 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
1602         /* TSC could halt in idle, so notify users */
1603         if (tsc_halts_in_c(ACPI_STATE_C3))
1604                 mark_tsc_unstable("TSC halts in idle");
1605 #endif
1606         sleep_ticks = ticks_elapsed(t1, t2);
1607         /* Tell the scheduler how much we idled: */
1608         sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1609
1610         local_irq_enable();
1611         current_thread_info()->status |= TS_POLLING;
1612
1613         cx->usage++;
1614
1615         acpi_state_timer_broadcast(pr, cx, 0);
1616         cx->time += sleep_ticks;
1617         return ticks_elapsed_in_us(t1, t2);
1618 }
1619
1620 struct cpuidle_driver acpi_idle_driver = {
1621         .name =         "acpi_idle",
1622         .owner =        THIS_MODULE,
1623 };
1624
1625 /**
1626  * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
1627  * @pr: the ACPI processor
1628  */
1629 static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
1630 {
1631         int i, count = CPUIDLE_DRIVER_STATE_START;
1632         struct acpi_processor_cx *cx;
1633         struct cpuidle_state *state;
1634         struct cpuidle_device *dev = &pr->power.dev;
1635
1636         if (!pr->flags.power_setup_done)
1637                 return -EINVAL;
1638
1639         if (pr->flags.power == 0) {
1640                 return -EINVAL;
1641         }
1642
1643         for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1644                 cx = &pr->power.states[i];
1645                 state = &dev->states[count];
1646
1647                 if (!cx->valid)
1648                         continue;
1649
1650 #ifdef CONFIG_HOTPLUG_CPU
1651                 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1652                     !pr->flags.has_cst &&
1653                     !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1654                         continue;
1655 #endif
1656                 cpuidle_set_statedata(state, cx);
1657
1658                 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1659                 state->exit_latency = cx->latency;
1660                 state->target_residency = cx->latency * 6;
1661                 state->power_usage = cx->power;
1662
1663                 state->flags = 0;
1664                 switch (cx->type) {
1665                         case ACPI_STATE_C1:
1666                         state->flags |= CPUIDLE_FLAG_SHALLOW;
1667                         state->flags |= CPUIDLE_FLAG_TIME_VALID;
1668                         state->enter = acpi_idle_enter_c1;
1669                         dev->safe_state = state;
1670                         break;
1671
1672                         case ACPI_STATE_C2:
1673                         state->flags |= CPUIDLE_FLAG_BALANCED;
1674                         state->flags |= CPUIDLE_FLAG_TIME_VALID;
1675                         state->enter = acpi_idle_enter_simple;
1676                         dev->safe_state = state;
1677                         break;
1678
1679                         case ACPI_STATE_C3:
1680                         state->flags |= CPUIDLE_FLAG_DEEP;
1681                         state->flags |= CPUIDLE_FLAG_TIME_VALID;
1682                         state->flags |= CPUIDLE_FLAG_CHECK_BM;
1683                         state->enter = pr->flags.bm_check ?
1684                                         acpi_idle_enter_bm :
1685                                         acpi_idle_enter_simple;
1686                         break;
1687                 }
1688
1689                 count++;
1690                 if (count == CPUIDLE_STATE_MAX)
1691                         break;
1692         }
1693
1694         dev->state_count = count;
1695
1696         if (!count)
1697                 return -EINVAL;
1698
1699         return 0;
1700 }
1701
1702 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1703 {
1704         int ret;
1705
1706         if (!pr)
1707                 return -EINVAL;
1708
1709         if (nocst) {
1710                 return -ENODEV;
1711         }
1712
1713         if (!pr->flags.power_setup_done)
1714                 return -ENODEV;
1715
1716         cpuidle_pause_and_lock();
1717         cpuidle_disable_device(&pr->power.dev);
1718         acpi_processor_get_power_info(pr);
1719         acpi_processor_setup_cpuidle(pr);
1720         ret = cpuidle_enable_device(&pr->power.dev);
1721         cpuidle_resume_and_unlock();
1722
1723         return ret;
1724 }
1725
1726 #endif /* CONFIG_CPU_IDLE */
1727
1728 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1729                               struct acpi_device *device)
1730 {
1731         acpi_status status = 0;
1732         static int first_run;
1733         struct proc_dir_entry *entry = NULL;
1734         unsigned int i;
1735
1736
1737         if (!first_run) {
1738                 dmi_check_system(processor_power_dmi_table);
1739                 max_cstate = acpi_processor_cstate_check(max_cstate);
1740                 if (max_cstate < ACPI_C_STATES_MAX)
1741                         printk(KERN_NOTICE
1742                                "ACPI: processor limited to max C-state %d\n",
1743                                max_cstate);
1744                 first_run++;
1745 #if !defined(CONFIG_CPU_IDLE) && defined(CONFIG_SMP)
1746                 pm_qos_add_notifier(PM_QOS_CPU_DMA_LATENCY,
1747                                 &acpi_processor_latency_notifier);
1748 #endif
1749         }
1750
1751         if (!pr)
1752                 return -EINVAL;
1753
1754         if (acpi_gbl_FADT.cst_control && !nocst) {
1755                 status =
1756                     acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1757                 if (ACPI_FAILURE(status)) {
1758                         ACPI_EXCEPTION((AE_INFO, status,
1759                                         "Notifying BIOS of _CST ability failed"));
1760                 }
1761         }
1762
1763         acpi_processor_get_power_info(pr);
1764         pr->flags.power_setup_done = 1;
1765
1766         /*
1767          * Install the idle handler if processor power management is supported.
1768          * Note that we use previously set idle handler will be used on
1769          * platforms that only support C1.
1770          */
1771         if ((pr->flags.power) && (!boot_option_idle_override)) {
1772 #ifdef CONFIG_CPU_IDLE
1773                 acpi_processor_setup_cpuidle(pr);
1774                 pr->power.dev.cpu = pr->id;
1775                 if (cpuidle_register_device(&pr->power.dev))
1776                         return -EIO;
1777 #endif
1778
1779                 printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1780                 for (i = 1; i <= pr->power.count; i++)
1781                         if (pr->power.states[i].valid)
1782                                 printk(" C%d[C%d]", i,
1783                                        pr->power.states[i].type);
1784                 printk(")\n");
1785
1786 #ifndef CONFIG_CPU_IDLE
1787                 if (pr->id == 0) {
1788                         pm_idle_save = pm_idle;
1789                         pm_idle = acpi_processor_idle;
1790                 }
1791 #endif
1792         }
1793
1794         /* 'power' [R] */
1795         entry = create_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1796                                   S_IRUGO, acpi_device_dir(device));
1797         if (!entry)
1798                 return -EIO;
1799         else {
1800                 entry->proc_fops = &acpi_processor_power_fops;
1801                 entry->data = acpi_driver_data(device);
1802                 entry->owner = THIS_MODULE;
1803         }
1804
1805         return 0;
1806 }
1807
1808 int acpi_processor_power_exit(struct acpi_processor *pr,
1809                               struct acpi_device *device)
1810 {
1811 #ifdef CONFIG_CPU_IDLE
1812         if ((pr->flags.power) && (!boot_option_idle_override))
1813                 cpuidle_unregister_device(&pr->power.dev);
1814 #endif
1815         pr->flags.power_setup_done = 0;
1816
1817         if (acpi_device_dir(device))
1818                 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1819                                   acpi_device_dir(device));
1820
1821 #ifndef CONFIG_CPU_IDLE
1822
1823         /* Unregister the idle handler when processor #0 is removed. */
1824         if (pr->id == 0) {
1825                 pm_idle = pm_idle_save;
1826
1827                 /*
1828                  * We are about to unload the current idle thread pm callback
1829                  * (pm_idle), Wait for all processors to update cached/local
1830                  * copies of pm_idle before proceeding.
1831                  */
1832                 cpu_idle_wait();
1833 #ifdef CONFIG_SMP
1834                 pm_qos_remove_notifier(PM_QOS_CPU_DMA_LATENCY,
1835                                 &acpi_processor_latency_notifier);
1836 #endif
1837         }
1838 #endif
1839
1840         return 0;
1841 }