66272a237622eb2b3e95f57081c52120a8735a64
[pandora-kernel.git] / arch / x86 / xen / enlighten.c
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
34
35 #include <xen/xen.h>
36 #include <xen/interface/xen.h>
37 #include <xen/interface/version.h>
38 #include <xen/interface/physdev.h>
39 #include <xen/interface/vcpu.h>
40 #include <xen/interface/memory.h>
41 #include <xen/features.h>
42 #include <xen/page.h>
43 #include <xen/hvm.h>
44 #include <xen/hvc-console.h>
45
46 #include <asm/paravirt.h>
47 #include <asm/apic.h>
48 #include <asm/page.h>
49 #include <asm/xen/pci.h>
50 #include <asm/xen/hypercall.h>
51 #include <asm/xen/hypervisor.h>
52 #include <asm/fixmap.h>
53 #include <asm/processor.h>
54 #include <asm/proto.h>
55 #include <asm/msr-index.h>
56 #include <asm/traps.h>
57 #include <asm/setup.h>
58 #include <asm/desc.h>
59 #include <asm/pgalloc.h>
60 #include <asm/pgtable.h>
61 #include <asm/tlbflush.h>
62 #include <asm/reboot.h>
63 #include <asm/stackprotector.h>
64 #include <asm/hypervisor.h>
65
66 #include "xen-ops.h"
67 #include "mmu.h"
68 #include "multicalls.h"
69
70 EXPORT_SYMBOL_GPL(hypercall_page);
71
72 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
73 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
74
75 enum xen_domain_type xen_domain_type = XEN_NATIVE;
76 EXPORT_SYMBOL_GPL(xen_domain_type);
77
78 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
79 EXPORT_SYMBOL(machine_to_phys_mapping);
80 unsigned int   machine_to_phys_order;
81 EXPORT_SYMBOL(machine_to_phys_order);
82
83 struct start_info *xen_start_info;
84 EXPORT_SYMBOL_GPL(xen_start_info);
85
86 struct shared_info xen_dummy_shared_info;
87
88 void *xen_initial_gdt;
89
90 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
91 __read_mostly int xen_have_vector_callback;
92 EXPORT_SYMBOL_GPL(xen_have_vector_callback);
93
94 /*
95  * Point at some empty memory to start with. We map the real shared_info
96  * page as soon as fixmap is up and running.
97  */
98 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
99
100 /*
101  * Flag to determine whether vcpu info placement is available on all
102  * VCPUs.  We assume it is to start with, and then set it to zero on
103  * the first failure.  This is because it can succeed on some VCPUs
104  * and not others, since it can involve hypervisor memory allocation,
105  * or because the guest failed to guarantee all the appropriate
106  * constraints on all VCPUs (ie buffer can't cross a page boundary).
107  *
108  * Note that any particular CPU may be using a placed vcpu structure,
109  * but we can only optimise if the all are.
110  *
111  * 0: not available, 1: available
112  */
113 static int have_vcpu_info_placement = 1;
114
115 static void clamp_max_cpus(void)
116 {
117 #ifdef CONFIG_SMP
118         if (setup_max_cpus > MAX_VIRT_CPUS)
119                 setup_max_cpus = MAX_VIRT_CPUS;
120 #endif
121 }
122
123 static void xen_vcpu_setup(int cpu)
124 {
125         struct vcpu_register_vcpu_info info;
126         int err;
127         struct vcpu_info *vcpup;
128
129         BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
130
131         if (cpu < MAX_VIRT_CPUS)
132                 per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
133
134         if (!have_vcpu_info_placement) {
135                 if (cpu >= MAX_VIRT_CPUS)
136                         clamp_max_cpus();
137                 return;
138         }
139
140         vcpup = &per_cpu(xen_vcpu_info, cpu);
141         info.mfn = arbitrary_virt_to_mfn(vcpup);
142         info.offset = offset_in_page(vcpup);
143
144         /* Check to see if the hypervisor will put the vcpu_info
145            structure where we want it, which allows direct access via
146            a percpu-variable. */
147         err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
148
149         if (err) {
150                 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
151                 have_vcpu_info_placement = 0;
152                 clamp_max_cpus();
153         } else {
154                 /* This cpu is using the registered vcpu info, even if
155                    later ones fail to. */
156                 per_cpu(xen_vcpu, cpu) = vcpup;
157         }
158 }
159
160 /*
161  * On restore, set the vcpu placement up again.
162  * If it fails, then we're in a bad state, since
163  * we can't back out from using it...
164  */
165 void xen_vcpu_restore(void)
166 {
167         int cpu;
168
169         for_each_online_cpu(cpu) {
170                 bool other_cpu = (cpu != smp_processor_id());
171
172                 if (other_cpu &&
173                     HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
174                         BUG();
175
176                 xen_setup_runstate_info(cpu);
177
178                 if (have_vcpu_info_placement)
179                         xen_vcpu_setup(cpu);
180
181                 if (other_cpu &&
182                     HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
183                         BUG();
184         }
185 }
186
187 static void __init xen_banner(void)
188 {
189         unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
190         struct xen_extraversion extra;
191         HYPERVISOR_xen_version(XENVER_extraversion, &extra);
192
193         printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
194                pv_info.name);
195         printk(KERN_INFO "Xen version: %d.%d%s%s\n",
196                version >> 16, version & 0xffff, extra.extraversion,
197                xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
198 }
199
200 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
201 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
202
203 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
204                       unsigned int *cx, unsigned int *dx)
205 {
206         unsigned maskebx = ~0;
207         unsigned maskecx = ~0;
208         unsigned maskedx = ~0;
209
210         /*
211          * Mask out inconvenient features, to try and disable as many
212          * unsupported kernel subsystems as possible.
213          */
214         switch (*ax) {
215         case 1:
216                 maskecx = cpuid_leaf1_ecx_mask;
217                 maskedx = cpuid_leaf1_edx_mask;
218                 break;
219
220         case 0xb:
221                 /* Suppress extended topology stuff */
222                 maskebx = 0;
223                 break;
224         }
225
226         asm(XEN_EMULATE_PREFIX "cpuid"
227                 : "=a" (*ax),
228                   "=b" (*bx),
229                   "=c" (*cx),
230                   "=d" (*dx)
231                 : "0" (*ax), "2" (*cx));
232
233         *bx &= maskebx;
234         *cx &= maskecx;
235         *dx &= maskedx;
236 }
237
238 static __init void xen_init_cpuid_mask(void)
239 {
240         unsigned int ax, bx, cx, dx;
241
242         cpuid_leaf1_edx_mask =
243                 ~((1 << X86_FEATURE_MCE)  |  /* disable MCE */
244                   (1 << X86_FEATURE_MCA)  |  /* disable MCA */
245                   (1 << X86_FEATURE_MTRR) |  /* disable MTRR */
246                   (1 << X86_FEATURE_ACC));   /* thermal monitoring */
247
248         if (!xen_initial_domain())
249                 cpuid_leaf1_edx_mask &=
250                         ~((1 << X86_FEATURE_APIC) |  /* disable local APIC */
251                           (1 << X86_FEATURE_ACPI));  /* disable ACPI */
252
253         cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_XSAVE % 32)); /* disable XSAVE */
254 }
255
256 static void xen_set_debugreg(int reg, unsigned long val)
257 {
258         HYPERVISOR_set_debugreg(reg, val);
259 }
260
261 static unsigned long xen_get_debugreg(int reg)
262 {
263         return HYPERVISOR_get_debugreg(reg);
264 }
265
266 static void xen_end_context_switch(struct task_struct *next)
267 {
268         xen_mc_flush();
269         paravirt_end_context_switch(next);
270 }
271
272 static unsigned long xen_store_tr(void)
273 {
274         return 0;
275 }
276
277 /*
278  * Set the page permissions for a particular virtual address.  If the
279  * address is a vmalloc mapping (or other non-linear mapping), then
280  * find the linear mapping of the page and also set its protections to
281  * match.
282  */
283 static void set_aliased_prot(void *v, pgprot_t prot)
284 {
285         int level;
286         pte_t *ptep;
287         pte_t pte;
288         unsigned long pfn;
289         struct page *page;
290
291         ptep = lookup_address((unsigned long)v, &level);
292         BUG_ON(ptep == NULL);
293
294         pfn = pte_pfn(*ptep);
295         page = pfn_to_page(pfn);
296
297         pte = pfn_pte(pfn, prot);
298
299         if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
300                 BUG();
301
302         if (!PageHighMem(page)) {
303                 void *av = __va(PFN_PHYS(pfn));
304
305                 if (av != v)
306                         if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
307                                 BUG();
308         } else
309                 kmap_flush_unused();
310 }
311
312 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
313 {
314         const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
315         int i;
316
317         for(i = 0; i < entries; i += entries_per_page)
318                 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
319 }
320
321 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
322 {
323         const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
324         int i;
325
326         for(i = 0; i < entries; i += entries_per_page)
327                 set_aliased_prot(ldt + i, PAGE_KERNEL);
328 }
329
330 static void xen_set_ldt(const void *addr, unsigned entries)
331 {
332         struct mmuext_op *op;
333         struct multicall_space mcs = xen_mc_entry(sizeof(*op));
334
335         op = mcs.args;
336         op->cmd = MMUEXT_SET_LDT;
337         op->arg1.linear_addr = (unsigned long)addr;
338         op->arg2.nr_ents = entries;
339
340         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
341
342         xen_mc_issue(PARAVIRT_LAZY_CPU);
343 }
344
345 static void xen_load_gdt(const struct desc_ptr *dtr)
346 {
347         unsigned long va = dtr->address;
348         unsigned int size = dtr->size + 1;
349         unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
350         unsigned long frames[pages];
351         int f;
352
353         /*
354          * A GDT can be up to 64k in size, which corresponds to 8192
355          * 8-byte entries, or 16 4k pages..
356          */
357
358         BUG_ON(size > 65536);
359         BUG_ON(va & ~PAGE_MASK);
360
361         for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
362                 int level;
363                 pte_t *ptep;
364                 unsigned long pfn, mfn;
365                 void *virt;
366
367                 /*
368                  * The GDT is per-cpu and is in the percpu data area.
369                  * That can be virtually mapped, so we need to do a
370                  * page-walk to get the underlying MFN for the
371                  * hypercall.  The page can also be in the kernel's
372                  * linear range, so we need to RO that mapping too.
373                  */
374                 ptep = lookup_address(va, &level);
375                 BUG_ON(ptep == NULL);
376
377                 pfn = pte_pfn(*ptep);
378                 mfn = pfn_to_mfn(pfn);
379                 virt = __va(PFN_PHYS(pfn));
380
381                 frames[f] = mfn;
382
383                 make_lowmem_page_readonly((void *)va);
384                 make_lowmem_page_readonly(virt);
385         }
386
387         if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
388                 BUG();
389 }
390
391 /*
392  * load_gdt for early boot, when the gdt is only mapped once
393  */
394 static __init void xen_load_gdt_boot(const struct desc_ptr *dtr)
395 {
396         unsigned long va = dtr->address;
397         unsigned int size = dtr->size + 1;
398         unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
399         unsigned long frames[pages];
400         int f;
401
402         /*
403          * A GDT can be up to 64k in size, which corresponds to 8192
404          * 8-byte entries, or 16 4k pages..
405          */
406
407         BUG_ON(size > 65536);
408         BUG_ON(va & ~PAGE_MASK);
409
410         for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
411                 pte_t pte;
412                 unsigned long pfn, mfn;
413
414                 pfn = virt_to_pfn(va);
415                 mfn = pfn_to_mfn(pfn);
416
417                 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
418
419                 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
420                         BUG();
421
422                 frames[f] = mfn;
423         }
424
425         if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
426                 BUG();
427 }
428
429 static void load_TLS_descriptor(struct thread_struct *t,
430                                 unsigned int cpu, unsigned int i)
431 {
432         struct desc_struct *gdt = get_cpu_gdt_table(cpu);
433         xmaddr_t maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
434         struct multicall_space mc = __xen_mc_entry(0);
435
436         MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
437 }
438
439 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
440 {
441         /*
442          * XXX sleazy hack: If we're being called in a lazy-cpu zone
443          * and lazy gs handling is enabled, it means we're in a
444          * context switch, and %gs has just been saved.  This means we
445          * can zero it out to prevent faults on exit from the
446          * hypervisor if the next process has no %gs.  Either way, it
447          * has been saved, and the new value will get loaded properly.
448          * This will go away as soon as Xen has been modified to not
449          * save/restore %gs for normal hypercalls.
450          *
451          * On x86_64, this hack is not used for %gs, because gs points
452          * to KERNEL_GS_BASE (and uses it for PDA references), so we
453          * must not zero %gs on x86_64
454          *
455          * For x86_64, we need to zero %fs, otherwise we may get an
456          * exception between the new %fs descriptor being loaded and
457          * %fs being effectively cleared at __switch_to().
458          */
459         if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
460 #ifdef CONFIG_X86_32
461                 lazy_load_gs(0);
462 #else
463                 loadsegment(fs, 0);
464 #endif
465         }
466
467         xen_mc_batch();
468
469         load_TLS_descriptor(t, cpu, 0);
470         load_TLS_descriptor(t, cpu, 1);
471         load_TLS_descriptor(t, cpu, 2);
472
473         xen_mc_issue(PARAVIRT_LAZY_CPU);
474 }
475
476 #ifdef CONFIG_X86_64
477 static void xen_load_gs_index(unsigned int idx)
478 {
479         if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
480                 BUG();
481 }
482 #endif
483
484 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
485                                 const void *ptr)
486 {
487         xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
488         u64 entry = *(u64 *)ptr;
489
490         preempt_disable();
491
492         xen_mc_flush();
493         if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
494                 BUG();
495
496         preempt_enable();
497 }
498
499 static int cvt_gate_to_trap(int vector, const gate_desc *val,
500                             struct trap_info *info)
501 {
502         unsigned long addr;
503
504         if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
505                 return 0;
506
507         info->vector = vector;
508
509         addr = gate_offset(*val);
510 #ifdef CONFIG_X86_64
511         /*
512          * Look for known traps using IST, and substitute them
513          * appropriately.  The debugger ones are the only ones we care
514          * about.  Xen will handle faults like double_fault and
515          * machine_check, so we should never see them.  Warn if
516          * there's an unexpected IST-using fault handler.
517          */
518         if (addr == (unsigned long)debug)
519                 addr = (unsigned long)xen_debug;
520         else if (addr == (unsigned long)int3)
521                 addr = (unsigned long)xen_int3;
522         else if (addr == (unsigned long)stack_segment)
523                 addr = (unsigned long)xen_stack_segment;
524         else if (addr == (unsigned long)double_fault ||
525                  addr == (unsigned long)nmi) {
526                 /* Don't need to handle these */
527                 return 0;
528 #ifdef CONFIG_X86_MCE
529         } else if (addr == (unsigned long)machine_check) {
530                 return 0;
531 #endif
532         } else {
533                 /* Some other trap using IST? */
534                 if (WARN_ON(val->ist != 0))
535                         return 0;
536         }
537 #endif  /* CONFIG_X86_64 */
538         info->address = addr;
539
540         info->cs = gate_segment(*val);
541         info->flags = val->dpl;
542         /* interrupt gates clear IF */
543         if (val->type == GATE_INTERRUPT)
544                 info->flags |= 1 << 2;
545
546         return 1;
547 }
548
549 /* Locations of each CPU's IDT */
550 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
551
552 /* Set an IDT entry.  If the entry is part of the current IDT, then
553    also update Xen. */
554 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
555 {
556         unsigned long p = (unsigned long)&dt[entrynum];
557         unsigned long start, end;
558
559         preempt_disable();
560
561         start = __this_cpu_read(idt_desc.address);
562         end = start + __this_cpu_read(idt_desc.size) + 1;
563
564         xen_mc_flush();
565
566         native_write_idt_entry(dt, entrynum, g);
567
568         if (p >= start && (p + 8) <= end) {
569                 struct trap_info info[2];
570
571                 info[1].address = 0;
572
573                 if (cvt_gate_to_trap(entrynum, g, &info[0]))
574                         if (HYPERVISOR_set_trap_table(info))
575                                 BUG();
576         }
577
578         preempt_enable();
579 }
580
581 static void xen_convert_trap_info(const struct desc_ptr *desc,
582                                   struct trap_info *traps)
583 {
584         unsigned in, out, count;
585
586         count = (desc->size+1) / sizeof(gate_desc);
587         BUG_ON(count > 256);
588
589         for (in = out = 0; in < count; in++) {
590                 gate_desc *entry = (gate_desc*)(desc->address) + in;
591
592                 if (cvt_gate_to_trap(in, entry, &traps[out]))
593                         out++;
594         }
595         traps[out].address = 0;
596 }
597
598 void xen_copy_trap_info(struct trap_info *traps)
599 {
600         const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
601
602         xen_convert_trap_info(desc, traps);
603 }
604
605 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
606    hold a spinlock to protect the static traps[] array (static because
607    it avoids allocation, and saves stack space). */
608 static void xen_load_idt(const struct desc_ptr *desc)
609 {
610         static DEFINE_SPINLOCK(lock);
611         static struct trap_info traps[257];
612
613         spin_lock(&lock);
614
615         __get_cpu_var(idt_desc) = *desc;
616
617         xen_convert_trap_info(desc, traps);
618
619         xen_mc_flush();
620         if (HYPERVISOR_set_trap_table(traps))
621                 BUG();
622
623         spin_unlock(&lock);
624 }
625
626 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
627    they're handled differently. */
628 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
629                                 const void *desc, int type)
630 {
631         preempt_disable();
632
633         switch (type) {
634         case DESC_LDT:
635         case DESC_TSS:
636                 /* ignore */
637                 break;
638
639         default: {
640                 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
641
642                 xen_mc_flush();
643                 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
644                         BUG();
645         }
646
647         }
648
649         preempt_enable();
650 }
651
652 /*
653  * Version of write_gdt_entry for use at early boot-time needed to
654  * update an entry as simply as possible.
655  */
656 static __init void xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
657                                             const void *desc, int type)
658 {
659         switch (type) {
660         case DESC_LDT:
661         case DESC_TSS:
662                 /* ignore */
663                 break;
664
665         default: {
666                 xmaddr_t maddr = virt_to_machine(&dt[entry]);
667
668                 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
669                         dt[entry] = *(struct desc_struct *)desc;
670         }
671
672         }
673 }
674
675 static void xen_load_sp0(struct tss_struct *tss,
676                          struct thread_struct *thread)
677 {
678         struct multicall_space mcs = xen_mc_entry(0);
679         MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
680         xen_mc_issue(PARAVIRT_LAZY_CPU);
681 }
682
683 static void xen_set_iopl_mask(unsigned mask)
684 {
685         struct physdev_set_iopl set_iopl;
686
687         /* Force the change at ring 0. */
688         set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
689         HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
690 }
691
692 static void xen_io_delay(void)
693 {
694 }
695
696 #ifdef CONFIG_X86_LOCAL_APIC
697 static u32 xen_apic_read(u32 reg)
698 {
699         return 0;
700 }
701
702 static void xen_apic_write(u32 reg, u32 val)
703 {
704         /* Warn to see if there's any stray references */
705         WARN_ON(1);
706 }
707
708 static u64 xen_apic_icr_read(void)
709 {
710         return 0;
711 }
712
713 static void xen_apic_icr_write(u32 low, u32 id)
714 {
715         /* Warn to see if there's any stray references */
716         WARN_ON(1);
717 }
718
719 static void xen_apic_wait_icr_idle(void)
720 {
721         return;
722 }
723
724 static u32 xen_safe_apic_wait_icr_idle(void)
725 {
726         return 0;
727 }
728
729 static void set_xen_basic_apic_ops(void)
730 {
731         apic->read = xen_apic_read;
732         apic->write = xen_apic_write;
733         apic->icr_read = xen_apic_icr_read;
734         apic->icr_write = xen_apic_icr_write;
735         apic->wait_icr_idle = xen_apic_wait_icr_idle;
736         apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
737 }
738
739 #endif
740
741 static void xen_clts(void)
742 {
743         struct multicall_space mcs;
744
745         mcs = xen_mc_entry(0);
746
747         MULTI_fpu_taskswitch(mcs.mc, 0);
748
749         xen_mc_issue(PARAVIRT_LAZY_CPU);
750 }
751
752 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
753
754 static unsigned long xen_read_cr0(void)
755 {
756         unsigned long cr0 = percpu_read(xen_cr0_value);
757
758         if (unlikely(cr0 == 0)) {
759                 cr0 = native_read_cr0();
760                 percpu_write(xen_cr0_value, cr0);
761         }
762
763         return cr0;
764 }
765
766 static void xen_write_cr0(unsigned long cr0)
767 {
768         struct multicall_space mcs;
769
770         percpu_write(xen_cr0_value, cr0);
771
772         /* Only pay attention to cr0.TS; everything else is
773            ignored. */
774         mcs = xen_mc_entry(0);
775
776         MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
777
778         xen_mc_issue(PARAVIRT_LAZY_CPU);
779 }
780
781 static void xen_write_cr4(unsigned long cr4)
782 {
783         cr4 &= ~X86_CR4_PGE;
784         cr4 &= ~X86_CR4_PSE;
785
786         native_write_cr4(cr4);
787 }
788
789 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
790 {
791         int ret;
792
793         ret = 0;
794
795         switch (msr) {
796 #ifdef CONFIG_X86_64
797                 unsigned which;
798                 u64 base;
799
800         case MSR_FS_BASE:               which = SEGBASE_FS; goto set;
801         case MSR_KERNEL_GS_BASE:        which = SEGBASE_GS_USER; goto set;
802         case MSR_GS_BASE:               which = SEGBASE_GS_KERNEL; goto set;
803
804         set:
805                 base = ((u64)high << 32) | low;
806                 if (HYPERVISOR_set_segment_base(which, base) != 0)
807                         ret = -EIO;
808                 break;
809 #endif
810
811         case MSR_STAR:
812         case MSR_CSTAR:
813         case MSR_LSTAR:
814         case MSR_SYSCALL_MASK:
815         case MSR_IA32_SYSENTER_CS:
816         case MSR_IA32_SYSENTER_ESP:
817         case MSR_IA32_SYSENTER_EIP:
818                 /* Fast syscall setup is all done in hypercalls, so
819                    these are all ignored.  Stub them out here to stop
820                    Xen console noise. */
821                 break;
822
823         case MSR_IA32_CR_PAT:
824                 if (smp_processor_id() == 0)
825                         xen_set_pat(((u64)high << 32) | low);
826                 break;
827
828         default:
829                 ret = native_write_msr_safe(msr, low, high);
830         }
831
832         return ret;
833 }
834
835 void xen_setup_shared_info(void)
836 {
837         if (!xen_feature(XENFEAT_auto_translated_physmap)) {
838                 set_fixmap(FIX_PARAVIRT_BOOTMAP,
839                            xen_start_info->shared_info);
840
841                 HYPERVISOR_shared_info =
842                         (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
843         } else
844                 HYPERVISOR_shared_info =
845                         (struct shared_info *)__va(xen_start_info->shared_info);
846
847 #ifndef CONFIG_SMP
848         /* In UP this is as good a place as any to set up shared info */
849         xen_setup_vcpu_info_placement();
850 #endif
851
852         xen_setup_mfn_list_list();
853 }
854
855 /* This is called once we have the cpu_possible_map */
856 void xen_setup_vcpu_info_placement(void)
857 {
858         int cpu;
859
860         for_each_possible_cpu(cpu)
861                 xen_vcpu_setup(cpu);
862
863         /* xen_vcpu_setup managed to place the vcpu_info within the
864            percpu area for all cpus, so make use of it */
865         if (have_vcpu_info_placement) {
866                 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
867                 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
868                 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
869                 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
870                 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
871         }
872 }
873
874 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
875                           unsigned long addr, unsigned len)
876 {
877         char *start, *end, *reloc;
878         unsigned ret;
879
880         start = end = reloc = NULL;
881
882 #define SITE(op, x)                                                     \
883         case PARAVIRT_PATCH(op.x):                                      \
884         if (have_vcpu_info_placement) {                                 \
885                 start = (char *)xen_##x##_direct;                       \
886                 end = xen_##x##_direct_end;                             \
887                 reloc = xen_##x##_direct_reloc;                         \
888         }                                                               \
889         goto patch_site
890
891         switch (type) {
892                 SITE(pv_irq_ops, irq_enable);
893                 SITE(pv_irq_ops, irq_disable);
894                 SITE(pv_irq_ops, save_fl);
895                 SITE(pv_irq_ops, restore_fl);
896 #undef SITE
897
898         patch_site:
899                 if (start == NULL || (end-start) > len)
900                         goto default_patch;
901
902                 ret = paravirt_patch_insns(insnbuf, len, start, end);
903
904                 /* Note: because reloc is assigned from something that
905                    appears to be an array, gcc assumes it's non-null,
906                    but doesn't know its relationship with start and
907                    end. */
908                 if (reloc > start && reloc < end) {
909                         int reloc_off = reloc - start;
910                         long *relocp = (long *)(insnbuf + reloc_off);
911                         long delta = start - (char *)addr;
912
913                         *relocp += delta;
914                 }
915                 break;
916
917         default_patch:
918         default:
919                 ret = paravirt_patch_default(type, clobbers, insnbuf,
920                                              addr, len);
921                 break;
922         }
923
924         return ret;
925 }
926
927 static const struct pv_info xen_info __initdata = {
928         .paravirt_enabled = 1,
929         .shared_kernel_pmd = 0,
930
931         .name = "Xen",
932 };
933
934 static const struct pv_init_ops xen_init_ops __initdata = {
935         .patch = xen_patch,
936 };
937
938 static const struct pv_cpu_ops xen_cpu_ops __initdata = {
939         .cpuid = xen_cpuid,
940
941         .set_debugreg = xen_set_debugreg,
942         .get_debugreg = xen_get_debugreg,
943
944         .clts = xen_clts,
945
946         .read_cr0 = xen_read_cr0,
947         .write_cr0 = xen_write_cr0,
948
949         .read_cr4 = native_read_cr4,
950         .read_cr4_safe = native_read_cr4_safe,
951         .write_cr4 = xen_write_cr4,
952
953         .wbinvd = native_wbinvd,
954
955         .read_msr = native_read_msr_safe,
956         .write_msr = xen_write_msr_safe,
957         .read_tsc = native_read_tsc,
958         .read_pmc = native_read_pmc,
959
960         .iret = xen_iret,
961         .irq_enable_sysexit = xen_sysexit,
962 #ifdef CONFIG_X86_64
963         .usergs_sysret32 = xen_sysret32,
964         .usergs_sysret64 = xen_sysret64,
965 #endif
966
967         .load_tr_desc = paravirt_nop,
968         .set_ldt = xen_set_ldt,
969         .load_gdt = xen_load_gdt,
970         .load_idt = xen_load_idt,
971         .load_tls = xen_load_tls,
972 #ifdef CONFIG_X86_64
973         .load_gs_index = xen_load_gs_index,
974 #endif
975
976         .alloc_ldt = xen_alloc_ldt,
977         .free_ldt = xen_free_ldt,
978
979         .store_gdt = native_store_gdt,
980         .store_idt = native_store_idt,
981         .store_tr = xen_store_tr,
982
983         .write_ldt_entry = xen_write_ldt_entry,
984         .write_gdt_entry = xen_write_gdt_entry,
985         .write_idt_entry = xen_write_idt_entry,
986         .load_sp0 = xen_load_sp0,
987
988         .set_iopl_mask = xen_set_iopl_mask,
989         .io_delay = xen_io_delay,
990
991         /* Xen takes care of %gs when switching to usermode for us */
992         .swapgs = paravirt_nop,
993
994         .start_context_switch = paravirt_start_context_switch,
995         .end_context_switch = xen_end_context_switch,
996 };
997
998 static const struct pv_apic_ops xen_apic_ops __initdata = {
999 #ifdef CONFIG_X86_LOCAL_APIC
1000         .startup_ipi_hook = paravirt_nop,
1001 #endif
1002 };
1003
1004 static void xen_reboot(int reason)
1005 {
1006         struct sched_shutdown r = { .reason = reason };
1007
1008         if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1009                 BUG();
1010 }
1011
1012 static void xen_restart(char *msg)
1013 {
1014         xen_reboot(SHUTDOWN_reboot);
1015 }
1016
1017 static void xen_emergency_restart(void)
1018 {
1019         xen_reboot(SHUTDOWN_reboot);
1020 }
1021
1022 static void xen_machine_halt(void)
1023 {
1024         xen_reboot(SHUTDOWN_poweroff);
1025 }
1026
1027 static void xen_crash_shutdown(struct pt_regs *regs)
1028 {
1029         xen_reboot(SHUTDOWN_crash);
1030 }
1031
1032 static int
1033 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1034 {
1035         xen_reboot(SHUTDOWN_crash);
1036         return NOTIFY_DONE;
1037 }
1038
1039 static struct notifier_block xen_panic_block = {
1040         .notifier_call= xen_panic_event,
1041 };
1042
1043 int xen_panic_handler_init(void)
1044 {
1045         atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1046         return 0;
1047 }
1048
1049 static const struct machine_ops __initdata xen_machine_ops = {
1050         .restart = xen_restart,
1051         .halt = xen_machine_halt,
1052         .power_off = xen_machine_halt,
1053         .shutdown = xen_machine_halt,
1054         .crash_shutdown = xen_crash_shutdown,
1055         .emergency_restart = xen_emergency_restart,
1056 };
1057
1058 /*
1059  * Set up the GDT and segment registers for -fstack-protector.  Until
1060  * we do this, we have to be careful not to call any stack-protected
1061  * function, which is most of the kernel.
1062  */
1063 static void __init xen_setup_stackprotector(void)
1064 {
1065         pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1066         pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1067
1068         setup_stack_canary_segment(0);
1069         switch_to_new_gdt(0);
1070
1071         pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1072         pv_cpu_ops.load_gdt = xen_load_gdt;
1073 }
1074
1075 /* First C function to be called on Xen boot */
1076 asmlinkage void __init xen_start_kernel(void)
1077 {
1078         struct physdev_set_iopl set_iopl;
1079         int rc;
1080         pgd_t *pgd;
1081
1082         if (!xen_start_info)
1083                 return;
1084
1085         xen_domain_type = XEN_PV_DOMAIN;
1086
1087         xen_setup_machphys_mapping();
1088
1089         /* Install Xen paravirt ops */
1090         pv_info = xen_info;
1091         pv_init_ops = xen_init_ops;
1092         pv_cpu_ops = xen_cpu_ops;
1093         pv_apic_ops = xen_apic_ops;
1094
1095         x86_init.resources.memory_setup = xen_memory_setup;
1096         x86_init.oem.arch_setup = xen_arch_setup;
1097         x86_init.oem.banner = xen_banner;
1098
1099         xen_init_time_ops();
1100
1101         /*
1102          * Set up some pagetable state before starting to set any ptes.
1103          */
1104
1105         xen_init_mmu_ops();
1106
1107         /* Prevent unwanted bits from being set in PTEs. */
1108         __supported_pte_mask &= ~_PAGE_GLOBAL;
1109         if (!xen_initial_domain())
1110                 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1111
1112         __supported_pte_mask |= _PAGE_IOMAP;
1113
1114         /*
1115          * Prevent page tables from being allocated in highmem, even
1116          * if CONFIG_HIGHPTE is enabled.
1117          */
1118         __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1119
1120         /* Work out if we support NX */
1121         x86_configure_nx();
1122
1123         xen_setup_features();
1124
1125         /* Get mfn list */
1126         if (!xen_feature(XENFEAT_auto_translated_physmap))
1127                 xen_build_dynamic_phys_to_machine();
1128
1129         /*
1130          * Set up kernel GDT and segment registers, mainly so that
1131          * -fstack-protector code can be executed.
1132          */
1133         xen_setup_stackprotector();
1134
1135         xen_init_irq_ops();
1136         xen_init_cpuid_mask();
1137
1138 #ifdef CONFIG_X86_LOCAL_APIC
1139         /*
1140          * set up the basic apic ops.
1141          */
1142         set_xen_basic_apic_ops();
1143 #endif
1144
1145         if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1146                 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1147                 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1148         }
1149
1150         machine_ops = xen_machine_ops;
1151
1152         /*
1153          * The only reliable way to retain the initial address of the
1154          * percpu gdt_page is to remember it here, so we can go and
1155          * mark it RW later, when the initial percpu area is freed.
1156          */
1157         xen_initial_gdt = &per_cpu(gdt_page, 0);
1158
1159         xen_smp_init();
1160
1161 #ifdef CONFIG_ACPI_NUMA
1162         /*
1163          * The pages we from Xen are not related to machine pages, so
1164          * any NUMA information the kernel tries to get from ACPI will
1165          * be meaningless.  Prevent it from trying.
1166          */
1167         acpi_numa = -1;
1168 #endif
1169
1170         pgd = (pgd_t *)xen_start_info->pt_base;
1171
1172         if (!xen_initial_domain())
1173                 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1174
1175         __supported_pte_mask |= _PAGE_IOMAP;
1176         /* Don't do the full vcpu_info placement stuff until we have a
1177            possible map and a non-dummy shared_info. */
1178         per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1179
1180         local_irq_disable();
1181         early_boot_irqs_disabled = true;
1182
1183         memblock_init();
1184
1185         xen_raw_console_write("mapping kernel into physical memory\n");
1186         pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1187         xen_ident_map_ISA();
1188
1189         /* Allocate and initialize top and mid mfn levels for p2m structure */
1190         xen_build_mfn_list_list();
1191
1192         /* keep using Xen gdt for now; no urgent need to change it */
1193
1194 #ifdef CONFIG_X86_32
1195         pv_info.kernel_rpl = 1;
1196         if (xen_feature(XENFEAT_supervisor_mode_kernel))
1197                 pv_info.kernel_rpl = 0;
1198 #else
1199         pv_info.kernel_rpl = 0;
1200 #endif
1201         /* set the limit of our address space */
1202         xen_reserve_top();
1203
1204         /* We used to do this in xen_arch_setup, but that is too late on AMD
1205          * were early_cpu_init (run before ->arch_setup()) calls early_amd_init
1206          * which pokes 0xcf8 port.
1207          */
1208         set_iopl.iopl = 1;
1209         rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1210         if (rc != 0)
1211                 xen_raw_printk("physdev_op failed %d\n", rc);
1212
1213 #ifdef CONFIG_X86_32
1214         /* set up basic CPUID stuff */
1215         cpu_detect(&new_cpu_data);
1216         new_cpu_data.hard_math = 1;
1217         new_cpu_data.wp_works_ok = 1;
1218         new_cpu_data.x86_capability[0] = cpuid_edx(1);
1219 #endif
1220
1221         /* Poke various useful things into boot_params */
1222         boot_params.hdr.type_of_loader = (9 << 4) | 0;
1223         boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1224                 ? __pa(xen_start_info->mod_start) : 0;
1225         boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1226         boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1227
1228         if (!xen_initial_domain()) {
1229                 add_preferred_console("xenboot", 0, NULL);
1230                 add_preferred_console("tty", 0, NULL);
1231                 add_preferred_console("hvc", 0, NULL);
1232                 if (pci_xen)
1233                         x86_init.pci.arch_init = pci_xen_init;
1234         } else {
1235                 /* Make sure ACS will be enabled */
1236                 pci_request_acs();
1237         }
1238                 
1239
1240         xen_raw_console_write("about to get started...\n");
1241
1242         xen_setup_runstate_info(0);
1243
1244         /* Start the world */
1245 #ifdef CONFIG_X86_32
1246         i386_start_kernel();
1247 #else
1248         x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1249 #endif
1250 }
1251
1252 static int init_hvm_pv_info(int *major, int *minor)
1253 {
1254         uint32_t eax, ebx, ecx, edx, pages, msr, base;
1255         u64 pfn;
1256
1257         base = xen_cpuid_base();
1258         cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1259
1260         *major = eax >> 16;
1261         *minor = eax & 0xffff;
1262         printk(KERN_INFO "Xen version %d.%d.\n", *major, *minor);
1263
1264         cpuid(base + 2, &pages, &msr, &ecx, &edx);
1265
1266         pfn = __pa(hypercall_page);
1267         wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1268
1269         xen_setup_features();
1270
1271         pv_info.name = "Xen HVM";
1272
1273         xen_domain_type = XEN_HVM_DOMAIN;
1274
1275         return 0;
1276 }
1277
1278 void __ref xen_hvm_init_shared_info(void)
1279 {
1280         int cpu;
1281         struct xen_add_to_physmap xatp;
1282         static struct shared_info *shared_info_page = 0;
1283
1284         if (!shared_info_page)
1285                 shared_info_page = (struct shared_info *)
1286                         extend_brk(PAGE_SIZE, PAGE_SIZE);
1287         xatp.domid = DOMID_SELF;
1288         xatp.idx = 0;
1289         xatp.space = XENMAPSPACE_shared_info;
1290         xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1291         if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1292                 BUG();
1293
1294         HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1295
1296         /* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1297          * page, we use it in the event channel upcall and in some pvclock
1298          * related functions. We don't need the vcpu_info placement
1299          * optimizations because we don't use any pv_mmu or pv_irq op on
1300          * HVM.
1301          * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1302          * online but xen_hvm_init_shared_info is run at resume time too and
1303          * in that case multiple vcpus might be online. */
1304         for_each_online_cpu(cpu) {
1305                 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1306         }
1307 }
1308
1309 #ifdef CONFIG_XEN_PVHVM
1310 static int __cpuinit xen_hvm_cpu_notify(struct notifier_block *self,
1311                                     unsigned long action, void *hcpu)
1312 {
1313         int cpu = (long)hcpu;
1314         switch (action) {
1315         case CPU_UP_PREPARE:
1316                 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1317                 if (xen_have_vector_callback)
1318                         xen_init_lock_cpu(cpu);
1319                 break;
1320         default:
1321                 break;
1322         }
1323         return NOTIFY_OK;
1324 }
1325
1326 static struct notifier_block __cpuinitdata xen_hvm_cpu_notifier = {
1327         .notifier_call  = xen_hvm_cpu_notify,
1328 };
1329
1330 static void __init xen_hvm_guest_init(void)
1331 {
1332         int r;
1333         int major, minor;
1334
1335         r = init_hvm_pv_info(&major, &minor);
1336         if (r < 0)
1337                 return;
1338
1339         xen_hvm_init_shared_info();
1340
1341         if (xen_feature(XENFEAT_hvm_callback_vector))
1342                 xen_have_vector_callback = 1;
1343         xen_hvm_smp_init();
1344         register_cpu_notifier(&xen_hvm_cpu_notifier);
1345         xen_unplug_emulated_devices();
1346         have_vcpu_info_placement = 0;
1347         x86_init.irqs.intr_init = xen_init_IRQ;
1348         xen_hvm_init_time_ops();
1349         xen_hvm_init_mmu_ops();
1350 }
1351
1352 static bool __init xen_hvm_platform(void)
1353 {
1354         if (xen_pv_domain())
1355                 return false;
1356
1357         if (!xen_cpuid_base())
1358                 return false;
1359
1360         return true;
1361 }
1362
1363 bool xen_hvm_need_lapic(void)
1364 {
1365         if (xen_pv_domain())
1366                 return false;
1367         if (!xen_hvm_domain())
1368                 return false;
1369         if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
1370                 return false;
1371         return true;
1372 }
1373 EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1374
1375 const __refconst struct hypervisor_x86 x86_hyper_xen_hvm = {
1376         .name                   = "Xen HVM",
1377         .detect                 = xen_hvm_platform,
1378         .init_platform          = xen_hvm_guest_init,
1379 };
1380 EXPORT_SYMBOL(x86_hyper_xen_hvm);
1381 #endif