5189fe89f42fe642aeaafa76b706a7d5952e42c6
[pandora-kernel.git] / arch / x86 / xen / enlighten.c
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
34
35 #include <xen/xen.h>
36 #include <xen/interface/xen.h>
37 #include <xen/interface/version.h>
38 #include <xen/interface/physdev.h>
39 #include <xen/interface/vcpu.h>
40 #include <xen/interface/memory.h>
41 #include <xen/features.h>
42 #include <xen/page.h>
43 #include <xen/hvm.h>
44 #include <xen/hvc-console.h>
45
46 #include <asm/paravirt.h>
47 #include <asm/apic.h>
48 #include <asm/page.h>
49 #include <asm/xen/pci.h>
50 #include <asm/xen/hypercall.h>
51 #include <asm/xen/hypervisor.h>
52 #include <asm/fixmap.h>
53 #include <asm/processor.h>
54 #include <asm/proto.h>
55 #include <asm/msr-index.h>
56 #include <asm/traps.h>
57 #include <asm/setup.h>
58 #include <asm/desc.h>
59 #include <asm/pgalloc.h>
60 #include <asm/pgtable.h>
61 #include <asm/tlbflush.h>
62 #include <asm/reboot.h>
63 #include <asm/stackprotector.h>
64 #include <asm/hypervisor.h>
65 #include <asm/pci_x86.h>
66
67 #include "xen-ops.h"
68 #include "mmu.h"
69 #include "multicalls.h"
70
71 EXPORT_SYMBOL_GPL(hypercall_page);
72
73 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
74 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
75
76 enum xen_domain_type xen_domain_type = XEN_NATIVE;
77 EXPORT_SYMBOL_GPL(xen_domain_type);
78
79 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
80 EXPORT_SYMBOL(machine_to_phys_mapping);
81 unsigned long  machine_to_phys_nr;
82 EXPORT_SYMBOL(machine_to_phys_nr);
83
84 struct start_info *xen_start_info;
85 EXPORT_SYMBOL_GPL(xen_start_info);
86
87 struct shared_info xen_dummy_shared_info;
88
89 void *xen_initial_gdt;
90
91 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
92 __read_mostly int xen_have_vector_callback;
93 EXPORT_SYMBOL_GPL(xen_have_vector_callback);
94
95 /*
96  * Point at some empty memory to start with. We map the real shared_info
97  * page as soon as fixmap is up and running.
98  */
99 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
100
101 /*
102  * Flag to determine whether vcpu info placement is available on all
103  * VCPUs.  We assume it is to start with, and then set it to zero on
104  * the first failure.  This is because it can succeed on some VCPUs
105  * and not others, since it can involve hypervisor memory allocation,
106  * or because the guest failed to guarantee all the appropriate
107  * constraints on all VCPUs (ie buffer can't cross a page boundary).
108  *
109  * Note that any particular CPU may be using a placed vcpu structure,
110  * but we can only optimise if the all are.
111  *
112  * 0: not available, 1: available
113  */
114 static int have_vcpu_info_placement = 1;
115
116 static void clamp_max_cpus(void)
117 {
118 #ifdef CONFIG_SMP
119         if (setup_max_cpus > MAX_VIRT_CPUS)
120                 setup_max_cpus = MAX_VIRT_CPUS;
121 #endif
122 }
123
124 static void xen_vcpu_setup(int cpu)
125 {
126         struct vcpu_register_vcpu_info info;
127         int err;
128         struct vcpu_info *vcpup;
129
130         BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
131
132         /*
133          * This path is called twice on PVHVM - first during bootup via
134          * smp_init -> xen_hvm_cpu_notify, and then if the VCPU is being
135          * hotplugged: cpu_up -> xen_hvm_cpu_notify.
136          * As we can only do the VCPUOP_register_vcpu_info once lets
137          * not over-write its result.
138          *
139          * For PV it is called during restore (xen_vcpu_restore) and bootup
140          * (xen_setup_vcpu_info_placement). The hotplug mechanism does not
141          * use this function.
142          */
143         if (xen_hvm_domain()) {
144                 if (per_cpu(xen_vcpu, cpu) == &per_cpu(xen_vcpu_info, cpu))
145                         return;
146         }
147         if (cpu < MAX_VIRT_CPUS)
148                 per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
149
150         if (!have_vcpu_info_placement) {
151                 if (cpu >= MAX_VIRT_CPUS)
152                         clamp_max_cpus();
153                 return;
154         }
155
156         vcpup = &per_cpu(xen_vcpu_info, cpu);
157         info.mfn = arbitrary_virt_to_mfn(vcpup);
158         info.offset = offset_in_page(vcpup);
159
160         /* Check to see if the hypervisor will put the vcpu_info
161            structure where we want it, which allows direct access via
162            a percpu-variable. */
163         err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
164
165         if (err) {
166                 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
167                 have_vcpu_info_placement = 0;
168                 clamp_max_cpus();
169         } else {
170                 /* This cpu is using the registered vcpu info, even if
171                    later ones fail to. */
172                 per_cpu(xen_vcpu, cpu) = vcpup;
173         }
174 }
175
176 /*
177  * On restore, set the vcpu placement up again.
178  * If it fails, then we're in a bad state, since
179  * we can't back out from using it...
180  */
181 void xen_vcpu_restore(void)
182 {
183         int cpu;
184
185         for_each_online_cpu(cpu) {
186                 bool other_cpu = (cpu != smp_processor_id());
187
188                 if (other_cpu &&
189                     HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
190                         BUG();
191
192                 xen_setup_runstate_info(cpu);
193
194                 if (have_vcpu_info_placement)
195                         xen_vcpu_setup(cpu);
196
197                 if (other_cpu &&
198                     HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
199                         BUG();
200         }
201 }
202
203 static void __init xen_banner(void)
204 {
205         unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
206         struct xen_extraversion extra;
207         HYPERVISOR_xen_version(XENVER_extraversion, &extra);
208
209         printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
210                pv_info.name);
211         printk(KERN_INFO "Xen version: %d.%d%s%s\n",
212                version >> 16, version & 0xffff, extra.extraversion,
213                xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
214 }
215
216 #define CPUID_THERM_POWER_LEAF 6
217 #define APERFMPERF_PRESENT 0
218
219 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
220 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
221
222 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
223                       unsigned int *cx, unsigned int *dx)
224 {
225         unsigned maskebx = ~0;
226         unsigned maskecx = ~0;
227         unsigned maskedx = ~0;
228
229         /*
230          * Mask out inconvenient features, to try and disable as many
231          * unsupported kernel subsystems as possible.
232          */
233         switch (*ax) {
234         case 1:
235                 maskecx = cpuid_leaf1_ecx_mask;
236                 maskedx = cpuid_leaf1_edx_mask;
237                 break;
238
239         case CPUID_THERM_POWER_LEAF:
240                 /* Disabling APERFMPERF for kernel usage */
241                 maskecx = ~(1 << APERFMPERF_PRESENT);
242                 break;
243
244         case 0xb:
245                 /* Suppress extended topology stuff */
246                 maskebx = 0;
247                 break;
248         }
249
250         asm(XEN_EMULATE_PREFIX "cpuid"
251                 : "=a" (*ax),
252                   "=b" (*bx),
253                   "=c" (*cx),
254                   "=d" (*dx)
255                 : "0" (*ax), "2" (*cx));
256
257         *bx &= maskebx;
258         *cx &= maskecx;
259         *dx &= maskedx;
260 }
261
262 static void __init xen_init_cpuid_mask(void)
263 {
264         unsigned int ax, bx, cx, dx;
265         unsigned int xsave_mask;
266
267         cpuid_leaf1_edx_mask =
268                 ~((1 << X86_FEATURE_MCE)  |  /* disable MCE */
269                   (1 << X86_FEATURE_MCA)  |  /* disable MCA */
270                   (1 << X86_FEATURE_MTRR) |  /* disable MTRR */
271                   (1 << X86_FEATURE_ACC));   /* thermal monitoring */
272
273         if (!xen_initial_domain())
274                 cpuid_leaf1_edx_mask &=
275                         ~((1 << X86_FEATURE_APIC) |  /* disable local APIC */
276                           (1 << X86_FEATURE_ACPI));  /* disable ACPI */
277         ax = 1;
278         cx = 0;
279         xen_cpuid(&ax, &bx, &cx, &dx);
280
281         xsave_mask =
282                 (1 << (X86_FEATURE_XSAVE % 32)) |
283                 (1 << (X86_FEATURE_OSXSAVE % 32));
284
285         /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
286         if ((cx & xsave_mask) != xsave_mask)
287                 cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
288 }
289
290 static void xen_set_debugreg(int reg, unsigned long val)
291 {
292         HYPERVISOR_set_debugreg(reg, val);
293 }
294
295 static unsigned long xen_get_debugreg(int reg)
296 {
297         return HYPERVISOR_get_debugreg(reg);
298 }
299
300 static void xen_end_context_switch(struct task_struct *next)
301 {
302         xen_mc_flush();
303         paravirt_end_context_switch(next);
304 }
305
306 static unsigned long xen_store_tr(void)
307 {
308         return 0;
309 }
310
311 /*
312  * Set the page permissions for a particular virtual address.  If the
313  * address is a vmalloc mapping (or other non-linear mapping), then
314  * find the linear mapping of the page and also set its protections to
315  * match.
316  */
317 static void set_aliased_prot(void *v, pgprot_t prot)
318 {
319         int level;
320         pte_t *ptep;
321         pte_t pte;
322         unsigned long pfn;
323         struct page *page;
324
325         ptep = lookup_address((unsigned long)v, &level);
326         BUG_ON(ptep == NULL);
327
328         pfn = pte_pfn(*ptep);
329         page = pfn_to_page(pfn);
330
331         pte = pfn_pte(pfn, prot);
332
333         if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
334                 BUG();
335
336         if (!PageHighMem(page)) {
337                 void *av = __va(PFN_PHYS(pfn));
338
339                 if (av != v)
340                         if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
341                                 BUG();
342         } else
343                 kmap_flush_unused();
344 }
345
346 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
347 {
348         const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
349         int i;
350
351         for(i = 0; i < entries; i += entries_per_page)
352                 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
353 }
354
355 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
356 {
357         const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
358         int i;
359
360         for(i = 0; i < entries; i += entries_per_page)
361                 set_aliased_prot(ldt + i, PAGE_KERNEL);
362 }
363
364 static void xen_set_ldt(const void *addr, unsigned entries)
365 {
366         struct mmuext_op *op;
367         struct multicall_space mcs = xen_mc_entry(sizeof(*op));
368
369         trace_xen_cpu_set_ldt(addr, entries);
370
371         op = mcs.args;
372         op->cmd = MMUEXT_SET_LDT;
373         op->arg1.linear_addr = (unsigned long)addr;
374         op->arg2.nr_ents = entries;
375
376         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
377
378         xen_mc_issue(PARAVIRT_LAZY_CPU);
379 }
380
381 static void xen_load_gdt(const struct desc_ptr *dtr)
382 {
383         unsigned long va = dtr->address;
384         unsigned int size = dtr->size + 1;
385         unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
386         unsigned long frames[pages];
387         int f;
388
389         /*
390          * A GDT can be up to 64k in size, which corresponds to 8192
391          * 8-byte entries, or 16 4k pages..
392          */
393
394         BUG_ON(size > 65536);
395         BUG_ON(va & ~PAGE_MASK);
396
397         for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
398                 int level;
399                 pte_t *ptep;
400                 unsigned long pfn, mfn;
401                 void *virt;
402
403                 /*
404                  * The GDT is per-cpu and is in the percpu data area.
405                  * That can be virtually mapped, so we need to do a
406                  * page-walk to get the underlying MFN for the
407                  * hypercall.  The page can also be in the kernel's
408                  * linear range, so we need to RO that mapping too.
409                  */
410                 ptep = lookup_address(va, &level);
411                 BUG_ON(ptep == NULL);
412
413                 pfn = pte_pfn(*ptep);
414                 mfn = pfn_to_mfn(pfn);
415                 virt = __va(PFN_PHYS(pfn));
416
417                 frames[f] = mfn;
418
419                 make_lowmem_page_readonly((void *)va);
420                 make_lowmem_page_readonly(virt);
421         }
422
423         if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
424                 BUG();
425 }
426
427 /*
428  * load_gdt for early boot, when the gdt is only mapped once
429  */
430 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
431 {
432         unsigned long va = dtr->address;
433         unsigned int size = dtr->size + 1;
434         unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
435         unsigned long frames[pages];
436         int f;
437
438         /*
439          * A GDT can be up to 64k in size, which corresponds to 8192
440          * 8-byte entries, or 16 4k pages..
441          */
442
443         BUG_ON(size > 65536);
444         BUG_ON(va & ~PAGE_MASK);
445
446         for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
447                 pte_t pte;
448                 unsigned long pfn, mfn;
449
450                 pfn = virt_to_pfn(va);
451                 mfn = pfn_to_mfn(pfn);
452
453                 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
454
455                 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
456                         BUG();
457
458                 frames[f] = mfn;
459         }
460
461         if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
462                 BUG();
463 }
464
465 static void load_TLS_descriptor(struct thread_struct *t,
466                                 unsigned int cpu, unsigned int i)
467 {
468         struct desc_struct *gdt = get_cpu_gdt_table(cpu);
469         xmaddr_t maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
470         struct multicall_space mc = __xen_mc_entry(0);
471
472         MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
473 }
474
475 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
476 {
477         /*
478          * XXX sleazy hack: If we're being called in a lazy-cpu zone
479          * and lazy gs handling is enabled, it means we're in a
480          * context switch, and %gs has just been saved.  This means we
481          * can zero it out to prevent faults on exit from the
482          * hypervisor if the next process has no %gs.  Either way, it
483          * has been saved, and the new value will get loaded properly.
484          * This will go away as soon as Xen has been modified to not
485          * save/restore %gs for normal hypercalls.
486          *
487          * On x86_64, this hack is not used for %gs, because gs points
488          * to KERNEL_GS_BASE (and uses it for PDA references), so we
489          * must not zero %gs on x86_64
490          *
491          * For x86_64, we need to zero %fs, otherwise we may get an
492          * exception between the new %fs descriptor being loaded and
493          * %fs being effectively cleared at __switch_to().
494          */
495         if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
496 #ifdef CONFIG_X86_32
497                 lazy_load_gs(0);
498 #else
499                 loadsegment(fs, 0);
500 #endif
501         }
502
503         xen_mc_batch();
504
505         load_TLS_descriptor(t, cpu, 0);
506         load_TLS_descriptor(t, cpu, 1);
507         load_TLS_descriptor(t, cpu, 2);
508
509         xen_mc_issue(PARAVIRT_LAZY_CPU);
510 }
511
512 #ifdef CONFIG_X86_64
513 static void xen_load_gs_index(unsigned int idx)
514 {
515         if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
516                 BUG();
517 }
518 #endif
519
520 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
521                                 const void *ptr)
522 {
523         xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
524         u64 entry = *(u64 *)ptr;
525
526         trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
527
528         preempt_disable();
529
530         xen_mc_flush();
531         if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
532                 BUG();
533
534         preempt_enable();
535 }
536
537 static int cvt_gate_to_trap(int vector, const gate_desc *val,
538                             struct trap_info *info)
539 {
540         unsigned long addr;
541
542         if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
543                 return 0;
544
545         info->vector = vector;
546
547         addr = gate_offset(*val);
548 #ifdef CONFIG_X86_64
549         /*
550          * Look for known traps using IST, and substitute them
551          * appropriately.  The debugger ones are the only ones we care
552          * about.  Xen will handle faults like double_fault and
553          * machine_check, so we should never see them.  Warn if
554          * there's an unexpected IST-using fault handler.
555          */
556         if (addr == (unsigned long)debug)
557                 addr = (unsigned long)xen_debug;
558         else if (addr == (unsigned long)int3)
559                 addr = (unsigned long)xen_int3;
560         else if (addr == (unsigned long)stack_segment)
561                 addr = (unsigned long)xen_stack_segment;
562         else if (addr == (unsigned long)double_fault ||
563                  addr == (unsigned long)nmi) {
564                 /* Don't need to handle these */
565                 return 0;
566 #ifdef CONFIG_X86_MCE
567         } else if (addr == (unsigned long)machine_check) {
568                 return 0;
569 #endif
570         } else {
571                 /* Some other trap using IST? */
572                 if (WARN_ON(val->ist != 0))
573                         return 0;
574         }
575 #endif  /* CONFIG_X86_64 */
576         info->address = addr;
577
578         info->cs = gate_segment(*val);
579         info->flags = val->dpl;
580         /* interrupt gates clear IF */
581         if (val->type == GATE_INTERRUPT)
582                 info->flags |= 1 << 2;
583
584         return 1;
585 }
586
587 /* Locations of each CPU's IDT */
588 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
589
590 /* Set an IDT entry.  If the entry is part of the current IDT, then
591    also update Xen. */
592 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
593 {
594         unsigned long p = (unsigned long)&dt[entrynum];
595         unsigned long start, end;
596
597         trace_xen_cpu_write_idt_entry(dt, entrynum, g);
598
599         preempt_disable();
600
601         start = __this_cpu_read(idt_desc.address);
602         end = start + __this_cpu_read(idt_desc.size) + 1;
603
604         xen_mc_flush();
605
606         native_write_idt_entry(dt, entrynum, g);
607
608         if (p >= start && (p + 8) <= end) {
609                 struct trap_info info[2];
610
611                 info[1].address = 0;
612
613                 if (cvt_gate_to_trap(entrynum, g, &info[0]))
614                         if (HYPERVISOR_set_trap_table(info))
615                                 BUG();
616         }
617
618         preempt_enable();
619 }
620
621 static void xen_convert_trap_info(const struct desc_ptr *desc,
622                                   struct trap_info *traps)
623 {
624         unsigned in, out, count;
625
626         count = (desc->size+1) / sizeof(gate_desc);
627         BUG_ON(count > 256);
628
629         for (in = out = 0; in < count; in++) {
630                 gate_desc *entry = (gate_desc*)(desc->address) + in;
631
632                 if (cvt_gate_to_trap(in, entry, &traps[out]))
633                         out++;
634         }
635         traps[out].address = 0;
636 }
637
638 void xen_copy_trap_info(struct trap_info *traps)
639 {
640         const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
641
642         xen_convert_trap_info(desc, traps);
643 }
644
645 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
646    hold a spinlock to protect the static traps[] array (static because
647    it avoids allocation, and saves stack space). */
648 static void xen_load_idt(const struct desc_ptr *desc)
649 {
650         static DEFINE_SPINLOCK(lock);
651         static struct trap_info traps[257];
652
653         trace_xen_cpu_load_idt(desc);
654
655         spin_lock(&lock);
656
657         __get_cpu_var(idt_desc) = *desc;
658
659         xen_convert_trap_info(desc, traps);
660
661         xen_mc_flush();
662         if (HYPERVISOR_set_trap_table(traps))
663                 BUG();
664
665         spin_unlock(&lock);
666 }
667
668 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
669    they're handled differently. */
670 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
671                                 const void *desc, int type)
672 {
673         trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
674
675         preempt_disable();
676
677         switch (type) {
678         case DESC_LDT:
679         case DESC_TSS:
680                 /* ignore */
681                 break;
682
683         default: {
684                 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
685
686                 xen_mc_flush();
687                 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
688                         BUG();
689         }
690
691         }
692
693         preempt_enable();
694 }
695
696 /*
697  * Version of write_gdt_entry for use at early boot-time needed to
698  * update an entry as simply as possible.
699  */
700 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
701                                             const void *desc, int type)
702 {
703         trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
704
705         switch (type) {
706         case DESC_LDT:
707         case DESC_TSS:
708                 /* ignore */
709                 break;
710
711         default: {
712                 xmaddr_t maddr = virt_to_machine(&dt[entry]);
713
714                 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
715                         dt[entry] = *(struct desc_struct *)desc;
716         }
717
718         }
719 }
720
721 static void xen_load_sp0(struct tss_struct *tss,
722                          struct thread_struct *thread)
723 {
724         struct multicall_space mcs;
725
726         mcs = xen_mc_entry(0);
727         MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
728         xen_mc_issue(PARAVIRT_LAZY_CPU);
729 }
730
731 static void xen_set_iopl_mask(unsigned mask)
732 {
733         struct physdev_set_iopl set_iopl;
734
735         /* Force the change at ring 0. */
736         set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
737         HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
738 }
739
740 static void xen_io_delay(void)
741 {
742 }
743
744 #ifdef CONFIG_X86_LOCAL_APIC
745 static u32 xen_apic_read(u32 reg)
746 {
747         return 0;
748 }
749
750 static void xen_apic_write(u32 reg, u32 val)
751 {
752         /* Warn to see if there's any stray references */
753         WARN_ON(1);
754 }
755
756 static u64 xen_apic_icr_read(void)
757 {
758         return 0;
759 }
760
761 static void xen_apic_icr_write(u32 low, u32 id)
762 {
763         /* Warn to see if there's any stray references */
764         WARN_ON(1);
765 }
766
767 static void xen_apic_wait_icr_idle(void)
768 {
769         return;
770 }
771
772 static u32 xen_safe_apic_wait_icr_idle(void)
773 {
774         return 0;
775 }
776
777 static void set_xen_basic_apic_ops(void)
778 {
779         apic->read = xen_apic_read;
780         apic->write = xen_apic_write;
781         apic->icr_read = xen_apic_icr_read;
782         apic->icr_write = xen_apic_icr_write;
783         apic->wait_icr_idle = xen_apic_wait_icr_idle;
784         apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
785 }
786
787 #endif
788
789 static void xen_clts(void)
790 {
791         struct multicall_space mcs;
792
793         mcs = xen_mc_entry(0);
794
795         MULTI_fpu_taskswitch(mcs.mc, 0);
796
797         xen_mc_issue(PARAVIRT_LAZY_CPU);
798 }
799
800 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
801
802 static unsigned long xen_read_cr0(void)
803 {
804         unsigned long cr0 = percpu_read(xen_cr0_value);
805
806         if (unlikely(cr0 == 0)) {
807                 cr0 = native_read_cr0();
808                 percpu_write(xen_cr0_value, cr0);
809         }
810
811         return cr0;
812 }
813
814 static void xen_write_cr0(unsigned long cr0)
815 {
816         struct multicall_space mcs;
817
818         percpu_write(xen_cr0_value, cr0);
819
820         /* Only pay attention to cr0.TS; everything else is
821            ignored. */
822         mcs = xen_mc_entry(0);
823
824         MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
825
826         xen_mc_issue(PARAVIRT_LAZY_CPU);
827 }
828
829 static void xen_write_cr4(unsigned long cr4)
830 {
831         cr4 &= ~X86_CR4_PGE;
832         cr4 &= ~X86_CR4_PSE;
833
834         native_write_cr4(cr4);
835 }
836 #ifdef CONFIG_X86_64
837 static inline unsigned long xen_read_cr8(void)
838 {
839         return 0;
840 }
841 static inline void xen_write_cr8(unsigned long val)
842 {
843         BUG_ON(val);
844 }
845 #endif
846 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
847 {
848         int ret;
849
850         ret = 0;
851
852         switch (msr) {
853 #ifdef CONFIG_X86_64
854                 unsigned which;
855                 u64 base;
856
857         case MSR_FS_BASE:               which = SEGBASE_FS; goto set;
858         case MSR_KERNEL_GS_BASE:        which = SEGBASE_GS_USER; goto set;
859         case MSR_GS_BASE:               which = SEGBASE_GS_KERNEL; goto set;
860
861         set:
862                 base = ((u64)high << 32) | low;
863                 if (HYPERVISOR_set_segment_base(which, base) != 0)
864                         ret = -EIO;
865                 break;
866 #endif
867
868         case MSR_STAR:
869         case MSR_CSTAR:
870         case MSR_LSTAR:
871         case MSR_SYSCALL_MASK:
872         case MSR_IA32_SYSENTER_CS:
873         case MSR_IA32_SYSENTER_ESP:
874         case MSR_IA32_SYSENTER_EIP:
875                 /* Fast syscall setup is all done in hypercalls, so
876                    these are all ignored.  Stub them out here to stop
877                    Xen console noise. */
878                 break;
879
880         case MSR_IA32_CR_PAT:
881                 if (smp_processor_id() == 0)
882                         xen_set_pat(((u64)high << 32) | low);
883                 break;
884
885         default:
886                 ret = native_write_msr_safe(msr, low, high);
887         }
888
889         return ret;
890 }
891
892 void xen_setup_shared_info(void)
893 {
894         if (!xen_feature(XENFEAT_auto_translated_physmap)) {
895                 set_fixmap(FIX_PARAVIRT_BOOTMAP,
896                            xen_start_info->shared_info);
897
898                 HYPERVISOR_shared_info =
899                         (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
900         } else
901                 HYPERVISOR_shared_info =
902                         (struct shared_info *)__va(xen_start_info->shared_info);
903
904 #ifndef CONFIG_SMP
905         /* In UP this is as good a place as any to set up shared info */
906         xen_setup_vcpu_info_placement();
907 #endif
908
909         xen_setup_mfn_list_list();
910 }
911
912 /* This is called once we have the cpu_possible_map */
913 void xen_setup_vcpu_info_placement(void)
914 {
915         int cpu;
916
917         for_each_possible_cpu(cpu)
918                 xen_vcpu_setup(cpu);
919
920         /* xen_vcpu_setup managed to place the vcpu_info within the
921            percpu area for all cpus, so make use of it */
922         if (have_vcpu_info_placement) {
923                 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
924                 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
925                 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
926                 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
927                 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
928         }
929 }
930
931 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
932                           unsigned long addr, unsigned len)
933 {
934         char *start, *end, *reloc;
935         unsigned ret;
936
937         start = end = reloc = NULL;
938
939 #define SITE(op, x)                                                     \
940         case PARAVIRT_PATCH(op.x):                                      \
941         if (have_vcpu_info_placement) {                                 \
942                 start = (char *)xen_##x##_direct;                       \
943                 end = xen_##x##_direct_end;                             \
944                 reloc = xen_##x##_direct_reloc;                         \
945         }                                                               \
946         goto patch_site
947
948         switch (type) {
949                 SITE(pv_irq_ops, irq_enable);
950                 SITE(pv_irq_ops, irq_disable);
951                 SITE(pv_irq_ops, save_fl);
952                 SITE(pv_irq_ops, restore_fl);
953 #undef SITE
954
955         patch_site:
956                 if (start == NULL || (end-start) > len)
957                         goto default_patch;
958
959                 ret = paravirt_patch_insns(insnbuf, len, start, end);
960
961                 /* Note: because reloc is assigned from something that
962                    appears to be an array, gcc assumes it's non-null,
963                    but doesn't know its relationship with start and
964                    end. */
965                 if (reloc > start && reloc < end) {
966                         int reloc_off = reloc - start;
967                         long *relocp = (long *)(insnbuf + reloc_off);
968                         long delta = start - (char *)addr;
969
970                         *relocp += delta;
971                 }
972                 break;
973
974         default_patch:
975         default:
976                 ret = paravirt_patch_default(type, clobbers, insnbuf,
977                                              addr, len);
978                 break;
979         }
980
981         return ret;
982 }
983
984 static const struct pv_info xen_info __initconst = {
985         .paravirt_enabled = 1,
986         .shared_kernel_pmd = 0,
987
988 #ifdef CONFIG_X86_64
989         .extra_user_64bit_cs = FLAT_USER_CS64,
990 #endif
991
992         .name = "Xen",
993 };
994
995 static const struct pv_init_ops xen_init_ops __initconst = {
996         .patch = xen_patch,
997 };
998
999 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1000         .cpuid = xen_cpuid,
1001
1002         .set_debugreg = xen_set_debugreg,
1003         .get_debugreg = xen_get_debugreg,
1004
1005         .clts = xen_clts,
1006
1007         .read_cr0 = xen_read_cr0,
1008         .write_cr0 = xen_write_cr0,
1009
1010         .read_cr4 = native_read_cr4,
1011         .read_cr4_safe = native_read_cr4_safe,
1012         .write_cr4 = xen_write_cr4,
1013
1014 #ifdef CONFIG_X86_64
1015         .read_cr8 = xen_read_cr8,
1016         .write_cr8 = xen_write_cr8,
1017 #endif
1018
1019         .wbinvd = native_wbinvd,
1020
1021         .read_msr = native_read_msr_safe,
1022         .rdmsr_regs = native_rdmsr_safe_regs,
1023         .write_msr = xen_write_msr_safe,
1024         .wrmsr_regs = native_wrmsr_safe_regs,
1025
1026         .read_tsc = native_read_tsc,
1027         .read_pmc = native_read_pmc,
1028
1029         .read_tscp = native_read_tscp,
1030
1031         .iret = xen_iret,
1032         .irq_enable_sysexit = xen_sysexit,
1033 #ifdef CONFIG_X86_64
1034         .usergs_sysret32 = xen_sysret32,
1035         .usergs_sysret64 = xen_sysret64,
1036 #endif
1037
1038         .load_tr_desc = paravirt_nop,
1039         .set_ldt = xen_set_ldt,
1040         .load_gdt = xen_load_gdt,
1041         .load_idt = xen_load_idt,
1042         .load_tls = xen_load_tls,
1043 #ifdef CONFIG_X86_64
1044         .load_gs_index = xen_load_gs_index,
1045 #endif
1046
1047         .alloc_ldt = xen_alloc_ldt,
1048         .free_ldt = xen_free_ldt,
1049
1050         .store_gdt = native_store_gdt,
1051         .store_idt = native_store_idt,
1052         .store_tr = xen_store_tr,
1053
1054         .write_ldt_entry = xen_write_ldt_entry,
1055         .write_gdt_entry = xen_write_gdt_entry,
1056         .write_idt_entry = xen_write_idt_entry,
1057         .load_sp0 = xen_load_sp0,
1058
1059         .set_iopl_mask = xen_set_iopl_mask,
1060         .io_delay = xen_io_delay,
1061
1062         /* Xen takes care of %gs when switching to usermode for us */
1063         .swapgs = paravirt_nop,
1064
1065         .start_context_switch = paravirt_start_context_switch,
1066         .end_context_switch = xen_end_context_switch,
1067 };
1068
1069 static const struct pv_apic_ops xen_apic_ops __initconst = {
1070 #ifdef CONFIG_X86_LOCAL_APIC
1071         .startup_ipi_hook = paravirt_nop,
1072 #endif
1073 };
1074
1075 static void xen_reboot(int reason)
1076 {
1077         struct sched_shutdown r = { .reason = reason };
1078
1079         if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1080                 BUG();
1081 }
1082
1083 static void xen_restart(char *msg)
1084 {
1085         xen_reboot(SHUTDOWN_reboot);
1086 }
1087
1088 static void xen_emergency_restart(void)
1089 {
1090         xen_reboot(SHUTDOWN_reboot);
1091 }
1092
1093 static void xen_machine_halt(void)
1094 {
1095         xen_reboot(SHUTDOWN_poweroff);
1096 }
1097
1098 static void xen_machine_power_off(void)
1099 {
1100         if (pm_power_off)
1101                 pm_power_off();
1102         xen_reboot(SHUTDOWN_poweroff);
1103 }
1104
1105 static void xen_crash_shutdown(struct pt_regs *regs)
1106 {
1107         xen_reboot(SHUTDOWN_crash);
1108 }
1109
1110 static int
1111 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1112 {
1113         xen_reboot(SHUTDOWN_crash);
1114         return NOTIFY_DONE;
1115 }
1116
1117 static struct notifier_block xen_panic_block = {
1118         .notifier_call= xen_panic_event,
1119 };
1120
1121 int xen_panic_handler_init(void)
1122 {
1123         atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1124         return 0;
1125 }
1126
1127 static const struct machine_ops xen_machine_ops __initconst = {
1128         .restart = xen_restart,
1129         .halt = xen_machine_halt,
1130         .power_off = xen_machine_power_off,
1131         .shutdown = xen_machine_halt,
1132         .crash_shutdown = xen_crash_shutdown,
1133         .emergency_restart = xen_emergency_restart,
1134 };
1135
1136 /*
1137  * Set up the GDT and segment registers for -fstack-protector.  Until
1138  * we do this, we have to be careful not to call any stack-protected
1139  * function, which is most of the kernel.
1140  */
1141 static void __init xen_setup_stackprotector(void)
1142 {
1143         pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1144         pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1145
1146         setup_stack_canary_segment(0);
1147         switch_to_new_gdt(0);
1148
1149         pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1150         pv_cpu_ops.load_gdt = xen_load_gdt;
1151 }
1152
1153 /* First C function to be called on Xen boot */
1154 asmlinkage void __init xen_start_kernel(void)
1155 {
1156         struct physdev_set_iopl set_iopl;
1157         int rc;
1158         pgd_t *pgd;
1159
1160         if (!xen_start_info)
1161                 return;
1162
1163         xen_domain_type = XEN_PV_DOMAIN;
1164
1165         xen_setup_machphys_mapping();
1166
1167         /* Install Xen paravirt ops */
1168         pv_info = xen_info;
1169         pv_init_ops = xen_init_ops;
1170         pv_cpu_ops = xen_cpu_ops;
1171         pv_apic_ops = xen_apic_ops;
1172
1173         x86_init.resources.memory_setup = xen_memory_setup;
1174         x86_init.oem.arch_setup = xen_arch_setup;
1175         x86_init.oem.banner = xen_banner;
1176
1177         xen_init_time_ops();
1178
1179         /*
1180          * Set up some pagetable state before starting to set any ptes.
1181          */
1182
1183         xen_init_mmu_ops();
1184
1185         /* Prevent unwanted bits from being set in PTEs. */
1186         __supported_pte_mask &= ~_PAGE_GLOBAL;
1187         if (!xen_initial_domain())
1188                 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1189
1190         __supported_pte_mask |= _PAGE_IOMAP;
1191
1192         /*
1193          * Prevent page tables from being allocated in highmem, even
1194          * if CONFIG_HIGHPTE is enabled.
1195          */
1196         __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1197
1198         /* Work out if we support NX */
1199         x86_configure_nx();
1200
1201         xen_setup_features();
1202
1203         /* Get mfn list */
1204         if (!xen_feature(XENFEAT_auto_translated_physmap))
1205                 xen_build_dynamic_phys_to_machine();
1206
1207         /*
1208          * Set up kernel GDT and segment registers, mainly so that
1209          * -fstack-protector code can be executed.
1210          */
1211         xen_setup_stackprotector();
1212
1213         xen_init_irq_ops();
1214         xen_init_cpuid_mask();
1215
1216 #ifdef CONFIG_X86_LOCAL_APIC
1217         /*
1218          * set up the basic apic ops.
1219          */
1220         set_xen_basic_apic_ops();
1221 #endif
1222
1223         if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1224                 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1225                 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1226         }
1227
1228         machine_ops = xen_machine_ops;
1229
1230         /*
1231          * The only reliable way to retain the initial address of the
1232          * percpu gdt_page is to remember it here, so we can go and
1233          * mark it RW later, when the initial percpu area is freed.
1234          */
1235         xen_initial_gdt = &per_cpu(gdt_page, 0);
1236
1237         xen_smp_init();
1238
1239 #ifdef CONFIG_ACPI_NUMA
1240         /*
1241          * The pages we from Xen are not related to machine pages, so
1242          * any NUMA information the kernel tries to get from ACPI will
1243          * be meaningless.  Prevent it from trying.
1244          */
1245         acpi_numa = -1;
1246 #endif
1247
1248         pgd = (pgd_t *)xen_start_info->pt_base;
1249
1250         if (!xen_initial_domain())
1251                 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1252
1253         __supported_pte_mask |= _PAGE_IOMAP;
1254         /* Don't do the full vcpu_info placement stuff until we have a
1255            possible map and a non-dummy shared_info. */
1256         per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1257
1258         local_irq_disable();
1259         early_boot_irqs_disabled = true;
1260
1261         memblock_init();
1262
1263         xen_raw_console_write("mapping kernel into physical memory\n");
1264         pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1265         xen_ident_map_ISA();
1266
1267         /* Allocate and initialize top and mid mfn levels for p2m structure */
1268         xen_build_mfn_list_list();
1269
1270         /* keep using Xen gdt for now; no urgent need to change it */
1271
1272 #ifdef CONFIG_X86_32
1273         pv_info.kernel_rpl = 1;
1274         if (xen_feature(XENFEAT_supervisor_mode_kernel))
1275                 pv_info.kernel_rpl = 0;
1276 #else
1277         pv_info.kernel_rpl = 0;
1278 #endif
1279         /* set the limit of our address space */
1280         xen_reserve_top();
1281
1282         /* We used to do this in xen_arch_setup, but that is too late on AMD
1283          * were early_cpu_init (run before ->arch_setup()) calls early_amd_init
1284          * which pokes 0xcf8 port.
1285          */
1286         set_iopl.iopl = 1;
1287         rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1288         if (rc != 0)
1289                 xen_raw_printk("physdev_op failed %d\n", rc);
1290
1291 #ifdef CONFIG_X86_32
1292         /* set up basic CPUID stuff */
1293         cpu_detect(&new_cpu_data);
1294         new_cpu_data.hard_math = 1;
1295         new_cpu_data.wp_works_ok = 1;
1296         new_cpu_data.x86_capability[0] = cpuid_edx(1);
1297 #endif
1298
1299         /* Poke various useful things into boot_params */
1300         boot_params.hdr.type_of_loader = (9 << 4) | 0;
1301         boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1302                 ? __pa(xen_start_info->mod_start) : 0;
1303         boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1304         boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1305
1306         if (!xen_initial_domain()) {
1307                 add_preferred_console("xenboot", 0, NULL);
1308                 add_preferred_console("tty", 0, NULL);
1309                 add_preferred_console("hvc", 0, NULL);
1310                 if (pci_xen)
1311                         x86_init.pci.arch_init = pci_xen_init;
1312         } else {
1313                 const struct dom0_vga_console_info *info =
1314                         (void *)((char *)xen_start_info +
1315                                  xen_start_info->console.dom0.info_off);
1316
1317                 xen_init_vga(info, xen_start_info->console.dom0.info_size);
1318                 xen_start_info->console.domU.mfn = 0;
1319                 xen_start_info->console.domU.evtchn = 0;
1320
1321                 /* Make sure ACS will be enabled */
1322                 pci_request_acs();
1323
1324                 /* Avoid searching for BIOS MP tables */
1325                 x86_init.mpparse.find_smp_config = x86_init_noop;
1326                 x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1327         }
1328 #ifdef CONFIG_PCI
1329         /* PCI BIOS service won't work from a PV guest. */
1330         pci_probe &= ~PCI_PROBE_BIOS;
1331 #endif
1332         xen_raw_console_write("about to get started...\n");
1333
1334         xen_setup_runstate_info(0);
1335
1336         /* Start the world */
1337 #ifdef CONFIG_X86_32
1338         i386_start_kernel();
1339 #else
1340         x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1341 #endif
1342 }
1343
1344 static int init_hvm_pv_info(int *major, int *minor)
1345 {
1346         uint32_t eax, ebx, ecx, edx, pages, msr, base;
1347         u64 pfn;
1348
1349         base = xen_cpuid_base();
1350         cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1351
1352         *major = eax >> 16;
1353         *minor = eax & 0xffff;
1354         printk(KERN_INFO "Xen version %d.%d.\n", *major, *minor);
1355
1356         cpuid(base + 2, &pages, &msr, &ecx, &edx);
1357
1358         pfn = __pa(hypercall_page);
1359         wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1360
1361         xen_setup_features();
1362
1363         pv_info.name = "Xen HVM";
1364
1365         xen_domain_type = XEN_HVM_DOMAIN;
1366
1367         return 0;
1368 }
1369
1370 void __ref xen_hvm_init_shared_info(void)
1371 {
1372         int cpu;
1373         struct xen_add_to_physmap xatp;
1374         static struct shared_info *shared_info_page = 0;
1375
1376         if (!shared_info_page)
1377                 shared_info_page = (struct shared_info *)
1378                         extend_brk(PAGE_SIZE, PAGE_SIZE);
1379         xatp.domid = DOMID_SELF;
1380         xatp.idx = 0;
1381         xatp.space = XENMAPSPACE_shared_info;
1382         xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1383         if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1384                 BUG();
1385
1386         HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1387
1388         /* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1389          * page, we use it in the event channel upcall and in some pvclock
1390          * related functions. We don't need the vcpu_info placement
1391          * optimizations because we don't use any pv_mmu or pv_irq op on
1392          * HVM.
1393          * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1394          * online but xen_hvm_init_shared_info is run at resume time too and
1395          * in that case multiple vcpus might be online. */
1396         for_each_online_cpu(cpu) {
1397                 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1398         }
1399 }
1400
1401 #ifdef CONFIG_XEN_PVHVM
1402 static int __cpuinit xen_hvm_cpu_notify(struct notifier_block *self,
1403                                     unsigned long action, void *hcpu)
1404 {
1405         int cpu = (long)hcpu;
1406         switch (action) {
1407         case CPU_UP_PREPARE:
1408                 xen_vcpu_setup(cpu);
1409                 if (xen_have_vector_callback) {
1410                         xen_init_lock_cpu(cpu);
1411                         if (xen_feature(XENFEAT_hvm_safe_pvclock))
1412                                 xen_setup_timer(cpu);
1413                 }
1414                 break;
1415         default:
1416                 break;
1417         }
1418         return NOTIFY_OK;
1419 }
1420
1421 static struct notifier_block xen_hvm_cpu_notifier __cpuinitdata = {
1422         .notifier_call  = xen_hvm_cpu_notify,
1423 };
1424
1425 static void __init xen_hvm_guest_init(void)
1426 {
1427         int r;
1428         int major, minor;
1429
1430         r = init_hvm_pv_info(&major, &minor);
1431         if (r < 0)
1432                 return;
1433
1434         xen_hvm_init_shared_info();
1435
1436         if (xen_feature(XENFEAT_hvm_callback_vector))
1437                 xen_have_vector_callback = 1;
1438         xen_hvm_smp_init();
1439         register_cpu_notifier(&xen_hvm_cpu_notifier);
1440         xen_unplug_emulated_devices();
1441         x86_init.irqs.intr_init = xen_init_IRQ;
1442         xen_hvm_init_time_ops();
1443         xen_hvm_init_mmu_ops();
1444 }
1445
1446 static bool __init xen_hvm_platform(void)
1447 {
1448         if (xen_pv_domain())
1449                 return false;
1450
1451         if (!xen_cpuid_base())
1452                 return false;
1453
1454         return true;
1455 }
1456
1457 bool xen_hvm_need_lapic(void)
1458 {
1459         if (xen_pv_domain())
1460                 return false;
1461         if (!xen_hvm_domain())
1462                 return false;
1463         if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
1464                 return false;
1465         return true;
1466 }
1467 EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1468
1469 const struct hypervisor_x86 x86_hyper_xen_hvm __refconst = {
1470         .name                   = "Xen HVM",
1471         .detect                 = xen_hvm_platform,
1472         .init_platform          = xen_hvm_guest_init,
1473 };
1474 EXPORT_SYMBOL(x86_hyper_xen_hvm);
1475 #endif