044f5d9bd757db0a9e0fb6977cd40e340a8922c0
[pandora-kernel.git] / arch / x86 / xen / enlighten.c
1 /*
2  * Core of Xen paravirt_ops implementation.
3  *
4  * This file contains the xen_paravirt_ops structure itself, and the
5  * implementations for:
6  * - privileged instructions
7  * - interrupt flags
8  * - segment operations
9  * - booting and setup
10  *
11  * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
12  */
13
14 #include <linux/cpu.h>
15 #include <linux/kernel.h>
16 #include <linux/init.h>
17 #include <linux/smp.h>
18 #include <linux/preempt.h>
19 #include <linux/hardirq.h>
20 #include <linux/percpu.h>
21 #include <linux/delay.h>
22 #include <linux/start_kernel.h>
23 #include <linux/sched.h>
24 #include <linux/kprobes.h>
25 #include <linux/bootmem.h>
26 #include <linux/module.h>
27 #include <linux/mm.h>
28 #include <linux/page-flags.h>
29 #include <linux/highmem.h>
30 #include <linux/console.h>
31 #include <linux/pci.h>
32 #include <linux/gfp.h>
33 #include <linux/memblock.h>
34
35 #include <xen/xen.h>
36 #include <xen/interface/xen.h>
37 #include <xen/interface/version.h>
38 #include <xen/interface/physdev.h>
39 #include <xen/interface/vcpu.h>
40 #include <xen/interface/memory.h>
41 #include <xen/features.h>
42 #include <xen/page.h>
43 #include <xen/hvm.h>
44 #include <xen/hvc-console.h>
45
46 #include <asm/paravirt.h>
47 #include <asm/apic.h>
48 #include <asm/page.h>
49 #include <asm/xen/pci.h>
50 #include <asm/xen/hypercall.h>
51 #include <asm/xen/hypervisor.h>
52 #include <asm/fixmap.h>
53 #include <asm/processor.h>
54 #include <asm/proto.h>
55 #include <asm/msr-index.h>
56 #include <asm/traps.h>
57 #include <asm/setup.h>
58 #include <asm/desc.h>
59 #include <asm/pgalloc.h>
60 #include <asm/pgtable.h>
61 #include <asm/tlbflush.h>
62 #include <asm/reboot.h>
63 #include <asm/stackprotector.h>
64 #include <asm/hypervisor.h>
65 #include <asm/pci_x86.h>
66
67 #include "xen-ops.h"
68 #include "mmu.h"
69 #include "multicalls.h"
70
71 EXPORT_SYMBOL_GPL(hypercall_page);
72
73 DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
74 DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
75
76 enum xen_domain_type xen_domain_type = XEN_NATIVE;
77 EXPORT_SYMBOL_GPL(xen_domain_type);
78
79 unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
80 EXPORT_SYMBOL(machine_to_phys_mapping);
81 unsigned long  machine_to_phys_nr;
82 EXPORT_SYMBOL(machine_to_phys_nr);
83
84 struct start_info *xen_start_info;
85 EXPORT_SYMBOL_GPL(xen_start_info);
86
87 struct shared_info xen_dummy_shared_info;
88
89 void *xen_initial_gdt;
90
91 RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
92 __read_mostly int xen_have_vector_callback;
93 EXPORT_SYMBOL_GPL(xen_have_vector_callback);
94
95 /*
96  * Point at some empty memory to start with. We map the real shared_info
97  * page as soon as fixmap is up and running.
98  */
99 struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info;
100
101 /*
102  * Flag to determine whether vcpu info placement is available on all
103  * VCPUs.  We assume it is to start with, and then set it to zero on
104  * the first failure.  This is because it can succeed on some VCPUs
105  * and not others, since it can involve hypervisor memory allocation,
106  * or because the guest failed to guarantee all the appropriate
107  * constraints on all VCPUs (ie buffer can't cross a page boundary).
108  *
109  * Note that any particular CPU may be using a placed vcpu structure,
110  * but we can only optimise if the all are.
111  *
112  * 0: not available, 1: available
113  */
114 static int have_vcpu_info_placement = 1;
115
116 static void clamp_max_cpus(void)
117 {
118 #ifdef CONFIG_SMP
119         if (setup_max_cpus > MAX_VIRT_CPUS)
120                 setup_max_cpus = MAX_VIRT_CPUS;
121 #endif
122 }
123
124 static void xen_vcpu_setup(int cpu)
125 {
126         struct vcpu_register_vcpu_info info;
127         int err;
128         struct vcpu_info *vcpup;
129
130         BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
131
132         if (cpu < MAX_VIRT_CPUS)
133                 per_cpu(xen_vcpu,cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
134
135         if (!have_vcpu_info_placement) {
136                 if (cpu >= MAX_VIRT_CPUS)
137                         clamp_max_cpus();
138                 return;
139         }
140
141         vcpup = &per_cpu(xen_vcpu_info, cpu);
142         info.mfn = arbitrary_virt_to_mfn(vcpup);
143         info.offset = offset_in_page(vcpup);
144
145         /* Check to see if the hypervisor will put the vcpu_info
146            structure where we want it, which allows direct access via
147            a percpu-variable. */
148         err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info);
149
150         if (err) {
151                 printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
152                 have_vcpu_info_placement = 0;
153                 clamp_max_cpus();
154         } else {
155                 /* This cpu is using the registered vcpu info, even if
156                    later ones fail to. */
157                 per_cpu(xen_vcpu, cpu) = vcpup;
158         }
159 }
160
161 /*
162  * On restore, set the vcpu placement up again.
163  * If it fails, then we're in a bad state, since
164  * we can't back out from using it...
165  */
166 void xen_vcpu_restore(void)
167 {
168         int cpu;
169
170         for_each_online_cpu(cpu) {
171                 bool other_cpu = (cpu != smp_processor_id());
172
173                 if (other_cpu &&
174                     HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL))
175                         BUG();
176
177                 xen_setup_runstate_info(cpu);
178
179                 if (have_vcpu_info_placement)
180                         xen_vcpu_setup(cpu);
181
182                 if (other_cpu &&
183                     HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL))
184                         BUG();
185         }
186 }
187
188 static void __init xen_banner(void)
189 {
190         unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
191         struct xen_extraversion extra;
192         HYPERVISOR_xen_version(XENVER_extraversion, &extra);
193
194         printk(KERN_INFO "Booting paravirtualized kernel on %s\n",
195                pv_info.name);
196         printk(KERN_INFO "Xen version: %d.%d%s%s\n",
197                version >> 16, version & 0xffff, extra.extraversion,
198                xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
199 }
200
201 #define CPUID_THERM_POWER_LEAF 6
202 #define APERFMPERF_PRESENT 0
203
204 static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
205 static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
206
207 static void xen_cpuid(unsigned int *ax, unsigned int *bx,
208                       unsigned int *cx, unsigned int *dx)
209 {
210         unsigned maskebx = ~0;
211         unsigned maskecx = ~0;
212         unsigned maskedx = ~0;
213
214         /*
215          * Mask out inconvenient features, to try and disable as many
216          * unsupported kernel subsystems as possible.
217          */
218         switch (*ax) {
219         case 1:
220                 maskecx = cpuid_leaf1_ecx_mask;
221                 maskedx = cpuid_leaf1_edx_mask;
222                 break;
223
224         case CPUID_THERM_POWER_LEAF:
225                 /* Disabling APERFMPERF for kernel usage */
226                 maskecx = ~(1 << APERFMPERF_PRESENT);
227                 break;
228
229         case 0xb:
230                 /* Suppress extended topology stuff */
231                 maskebx = 0;
232                 break;
233         }
234
235         asm(XEN_EMULATE_PREFIX "cpuid"
236                 : "=a" (*ax),
237                   "=b" (*bx),
238                   "=c" (*cx),
239                   "=d" (*dx)
240                 : "0" (*ax), "2" (*cx));
241
242         *bx &= maskebx;
243         *cx &= maskecx;
244         *dx &= maskedx;
245 }
246
247 static void __init xen_init_cpuid_mask(void)
248 {
249         unsigned int ax, bx, cx, dx;
250         unsigned int xsave_mask;
251
252         cpuid_leaf1_edx_mask =
253                 ~((1 << X86_FEATURE_MCE)  |  /* disable MCE */
254                   (1 << X86_FEATURE_MCA)  |  /* disable MCA */
255                   (1 << X86_FEATURE_MTRR) |  /* disable MTRR */
256                   (1 << X86_FEATURE_ACC));   /* thermal monitoring */
257
258         if (!xen_initial_domain())
259                 cpuid_leaf1_edx_mask &=
260                         ~((1 << X86_FEATURE_APIC) |  /* disable local APIC */
261                           (1 << X86_FEATURE_ACPI));  /* disable ACPI */
262         ax = 1;
263         cx = 0;
264         xen_cpuid(&ax, &bx, &cx, &dx);
265
266         xsave_mask =
267                 (1 << (X86_FEATURE_XSAVE % 32)) |
268                 (1 << (X86_FEATURE_OSXSAVE % 32));
269
270         /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
271         if ((cx & xsave_mask) != xsave_mask)
272                 cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
273 }
274
275 static void xen_set_debugreg(int reg, unsigned long val)
276 {
277         HYPERVISOR_set_debugreg(reg, val);
278 }
279
280 static unsigned long xen_get_debugreg(int reg)
281 {
282         return HYPERVISOR_get_debugreg(reg);
283 }
284
285 static void xen_end_context_switch(struct task_struct *next)
286 {
287         xen_mc_flush();
288         paravirt_end_context_switch(next);
289 }
290
291 static unsigned long xen_store_tr(void)
292 {
293         return 0;
294 }
295
296 /*
297  * Set the page permissions for a particular virtual address.  If the
298  * address is a vmalloc mapping (or other non-linear mapping), then
299  * find the linear mapping of the page and also set its protections to
300  * match.
301  */
302 static void set_aliased_prot(void *v, pgprot_t prot)
303 {
304         int level;
305         pte_t *ptep;
306         pte_t pte;
307         unsigned long pfn;
308         struct page *page;
309
310         ptep = lookup_address((unsigned long)v, &level);
311         BUG_ON(ptep == NULL);
312
313         pfn = pte_pfn(*ptep);
314         page = pfn_to_page(pfn);
315
316         pte = pfn_pte(pfn, prot);
317
318         if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
319                 BUG();
320
321         if (!PageHighMem(page)) {
322                 void *av = __va(PFN_PHYS(pfn));
323
324                 if (av != v)
325                         if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
326                                 BUG();
327         } else
328                 kmap_flush_unused();
329 }
330
331 static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
332 {
333         const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
334         int i;
335
336         for(i = 0; i < entries; i += entries_per_page)
337                 set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
338 }
339
340 static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
341 {
342         const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
343         int i;
344
345         for(i = 0; i < entries; i += entries_per_page)
346                 set_aliased_prot(ldt + i, PAGE_KERNEL);
347 }
348
349 static void xen_set_ldt(const void *addr, unsigned entries)
350 {
351         struct mmuext_op *op;
352         struct multicall_space mcs = xen_mc_entry(sizeof(*op));
353
354         trace_xen_cpu_set_ldt(addr, entries);
355
356         op = mcs.args;
357         op->cmd = MMUEXT_SET_LDT;
358         op->arg1.linear_addr = (unsigned long)addr;
359         op->arg2.nr_ents = entries;
360
361         MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
362
363         xen_mc_issue(PARAVIRT_LAZY_CPU);
364 }
365
366 static void xen_load_gdt(const struct desc_ptr *dtr)
367 {
368         unsigned long va = dtr->address;
369         unsigned int size = dtr->size + 1;
370         unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
371         unsigned long frames[pages];
372         int f;
373
374         /*
375          * A GDT can be up to 64k in size, which corresponds to 8192
376          * 8-byte entries, or 16 4k pages..
377          */
378
379         BUG_ON(size > 65536);
380         BUG_ON(va & ~PAGE_MASK);
381
382         for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
383                 int level;
384                 pte_t *ptep;
385                 unsigned long pfn, mfn;
386                 void *virt;
387
388                 /*
389                  * The GDT is per-cpu and is in the percpu data area.
390                  * That can be virtually mapped, so we need to do a
391                  * page-walk to get the underlying MFN for the
392                  * hypercall.  The page can also be in the kernel's
393                  * linear range, so we need to RO that mapping too.
394                  */
395                 ptep = lookup_address(va, &level);
396                 BUG_ON(ptep == NULL);
397
398                 pfn = pte_pfn(*ptep);
399                 mfn = pfn_to_mfn(pfn);
400                 virt = __va(PFN_PHYS(pfn));
401
402                 frames[f] = mfn;
403
404                 make_lowmem_page_readonly((void *)va);
405                 make_lowmem_page_readonly(virt);
406         }
407
408         if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
409                 BUG();
410 }
411
412 /*
413  * load_gdt for early boot, when the gdt is only mapped once
414  */
415 static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
416 {
417         unsigned long va = dtr->address;
418         unsigned int size = dtr->size + 1;
419         unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
420         unsigned long frames[pages];
421         int f;
422
423         /*
424          * A GDT can be up to 64k in size, which corresponds to 8192
425          * 8-byte entries, or 16 4k pages..
426          */
427
428         BUG_ON(size > 65536);
429         BUG_ON(va & ~PAGE_MASK);
430
431         for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
432                 pte_t pte;
433                 unsigned long pfn, mfn;
434
435                 pfn = virt_to_pfn(va);
436                 mfn = pfn_to_mfn(pfn);
437
438                 pte = pfn_pte(pfn, PAGE_KERNEL_RO);
439
440                 if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
441                         BUG();
442
443                 frames[f] = mfn;
444         }
445
446         if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
447                 BUG();
448 }
449
450 static void load_TLS_descriptor(struct thread_struct *t,
451                                 unsigned int cpu, unsigned int i)
452 {
453         struct desc_struct *gdt = get_cpu_gdt_table(cpu);
454         xmaddr_t maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
455         struct multicall_space mc = __xen_mc_entry(0);
456
457         MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
458 }
459
460 static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
461 {
462         /*
463          * XXX sleazy hack: If we're being called in a lazy-cpu zone
464          * and lazy gs handling is enabled, it means we're in a
465          * context switch, and %gs has just been saved.  This means we
466          * can zero it out to prevent faults on exit from the
467          * hypervisor if the next process has no %gs.  Either way, it
468          * has been saved, and the new value will get loaded properly.
469          * This will go away as soon as Xen has been modified to not
470          * save/restore %gs for normal hypercalls.
471          *
472          * On x86_64, this hack is not used for %gs, because gs points
473          * to KERNEL_GS_BASE (and uses it for PDA references), so we
474          * must not zero %gs on x86_64
475          *
476          * For x86_64, we need to zero %fs, otherwise we may get an
477          * exception between the new %fs descriptor being loaded and
478          * %fs being effectively cleared at __switch_to().
479          */
480         if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
481 #ifdef CONFIG_X86_32
482                 lazy_load_gs(0);
483 #else
484                 loadsegment(fs, 0);
485 #endif
486         }
487
488         xen_mc_batch();
489
490         load_TLS_descriptor(t, cpu, 0);
491         load_TLS_descriptor(t, cpu, 1);
492         load_TLS_descriptor(t, cpu, 2);
493
494         xen_mc_issue(PARAVIRT_LAZY_CPU);
495 }
496
497 #ifdef CONFIG_X86_64
498 static void xen_load_gs_index(unsigned int idx)
499 {
500         if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
501                 BUG();
502 }
503 #endif
504
505 static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
506                                 const void *ptr)
507 {
508         xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
509         u64 entry = *(u64 *)ptr;
510
511         trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
512
513         preempt_disable();
514
515         xen_mc_flush();
516         if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
517                 BUG();
518
519         preempt_enable();
520 }
521
522 static int cvt_gate_to_trap(int vector, const gate_desc *val,
523                             struct trap_info *info)
524 {
525         unsigned long addr;
526
527         if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
528                 return 0;
529
530         info->vector = vector;
531
532         addr = gate_offset(*val);
533 #ifdef CONFIG_X86_64
534         /*
535          * Look for known traps using IST, and substitute them
536          * appropriately.  The debugger ones are the only ones we care
537          * about.  Xen will handle faults like double_fault and
538          * machine_check, so we should never see them.  Warn if
539          * there's an unexpected IST-using fault handler.
540          */
541         if (addr == (unsigned long)debug)
542                 addr = (unsigned long)xen_debug;
543         else if (addr == (unsigned long)int3)
544                 addr = (unsigned long)xen_int3;
545         else if (addr == (unsigned long)stack_segment)
546                 addr = (unsigned long)xen_stack_segment;
547         else if (addr == (unsigned long)double_fault ||
548                  addr == (unsigned long)nmi) {
549                 /* Don't need to handle these */
550                 return 0;
551 #ifdef CONFIG_X86_MCE
552         } else if (addr == (unsigned long)machine_check) {
553                 return 0;
554 #endif
555         } else {
556                 /* Some other trap using IST? */
557                 if (WARN_ON(val->ist != 0))
558                         return 0;
559         }
560 #endif  /* CONFIG_X86_64 */
561         info->address = addr;
562
563         info->cs = gate_segment(*val);
564         info->flags = val->dpl;
565         /* interrupt gates clear IF */
566         if (val->type == GATE_INTERRUPT)
567                 info->flags |= 1 << 2;
568
569         return 1;
570 }
571
572 /* Locations of each CPU's IDT */
573 static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
574
575 /* Set an IDT entry.  If the entry is part of the current IDT, then
576    also update Xen. */
577 static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
578 {
579         unsigned long p = (unsigned long)&dt[entrynum];
580         unsigned long start, end;
581
582         trace_xen_cpu_write_idt_entry(dt, entrynum, g);
583
584         preempt_disable();
585
586         start = __this_cpu_read(idt_desc.address);
587         end = start + __this_cpu_read(idt_desc.size) + 1;
588
589         xen_mc_flush();
590
591         native_write_idt_entry(dt, entrynum, g);
592
593         if (p >= start && (p + 8) <= end) {
594                 struct trap_info info[2];
595
596                 info[1].address = 0;
597
598                 if (cvt_gate_to_trap(entrynum, g, &info[0]))
599                         if (HYPERVISOR_set_trap_table(info))
600                                 BUG();
601         }
602
603         preempt_enable();
604 }
605
606 static void xen_convert_trap_info(const struct desc_ptr *desc,
607                                   struct trap_info *traps)
608 {
609         unsigned in, out, count;
610
611         count = (desc->size+1) / sizeof(gate_desc);
612         BUG_ON(count > 256);
613
614         for (in = out = 0; in < count; in++) {
615                 gate_desc *entry = (gate_desc*)(desc->address) + in;
616
617                 if (cvt_gate_to_trap(in, entry, &traps[out]))
618                         out++;
619         }
620         traps[out].address = 0;
621 }
622
623 void xen_copy_trap_info(struct trap_info *traps)
624 {
625         const struct desc_ptr *desc = &__get_cpu_var(idt_desc);
626
627         xen_convert_trap_info(desc, traps);
628 }
629
630 /* Load a new IDT into Xen.  In principle this can be per-CPU, so we
631    hold a spinlock to protect the static traps[] array (static because
632    it avoids allocation, and saves stack space). */
633 static void xen_load_idt(const struct desc_ptr *desc)
634 {
635         static DEFINE_SPINLOCK(lock);
636         static struct trap_info traps[257];
637
638         trace_xen_cpu_load_idt(desc);
639
640         spin_lock(&lock);
641
642         __get_cpu_var(idt_desc) = *desc;
643
644         xen_convert_trap_info(desc, traps);
645
646         xen_mc_flush();
647         if (HYPERVISOR_set_trap_table(traps))
648                 BUG();
649
650         spin_unlock(&lock);
651 }
652
653 /* Write a GDT descriptor entry.  Ignore LDT descriptors, since
654    they're handled differently. */
655 static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
656                                 const void *desc, int type)
657 {
658         trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
659
660         preempt_disable();
661
662         switch (type) {
663         case DESC_LDT:
664         case DESC_TSS:
665                 /* ignore */
666                 break;
667
668         default: {
669                 xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
670
671                 xen_mc_flush();
672                 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
673                         BUG();
674         }
675
676         }
677
678         preempt_enable();
679 }
680
681 /*
682  * Version of write_gdt_entry for use at early boot-time needed to
683  * update an entry as simply as possible.
684  */
685 static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
686                                             const void *desc, int type)
687 {
688         trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
689
690         switch (type) {
691         case DESC_LDT:
692         case DESC_TSS:
693                 /* ignore */
694                 break;
695
696         default: {
697                 xmaddr_t maddr = virt_to_machine(&dt[entry]);
698
699                 if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
700                         dt[entry] = *(struct desc_struct *)desc;
701         }
702
703         }
704 }
705
706 static void xen_load_sp0(struct tss_struct *tss,
707                          struct thread_struct *thread)
708 {
709         struct multicall_space mcs;
710
711         mcs = xen_mc_entry(0);
712         MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
713         xen_mc_issue(PARAVIRT_LAZY_CPU);
714 }
715
716 static void xen_set_iopl_mask(unsigned mask)
717 {
718         struct physdev_set_iopl set_iopl;
719
720         /* Force the change at ring 0. */
721         set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
722         HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
723 }
724
725 static void xen_io_delay(void)
726 {
727 }
728
729 #ifdef CONFIG_X86_LOCAL_APIC
730 static u32 xen_apic_read(u32 reg)
731 {
732         return 0;
733 }
734
735 static void xen_apic_write(u32 reg, u32 val)
736 {
737         /* Warn to see if there's any stray references */
738         WARN_ON(1);
739 }
740
741 static u64 xen_apic_icr_read(void)
742 {
743         return 0;
744 }
745
746 static void xen_apic_icr_write(u32 low, u32 id)
747 {
748         /* Warn to see if there's any stray references */
749         WARN_ON(1);
750 }
751
752 static void xen_apic_wait_icr_idle(void)
753 {
754         return;
755 }
756
757 static u32 xen_safe_apic_wait_icr_idle(void)
758 {
759         return 0;
760 }
761
762 static void set_xen_basic_apic_ops(void)
763 {
764         apic->read = xen_apic_read;
765         apic->write = xen_apic_write;
766         apic->icr_read = xen_apic_icr_read;
767         apic->icr_write = xen_apic_icr_write;
768         apic->wait_icr_idle = xen_apic_wait_icr_idle;
769         apic->safe_wait_icr_idle = xen_safe_apic_wait_icr_idle;
770 }
771
772 #endif
773
774 static void xen_clts(void)
775 {
776         struct multicall_space mcs;
777
778         mcs = xen_mc_entry(0);
779
780         MULTI_fpu_taskswitch(mcs.mc, 0);
781
782         xen_mc_issue(PARAVIRT_LAZY_CPU);
783 }
784
785 static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
786
787 static unsigned long xen_read_cr0(void)
788 {
789         unsigned long cr0 = percpu_read(xen_cr0_value);
790
791         if (unlikely(cr0 == 0)) {
792                 cr0 = native_read_cr0();
793                 percpu_write(xen_cr0_value, cr0);
794         }
795
796         return cr0;
797 }
798
799 static void xen_write_cr0(unsigned long cr0)
800 {
801         struct multicall_space mcs;
802
803         percpu_write(xen_cr0_value, cr0);
804
805         /* Only pay attention to cr0.TS; everything else is
806            ignored. */
807         mcs = xen_mc_entry(0);
808
809         MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
810
811         xen_mc_issue(PARAVIRT_LAZY_CPU);
812 }
813
814 static void xen_write_cr4(unsigned long cr4)
815 {
816         cr4 &= ~X86_CR4_PGE;
817         cr4 &= ~X86_CR4_PSE;
818
819         native_write_cr4(cr4);
820 }
821 #ifdef CONFIG_X86_64
822 static inline unsigned long xen_read_cr8(void)
823 {
824         return 0;
825 }
826 static inline void xen_write_cr8(unsigned long val)
827 {
828         BUG_ON(val);
829 }
830 #endif
831 static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
832 {
833         int ret;
834
835         ret = 0;
836
837         switch (msr) {
838 #ifdef CONFIG_X86_64
839                 unsigned which;
840                 u64 base;
841
842         case MSR_FS_BASE:               which = SEGBASE_FS; goto set;
843         case MSR_KERNEL_GS_BASE:        which = SEGBASE_GS_USER; goto set;
844         case MSR_GS_BASE:               which = SEGBASE_GS_KERNEL; goto set;
845
846         set:
847                 base = ((u64)high << 32) | low;
848                 if (HYPERVISOR_set_segment_base(which, base) != 0)
849                         ret = -EIO;
850                 break;
851 #endif
852
853         case MSR_STAR:
854         case MSR_CSTAR:
855         case MSR_LSTAR:
856         case MSR_SYSCALL_MASK:
857         case MSR_IA32_SYSENTER_CS:
858         case MSR_IA32_SYSENTER_ESP:
859         case MSR_IA32_SYSENTER_EIP:
860                 /* Fast syscall setup is all done in hypercalls, so
861                    these are all ignored.  Stub them out here to stop
862                    Xen console noise. */
863                 break;
864
865         case MSR_IA32_CR_PAT:
866                 if (smp_processor_id() == 0)
867                         xen_set_pat(((u64)high << 32) | low);
868                 break;
869
870         default:
871                 ret = native_write_msr_safe(msr, low, high);
872         }
873
874         return ret;
875 }
876
877 void xen_setup_shared_info(void)
878 {
879         if (!xen_feature(XENFEAT_auto_translated_physmap)) {
880                 set_fixmap(FIX_PARAVIRT_BOOTMAP,
881                            xen_start_info->shared_info);
882
883                 HYPERVISOR_shared_info =
884                         (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
885         } else
886                 HYPERVISOR_shared_info =
887                         (struct shared_info *)__va(xen_start_info->shared_info);
888
889 #ifndef CONFIG_SMP
890         /* In UP this is as good a place as any to set up shared info */
891         xen_setup_vcpu_info_placement();
892 #endif
893
894         xen_setup_mfn_list_list();
895 }
896
897 /* This is called once we have the cpu_possible_map */
898 void xen_setup_vcpu_info_placement(void)
899 {
900         int cpu;
901
902         for_each_possible_cpu(cpu)
903                 xen_vcpu_setup(cpu);
904
905         /* xen_vcpu_setup managed to place the vcpu_info within the
906            percpu area for all cpus, so make use of it */
907         if (have_vcpu_info_placement) {
908                 pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
909                 pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
910                 pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
911                 pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
912                 pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
913         }
914 }
915
916 static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
917                           unsigned long addr, unsigned len)
918 {
919         char *start, *end, *reloc;
920         unsigned ret;
921
922         start = end = reloc = NULL;
923
924 #define SITE(op, x)                                                     \
925         case PARAVIRT_PATCH(op.x):                                      \
926         if (have_vcpu_info_placement) {                                 \
927                 start = (char *)xen_##x##_direct;                       \
928                 end = xen_##x##_direct_end;                             \
929                 reloc = xen_##x##_direct_reloc;                         \
930         }                                                               \
931         goto patch_site
932
933         switch (type) {
934                 SITE(pv_irq_ops, irq_enable);
935                 SITE(pv_irq_ops, irq_disable);
936                 SITE(pv_irq_ops, save_fl);
937                 SITE(pv_irq_ops, restore_fl);
938 #undef SITE
939
940         patch_site:
941                 if (start == NULL || (end-start) > len)
942                         goto default_patch;
943
944                 ret = paravirt_patch_insns(insnbuf, len, start, end);
945
946                 /* Note: because reloc is assigned from something that
947                    appears to be an array, gcc assumes it's non-null,
948                    but doesn't know its relationship with start and
949                    end. */
950                 if (reloc > start && reloc < end) {
951                         int reloc_off = reloc - start;
952                         long *relocp = (long *)(insnbuf + reloc_off);
953                         long delta = start - (char *)addr;
954
955                         *relocp += delta;
956                 }
957                 break;
958
959         default_patch:
960         default:
961                 ret = paravirt_patch_default(type, clobbers, insnbuf,
962                                              addr, len);
963                 break;
964         }
965
966         return ret;
967 }
968
969 static const struct pv_info xen_info __initconst = {
970         .paravirt_enabled = 1,
971         .shared_kernel_pmd = 0,
972
973 #ifdef CONFIG_X86_64
974         .extra_user_64bit_cs = FLAT_USER_CS64,
975 #endif
976
977         .name = "Xen",
978 };
979
980 static const struct pv_init_ops xen_init_ops __initconst = {
981         .patch = xen_patch,
982 };
983
984 static const struct pv_cpu_ops xen_cpu_ops __initconst = {
985         .cpuid = xen_cpuid,
986
987         .set_debugreg = xen_set_debugreg,
988         .get_debugreg = xen_get_debugreg,
989
990         .clts = xen_clts,
991
992         .read_cr0 = xen_read_cr0,
993         .write_cr0 = xen_write_cr0,
994
995         .read_cr4 = native_read_cr4,
996         .read_cr4_safe = native_read_cr4_safe,
997         .write_cr4 = xen_write_cr4,
998
999 #ifdef CONFIG_X86_64
1000         .read_cr8 = xen_read_cr8,
1001         .write_cr8 = xen_write_cr8,
1002 #endif
1003
1004         .wbinvd = native_wbinvd,
1005
1006         .read_msr = native_read_msr_safe,
1007         .rdmsr_regs = native_rdmsr_safe_regs,
1008         .write_msr = xen_write_msr_safe,
1009         .wrmsr_regs = native_wrmsr_safe_regs,
1010
1011         .read_tsc = native_read_tsc,
1012         .read_pmc = native_read_pmc,
1013
1014         .read_tscp = native_read_tscp,
1015
1016         .iret = xen_iret,
1017         .irq_enable_sysexit = xen_sysexit,
1018 #ifdef CONFIG_X86_64
1019         .usergs_sysret32 = xen_sysret32,
1020         .usergs_sysret64 = xen_sysret64,
1021 #endif
1022
1023         .load_tr_desc = paravirt_nop,
1024         .set_ldt = xen_set_ldt,
1025         .load_gdt = xen_load_gdt,
1026         .load_idt = xen_load_idt,
1027         .load_tls = xen_load_tls,
1028 #ifdef CONFIG_X86_64
1029         .load_gs_index = xen_load_gs_index,
1030 #endif
1031
1032         .alloc_ldt = xen_alloc_ldt,
1033         .free_ldt = xen_free_ldt,
1034
1035         .store_gdt = native_store_gdt,
1036         .store_idt = native_store_idt,
1037         .store_tr = xen_store_tr,
1038
1039         .write_ldt_entry = xen_write_ldt_entry,
1040         .write_gdt_entry = xen_write_gdt_entry,
1041         .write_idt_entry = xen_write_idt_entry,
1042         .load_sp0 = xen_load_sp0,
1043
1044         .set_iopl_mask = xen_set_iopl_mask,
1045         .io_delay = xen_io_delay,
1046
1047         /* Xen takes care of %gs when switching to usermode for us */
1048         .swapgs = paravirt_nop,
1049
1050         .start_context_switch = paravirt_start_context_switch,
1051         .end_context_switch = xen_end_context_switch,
1052 };
1053
1054 static const struct pv_apic_ops xen_apic_ops __initconst = {
1055 #ifdef CONFIG_X86_LOCAL_APIC
1056         .startup_ipi_hook = paravirt_nop,
1057 #endif
1058 };
1059
1060 static void xen_reboot(int reason)
1061 {
1062         struct sched_shutdown r = { .reason = reason };
1063
1064         if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1065                 BUG();
1066 }
1067
1068 static void xen_restart(char *msg)
1069 {
1070         xen_reboot(SHUTDOWN_reboot);
1071 }
1072
1073 static void xen_emergency_restart(void)
1074 {
1075         xen_reboot(SHUTDOWN_reboot);
1076 }
1077
1078 static void xen_machine_halt(void)
1079 {
1080         xen_reboot(SHUTDOWN_poweroff);
1081 }
1082
1083 static void xen_machine_power_off(void)
1084 {
1085         if (pm_power_off)
1086                 pm_power_off();
1087         xen_reboot(SHUTDOWN_poweroff);
1088 }
1089
1090 static void xen_crash_shutdown(struct pt_regs *regs)
1091 {
1092         xen_reboot(SHUTDOWN_crash);
1093 }
1094
1095 static int
1096 xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1097 {
1098         xen_reboot(SHUTDOWN_crash);
1099         return NOTIFY_DONE;
1100 }
1101
1102 static struct notifier_block xen_panic_block = {
1103         .notifier_call= xen_panic_event,
1104 };
1105
1106 int xen_panic_handler_init(void)
1107 {
1108         atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1109         return 0;
1110 }
1111
1112 static const struct machine_ops xen_machine_ops __initconst = {
1113         .restart = xen_restart,
1114         .halt = xen_machine_halt,
1115         .power_off = xen_machine_power_off,
1116         .shutdown = xen_machine_halt,
1117         .crash_shutdown = xen_crash_shutdown,
1118         .emergency_restart = xen_emergency_restart,
1119 };
1120
1121 /*
1122  * Set up the GDT and segment registers for -fstack-protector.  Until
1123  * we do this, we have to be careful not to call any stack-protected
1124  * function, which is most of the kernel.
1125  */
1126 static void __init xen_setup_stackprotector(void)
1127 {
1128         pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1129         pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1130
1131         setup_stack_canary_segment(0);
1132         switch_to_new_gdt(0);
1133
1134         pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1135         pv_cpu_ops.load_gdt = xen_load_gdt;
1136 }
1137
1138 /* First C function to be called on Xen boot */
1139 asmlinkage void __init xen_start_kernel(void)
1140 {
1141         struct physdev_set_iopl set_iopl;
1142         int rc;
1143         pgd_t *pgd;
1144
1145         if (!xen_start_info)
1146                 return;
1147
1148         xen_domain_type = XEN_PV_DOMAIN;
1149
1150         xen_setup_machphys_mapping();
1151
1152         /* Install Xen paravirt ops */
1153         pv_info = xen_info;
1154         pv_init_ops = xen_init_ops;
1155         pv_cpu_ops = xen_cpu_ops;
1156         pv_apic_ops = xen_apic_ops;
1157
1158         x86_init.resources.memory_setup = xen_memory_setup;
1159         x86_init.oem.arch_setup = xen_arch_setup;
1160         x86_init.oem.banner = xen_banner;
1161
1162         xen_init_time_ops();
1163
1164         /*
1165          * Set up some pagetable state before starting to set any ptes.
1166          */
1167
1168         xen_init_mmu_ops();
1169
1170         /* Prevent unwanted bits from being set in PTEs. */
1171         __supported_pte_mask &= ~_PAGE_GLOBAL;
1172         if (!xen_initial_domain())
1173                 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1174
1175         __supported_pte_mask |= _PAGE_IOMAP;
1176
1177         /*
1178          * Prevent page tables from being allocated in highmem, even
1179          * if CONFIG_HIGHPTE is enabled.
1180          */
1181         __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1182
1183         /* Work out if we support NX */
1184         x86_configure_nx();
1185
1186         xen_setup_features();
1187
1188         /* Get mfn list */
1189         if (!xen_feature(XENFEAT_auto_translated_physmap))
1190                 xen_build_dynamic_phys_to_machine();
1191
1192         /*
1193          * Set up kernel GDT and segment registers, mainly so that
1194          * -fstack-protector code can be executed.
1195          */
1196         xen_setup_stackprotector();
1197
1198         xen_init_irq_ops();
1199         xen_init_cpuid_mask();
1200
1201 #ifdef CONFIG_X86_LOCAL_APIC
1202         /*
1203          * set up the basic apic ops.
1204          */
1205         set_xen_basic_apic_ops();
1206 #endif
1207
1208         if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1209                 pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1210                 pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1211         }
1212
1213         machine_ops = xen_machine_ops;
1214
1215         /*
1216          * The only reliable way to retain the initial address of the
1217          * percpu gdt_page is to remember it here, so we can go and
1218          * mark it RW later, when the initial percpu area is freed.
1219          */
1220         xen_initial_gdt = &per_cpu(gdt_page, 0);
1221
1222         xen_smp_init();
1223
1224 #ifdef CONFIG_ACPI_NUMA
1225         /*
1226          * The pages we from Xen are not related to machine pages, so
1227          * any NUMA information the kernel tries to get from ACPI will
1228          * be meaningless.  Prevent it from trying.
1229          */
1230         acpi_numa = -1;
1231 #endif
1232
1233         pgd = (pgd_t *)xen_start_info->pt_base;
1234
1235         if (!xen_initial_domain())
1236                 __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD);
1237
1238         __supported_pte_mask |= _PAGE_IOMAP;
1239         /* Don't do the full vcpu_info placement stuff until we have a
1240            possible map and a non-dummy shared_info. */
1241         per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1242
1243         local_irq_disable();
1244         early_boot_irqs_disabled = true;
1245
1246         memblock_init();
1247
1248         xen_raw_console_write("mapping kernel into physical memory\n");
1249         pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages);
1250         xen_ident_map_ISA();
1251
1252         /* Allocate and initialize top and mid mfn levels for p2m structure */
1253         xen_build_mfn_list_list();
1254
1255         /* keep using Xen gdt for now; no urgent need to change it */
1256
1257 #ifdef CONFIG_X86_32
1258         pv_info.kernel_rpl = 1;
1259         if (xen_feature(XENFEAT_supervisor_mode_kernel))
1260                 pv_info.kernel_rpl = 0;
1261 #else
1262         pv_info.kernel_rpl = 0;
1263 #endif
1264         /* set the limit of our address space */
1265         xen_reserve_top();
1266
1267         /* We used to do this in xen_arch_setup, but that is too late on AMD
1268          * were early_cpu_init (run before ->arch_setup()) calls early_amd_init
1269          * which pokes 0xcf8 port.
1270          */
1271         set_iopl.iopl = 1;
1272         rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1273         if (rc != 0)
1274                 xen_raw_printk("physdev_op failed %d\n", rc);
1275
1276 #ifdef CONFIG_X86_32
1277         /* set up basic CPUID stuff */
1278         cpu_detect(&new_cpu_data);
1279         new_cpu_data.hard_math = 1;
1280         new_cpu_data.wp_works_ok = 1;
1281         new_cpu_data.x86_capability[0] = cpuid_edx(1);
1282 #endif
1283
1284         /* Poke various useful things into boot_params */
1285         boot_params.hdr.type_of_loader = (9 << 4) | 0;
1286         boot_params.hdr.ramdisk_image = xen_start_info->mod_start
1287                 ? __pa(xen_start_info->mod_start) : 0;
1288         boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1289         boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1290
1291         if (!xen_initial_domain()) {
1292                 add_preferred_console("xenboot", 0, NULL);
1293                 add_preferred_console("tty", 0, NULL);
1294                 add_preferred_console("hvc", 0, NULL);
1295                 if (pci_xen)
1296                         x86_init.pci.arch_init = pci_xen_init;
1297         } else {
1298                 const struct dom0_vga_console_info *info =
1299                         (void *)((char *)xen_start_info +
1300                                  xen_start_info->console.dom0.info_off);
1301
1302                 xen_init_vga(info, xen_start_info->console.dom0.info_size);
1303                 xen_start_info->console.domU.mfn = 0;
1304                 xen_start_info->console.domU.evtchn = 0;
1305
1306                 /* Make sure ACS will be enabled */
1307                 pci_request_acs();
1308
1309                 /* Avoid searching for BIOS MP tables */
1310                 x86_init.mpparse.find_smp_config = x86_init_noop;
1311                 x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1312         }
1313 #ifdef CONFIG_PCI
1314         /* PCI BIOS service won't work from a PV guest. */
1315         pci_probe &= ~PCI_PROBE_BIOS;
1316 #endif
1317         xen_raw_console_write("about to get started...\n");
1318
1319         xen_setup_runstate_info(0);
1320
1321         /* Start the world */
1322 #ifdef CONFIG_X86_32
1323         i386_start_kernel();
1324 #else
1325         x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1326 #endif
1327 }
1328
1329 static int init_hvm_pv_info(int *major, int *minor)
1330 {
1331         uint32_t eax, ebx, ecx, edx, pages, msr, base;
1332         u64 pfn;
1333
1334         base = xen_cpuid_base();
1335         cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1336
1337         *major = eax >> 16;
1338         *minor = eax & 0xffff;
1339         printk(KERN_INFO "Xen version %d.%d.\n", *major, *minor);
1340
1341         cpuid(base + 2, &pages, &msr, &ecx, &edx);
1342
1343         pfn = __pa(hypercall_page);
1344         wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1345
1346         xen_setup_features();
1347
1348         pv_info.name = "Xen HVM";
1349
1350         xen_domain_type = XEN_HVM_DOMAIN;
1351
1352         return 0;
1353 }
1354
1355 void __ref xen_hvm_init_shared_info(void)
1356 {
1357         int cpu;
1358         struct xen_add_to_physmap xatp;
1359         static struct shared_info *shared_info_page = 0;
1360
1361         if (!shared_info_page)
1362                 shared_info_page = (struct shared_info *)
1363                         extend_brk(PAGE_SIZE, PAGE_SIZE);
1364         xatp.domid = DOMID_SELF;
1365         xatp.idx = 0;
1366         xatp.space = XENMAPSPACE_shared_info;
1367         xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1368         if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1369                 BUG();
1370
1371         HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1372
1373         /* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1374          * page, we use it in the event channel upcall and in some pvclock
1375          * related functions. We don't need the vcpu_info placement
1376          * optimizations because we don't use any pv_mmu or pv_irq op on
1377          * HVM.
1378          * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1379          * online but xen_hvm_init_shared_info is run at resume time too and
1380          * in that case multiple vcpus might be online. */
1381         for_each_online_cpu(cpu) {
1382                 per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu];
1383         }
1384 }
1385
1386 #ifdef CONFIG_XEN_PVHVM
1387 static int __cpuinit xen_hvm_cpu_notify(struct notifier_block *self,
1388                                     unsigned long action, void *hcpu)
1389 {
1390         int cpu = (long)hcpu;
1391         switch (action) {
1392         case CPU_UP_PREPARE:
1393                 xen_vcpu_setup(cpu);
1394                 if (xen_have_vector_callback) {
1395                         xen_init_lock_cpu(cpu);
1396                         if (xen_feature(XENFEAT_hvm_safe_pvclock))
1397                                 xen_setup_timer(cpu);
1398                 }
1399                 break;
1400         default:
1401                 break;
1402         }
1403         return NOTIFY_OK;
1404 }
1405
1406 static struct notifier_block xen_hvm_cpu_notifier __cpuinitdata = {
1407         .notifier_call  = xen_hvm_cpu_notify,
1408 };
1409
1410 static void __init xen_hvm_guest_init(void)
1411 {
1412         int r;
1413         int major, minor;
1414
1415         r = init_hvm_pv_info(&major, &minor);
1416         if (r < 0)
1417                 return;
1418
1419         xen_hvm_init_shared_info();
1420
1421         if (xen_feature(XENFEAT_hvm_callback_vector))
1422                 xen_have_vector_callback = 1;
1423         xen_hvm_smp_init();
1424         register_cpu_notifier(&xen_hvm_cpu_notifier);
1425         xen_unplug_emulated_devices();
1426         x86_init.irqs.intr_init = xen_init_IRQ;
1427         xen_hvm_init_time_ops();
1428         xen_hvm_init_mmu_ops();
1429 }
1430
1431 static bool __init xen_hvm_platform(void)
1432 {
1433         if (xen_pv_domain())
1434                 return false;
1435
1436         if (!xen_cpuid_base())
1437                 return false;
1438
1439         return true;
1440 }
1441
1442 bool xen_hvm_need_lapic(void)
1443 {
1444         if (xen_pv_domain())
1445                 return false;
1446         if (!xen_hvm_domain())
1447                 return false;
1448         if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
1449                 return false;
1450         return true;
1451 }
1452 EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1453
1454 const struct hypervisor_x86 x86_hyper_xen_hvm __refconst = {
1455         .name                   = "Xen HVM",
1456         .detect                 = xen_hvm_platform,
1457         .init_platform          = xen_hvm_guest_init,
1458 };
1459 EXPORT_SYMBOL(x86_hyper_xen_hvm);
1460 #endif