474356b98ede32e647d4343c32a7e7893fe4beff
[pandora-kernel.git] / arch / x86 / platform / efi / efi.c
1 /*
2  * Common EFI (Extensible Firmware Interface) support functions
3  * Based on Extensible Firmware Interface Specification version 1.0
4  *
5  * Copyright (C) 1999 VA Linux Systems
6  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
7  * Copyright (C) 1999-2002 Hewlett-Packard Co.
8  *      David Mosberger-Tang <davidm@hpl.hp.com>
9  *      Stephane Eranian <eranian@hpl.hp.com>
10  * Copyright (C) 2005-2008 Intel Co.
11  *      Fenghua Yu <fenghua.yu@intel.com>
12  *      Bibo Mao <bibo.mao@intel.com>
13  *      Chandramouli Narayanan <mouli@linux.intel.com>
14  *      Huang Ying <ying.huang@intel.com>
15  *
16  * Copied from efi_32.c to eliminate the duplicated code between EFI
17  * 32/64 support code. --ying 2007-10-26
18  *
19  * All EFI Runtime Services are not implemented yet as EFI only
20  * supports physical mode addressing on SoftSDV. This is to be fixed
21  * in a future version.  --drummond 1999-07-20
22  *
23  * Implemented EFI runtime services and virtual mode calls.  --davidm
24  *
25  * Goutham Rao: <goutham.rao@intel.com>
26  *      Skip non-WB memory and ignore empty memory ranges.
27  */
28
29 #include <linux/kernel.h>
30 #include <linux/init.h>
31 #include <linux/efi.h>
32 #include <linux/bootmem.h>
33 #include <linux/memblock.h>
34 #include <linux/spinlock.h>
35 #include <linux/uaccess.h>
36 #include <linux/time.h>
37 #include <linux/io.h>
38 #include <linux/reboot.h>
39 #include <linux/bcd.h>
40
41 #include <asm/setup.h>
42 #include <asm/efi.h>
43 #include <asm/time.h>
44 #include <asm/cacheflush.h>
45 #include <asm/tlbflush.h>
46 #include <asm/x86_init.h>
47
48 #define EFI_DEBUG       1
49 #define PFX             "EFI: "
50
51 int efi_enabled;
52 EXPORT_SYMBOL(efi_enabled);
53
54 struct efi efi;
55 EXPORT_SYMBOL(efi);
56
57 struct efi_memory_map memmap;
58
59 static struct efi efi_phys __initdata;
60 static efi_system_table_t efi_systab __initdata;
61
62 static int __init setup_noefi(char *arg)
63 {
64         efi_enabled = 0;
65         return 0;
66 }
67 early_param("noefi", setup_noefi);
68
69 int add_efi_memmap;
70 EXPORT_SYMBOL(add_efi_memmap);
71
72 static int __init setup_add_efi_memmap(char *arg)
73 {
74         add_efi_memmap = 1;
75         return 0;
76 }
77 early_param("add_efi_memmap", setup_add_efi_memmap);
78
79
80 static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
81 {
82         return efi_call_virt2(get_time, tm, tc);
83 }
84
85 static efi_status_t virt_efi_set_time(efi_time_t *tm)
86 {
87         return efi_call_virt1(set_time, tm);
88 }
89
90 static efi_status_t virt_efi_get_wakeup_time(efi_bool_t *enabled,
91                                              efi_bool_t *pending,
92                                              efi_time_t *tm)
93 {
94         return efi_call_virt3(get_wakeup_time,
95                               enabled, pending, tm);
96 }
97
98 static efi_status_t virt_efi_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
99 {
100         return efi_call_virt2(set_wakeup_time,
101                               enabled, tm);
102 }
103
104 static efi_status_t virt_efi_get_variable(efi_char16_t *name,
105                                           efi_guid_t *vendor,
106                                           u32 *attr,
107                                           unsigned long *data_size,
108                                           void *data)
109 {
110         return efi_call_virt5(get_variable,
111                               name, vendor, attr,
112                               data_size, data);
113 }
114
115 static efi_status_t virt_efi_get_next_variable(unsigned long *name_size,
116                                                efi_char16_t *name,
117                                                efi_guid_t *vendor)
118 {
119         return efi_call_virt3(get_next_variable,
120                               name_size, name, vendor);
121 }
122
123 static efi_status_t virt_efi_set_variable(efi_char16_t *name,
124                                           efi_guid_t *vendor,
125                                           unsigned long attr,
126                                           unsigned long data_size,
127                                           void *data)
128 {
129         return efi_call_virt5(set_variable,
130                               name, vendor, attr,
131                               data_size, data);
132 }
133
134 static efi_status_t virt_efi_get_next_high_mono_count(u32 *count)
135 {
136         return efi_call_virt1(get_next_high_mono_count, count);
137 }
138
139 static void virt_efi_reset_system(int reset_type,
140                                   efi_status_t status,
141                                   unsigned long data_size,
142                                   efi_char16_t *data)
143 {
144         efi_call_virt4(reset_system, reset_type, status,
145                        data_size, data);
146 }
147
148 static efi_status_t __init phys_efi_set_virtual_address_map(
149         unsigned long memory_map_size,
150         unsigned long descriptor_size,
151         u32 descriptor_version,
152         efi_memory_desc_t *virtual_map)
153 {
154         efi_status_t status;
155
156         efi_call_phys_prelog();
157         status = efi_call_phys4(efi_phys.set_virtual_address_map,
158                                 memory_map_size, descriptor_size,
159                                 descriptor_version, virtual_map);
160         efi_call_phys_epilog();
161         return status;
162 }
163
164 static efi_status_t __init phys_efi_get_time(efi_time_t *tm,
165                                              efi_time_cap_t *tc)
166 {
167         efi_status_t status;
168
169         efi_call_phys_prelog();
170         status = efi_call_phys2(efi_phys.get_time, tm, tc);
171         efi_call_phys_epilog();
172         return status;
173 }
174
175 int efi_set_rtc_mmss(unsigned long nowtime)
176 {
177         int real_seconds, real_minutes;
178         efi_status_t    status;
179         efi_time_t      eft;
180         efi_time_cap_t  cap;
181
182         status = efi.get_time(&eft, &cap);
183         if (status != EFI_SUCCESS) {
184                 printk(KERN_ERR "Oops: efitime: can't read time!\n");
185                 return -1;
186         }
187
188         real_seconds = nowtime % 60;
189         real_minutes = nowtime / 60;
190         if (((abs(real_minutes - eft.minute) + 15)/30) & 1)
191                 real_minutes += 30;
192         real_minutes %= 60;
193         eft.minute = real_minutes;
194         eft.second = real_seconds;
195
196         status = efi.set_time(&eft);
197         if (status != EFI_SUCCESS) {
198                 printk(KERN_ERR "Oops: efitime: can't write time!\n");
199                 return -1;
200         }
201         return 0;
202 }
203
204 unsigned long efi_get_time(void)
205 {
206         efi_status_t status;
207         efi_time_t eft;
208         efi_time_cap_t cap;
209
210         status = efi.get_time(&eft, &cap);
211         if (status != EFI_SUCCESS)
212                 printk(KERN_ERR "Oops: efitime: can't read time!\n");
213
214         return mktime(eft.year, eft.month, eft.day, eft.hour,
215                       eft.minute, eft.second);
216 }
217
218 /*
219  * Tell the kernel about the EFI memory map.  This might include
220  * more than the max 128 entries that can fit in the e820 legacy
221  * (zeropage) memory map.
222  */
223
224 static void __init do_add_efi_memmap(void)
225 {
226         void *p;
227
228         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
229                 efi_memory_desc_t *md = p;
230                 unsigned long long start = md->phys_addr;
231                 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
232                 int e820_type;
233
234                 switch (md->type) {
235                 case EFI_LOADER_CODE:
236                 case EFI_LOADER_DATA:
237                 case EFI_BOOT_SERVICES_CODE:
238                 case EFI_BOOT_SERVICES_DATA:
239                 case EFI_CONVENTIONAL_MEMORY:
240                         if (md->attribute & EFI_MEMORY_WB)
241                                 e820_type = E820_RAM;
242                         else
243                                 e820_type = E820_RESERVED;
244                         break;
245                 case EFI_ACPI_RECLAIM_MEMORY:
246                         e820_type = E820_ACPI;
247                         break;
248                 case EFI_ACPI_MEMORY_NVS:
249                         e820_type = E820_NVS;
250                         break;
251                 case EFI_UNUSABLE_MEMORY:
252                         e820_type = E820_UNUSABLE;
253                         break;
254                 default:
255                         /*
256                          * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
257                          * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
258                          * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
259                          */
260                         e820_type = E820_RESERVED;
261                         break;
262                 }
263                 e820_add_region(start, size, e820_type);
264         }
265         sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
266 }
267
268 void __init efi_memblock_x86_reserve_range(void)
269 {
270         unsigned long pmap;
271
272 #ifdef CONFIG_X86_32
273         pmap = boot_params.efi_info.efi_memmap;
274 #else
275         pmap = (boot_params.efi_info.efi_memmap |
276                 ((__u64)boot_params.efi_info.efi_memmap_hi<<32));
277 #endif
278         memmap.phys_map = (void *)pmap;
279         memmap.nr_map = boot_params.efi_info.efi_memmap_size /
280                 boot_params.efi_info.efi_memdesc_size;
281         memmap.desc_version = boot_params.efi_info.efi_memdesc_version;
282         memmap.desc_size = boot_params.efi_info.efi_memdesc_size;
283         memblock_x86_reserve_range(pmap, pmap + memmap.nr_map * memmap.desc_size,
284                       "EFI memmap");
285 }
286
287 #if EFI_DEBUG
288 static void __init print_efi_memmap(void)
289 {
290         efi_memory_desc_t *md;
291         void *p;
292         int i;
293
294         for (p = memmap.map, i = 0;
295              p < memmap.map_end;
296              p += memmap.desc_size, i++) {
297                 md = p;
298                 printk(KERN_INFO PFX "mem%02u: type=%u, attr=0x%llx, "
299                         "range=[0x%016llx-0x%016llx) (%lluMB)\n",
300                         i, md->type, md->attribute, md->phys_addr,
301                         md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
302                         (md->num_pages >> (20 - EFI_PAGE_SHIFT)));
303         }
304 }
305 #endif  /*  EFI_DEBUG  */
306
307 void __init efi_reserve_boot_services(void)
308 {
309         void *p;
310
311         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
312                 efi_memory_desc_t *md = p;
313                 u64 start = md->phys_addr;
314                 u64 size = md->num_pages << EFI_PAGE_SHIFT;
315
316                 if (md->type != EFI_BOOT_SERVICES_CODE &&
317                     md->type != EFI_BOOT_SERVICES_DATA)
318                         continue;
319                 /* Only reserve where possible:
320                  * - Not within any already allocated areas
321                  * - Not over any memory area (really needed, if above?)
322                  * - Not within any part of the kernel
323                  * - Not the bios reserved area
324                 */
325                 if ((start+size >= virt_to_phys(_text)
326                                 && start <= virt_to_phys(_end)) ||
327                         !e820_all_mapped(start, start+size, E820_RAM) ||
328                         memblock_x86_check_reserved_size(&start, &size,
329                                                         1<<EFI_PAGE_SHIFT)) {
330                         /* Could not reserve, skip it */
331                         md->num_pages = 0;
332                         memblock_dbg(PFX "Could not reserve boot range "
333                                         "[0x%010llx-0x%010llx]\n",
334                                                 start, start+size-1);
335                 } else
336                         memblock_x86_reserve_range(start, start+size,
337                                                         "EFI Boot");
338         }
339 }
340
341 static void __init efi_free_boot_services(void)
342 {
343         void *p;
344
345         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
346                 efi_memory_desc_t *md = p;
347                 unsigned long long start = md->phys_addr;
348                 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
349
350                 if (md->type != EFI_BOOT_SERVICES_CODE &&
351                     md->type != EFI_BOOT_SERVICES_DATA)
352                         continue;
353
354                 /* Could not reserve boot area */
355                 if (!size)
356                         continue;
357
358                 free_bootmem_late(start, size);
359         }
360 }
361
362 void __init efi_init(void)
363 {
364         efi_config_table_t *config_tables;
365         efi_runtime_services_t *runtime;
366         efi_char16_t *c16;
367         char vendor[100] = "unknown";
368         int i = 0;
369         void *tmp;
370
371 #ifdef CONFIG_X86_32
372         efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
373 #else
374         efi_phys.systab = (efi_system_table_t *)
375                 (boot_params.efi_info.efi_systab |
376                  ((__u64)boot_params.efi_info.efi_systab_hi<<32));
377 #endif
378
379         efi.systab = early_ioremap((unsigned long)efi_phys.systab,
380                                    sizeof(efi_system_table_t));
381         if (efi.systab == NULL)
382                 printk(KERN_ERR "Couldn't map the EFI system table!\n");
383         memcpy(&efi_systab, efi.systab, sizeof(efi_system_table_t));
384         early_iounmap(efi.systab, sizeof(efi_system_table_t));
385         efi.systab = &efi_systab;
386
387         /*
388          * Verify the EFI Table
389          */
390         if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
391                 printk(KERN_ERR "EFI system table signature incorrect!\n");
392         if ((efi.systab->hdr.revision >> 16) == 0)
393                 printk(KERN_ERR "Warning: EFI system table version "
394                        "%d.%02d, expected 1.00 or greater!\n",
395                        efi.systab->hdr.revision >> 16,
396                        efi.systab->hdr.revision & 0xffff);
397
398         /*
399          * Show what we know for posterity
400          */
401         c16 = tmp = early_ioremap(efi.systab->fw_vendor, 2);
402         if (c16) {
403                 for (i = 0; i < sizeof(vendor) - 1 && *c16; ++i)
404                         vendor[i] = *c16++;
405                 vendor[i] = '\0';
406         } else
407                 printk(KERN_ERR PFX "Could not map the firmware vendor!\n");
408         early_iounmap(tmp, 2);
409
410         printk(KERN_INFO "EFI v%u.%.02u by %s\n",
411                efi.systab->hdr.revision >> 16,
412                efi.systab->hdr.revision & 0xffff, vendor);
413
414         /*
415          * Let's see what config tables the firmware passed to us.
416          */
417         config_tables = early_ioremap(
418                 efi.systab->tables,
419                 efi.systab->nr_tables * sizeof(efi_config_table_t));
420         if (config_tables == NULL)
421                 printk(KERN_ERR "Could not map EFI Configuration Table!\n");
422
423         printk(KERN_INFO);
424         for (i = 0; i < efi.systab->nr_tables; i++) {
425                 if (!efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID)) {
426                         efi.mps = config_tables[i].table;
427                         printk(" MPS=0x%lx ", config_tables[i].table);
428                 } else if (!efi_guidcmp(config_tables[i].guid,
429                                         ACPI_20_TABLE_GUID)) {
430                         efi.acpi20 = config_tables[i].table;
431                         printk(" ACPI 2.0=0x%lx ", config_tables[i].table);
432                 } else if (!efi_guidcmp(config_tables[i].guid,
433                                         ACPI_TABLE_GUID)) {
434                         efi.acpi = config_tables[i].table;
435                         printk(" ACPI=0x%lx ", config_tables[i].table);
436                 } else if (!efi_guidcmp(config_tables[i].guid,
437                                         SMBIOS_TABLE_GUID)) {
438                         efi.smbios = config_tables[i].table;
439                         printk(" SMBIOS=0x%lx ", config_tables[i].table);
440 #ifdef CONFIG_X86_UV
441                 } else if (!efi_guidcmp(config_tables[i].guid,
442                                         UV_SYSTEM_TABLE_GUID)) {
443                         efi.uv_systab = config_tables[i].table;
444                         printk(" UVsystab=0x%lx ", config_tables[i].table);
445 #endif
446                 } else if (!efi_guidcmp(config_tables[i].guid,
447                                         HCDP_TABLE_GUID)) {
448                         efi.hcdp = config_tables[i].table;
449                         printk(" HCDP=0x%lx ", config_tables[i].table);
450                 } else if (!efi_guidcmp(config_tables[i].guid,
451                                         UGA_IO_PROTOCOL_GUID)) {
452                         efi.uga = config_tables[i].table;
453                         printk(" UGA=0x%lx ", config_tables[i].table);
454                 }
455         }
456         printk("\n");
457         early_iounmap(config_tables,
458                           efi.systab->nr_tables * sizeof(efi_config_table_t));
459
460         /*
461          * Check out the runtime services table. We need to map
462          * the runtime services table so that we can grab the physical
463          * address of several of the EFI runtime functions, needed to
464          * set the firmware into virtual mode.
465          */
466         runtime = early_ioremap((unsigned long)efi.systab->runtime,
467                                 sizeof(efi_runtime_services_t));
468         if (runtime != NULL) {
469                 /*
470                  * We will only need *early* access to the following
471                  * two EFI runtime services before set_virtual_address_map
472                  * is invoked.
473                  */
474                 efi_phys.get_time = (efi_get_time_t *)runtime->get_time;
475                 efi_phys.set_virtual_address_map =
476                         (efi_set_virtual_address_map_t *)
477                         runtime->set_virtual_address_map;
478                 /*
479                  * Make efi_get_time can be called before entering
480                  * virtual mode.
481                  */
482                 efi.get_time = phys_efi_get_time;
483         } else
484                 printk(KERN_ERR "Could not map the EFI runtime service "
485                        "table!\n");
486         early_iounmap(runtime, sizeof(efi_runtime_services_t));
487
488         /* Map the EFI memory map */
489         memmap.map = early_ioremap((unsigned long)memmap.phys_map,
490                                    memmap.nr_map * memmap.desc_size);
491         if (memmap.map == NULL)
492                 printk(KERN_ERR "Could not map the EFI memory map!\n");
493         memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
494
495         if (memmap.desc_size != sizeof(efi_memory_desc_t))
496                 printk(KERN_WARNING
497                   "Kernel-defined memdesc doesn't match the one from EFI!\n");
498
499         if (add_efi_memmap)
500                 do_add_efi_memmap();
501
502 #ifdef CONFIG_X86_32
503         x86_platform.get_wallclock = efi_get_time;
504         x86_platform.set_wallclock = efi_set_rtc_mmss;
505 #endif
506
507         /* Setup for EFI runtime service */
508         reboot_type = BOOT_EFI;
509
510 #if EFI_DEBUG
511         print_efi_memmap();
512 #endif
513 }
514
515 void __init efi_set_executable(efi_memory_desc_t *md, bool executable)
516 {
517         u64 addr, npages;
518
519         addr = md->virt_addr;
520         npages = md->num_pages;
521
522         memrange_efi_to_native(&addr, &npages);
523
524         if (executable)
525                 set_memory_x(addr, npages);
526         else
527                 set_memory_nx(addr, npages);
528 }
529
530 static void __init runtime_code_page_mkexec(void)
531 {
532         efi_memory_desc_t *md;
533         void *p;
534
535         /* Make EFI runtime service code area executable */
536         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
537                 md = p;
538
539                 if (md->type != EFI_RUNTIME_SERVICES_CODE)
540                         continue;
541
542                 efi_set_executable(md, true);
543         }
544 }
545
546 /*
547  * This function will switch the EFI runtime services to virtual mode.
548  * Essentially, look through the EFI memmap and map every region that
549  * has the runtime attribute bit set in its memory descriptor and update
550  * that memory descriptor with the virtual address obtained from ioremap().
551  * This enables the runtime services to be called without having to
552  * thunk back into physical mode for every invocation.
553  */
554 void __init efi_enter_virtual_mode(void)
555 {
556         efi_memory_desc_t *md, *prev_md = NULL;
557         efi_status_t status;
558         unsigned long size;
559         u64 end, systab, addr, npages, end_pfn;
560         void *p, *va, *new_memmap = NULL;
561         int count = 0;
562
563         efi.systab = NULL;
564
565         /* Merge contiguous regions of the same type and attribute */
566         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
567                 u64 prev_size;
568                 md = p;
569
570                 if (!prev_md) {
571                         prev_md = md;
572                         continue;
573                 }
574
575                 if (prev_md->type != md->type ||
576                     prev_md->attribute != md->attribute) {
577                         prev_md = md;
578                         continue;
579                 }
580
581                 prev_size = prev_md->num_pages << EFI_PAGE_SHIFT;
582
583                 if (md->phys_addr == (prev_md->phys_addr + prev_size)) {
584                         prev_md->num_pages += md->num_pages;
585                         md->type = EFI_RESERVED_TYPE;
586                         md->attribute = 0;
587                         continue;
588                 }
589                 prev_md = md;
590         }
591
592         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
593                 md = p;
594                 if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
595                     md->type != EFI_BOOT_SERVICES_CODE &&
596                     md->type != EFI_BOOT_SERVICES_DATA)
597                         continue;
598
599                 size = md->num_pages << EFI_PAGE_SHIFT;
600                 end = md->phys_addr + size;
601
602                 end_pfn = PFN_UP(end);
603                 if (end_pfn <= max_low_pfn_mapped
604                     || (end_pfn > (1UL << (32 - PAGE_SHIFT))
605                         && end_pfn <= max_pfn_mapped))
606                         va = __va(md->phys_addr);
607                 else
608                         va = efi_ioremap(md->phys_addr, size, md->type);
609
610                 md->virt_addr = (u64) (unsigned long) va;
611
612                 if (!va) {
613                         printk(KERN_ERR PFX "ioremap of 0x%llX failed!\n",
614                                (unsigned long long)md->phys_addr);
615                         continue;
616                 }
617
618                 if (!(md->attribute & EFI_MEMORY_WB)) {
619                         addr = md->virt_addr;
620                         npages = md->num_pages;
621                         memrange_efi_to_native(&addr, &npages);
622                         set_memory_uc(addr, npages);
623                 }
624
625                 systab = (u64) (unsigned long) efi_phys.systab;
626                 if (md->phys_addr <= systab && systab < end) {
627                         systab += md->virt_addr - md->phys_addr;
628                         efi.systab = (efi_system_table_t *) (unsigned long) systab;
629                 }
630                 new_memmap = krealloc(new_memmap,
631                                       (count + 1) * memmap.desc_size,
632                                       GFP_KERNEL);
633                 memcpy(new_memmap + (count * memmap.desc_size), md,
634                        memmap.desc_size);
635                 count++;
636         }
637
638         BUG_ON(!efi.systab);
639
640         status = phys_efi_set_virtual_address_map(
641                 memmap.desc_size * count,
642                 memmap.desc_size,
643                 memmap.desc_version,
644                 (efi_memory_desc_t *)__pa(new_memmap));
645
646         if (status != EFI_SUCCESS) {
647                 printk(KERN_ALERT "Unable to switch EFI into virtual mode "
648                        "(status=%lx)!\n", status);
649                 panic("EFI call to SetVirtualAddressMap() failed!");
650         }
651
652         /*
653          * Thankfully, it does seem that no runtime services other than
654          * SetVirtualAddressMap() will touch boot services code, so we can
655          * get rid of it all at this point
656          */
657         efi_free_boot_services();
658
659         /*
660          * Now that EFI is in virtual mode, update the function
661          * pointers in the runtime service table to the new virtual addresses.
662          *
663          * Call EFI services through wrapper functions.
664          */
665         efi.get_time = virt_efi_get_time;
666         efi.set_time = virt_efi_set_time;
667         efi.get_wakeup_time = virt_efi_get_wakeup_time;
668         efi.set_wakeup_time = virt_efi_set_wakeup_time;
669         efi.get_variable = virt_efi_get_variable;
670         efi.get_next_variable = virt_efi_get_next_variable;
671         efi.set_variable = virt_efi_set_variable;
672         efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count;
673         efi.reset_system = virt_efi_reset_system;
674         efi.set_virtual_address_map = NULL;
675         if (__supported_pte_mask & _PAGE_NX)
676                 runtime_code_page_mkexec();
677         early_iounmap(memmap.map, memmap.nr_map * memmap.desc_size);
678         memmap.map = NULL;
679         kfree(new_memmap);
680 }
681
682 /*
683  * Convenience functions to obtain memory types and attributes
684  */
685 u32 efi_mem_type(unsigned long phys_addr)
686 {
687         efi_memory_desc_t *md;
688         void *p;
689
690         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
691                 md = p;
692                 if ((md->phys_addr <= phys_addr) &&
693                     (phys_addr < (md->phys_addr +
694                                   (md->num_pages << EFI_PAGE_SHIFT))))
695                         return md->type;
696         }
697         return 0;
698 }
699
700 u64 efi_mem_attributes(unsigned long phys_addr)
701 {
702         efi_memory_desc_t *md;
703         void *p;
704
705         for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
706                 md = p;
707                 if ((md->phys_addr <= phys_addr) &&
708                     (phys_addr < (md->phys_addr +
709                                   (md->num_pages << EFI_PAGE_SHIFT))))
710                         return md->attribute;
711         }
712         return 0;
713 }