bc96ac9ed912bb1926b199006f858ed7ed27b74d
[pandora-kernel.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affilates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
33 #include <linux/fs.h>
34 #include <linux/vmalloc.h>
35 #include <linux/module.h>
36 #include <linux/mman.h>
37 #include <linux/highmem.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/cpufreq.h>
41 #include <linux/user-return-notifier.h>
42 #include <linux/srcu.h>
43 #include <linux/slab.h>
44 #include <linux/perf_event.h>
45 #include <linux/uaccess.h>
46 #include <trace/events/kvm.h>
47
48 #define CREATE_TRACE_POINTS
49 #include "trace.h"
50
51 #include <asm/debugreg.h>
52 #include <asm/msr.h>
53 #include <asm/desc.h>
54 #include <asm/mtrr.h>
55 #include <asm/mce.h>
56 #include <asm/i387.h>
57 #include <asm/xcr.h>
58 #include <asm/pvclock.h>
59
60 #define MAX_IO_MSRS 256
61 #define CR0_RESERVED_BITS                                               \
62         (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
63                           | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
64                           | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
65 #define CR4_RESERVED_BITS                                               \
66         (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
67                           | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
68                           | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR  \
69                           | X86_CR4_OSXSAVE \
70                           | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
71
72 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
73
74 #define KVM_MAX_MCE_BANKS 32
75 #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
76
77 /* EFER defaults:
78  * - enable syscall per default because its emulated by KVM
79  * - enable LME and LMA per default on 64 bit KVM
80  */
81 #ifdef CONFIG_X86_64
82 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
83 #else
84 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
85 #endif
86
87 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
88 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
89
90 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
91 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
92                                     struct kvm_cpuid_entry2 __user *entries);
93
94 struct kvm_x86_ops *kvm_x86_ops;
95 EXPORT_SYMBOL_GPL(kvm_x86_ops);
96
97 int ignore_msrs = 0;
98 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
99
100 #define KVM_NR_SHARED_MSRS 16
101
102 struct kvm_shared_msrs_global {
103         int nr;
104         u32 msrs[KVM_NR_SHARED_MSRS];
105 };
106
107 struct kvm_shared_msrs {
108         struct user_return_notifier urn;
109         bool registered;
110         struct kvm_shared_msr_values {
111                 u64 host;
112                 u64 curr;
113         } values[KVM_NR_SHARED_MSRS];
114 };
115
116 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
117 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
118
119 struct kvm_stats_debugfs_item debugfs_entries[] = {
120         { "pf_fixed", VCPU_STAT(pf_fixed) },
121         { "pf_guest", VCPU_STAT(pf_guest) },
122         { "tlb_flush", VCPU_STAT(tlb_flush) },
123         { "invlpg", VCPU_STAT(invlpg) },
124         { "exits", VCPU_STAT(exits) },
125         { "io_exits", VCPU_STAT(io_exits) },
126         { "mmio_exits", VCPU_STAT(mmio_exits) },
127         { "signal_exits", VCPU_STAT(signal_exits) },
128         { "irq_window", VCPU_STAT(irq_window_exits) },
129         { "nmi_window", VCPU_STAT(nmi_window_exits) },
130         { "halt_exits", VCPU_STAT(halt_exits) },
131         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
132         { "hypercalls", VCPU_STAT(hypercalls) },
133         { "request_irq", VCPU_STAT(request_irq_exits) },
134         { "irq_exits", VCPU_STAT(irq_exits) },
135         { "host_state_reload", VCPU_STAT(host_state_reload) },
136         { "efer_reload", VCPU_STAT(efer_reload) },
137         { "fpu_reload", VCPU_STAT(fpu_reload) },
138         { "insn_emulation", VCPU_STAT(insn_emulation) },
139         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
140         { "irq_injections", VCPU_STAT(irq_injections) },
141         { "nmi_injections", VCPU_STAT(nmi_injections) },
142         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
143         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
144         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
145         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
146         { "mmu_flooded", VM_STAT(mmu_flooded) },
147         { "mmu_recycled", VM_STAT(mmu_recycled) },
148         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
149         { "mmu_unsync", VM_STAT(mmu_unsync) },
150         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
151         { "largepages", VM_STAT(lpages) },
152         { NULL }
153 };
154
155 u64 __read_mostly host_xcr0;
156
157 static inline u32 bit(int bitno)
158 {
159         return 1 << (bitno & 31);
160 }
161
162 static void kvm_on_user_return(struct user_return_notifier *urn)
163 {
164         unsigned slot;
165         struct kvm_shared_msrs *locals
166                 = container_of(urn, struct kvm_shared_msrs, urn);
167         struct kvm_shared_msr_values *values;
168
169         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
170                 values = &locals->values[slot];
171                 if (values->host != values->curr) {
172                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
173                         values->curr = values->host;
174                 }
175         }
176         locals->registered = false;
177         user_return_notifier_unregister(urn);
178 }
179
180 static void shared_msr_update(unsigned slot, u32 msr)
181 {
182         struct kvm_shared_msrs *smsr;
183         u64 value;
184
185         smsr = &__get_cpu_var(shared_msrs);
186         /* only read, and nobody should modify it at this time,
187          * so don't need lock */
188         if (slot >= shared_msrs_global.nr) {
189                 printk(KERN_ERR "kvm: invalid MSR slot!");
190                 return;
191         }
192         rdmsrl_safe(msr, &value);
193         smsr->values[slot].host = value;
194         smsr->values[slot].curr = value;
195 }
196
197 void kvm_define_shared_msr(unsigned slot, u32 msr)
198 {
199         if (slot >= shared_msrs_global.nr)
200                 shared_msrs_global.nr = slot + 1;
201         shared_msrs_global.msrs[slot] = msr;
202         /* we need ensured the shared_msr_global have been updated */
203         smp_wmb();
204 }
205 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
206
207 static void kvm_shared_msr_cpu_online(void)
208 {
209         unsigned i;
210
211         for (i = 0; i < shared_msrs_global.nr; ++i)
212                 shared_msr_update(i, shared_msrs_global.msrs[i]);
213 }
214
215 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
216 {
217         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
218
219         if (((value ^ smsr->values[slot].curr) & mask) == 0)
220                 return;
221         smsr->values[slot].curr = value;
222         wrmsrl(shared_msrs_global.msrs[slot], value);
223         if (!smsr->registered) {
224                 smsr->urn.on_user_return = kvm_on_user_return;
225                 user_return_notifier_register(&smsr->urn);
226                 smsr->registered = true;
227         }
228 }
229 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
230
231 static void drop_user_return_notifiers(void *ignore)
232 {
233         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
234
235         if (smsr->registered)
236                 kvm_on_user_return(&smsr->urn);
237 }
238
239 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
240 {
241         if (irqchip_in_kernel(vcpu->kvm))
242                 return vcpu->arch.apic_base;
243         else
244                 return vcpu->arch.apic_base;
245 }
246 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
247
248 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
249 {
250         /* TODO: reserve bits check */
251         if (irqchip_in_kernel(vcpu->kvm))
252                 kvm_lapic_set_base(vcpu, data);
253         else
254                 vcpu->arch.apic_base = data;
255 }
256 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
257
258 #define EXCPT_BENIGN            0
259 #define EXCPT_CONTRIBUTORY      1
260 #define EXCPT_PF                2
261
262 static int exception_class(int vector)
263 {
264         switch (vector) {
265         case PF_VECTOR:
266                 return EXCPT_PF;
267         case DE_VECTOR:
268         case TS_VECTOR:
269         case NP_VECTOR:
270         case SS_VECTOR:
271         case GP_VECTOR:
272                 return EXCPT_CONTRIBUTORY;
273         default:
274                 break;
275         }
276         return EXCPT_BENIGN;
277 }
278
279 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
280                 unsigned nr, bool has_error, u32 error_code,
281                 bool reinject)
282 {
283         u32 prev_nr;
284         int class1, class2;
285
286         if (!vcpu->arch.exception.pending) {
287         queue:
288                 vcpu->arch.exception.pending = true;
289                 vcpu->arch.exception.has_error_code = has_error;
290                 vcpu->arch.exception.nr = nr;
291                 vcpu->arch.exception.error_code = error_code;
292                 vcpu->arch.exception.reinject = reinject;
293                 return;
294         }
295
296         /* to check exception */
297         prev_nr = vcpu->arch.exception.nr;
298         if (prev_nr == DF_VECTOR) {
299                 /* triple fault -> shutdown */
300                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
301                 return;
302         }
303         class1 = exception_class(prev_nr);
304         class2 = exception_class(nr);
305         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
306                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
307                 /* generate double fault per SDM Table 5-5 */
308                 vcpu->arch.exception.pending = true;
309                 vcpu->arch.exception.has_error_code = true;
310                 vcpu->arch.exception.nr = DF_VECTOR;
311                 vcpu->arch.exception.error_code = 0;
312         } else
313                 /* replace previous exception with a new one in a hope
314                    that instruction re-execution will regenerate lost
315                    exception */
316                 goto queue;
317 }
318
319 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
320 {
321         kvm_multiple_exception(vcpu, nr, false, 0, false);
322 }
323 EXPORT_SYMBOL_GPL(kvm_queue_exception);
324
325 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
326 {
327         kvm_multiple_exception(vcpu, nr, false, 0, true);
328 }
329 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
330
331 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
332                            u32 error_code)
333 {
334         ++vcpu->stat.pf_guest;
335         vcpu->arch.cr2 = addr;
336         kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
337 }
338
339 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
340 {
341         vcpu->arch.nmi_pending = 1;
342 }
343 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
344
345 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
346 {
347         kvm_multiple_exception(vcpu, nr, true, error_code, false);
348 }
349 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
350
351 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
352 {
353         kvm_multiple_exception(vcpu, nr, true, error_code, true);
354 }
355 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
356
357 /*
358  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
359  * a #GP and return false.
360  */
361 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
362 {
363         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
364                 return true;
365         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
366         return false;
367 }
368 EXPORT_SYMBOL_GPL(kvm_require_cpl);
369
370 /*
371  * Load the pae pdptrs.  Return true is they are all valid.
372  */
373 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
374 {
375         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
376         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
377         int i;
378         int ret;
379         u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
380
381         ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
382                                   offset * sizeof(u64), sizeof(pdpte));
383         if (ret < 0) {
384                 ret = 0;
385                 goto out;
386         }
387         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
388                 if (is_present_gpte(pdpte[i]) &&
389                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
390                         ret = 0;
391                         goto out;
392                 }
393         }
394         ret = 1;
395
396         memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
397         __set_bit(VCPU_EXREG_PDPTR,
398                   (unsigned long *)&vcpu->arch.regs_avail);
399         __set_bit(VCPU_EXREG_PDPTR,
400                   (unsigned long *)&vcpu->arch.regs_dirty);
401 out:
402
403         return ret;
404 }
405 EXPORT_SYMBOL_GPL(load_pdptrs);
406
407 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
408 {
409         u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
410         bool changed = true;
411         int r;
412
413         if (is_long_mode(vcpu) || !is_pae(vcpu))
414                 return false;
415
416         if (!test_bit(VCPU_EXREG_PDPTR,
417                       (unsigned long *)&vcpu->arch.regs_avail))
418                 return true;
419
420         r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
421         if (r < 0)
422                 goto out;
423         changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
424 out:
425
426         return changed;
427 }
428
429 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
430 {
431         unsigned long old_cr0 = kvm_read_cr0(vcpu);
432         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
433                                     X86_CR0_CD | X86_CR0_NW;
434
435         cr0 |= X86_CR0_ET;
436
437 #ifdef CONFIG_X86_64
438         if (cr0 & 0xffffffff00000000UL)
439                 return 1;
440 #endif
441
442         cr0 &= ~CR0_RESERVED_BITS;
443
444         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
445                 return 1;
446
447         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
448                 return 1;
449
450         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
451 #ifdef CONFIG_X86_64
452                 if ((vcpu->arch.efer & EFER_LME)) {
453                         int cs_db, cs_l;
454
455                         if (!is_pae(vcpu))
456                                 return 1;
457                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
458                         if (cs_l)
459                                 return 1;
460                 } else
461 #endif
462                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3))
463                         return 1;
464         }
465
466         kvm_x86_ops->set_cr0(vcpu, cr0);
467
468         if ((cr0 ^ old_cr0) & update_bits)
469                 kvm_mmu_reset_context(vcpu);
470         return 0;
471 }
472 EXPORT_SYMBOL_GPL(kvm_set_cr0);
473
474 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
475 {
476         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
477 }
478 EXPORT_SYMBOL_GPL(kvm_lmsw);
479
480 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
481 {
482         u64 xcr0;
483
484         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
485         if (index != XCR_XFEATURE_ENABLED_MASK)
486                 return 1;
487         xcr0 = xcr;
488         if (kvm_x86_ops->get_cpl(vcpu) != 0)
489                 return 1;
490         if (!(xcr0 & XSTATE_FP))
491                 return 1;
492         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
493                 return 1;
494         if (xcr0 & ~host_xcr0)
495                 return 1;
496         vcpu->arch.xcr0 = xcr0;
497         vcpu->guest_xcr0_loaded = 0;
498         return 0;
499 }
500
501 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
502 {
503         if (__kvm_set_xcr(vcpu, index, xcr)) {
504                 kvm_inject_gp(vcpu, 0);
505                 return 1;
506         }
507         return 0;
508 }
509 EXPORT_SYMBOL_GPL(kvm_set_xcr);
510
511 static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
512 {
513         struct kvm_cpuid_entry2 *best;
514
515         best = kvm_find_cpuid_entry(vcpu, 1, 0);
516         return best && (best->ecx & bit(X86_FEATURE_XSAVE));
517 }
518
519 static void update_cpuid(struct kvm_vcpu *vcpu)
520 {
521         struct kvm_cpuid_entry2 *best;
522
523         best = kvm_find_cpuid_entry(vcpu, 1, 0);
524         if (!best)
525                 return;
526
527         /* Update OSXSAVE bit */
528         if (cpu_has_xsave && best->function == 0x1) {
529                 best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
530                 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
531                         best->ecx |= bit(X86_FEATURE_OSXSAVE);
532         }
533 }
534
535 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
536 {
537         unsigned long old_cr4 = kvm_read_cr4(vcpu);
538         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
539
540         if (cr4 & CR4_RESERVED_BITS)
541                 return 1;
542
543         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
544                 return 1;
545
546         if (is_long_mode(vcpu)) {
547                 if (!(cr4 & X86_CR4_PAE))
548                         return 1;
549         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
550                    && ((cr4 ^ old_cr4) & pdptr_bits)
551                    && !load_pdptrs(vcpu, vcpu->arch.cr3))
552                 return 1;
553
554         if (cr4 & X86_CR4_VMXE)
555                 return 1;
556
557         kvm_x86_ops->set_cr4(vcpu, cr4);
558
559         if ((cr4 ^ old_cr4) & pdptr_bits)
560                 kvm_mmu_reset_context(vcpu);
561
562         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
563                 update_cpuid(vcpu);
564
565         return 0;
566 }
567 EXPORT_SYMBOL_GPL(kvm_set_cr4);
568
569 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
570 {
571         if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
572                 kvm_mmu_sync_roots(vcpu);
573                 kvm_mmu_flush_tlb(vcpu);
574                 return 0;
575         }
576
577         if (is_long_mode(vcpu)) {
578                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
579                         return 1;
580         } else {
581                 if (is_pae(vcpu)) {
582                         if (cr3 & CR3_PAE_RESERVED_BITS)
583                                 return 1;
584                         if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3))
585                                 return 1;
586                 }
587                 /*
588                  * We don't check reserved bits in nonpae mode, because
589                  * this isn't enforced, and VMware depends on this.
590                  */
591         }
592
593         /*
594          * Does the new cr3 value map to physical memory? (Note, we
595          * catch an invalid cr3 even in real-mode, because it would
596          * cause trouble later on when we turn on paging anyway.)
597          *
598          * A real CPU would silently accept an invalid cr3 and would
599          * attempt to use it - with largely undefined (and often hard
600          * to debug) behavior on the guest side.
601          */
602         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
603                 return 1;
604         vcpu->arch.cr3 = cr3;
605         vcpu->arch.mmu.new_cr3(vcpu);
606         return 0;
607 }
608 EXPORT_SYMBOL_GPL(kvm_set_cr3);
609
610 int __kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
611 {
612         if (cr8 & CR8_RESERVED_BITS)
613                 return 1;
614         if (irqchip_in_kernel(vcpu->kvm))
615                 kvm_lapic_set_tpr(vcpu, cr8);
616         else
617                 vcpu->arch.cr8 = cr8;
618         return 0;
619 }
620
621 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
622 {
623         if (__kvm_set_cr8(vcpu, cr8))
624                 kvm_inject_gp(vcpu, 0);
625 }
626 EXPORT_SYMBOL_GPL(kvm_set_cr8);
627
628 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
629 {
630         if (irqchip_in_kernel(vcpu->kvm))
631                 return kvm_lapic_get_cr8(vcpu);
632         else
633                 return vcpu->arch.cr8;
634 }
635 EXPORT_SYMBOL_GPL(kvm_get_cr8);
636
637 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
638 {
639         switch (dr) {
640         case 0 ... 3:
641                 vcpu->arch.db[dr] = val;
642                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
643                         vcpu->arch.eff_db[dr] = val;
644                 break;
645         case 4:
646                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
647                         return 1; /* #UD */
648                 /* fall through */
649         case 6:
650                 if (val & 0xffffffff00000000ULL)
651                         return -1; /* #GP */
652                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
653                 break;
654         case 5:
655                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
656                         return 1; /* #UD */
657                 /* fall through */
658         default: /* 7 */
659                 if (val & 0xffffffff00000000ULL)
660                         return -1; /* #GP */
661                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
662                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
663                         kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
664                         vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
665                 }
666                 break;
667         }
668
669         return 0;
670 }
671
672 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
673 {
674         int res;
675
676         res = __kvm_set_dr(vcpu, dr, val);
677         if (res > 0)
678                 kvm_queue_exception(vcpu, UD_VECTOR);
679         else if (res < 0)
680                 kvm_inject_gp(vcpu, 0);
681
682         return res;
683 }
684 EXPORT_SYMBOL_GPL(kvm_set_dr);
685
686 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
687 {
688         switch (dr) {
689         case 0 ... 3:
690                 *val = vcpu->arch.db[dr];
691                 break;
692         case 4:
693                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
694                         return 1;
695                 /* fall through */
696         case 6:
697                 *val = vcpu->arch.dr6;
698                 break;
699         case 5:
700                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
701                         return 1;
702                 /* fall through */
703         default: /* 7 */
704                 *val = vcpu->arch.dr7;
705                 break;
706         }
707
708         return 0;
709 }
710
711 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
712 {
713         if (_kvm_get_dr(vcpu, dr, val)) {
714                 kvm_queue_exception(vcpu, UD_VECTOR);
715                 return 1;
716         }
717         return 0;
718 }
719 EXPORT_SYMBOL_GPL(kvm_get_dr);
720
721 /*
722  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
723  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
724  *
725  * This list is modified at module load time to reflect the
726  * capabilities of the host cpu. This capabilities test skips MSRs that are
727  * kvm-specific. Those are put in the beginning of the list.
728  */
729
730 #define KVM_SAVE_MSRS_BEGIN     7
731 static u32 msrs_to_save[] = {
732         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
733         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
734         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
735         HV_X64_MSR_APIC_ASSIST_PAGE,
736         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
737         MSR_STAR,
738 #ifdef CONFIG_X86_64
739         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
740 #endif
741         MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
742 };
743
744 static unsigned num_msrs_to_save;
745
746 static u32 emulated_msrs[] = {
747         MSR_IA32_MISC_ENABLE,
748         MSR_IA32_MCG_STATUS,
749         MSR_IA32_MCG_CTL,
750 };
751
752 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
753 {
754         u64 old_efer = vcpu->arch.efer;
755
756         if (efer & efer_reserved_bits)
757                 return 1;
758
759         if (is_paging(vcpu)
760             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
761                 return 1;
762
763         if (efer & EFER_FFXSR) {
764                 struct kvm_cpuid_entry2 *feat;
765
766                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
767                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
768                         return 1;
769         }
770
771         if (efer & EFER_SVME) {
772                 struct kvm_cpuid_entry2 *feat;
773
774                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
775                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
776                         return 1;
777         }
778
779         efer &= ~EFER_LMA;
780         efer |= vcpu->arch.efer & EFER_LMA;
781
782         kvm_x86_ops->set_efer(vcpu, efer);
783
784         vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
785         kvm_mmu_reset_context(vcpu);
786
787         /* Update reserved bits */
788         if ((efer ^ old_efer) & EFER_NX)
789                 kvm_mmu_reset_context(vcpu);
790
791         return 0;
792 }
793
794 void kvm_enable_efer_bits(u64 mask)
795 {
796        efer_reserved_bits &= ~mask;
797 }
798 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
799
800
801 /*
802  * Writes msr value into into the appropriate "register".
803  * Returns 0 on success, non-0 otherwise.
804  * Assumes vcpu_load() was already called.
805  */
806 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
807 {
808         return kvm_x86_ops->set_msr(vcpu, msr_index, data);
809 }
810
811 /*
812  * Adapt set_msr() to msr_io()'s calling convention
813  */
814 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
815 {
816         return kvm_set_msr(vcpu, index, *data);
817 }
818
819 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
820 {
821         int version;
822         int r;
823         struct pvclock_wall_clock wc;
824         struct timespec boot;
825
826         if (!wall_clock)
827                 return;
828
829         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
830         if (r)
831                 return;
832
833         if (version & 1)
834                 ++version;  /* first time write, random junk */
835
836         ++version;
837
838         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
839
840         /*
841          * The guest calculates current wall clock time by adding
842          * system time (updated by kvm_write_guest_time below) to the
843          * wall clock specified here.  guest system time equals host
844          * system time for us, thus we must fill in host boot time here.
845          */
846         getboottime(&boot);
847
848         wc.sec = boot.tv_sec;
849         wc.nsec = boot.tv_nsec;
850         wc.version = version;
851
852         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
853
854         version++;
855         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
856 }
857
858 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
859 {
860         uint32_t quotient, remainder;
861
862         /* Don't try to replace with do_div(), this one calculates
863          * "(dividend << 32) / divisor" */
864         __asm__ ( "divl %4"
865                   : "=a" (quotient), "=d" (remainder)
866                   : "0" (0), "1" (dividend), "r" (divisor) );
867         return quotient;
868 }
869
870 static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
871 {
872         uint64_t nsecs = 1000000000LL;
873         int32_t  shift = 0;
874         uint64_t tps64;
875         uint32_t tps32;
876
877         tps64 = tsc_khz * 1000LL;
878         while (tps64 > nsecs*2) {
879                 tps64 >>= 1;
880                 shift--;
881         }
882
883         tps32 = (uint32_t)tps64;
884         while (tps32 <= (uint32_t)nsecs) {
885                 tps32 <<= 1;
886                 shift++;
887         }
888
889         hv_clock->tsc_shift = shift;
890         hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
891
892         pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
893                  __func__, tsc_khz, hv_clock->tsc_shift,
894                  hv_clock->tsc_to_system_mul);
895 }
896
897 static inline u64 get_kernel_ns(void)
898 {
899         struct timespec ts;
900
901         WARN_ON(preemptible());
902         ktime_get_ts(&ts);
903         monotonic_to_bootbased(&ts);
904         return timespec_to_ns(&ts);
905 }
906
907 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
908
909 static inline int kvm_tsc_changes_freq(void)
910 {
911         int cpu = get_cpu();
912         int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
913                   cpufreq_quick_get(cpu) != 0;
914         put_cpu();
915         return ret;
916 }
917
918 static inline u64 nsec_to_cycles(u64 nsec)
919 {
920         WARN_ON(preemptible());
921         if (kvm_tsc_changes_freq())
922                 printk_once(KERN_WARNING
923                  "kvm: unreliable cycle conversion on adjustable rate TSC\n");
924         return (nsec * __get_cpu_var(cpu_tsc_khz)) / USEC_PER_SEC;
925 }
926
927 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
928 {
929         struct kvm *kvm = vcpu->kvm;
930         u64 offset, ns, elapsed;
931         unsigned long flags;
932         s64 sdiff;
933
934         spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
935         offset = data - native_read_tsc();
936         ns = get_kernel_ns();
937         elapsed = ns - kvm->arch.last_tsc_nsec;
938         sdiff = data - kvm->arch.last_tsc_write;
939         if (sdiff < 0)
940                 sdiff = -sdiff;
941
942         /*
943          * Special case: close write to TSC within 5 seconds of
944          * another CPU is interpreted as an attempt to synchronize
945          * The 5 seconds is to accomodate host load / swapping as
946          * well as any reset of TSC during the boot process.
947          *
948          * In that case, for a reliable TSC, we can match TSC offsets,
949          * or make a best guest using elapsed value.
950          */
951         if (sdiff < nsec_to_cycles(5ULL * NSEC_PER_SEC) &&
952             elapsed < 5ULL * NSEC_PER_SEC) {
953                 if (!check_tsc_unstable()) {
954                         offset = kvm->arch.last_tsc_offset;
955                         pr_debug("kvm: matched tsc offset for %llu\n", data);
956                 } else {
957                         u64 delta = nsec_to_cycles(elapsed);
958                         offset += delta;
959                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
960                 }
961                 ns = kvm->arch.last_tsc_nsec;
962         }
963         kvm->arch.last_tsc_nsec = ns;
964         kvm->arch.last_tsc_write = data;
965         kvm->arch.last_tsc_offset = offset;
966         kvm_x86_ops->write_tsc_offset(vcpu, offset);
967         spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
968
969         /* Reset of TSC must disable overshoot protection below */
970         vcpu->arch.hv_clock.tsc_timestamp = 0;
971 }
972 EXPORT_SYMBOL_GPL(kvm_write_tsc);
973
974 static int kvm_write_guest_time(struct kvm_vcpu *v)
975 {
976         unsigned long flags;
977         struct kvm_vcpu_arch *vcpu = &v->arch;
978         void *shared_kaddr;
979         unsigned long this_tsc_khz;
980         s64 kernel_ns, max_kernel_ns;
981         u64 tsc_timestamp;
982
983         if ((!vcpu->time_page))
984                 return 0;
985
986         /* Keep irq disabled to prevent changes to the clock */
987         local_irq_save(flags);
988         kvm_get_msr(v, MSR_IA32_TSC, &tsc_timestamp);
989         kernel_ns = get_kernel_ns();
990         this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
991         local_irq_restore(flags);
992
993         if (unlikely(this_tsc_khz == 0)) {
994                 kvm_make_request(KVM_REQ_KVMCLOCK_UPDATE, v);
995                 return 1;
996         }
997
998         /*
999          * Time as measured by the TSC may go backwards when resetting the base
1000          * tsc_timestamp.  The reason for this is that the TSC resolution is
1001          * higher than the resolution of the other clock scales.  Thus, many
1002          * possible measurments of the TSC correspond to one measurement of any
1003          * other clock, and so a spread of values is possible.  This is not a
1004          * problem for the computation of the nanosecond clock; with TSC rates
1005          * around 1GHZ, there can only be a few cycles which correspond to one
1006          * nanosecond value, and any path through this code will inevitably
1007          * take longer than that.  However, with the kernel_ns value itself,
1008          * the precision may be much lower, down to HZ granularity.  If the
1009          * first sampling of TSC against kernel_ns ends in the low part of the
1010          * range, and the second in the high end of the range, we can get:
1011          *
1012          * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1013          *
1014          * As the sampling errors potentially range in the thousands of cycles,
1015          * it is possible such a time value has already been observed by the
1016          * guest.  To protect against this, we must compute the system time as
1017          * observed by the guest and ensure the new system time is greater.
1018          */
1019         max_kernel_ns = 0;
1020         if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
1021                 max_kernel_ns = vcpu->last_guest_tsc -
1022                                 vcpu->hv_clock.tsc_timestamp;
1023                 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1024                                     vcpu->hv_clock.tsc_to_system_mul,
1025                                     vcpu->hv_clock.tsc_shift);
1026                 max_kernel_ns += vcpu->last_kernel_ns;
1027         }
1028
1029         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1030                 kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
1031                 vcpu->hw_tsc_khz = this_tsc_khz;
1032         }
1033
1034         if (max_kernel_ns > kernel_ns)
1035                 kernel_ns = max_kernel_ns;
1036
1037         /* With all the info we got, fill in the values */
1038         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1039         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1040         vcpu->last_kernel_ns = kernel_ns;
1041         vcpu->hv_clock.flags = 0;
1042
1043         /*
1044          * The interface expects us to write an even number signaling that the
1045          * update is finished. Since the guest won't see the intermediate
1046          * state, we just increase by 2 at the end.
1047          */
1048         vcpu->hv_clock.version += 2;
1049
1050         shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
1051
1052         memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1053                sizeof(vcpu->hv_clock));
1054
1055         kunmap_atomic(shared_kaddr, KM_USER0);
1056
1057         mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1058         return 0;
1059 }
1060
1061 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
1062 {
1063         struct kvm_vcpu_arch *vcpu = &v->arch;
1064
1065         if (!vcpu->time_page)
1066                 return 0;
1067         kvm_make_request(KVM_REQ_KVMCLOCK_UPDATE, v);
1068         return 1;
1069 }
1070
1071 static bool msr_mtrr_valid(unsigned msr)
1072 {
1073         switch (msr) {
1074         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1075         case MSR_MTRRfix64K_00000:
1076         case MSR_MTRRfix16K_80000:
1077         case MSR_MTRRfix16K_A0000:
1078         case MSR_MTRRfix4K_C0000:
1079         case MSR_MTRRfix4K_C8000:
1080         case MSR_MTRRfix4K_D0000:
1081         case MSR_MTRRfix4K_D8000:
1082         case MSR_MTRRfix4K_E0000:
1083         case MSR_MTRRfix4K_E8000:
1084         case MSR_MTRRfix4K_F0000:
1085         case MSR_MTRRfix4K_F8000:
1086         case MSR_MTRRdefType:
1087         case MSR_IA32_CR_PAT:
1088                 return true;
1089         case 0x2f8:
1090                 return true;
1091         }
1092         return false;
1093 }
1094
1095 static bool valid_pat_type(unsigned t)
1096 {
1097         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1098 }
1099
1100 static bool valid_mtrr_type(unsigned t)
1101 {
1102         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1103 }
1104
1105 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1106 {
1107         int i;
1108
1109         if (!msr_mtrr_valid(msr))
1110                 return false;
1111
1112         if (msr == MSR_IA32_CR_PAT) {
1113                 for (i = 0; i < 8; i++)
1114                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
1115                                 return false;
1116                 return true;
1117         } else if (msr == MSR_MTRRdefType) {
1118                 if (data & ~0xcff)
1119                         return false;
1120                 return valid_mtrr_type(data & 0xff);
1121         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1122                 for (i = 0; i < 8 ; i++)
1123                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1124                                 return false;
1125                 return true;
1126         }
1127
1128         /* variable MTRRs */
1129         return valid_mtrr_type(data & 0xff);
1130 }
1131
1132 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1133 {
1134         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1135
1136         if (!mtrr_valid(vcpu, msr, data))
1137                 return 1;
1138
1139         if (msr == MSR_MTRRdefType) {
1140                 vcpu->arch.mtrr_state.def_type = data;
1141                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1142         } else if (msr == MSR_MTRRfix64K_00000)
1143                 p[0] = data;
1144         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1145                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1146         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1147                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1148         else if (msr == MSR_IA32_CR_PAT)
1149                 vcpu->arch.pat = data;
1150         else {  /* Variable MTRRs */
1151                 int idx, is_mtrr_mask;
1152                 u64 *pt;
1153
1154                 idx = (msr - 0x200) / 2;
1155                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1156                 if (!is_mtrr_mask)
1157                         pt =
1158                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1159                 else
1160                         pt =
1161                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1162                 *pt = data;
1163         }
1164
1165         kvm_mmu_reset_context(vcpu);
1166         return 0;
1167 }
1168
1169 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1170 {
1171         u64 mcg_cap = vcpu->arch.mcg_cap;
1172         unsigned bank_num = mcg_cap & 0xff;
1173
1174         switch (msr) {
1175         case MSR_IA32_MCG_STATUS:
1176                 vcpu->arch.mcg_status = data;
1177                 break;
1178         case MSR_IA32_MCG_CTL:
1179                 if (!(mcg_cap & MCG_CTL_P))
1180                         return 1;
1181                 if (data != 0 && data != ~(u64)0)
1182                         return -1;
1183                 vcpu->arch.mcg_ctl = data;
1184                 break;
1185         default:
1186                 if (msr >= MSR_IA32_MC0_CTL &&
1187                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1188                         u32 offset = msr - MSR_IA32_MC0_CTL;
1189                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1190                          * some Linux kernels though clear bit 10 in bank 4 to
1191                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1192                          * this to avoid an uncatched #GP in the guest
1193                          */
1194                         if ((offset & 0x3) == 0 &&
1195                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1196                                 return -1;
1197                         vcpu->arch.mce_banks[offset] = data;
1198                         break;
1199                 }
1200                 return 1;
1201         }
1202         return 0;
1203 }
1204
1205 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1206 {
1207         struct kvm *kvm = vcpu->kvm;
1208         int lm = is_long_mode(vcpu);
1209         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1210                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1211         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1212                 : kvm->arch.xen_hvm_config.blob_size_32;
1213         u32 page_num = data & ~PAGE_MASK;
1214         u64 page_addr = data & PAGE_MASK;
1215         u8 *page;
1216         int r;
1217
1218         r = -E2BIG;
1219         if (page_num >= blob_size)
1220                 goto out;
1221         r = -ENOMEM;
1222         page = kzalloc(PAGE_SIZE, GFP_KERNEL);
1223         if (!page)
1224                 goto out;
1225         r = -EFAULT;
1226         if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
1227                 goto out_free;
1228         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1229                 goto out_free;
1230         r = 0;
1231 out_free:
1232         kfree(page);
1233 out:
1234         return r;
1235 }
1236
1237 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1238 {
1239         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1240 }
1241
1242 static bool kvm_hv_msr_partition_wide(u32 msr)
1243 {
1244         bool r = false;
1245         switch (msr) {
1246         case HV_X64_MSR_GUEST_OS_ID:
1247         case HV_X64_MSR_HYPERCALL:
1248                 r = true;
1249                 break;
1250         }
1251
1252         return r;
1253 }
1254
1255 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1256 {
1257         struct kvm *kvm = vcpu->kvm;
1258
1259         switch (msr) {
1260         case HV_X64_MSR_GUEST_OS_ID:
1261                 kvm->arch.hv_guest_os_id = data;
1262                 /* setting guest os id to zero disables hypercall page */
1263                 if (!kvm->arch.hv_guest_os_id)
1264                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1265                 break;
1266         case HV_X64_MSR_HYPERCALL: {
1267                 u64 gfn;
1268                 unsigned long addr;
1269                 u8 instructions[4];
1270
1271                 /* if guest os id is not set hypercall should remain disabled */
1272                 if (!kvm->arch.hv_guest_os_id)
1273                         break;
1274                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1275                         kvm->arch.hv_hypercall = data;
1276                         break;
1277                 }
1278                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1279                 addr = gfn_to_hva(kvm, gfn);
1280                 if (kvm_is_error_hva(addr))
1281                         return 1;
1282                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1283                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1284                 if (copy_to_user((void __user *)addr, instructions, 4))
1285                         return 1;
1286                 kvm->arch.hv_hypercall = data;
1287                 break;
1288         }
1289         default:
1290                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1291                           "data 0x%llx\n", msr, data);
1292                 return 1;
1293         }
1294         return 0;
1295 }
1296
1297 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1298 {
1299         switch (msr) {
1300         case HV_X64_MSR_APIC_ASSIST_PAGE: {
1301                 unsigned long addr;
1302
1303                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1304                         vcpu->arch.hv_vapic = data;
1305                         break;
1306                 }
1307                 addr = gfn_to_hva(vcpu->kvm, data >>
1308                                   HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1309                 if (kvm_is_error_hva(addr))
1310                         return 1;
1311                 if (clear_user((void __user *)addr, PAGE_SIZE))
1312                         return 1;
1313                 vcpu->arch.hv_vapic = data;
1314                 break;
1315         }
1316         case HV_X64_MSR_EOI:
1317                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1318         case HV_X64_MSR_ICR:
1319                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1320         case HV_X64_MSR_TPR:
1321                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1322         default:
1323                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1324                           "data 0x%llx\n", msr, data);
1325                 return 1;
1326         }
1327
1328         return 0;
1329 }
1330
1331 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1332 {
1333         switch (msr) {
1334         case MSR_EFER:
1335                 return set_efer(vcpu, data);
1336         case MSR_K7_HWCR:
1337                 data &= ~(u64)0x40;     /* ignore flush filter disable */
1338                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
1339                 if (data != 0) {
1340                         pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1341                                 data);
1342                         return 1;
1343                 }
1344                 break;
1345         case MSR_FAM10H_MMIO_CONF_BASE:
1346                 if (data != 0) {
1347                         pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1348                                 "0x%llx\n", data);
1349                         return 1;
1350                 }
1351                 break;
1352         case MSR_AMD64_NB_CFG:
1353                 break;
1354         case MSR_IA32_DEBUGCTLMSR:
1355                 if (!data) {
1356                         /* We support the non-activated case already */
1357                         break;
1358                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1359                         /* Values other than LBR and BTF are vendor-specific,
1360                            thus reserved and should throw a #GP */
1361                         return 1;
1362                 }
1363                 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1364                         __func__, data);
1365                 break;
1366         case MSR_IA32_UCODE_REV:
1367         case MSR_IA32_UCODE_WRITE:
1368         case MSR_VM_HSAVE_PA:
1369         case MSR_AMD64_PATCH_LOADER:
1370                 break;
1371         case 0x200 ... 0x2ff:
1372                 return set_msr_mtrr(vcpu, msr, data);
1373         case MSR_IA32_APICBASE:
1374                 kvm_set_apic_base(vcpu, data);
1375                 break;
1376         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1377                 return kvm_x2apic_msr_write(vcpu, msr, data);
1378         case MSR_IA32_MISC_ENABLE:
1379                 vcpu->arch.ia32_misc_enable_msr = data;
1380                 break;
1381         case MSR_KVM_WALL_CLOCK_NEW:
1382         case MSR_KVM_WALL_CLOCK:
1383                 vcpu->kvm->arch.wall_clock = data;
1384                 kvm_write_wall_clock(vcpu->kvm, data);
1385                 break;
1386         case MSR_KVM_SYSTEM_TIME_NEW:
1387         case MSR_KVM_SYSTEM_TIME: {
1388                 if (vcpu->arch.time_page) {
1389                         kvm_release_page_dirty(vcpu->arch.time_page);
1390                         vcpu->arch.time_page = NULL;
1391                 }
1392
1393                 vcpu->arch.time = data;
1394
1395                 /* we verify if the enable bit is set... */
1396                 if (!(data & 1))
1397                         break;
1398
1399                 /* ...but clean it before doing the actual write */
1400                 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1401
1402                 vcpu->arch.time_page =
1403                                 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1404
1405                 if (is_error_page(vcpu->arch.time_page)) {
1406                         kvm_release_page_clean(vcpu->arch.time_page);
1407                         vcpu->arch.time_page = NULL;
1408                 }
1409
1410                 kvm_request_guest_time_update(vcpu);
1411                 break;
1412         }
1413         case MSR_IA32_MCG_CTL:
1414         case MSR_IA32_MCG_STATUS:
1415         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1416                 return set_msr_mce(vcpu, msr, data);
1417
1418         /* Performance counters are not protected by a CPUID bit,
1419          * so we should check all of them in the generic path for the sake of
1420          * cross vendor migration.
1421          * Writing a zero into the event select MSRs disables them,
1422          * which we perfectly emulate ;-). Any other value should be at least
1423          * reported, some guests depend on them.
1424          */
1425         case MSR_P6_EVNTSEL0:
1426         case MSR_P6_EVNTSEL1:
1427         case MSR_K7_EVNTSEL0:
1428         case MSR_K7_EVNTSEL1:
1429         case MSR_K7_EVNTSEL2:
1430         case MSR_K7_EVNTSEL3:
1431                 if (data != 0)
1432                         pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1433                                 "0x%x data 0x%llx\n", msr, data);
1434                 break;
1435         /* at least RHEL 4 unconditionally writes to the perfctr registers,
1436          * so we ignore writes to make it happy.
1437          */
1438         case MSR_P6_PERFCTR0:
1439         case MSR_P6_PERFCTR1:
1440         case MSR_K7_PERFCTR0:
1441         case MSR_K7_PERFCTR1:
1442         case MSR_K7_PERFCTR2:
1443         case MSR_K7_PERFCTR3:
1444                 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1445                         "0x%x data 0x%llx\n", msr, data);
1446                 break;
1447         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1448                 if (kvm_hv_msr_partition_wide(msr)) {
1449                         int r;
1450                         mutex_lock(&vcpu->kvm->lock);
1451                         r = set_msr_hyperv_pw(vcpu, msr, data);
1452                         mutex_unlock(&vcpu->kvm->lock);
1453                         return r;
1454                 } else
1455                         return set_msr_hyperv(vcpu, msr, data);
1456                 break;
1457         default:
1458                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1459                         return xen_hvm_config(vcpu, data);
1460                 if (!ignore_msrs) {
1461                         pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1462                                 msr, data);
1463                         return 1;
1464                 } else {
1465                         pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1466                                 msr, data);
1467                         break;
1468                 }
1469         }
1470         return 0;
1471 }
1472 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1473
1474
1475 /*
1476  * Reads an msr value (of 'msr_index') into 'pdata'.
1477  * Returns 0 on success, non-0 otherwise.
1478  * Assumes vcpu_load() was already called.
1479  */
1480 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1481 {
1482         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1483 }
1484
1485 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1486 {
1487         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1488
1489         if (!msr_mtrr_valid(msr))
1490                 return 1;
1491
1492         if (msr == MSR_MTRRdefType)
1493                 *pdata = vcpu->arch.mtrr_state.def_type +
1494                          (vcpu->arch.mtrr_state.enabled << 10);
1495         else if (msr == MSR_MTRRfix64K_00000)
1496                 *pdata = p[0];
1497         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1498                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1499         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1500                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1501         else if (msr == MSR_IA32_CR_PAT)
1502                 *pdata = vcpu->arch.pat;
1503         else {  /* Variable MTRRs */
1504                 int idx, is_mtrr_mask;
1505                 u64 *pt;
1506
1507                 idx = (msr - 0x200) / 2;
1508                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1509                 if (!is_mtrr_mask)
1510                         pt =
1511                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1512                 else
1513                         pt =
1514                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1515                 *pdata = *pt;
1516         }
1517
1518         return 0;
1519 }
1520
1521 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1522 {
1523         u64 data;
1524         u64 mcg_cap = vcpu->arch.mcg_cap;
1525         unsigned bank_num = mcg_cap & 0xff;
1526
1527         switch (msr) {
1528         case MSR_IA32_P5_MC_ADDR:
1529         case MSR_IA32_P5_MC_TYPE:
1530                 data = 0;
1531                 break;
1532         case MSR_IA32_MCG_CAP:
1533                 data = vcpu->arch.mcg_cap;
1534                 break;
1535         case MSR_IA32_MCG_CTL:
1536                 if (!(mcg_cap & MCG_CTL_P))
1537                         return 1;
1538                 data = vcpu->arch.mcg_ctl;
1539                 break;
1540         case MSR_IA32_MCG_STATUS:
1541                 data = vcpu->arch.mcg_status;
1542                 break;
1543         default:
1544                 if (msr >= MSR_IA32_MC0_CTL &&
1545                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1546                         u32 offset = msr - MSR_IA32_MC0_CTL;
1547                         data = vcpu->arch.mce_banks[offset];
1548                         break;
1549                 }
1550                 return 1;
1551         }
1552         *pdata = data;
1553         return 0;
1554 }
1555
1556 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1557 {
1558         u64 data = 0;
1559         struct kvm *kvm = vcpu->kvm;
1560
1561         switch (msr) {
1562         case HV_X64_MSR_GUEST_OS_ID:
1563                 data = kvm->arch.hv_guest_os_id;
1564                 break;
1565         case HV_X64_MSR_HYPERCALL:
1566                 data = kvm->arch.hv_hypercall;
1567                 break;
1568         default:
1569                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1570                 return 1;
1571         }
1572
1573         *pdata = data;
1574         return 0;
1575 }
1576
1577 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1578 {
1579         u64 data = 0;
1580
1581         switch (msr) {
1582         case HV_X64_MSR_VP_INDEX: {
1583                 int r;
1584                 struct kvm_vcpu *v;
1585                 kvm_for_each_vcpu(r, v, vcpu->kvm)
1586                         if (v == vcpu)
1587                                 data = r;
1588                 break;
1589         }
1590         case HV_X64_MSR_EOI:
1591                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1592         case HV_X64_MSR_ICR:
1593                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1594         case HV_X64_MSR_TPR:
1595                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1596         default:
1597                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1598                 return 1;
1599         }
1600         *pdata = data;
1601         return 0;
1602 }
1603
1604 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1605 {
1606         u64 data;
1607
1608         switch (msr) {
1609         case MSR_IA32_PLATFORM_ID:
1610         case MSR_IA32_UCODE_REV:
1611         case MSR_IA32_EBL_CR_POWERON:
1612         case MSR_IA32_DEBUGCTLMSR:
1613         case MSR_IA32_LASTBRANCHFROMIP:
1614         case MSR_IA32_LASTBRANCHTOIP:
1615         case MSR_IA32_LASTINTFROMIP:
1616         case MSR_IA32_LASTINTTOIP:
1617         case MSR_K8_SYSCFG:
1618         case MSR_K7_HWCR:
1619         case MSR_VM_HSAVE_PA:
1620         case MSR_P6_PERFCTR0:
1621         case MSR_P6_PERFCTR1:
1622         case MSR_P6_EVNTSEL0:
1623         case MSR_P6_EVNTSEL1:
1624         case MSR_K7_EVNTSEL0:
1625         case MSR_K7_PERFCTR0:
1626         case MSR_K8_INT_PENDING_MSG:
1627         case MSR_AMD64_NB_CFG:
1628         case MSR_FAM10H_MMIO_CONF_BASE:
1629                 data = 0;
1630                 break;
1631         case MSR_MTRRcap:
1632                 data = 0x500 | KVM_NR_VAR_MTRR;
1633                 break;
1634         case 0x200 ... 0x2ff:
1635                 return get_msr_mtrr(vcpu, msr, pdata);
1636         case 0xcd: /* fsb frequency */
1637                 data = 3;
1638                 break;
1639         case MSR_IA32_APICBASE:
1640                 data = kvm_get_apic_base(vcpu);
1641                 break;
1642         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1643                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1644                 break;
1645         case MSR_IA32_MISC_ENABLE:
1646                 data = vcpu->arch.ia32_misc_enable_msr;
1647                 break;
1648         case MSR_IA32_PERF_STATUS:
1649                 /* TSC increment by tick */
1650                 data = 1000ULL;
1651                 /* CPU multiplier */
1652                 data |= (((uint64_t)4ULL) << 40);
1653                 break;
1654         case MSR_EFER:
1655                 data = vcpu->arch.efer;
1656                 break;
1657         case MSR_KVM_WALL_CLOCK:
1658         case MSR_KVM_WALL_CLOCK_NEW:
1659                 data = vcpu->kvm->arch.wall_clock;
1660                 break;
1661         case MSR_KVM_SYSTEM_TIME:
1662         case MSR_KVM_SYSTEM_TIME_NEW:
1663                 data = vcpu->arch.time;
1664                 break;
1665         case MSR_IA32_P5_MC_ADDR:
1666         case MSR_IA32_P5_MC_TYPE:
1667         case MSR_IA32_MCG_CAP:
1668         case MSR_IA32_MCG_CTL:
1669         case MSR_IA32_MCG_STATUS:
1670         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1671                 return get_msr_mce(vcpu, msr, pdata);
1672         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1673                 if (kvm_hv_msr_partition_wide(msr)) {
1674                         int r;
1675                         mutex_lock(&vcpu->kvm->lock);
1676                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
1677                         mutex_unlock(&vcpu->kvm->lock);
1678                         return r;
1679                 } else
1680                         return get_msr_hyperv(vcpu, msr, pdata);
1681                 break;
1682         default:
1683                 if (!ignore_msrs) {
1684                         pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1685                         return 1;
1686                 } else {
1687                         pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1688                         data = 0;
1689                 }
1690                 break;
1691         }
1692         *pdata = data;
1693         return 0;
1694 }
1695 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1696
1697 /*
1698  * Read or write a bunch of msrs. All parameters are kernel addresses.
1699  *
1700  * @return number of msrs set successfully.
1701  */
1702 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1703                     struct kvm_msr_entry *entries,
1704                     int (*do_msr)(struct kvm_vcpu *vcpu,
1705                                   unsigned index, u64 *data))
1706 {
1707         int i, idx;
1708
1709         idx = srcu_read_lock(&vcpu->kvm->srcu);
1710         for (i = 0; i < msrs->nmsrs; ++i)
1711                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1712                         break;
1713         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1714
1715         return i;
1716 }
1717
1718 /*
1719  * Read or write a bunch of msrs. Parameters are user addresses.
1720  *
1721  * @return number of msrs set successfully.
1722  */
1723 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1724                   int (*do_msr)(struct kvm_vcpu *vcpu,
1725                                 unsigned index, u64 *data),
1726                   int writeback)
1727 {
1728         struct kvm_msrs msrs;
1729         struct kvm_msr_entry *entries;
1730         int r, n;
1731         unsigned size;
1732
1733         r = -EFAULT;
1734         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1735                 goto out;
1736
1737         r = -E2BIG;
1738         if (msrs.nmsrs >= MAX_IO_MSRS)
1739                 goto out;
1740
1741         r = -ENOMEM;
1742         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1743         entries = kmalloc(size, GFP_KERNEL);
1744         if (!entries)
1745                 goto out;
1746
1747         r = -EFAULT;
1748         if (copy_from_user(entries, user_msrs->entries, size))
1749                 goto out_free;
1750
1751         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1752         if (r < 0)
1753                 goto out_free;
1754
1755         r = -EFAULT;
1756         if (writeback && copy_to_user(user_msrs->entries, entries, size))
1757                 goto out_free;
1758
1759         r = n;
1760
1761 out_free:
1762         kfree(entries);
1763 out:
1764         return r;
1765 }
1766
1767 int kvm_dev_ioctl_check_extension(long ext)
1768 {
1769         int r;
1770
1771         switch (ext) {
1772         case KVM_CAP_IRQCHIP:
1773         case KVM_CAP_HLT:
1774         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1775         case KVM_CAP_SET_TSS_ADDR:
1776         case KVM_CAP_EXT_CPUID:
1777         case KVM_CAP_CLOCKSOURCE:
1778         case KVM_CAP_PIT:
1779         case KVM_CAP_NOP_IO_DELAY:
1780         case KVM_CAP_MP_STATE:
1781         case KVM_CAP_SYNC_MMU:
1782         case KVM_CAP_REINJECT_CONTROL:
1783         case KVM_CAP_IRQ_INJECT_STATUS:
1784         case KVM_CAP_ASSIGN_DEV_IRQ:
1785         case KVM_CAP_IRQFD:
1786         case KVM_CAP_IOEVENTFD:
1787         case KVM_CAP_PIT2:
1788         case KVM_CAP_PIT_STATE2:
1789         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1790         case KVM_CAP_XEN_HVM:
1791         case KVM_CAP_ADJUST_CLOCK:
1792         case KVM_CAP_VCPU_EVENTS:
1793         case KVM_CAP_HYPERV:
1794         case KVM_CAP_HYPERV_VAPIC:
1795         case KVM_CAP_HYPERV_SPIN:
1796         case KVM_CAP_PCI_SEGMENT:
1797         case KVM_CAP_DEBUGREGS:
1798         case KVM_CAP_X86_ROBUST_SINGLESTEP:
1799         case KVM_CAP_XSAVE:
1800                 r = 1;
1801                 break;
1802         case KVM_CAP_COALESCED_MMIO:
1803                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1804                 break;
1805         case KVM_CAP_VAPIC:
1806                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1807                 break;
1808         case KVM_CAP_NR_VCPUS:
1809                 r = KVM_MAX_VCPUS;
1810                 break;
1811         case KVM_CAP_NR_MEMSLOTS:
1812                 r = KVM_MEMORY_SLOTS;
1813                 break;
1814         case KVM_CAP_PV_MMU:    /* obsolete */
1815                 r = 0;
1816                 break;
1817         case KVM_CAP_IOMMU:
1818                 r = iommu_found();
1819                 break;
1820         case KVM_CAP_MCE:
1821                 r = KVM_MAX_MCE_BANKS;
1822                 break;
1823         case KVM_CAP_XCRS:
1824                 r = cpu_has_xsave;
1825                 break;
1826         default:
1827                 r = 0;
1828                 break;
1829         }
1830         return r;
1831
1832 }
1833
1834 long kvm_arch_dev_ioctl(struct file *filp,
1835                         unsigned int ioctl, unsigned long arg)
1836 {
1837         void __user *argp = (void __user *)arg;
1838         long r;
1839
1840         switch (ioctl) {
1841         case KVM_GET_MSR_INDEX_LIST: {
1842                 struct kvm_msr_list __user *user_msr_list = argp;
1843                 struct kvm_msr_list msr_list;
1844                 unsigned n;
1845
1846                 r = -EFAULT;
1847                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1848                         goto out;
1849                 n = msr_list.nmsrs;
1850                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1851                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1852                         goto out;
1853                 r = -E2BIG;
1854                 if (n < msr_list.nmsrs)
1855                         goto out;
1856                 r = -EFAULT;
1857                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1858                                  num_msrs_to_save * sizeof(u32)))
1859                         goto out;
1860                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
1861                                  &emulated_msrs,
1862                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1863                         goto out;
1864                 r = 0;
1865                 break;
1866         }
1867         case KVM_GET_SUPPORTED_CPUID: {
1868                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1869                 struct kvm_cpuid2 cpuid;
1870
1871                 r = -EFAULT;
1872                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1873                         goto out;
1874                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1875                                                       cpuid_arg->entries);
1876                 if (r)
1877                         goto out;
1878
1879                 r = -EFAULT;
1880                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1881                         goto out;
1882                 r = 0;
1883                 break;
1884         }
1885         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
1886                 u64 mce_cap;
1887
1888                 mce_cap = KVM_MCE_CAP_SUPPORTED;
1889                 r = -EFAULT;
1890                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
1891                         goto out;
1892                 r = 0;
1893                 break;
1894         }
1895         default:
1896                 r = -EINVAL;
1897         }
1898 out:
1899         return r;
1900 }
1901
1902 static void wbinvd_ipi(void *garbage)
1903 {
1904         wbinvd();
1905 }
1906
1907 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
1908 {
1909         return vcpu->kvm->arch.iommu_domain &&
1910                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
1911 }
1912
1913 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1914 {
1915         /* Address WBINVD may be executed by guest */
1916         if (need_emulate_wbinvd(vcpu)) {
1917                 if (kvm_x86_ops->has_wbinvd_exit())
1918                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
1919                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
1920                         smp_call_function_single(vcpu->cpu,
1921                                         wbinvd_ipi, NULL, 1);
1922         }
1923
1924         kvm_x86_ops->vcpu_load(vcpu, cpu);
1925         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
1926                 /* Make sure TSC doesn't go backwards */
1927                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
1928                                 native_read_tsc() - vcpu->arch.last_host_tsc;
1929                 if (tsc_delta < 0)
1930                         mark_tsc_unstable("KVM discovered backwards TSC");
1931                 if (check_tsc_unstable())
1932                         kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
1933                 kvm_migrate_timers(vcpu);
1934                 vcpu->cpu = cpu;
1935         }
1936 }
1937
1938 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1939 {
1940         kvm_x86_ops->vcpu_put(vcpu);
1941         kvm_put_guest_fpu(vcpu);
1942         vcpu->arch.last_host_tsc = native_read_tsc();
1943 }
1944
1945 static int is_efer_nx(void)
1946 {
1947         unsigned long long efer = 0;
1948
1949         rdmsrl_safe(MSR_EFER, &efer);
1950         return efer & EFER_NX;
1951 }
1952
1953 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
1954 {
1955         int i;
1956         struct kvm_cpuid_entry2 *e, *entry;
1957
1958         entry = NULL;
1959         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
1960                 e = &vcpu->arch.cpuid_entries[i];
1961                 if (e->function == 0x80000001) {
1962                         entry = e;
1963                         break;
1964                 }
1965         }
1966         if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
1967                 entry->edx &= ~(1 << 20);
1968                 printk(KERN_INFO "kvm: guest NX capability removed\n");
1969         }
1970 }
1971
1972 /* when an old userspace process fills a new kernel module */
1973 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
1974                                     struct kvm_cpuid *cpuid,
1975                                     struct kvm_cpuid_entry __user *entries)
1976 {
1977         int r, i;
1978         struct kvm_cpuid_entry *cpuid_entries;
1979
1980         r = -E2BIG;
1981         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
1982                 goto out;
1983         r = -ENOMEM;
1984         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
1985         if (!cpuid_entries)
1986                 goto out;
1987         r = -EFAULT;
1988         if (copy_from_user(cpuid_entries, entries,
1989                            cpuid->nent * sizeof(struct kvm_cpuid_entry)))
1990                 goto out_free;
1991         for (i = 0; i < cpuid->nent; i++) {
1992                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
1993                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
1994                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
1995                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
1996                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
1997                 vcpu->arch.cpuid_entries[i].index = 0;
1998                 vcpu->arch.cpuid_entries[i].flags = 0;
1999                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
2000                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
2001                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
2002         }
2003         vcpu->arch.cpuid_nent = cpuid->nent;
2004         cpuid_fix_nx_cap(vcpu);
2005         r = 0;
2006         kvm_apic_set_version(vcpu);
2007         kvm_x86_ops->cpuid_update(vcpu);
2008         update_cpuid(vcpu);
2009
2010 out_free:
2011         vfree(cpuid_entries);
2012 out:
2013         return r;
2014 }
2015
2016 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
2017                                      struct kvm_cpuid2 *cpuid,
2018                                      struct kvm_cpuid_entry2 __user *entries)
2019 {
2020         int r;
2021
2022         r = -E2BIG;
2023         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2024                 goto out;
2025         r = -EFAULT;
2026         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
2027                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
2028                 goto out;
2029         vcpu->arch.cpuid_nent = cpuid->nent;
2030         kvm_apic_set_version(vcpu);
2031         kvm_x86_ops->cpuid_update(vcpu);
2032         update_cpuid(vcpu);
2033         return 0;
2034
2035 out:
2036         return r;
2037 }
2038
2039 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
2040                                      struct kvm_cpuid2 *cpuid,
2041                                      struct kvm_cpuid_entry2 __user *entries)
2042 {
2043         int r;
2044
2045         r = -E2BIG;
2046         if (cpuid->nent < vcpu->arch.cpuid_nent)
2047                 goto out;
2048         r = -EFAULT;
2049         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
2050                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
2051                 goto out;
2052         return 0;
2053
2054 out:
2055         cpuid->nent = vcpu->arch.cpuid_nent;
2056         return r;
2057 }
2058
2059 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2060                            u32 index)
2061 {
2062         entry->function = function;
2063         entry->index = index;
2064         cpuid_count(entry->function, entry->index,
2065                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
2066         entry->flags = 0;
2067 }
2068
2069 #define F(x) bit(X86_FEATURE_##x)
2070
2071 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2072                          u32 index, int *nent, int maxnent)
2073 {
2074         unsigned f_nx = is_efer_nx() ? F(NX) : 0;
2075 #ifdef CONFIG_X86_64
2076         unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
2077                                 ? F(GBPAGES) : 0;
2078         unsigned f_lm = F(LM);
2079 #else
2080         unsigned f_gbpages = 0;
2081         unsigned f_lm = 0;
2082 #endif
2083         unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
2084
2085         /* cpuid 1.edx */
2086         const u32 kvm_supported_word0_x86_features =
2087                 F(FPU) | F(VME) | F(DE) | F(PSE) |
2088                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2089                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
2090                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2091                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
2092                 0 /* Reserved, DS, ACPI */ | F(MMX) |
2093                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
2094                 0 /* HTT, TM, Reserved, PBE */;
2095         /* cpuid 0x80000001.edx */
2096         const u32 kvm_supported_word1_x86_features =
2097                 F(FPU) | F(VME) | F(DE) | F(PSE) |
2098                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2099                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
2100                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2101                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
2102                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
2103                 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
2104                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
2105         /* cpuid 1.ecx */
2106         const u32 kvm_supported_word4_x86_features =
2107                 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
2108                 0 /* DS-CPL, VMX, SMX, EST */ |
2109                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
2110                 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
2111                 0 /* Reserved, DCA */ | F(XMM4_1) |
2112                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
2113                 0 /* Reserved, AES */ | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX);
2114         /* cpuid 0x80000001.ecx */
2115         const u32 kvm_supported_word6_x86_features =
2116                 F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
2117                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
2118                 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
2119                 0 /* SKINIT */ | 0 /* WDT */;
2120
2121         /* all calls to cpuid_count() should be made on the same cpu */
2122         get_cpu();
2123         do_cpuid_1_ent(entry, function, index);
2124         ++*nent;
2125
2126         switch (function) {
2127         case 0:
2128                 entry->eax = min(entry->eax, (u32)0xd);
2129                 break;
2130         case 1:
2131                 entry->edx &= kvm_supported_word0_x86_features;
2132                 entry->ecx &= kvm_supported_word4_x86_features;
2133                 /* we support x2apic emulation even if host does not support
2134                  * it since we emulate x2apic in software */
2135                 entry->ecx |= F(X2APIC);
2136                 break;
2137         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
2138          * may return different values. This forces us to get_cpu() before
2139          * issuing the first command, and also to emulate this annoying behavior
2140          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
2141         case 2: {
2142                 int t, times = entry->eax & 0xff;
2143
2144                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2145                 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2146                 for (t = 1; t < times && *nent < maxnent; ++t) {
2147                         do_cpuid_1_ent(&entry[t], function, 0);
2148                         entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2149                         ++*nent;
2150                 }
2151                 break;
2152         }
2153         /* function 4 and 0xb have additional index. */
2154         case 4: {
2155                 int i, cache_type;
2156
2157                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2158                 /* read more entries until cache_type is zero */
2159                 for (i = 1; *nent < maxnent; ++i) {
2160                         cache_type = entry[i - 1].eax & 0x1f;
2161                         if (!cache_type)
2162                                 break;
2163                         do_cpuid_1_ent(&entry[i], function, i);
2164                         entry[i].flags |=
2165                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2166                         ++*nent;
2167                 }
2168                 break;
2169         }
2170         case 0xb: {
2171                 int i, level_type;
2172
2173                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2174                 /* read more entries until level_type is zero */
2175                 for (i = 1; *nent < maxnent; ++i) {
2176                         level_type = entry[i - 1].ecx & 0xff00;
2177                         if (!level_type)
2178                                 break;
2179                         do_cpuid_1_ent(&entry[i], function, i);
2180                         entry[i].flags |=
2181                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2182                         ++*nent;
2183                 }
2184                 break;
2185         }
2186         case 0xd: {
2187                 int i;
2188
2189                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2190                 for (i = 1; *nent < maxnent; ++i) {
2191                         if (entry[i - 1].eax == 0 && i != 2)
2192                                 break;
2193                         do_cpuid_1_ent(&entry[i], function, i);
2194                         entry[i].flags |=
2195                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2196                         ++*nent;
2197                 }
2198                 break;
2199         }
2200         case KVM_CPUID_SIGNATURE: {
2201                 char signature[12] = "KVMKVMKVM\0\0";
2202                 u32 *sigptr = (u32 *)signature;
2203                 entry->eax = 0;
2204                 entry->ebx = sigptr[0];
2205                 entry->ecx = sigptr[1];
2206                 entry->edx = sigptr[2];
2207                 break;
2208         }
2209         case KVM_CPUID_FEATURES:
2210                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
2211                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
2212                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
2213                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
2214                 entry->ebx = 0;
2215                 entry->ecx = 0;
2216                 entry->edx = 0;
2217                 break;
2218         case 0x80000000:
2219                 entry->eax = min(entry->eax, 0x8000001a);
2220                 break;
2221         case 0x80000001:
2222                 entry->edx &= kvm_supported_word1_x86_features;
2223                 entry->ecx &= kvm_supported_word6_x86_features;
2224                 break;
2225         }
2226
2227         kvm_x86_ops->set_supported_cpuid(function, entry);
2228
2229         put_cpu();
2230 }
2231
2232 #undef F
2233
2234 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
2235                                      struct kvm_cpuid_entry2 __user *entries)
2236 {
2237         struct kvm_cpuid_entry2 *cpuid_entries;
2238         int limit, nent = 0, r = -E2BIG;
2239         u32 func;
2240
2241         if (cpuid->nent < 1)
2242                 goto out;
2243         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2244                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
2245         r = -ENOMEM;
2246         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
2247         if (!cpuid_entries)
2248                 goto out;
2249
2250         do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
2251         limit = cpuid_entries[0].eax;
2252         for (func = 1; func <= limit && nent < cpuid->nent; ++func)
2253                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2254                              &nent, cpuid->nent);
2255         r = -E2BIG;
2256         if (nent >= cpuid->nent)
2257                 goto out_free;
2258
2259         do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
2260         limit = cpuid_entries[nent - 1].eax;
2261         for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
2262                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2263                              &nent, cpuid->nent);
2264
2265
2266
2267         r = -E2BIG;
2268         if (nent >= cpuid->nent)
2269                 goto out_free;
2270
2271         do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
2272                      cpuid->nent);
2273
2274         r = -E2BIG;
2275         if (nent >= cpuid->nent)
2276                 goto out_free;
2277
2278         do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
2279                      cpuid->nent);
2280
2281         r = -E2BIG;
2282         if (nent >= cpuid->nent)
2283                 goto out_free;
2284
2285         r = -EFAULT;
2286         if (copy_to_user(entries, cpuid_entries,
2287                          nent * sizeof(struct kvm_cpuid_entry2)))
2288                 goto out_free;
2289         cpuid->nent = nent;
2290         r = 0;
2291
2292 out_free:
2293         vfree(cpuid_entries);
2294 out:
2295         return r;
2296 }
2297
2298 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2299                                     struct kvm_lapic_state *s)
2300 {
2301         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2302
2303         return 0;
2304 }
2305
2306 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2307                                     struct kvm_lapic_state *s)
2308 {
2309         memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2310         kvm_apic_post_state_restore(vcpu);
2311         update_cr8_intercept(vcpu);
2312
2313         return 0;
2314 }
2315
2316 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2317                                     struct kvm_interrupt *irq)
2318 {
2319         if (irq->irq < 0 || irq->irq >= 256)
2320                 return -EINVAL;
2321         if (irqchip_in_kernel(vcpu->kvm))
2322                 return -ENXIO;
2323
2324         kvm_queue_interrupt(vcpu, irq->irq, false);
2325
2326         return 0;
2327 }
2328
2329 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2330 {
2331         kvm_inject_nmi(vcpu);
2332
2333         return 0;
2334 }
2335
2336 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2337                                            struct kvm_tpr_access_ctl *tac)
2338 {
2339         if (tac->flags)
2340                 return -EINVAL;
2341         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2342         return 0;
2343 }
2344
2345 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2346                                         u64 mcg_cap)
2347 {
2348         int r;
2349         unsigned bank_num = mcg_cap & 0xff, bank;
2350
2351         r = -EINVAL;
2352         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2353                 goto out;
2354         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2355                 goto out;
2356         r = 0;
2357         vcpu->arch.mcg_cap = mcg_cap;
2358         /* Init IA32_MCG_CTL to all 1s */
2359         if (mcg_cap & MCG_CTL_P)
2360                 vcpu->arch.mcg_ctl = ~(u64)0;
2361         /* Init IA32_MCi_CTL to all 1s */
2362         for (bank = 0; bank < bank_num; bank++)
2363                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2364 out:
2365         return r;
2366 }
2367
2368 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2369                                       struct kvm_x86_mce *mce)
2370 {
2371         u64 mcg_cap = vcpu->arch.mcg_cap;
2372         unsigned bank_num = mcg_cap & 0xff;
2373         u64 *banks = vcpu->arch.mce_banks;
2374
2375         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2376                 return -EINVAL;
2377         /*
2378          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2379          * reporting is disabled
2380          */
2381         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2382             vcpu->arch.mcg_ctl != ~(u64)0)
2383                 return 0;
2384         banks += 4 * mce->bank;
2385         /*
2386          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2387          * reporting is disabled for the bank
2388          */
2389         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2390                 return 0;
2391         if (mce->status & MCI_STATUS_UC) {
2392                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2393                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2394                         printk(KERN_DEBUG "kvm: set_mce: "
2395                                "injects mce exception while "
2396                                "previous one is in progress!\n");
2397                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2398                         return 0;
2399                 }
2400                 if (banks[1] & MCI_STATUS_VAL)
2401                         mce->status |= MCI_STATUS_OVER;
2402                 banks[2] = mce->addr;
2403                 banks[3] = mce->misc;
2404                 vcpu->arch.mcg_status = mce->mcg_status;
2405                 banks[1] = mce->status;
2406                 kvm_queue_exception(vcpu, MC_VECTOR);
2407         } else if (!(banks[1] & MCI_STATUS_VAL)
2408                    || !(banks[1] & MCI_STATUS_UC)) {
2409                 if (banks[1] & MCI_STATUS_VAL)
2410                         mce->status |= MCI_STATUS_OVER;
2411                 banks[2] = mce->addr;
2412                 banks[3] = mce->misc;
2413                 banks[1] = mce->status;
2414         } else
2415                 banks[1] |= MCI_STATUS_OVER;
2416         return 0;
2417 }
2418
2419 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2420                                                struct kvm_vcpu_events *events)
2421 {
2422         events->exception.injected =
2423                 vcpu->arch.exception.pending &&
2424                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2425         events->exception.nr = vcpu->arch.exception.nr;
2426         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2427         events->exception.error_code = vcpu->arch.exception.error_code;
2428
2429         events->interrupt.injected =
2430                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2431         events->interrupt.nr = vcpu->arch.interrupt.nr;
2432         events->interrupt.soft = 0;
2433         events->interrupt.shadow =
2434                 kvm_x86_ops->get_interrupt_shadow(vcpu,
2435                         KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2436
2437         events->nmi.injected = vcpu->arch.nmi_injected;
2438         events->nmi.pending = vcpu->arch.nmi_pending;
2439         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2440
2441         events->sipi_vector = vcpu->arch.sipi_vector;
2442
2443         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2444                          | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2445                          | KVM_VCPUEVENT_VALID_SHADOW);
2446 }
2447
2448 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2449                                               struct kvm_vcpu_events *events)
2450 {
2451         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2452                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2453                               | KVM_VCPUEVENT_VALID_SHADOW))
2454                 return -EINVAL;
2455
2456         vcpu->arch.exception.pending = events->exception.injected;
2457         vcpu->arch.exception.nr = events->exception.nr;
2458         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2459         vcpu->arch.exception.error_code = events->exception.error_code;
2460
2461         vcpu->arch.interrupt.pending = events->interrupt.injected;
2462         vcpu->arch.interrupt.nr = events->interrupt.nr;
2463         vcpu->arch.interrupt.soft = events->interrupt.soft;
2464         if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
2465                 kvm_pic_clear_isr_ack(vcpu->kvm);
2466         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2467                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2468                                                   events->interrupt.shadow);
2469
2470         vcpu->arch.nmi_injected = events->nmi.injected;
2471         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2472                 vcpu->arch.nmi_pending = events->nmi.pending;
2473         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2474
2475         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2476                 vcpu->arch.sipi_vector = events->sipi_vector;
2477
2478         return 0;
2479 }
2480
2481 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2482                                              struct kvm_debugregs *dbgregs)
2483 {
2484         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2485         dbgregs->dr6 = vcpu->arch.dr6;
2486         dbgregs->dr7 = vcpu->arch.dr7;
2487         dbgregs->flags = 0;
2488 }
2489
2490 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2491                                             struct kvm_debugregs *dbgregs)
2492 {
2493         if (dbgregs->flags)
2494                 return -EINVAL;
2495
2496         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2497         vcpu->arch.dr6 = dbgregs->dr6;
2498         vcpu->arch.dr7 = dbgregs->dr7;
2499
2500         return 0;
2501 }
2502
2503 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2504                                          struct kvm_xsave *guest_xsave)
2505 {
2506         if (cpu_has_xsave)
2507                 memcpy(guest_xsave->region,
2508                         &vcpu->arch.guest_fpu.state->xsave,
2509                         xstate_size);
2510         else {
2511                 memcpy(guest_xsave->region,
2512                         &vcpu->arch.guest_fpu.state->fxsave,
2513                         sizeof(struct i387_fxsave_struct));
2514                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2515                         XSTATE_FPSSE;
2516         }
2517 }
2518
2519 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2520                                         struct kvm_xsave *guest_xsave)
2521 {
2522         u64 xstate_bv =
2523                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2524
2525         if (cpu_has_xsave)
2526                 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2527                         guest_xsave->region, xstate_size);
2528         else {
2529                 if (xstate_bv & ~XSTATE_FPSSE)
2530                         return -EINVAL;
2531                 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2532                         guest_xsave->region, sizeof(struct i387_fxsave_struct));
2533         }
2534         return 0;
2535 }
2536
2537 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2538                                         struct kvm_xcrs *guest_xcrs)
2539 {
2540         if (!cpu_has_xsave) {
2541                 guest_xcrs->nr_xcrs = 0;
2542                 return;
2543         }
2544
2545         guest_xcrs->nr_xcrs = 1;
2546         guest_xcrs->flags = 0;
2547         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2548         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2549 }
2550
2551 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2552                                        struct kvm_xcrs *guest_xcrs)
2553 {
2554         int i, r = 0;
2555
2556         if (!cpu_has_xsave)
2557                 return -EINVAL;
2558
2559         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2560                 return -EINVAL;
2561
2562         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2563                 /* Only support XCR0 currently */
2564                 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2565                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2566                                 guest_xcrs->xcrs[0].value);
2567                         break;
2568                 }
2569         if (r)
2570                 r = -EINVAL;
2571         return r;
2572 }
2573
2574 long kvm_arch_vcpu_ioctl(struct file *filp,
2575                          unsigned int ioctl, unsigned long arg)
2576 {
2577         struct kvm_vcpu *vcpu = filp->private_data;
2578         void __user *argp = (void __user *)arg;
2579         int r;
2580         union {
2581                 struct kvm_lapic_state *lapic;
2582                 struct kvm_xsave *xsave;
2583                 struct kvm_xcrs *xcrs;
2584                 void *buffer;
2585         } u;
2586
2587         u.buffer = NULL;
2588         switch (ioctl) {
2589         case KVM_GET_LAPIC: {
2590                 r = -EINVAL;
2591                 if (!vcpu->arch.apic)
2592                         goto out;
2593                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2594
2595                 r = -ENOMEM;
2596                 if (!u.lapic)
2597                         goto out;
2598                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2599                 if (r)
2600                         goto out;
2601                 r = -EFAULT;
2602                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2603                         goto out;
2604                 r = 0;
2605                 break;
2606         }
2607         case KVM_SET_LAPIC: {
2608                 r = -EINVAL;
2609                 if (!vcpu->arch.apic)
2610                         goto out;
2611                 u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2612                 r = -ENOMEM;
2613                 if (!u.lapic)
2614                         goto out;
2615                 r = -EFAULT;
2616                 if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
2617                         goto out;
2618                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2619                 if (r)
2620                         goto out;
2621                 r = 0;
2622                 break;
2623         }
2624         case KVM_INTERRUPT: {
2625                 struct kvm_interrupt irq;
2626
2627                 r = -EFAULT;
2628                 if (copy_from_user(&irq, argp, sizeof irq))
2629                         goto out;
2630                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2631                 if (r)
2632                         goto out;
2633                 r = 0;
2634                 break;
2635         }
2636         case KVM_NMI: {
2637                 r = kvm_vcpu_ioctl_nmi(vcpu);
2638                 if (r)
2639                         goto out;
2640                 r = 0;
2641                 break;
2642         }
2643         case KVM_SET_CPUID: {
2644                 struct kvm_cpuid __user *cpuid_arg = argp;
2645                 struct kvm_cpuid cpuid;
2646
2647                 r = -EFAULT;
2648                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2649                         goto out;
2650                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2651                 if (r)
2652                         goto out;
2653                 break;
2654         }
2655         case KVM_SET_CPUID2: {
2656                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2657                 struct kvm_cpuid2 cpuid;
2658
2659                 r = -EFAULT;
2660                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2661                         goto out;
2662                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2663                                               cpuid_arg->entries);
2664                 if (r)
2665                         goto out;
2666                 break;
2667         }
2668         case KVM_GET_CPUID2: {
2669                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2670                 struct kvm_cpuid2 cpuid;
2671
2672                 r = -EFAULT;
2673                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2674                         goto out;
2675                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2676                                               cpuid_arg->entries);
2677                 if (r)
2678                         goto out;
2679                 r = -EFAULT;
2680                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2681                         goto out;
2682                 r = 0;
2683                 break;
2684         }
2685         case KVM_GET_MSRS:
2686                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2687                 break;
2688         case KVM_SET_MSRS:
2689                 r = msr_io(vcpu, argp, do_set_msr, 0);
2690                 break;
2691         case KVM_TPR_ACCESS_REPORTING: {
2692                 struct kvm_tpr_access_ctl tac;
2693
2694                 r = -EFAULT;
2695                 if (copy_from_user(&tac, argp, sizeof tac))
2696                         goto out;
2697                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2698                 if (r)
2699                         goto out;
2700                 r = -EFAULT;
2701                 if (copy_to_user(argp, &tac, sizeof tac))
2702                         goto out;
2703                 r = 0;
2704                 break;
2705         };
2706         case KVM_SET_VAPIC_ADDR: {
2707                 struct kvm_vapic_addr va;
2708
2709                 r = -EINVAL;
2710                 if (!irqchip_in_kernel(vcpu->kvm))
2711                         goto out;
2712                 r = -EFAULT;
2713                 if (copy_from_user(&va, argp, sizeof va))
2714                         goto out;
2715                 r = 0;
2716                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2717                 break;
2718         }
2719         case KVM_X86_SETUP_MCE: {
2720                 u64 mcg_cap;
2721
2722                 r = -EFAULT;
2723                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2724                         goto out;
2725                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2726                 break;
2727         }
2728         case KVM_X86_SET_MCE: {
2729                 struct kvm_x86_mce mce;
2730
2731                 r = -EFAULT;
2732                 if (copy_from_user(&mce, argp, sizeof mce))
2733                         goto out;
2734                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2735                 break;
2736         }
2737         case KVM_GET_VCPU_EVENTS: {
2738                 struct kvm_vcpu_events events;
2739
2740                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2741
2742                 r = -EFAULT;
2743                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2744                         break;
2745                 r = 0;
2746                 break;
2747         }
2748         case KVM_SET_VCPU_EVENTS: {
2749                 struct kvm_vcpu_events events;
2750
2751                 r = -EFAULT;
2752                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2753                         break;
2754
2755                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2756                 break;
2757         }
2758         case KVM_GET_DEBUGREGS: {
2759                 struct kvm_debugregs dbgregs;
2760
2761                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2762
2763                 r = -EFAULT;
2764                 if (copy_to_user(argp, &dbgregs,
2765                                  sizeof(struct kvm_debugregs)))
2766                         break;
2767                 r = 0;
2768                 break;
2769         }
2770         case KVM_SET_DEBUGREGS: {
2771                 struct kvm_debugregs dbgregs;
2772
2773                 r = -EFAULT;
2774                 if (copy_from_user(&dbgregs, argp,
2775                                    sizeof(struct kvm_debugregs)))
2776                         break;
2777
2778                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2779                 break;
2780         }
2781         case KVM_GET_XSAVE: {
2782                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2783                 r = -ENOMEM;
2784                 if (!u.xsave)
2785                         break;
2786
2787                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
2788
2789                 r = -EFAULT;
2790                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
2791                         break;
2792                 r = 0;
2793                 break;
2794         }
2795         case KVM_SET_XSAVE: {
2796                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2797                 r = -ENOMEM;
2798                 if (!u.xsave)
2799                         break;
2800
2801                 r = -EFAULT;
2802                 if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
2803                         break;
2804
2805                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
2806                 break;
2807         }
2808         case KVM_GET_XCRS: {
2809                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2810                 r = -ENOMEM;
2811                 if (!u.xcrs)
2812                         break;
2813
2814                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
2815
2816                 r = -EFAULT;
2817                 if (copy_to_user(argp, u.xcrs,
2818                                  sizeof(struct kvm_xcrs)))
2819                         break;
2820                 r = 0;
2821                 break;
2822         }
2823         case KVM_SET_XCRS: {
2824                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2825                 r = -ENOMEM;
2826                 if (!u.xcrs)
2827                         break;
2828
2829                 r = -EFAULT;
2830                 if (copy_from_user(u.xcrs, argp,
2831                                    sizeof(struct kvm_xcrs)))
2832                         break;
2833
2834                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
2835                 break;
2836         }
2837         default:
2838                 r = -EINVAL;
2839         }
2840 out:
2841         kfree(u.buffer);
2842         return r;
2843 }
2844
2845 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2846 {
2847         int ret;
2848
2849         if (addr > (unsigned int)(-3 * PAGE_SIZE))
2850                 return -1;
2851         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2852         return ret;
2853 }
2854
2855 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
2856                                               u64 ident_addr)
2857 {
2858         kvm->arch.ept_identity_map_addr = ident_addr;
2859         return 0;
2860 }
2861
2862 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
2863                                           u32 kvm_nr_mmu_pages)
2864 {
2865         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
2866                 return -EINVAL;
2867
2868         mutex_lock(&kvm->slots_lock);
2869         spin_lock(&kvm->mmu_lock);
2870
2871         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
2872         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
2873
2874         spin_unlock(&kvm->mmu_lock);
2875         mutex_unlock(&kvm->slots_lock);
2876         return 0;
2877 }
2878
2879 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
2880 {
2881         return kvm->arch.n_max_mmu_pages;
2882 }
2883
2884 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2885 {
2886         int r;
2887
2888         r = 0;
2889         switch (chip->chip_id) {
2890         case KVM_IRQCHIP_PIC_MASTER:
2891                 memcpy(&chip->chip.pic,
2892                         &pic_irqchip(kvm)->pics[0],
2893                         sizeof(struct kvm_pic_state));
2894                 break;
2895         case KVM_IRQCHIP_PIC_SLAVE:
2896                 memcpy(&chip->chip.pic,
2897                         &pic_irqchip(kvm)->pics[1],
2898                         sizeof(struct kvm_pic_state));
2899                 break;
2900         case KVM_IRQCHIP_IOAPIC:
2901                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
2902                 break;
2903         default:
2904                 r = -EINVAL;
2905                 break;
2906         }
2907         return r;
2908 }
2909
2910 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2911 {
2912         int r;
2913
2914         r = 0;
2915         switch (chip->chip_id) {
2916         case KVM_IRQCHIP_PIC_MASTER:
2917                 raw_spin_lock(&pic_irqchip(kvm)->lock);
2918                 memcpy(&pic_irqchip(kvm)->pics[0],
2919                         &chip->chip.pic,
2920                         sizeof(struct kvm_pic_state));
2921                 raw_spin_unlock(&pic_irqchip(kvm)->lock);
2922                 break;
2923         case KVM_IRQCHIP_PIC_SLAVE:
2924                 raw_spin_lock(&pic_irqchip(kvm)->lock);
2925                 memcpy(&pic_irqchip(kvm)->pics[1],
2926                         &chip->chip.pic,
2927                         sizeof(struct kvm_pic_state));
2928                 raw_spin_unlock(&pic_irqchip(kvm)->lock);
2929                 break;
2930         case KVM_IRQCHIP_IOAPIC:
2931                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
2932                 break;
2933         default:
2934                 r = -EINVAL;
2935                 break;
2936         }
2937         kvm_pic_update_irq(pic_irqchip(kvm));
2938         return r;
2939 }
2940
2941 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2942 {
2943         int r = 0;
2944
2945         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2946         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
2947         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2948         return r;
2949 }
2950
2951 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
2952 {
2953         int r = 0;
2954
2955         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2956         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
2957         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
2958         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2959         return r;
2960 }
2961
2962 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2963 {
2964         int r = 0;
2965
2966         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2967         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
2968                 sizeof(ps->channels));
2969         ps->flags = kvm->arch.vpit->pit_state.flags;
2970         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2971         return r;
2972 }
2973
2974 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
2975 {
2976         int r = 0, start = 0;
2977         u32 prev_legacy, cur_legacy;
2978         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2979         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
2980         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
2981         if (!prev_legacy && cur_legacy)
2982                 start = 1;
2983         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
2984                sizeof(kvm->arch.vpit->pit_state.channels));
2985         kvm->arch.vpit->pit_state.flags = ps->flags;
2986         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
2987         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2988         return r;
2989 }
2990
2991 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
2992                                  struct kvm_reinject_control *control)
2993 {
2994         if (!kvm->arch.vpit)
2995                 return -ENXIO;
2996         mutex_lock(&kvm->arch.vpit->pit_state.lock);
2997         kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
2998         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
2999         return 0;
3000 }
3001
3002 /*
3003  * Get (and clear) the dirty memory log for a memory slot.
3004  */
3005 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
3006                                       struct kvm_dirty_log *log)
3007 {
3008         int r, i;
3009         struct kvm_memory_slot *memslot;
3010         unsigned long n;
3011         unsigned long is_dirty = 0;
3012
3013         mutex_lock(&kvm->slots_lock);
3014
3015         r = -EINVAL;
3016         if (log->slot >= KVM_MEMORY_SLOTS)
3017                 goto out;
3018
3019         memslot = &kvm->memslots->memslots[log->slot];
3020         r = -ENOENT;
3021         if (!memslot->dirty_bitmap)
3022                 goto out;
3023
3024         n = kvm_dirty_bitmap_bytes(memslot);
3025
3026         for (i = 0; !is_dirty && i < n/sizeof(long); i++)
3027                 is_dirty = memslot->dirty_bitmap[i];
3028
3029         /* If nothing is dirty, don't bother messing with page tables. */
3030         if (is_dirty) {
3031                 struct kvm_memslots *slots, *old_slots;
3032                 unsigned long *dirty_bitmap;
3033
3034                 spin_lock(&kvm->mmu_lock);
3035                 kvm_mmu_slot_remove_write_access(kvm, log->slot);
3036                 spin_unlock(&kvm->mmu_lock);
3037
3038                 r = -ENOMEM;
3039                 dirty_bitmap = vmalloc(n);
3040                 if (!dirty_bitmap)
3041                         goto out;
3042                 memset(dirty_bitmap, 0, n);
3043
3044                 r = -ENOMEM;
3045                 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
3046                 if (!slots) {
3047                         vfree(dirty_bitmap);
3048                         goto out;
3049                 }
3050                 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
3051                 slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
3052
3053                 old_slots = kvm->memslots;
3054                 rcu_assign_pointer(kvm->memslots, slots);
3055                 synchronize_srcu_expedited(&kvm->srcu);
3056                 dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
3057                 kfree(old_slots);
3058
3059                 r = -EFAULT;
3060                 if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n)) {
3061                         vfree(dirty_bitmap);
3062                         goto out;
3063                 }
3064                 vfree(dirty_bitmap);
3065         } else {
3066                 r = -EFAULT;
3067                 if (clear_user(log->dirty_bitmap, n))
3068                         goto out;
3069         }
3070
3071         r = 0;
3072 out:
3073         mutex_unlock(&kvm->slots_lock);
3074         return r;
3075 }
3076
3077 long kvm_arch_vm_ioctl(struct file *filp,
3078                        unsigned int ioctl, unsigned long arg)
3079 {
3080         struct kvm *kvm = filp->private_data;
3081         void __user *argp = (void __user *)arg;
3082         int r = -ENOTTY;
3083         /*
3084          * This union makes it completely explicit to gcc-3.x
3085          * that these two variables' stack usage should be
3086          * combined, not added together.
3087          */
3088         union {
3089                 struct kvm_pit_state ps;
3090                 struct kvm_pit_state2 ps2;
3091                 struct kvm_pit_config pit_config;
3092         } u;
3093
3094         switch (ioctl) {
3095         case KVM_SET_TSS_ADDR:
3096                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3097                 if (r < 0)
3098                         goto out;
3099                 break;
3100         case KVM_SET_IDENTITY_MAP_ADDR: {
3101                 u64 ident_addr;
3102
3103                 r = -EFAULT;
3104                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3105                         goto out;
3106                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3107                 if (r < 0)
3108                         goto out;
3109                 break;
3110         }
3111         case KVM_SET_NR_MMU_PAGES:
3112                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3113                 if (r)
3114                         goto out;
3115                 break;
3116         case KVM_GET_NR_MMU_PAGES:
3117                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3118                 break;
3119         case KVM_CREATE_IRQCHIP: {
3120                 struct kvm_pic *vpic;
3121
3122                 mutex_lock(&kvm->lock);
3123                 r = -EEXIST;
3124                 if (kvm->arch.vpic)
3125                         goto create_irqchip_unlock;
3126                 r = -ENOMEM;
3127                 vpic = kvm_create_pic(kvm);
3128                 if (vpic) {
3129                         r = kvm_ioapic_init(kvm);
3130                         if (r) {
3131                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3132                                                           &vpic->dev);
3133                                 kfree(vpic);
3134                                 goto create_irqchip_unlock;
3135                         }
3136                 } else
3137                         goto create_irqchip_unlock;
3138                 smp_wmb();
3139                 kvm->arch.vpic = vpic;
3140                 smp_wmb();
3141                 r = kvm_setup_default_irq_routing(kvm);
3142                 if (r) {
3143                         mutex_lock(&kvm->irq_lock);
3144                         kvm_ioapic_destroy(kvm);
3145                         kvm_destroy_pic(kvm);
3146                         mutex_unlock(&kvm->irq_lock);
3147                 }
3148         create_irqchip_unlock:
3149                 mutex_unlock(&kvm->lock);
3150                 break;
3151         }
3152         case KVM_CREATE_PIT:
3153                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3154                 goto create_pit;
3155         case KVM_CREATE_PIT2:
3156                 r = -EFAULT;
3157                 if (copy_from_user(&u.pit_config, argp,
3158                                    sizeof(struct kvm_pit_config)))
3159                         goto out;
3160         create_pit:
3161                 mutex_lock(&kvm->slots_lock);
3162                 r = -EEXIST;
3163                 if (kvm->arch.vpit)
3164                         goto create_pit_unlock;
3165                 r = -ENOMEM;
3166                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3167                 if (kvm->arch.vpit)
3168                         r = 0;
3169         create_pit_unlock:
3170                 mutex_unlock(&kvm->slots_lock);
3171                 break;
3172         case KVM_IRQ_LINE_STATUS:
3173         case KVM_IRQ_LINE: {
3174                 struct kvm_irq_level irq_event;
3175
3176                 r = -EFAULT;
3177                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
3178                         goto out;
3179                 r = -ENXIO;
3180                 if (irqchip_in_kernel(kvm)) {
3181                         __s32 status;
3182                         status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3183                                         irq_event.irq, irq_event.level);
3184                         if (ioctl == KVM_IRQ_LINE_STATUS) {
3185                                 r = -EFAULT;
3186                                 irq_event.status = status;
3187                                 if (copy_to_user(argp, &irq_event,
3188                                                         sizeof irq_event))
3189                                         goto out;
3190                         }
3191                         r = 0;
3192                 }
3193                 break;
3194         }
3195         case KVM_GET_IRQCHIP: {
3196                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3197                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3198
3199                 r = -ENOMEM;
3200                 if (!chip)
3201                         goto out;
3202                 r = -EFAULT;
3203                 if (copy_from_user(chip, argp, sizeof *chip))
3204                         goto get_irqchip_out;
3205                 r = -ENXIO;
3206                 if (!irqchip_in_kernel(kvm))
3207                         goto get_irqchip_out;
3208                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3209                 if (r)
3210                         goto get_irqchip_out;
3211                 r = -EFAULT;
3212                 if (copy_to_user(argp, chip, sizeof *chip))
3213                         goto get_irqchip_out;
3214                 r = 0;
3215         get_irqchip_out:
3216                 kfree(chip);
3217                 if (r)
3218                         goto out;
3219                 break;
3220         }
3221         case KVM_SET_IRQCHIP: {
3222                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3223                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3224
3225                 r = -ENOMEM;
3226                 if (!chip)
3227                         goto out;
3228                 r = -EFAULT;
3229                 if (copy_from_user(chip, argp, sizeof *chip))
3230                         goto set_irqchip_out;
3231                 r = -ENXIO;
3232                 if (!irqchip_in_kernel(kvm))
3233                         goto set_irqchip_out;
3234                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3235                 if (r)
3236                         goto set_irqchip_out;
3237                 r = 0;
3238         set_irqchip_out:
3239                 kfree(chip);
3240                 if (r)
3241                         goto out;
3242                 break;
3243         }
3244         case KVM_GET_PIT: {
3245                 r = -EFAULT;
3246                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3247                         goto out;
3248                 r = -ENXIO;
3249                 if (!kvm->arch.vpit)
3250                         goto out;
3251                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3252                 if (r)
3253                         goto out;
3254                 r = -EFAULT;
3255                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3256                         goto out;
3257                 r = 0;
3258                 break;
3259         }
3260         case KVM_SET_PIT: {
3261                 r = -EFAULT;
3262                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3263                         goto out;
3264                 r = -ENXIO;
3265                 if (!kvm->arch.vpit)
3266                         goto out;
3267                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3268                 if (r)
3269                         goto out;
3270                 r = 0;
3271                 break;
3272         }
3273         case KVM_GET_PIT2: {
3274                 r = -ENXIO;
3275                 if (!kvm->arch.vpit)
3276                         goto out;
3277                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3278                 if (r)
3279                         goto out;
3280                 r = -EFAULT;
3281                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3282                         goto out;
3283                 r = 0;
3284                 break;
3285         }
3286         case KVM_SET_PIT2: {
3287                 r = -EFAULT;
3288                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3289                         goto out;
3290                 r = -ENXIO;
3291                 if (!kvm->arch.vpit)
3292                         goto out;
3293                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3294                 if (r)
3295                         goto out;
3296                 r = 0;
3297                 break;
3298         }
3299         case KVM_REINJECT_CONTROL: {
3300                 struct kvm_reinject_control control;
3301                 r =  -EFAULT;
3302                 if (copy_from_user(&control, argp, sizeof(control)))
3303                         goto out;
3304                 r = kvm_vm_ioctl_reinject(kvm, &control);
3305                 if (r)
3306                         goto out;
3307                 r = 0;
3308                 break;
3309         }
3310         case KVM_XEN_HVM_CONFIG: {
3311                 r = -EFAULT;
3312                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3313                                    sizeof(struct kvm_xen_hvm_config)))
3314                         goto out;
3315                 r = -EINVAL;
3316                 if (kvm->arch.xen_hvm_config.flags)
3317                         goto out;
3318                 r = 0;
3319                 break;
3320         }
3321         case KVM_SET_CLOCK: {
3322                 struct kvm_clock_data user_ns;
3323                 u64 now_ns;
3324                 s64 delta;
3325
3326                 r = -EFAULT;
3327                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3328                         goto out;
3329
3330                 r = -EINVAL;
3331                 if (user_ns.flags)
3332                         goto out;
3333
3334                 r = 0;
3335                 now_ns = get_kernel_ns();
3336                 delta = user_ns.clock - now_ns;
3337                 kvm->arch.kvmclock_offset = delta;
3338                 break;
3339         }
3340         case KVM_GET_CLOCK: {
3341                 struct kvm_clock_data user_ns;
3342                 u64 now_ns;
3343
3344                 now_ns = get_kernel_ns();
3345                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3346                 user_ns.flags = 0;
3347
3348                 r = -EFAULT;
3349                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3350                         goto out;
3351                 r = 0;
3352                 break;
3353         }
3354
3355         default:
3356                 ;
3357         }
3358 out:
3359         return r;
3360 }
3361
3362 static void kvm_init_msr_list(void)
3363 {
3364         u32 dummy[2];
3365         unsigned i, j;
3366
3367         /* skip the first msrs in the list. KVM-specific */
3368         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3369                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3370                         continue;
3371                 if (j < i)
3372                         msrs_to_save[j] = msrs_to_save[i];
3373                 j++;
3374         }
3375         num_msrs_to_save = j;
3376 }
3377
3378 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3379                            const void *v)
3380 {
3381         if (vcpu->arch.apic &&
3382             !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
3383                 return 0;
3384
3385         return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3386 }
3387
3388 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3389 {
3390         if (vcpu->arch.apic &&
3391             !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
3392                 return 0;
3393
3394         return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3395 }
3396
3397 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3398                         struct kvm_segment *var, int seg)
3399 {
3400         kvm_x86_ops->set_segment(vcpu, var, seg);
3401 }
3402
3403 void kvm_get_segment(struct kvm_vcpu *vcpu,
3404                      struct kvm_segment *var, int seg)
3405 {
3406         kvm_x86_ops->get_segment(vcpu, var, seg);
3407 }
3408
3409 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3410 {
3411         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3412         return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3413 }
3414
3415  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3416 {
3417         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3418         access |= PFERR_FETCH_MASK;
3419         return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3420 }
3421
3422 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3423 {
3424         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3425         access |= PFERR_WRITE_MASK;
3426         return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, access, error);
3427 }
3428
3429 /* uses this to access any guest's mapped memory without checking CPL */
3430 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3431 {
3432         return vcpu->arch.mmu.gva_to_gpa(vcpu, gva, 0, error);
3433 }
3434
3435 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3436                                       struct kvm_vcpu *vcpu, u32 access,
3437                                       u32 *error)
3438 {
3439         void *data = val;
3440         int r = X86EMUL_CONTINUE;
3441
3442         while (bytes) {
3443                 gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr, access, error);
3444                 unsigned offset = addr & (PAGE_SIZE-1);
3445                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3446                 int ret;
3447
3448                 if (gpa == UNMAPPED_GVA) {
3449                         r = X86EMUL_PROPAGATE_FAULT;
3450                         goto out;
3451                 }
3452                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3453                 if (ret < 0) {
3454                         r = X86EMUL_IO_NEEDED;
3455                         goto out;
3456                 }
3457
3458                 bytes -= toread;
3459                 data += toread;
3460                 addr += toread;
3461         }
3462 out:
3463         return r;
3464 }
3465
3466 /* used for instruction fetching */
3467 static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
3468                                 struct kvm_vcpu *vcpu, u32 *error)
3469 {
3470         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3471         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3472                                           access | PFERR_FETCH_MASK, error);
3473 }
3474
3475 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
3476                                struct kvm_vcpu *vcpu, u32 *error)
3477 {
3478         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3479         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3480                                           error);
3481 }
3482
3483 static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
3484                                struct kvm_vcpu *vcpu, u32 *error)
3485 {
3486         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, error);
3487 }
3488
3489 static int kvm_write_guest_virt_system(gva_t addr, void *val,
3490                                        unsigned int bytes,
3491                                        struct kvm_vcpu *vcpu,
3492                                        u32 *error)
3493 {
3494         void *data = val;
3495         int r = X86EMUL_CONTINUE;
3496
3497         while (bytes) {
3498                 gpa_t gpa =  vcpu->arch.mmu.gva_to_gpa(vcpu, addr,
3499                                                        PFERR_WRITE_MASK, error);
3500                 unsigned offset = addr & (PAGE_SIZE-1);
3501                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3502                 int ret;
3503
3504                 if (gpa == UNMAPPED_GVA) {
3505                         r = X86EMUL_PROPAGATE_FAULT;
3506                         goto out;
3507                 }
3508                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3509                 if (ret < 0) {
3510                         r = X86EMUL_IO_NEEDED;
3511                         goto out;
3512                 }
3513
3514                 bytes -= towrite;
3515                 data += towrite;
3516                 addr += towrite;
3517         }
3518 out:
3519         return r;
3520 }
3521
3522 static int emulator_read_emulated(unsigned long addr,
3523                                   void *val,
3524                                   unsigned int bytes,
3525                                   unsigned int *error_code,
3526                                   struct kvm_vcpu *vcpu)
3527 {
3528         gpa_t                 gpa;
3529
3530         if (vcpu->mmio_read_completed) {
3531                 memcpy(val, vcpu->mmio_data, bytes);
3532                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3533                                vcpu->mmio_phys_addr, *(u64 *)val);
3534                 vcpu->mmio_read_completed = 0;
3535                 return X86EMUL_CONTINUE;
3536         }
3537
3538         gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, error_code);
3539
3540         if (gpa == UNMAPPED_GVA)
3541                 return X86EMUL_PROPAGATE_FAULT;
3542
3543         /* For APIC access vmexit */
3544         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3545                 goto mmio;
3546
3547         if (kvm_read_guest_virt(addr, val, bytes, vcpu, NULL)
3548                                 == X86EMUL_CONTINUE)
3549                 return X86EMUL_CONTINUE;
3550
3551 mmio:
3552         /*
3553          * Is this MMIO handled locally?
3554          */
3555         if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
3556                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
3557                 return X86EMUL_CONTINUE;
3558         }
3559
3560         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3561
3562         vcpu->mmio_needed = 1;
3563         vcpu->run->exit_reason = KVM_EXIT_MMIO;
3564         vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3565         vcpu->run->mmio.len = vcpu->mmio_size = bytes;
3566         vcpu->run->mmio.is_write = vcpu->mmio_is_write = 0;
3567
3568         return X86EMUL_IO_NEEDED;
3569 }
3570
3571 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3572                           const void *val, int bytes)
3573 {
3574         int ret;
3575
3576         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3577         if (ret < 0)
3578                 return 0;
3579         kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
3580         return 1;
3581 }
3582
3583 static int emulator_write_emulated_onepage(unsigned long addr,
3584                                            const void *val,
3585                                            unsigned int bytes,
3586                                            unsigned int *error_code,
3587                                            struct kvm_vcpu *vcpu)
3588 {
3589         gpa_t                 gpa;
3590
3591         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, error_code);
3592
3593         if (gpa == UNMAPPED_GVA)
3594                 return X86EMUL_PROPAGATE_FAULT;
3595
3596         /* For APIC access vmexit */
3597         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3598                 goto mmio;
3599
3600         if (emulator_write_phys(vcpu, gpa, val, bytes))
3601                 return X86EMUL_CONTINUE;
3602
3603 mmio:
3604         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3605         /*
3606          * Is this MMIO handled locally?
3607          */
3608         if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
3609                 return X86EMUL_CONTINUE;
3610
3611         vcpu->mmio_needed = 1;
3612         vcpu->run->exit_reason = KVM_EXIT_MMIO;
3613         vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3614         vcpu->run->mmio.len = vcpu->mmio_size = bytes;
3615         vcpu->run->mmio.is_write = vcpu->mmio_is_write = 1;
3616         memcpy(vcpu->run->mmio.data, val, bytes);
3617
3618         return X86EMUL_CONTINUE;
3619 }
3620
3621 int emulator_write_emulated(unsigned long addr,
3622                             const void *val,
3623                             unsigned int bytes,
3624                             unsigned int *error_code,
3625                             struct kvm_vcpu *vcpu)
3626 {
3627         /* Crossing a page boundary? */
3628         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3629                 int rc, now;
3630
3631                 now = -addr & ~PAGE_MASK;
3632                 rc = emulator_write_emulated_onepage(addr, val, now, error_code,
3633                                                      vcpu);
3634                 if (rc != X86EMUL_CONTINUE)
3635                         return rc;
3636                 addr += now;
3637                 val += now;
3638                 bytes -= now;
3639         }
3640         return emulator_write_emulated_onepage(addr, val, bytes, error_code,
3641                                                vcpu);
3642 }
3643
3644 #define CMPXCHG_TYPE(t, ptr, old, new) \
3645         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3646
3647 #ifdef CONFIG_X86_64
3648 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3649 #else
3650 #  define CMPXCHG64(ptr, old, new) \
3651         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3652 #endif
3653
3654 static int emulator_cmpxchg_emulated(unsigned long addr,
3655                                      const void *old,
3656                                      const void *new,
3657                                      unsigned int bytes,
3658                                      unsigned int *error_code,
3659                                      struct kvm_vcpu *vcpu)
3660 {
3661         gpa_t gpa;
3662         struct page *page;
3663         char *kaddr;
3664         bool exchanged;
3665
3666         /* guests cmpxchg8b have to be emulated atomically */
3667         if (bytes > 8 || (bytes & (bytes - 1)))
3668                 goto emul_write;
3669
3670         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3671
3672         if (gpa == UNMAPPED_GVA ||
3673             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3674                 goto emul_write;
3675
3676         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3677                 goto emul_write;
3678
3679         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3680         if (is_error_page(page)) {
3681                 kvm_release_page_clean(page);
3682                 goto emul_write;
3683         }
3684
3685         kaddr = kmap_atomic(page, KM_USER0);
3686         kaddr += offset_in_page(gpa);
3687         switch (bytes) {
3688         case 1:
3689                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
3690                 break;
3691         case 2:
3692                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
3693                 break;
3694         case 4:
3695                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
3696                 break;
3697         case 8:
3698                 exchanged = CMPXCHG64(kaddr, old, new);
3699                 break;
3700         default:
3701                 BUG();
3702         }
3703         kunmap_atomic(kaddr, KM_USER0);
3704         kvm_release_page_dirty(page);
3705
3706         if (!exchanged)
3707                 return X86EMUL_CMPXCHG_FAILED;
3708
3709         kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
3710
3711         return X86EMUL_CONTINUE;
3712
3713 emul_write:
3714         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3715
3716         return emulator_write_emulated(addr, new, bytes, error_code, vcpu);
3717 }
3718
3719 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3720 {
3721         /* TODO: String I/O for in kernel device */
3722         int r;
3723
3724         if (vcpu->arch.pio.in)
3725                 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
3726                                     vcpu->arch.pio.size, pd);
3727         else
3728                 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3729                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
3730                                      pd);
3731         return r;
3732 }
3733
3734
3735 static int emulator_pio_in_emulated(int size, unsigned short port, void *val,
3736                              unsigned int count, struct kvm_vcpu *vcpu)
3737 {
3738         if (vcpu->arch.pio.count)
3739                 goto data_avail;
3740
3741         trace_kvm_pio(1, port, size, 1);
3742
3743         vcpu->arch.pio.port = port;
3744         vcpu->arch.pio.in = 1;
3745         vcpu->arch.pio.count  = count;
3746         vcpu->arch.pio.size = size;
3747
3748         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3749         data_avail:
3750                 memcpy(val, vcpu->arch.pio_data, size * count);
3751                 vcpu->arch.pio.count = 0;
3752                 return 1;
3753         }
3754
3755         vcpu->run->exit_reason = KVM_EXIT_IO;
3756         vcpu->run->io.direction = KVM_EXIT_IO_IN;
3757         vcpu->run->io.size = size;
3758         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3759         vcpu->run->io.count = count;
3760         vcpu->run->io.port = port;
3761
3762         return 0;
3763 }
3764
3765 static int emulator_pio_out_emulated(int size, unsigned short port,
3766                               const void *val, unsigned int count,
3767                               struct kvm_vcpu *vcpu)
3768 {
3769         trace_kvm_pio(0, port, size, 1);
3770
3771         vcpu->arch.pio.port = port;
3772         vcpu->arch.pio.in = 0;
3773         vcpu->arch.pio.count = count;
3774         vcpu->arch.pio.size = size;
3775
3776         memcpy(vcpu->arch.pio_data, val, size * count);
3777
3778         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3779                 vcpu->arch.pio.count = 0;
3780                 return 1;
3781         }
3782
3783         vcpu->run->exit_reason = KVM_EXIT_IO;
3784         vcpu->run->io.direction = KVM_EXIT_IO_OUT;
3785         vcpu->run->io.size = size;
3786         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3787         vcpu->run->io.count = count;
3788         vcpu->run->io.port = port;
3789
3790         return 0;
3791 }
3792
3793 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
3794 {
3795         return kvm_x86_ops->get_segment_base(vcpu, seg);
3796 }
3797
3798 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
3799 {
3800         kvm_mmu_invlpg(vcpu, address);
3801         return X86EMUL_CONTINUE;
3802 }
3803
3804 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
3805 {
3806         if (!need_emulate_wbinvd(vcpu))
3807                 return X86EMUL_CONTINUE;
3808
3809         if (kvm_x86_ops->has_wbinvd_exit()) {
3810                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
3811                                 wbinvd_ipi, NULL, 1);
3812                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
3813         }
3814         wbinvd();
3815         return X86EMUL_CONTINUE;
3816 }
3817 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
3818
3819 int emulate_clts(struct kvm_vcpu *vcpu)
3820 {
3821         kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
3822         kvm_x86_ops->fpu_activate(vcpu);
3823         return X86EMUL_CONTINUE;
3824 }
3825
3826 int emulator_get_dr(int dr, unsigned long *dest, struct kvm_vcpu *vcpu)
3827 {
3828         return _kvm_get_dr(vcpu, dr, dest);
3829 }
3830
3831 int emulator_set_dr(int dr, unsigned long value, struct kvm_vcpu *vcpu)
3832 {
3833
3834         return __kvm_set_dr(vcpu, dr, value);
3835 }
3836
3837 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
3838 {
3839         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
3840 }
3841
3842 static unsigned long emulator_get_cr(int cr, struct kvm_vcpu *vcpu)
3843 {
3844         unsigned long value;
3845
3846         switch (cr) {
3847         case 0:
3848                 value = kvm_read_cr0(vcpu);
3849                 break;
3850         case 2:
3851                 value = vcpu->arch.cr2;
3852                 break;
3853         case 3:
3854                 value = vcpu->arch.cr3;
3855                 break;
3856         case 4:
3857                 value = kvm_read_cr4(vcpu);
3858                 break;
3859         case 8:
3860                 value = kvm_get_cr8(vcpu);
3861                 break;
3862         default:
3863                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3864                 return 0;
3865         }
3866
3867         return value;
3868 }
3869
3870 static int emulator_set_cr(int cr, unsigned long val, struct kvm_vcpu *vcpu)
3871 {
3872         int res = 0;
3873
3874         switch (cr) {
3875         case 0:
3876                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
3877                 break;
3878         case 2:
3879                 vcpu->arch.cr2 = val;
3880                 break;
3881         case 3:
3882                 res = kvm_set_cr3(vcpu, val);
3883                 break;
3884         case 4:
3885                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
3886                 break;
3887         case 8:
3888                 res = __kvm_set_cr8(vcpu, val & 0xfUL);
3889                 break;
3890         default:
3891                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3892                 res = -1;
3893         }
3894
3895         return res;
3896 }
3897
3898 static int emulator_get_cpl(struct kvm_vcpu *vcpu)
3899 {
3900         return kvm_x86_ops->get_cpl(vcpu);
3901 }
3902
3903 static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
3904 {
3905         kvm_x86_ops->get_gdt(vcpu, dt);
3906 }
3907
3908 static void emulator_get_idt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
3909 {
3910         kvm_x86_ops->get_idt(vcpu, dt);
3911 }
3912
3913 static unsigned long emulator_get_cached_segment_base(int seg,
3914                                                       struct kvm_vcpu *vcpu)
3915 {
3916         return get_segment_base(vcpu, seg);
3917 }
3918
3919 static bool emulator_get_cached_descriptor(struct desc_struct *desc, int seg,
3920                                            struct kvm_vcpu *vcpu)
3921 {
3922         struct kvm_segment var;
3923
3924         kvm_get_segment(vcpu, &var, seg);
3925
3926         if (var.unusable)
3927                 return false;
3928
3929         if (var.g)
3930                 var.limit >>= 12;
3931         set_desc_limit(desc, var.limit);
3932         set_desc_base(desc, (unsigned long)var.base);
3933         desc->type = var.type;
3934         desc->s = var.s;
3935         desc->dpl = var.dpl;
3936         desc->p = var.present;
3937         desc->avl = var.avl;
3938         desc->l = var.l;
3939         desc->d = var.db;
3940         desc->g = var.g;
3941
3942         return true;
3943 }
3944
3945 static void emulator_set_cached_descriptor(struct desc_struct *desc, int seg,
3946                                            struct kvm_vcpu *vcpu)
3947 {
3948         struct kvm_segment var;
3949
3950         /* needed to preserve selector */
3951         kvm_get_segment(vcpu, &var, seg);
3952
3953         var.base = get_desc_base(desc);
3954         var.limit = get_desc_limit(desc);
3955         if (desc->g)
3956                 var.limit = (var.limit << 12) | 0xfff;
3957         var.type = desc->type;
3958         var.present = desc->p;
3959         var.dpl = desc->dpl;
3960         var.db = desc->d;
3961         var.s = desc->s;
3962         var.l = desc->l;
3963         var.g = desc->g;
3964         var.avl = desc->avl;
3965         var.present = desc->p;
3966         var.unusable = !var.present;
3967         var.padding = 0;
3968
3969         kvm_set_segment(vcpu, &var, seg);
3970         return;
3971 }
3972
3973 static u16 emulator_get_segment_selector(int seg, struct kvm_vcpu *vcpu)
3974 {
3975         struct kvm_segment kvm_seg;
3976
3977         kvm_get_segment(vcpu, &kvm_seg, seg);
3978         return kvm_seg.selector;
3979 }
3980
3981 static void emulator_set_segment_selector(u16 sel, int seg,
3982                                           struct kvm_vcpu *vcpu)
3983 {
3984         struct kvm_segment kvm_seg;
3985
3986         kvm_get_segment(vcpu, &kvm_seg, seg);
3987         kvm_seg.selector = sel;
3988         kvm_set_segment(vcpu, &kvm_seg, seg);
3989 }
3990
3991 static struct x86_emulate_ops emulate_ops = {
3992         .read_std            = kvm_read_guest_virt_system,
3993         .write_std           = kvm_write_guest_virt_system,
3994         .fetch               = kvm_fetch_guest_virt,
3995         .read_emulated       = emulator_read_emulated,
3996         .write_emulated      = emulator_write_emulated,
3997         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
3998         .pio_in_emulated     = emulator_pio_in_emulated,
3999         .pio_out_emulated    = emulator_pio_out_emulated,
4000         .get_cached_descriptor = emulator_get_cached_descriptor,
4001         .set_cached_descriptor = emulator_set_cached_descriptor,
4002         .get_segment_selector = emulator_get_segment_selector,
4003         .set_segment_selector = emulator_set_segment_selector,
4004         .get_cached_segment_base = emulator_get_cached_segment_base,
4005         .get_gdt             = emulator_get_gdt,
4006         .get_idt             = emulator_get_idt,
4007         .get_cr              = emulator_get_cr,
4008         .set_cr              = emulator_set_cr,
4009         .cpl                 = emulator_get_cpl,
4010         .get_dr              = emulator_get_dr,
4011         .set_dr              = emulator_set_dr,
4012         .set_msr             = kvm_set_msr,
4013         .get_msr             = kvm_get_msr,
4014 };
4015
4016 static void cache_all_regs(struct kvm_vcpu *vcpu)
4017 {
4018         kvm_register_read(vcpu, VCPU_REGS_RAX);
4019         kvm_register_read(vcpu, VCPU_REGS_RSP);
4020         kvm_register_read(vcpu, VCPU_REGS_RIP);
4021         vcpu->arch.regs_dirty = ~0;
4022 }
4023
4024 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4025 {
4026         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4027         /*
4028          * an sti; sti; sequence only disable interrupts for the first
4029          * instruction. So, if the last instruction, be it emulated or
4030          * not, left the system with the INT_STI flag enabled, it
4031          * means that the last instruction is an sti. We should not
4032          * leave the flag on in this case. The same goes for mov ss
4033          */
4034         if (!(int_shadow & mask))
4035                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4036 }
4037
4038 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4039 {
4040         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4041         if (ctxt->exception == PF_VECTOR)
4042                 kvm_inject_page_fault(vcpu, ctxt->cr2, ctxt->error_code);
4043         else if (ctxt->error_code_valid)
4044                 kvm_queue_exception_e(vcpu, ctxt->exception, ctxt->error_code);
4045         else
4046                 kvm_queue_exception(vcpu, ctxt->exception);
4047 }
4048
4049 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4050 {
4051         struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4052         int cs_db, cs_l;
4053
4054         cache_all_regs(vcpu);
4055
4056         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4057
4058         vcpu->arch.emulate_ctxt.vcpu = vcpu;
4059         vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
4060         vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
4061         vcpu->arch.emulate_ctxt.mode =
4062                 (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
4063                 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
4064                 ? X86EMUL_MODE_VM86 : cs_l
4065                 ? X86EMUL_MODE_PROT64 : cs_db
4066                 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
4067         memset(c, 0, sizeof(struct decode_cache));
4068         memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4069 }
4070
4071 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4072 {
4073         ++vcpu->stat.insn_emulation_fail;
4074         trace_kvm_emulate_insn_failed(vcpu);
4075         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4076         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4077         vcpu->run->internal.ndata = 0;
4078         kvm_queue_exception(vcpu, UD_VECTOR);
4079         return EMULATE_FAIL;
4080 }
4081
4082 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4083 {
4084         gpa_t gpa;
4085
4086         if (tdp_enabled)
4087                 return false;
4088
4089         /*
4090          * if emulation was due to access to shadowed page table
4091          * and it failed try to unshadow page and re-entetr the
4092          * guest to let CPU execute the instruction.
4093          */
4094         if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4095                 return true;
4096
4097         gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4098
4099         if (gpa == UNMAPPED_GVA)
4100                 return true; /* let cpu generate fault */
4101
4102         if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
4103                 return true;
4104
4105         return false;
4106 }
4107
4108 int emulate_instruction(struct kvm_vcpu *vcpu,
4109                         unsigned long cr2,
4110                         u16 error_code,
4111                         int emulation_type)
4112 {
4113         int r;
4114         struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4115
4116         kvm_clear_exception_queue(vcpu);
4117         vcpu->arch.mmio_fault_cr2 = cr2;
4118         /*
4119          * TODO: fix emulate.c to use guest_read/write_register
4120          * instead of direct ->regs accesses, can save hundred cycles
4121          * on Intel for instructions that don't read/change RSP, for
4122          * for example.
4123          */
4124         cache_all_regs(vcpu);
4125
4126         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4127                 init_emulate_ctxt(vcpu);
4128                 vcpu->arch.emulate_ctxt.interruptibility = 0;
4129                 vcpu->arch.emulate_ctxt.exception = -1;
4130                 vcpu->arch.emulate_ctxt.perm_ok = false;
4131
4132                 r = x86_decode_insn(&vcpu->arch.emulate_ctxt);
4133                 trace_kvm_emulate_insn_start(vcpu);
4134
4135                 /* Only allow emulation of specific instructions on #UD
4136                  * (namely VMMCALL, sysenter, sysexit, syscall)*/
4137                 if (emulation_type & EMULTYPE_TRAP_UD) {
4138                         if (!c->twobyte)
4139                                 return EMULATE_FAIL;
4140                         switch (c->b) {
4141                         case 0x01: /* VMMCALL */
4142                                 if (c->modrm_mod != 3 || c->modrm_rm != 1)
4143                                         return EMULATE_FAIL;
4144                                 break;
4145                         case 0x34: /* sysenter */
4146                         case 0x35: /* sysexit */
4147                                 if (c->modrm_mod != 0 || c->modrm_rm != 0)
4148                                         return EMULATE_FAIL;
4149                                 break;
4150                         case 0x05: /* syscall */
4151                                 if (c->modrm_mod != 0 || c->modrm_rm != 0)
4152                                         return EMULATE_FAIL;
4153                                 break;
4154                         default:
4155                                 return EMULATE_FAIL;
4156                         }
4157
4158                         if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
4159                                 return EMULATE_FAIL;
4160                 }
4161
4162                 ++vcpu->stat.insn_emulation;
4163                 if (r)  {
4164                         if (reexecute_instruction(vcpu, cr2))
4165                                 return EMULATE_DONE;
4166                         if (emulation_type & EMULTYPE_SKIP)
4167                                 return EMULATE_FAIL;
4168                         return handle_emulation_failure(vcpu);
4169                 }
4170         }
4171
4172         if (emulation_type & EMULTYPE_SKIP) {
4173                 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
4174                 return EMULATE_DONE;
4175         }
4176
4177         /* this is needed for vmware backdor interface to work since it
4178            changes registers values  during IO operation */
4179         memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4180
4181 restart:
4182         r = x86_emulate_insn(&vcpu->arch.emulate_ctxt);
4183
4184         if (r == EMULATION_FAILED) {
4185                 if (reexecute_instruction(vcpu, cr2))
4186                         return EMULATE_DONE;
4187
4188                 return handle_emulation_failure(vcpu);
4189         }
4190
4191         if (vcpu->arch.emulate_ctxt.exception >= 0) {
4192                 inject_emulated_exception(vcpu);
4193                 r = EMULATE_DONE;
4194         } else if (vcpu->arch.pio.count) {
4195                 if (!vcpu->arch.pio.in)
4196                         vcpu->arch.pio.count = 0;
4197                 r = EMULATE_DO_MMIO;
4198         } else if (vcpu->mmio_needed) {
4199                 if (vcpu->mmio_is_write)
4200                         vcpu->mmio_needed = 0;
4201                 r = EMULATE_DO_MMIO;
4202         } else if (r == EMULATION_RESTART)
4203                 goto restart;
4204         else
4205                 r = EMULATE_DONE;
4206
4207         toggle_interruptibility(vcpu, vcpu->arch.emulate_ctxt.interruptibility);
4208         kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4209         memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
4210         kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
4211
4212         return r;
4213 }
4214 EXPORT_SYMBOL_GPL(emulate_instruction);
4215
4216 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4217 {
4218         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4219         int ret = emulator_pio_out_emulated(size, port, &val, 1, vcpu);
4220         /* do not return to emulator after return from userspace */
4221         vcpu->arch.pio.count = 0;
4222         return ret;
4223 }
4224 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4225
4226 static void tsc_bad(void *info)
4227 {
4228         __get_cpu_var(cpu_tsc_khz) = 0;
4229 }
4230
4231 static void tsc_khz_changed(void *data)
4232 {
4233         struct cpufreq_freqs *freq = data;
4234         unsigned long khz = 0;
4235
4236         if (data)
4237                 khz = freq->new;
4238         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4239                 khz = cpufreq_quick_get(raw_smp_processor_id());
4240         if (!khz)
4241                 khz = tsc_khz;
4242         __get_cpu_var(cpu_tsc_khz) = khz;
4243 }
4244
4245 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4246                                      void *data)
4247 {
4248         struct cpufreq_freqs *freq = data;
4249         struct kvm *kvm;
4250         struct kvm_vcpu *vcpu;
4251         int i, send_ipi = 0;
4252
4253         /*
4254          * We allow guests to temporarily run on slowing clocks,
4255          * provided we notify them after, or to run on accelerating
4256          * clocks, provided we notify them before.  Thus time never
4257          * goes backwards.
4258          *
4259          * However, we have a problem.  We can't atomically update
4260          * the frequency of a given CPU from this function; it is
4261          * merely a notifier, which can be called from any CPU.
4262          * Changing the TSC frequency at arbitrary points in time
4263          * requires a recomputation of local variables related to
4264          * the TSC for each VCPU.  We must flag these local variables
4265          * to be updated and be sure the update takes place with the
4266          * new frequency before any guests proceed.
4267          *
4268          * Unfortunately, the combination of hotplug CPU and frequency
4269          * change creates an intractable locking scenario; the order
4270          * of when these callouts happen is undefined with respect to
4271          * CPU hotplug, and they can race with each other.  As such,
4272          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4273          * undefined; you can actually have a CPU frequency change take
4274          * place in between the computation of X and the setting of the
4275          * variable.  To protect against this problem, all updates of
4276          * the per_cpu tsc_khz variable are done in an interrupt
4277          * protected IPI, and all callers wishing to update the value
4278          * must wait for a synchronous IPI to complete (which is trivial
4279          * if the caller is on the CPU already).  This establishes the
4280          * necessary total order on variable updates.
4281          *
4282          * Note that because a guest time update may take place
4283          * anytime after the setting of the VCPU's request bit, the
4284          * correct TSC value must be set before the request.  However,
4285          * to ensure the update actually makes it to any guest which
4286          * starts running in hardware virtualization between the set
4287          * and the acquisition of the spinlock, we must also ping the
4288          * CPU after setting the request bit.
4289          *
4290          */
4291
4292         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4293                 return 0;
4294         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4295                 return 0;
4296
4297         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4298
4299         spin_lock(&kvm_lock);
4300         list_for_each_entry(kvm, &vm_list, vm_list) {
4301                 kvm_for_each_vcpu(i, vcpu, kvm) {
4302                         if (vcpu->cpu != freq->cpu)
4303                                 continue;
4304                         if (!kvm_request_guest_time_update(vcpu))
4305                                 continue;
4306                         if (vcpu->cpu != smp_processor_id())
4307                                 send_ipi = 1;
4308                 }
4309         }
4310         spin_unlock(&kvm_lock);
4311
4312         if (freq->old < freq->new && send_ipi) {
4313                 /*
4314                  * We upscale the frequency.  Must make the guest
4315                  * doesn't see old kvmclock values while running with
4316                  * the new frequency, otherwise we risk the guest sees
4317                  * time go backwards.
4318                  *
4319                  * In case we update the frequency for another cpu
4320                  * (which might be in guest context) send an interrupt
4321                  * to kick the cpu out of guest context.  Next time
4322                  * guest context is entered kvmclock will be updated,
4323                  * so the guest will not see stale values.
4324                  */
4325                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4326         }
4327         return 0;
4328 }
4329
4330 static struct notifier_block kvmclock_cpufreq_notifier_block = {
4331         .notifier_call  = kvmclock_cpufreq_notifier
4332 };
4333
4334 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
4335                                         unsigned long action, void *hcpu)
4336 {
4337         unsigned int cpu = (unsigned long)hcpu;
4338
4339         switch (action) {
4340                 case CPU_ONLINE:
4341                 case CPU_DOWN_FAILED:
4342                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4343                         break;
4344                 case CPU_DOWN_PREPARE:
4345                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
4346                         break;
4347         }
4348         return NOTIFY_OK;
4349 }
4350
4351 static struct notifier_block kvmclock_cpu_notifier_block = {
4352         .notifier_call  = kvmclock_cpu_notifier,
4353         .priority = -INT_MAX
4354 };
4355
4356 static void kvm_timer_init(void)
4357 {
4358         int cpu;
4359
4360         register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4361         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4362                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4363                                           CPUFREQ_TRANSITION_NOTIFIER);
4364         }
4365         for_each_online_cpu(cpu)
4366                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4367 }
4368
4369 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
4370
4371 static int kvm_is_in_guest(void)
4372 {
4373         return percpu_read(current_vcpu) != NULL;
4374 }
4375
4376 static int kvm_is_user_mode(void)
4377 {
4378         int user_mode = 3;
4379
4380         if (percpu_read(current_vcpu))
4381                 user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
4382
4383         return user_mode != 0;
4384 }
4385
4386 static unsigned long kvm_get_guest_ip(void)
4387 {
4388         unsigned long ip = 0;
4389
4390         if (percpu_read(current_vcpu))
4391                 ip = kvm_rip_read(percpu_read(current_vcpu));
4392
4393         return ip;
4394 }
4395
4396 static struct perf_guest_info_callbacks kvm_guest_cbs = {
4397         .is_in_guest            = kvm_is_in_guest,
4398         .is_user_mode           = kvm_is_user_mode,
4399         .get_guest_ip           = kvm_get_guest_ip,
4400 };
4401
4402 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
4403 {
4404         percpu_write(current_vcpu, vcpu);
4405 }
4406 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
4407
4408 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4409 {
4410         percpu_write(current_vcpu, NULL);
4411 }
4412 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
4413
4414 int kvm_arch_init(void *opaque)
4415 {
4416         int r;
4417         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4418
4419         if (kvm_x86_ops) {
4420                 printk(KERN_ERR "kvm: already loaded the other module\n");
4421                 r = -EEXIST;
4422                 goto out;
4423         }
4424
4425         if (!ops->cpu_has_kvm_support()) {
4426                 printk(KERN_ERR "kvm: no hardware support\n");
4427                 r = -EOPNOTSUPP;
4428                 goto out;
4429         }
4430         if (ops->disabled_by_bios()) {
4431                 printk(KERN_ERR "kvm: disabled by bios\n");
4432                 r = -EOPNOTSUPP;
4433                 goto out;
4434         }
4435
4436         r = kvm_mmu_module_init();
4437         if (r)
4438                 goto out;
4439
4440         kvm_init_msr_list();
4441
4442         kvm_x86_ops = ops;
4443         kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
4444         kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
4445         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4446                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
4447
4448         kvm_timer_init();
4449
4450         perf_register_guest_info_callbacks(&kvm_guest_cbs);
4451
4452         if (cpu_has_xsave)
4453                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
4454
4455         return 0;
4456
4457 out:
4458         return r;
4459 }
4460
4461 void kvm_arch_exit(void)
4462 {
4463         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4464
4465         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4466                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4467                                             CPUFREQ_TRANSITION_NOTIFIER);
4468         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4469         kvm_x86_ops = NULL;
4470         kvm_mmu_module_exit();
4471 }
4472
4473 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4474 {
4475         ++vcpu->stat.halt_exits;
4476         if (irqchip_in_kernel(vcpu->kvm)) {
4477                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4478                 return 1;
4479         } else {
4480                 vcpu->run->exit_reason = KVM_EXIT_HLT;
4481                 return 0;
4482         }
4483 }
4484 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4485
4486 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
4487                            unsigned long a1)
4488 {
4489         if (is_long_mode(vcpu))
4490                 return a0;
4491         else
4492                 return a0 | ((gpa_t)a1 << 32);
4493 }
4494
4495 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4496 {
4497         u64 param, ingpa, outgpa, ret;
4498         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4499         bool fast, longmode;
4500         int cs_db, cs_l;
4501
4502         /*
4503          * hypercall generates UD from non zero cpl and real mode
4504          * per HYPER-V spec
4505          */
4506         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4507                 kvm_queue_exception(vcpu, UD_VECTOR);
4508                 return 0;
4509         }
4510
4511         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4512         longmode = is_long_mode(vcpu) && cs_l == 1;
4513
4514         if (!longmode) {
4515                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4516                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4517                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4518                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4519                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4520                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4521         }
4522 #ifdef CONFIG_X86_64
4523         else {
4524                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4525                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4526                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4527         }
4528 #endif
4529
4530         code = param & 0xffff;
4531         fast = (param >> 16) & 0x1;
4532         rep_cnt = (param >> 32) & 0xfff;
4533         rep_idx = (param >> 48) & 0xfff;
4534
4535         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
4536
4537         switch (code) {
4538         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
4539                 kvm_vcpu_on_spin(vcpu);
4540                 break;
4541         default:
4542                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
4543                 break;
4544         }
4545
4546         ret = res | (((u64)rep_done & 0xfff) << 32);
4547         if (longmode) {
4548                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4549         } else {
4550                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
4551                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
4552         }
4553
4554         return 1;
4555 }
4556
4557 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
4558 {
4559         unsigned long nr, a0, a1, a2, a3, ret;
4560         int r = 1;
4561
4562         if (kvm_hv_hypercall_enabled(vcpu->kvm))
4563                 return kvm_hv_hypercall(vcpu);
4564
4565         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
4566         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
4567         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
4568         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
4569         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
4570
4571         trace_kvm_hypercall(nr, a0, a1, a2, a3);
4572
4573         if (!is_long_mode(vcpu)) {
4574                 nr &= 0xFFFFFFFF;
4575                 a0 &= 0xFFFFFFFF;
4576                 a1 &= 0xFFFFFFFF;
4577                 a2 &= 0xFFFFFFFF;
4578                 a3 &= 0xFFFFFFFF;
4579         }
4580
4581         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
4582                 ret = -KVM_EPERM;
4583                 goto out;
4584         }
4585
4586         switch (nr) {
4587         case KVM_HC_VAPIC_POLL_IRQ:
4588                 ret = 0;
4589                 break;
4590         case KVM_HC_MMU_OP:
4591                 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
4592                 break;
4593         default:
4594                 ret = -KVM_ENOSYS;
4595                 break;
4596         }
4597 out:
4598         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4599         ++vcpu->stat.hypercalls;
4600         return r;
4601 }
4602 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
4603
4604 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
4605 {
4606         char instruction[3];
4607         unsigned long rip = kvm_rip_read(vcpu);
4608
4609         /*
4610          * Blow out the MMU to ensure that no other VCPU has an active mapping
4611          * to ensure that the updated hypercall appears atomically across all
4612          * VCPUs.
4613          */
4614         kvm_mmu_zap_all(vcpu->kvm);
4615
4616         kvm_x86_ops->patch_hypercall(vcpu, instruction);
4617
4618         return emulator_write_emulated(rip, instruction, 3, NULL, vcpu);
4619 }
4620
4621 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4622 {
4623         struct desc_ptr dt = { limit, base };
4624
4625         kvm_x86_ops->set_gdt(vcpu, &dt);
4626 }
4627
4628 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4629 {
4630         struct desc_ptr dt = { limit, base };
4631
4632         kvm_x86_ops->set_idt(vcpu, &dt);
4633 }
4634
4635 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
4636 {
4637         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
4638         int j, nent = vcpu->arch.cpuid_nent;
4639
4640         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
4641         /* when no next entry is found, the current entry[i] is reselected */
4642         for (j = i + 1; ; j = (j + 1) % nent) {
4643                 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
4644                 if (ej->function == e->function) {
4645                         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
4646                         return j;
4647                 }
4648         }
4649         return 0; /* silence gcc, even though control never reaches here */
4650 }
4651
4652 /* find an entry with matching function, matching index (if needed), and that
4653  * should be read next (if it's stateful) */
4654 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
4655         u32 function, u32 index)
4656 {
4657         if (e->function != function)
4658                 return 0;
4659         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
4660                 return 0;
4661         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
4662             !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
4663                 return 0;
4664         return 1;
4665 }
4666
4667 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
4668                                               u32 function, u32 index)
4669 {
4670         int i;
4671         struct kvm_cpuid_entry2 *best = NULL;
4672
4673         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
4674                 struct kvm_cpuid_entry2 *e;
4675
4676                 e = &vcpu->arch.cpuid_entries[i];
4677                 if (is_matching_cpuid_entry(e, function, index)) {
4678                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
4679                                 move_to_next_stateful_cpuid_entry(vcpu, i);
4680                         best = e;
4681                         break;
4682                 }
4683                 /*
4684                  * Both basic or both extended?
4685                  */
4686                 if (((e->function ^ function) & 0x80000000) == 0)
4687                         if (!best || e->function > best->function)
4688                                 best = e;
4689         }
4690         return best;
4691 }
4692 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
4693
4694 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
4695 {
4696         struct kvm_cpuid_entry2 *best;
4697
4698         best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
4699         if (!best || best->eax < 0x80000008)
4700                 goto not_found;
4701         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
4702         if (best)
4703                 return best->eax & 0xff;
4704 not_found:
4705         return 36;
4706 }
4707
4708 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
4709 {
4710         u32 function, index;
4711         struct kvm_cpuid_entry2 *best;
4712
4713         function = kvm_register_read(vcpu, VCPU_REGS_RAX);
4714         index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4715         kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
4716         kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
4717         kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
4718         kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
4719         best = kvm_find_cpuid_entry(vcpu, function, index);
4720         if (best) {
4721                 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
4722                 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
4723                 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
4724                 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
4725         }
4726         kvm_x86_ops->skip_emulated_instruction(vcpu);
4727         trace_kvm_cpuid(function,
4728                         kvm_register_read(vcpu, VCPU_REGS_RAX),
4729                         kvm_register_read(vcpu, VCPU_REGS_RBX),
4730                         kvm_register_read(vcpu, VCPU_REGS_RCX),
4731                         kvm_register_read(vcpu, VCPU_REGS_RDX));
4732 }
4733 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
4734
4735 /*
4736  * Check if userspace requested an interrupt window, and that the
4737  * interrupt window is open.
4738  *
4739  * No need to exit to userspace if we already have an interrupt queued.
4740  */
4741 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
4742 {
4743         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
4744                 vcpu->run->request_interrupt_window &&
4745                 kvm_arch_interrupt_allowed(vcpu));
4746 }
4747
4748 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
4749 {
4750         struct kvm_run *kvm_run = vcpu->run;
4751
4752         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
4753         kvm_run->cr8 = kvm_get_cr8(vcpu);
4754         kvm_run->apic_base = kvm_get_apic_base(vcpu);
4755         if (irqchip_in_kernel(vcpu->kvm))
4756                 kvm_run->ready_for_interrupt_injection = 1;
4757         else
4758                 kvm_run->ready_for_interrupt_injection =
4759                         kvm_arch_interrupt_allowed(vcpu) &&
4760                         !kvm_cpu_has_interrupt(vcpu) &&
4761                         !kvm_event_needs_reinjection(vcpu);
4762 }
4763
4764 static void vapic_enter(struct kvm_vcpu *vcpu)
4765 {
4766         struct kvm_lapic *apic = vcpu->arch.apic;
4767         struct page *page;
4768
4769         if (!apic || !apic->vapic_addr)
4770                 return;
4771
4772         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4773
4774         vcpu->arch.apic->vapic_page = page;
4775 }
4776
4777 static void vapic_exit(struct kvm_vcpu *vcpu)
4778 {
4779         struct kvm_lapic *apic = vcpu->arch.apic;
4780         int idx;
4781
4782         if (!apic || !apic->vapic_addr)
4783                 return;
4784
4785         idx = srcu_read_lock(&vcpu->kvm->srcu);
4786         kvm_release_page_dirty(apic->vapic_page);
4787         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4788         srcu_read_unlock(&vcpu->kvm->srcu, idx);
4789 }
4790
4791 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
4792 {
4793         int max_irr, tpr;
4794
4795         if (!kvm_x86_ops->update_cr8_intercept)
4796                 return;
4797
4798         if (!vcpu->arch.apic)
4799                 return;
4800
4801         if (!vcpu->arch.apic->vapic_addr)
4802                 max_irr = kvm_lapic_find_highest_irr(vcpu);
4803         else
4804                 max_irr = -1;
4805
4806         if (max_irr != -1)
4807                 max_irr >>= 4;
4808
4809         tpr = kvm_lapic_get_cr8(vcpu);
4810
4811         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
4812 }
4813
4814 static void inject_pending_event(struct kvm_vcpu *vcpu)
4815 {
4816         /* try to reinject previous events if any */
4817         if (vcpu->arch.exception.pending) {
4818                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
4819                                         vcpu->arch.exception.has_error_code,
4820                                         vcpu->arch.exception.error_code);
4821                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
4822                                           vcpu->arch.exception.has_error_code,
4823                                           vcpu->arch.exception.error_code,
4824                                           vcpu->arch.exception.reinject);
4825                 return;
4826         }
4827
4828         if (vcpu->arch.nmi_injected) {
4829                 kvm_x86_ops->set_nmi(vcpu);
4830                 return;
4831         }
4832
4833         if (vcpu->arch.interrupt.pending) {
4834                 kvm_x86_ops->set_irq(vcpu);
4835                 return;
4836         }
4837
4838         /* try to inject new event if pending */
4839         if (vcpu->arch.nmi_pending) {
4840                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
4841                         vcpu->arch.nmi_pending = false;
4842                         vcpu->arch.nmi_injected = true;
4843                         kvm_x86_ops->set_nmi(vcpu);
4844                 }
4845         } else if (kvm_cpu_has_interrupt(vcpu)) {
4846                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
4847                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
4848                                             false);
4849                         kvm_x86_ops->set_irq(vcpu);
4850                 }
4851         }
4852 }
4853
4854 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
4855 {
4856         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
4857                         !vcpu->guest_xcr0_loaded) {
4858                 /* kvm_set_xcr() also depends on this */
4859                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
4860                 vcpu->guest_xcr0_loaded = 1;
4861         }
4862 }
4863
4864 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
4865 {
4866         if (vcpu->guest_xcr0_loaded) {
4867                 if (vcpu->arch.xcr0 != host_xcr0)
4868                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
4869                 vcpu->guest_xcr0_loaded = 0;
4870         }
4871 }
4872
4873 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
4874 {
4875         int r;
4876         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
4877                 vcpu->run->request_interrupt_window;
4878
4879         if (vcpu->requests) {
4880                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
4881                         kvm_mmu_unload(vcpu);
4882                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
4883                         __kvm_migrate_timers(vcpu);
4884                 if (kvm_check_request(KVM_REQ_KVMCLOCK_UPDATE, vcpu)) {
4885                         r = kvm_write_guest_time(vcpu);
4886                         if (unlikely(r))
4887                                 goto out;
4888                 }
4889                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
4890                         kvm_mmu_sync_roots(vcpu);
4891                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
4892                         kvm_x86_ops->tlb_flush(vcpu);
4893                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
4894                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
4895                         r = 0;
4896                         goto out;
4897                 }
4898                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
4899                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4900                         r = 0;
4901                         goto out;
4902                 }
4903                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
4904                         vcpu->fpu_active = 0;
4905                         kvm_x86_ops->fpu_deactivate(vcpu);
4906                 }
4907         }
4908
4909         r = kvm_mmu_reload(vcpu);
4910         if (unlikely(r))
4911                 goto out;
4912
4913         preempt_disable();
4914
4915         kvm_x86_ops->prepare_guest_switch(vcpu);
4916         if (vcpu->fpu_active)
4917                 kvm_load_guest_fpu(vcpu);
4918         kvm_load_guest_xcr0(vcpu);
4919
4920         atomic_set(&vcpu->guest_mode, 1);
4921         smp_wmb();
4922
4923         local_irq_disable();
4924
4925         if (!atomic_read(&vcpu->guest_mode) || vcpu->requests
4926             || need_resched() || signal_pending(current)) {
4927                 atomic_set(&vcpu->guest_mode, 0);
4928                 smp_wmb();
4929                 local_irq_enable();
4930                 preempt_enable();
4931                 r = 1;
4932                 goto out;
4933         }
4934
4935         inject_pending_event(vcpu);
4936
4937         /* enable NMI/IRQ window open exits if needed */
4938         if (vcpu->arch.nmi_pending)
4939                 kvm_x86_ops->enable_nmi_window(vcpu);
4940         else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
4941                 kvm_x86_ops->enable_irq_window(vcpu);
4942
4943         if (kvm_lapic_enabled(vcpu)) {
4944                 update_cr8_intercept(vcpu);
4945                 kvm_lapic_sync_to_vapic(vcpu);
4946         }
4947
4948         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
4949
4950         kvm_guest_enter();
4951
4952         if (unlikely(vcpu->arch.switch_db_regs)) {
4953                 set_debugreg(0, 7);
4954                 set_debugreg(vcpu->arch.eff_db[0], 0);
4955                 set_debugreg(vcpu->arch.eff_db[1], 1);
4956                 set_debugreg(vcpu->arch.eff_db[2], 2);
4957                 set_debugreg(vcpu->arch.eff_db[3], 3);
4958         }
4959
4960         trace_kvm_entry(vcpu->vcpu_id);
4961         kvm_x86_ops->run(vcpu);
4962
4963         /*
4964          * If the guest has used debug registers, at least dr7
4965          * will be disabled while returning to the host.
4966          * If we don't have active breakpoints in the host, we don't
4967          * care about the messed up debug address registers. But if
4968          * we have some of them active, restore the old state.
4969          */
4970         if (hw_breakpoint_active())
4971                 hw_breakpoint_restore();
4972
4973         kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc);
4974
4975         atomic_set(&vcpu->guest_mode, 0);
4976         smp_wmb();
4977         local_irq_enable();
4978
4979         ++vcpu->stat.exits;
4980
4981         /*
4982          * We must have an instruction between local_irq_enable() and
4983          * kvm_guest_exit(), so the timer interrupt isn't delayed by
4984          * the interrupt shadow.  The stat.exits increment will do nicely.
4985          * But we need to prevent reordering, hence this barrier():
4986          */
4987         barrier();
4988
4989         kvm_guest_exit();
4990
4991         preempt_enable();
4992
4993         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
4994
4995         /*
4996          * Profile KVM exit RIPs:
4997          */
4998         if (unlikely(prof_on == KVM_PROFILING)) {
4999                 unsigned long rip = kvm_rip_read(vcpu);
5000                 profile_hit(KVM_PROFILING, (void *)rip);
5001         }
5002
5003
5004         kvm_lapic_sync_from_vapic(vcpu);
5005
5006         r = kvm_x86_ops->handle_exit(vcpu);
5007 out:
5008         return r;
5009 }
5010
5011
5012 static int __vcpu_run(struct kvm_vcpu *vcpu)
5013 {
5014         int r;
5015         struct kvm *kvm = vcpu->kvm;
5016
5017         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5018                 pr_debug("vcpu %d received sipi with vector # %x\n",
5019                          vcpu->vcpu_id, vcpu->arch.sipi_vector);
5020                 kvm_lapic_reset(vcpu);
5021                 r = kvm_arch_vcpu_reset(vcpu);
5022                 if (r)
5023                         return r;
5024                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5025         }
5026
5027         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5028         vapic_enter(vcpu);
5029
5030         r = 1;
5031         while (r > 0) {
5032                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
5033                         r = vcpu_enter_guest(vcpu);
5034                 else {
5035                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5036                         kvm_vcpu_block(vcpu);
5037                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5038                         if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5039                         {
5040                                 switch(vcpu->arch.mp_state) {
5041                                 case KVM_MP_STATE_HALTED:
5042                                         vcpu->arch.mp_state =
5043                                                 KVM_MP_STATE_RUNNABLE;
5044                                 case KVM_MP_STATE_RUNNABLE:
5045                                         break;
5046                                 case KVM_MP_STATE_SIPI_RECEIVED:
5047                                 default:
5048                                         r = -EINTR;
5049                                         break;
5050                                 }
5051                         }
5052                 }
5053
5054                 if (r <= 0)
5055                         break;
5056
5057                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5058                 if (kvm_cpu_has_pending_timer(vcpu))
5059                         kvm_inject_pending_timer_irqs(vcpu);
5060
5061                 if (dm_request_for_irq_injection(vcpu)) {
5062                         r = -EINTR;
5063                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5064                         ++vcpu->stat.request_irq_exits;
5065                 }
5066                 if (signal_pending(current)) {
5067                         r = -EINTR;
5068                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5069                         ++vcpu->stat.signal_exits;
5070                 }
5071                 if (need_resched()) {
5072                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5073                         kvm_resched(vcpu);
5074                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5075                 }
5076         }
5077
5078         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5079
5080         vapic_exit(vcpu);
5081
5082         return r;
5083 }
5084
5085 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5086 {
5087         int r;
5088         sigset_t sigsaved;
5089
5090         if (vcpu->sigset_active)
5091                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5092
5093         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5094                 kvm_vcpu_block(vcpu);
5095                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5096                 r = -EAGAIN;
5097                 goto out;
5098         }
5099
5100         /* re-sync apic's tpr */
5101         if (!irqchip_in_kernel(vcpu->kvm))
5102                 kvm_set_cr8(vcpu, kvm_run->cr8);
5103
5104         if (vcpu->arch.pio.count || vcpu->mmio_needed) {
5105                 if (vcpu->mmio_needed) {
5106                         memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
5107                         vcpu->mmio_read_completed = 1;
5108                         vcpu->mmio_needed = 0;
5109                 }
5110                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5111                 r = emulate_instruction(vcpu, 0, 0, EMULTYPE_NO_DECODE);
5112                 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5113                 if (r != EMULATE_DONE) {
5114                         r = 0;
5115                         goto out;
5116                 }
5117         }
5118         if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
5119                 kvm_register_write(vcpu, VCPU_REGS_RAX,
5120                                      kvm_run->hypercall.ret);
5121
5122         r = __vcpu_run(vcpu);
5123
5124 out:
5125         post_kvm_run_save(vcpu);
5126         if (vcpu->sigset_active)
5127                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5128
5129         return r;
5130 }
5131
5132 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5133 {
5134         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5135         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5136         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5137         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5138         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
5139         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
5140         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5141         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5142 #ifdef CONFIG_X86_64
5143         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
5144         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
5145         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
5146         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
5147         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
5148         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
5149         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
5150         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
5151 #endif
5152
5153         regs->rip = kvm_rip_read(vcpu);
5154         regs->rflags = kvm_get_rflags(vcpu);
5155
5156         return 0;
5157 }
5158
5159 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5160 {
5161         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
5162         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
5163         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
5164         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
5165         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
5166         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
5167         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
5168         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
5169 #ifdef CONFIG_X86_64
5170         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
5171         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
5172         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
5173         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
5174         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
5175         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
5176         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
5177         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
5178 #endif
5179
5180         kvm_rip_write(vcpu, regs->rip);
5181         kvm_set_rflags(vcpu, regs->rflags);
5182
5183         vcpu->arch.exception.pending = false;
5184
5185         return 0;
5186 }
5187
5188 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
5189 {
5190         struct kvm_segment cs;
5191
5192         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
5193         *db = cs.db;
5194         *l = cs.l;
5195 }
5196 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
5197
5198 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
5199                                   struct kvm_sregs *sregs)
5200 {
5201         struct desc_ptr dt;
5202
5203         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5204         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5205         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5206         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5207         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5208         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5209
5210         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5211         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5212
5213         kvm_x86_ops->get_idt(vcpu, &dt);
5214         sregs->idt.limit = dt.size;
5215         sregs->idt.base = dt.address;
5216         kvm_x86_ops->get_gdt(vcpu, &dt);
5217         sregs->gdt.limit = dt.size;
5218         sregs->gdt.base = dt.address;
5219
5220         sregs->cr0 = kvm_read_cr0(vcpu);
5221         sregs->cr2 = vcpu->arch.cr2;
5222         sregs->cr3 = vcpu->arch.cr3;
5223         sregs->cr4 = kvm_read_cr4(vcpu);
5224         sregs->cr8 = kvm_get_cr8(vcpu);
5225         sregs->efer = vcpu->arch.efer;
5226         sregs->apic_base = kvm_get_apic_base(vcpu);
5227
5228         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
5229
5230         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
5231                 set_bit(vcpu->arch.interrupt.nr,
5232                         (unsigned long *)sregs->interrupt_bitmap);
5233
5234         return 0;
5235 }
5236
5237 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
5238                                     struct kvm_mp_state *mp_state)
5239 {
5240         mp_state->mp_state = vcpu->arch.mp_state;
5241         return 0;
5242 }
5243
5244 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
5245                                     struct kvm_mp_state *mp_state)
5246 {
5247         vcpu->arch.mp_state = mp_state->mp_state;
5248         return 0;
5249 }
5250
5251 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
5252                     bool has_error_code, u32 error_code)
5253 {
5254         struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
5255         int ret;
5256
5257         init_emulate_ctxt(vcpu);
5258
5259         ret = emulator_task_switch(&vcpu->arch.emulate_ctxt,
5260                                    tss_selector, reason, has_error_code,
5261                                    error_code);
5262
5263         if (ret)
5264                 return EMULATE_FAIL;
5265
5266         memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
5267         kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
5268         kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
5269         return EMULATE_DONE;
5270 }
5271 EXPORT_SYMBOL_GPL(kvm_task_switch);
5272
5273 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5274                                   struct kvm_sregs *sregs)
5275 {
5276         int mmu_reset_needed = 0;
5277         int pending_vec, max_bits;
5278         struct desc_ptr dt;
5279
5280         dt.size = sregs->idt.limit;
5281         dt.address = sregs->idt.base;
5282         kvm_x86_ops->set_idt(vcpu, &dt);
5283         dt.size = sregs->gdt.limit;
5284         dt.address = sregs->gdt.base;
5285         kvm_x86_ops->set_gdt(vcpu, &dt);
5286
5287         vcpu->arch.cr2 = sregs->cr2;
5288         mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
5289         vcpu->arch.cr3 = sregs->cr3;
5290
5291         kvm_set_cr8(vcpu, sregs->cr8);
5292
5293         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5294         kvm_x86_ops->set_efer(vcpu, sregs->efer);
5295         kvm_set_apic_base(vcpu, sregs->apic_base);
5296
5297         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5298         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5299         vcpu->arch.cr0 = sregs->cr0;
5300
5301         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5302         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5303         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5304                 load_pdptrs(vcpu, vcpu->arch.cr3);
5305                 mmu_reset_needed = 1;
5306         }
5307
5308         if (mmu_reset_needed)
5309                 kvm_mmu_reset_context(vcpu);
5310
5311         max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5312         pending_vec = find_first_bit(
5313                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5314         if (pending_vec < max_bits) {
5315                 kvm_queue_interrupt(vcpu, pending_vec, false);
5316                 pr_debug("Set back pending irq %d\n", pending_vec);
5317                 if (irqchip_in_kernel(vcpu->kvm))
5318                         kvm_pic_clear_isr_ack(vcpu->kvm);
5319         }
5320
5321         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5322         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5323         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5324         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5325         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5326         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5327
5328         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5329         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5330
5331         update_cr8_intercept(vcpu);
5332
5333         /* Older userspace won't unhalt the vcpu on reset. */
5334         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5335             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5336             !is_protmode(vcpu))
5337                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5338
5339         return 0;
5340 }
5341
5342 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5343                                         struct kvm_guest_debug *dbg)
5344 {
5345         unsigned long rflags;
5346         int i, r;
5347
5348         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5349                 r = -EBUSY;
5350                 if (vcpu->arch.exception.pending)
5351                         goto out;
5352                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5353                         kvm_queue_exception(vcpu, DB_VECTOR);
5354                 else
5355                         kvm_queue_exception(vcpu, BP_VECTOR);
5356         }
5357
5358         /*
5359          * Read rflags as long as potentially injected trace flags are still
5360          * filtered out.
5361          */
5362         rflags = kvm_get_rflags(vcpu);
5363
5364         vcpu->guest_debug = dbg->control;
5365         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5366                 vcpu->guest_debug = 0;
5367
5368         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5369                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
5370                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5371                 vcpu->arch.switch_db_regs =
5372                         (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5373         } else {
5374                 for (i = 0; i < KVM_NR_DB_REGS; i++)
5375                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5376                 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5377         }
5378
5379         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5380                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5381                         get_segment_base(vcpu, VCPU_SREG_CS);
5382
5383         /*
5384          * Trigger an rflags update that will inject or remove the trace
5385          * flags.
5386          */
5387         kvm_set_rflags(vcpu, rflags);
5388
5389         kvm_x86_ops->set_guest_debug(vcpu, dbg);
5390
5391         r = 0;
5392
5393 out:
5394
5395         return r;
5396 }
5397
5398 /*
5399  * Translate a guest virtual address to a guest physical address.
5400  */
5401 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5402                                     struct kvm_translation *tr)
5403 {
5404         unsigned long vaddr = tr->linear_address;
5405         gpa_t gpa;
5406         int idx;
5407
5408         idx = srcu_read_lock(&vcpu->kvm->srcu);
5409         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5410         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5411         tr->physical_address = gpa;
5412         tr->valid = gpa != UNMAPPED_GVA;
5413         tr->writeable = 1;
5414         tr->usermode = 0;
5415
5416         return 0;
5417 }
5418
5419 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5420 {
5421         struct i387_fxsave_struct *fxsave =
5422                         &vcpu->arch.guest_fpu.state->fxsave;
5423
5424         memcpy(fpu->fpr, fxsave->st_space, 128);
5425         fpu->fcw = fxsave->cwd;
5426         fpu->fsw = fxsave->swd;
5427         fpu->ftwx = fxsave->twd;
5428         fpu->last_opcode = fxsave->fop;
5429         fpu->last_ip = fxsave->rip;
5430         fpu->last_dp = fxsave->rdp;
5431         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5432
5433         return 0;
5434 }
5435
5436 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5437 {
5438         struct i387_fxsave_struct *fxsave =
5439                         &vcpu->arch.guest_fpu.state->fxsave;
5440
5441         memcpy(fxsave->st_space, fpu->fpr, 128);
5442         fxsave->cwd = fpu->fcw;
5443         fxsave->swd = fpu->fsw;
5444         fxsave->twd = fpu->ftwx;
5445         fxsave->fop = fpu->last_opcode;
5446         fxsave->rip = fpu->last_ip;
5447         fxsave->rdp = fpu->last_dp;
5448         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5449
5450         return 0;
5451 }
5452
5453 int fx_init(struct kvm_vcpu *vcpu)
5454 {
5455         int err;
5456
5457         err = fpu_alloc(&vcpu->arch.guest_fpu);
5458         if (err)
5459                 return err;
5460
5461         fpu_finit(&vcpu->arch.guest_fpu);
5462
5463         /*
5464          * Ensure guest xcr0 is valid for loading
5465          */
5466         vcpu->arch.xcr0 = XSTATE_FP;
5467
5468         vcpu->arch.cr0 |= X86_CR0_ET;
5469
5470         return 0;
5471 }
5472 EXPORT_SYMBOL_GPL(fx_init);
5473
5474 static void fx_free(struct kvm_vcpu *vcpu)
5475 {
5476         fpu_free(&vcpu->arch.guest_fpu);
5477 }
5478
5479 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5480 {
5481         if (vcpu->guest_fpu_loaded)
5482                 return;
5483
5484         /*
5485          * Restore all possible states in the guest,
5486          * and assume host would use all available bits.
5487          * Guest xcr0 would be loaded later.
5488          */
5489         kvm_put_guest_xcr0(vcpu);
5490         vcpu->guest_fpu_loaded = 1;
5491         unlazy_fpu(current);
5492         fpu_restore_checking(&vcpu->arch.guest_fpu);
5493         trace_kvm_fpu(1);
5494 }
5495
5496 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5497 {
5498         kvm_put_guest_xcr0(vcpu);
5499
5500         if (!vcpu->guest_fpu_loaded)
5501                 return;
5502
5503         vcpu->guest_fpu_loaded = 0;
5504         fpu_save_init(&vcpu->arch.guest_fpu);
5505         ++vcpu->stat.fpu_reload;
5506         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
5507         trace_kvm_fpu(0);
5508 }
5509
5510 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5511 {
5512         if (vcpu->arch.time_page) {
5513                 kvm_release_page_dirty(vcpu->arch.time_page);
5514                 vcpu->arch.time_page = NULL;
5515         }
5516
5517         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
5518         fx_free(vcpu);
5519         kvm_x86_ops->vcpu_free(vcpu);
5520 }
5521
5522 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5523                                                 unsigned int id)
5524 {
5525         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
5526                 printk_once(KERN_WARNING
5527                 "kvm: SMP vm created on host with unstable TSC; "
5528                 "guest TSC will not be reliable\n");
5529         return kvm_x86_ops->vcpu_create(kvm, id);
5530 }
5531
5532 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
5533 {
5534         int r;
5535
5536         vcpu->arch.mtrr_state.have_fixed = 1;
5537         vcpu_load(vcpu);
5538         r = kvm_arch_vcpu_reset(vcpu);
5539         if (r == 0)
5540                 r = kvm_mmu_setup(vcpu);
5541         vcpu_put(vcpu);
5542         if (r < 0)
5543                 goto free_vcpu;
5544
5545         return 0;
5546 free_vcpu:
5547         kvm_x86_ops->vcpu_free(vcpu);
5548         return r;
5549 }
5550
5551 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
5552 {
5553         vcpu_load(vcpu);
5554         kvm_mmu_unload(vcpu);
5555         vcpu_put(vcpu);
5556
5557         fx_free(vcpu);
5558         kvm_x86_ops->vcpu_free(vcpu);
5559 }
5560
5561 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
5562 {
5563         vcpu->arch.nmi_pending = false;
5564         vcpu->arch.nmi_injected = false;
5565
5566         vcpu->arch.switch_db_regs = 0;
5567         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
5568         vcpu->arch.dr6 = DR6_FIXED_1;
5569         vcpu->arch.dr7 = DR7_FIXED_1;
5570
5571         return kvm_x86_ops->vcpu_reset(vcpu);
5572 }
5573
5574 int kvm_arch_hardware_enable(void *garbage)
5575 {
5576         struct kvm *kvm;
5577         struct kvm_vcpu *vcpu;
5578         int i;
5579
5580         kvm_shared_msr_cpu_online();
5581         list_for_each_entry(kvm, &vm_list, vm_list)
5582                 kvm_for_each_vcpu(i, vcpu, kvm)
5583                         if (vcpu->cpu == smp_processor_id())
5584                                 kvm_request_guest_time_update(vcpu);
5585         return kvm_x86_ops->hardware_enable(garbage);
5586 }
5587
5588 void kvm_arch_hardware_disable(void *garbage)
5589 {
5590         kvm_x86_ops->hardware_disable(garbage);
5591         drop_user_return_notifiers(garbage);
5592 }
5593
5594 int kvm_arch_hardware_setup(void)
5595 {
5596         return kvm_x86_ops->hardware_setup();
5597 }
5598
5599 void kvm_arch_hardware_unsetup(void)
5600 {
5601         kvm_x86_ops->hardware_unsetup();
5602 }
5603
5604 void kvm_arch_check_processor_compat(void *rtn)
5605 {
5606         kvm_x86_ops->check_processor_compatibility(rtn);
5607 }
5608
5609 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
5610 {
5611         struct page *page;
5612         struct kvm *kvm;
5613         int r;
5614
5615         BUG_ON(vcpu->kvm == NULL);
5616         kvm = vcpu->kvm;
5617
5618         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
5619         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5620         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
5621                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5622         else
5623                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
5624
5625         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
5626         if (!page) {
5627                 r = -ENOMEM;
5628                 goto fail;
5629         }
5630         vcpu->arch.pio_data = page_address(page);
5631
5632         r = kvm_mmu_create(vcpu);
5633         if (r < 0)
5634                 goto fail_free_pio_data;
5635
5636         if (irqchip_in_kernel(kvm)) {
5637                 r = kvm_create_lapic(vcpu);
5638                 if (r < 0)
5639                         goto fail_mmu_destroy;
5640         }
5641
5642         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
5643                                        GFP_KERNEL);
5644         if (!vcpu->arch.mce_banks) {
5645                 r = -ENOMEM;
5646                 goto fail_free_lapic;
5647         }
5648         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
5649
5650         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
5651                 goto fail_free_mce_banks;
5652
5653         return 0;
5654 fail_free_mce_banks:
5655         kfree(vcpu->arch.mce_banks);
5656 fail_free_lapic:
5657         kvm_free_lapic(vcpu);
5658 fail_mmu_destroy:
5659         kvm_mmu_destroy(vcpu);
5660 fail_free_pio_data:
5661         free_page((unsigned long)vcpu->arch.pio_data);
5662 fail:
5663         return r;
5664 }
5665
5666 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
5667 {
5668         int idx;
5669
5670         kfree(vcpu->arch.mce_banks);
5671         kvm_free_lapic(vcpu);
5672         idx = srcu_read_lock(&vcpu->kvm->srcu);
5673         kvm_mmu_destroy(vcpu);
5674         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5675         free_page((unsigned long)vcpu->arch.pio_data);
5676 }
5677
5678 struct  kvm *kvm_arch_create_vm(void)
5679 {
5680         struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
5681
5682         if (!kvm)
5683                 return ERR_PTR(-ENOMEM);
5684
5685         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
5686         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
5687
5688         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
5689         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
5690
5691         spin_lock_init(&kvm->arch.tsc_write_lock);
5692
5693         return kvm;
5694 }
5695
5696 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
5697 {
5698         vcpu_load(vcpu);
5699         kvm_mmu_unload(vcpu);
5700         vcpu_put(vcpu);
5701 }
5702
5703 static void kvm_free_vcpus(struct kvm *kvm)
5704 {
5705         unsigned int i;
5706         struct kvm_vcpu *vcpu;
5707
5708         /*
5709          * Unpin any mmu pages first.
5710          */
5711         kvm_for_each_vcpu(i, vcpu, kvm)
5712                 kvm_unload_vcpu_mmu(vcpu);
5713         kvm_for_each_vcpu(i, vcpu, kvm)
5714                 kvm_arch_vcpu_free(vcpu);
5715
5716         mutex_lock(&kvm->lock);
5717         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
5718                 kvm->vcpus[i] = NULL;
5719
5720         atomic_set(&kvm->online_vcpus, 0);
5721         mutex_unlock(&kvm->lock);
5722 }
5723
5724 void kvm_arch_sync_events(struct kvm *kvm)
5725 {
5726         kvm_free_all_assigned_devices(kvm);
5727         kvm_free_pit(kvm);
5728 }
5729
5730 void kvm_arch_destroy_vm(struct kvm *kvm)
5731 {
5732         kvm_iommu_unmap_guest(kvm);
5733         kfree(kvm->arch.vpic);
5734         kfree(kvm->arch.vioapic);
5735         kvm_free_vcpus(kvm);
5736         kvm_free_physmem(kvm);
5737         if (kvm->arch.apic_access_page)
5738                 put_page(kvm->arch.apic_access_page);
5739         if (kvm->arch.ept_identity_pagetable)
5740                 put_page(kvm->arch.ept_identity_pagetable);
5741         cleanup_srcu_struct(&kvm->srcu);
5742         kfree(kvm);
5743 }
5744
5745 int kvm_arch_prepare_memory_region(struct kvm *kvm,
5746                                 struct kvm_memory_slot *memslot,
5747                                 struct kvm_memory_slot old,
5748                                 struct kvm_userspace_memory_region *mem,
5749                                 int user_alloc)
5750 {
5751         int npages = memslot->npages;
5752         int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
5753
5754         /* Prevent internal slot pages from being moved by fork()/COW. */
5755         if (memslot->id >= KVM_MEMORY_SLOTS)
5756                 map_flags = MAP_SHARED | MAP_ANONYMOUS;
5757
5758         /*To keep backward compatibility with older userspace,
5759          *x86 needs to hanlde !user_alloc case.
5760          */
5761         if (!user_alloc) {
5762                 if (npages && !old.rmap) {
5763                         unsigned long userspace_addr;
5764
5765                         down_write(&current->mm->mmap_sem);
5766                         userspace_addr = do_mmap(NULL, 0,
5767                                                  npages * PAGE_SIZE,
5768                                                  PROT_READ | PROT_WRITE,
5769                                                  map_flags,
5770                                                  0);
5771                         up_write(&current->mm->mmap_sem);
5772
5773                         if (IS_ERR((void *)userspace_addr))
5774                                 return PTR_ERR((void *)userspace_addr);
5775
5776                         memslot->userspace_addr = userspace_addr;
5777                 }
5778         }
5779
5780
5781         return 0;
5782 }
5783
5784 void kvm_arch_commit_memory_region(struct kvm *kvm,
5785                                 struct kvm_userspace_memory_region *mem,
5786                                 struct kvm_memory_slot old,
5787                                 int user_alloc)
5788 {
5789
5790         int npages = mem->memory_size >> PAGE_SHIFT;
5791
5792         if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
5793                 int ret;
5794
5795                 down_write(&current->mm->mmap_sem);
5796                 ret = do_munmap(current->mm, old.userspace_addr,
5797                                 old.npages * PAGE_SIZE);
5798                 up_write(&current->mm->mmap_sem);
5799                 if (ret < 0)
5800                         printk(KERN_WARNING
5801                                "kvm_vm_ioctl_set_memory_region: "
5802                                "failed to munmap memory\n");
5803         }
5804
5805         spin_lock(&kvm->mmu_lock);
5806         if (!kvm->arch.n_requested_mmu_pages) {
5807                 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
5808                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
5809         }
5810
5811         kvm_mmu_slot_remove_write_access(kvm, mem->slot);
5812         spin_unlock(&kvm->mmu_lock);
5813 }
5814
5815 void kvm_arch_flush_shadow(struct kvm *kvm)
5816 {
5817         kvm_mmu_zap_all(kvm);
5818         kvm_reload_remote_mmus(kvm);
5819 }
5820
5821 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
5822 {
5823         return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
5824                 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
5825                 || vcpu->arch.nmi_pending ||
5826                 (kvm_arch_interrupt_allowed(vcpu) &&
5827                  kvm_cpu_has_interrupt(vcpu));
5828 }
5829
5830 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
5831 {
5832         int me;
5833         int cpu = vcpu->cpu;
5834
5835         if (waitqueue_active(&vcpu->wq)) {
5836                 wake_up_interruptible(&vcpu->wq);
5837                 ++vcpu->stat.halt_wakeup;
5838         }
5839
5840         me = get_cpu();
5841         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
5842                 if (atomic_xchg(&vcpu->guest_mode, 0))
5843                         smp_send_reschedule(cpu);
5844         put_cpu();
5845 }
5846
5847 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
5848 {
5849         return kvm_x86_ops->interrupt_allowed(vcpu);
5850 }
5851
5852 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
5853 {
5854         unsigned long current_rip = kvm_rip_read(vcpu) +
5855                 get_segment_base(vcpu, VCPU_SREG_CS);
5856
5857         return current_rip == linear_rip;
5858 }
5859 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
5860
5861 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
5862 {
5863         unsigned long rflags;
5864
5865         rflags = kvm_x86_ops->get_rflags(vcpu);
5866         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5867                 rflags &= ~X86_EFLAGS_TF;
5868         return rflags;
5869 }
5870 EXPORT_SYMBOL_GPL(kvm_get_rflags);
5871
5872 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
5873 {
5874         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
5875             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
5876                 rflags |= X86_EFLAGS_TF;
5877         kvm_x86_ops->set_rflags(vcpu, rflags);
5878 }
5879 EXPORT_SYMBOL_GPL(kvm_set_rflags);
5880
5881 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
5882 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
5883 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
5884 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
5885 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
5886 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
5887 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
5888 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
5889 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
5890 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
5891 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
5892 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);