6666af840190c970e4e910b5297079de6ee84315
[pandora-kernel.git] / arch / x86 / kvm / x86.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * derived from drivers/kvm/kvm_main.c
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright (C) 2008 Qumranet, Inc.
8  * Copyright IBM Corporation, 2008
9  * Copyright 2010 Red Hat, Inc. and/or its affilates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Amit Shah    <amit.shah@qumranet.com>
15  *   Ben-Ami Yassour <benami@il.ibm.com>
16  *
17  * This work is licensed under the terms of the GNU GPL, version 2.  See
18  * the COPYING file in the top-level directory.
19  *
20  */
21
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
29
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
33 #include <linux/fs.h>
34 #include <linux/vmalloc.h>
35 #include <linux/module.h>
36 #include <linux/mman.h>
37 #include <linux/highmem.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/cpufreq.h>
41 #include <linux/user-return-notifier.h>
42 #include <linux/srcu.h>
43 #include <linux/slab.h>
44 #include <linux/perf_event.h>
45 #include <linux/uaccess.h>
46 #include <trace/events/kvm.h>
47
48 #define CREATE_TRACE_POINTS
49 #include "trace.h"
50
51 #include <asm/debugreg.h>
52 #include <asm/msr.h>
53 #include <asm/desc.h>
54 #include <asm/mtrr.h>
55 #include <asm/mce.h>
56 #include <asm/i387.h>
57 #include <asm/xcr.h>
58 #include <asm/pvclock.h>
59 #include <asm/div64.h>
60
61 #define MAX_IO_MSRS 256
62 #define CR0_RESERVED_BITS                                               \
63         (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
64                           | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
65                           | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
66 #define CR4_RESERVED_BITS                                               \
67         (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
68                           | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE     \
69                           | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR  \
70                           | X86_CR4_OSXSAVE \
71                           | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
72
73 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
74
75 #define KVM_MAX_MCE_BANKS 32
76 #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
77
78 /* EFER defaults:
79  * - enable syscall per default because its emulated by KVM
80  * - enable LME and LMA per default on 64 bit KVM
81  */
82 #ifdef CONFIG_X86_64
83 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
84 #else
85 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
86 #endif
87
88 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
89 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
90
91 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
92 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
93                                     struct kvm_cpuid_entry2 __user *entries);
94
95 struct kvm_x86_ops *kvm_x86_ops;
96 EXPORT_SYMBOL_GPL(kvm_x86_ops);
97
98 int ignore_msrs = 0;
99 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
100
101 #define KVM_NR_SHARED_MSRS 16
102
103 struct kvm_shared_msrs_global {
104         int nr;
105         u32 msrs[KVM_NR_SHARED_MSRS];
106 };
107
108 struct kvm_shared_msrs {
109         struct user_return_notifier urn;
110         bool registered;
111         struct kvm_shared_msr_values {
112                 u64 host;
113                 u64 curr;
114         } values[KVM_NR_SHARED_MSRS];
115 };
116
117 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
118 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
119
120 struct kvm_stats_debugfs_item debugfs_entries[] = {
121         { "pf_fixed", VCPU_STAT(pf_fixed) },
122         { "pf_guest", VCPU_STAT(pf_guest) },
123         { "tlb_flush", VCPU_STAT(tlb_flush) },
124         { "invlpg", VCPU_STAT(invlpg) },
125         { "exits", VCPU_STAT(exits) },
126         { "io_exits", VCPU_STAT(io_exits) },
127         { "mmio_exits", VCPU_STAT(mmio_exits) },
128         { "signal_exits", VCPU_STAT(signal_exits) },
129         { "irq_window", VCPU_STAT(irq_window_exits) },
130         { "nmi_window", VCPU_STAT(nmi_window_exits) },
131         { "halt_exits", VCPU_STAT(halt_exits) },
132         { "halt_wakeup", VCPU_STAT(halt_wakeup) },
133         { "hypercalls", VCPU_STAT(hypercalls) },
134         { "request_irq", VCPU_STAT(request_irq_exits) },
135         { "irq_exits", VCPU_STAT(irq_exits) },
136         { "host_state_reload", VCPU_STAT(host_state_reload) },
137         { "efer_reload", VCPU_STAT(efer_reload) },
138         { "fpu_reload", VCPU_STAT(fpu_reload) },
139         { "insn_emulation", VCPU_STAT(insn_emulation) },
140         { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
141         { "irq_injections", VCPU_STAT(irq_injections) },
142         { "nmi_injections", VCPU_STAT(nmi_injections) },
143         { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
144         { "mmu_pte_write", VM_STAT(mmu_pte_write) },
145         { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
146         { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
147         { "mmu_flooded", VM_STAT(mmu_flooded) },
148         { "mmu_recycled", VM_STAT(mmu_recycled) },
149         { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
150         { "mmu_unsync", VM_STAT(mmu_unsync) },
151         { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
152         { "largepages", VM_STAT(lpages) },
153         { NULL }
154 };
155
156 u64 __read_mostly host_xcr0;
157
158 static inline u32 bit(int bitno)
159 {
160         return 1 << (bitno & 31);
161 }
162
163 static void kvm_on_user_return(struct user_return_notifier *urn)
164 {
165         unsigned slot;
166         struct kvm_shared_msrs *locals
167                 = container_of(urn, struct kvm_shared_msrs, urn);
168         struct kvm_shared_msr_values *values;
169
170         for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
171                 values = &locals->values[slot];
172                 if (values->host != values->curr) {
173                         wrmsrl(shared_msrs_global.msrs[slot], values->host);
174                         values->curr = values->host;
175                 }
176         }
177         locals->registered = false;
178         user_return_notifier_unregister(urn);
179 }
180
181 static void shared_msr_update(unsigned slot, u32 msr)
182 {
183         struct kvm_shared_msrs *smsr;
184         u64 value;
185
186         smsr = &__get_cpu_var(shared_msrs);
187         /* only read, and nobody should modify it at this time,
188          * so don't need lock */
189         if (slot >= shared_msrs_global.nr) {
190                 printk(KERN_ERR "kvm: invalid MSR slot!");
191                 return;
192         }
193         rdmsrl_safe(msr, &value);
194         smsr->values[slot].host = value;
195         smsr->values[slot].curr = value;
196 }
197
198 void kvm_define_shared_msr(unsigned slot, u32 msr)
199 {
200         if (slot >= shared_msrs_global.nr)
201                 shared_msrs_global.nr = slot + 1;
202         shared_msrs_global.msrs[slot] = msr;
203         /* we need ensured the shared_msr_global have been updated */
204         smp_wmb();
205 }
206 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
207
208 static void kvm_shared_msr_cpu_online(void)
209 {
210         unsigned i;
211
212         for (i = 0; i < shared_msrs_global.nr; ++i)
213                 shared_msr_update(i, shared_msrs_global.msrs[i]);
214 }
215
216 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
217 {
218         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
219
220         if (((value ^ smsr->values[slot].curr) & mask) == 0)
221                 return;
222         smsr->values[slot].curr = value;
223         wrmsrl(shared_msrs_global.msrs[slot], value);
224         if (!smsr->registered) {
225                 smsr->urn.on_user_return = kvm_on_user_return;
226                 user_return_notifier_register(&smsr->urn);
227                 smsr->registered = true;
228         }
229 }
230 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
231
232 static void drop_user_return_notifiers(void *ignore)
233 {
234         struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
235
236         if (smsr->registered)
237                 kvm_on_user_return(&smsr->urn);
238 }
239
240 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
241 {
242         if (irqchip_in_kernel(vcpu->kvm))
243                 return vcpu->arch.apic_base;
244         else
245                 return vcpu->arch.apic_base;
246 }
247 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
248
249 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
250 {
251         /* TODO: reserve bits check */
252         if (irqchip_in_kernel(vcpu->kvm))
253                 kvm_lapic_set_base(vcpu, data);
254         else
255                 vcpu->arch.apic_base = data;
256 }
257 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
258
259 #define EXCPT_BENIGN            0
260 #define EXCPT_CONTRIBUTORY      1
261 #define EXCPT_PF                2
262
263 static int exception_class(int vector)
264 {
265         switch (vector) {
266         case PF_VECTOR:
267                 return EXCPT_PF;
268         case DE_VECTOR:
269         case TS_VECTOR:
270         case NP_VECTOR:
271         case SS_VECTOR:
272         case GP_VECTOR:
273                 return EXCPT_CONTRIBUTORY;
274         default:
275                 break;
276         }
277         return EXCPT_BENIGN;
278 }
279
280 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
281                 unsigned nr, bool has_error, u32 error_code,
282                 bool reinject)
283 {
284         u32 prev_nr;
285         int class1, class2;
286
287         kvm_make_request(KVM_REQ_EVENT, vcpu);
288
289         if (!vcpu->arch.exception.pending) {
290         queue:
291                 vcpu->arch.exception.pending = true;
292                 vcpu->arch.exception.has_error_code = has_error;
293                 vcpu->arch.exception.nr = nr;
294                 vcpu->arch.exception.error_code = error_code;
295                 vcpu->arch.exception.reinject = reinject;
296                 return;
297         }
298
299         /* to check exception */
300         prev_nr = vcpu->arch.exception.nr;
301         if (prev_nr == DF_VECTOR) {
302                 /* triple fault -> shutdown */
303                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
304                 return;
305         }
306         class1 = exception_class(prev_nr);
307         class2 = exception_class(nr);
308         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
309                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
310                 /* generate double fault per SDM Table 5-5 */
311                 vcpu->arch.exception.pending = true;
312                 vcpu->arch.exception.has_error_code = true;
313                 vcpu->arch.exception.nr = DF_VECTOR;
314                 vcpu->arch.exception.error_code = 0;
315         } else
316                 /* replace previous exception with a new one in a hope
317                    that instruction re-execution will regenerate lost
318                    exception */
319                 goto queue;
320 }
321
322 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
323 {
324         kvm_multiple_exception(vcpu, nr, false, 0, false);
325 }
326 EXPORT_SYMBOL_GPL(kvm_queue_exception);
327
328 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
329 {
330         kvm_multiple_exception(vcpu, nr, false, 0, true);
331 }
332 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
333
334 void kvm_inject_page_fault(struct kvm_vcpu *vcpu)
335 {
336         unsigned error_code = vcpu->arch.fault.error_code;
337
338         ++vcpu->stat.pf_guest;
339         vcpu->arch.cr2 = vcpu->arch.fault.address;
340         kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
341 }
342
343 void kvm_propagate_fault(struct kvm_vcpu *vcpu)
344 {
345         if (mmu_is_nested(vcpu) && !vcpu->arch.fault.nested)
346                 vcpu->arch.nested_mmu.inject_page_fault(vcpu);
347         else
348                 vcpu->arch.mmu.inject_page_fault(vcpu);
349
350         vcpu->arch.fault.nested = false;
351 }
352
353 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
354 {
355         kvm_make_request(KVM_REQ_EVENT, vcpu);
356         vcpu->arch.nmi_pending = 1;
357 }
358 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
359
360 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
361 {
362         kvm_multiple_exception(vcpu, nr, true, error_code, false);
363 }
364 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
365
366 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
367 {
368         kvm_multiple_exception(vcpu, nr, true, error_code, true);
369 }
370 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
371
372 /*
373  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
374  * a #GP and return false.
375  */
376 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
377 {
378         if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
379                 return true;
380         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
381         return false;
382 }
383 EXPORT_SYMBOL_GPL(kvm_require_cpl);
384
385 /*
386  * This function will be used to read from the physical memory of the currently
387  * running guest. The difference to kvm_read_guest_page is that this function
388  * can read from guest physical or from the guest's guest physical memory.
389  */
390 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
391                             gfn_t ngfn, void *data, int offset, int len,
392                             u32 access)
393 {
394         gfn_t real_gfn;
395         gpa_t ngpa;
396
397         ngpa     = gfn_to_gpa(ngfn);
398         real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
399         if (real_gfn == UNMAPPED_GVA)
400                 return -EFAULT;
401
402         real_gfn = gpa_to_gfn(real_gfn);
403
404         return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
405 }
406 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
407
408 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
409                                void *data, int offset, int len, u32 access)
410 {
411         return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
412                                        data, offset, len, access);
413 }
414
415 /*
416  * Load the pae pdptrs.  Return true is they are all valid.
417  */
418 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
419 {
420         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
421         unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
422         int i;
423         int ret;
424         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
425
426         ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
427                                       offset * sizeof(u64), sizeof(pdpte),
428                                       PFERR_USER_MASK|PFERR_WRITE_MASK);
429         if (ret < 0) {
430                 ret = 0;
431                 goto out;
432         }
433         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
434                 if (is_present_gpte(pdpte[i]) &&
435                     (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
436                         ret = 0;
437                         goto out;
438                 }
439         }
440         ret = 1;
441
442         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
443         __set_bit(VCPU_EXREG_PDPTR,
444                   (unsigned long *)&vcpu->arch.regs_avail);
445         __set_bit(VCPU_EXREG_PDPTR,
446                   (unsigned long *)&vcpu->arch.regs_dirty);
447 out:
448
449         return ret;
450 }
451 EXPORT_SYMBOL_GPL(load_pdptrs);
452
453 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
454 {
455         u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
456         bool changed = true;
457         int offset;
458         gfn_t gfn;
459         int r;
460
461         if (is_long_mode(vcpu) || !is_pae(vcpu))
462                 return false;
463
464         if (!test_bit(VCPU_EXREG_PDPTR,
465                       (unsigned long *)&vcpu->arch.regs_avail))
466                 return true;
467
468         gfn = (vcpu->arch.cr3 & ~31u) >> PAGE_SHIFT;
469         offset = (vcpu->arch.cr3 & ~31u) & (PAGE_SIZE - 1);
470         r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
471                                        PFERR_USER_MASK | PFERR_WRITE_MASK);
472         if (r < 0)
473                 goto out;
474         changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
475 out:
476
477         return changed;
478 }
479
480 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
481 {
482         unsigned long old_cr0 = kvm_read_cr0(vcpu);
483         unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
484                                     X86_CR0_CD | X86_CR0_NW;
485
486         cr0 |= X86_CR0_ET;
487
488 #ifdef CONFIG_X86_64
489         if (cr0 & 0xffffffff00000000UL)
490                 return 1;
491 #endif
492
493         cr0 &= ~CR0_RESERVED_BITS;
494
495         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
496                 return 1;
497
498         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
499                 return 1;
500
501         if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
502 #ifdef CONFIG_X86_64
503                 if ((vcpu->arch.efer & EFER_LME)) {
504                         int cs_db, cs_l;
505
506                         if (!is_pae(vcpu))
507                                 return 1;
508                         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
509                         if (cs_l)
510                                 return 1;
511                 } else
512 #endif
513                 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
514                                                  vcpu->arch.cr3))
515                         return 1;
516         }
517
518         kvm_x86_ops->set_cr0(vcpu, cr0);
519
520         if ((cr0 ^ old_cr0) & update_bits)
521                 kvm_mmu_reset_context(vcpu);
522         return 0;
523 }
524 EXPORT_SYMBOL_GPL(kvm_set_cr0);
525
526 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
527 {
528         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
529 }
530 EXPORT_SYMBOL_GPL(kvm_lmsw);
531
532 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
533 {
534         u64 xcr0;
535
536         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
537         if (index != XCR_XFEATURE_ENABLED_MASK)
538                 return 1;
539         xcr0 = xcr;
540         if (kvm_x86_ops->get_cpl(vcpu) != 0)
541                 return 1;
542         if (!(xcr0 & XSTATE_FP))
543                 return 1;
544         if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
545                 return 1;
546         if (xcr0 & ~host_xcr0)
547                 return 1;
548         vcpu->arch.xcr0 = xcr0;
549         vcpu->guest_xcr0_loaded = 0;
550         return 0;
551 }
552
553 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
554 {
555         if (__kvm_set_xcr(vcpu, index, xcr)) {
556                 kvm_inject_gp(vcpu, 0);
557                 return 1;
558         }
559         return 0;
560 }
561 EXPORT_SYMBOL_GPL(kvm_set_xcr);
562
563 static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
564 {
565         struct kvm_cpuid_entry2 *best;
566
567         best = kvm_find_cpuid_entry(vcpu, 1, 0);
568         return best && (best->ecx & bit(X86_FEATURE_XSAVE));
569 }
570
571 static void update_cpuid(struct kvm_vcpu *vcpu)
572 {
573         struct kvm_cpuid_entry2 *best;
574
575         best = kvm_find_cpuid_entry(vcpu, 1, 0);
576         if (!best)
577                 return;
578
579         /* Update OSXSAVE bit */
580         if (cpu_has_xsave && best->function == 0x1) {
581                 best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
582                 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
583                         best->ecx |= bit(X86_FEATURE_OSXSAVE);
584         }
585 }
586
587 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
588 {
589         unsigned long old_cr4 = kvm_read_cr4(vcpu);
590         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
591
592         if (cr4 & CR4_RESERVED_BITS)
593                 return 1;
594
595         if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
596                 return 1;
597
598         if (is_long_mode(vcpu)) {
599                 if (!(cr4 & X86_CR4_PAE))
600                         return 1;
601         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
602                    && ((cr4 ^ old_cr4) & pdptr_bits)
603                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3))
604                 return 1;
605
606         if (cr4 & X86_CR4_VMXE)
607                 return 1;
608
609         kvm_x86_ops->set_cr4(vcpu, cr4);
610
611         if ((cr4 ^ old_cr4) & pdptr_bits)
612                 kvm_mmu_reset_context(vcpu);
613
614         if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
615                 update_cpuid(vcpu);
616
617         return 0;
618 }
619 EXPORT_SYMBOL_GPL(kvm_set_cr4);
620
621 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
622 {
623         if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
624                 kvm_mmu_sync_roots(vcpu);
625                 kvm_mmu_flush_tlb(vcpu);
626                 return 0;
627         }
628
629         if (is_long_mode(vcpu)) {
630                 if (cr3 & CR3_L_MODE_RESERVED_BITS)
631                         return 1;
632         } else {
633                 if (is_pae(vcpu)) {
634                         if (cr3 & CR3_PAE_RESERVED_BITS)
635                                 return 1;
636                         if (is_paging(vcpu) &&
637                             !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
638                                 return 1;
639                 }
640                 /*
641                  * We don't check reserved bits in nonpae mode, because
642                  * this isn't enforced, and VMware depends on this.
643                  */
644         }
645
646         /*
647          * Does the new cr3 value map to physical memory? (Note, we
648          * catch an invalid cr3 even in real-mode, because it would
649          * cause trouble later on when we turn on paging anyway.)
650          *
651          * A real CPU would silently accept an invalid cr3 and would
652          * attempt to use it - with largely undefined (and often hard
653          * to debug) behavior on the guest side.
654          */
655         if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
656                 return 1;
657         vcpu->arch.cr3 = cr3;
658         vcpu->arch.mmu.new_cr3(vcpu);
659         return 0;
660 }
661 EXPORT_SYMBOL_GPL(kvm_set_cr3);
662
663 int __kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
664 {
665         if (cr8 & CR8_RESERVED_BITS)
666                 return 1;
667         if (irqchip_in_kernel(vcpu->kvm))
668                 kvm_lapic_set_tpr(vcpu, cr8);
669         else
670                 vcpu->arch.cr8 = cr8;
671         return 0;
672 }
673
674 void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
675 {
676         if (__kvm_set_cr8(vcpu, cr8))
677                 kvm_inject_gp(vcpu, 0);
678 }
679 EXPORT_SYMBOL_GPL(kvm_set_cr8);
680
681 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
682 {
683         if (irqchip_in_kernel(vcpu->kvm))
684                 return kvm_lapic_get_cr8(vcpu);
685         else
686                 return vcpu->arch.cr8;
687 }
688 EXPORT_SYMBOL_GPL(kvm_get_cr8);
689
690 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
691 {
692         switch (dr) {
693         case 0 ... 3:
694                 vcpu->arch.db[dr] = val;
695                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
696                         vcpu->arch.eff_db[dr] = val;
697                 break;
698         case 4:
699                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
700                         return 1; /* #UD */
701                 /* fall through */
702         case 6:
703                 if (val & 0xffffffff00000000ULL)
704                         return -1; /* #GP */
705                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
706                 break;
707         case 5:
708                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
709                         return 1; /* #UD */
710                 /* fall through */
711         default: /* 7 */
712                 if (val & 0xffffffff00000000ULL)
713                         return -1; /* #GP */
714                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
715                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
716                         kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
717                         vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
718                 }
719                 break;
720         }
721
722         return 0;
723 }
724
725 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
726 {
727         int res;
728
729         res = __kvm_set_dr(vcpu, dr, val);
730         if (res > 0)
731                 kvm_queue_exception(vcpu, UD_VECTOR);
732         else if (res < 0)
733                 kvm_inject_gp(vcpu, 0);
734
735         return res;
736 }
737 EXPORT_SYMBOL_GPL(kvm_set_dr);
738
739 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
740 {
741         switch (dr) {
742         case 0 ... 3:
743                 *val = vcpu->arch.db[dr];
744                 break;
745         case 4:
746                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
747                         return 1;
748                 /* fall through */
749         case 6:
750                 *val = vcpu->arch.dr6;
751                 break;
752         case 5:
753                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
754                         return 1;
755                 /* fall through */
756         default: /* 7 */
757                 *val = vcpu->arch.dr7;
758                 break;
759         }
760
761         return 0;
762 }
763
764 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
765 {
766         if (_kvm_get_dr(vcpu, dr, val)) {
767                 kvm_queue_exception(vcpu, UD_VECTOR);
768                 return 1;
769         }
770         return 0;
771 }
772 EXPORT_SYMBOL_GPL(kvm_get_dr);
773
774 /*
775  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
776  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
777  *
778  * This list is modified at module load time to reflect the
779  * capabilities of the host cpu. This capabilities test skips MSRs that are
780  * kvm-specific. Those are put in the beginning of the list.
781  */
782
783 #define KVM_SAVE_MSRS_BEGIN     7
784 static u32 msrs_to_save[] = {
785         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
786         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
787         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
788         HV_X64_MSR_APIC_ASSIST_PAGE,
789         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
790         MSR_STAR,
791 #ifdef CONFIG_X86_64
792         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
793 #endif
794         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
795 };
796
797 static unsigned num_msrs_to_save;
798
799 static u32 emulated_msrs[] = {
800         MSR_IA32_MISC_ENABLE,
801         MSR_IA32_MCG_STATUS,
802         MSR_IA32_MCG_CTL,
803 };
804
805 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
806 {
807         u64 old_efer = vcpu->arch.efer;
808
809         if (efer & efer_reserved_bits)
810                 return 1;
811
812         if (is_paging(vcpu)
813             && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
814                 return 1;
815
816         if (efer & EFER_FFXSR) {
817                 struct kvm_cpuid_entry2 *feat;
818
819                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
820                 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
821                         return 1;
822         }
823
824         if (efer & EFER_SVME) {
825                 struct kvm_cpuid_entry2 *feat;
826
827                 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
828                 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
829                         return 1;
830         }
831
832         efer &= ~EFER_LMA;
833         efer |= vcpu->arch.efer & EFER_LMA;
834
835         kvm_x86_ops->set_efer(vcpu, efer);
836
837         vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
838         kvm_mmu_reset_context(vcpu);
839
840         /* Update reserved bits */
841         if ((efer ^ old_efer) & EFER_NX)
842                 kvm_mmu_reset_context(vcpu);
843
844         return 0;
845 }
846
847 void kvm_enable_efer_bits(u64 mask)
848 {
849        efer_reserved_bits &= ~mask;
850 }
851 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
852
853
854 /*
855  * Writes msr value into into the appropriate "register".
856  * Returns 0 on success, non-0 otherwise.
857  * Assumes vcpu_load() was already called.
858  */
859 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
860 {
861         return kvm_x86_ops->set_msr(vcpu, msr_index, data);
862 }
863
864 /*
865  * Adapt set_msr() to msr_io()'s calling convention
866  */
867 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
868 {
869         return kvm_set_msr(vcpu, index, *data);
870 }
871
872 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
873 {
874         int version;
875         int r;
876         struct pvclock_wall_clock wc;
877         struct timespec boot;
878
879         if (!wall_clock)
880                 return;
881
882         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
883         if (r)
884                 return;
885
886         if (version & 1)
887                 ++version;  /* first time write, random junk */
888
889         ++version;
890
891         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
892
893         /*
894          * The guest calculates current wall clock time by adding
895          * system time (updated by kvm_write_guest_time below) to the
896          * wall clock specified here.  guest system time equals host
897          * system time for us, thus we must fill in host boot time here.
898          */
899         getboottime(&boot);
900
901         wc.sec = boot.tv_sec;
902         wc.nsec = boot.tv_nsec;
903         wc.version = version;
904
905         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
906
907         version++;
908         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
909 }
910
911 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
912 {
913         uint32_t quotient, remainder;
914
915         /* Don't try to replace with do_div(), this one calculates
916          * "(dividend << 32) / divisor" */
917         __asm__ ( "divl %4"
918                   : "=a" (quotient), "=d" (remainder)
919                   : "0" (0), "1" (dividend), "r" (divisor) );
920         return quotient;
921 }
922
923 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
924                                s8 *pshift, u32 *pmultiplier)
925 {
926         uint64_t scaled64;
927         int32_t  shift = 0;
928         uint64_t tps64;
929         uint32_t tps32;
930
931         tps64 = base_khz * 1000LL;
932         scaled64 = scaled_khz * 1000LL;
933         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000UL) {
934                 tps64 >>= 1;
935                 shift--;
936         }
937
938         tps32 = (uint32_t)tps64;
939         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000UL) {
940                 if (scaled64 & 0xffffffff00000000UL || tps32 & 0x80000000)
941                         scaled64 >>= 1;
942                 else
943                         tps32 <<= 1;
944                 shift++;
945         }
946
947         *pshift = shift;
948         *pmultiplier = div_frac(scaled64, tps32);
949
950         pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
951                  __func__, base_khz, scaled_khz, shift, *pmultiplier);
952 }
953
954 static inline u64 get_kernel_ns(void)
955 {
956         struct timespec ts;
957
958         WARN_ON(preemptible());
959         ktime_get_ts(&ts);
960         monotonic_to_bootbased(&ts);
961         return timespec_to_ns(&ts);
962 }
963
964 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
965
966 static inline int kvm_tsc_changes_freq(void)
967 {
968         int cpu = get_cpu();
969         int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
970                   cpufreq_quick_get(cpu) != 0;
971         put_cpu();
972         return ret;
973 }
974
975 static inline u64 nsec_to_cycles(u64 nsec)
976 {
977         u64 ret;
978
979         WARN_ON(preemptible());
980         if (kvm_tsc_changes_freq())
981                 printk_once(KERN_WARNING
982                  "kvm: unreliable cycle conversion on adjustable rate TSC\n");
983         ret = nsec * __get_cpu_var(cpu_tsc_khz);
984         do_div(ret, USEC_PER_SEC);
985         return ret;
986 }
987
988 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
989 {
990         struct kvm *kvm = vcpu->kvm;
991         u64 offset, ns, elapsed;
992         unsigned long flags;
993         s64 sdiff;
994
995         spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
996         offset = data - native_read_tsc();
997         ns = get_kernel_ns();
998         elapsed = ns - kvm->arch.last_tsc_nsec;
999         sdiff = data - kvm->arch.last_tsc_write;
1000         if (sdiff < 0)
1001                 sdiff = -sdiff;
1002
1003         /*
1004          * Special case: close write to TSC within 5 seconds of
1005          * another CPU is interpreted as an attempt to synchronize
1006          * The 5 seconds is to accomodate host load / swapping as
1007          * well as any reset of TSC during the boot process.
1008          *
1009          * In that case, for a reliable TSC, we can match TSC offsets,
1010          * or make a best guest using elapsed value.
1011          */
1012         if (sdiff < nsec_to_cycles(5ULL * NSEC_PER_SEC) &&
1013             elapsed < 5ULL * NSEC_PER_SEC) {
1014                 if (!check_tsc_unstable()) {
1015                         offset = kvm->arch.last_tsc_offset;
1016                         pr_debug("kvm: matched tsc offset for %llu\n", data);
1017                 } else {
1018                         u64 delta = nsec_to_cycles(elapsed);
1019                         offset += delta;
1020                         pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1021                 }
1022                 ns = kvm->arch.last_tsc_nsec;
1023         }
1024         kvm->arch.last_tsc_nsec = ns;
1025         kvm->arch.last_tsc_write = data;
1026         kvm->arch.last_tsc_offset = offset;
1027         kvm_x86_ops->write_tsc_offset(vcpu, offset);
1028         spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1029
1030         /* Reset of TSC must disable overshoot protection below */
1031         vcpu->arch.hv_clock.tsc_timestamp = 0;
1032 }
1033 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1034
1035 static int kvm_write_guest_time(struct kvm_vcpu *v)
1036 {
1037         unsigned long flags;
1038         struct kvm_vcpu_arch *vcpu = &v->arch;
1039         void *shared_kaddr;
1040         unsigned long this_tsc_khz;
1041         s64 kernel_ns, max_kernel_ns;
1042         u64 tsc_timestamp;
1043
1044         if ((!vcpu->time_page))
1045                 return 0;
1046
1047         /* Keep irq disabled to prevent changes to the clock */
1048         local_irq_save(flags);
1049         kvm_get_msr(v, MSR_IA32_TSC, &tsc_timestamp);
1050         kernel_ns = get_kernel_ns();
1051         this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
1052         local_irq_restore(flags);
1053
1054         if (unlikely(this_tsc_khz == 0)) {
1055                 kvm_make_request(KVM_REQ_KVMCLOCK_UPDATE, v);
1056                 return 1;
1057         }
1058
1059         /*
1060          * Time as measured by the TSC may go backwards when resetting the base
1061          * tsc_timestamp.  The reason for this is that the TSC resolution is
1062          * higher than the resolution of the other clock scales.  Thus, many
1063          * possible measurments of the TSC correspond to one measurement of any
1064          * other clock, and so a spread of values is possible.  This is not a
1065          * problem for the computation of the nanosecond clock; with TSC rates
1066          * around 1GHZ, there can only be a few cycles which correspond to one
1067          * nanosecond value, and any path through this code will inevitably
1068          * take longer than that.  However, with the kernel_ns value itself,
1069          * the precision may be much lower, down to HZ granularity.  If the
1070          * first sampling of TSC against kernel_ns ends in the low part of the
1071          * range, and the second in the high end of the range, we can get:
1072          *
1073          * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1074          *
1075          * As the sampling errors potentially range in the thousands of cycles,
1076          * it is possible such a time value has already been observed by the
1077          * guest.  To protect against this, we must compute the system time as
1078          * observed by the guest and ensure the new system time is greater.
1079          */
1080         max_kernel_ns = 0;
1081         if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
1082                 max_kernel_ns = vcpu->last_guest_tsc -
1083                                 vcpu->hv_clock.tsc_timestamp;
1084                 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1085                                     vcpu->hv_clock.tsc_to_system_mul,
1086                                     vcpu->hv_clock.tsc_shift);
1087                 max_kernel_ns += vcpu->last_kernel_ns;
1088         }
1089
1090         if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1091                 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1092                                    &vcpu->hv_clock.tsc_shift,
1093                                    &vcpu->hv_clock.tsc_to_system_mul);
1094                 vcpu->hw_tsc_khz = this_tsc_khz;
1095         }
1096
1097         if (max_kernel_ns > kernel_ns)
1098                 kernel_ns = max_kernel_ns;
1099
1100         /* With all the info we got, fill in the values */
1101         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1102         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1103         vcpu->last_kernel_ns = kernel_ns;
1104         vcpu->last_guest_tsc = tsc_timestamp;
1105         vcpu->hv_clock.flags = 0;
1106
1107         /*
1108          * The interface expects us to write an even number signaling that the
1109          * update is finished. Since the guest won't see the intermediate
1110          * state, we just increase by 2 at the end.
1111          */
1112         vcpu->hv_clock.version += 2;
1113
1114         shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
1115
1116         memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1117                sizeof(vcpu->hv_clock));
1118
1119         kunmap_atomic(shared_kaddr, KM_USER0);
1120
1121         mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1122         return 0;
1123 }
1124
1125 static int kvm_request_guest_time_update(struct kvm_vcpu *v)
1126 {
1127         struct kvm_vcpu_arch *vcpu = &v->arch;
1128
1129         if (!vcpu->time_page)
1130                 return 0;
1131         kvm_make_request(KVM_REQ_KVMCLOCK_UPDATE, v);
1132         return 1;
1133 }
1134
1135 static bool msr_mtrr_valid(unsigned msr)
1136 {
1137         switch (msr) {
1138         case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1139         case MSR_MTRRfix64K_00000:
1140         case MSR_MTRRfix16K_80000:
1141         case MSR_MTRRfix16K_A0000:
1142         case MSR_MTRRfix4K_C0000:
1143         case MSR_MTRRfix4K_C8000:
1144         case MSR_MTRRfix4K_D0000:
1145         case MSR_MTRRfix4K_D8000:
1146         case MSR_MTRRfix4K_E0000:
1147         case MSR_MTRRfix4K_E8000:
1148         case MSR_MTRRfix4K_F0000:
1149         case MSR_MTRRfix4K_F8000:
1150         case MSR_MTRRdefType:
1151         case MSR_IA32_CR_PAT:
1152                 return true;
1153         case 0x2f8:
1154                 return true;
1155         }
1156         return false;
1157 }
1158
1159 static bool valid_pat_type(unsigned t)
1160 {
1161         return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1162 }
1163
1164 static bool valid_mtrr_type(unsigned t)
1165 {
1166         return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1167 }
1168
1169 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1170 {
1171         int i;
1172
1173         if (!msr_mtrr_valid(msr))
1174                 return false;
1175
1176         if (msr == MSR_IA32_CR_PAT) {
1177                 for (i = 0; i < 8; i++)
1178                         if (!valid_pat_type((data >> (i * 8)) & 0xff))
1179                                 return false;
1180                 return true;
1181         } else if (msr == MSR_MTRRdefType) {
1182                 if (data & ~0xcff)
1183                         return false;
1184                 return valid_mtrr_type(data & 0xff);
1185         } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1186                 for (i = 0; i < 8 ; i++)
1187                         if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1188                                 return false;
1189                 return true;
1190         }
1191
1192         /* variable MTRRs */
1193         return valid_mtrr_type(data & 0xff);
1194 }
1195
1196 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1197 {
1198         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1199
1200         if (!mtrr_valid(vcpu, msr, data))
1201                 return 1;
1202
1203         if (msr == MSR_MTRRdefType) {
1204                 vcpu->arch.mtrr_state.def_type = data;
1205                 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1206         } else if (msr == MSR_MTRRfix64K_00000)
1207                 p[0] = data;
1208         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1209                 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1210         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1211                 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1212         else if (msr == MSR_IA32_CR_PAT)
1213                 vcpu->arch.pat = data;
1214         else {  /* Variable MTRRs */
1215                 int idx, is_mtrr_mask;
1216                 u64 *pt;
1217
1218                 idx = (msr - 0x200) / 2;
1219                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1220                 if (!is_mtrr_mask)
1221                         pt =
1222                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1223                 else
1224                         pt =
1225                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1226                 *pt = data;
1227         }
1228
1229         kvm_mmu_reset_context(vcpu);
1230         return 0;
1231 }
1232
1233 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1234 {
1235         u64 mcg_cap = vcpu->arch.mcg_cap;
1236         unsigned bank_num = mcg_cap & 0xff;
1237
1238         switch (msr) {
1239         case MSR_IA32_MCG_STATUS:
1240                 vcpu->arch.mcg_status = data;
1241                 break;
1242         case MSR_IA32_MCG_CTL:
1243                 if (!(mcg_cap & MCG_CTL_P))
1244                         return 1;
1245                 if (data != 0 && data != ~(u64)0)
1246                         return -1;
1247                 vcpu->arch.mcg_ctl = data;
1248                 break;
1249         default:
1250                 if (msr >= MSR_IA32_MC0_CTL &&
1251                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1252                         u32 offset = msr - MSR_IA32_MC0_CTL;
1253                         /* only 0 or all 1s can be written to IA32_MCi_CTL
1254                          * some Linux kernels though clear bit 10 in bank 4 to
1255                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1256                          * this to avoid an uncatched #GP in the guest
1257                          */
1258                         if ((offset & 0x3) == 0 &&
1259                             data != 0 && (data | (1 << 10)) != ~(u64)0)
1260                                 return -1;
1261                         vcpu->arch.mce_banks[offset] = data;
1262                         break;
1263                 }
1264                 return 1;
1265         }
1266         return 0;
1267 }
1268
1269 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1270 {
1271         struct kvm *kvm = vcpu->kvm;
1272         int lm = is_long_mode(vcpu);
1273         u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1274                 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1275         u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1276                 : kvm->arch.xen_hvm_config.blob_size_32;
1277         u32 page_num = data & ~PAGE_MASK;
1278         u64 page_addr = data & PAGE_MASK;
1279         u8 *page;
1280         int r;
1281
1282         r = -E2BIG;
1283         if (page_num >= blob_size)
1284                 goto out;
1285         r = -ENOMEM;
1286         page = kzalloc(PAGE_SIZE, GFP_KERNEL);
1287         if (!page)
1288                 goto out;
1289         r = -EFAULT;
1290         if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
1291                 goto out_free;
1292         if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1293                 goto out_free;
1294         r = 0;
1295 out_free:
1296         kfree(page);
1297 out:
1298         return r;
1299 }
1300
1301 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1302 {
1303         return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1304 }
1305
1306 static bool kvm_hv_msr_partition_wide(u32 msr)
1307 {
1308         bool r = false;
1309         switch (msr) {
1310         case HV_X64_MSR_GUEST_OS_ID:
1311         case HV_X64_MSR_HYPERCALL:
1312                 r = true;
1313                 break;
1314         }
1315
1316         return r;
1317 }
1318
1319 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1320 {
1321         struct kvm *kvm = vcpu->kvm;
1322
1323         switch (msr) {
1324         case HV_X64_MSR_GUEST_OS_ID:
1325                 kvm->arch.hv_guest_os_id = data;
1326                 /* setting guest os id to zero disables hypercall page */
1327                 if (!kvm->arch.hv_guest_os_id)
1328                         kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1329                 break;
1330         case HV_X64_MSR_HYPERCALL: {
1331                 u64 gfn;
1332                 unsigned long addr;
1333                 u8 instructions[4];
1334
1335                 /* if guest os id is not set hypercall should remain disabled */
1336                 if (!kvm->arch.hv_guest_os_id)
1337                         break;
1338                 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1339                         kvm->arch.hv_hypercall = data;
1340                         break;
1341                 }
1342                 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1343                 addr = gfn_to_hva(kvm, gfn);
1344                 if (kvm_is_error_hva(addr))
1345                         return 1;
1346                 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1347                 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1348                 if (copy_to_user((void __user *)addr, instructions, 4))
1349                         return 1;
1350                 kvm->arch.hv_hypercall = data;
1351                 break;
1352         }
1353         default:
1354                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1355                           "data 0x%llx\n", msr, data);
1356                 return 1;
1357         }
1358         return 0;
1359 }
1360
1361 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1362 {
1363         switch (msr) {
1364         case HV_X64_MSR_APIC_ASSIST_PAGE: {
1365                 unsigned long addr;
1366
1367                 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1368                         vcpu->arch.hv_vapic = data;
1369                         break;
1370                 }
1371                 addr = gfn_to_hva(vcpu->kvm, data >>
1372                                   HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1373                 if (kvm_is_error_hva(addr))
1374                         return 1;
1375                 if (clear_user((void __user *)addr, PAGE_SIZE))
1376                         return 1;
1377                 vcpu->arch.hv_vapic = data;
1378                 break;
1379         }
1380         case HV_X64_MSR_EOI:
1381                 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1382         case HV_X64_MSR_ICR:
1383                 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1384         case HV_X64_MSR_TPR:
1385                 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1386         default:
1387                 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1388                           "data 0x%llx\n", msr, data);
1389                 return 1;
1390         }
1391
1392         return 0;
1393 }
1394
1395 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1396 {
1397         switch (msr) {
1398         case MSR_EFER:
1399                 return set_efer(vcpu, data);
1400         case MSR_K7_HWCR:
1401                 data &= ~(u64)0x40;     /* ignore flush filter disable */
1402                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
1403                 if (data != 0) {
1404                         pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1405                                 data);
1406                         return 1;
1407                 }
1408                 break;
1409         case MSR_FAM10H_MMIO_CONF_BASE:
1410                 if (data != 0) {
1411                         pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1412                                 "0x%llx\n", data);
1413                         return 1;
1414                 }
1415                 break;
1416         case MSR_AMD64_NB_CFG:
1417                 break;
1418         case MSR_IA32_DEBUGCTLMSR:
1419                 if (!data) {
1420                         /* We support the non-activated case already */
1421                         break;
1422                 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1423                         /* Values other than LBR and BTF are vendor-specific,
1424                            thus reserved and should throw a #GP */
1425                         return 1;
1426                 }
1427                 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1428                         __func__, data);
1429                 break;
1430         case MSR_IA32_UCODE_REV:
1431         case MSR_IA32_UCODE_WRITE:
1432         case MSR_VM_HSAVE_PA:
1433         case MSR_AMD64_PATCH_LOADER:
1434                 break;
1435         case 0x200 ... 0x2ff:
1436                 return set_msr_mtrr(vcpu, msr, data);
1437         case MSR_IA32_APICBASE:
1438                 kvm_set_apic_base(vcpu, data);
1439                 break;
1440         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1441                 return kvm_x2apic_msr_write(vcpu, msr, data);
1442         case MSR_IA32_MISC_ENABLE:
1443                 vcpu->arch.ia32_misc_enable_msr = data;
1444                 break;
1445         case MSR_KVM_WALL_CLOCK_NEW:
1446         case MSR_KVM_WALL_CLOCK:
1447                 vcpu->kvm->arch.wall_clock = data;
1448                 kvm_write_wall_clock(vcpu->kvm, data);
1449                 break;
1450         case MSR_KVM_SYSTEM_TIME_NEW:
1451         case MSR_KVM_SYSTEM_TIME: {
1452                 if (vcpu->arch.time_page) {
1453                         kvm_release_page_dirty(vcpu->arch.time_page);
1454                         vcpu->arch.time_page = NULL;
1455                 }
1456
1457                 vcpu->arch.time = data;
1458
1459                 /* we verify if the enable bit is set... */
1460                 if (!(data & 1))
1461                         break;
1462
1463                 /* ...but clean it before doing the actual write */
1464                 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1465
1466                 vcpu->arch.time_page =
1467                                 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1468
1469                 if (is_error_page(vcpu->arch.time_page)) {
1470                         kvm_release_page_clean(vcpu->arch.time_page);
1471                         vcpu->arch.time_page = NULL;
1472                 }
1473
1474                 kvm_request_guest_time_update(vcpu);
1475                 break;
1476         }
1477         case MSR_IA32_MCG_CTL:
1478         case MSR_IA32_MCG_STATUS:
1479         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1480                 return set_msr_mce(vcpu, msr, data);
1481
1482         /* Performance counters are not protected by a CPUID bit,
1483          * so we should check all of them in the generic path for the sake of
1484          * cross vendor migration.
1485          * Writing a zero into the event select MSRs disables them,
1486          * which we perfectly emulate ;-). Any other value should be at least
1487          * reported, some guests depend on them.
1488          */
1489         case MSR_P6_EVNTSEL0:
1490         case MSR_P6_EVNTSEL1:
1491         case MSR_K7_EVNTSEL0:
1492         case MSR_K7_EVNTSEL1:
1493         case MSR_K7_EVNTSEL2:
1494         case MSR_K7_EVNTSEL3:
1495                 if (data != 0)
1496                         pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1497                                 "0x%x data 0x%llx\n", msr, data);
1498                 break;
1499         /* at least RHEL 4 unconditionally writes to the perfctr registers,
1500          * so we ignore writes to make it happy.
1501          */
1502         case MSR_P6_PERFCTR0:
1503         case MSR_P6_PERFCTR1:
1504         case MSR_K7_PERFCTR0:
1505         case MSR_K7_PERFCTR1:
1506         case MSR_K7_PERFCTR2:
1507         case MSR_K7_PERFCTR3:
1508                 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1509                         "0x%x data 0x%llx\n", msr, data);
1510                 break;
1511         case MSR_K7_CLK_CTL:
1512                 /*
1513                  * Ignore all writes to this no longer documented MSR.
1514                  * Writes are only relevant for old K7 processors,
1515                  * all pre-dating SVM, but a recommended workaround from
1516                  * AMD for these chips. It is possible to speicify the
1517                  * affected processor models on the command line, hence
1518                  * the need to ignore the workaround.
1519                  */
1520                 break;
1521         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1522                 if (kvm_hv_msr_partition_wide(msr)) {
1523                         int r;
1524                         mutex_lock(&vcpu->kvm->lock);
1525                         r = set_msr_hyperv_pw(vcpu, msr, data);
1526                         mutex_unlock(&vcpu->kvm->lock);
1527                         return r;
1528                 } else
1529                         return set_msr_hyperv(vcpu, msr, data);
1530                 break;
1531         default:
1532                 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1533                         return xen_hvm_config(vcpu, data);
1534                 if (!ignore_msrs) {
1535                         pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1536                                 msr, data);
1537                         return 1;
1538                 } else {
1539                         pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1540                                 msr, data);
1541                         break;
1542                 }
1543         }
1544         return 0;
1545 }
1546 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1547
1548
1549 /*
1550  * Reads an msr value (of 'msr_index') into 'pdata'.
1551  * Returns 0 on success, non-0 otherwise.
1552  * Assumes vcpu_load() was already called.
1553  */
1554 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1555 {
1556         return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1557 }
1558
1559 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1560 {
1561         u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1562
1563         if (!msr_mtrr_valid(msr))
1564                 return 1;
1565
1566         if (msr == MSR_MTRRdefType)
1567                 *pdata = vcpu->arch.mtrr_state.def_type +
1568                          (vcpu->arch.mtrr_state.enabled << 10);
1569         else if (msr == MSR_MTRRfix64K_00000)
1570                 *pdata = p[0];
1571         else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1572                 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1573         else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1574                 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1575         else if (msr == MSR_IA32_CR_PAT)
1576                 *pdata = vcpu->arch.pat;
1577         else {  /* Variable MTRRs */
1578                 int idx, is_mtrr_mask;
1579                 u64 *pt;
1580
1581                 idx = (msr - 0x200) / 2;
1582                 is_mtrr_mask = msr - 0x200 - 2 * idx;
1583                 if (!is_mtrr_mask)
1584                         pt =
1585                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1586                 else
1587                         pt =
1588                           (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1589                 *pdata = *pt;
1590         }
1591
1592         return 0;
1593 }
1594
1595 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1596 {
1597         u64 data;
1598         u64 mcg_cap = vcpu->arch.mcg_cap;
1599         unsigned bank_num = mcg_cap & 0xff;
1600
1601         switch (msr) {
1602         case MSR_IA32_P5_MC_ADDR:
1603         case MSR_IA32_P5_MC_TYPE:
1604                 data = 0;
1605                 break;
1606         case MSR_IA32_MCG_CAP:
1607                 data = vcpu->arch.mcg_cap;
1608                 break;
1609         case MSR_IA32_MCG_CTL:
1610                 if (!(mcg_cap & MCG_CTL_P))
1611                         return 1;
1612                 data = vcpu->arch.mcg_ctl;
1613                 break;
1614         case MSR_IA32_MCG_STATUS:
1615                 data = vcpu->arch.mcg_status;
1616                 break;
1617         default:
1618                 if (msr >= MSR_IA32_MC0_CTL &&
1619                     msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1620                         u32 offset = msr - MSR_IA32_MC0_CTL;
1621                         data = vcpu->arch.mce_banks[offset];
1622                         break;
1623                 }
1624                 return 1;
1625         }
1626         *pdata = data;
1627         return 0;
1628 }
1629
1630 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1631 {
1632         u64 data = 0;
1633         struct kvm *kvm = vcpu->kvm;
1634
1635         switch (msr) {
1636         case HV_X64_MSR_GUEST_OS_ID:
1637                 data = kvm->arch.hv_guest_os_id;
1638                 break;
1639         case HV_X64_MSR_HYPERCALL:
1640                 data = kvm->arch.hv_hypercall;
1641                 break;
1642         default:
1643                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1644                 return 1;
1645         }
1646
1647         *pdata = data;
1648         return 0;
1649 }
1650
1651 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1652 {
1653         u64 data = 0;
1654
1655         switch (msr) {
1656         case HV_X64_MSR_VP_INDEX: {
1657                 int r;
1658                 struct kvm_vcpu *v;
1659                 kvm_for_each_vcpu(r, v, vcpu->kvm)
1660                         if (v == vcpu)
1661                                 data = r;
1662                 break;
1663         }
1664         case HV_X64_MSR_EOI:
1665                 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1666         case HV_X64_MSR_ICR:
1667                 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1668         case HV_X64_MSR_TPR:
1669                 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1670         default:
1671                 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1672                 return 1;
1673         }
1674         *pdata = data;
1675         return 0;
1676 }
1677
1678 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1679 {
1680         u64 data;
1681
1682         switch (msr) {
1683         case MSR_IA32_PLATFORM_ID:
1684         case MSR_IA32_UCODE_REV:
1685         case MSR_IA32_EBL_CR_POWERON:
1686         case MSR_IA32_DEBUGCTLMSR:
1687         case MSR_IA32_LASTBRANCHFROMIP:
1688         case MSR_IA32_LASTBRANCHTOIP:
1689         case MSR_IA32_LASTINTFROMIP:
1690         case MSR_IA32_LASTINTTOIP:
1691         case MSR_K8_SYSCFG:
1692         case MSR_K7_HWCR:
1693         case MSR_VM_HSAVE_PA:
1694         case MSR_P6_PERFCTR0:
1695         case MSR_P6_PERFCTR1:
1696         case MSR_P6_EVNTSEL0:
1697         case MSR_P6_EVNTSEL1:
1698         case MSR_K7_EVNTSEL0:
1699         case MSR_K7_PERFCTR0:
1700         case MSR_K8_INT_PENDING_MSG:
1701         case MSR_AMD64_NB_CFG:
1702         case MSR_FAM10H_MMIO_CONF_BASE:
1703                 data = 0;
1704                 break;
1705         case MSR_MTRRcap:
1706                 data = 0x500 | KVM_NR_VAR_MTRR;
1707                 break;
1708         case 0x200 ... 0x2ff:
1709                 return get_msr_mtrr(vcpu, msr, pdata);
1710         case 0xcd: /* fsb frequency */
1711                 data = 3;
1712                 break;
1713                 /*
1714                  * MSR_EBC_FREQUENCY_ID
1715                  * Conservative value valid for even the basic CPU models.
1716                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1717                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1718                  * and 266MHz for model 3, or 4. Set Core Clock
1719                  * Frequency to System Bus Frequency Ratio to 1 (bits
1720                  * 31:24) even though these are only valid for CPU
1721                  * models > 2, however guests may end up dividing or
1722                  * multiplying by zero otherwise.
1723                  */
1724         case MSR_EBC_FREQUENCY_ID:
1725                 data = 1 << 24;
1726                 break;
1727         case MSR_IA32_APICBASE:
1728                 data = kvm_get_apic_base(vcpu);
1729                 break;
1730         case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1731                 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1732                 break;
1733         case MSR_IA32_MISC_ENABLE:
1734                 data = vcpu->arch.ia32_misc_enable_msr;
1735                 break;
1736         case MSR_IA32_PERF_STATUS:
1737                 /* TSC increment by tick */
1738                 data = 1000ULL;
1739                 /* CPU multiplier */
1740                 data |= (((uint64_t)4ULL) << 40);
1741                 break;
1742         case MSR_EFER:
1743                 data = vcpu->arch.efer;
1744                 break;
1745         case MSR_KVM_WALL_CLOCK:
1746         case MSR_KVM_WALL_CLOCK_NEW:
1747                 data = vcpu->kvm->arch.wall_clock;
1748                 break;
1749         case MSR_KVM_SYSTEM_TIME:
1750         case MSR_KVM_SYSTEM_TIME_NEW:
1751                 data = vcpu->arch.time;
1752                 break;
1753         case MSR_IA32_P5_MC_ADDR:
1754         case MSR_IA32_P5_MC_TYPE:
1755         case MSR_IA32_MCG_CAP:
1756         case MSR_IA32_MCG_CTL:
1757         case MSR_IA32_MCG_STATUS:
1758         case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1759                 return get_msr_mce(vcpu, msr, pdata);
1760         case MSR_K7_CLK_CTL:
1761                 /*
1762                  * Provide expected ramp-up count for K7. All other
1763                  * are set to zero, indicating minimum divisors for
1764                  * every field.
1765                  *
1766                  * This prevents guest kernels on AMD host with CPU
1767                  * type 6, model 8 and higher from exploding due to
1768                  * the rdmsr failing.
1769                  */
1770                 data = 0x20000000;
1771                 break;
1772         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1773                 if (kvm_hv_msr_partition_wide(msr)) {
1774                         int r;
1775                         mutex_lock(&vcpu->kvm->lock);
1776                         r = get_msr_hyperv_pw(vcpu, msr, pdata);
1777                         mutex_unlock(&vcpu->kvm->lock);
1778                         return r;
1779                 } else
1780                         return get_msr_hyperv(vcpu, msr, pdata);
1781                 break;
1782         default:
1783                 if (!ignore_msrs) {
1784                         pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1785                         return 1;
1786                 } else {
1787                         pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1788                         data = 0;
1789                 }
1790                 break;
1791         }
1792         *pdata = data;
1793         return 0;
1794 }
1795 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1796
1797 /*
1798  * Read or write a bunch of msrs. All parameters are kernel addresses.
1799  *
1800  * @return number of msrs set successfully.
1801  */
1802 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1803                     struct kvm_msr_entry *entries,
1804                     int (*do_msr)(struct kvm_vcpu *vcpu,
1805                                   unsigned index, u64 *data))
1806 {
1807         int i, idx;
1808
1809         idx = srcu_read_lock(&vcpu->kvm->srcu);
1810         for (i = 0; i < msrs->nmsrs; ++i)
1811                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1812                         break;
1813         srcu_read_unlock(&vcpu->kvm->srcu, idx);
1814
1815         return i;
1816 }
1817
1818 /*
1819  * Read or write a bunch of msrs. Parameters are user addresses.
1820  *
1821  * @return number of msrs set successfully.
1822  */
1823 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
1824                   int (*do_msr)(struct kvm_vcpu *vcpu,
1825                                 unsigned index, u64 *data),
1826                   int writeback)
1827 {
1828         struct kvm_msrs msrs;
1829         struct kvm_msr_entry *entries;
1830         int r, n;
1831         unsigned size;
1832
1833         r = -EFAULT;
1834         if (copy_from_user(&msrs, user_msrs, sizeof msrs))
1835                 goto out;
1836
1837         r = -E2BIG;
1838         if (msrs.nmsrs >= MAX_IO_MSRS)
1839                 goto out;
1840
1841         r = -ENOMEM;
1842         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
1843         entries = kmalloc(size, GFP_KERNEL);
1844         if (!entries)
1845                 goto out;
1846
1847         r = -EFAULT;
1848         if (copy_from_user(entries, user_msrs->entries, size))
1849                 goto out_free;
1850
1851         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
1852         if (r < 0)
1853                 goto out_free;
1854
1855         r = -EFAULT;
1856         if (writeback && copy_to_user(user_msrs->entries, entries, size))
1857                 goto out_free;
1858
1859         r = n;
1860
1861 out_free:
1862         kfree(entries);
1863 out:
1864         return r;
1865 }
1866
1867 int kvm_dev_ioctl_check_extension(long ext)
1868 {
1869         int r;
1870
1871         switch (ext) {
1872         case KVM_CAP_IRQCHIP:
1873         case KVM_CAP_HLT:
1874         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
1875         case KVM_CAP_SET_TSS_ADDR:
1876         case KVM_CAP_EXT_CPUID:
1877         case KVM_CAP_CLOCKSOURCE:
1878         case KVM_CAP_PIT:
1879         case KVM_CAP_NOP_IO_DELAY:
1880         case KVM_CAP_MP_STATE:
1881         case KVM_CAP_SYNC_MMU:
1882         case KVM_CAP_REINJECT_CONTROL:
1883         case KVM_CAP_IRQ_INJECT_STATUS:
1884         case KVM_CAP_ASSIGN_DEV_IRQ:
1885         case KVM_CAP_IRQFD:
1886         case KVM_CAP_IOEVENTFD:
1887         case KVM_CAP_PIT2:
1888         case KVM_CAP_PIT_STATE2:
1889         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
1890         case KVM_CAP_XEN_HVM:
1891         case KVM_CAP_ADJUST_CLOCK:
1892         case KVM_CAP_VCPU_EVENTS:
1893         case KVM_CAP_HYPERV:
1894         case KVM_CAP_HYPERV_VAPIC:
1895         case KVM_CAP_HYPERV_SPIN:
1896         case KVM_CAP_PCI_SEGMENT:
1897         case KVM_CAP_DEBUGREGS:
1898         case KVM_CAP_X86_ROBUST_SINGLESTEP:
1899         case KVM_CAP_XSAVE:
1900                 r = 1;
1901                 break;
1902         case KVM_CAP_COALESCED_MMIO:
1903                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1904                 break;
1905         case KVM_CAP_VAPIC:
1906                 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
1907                 break;
1908         case KVM_CAP_NR_VCPUS:
1909                 r = KVM_MAX_VCPUS;
1910                 break;
1911         case KVM_CAP_NR_MEMSLOTS:
1912                 r = KVM_MEMORY_SLOTS;
1913                 break;
1914         case KVM_CAP_PV_MMU:    /* obsolete */
1915                 r = 0;
1916                 break;
1917         case KVM_CAP_IOMMU:
1918                 r = iommu_found();
1919                 break;
1920         case KVM_CAP_MCE:
1921                 r = KVM_MAX_MCE_BANKS;
1922                 break;
1923         case KVM_CAP_XCRS:
1924                 r = cpu_has_xsave;
1925                 break;
1926         default:
1927                 r = 0;
1928                 break;
1929         }
1930         return r;
1931
1932 }
1933
1934 long kvm_arch_dev_ioctl(struct file *filp,
1935                         unsigned int ioctl, unsigned long arg)
1936 {
1937         void __user *argp = (void __user *)arg;
1938         long r;
1939
1940         switch (ioctl) {
1941         case KVM_GET_MSR_INDEX_LIST: {
1942                 struct kvm_msr_list __user *user_msr_list = argp;
1943                 struct kvm_msr_list msr_list;
1944                 unsigned n;
1945
1946                 r = -EFAULT;
1947                 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
1948                         goto out;
1949                 n = msr_list.nmsrs;
1950                 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
1951                 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
1952                         goto out;
1953                 r = -E2BIG;
1954                 if (n < msr_list.nmsrs)
1955                         goto out;
1956                 r = -EFAULT;
1957                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
1958                                  num_msrs_to_save * sizeof(u32)))
1959                         goto out;
1960                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
1961                                  &emulated_msrs,
1962                                  ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
1963                         goto out;
1964                 r = 0;
1965                 break;
1966         }
1967         case KVM_GET_SUPPORTED_CPUID: {
1968                 struct kvm_cpuid2 __user *cpuid_arg = argp;
1969                 struct kvm_cpuid2 cpuid;
1970
1971                 r = -EFAULT;
1972                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
1973                         goto out;
1974                 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
1975                                                       cpuid_arg->entries);
1976                 if (r)
1977                         goto out;
1978
1979                 r = -EFAULT;
1980                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
1981                         goto out;
1982                 r = 0;
1983                 break;
1984         }
1985         case KVM_X86_GET_MCE_CAP_SUPPORTED: {
1986                 u64 mce_cap;
1987
1988                 mce_cap = KVM_MCE_CAP_SUPPORTED;
1989                 r = -EFAULT;
1990                 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
1991                         goto out;
1992                 r = 0;
1993                 break;
1994         }
1995         default:
1996                 r = -EINVAL;
1997         }
1998 out:
1999         return r;
2000 }
2001
2002 static void wbinvd_ipi(void *garbage)
2003 {
2004         wbinvd();
2005 }
2006
2007 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2008 {
2009         return vcpu->kvm->arch.iommu_domain &&
2010                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2011 }
2012
2013 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2014 {
2015         /* Address WBINVD may be executed by guest */
2016         if (need_emulate_wbinvd(vcpu)) {
2017                 if (kvm_x86_ops->has_wbinvd_exit())
2018                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2019                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2020                         smp_call_function_single(vcpu->cpu,
2021                                         wbinvd_ipi, NULL, 1);
2022         }
2023
2024         kvm_x86_ops->vcpu_load(vcpu, cpu);
2025         if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2026                 /* Make sure TSC doesn't go backwards */
2027                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2028                                 native_read_tsc() - vcpu->arch.last_host_tsc;
2029                 if (tsc_delta < 0)
2030                         mark_tsc_unstable("KVM discovered backwards TSC");
2031                 if (check_tsc_unstable())
2032                         kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
2033                 kvm_migrate_timers(vcpu);
2034                 vcpu->cpu = cpu;
2035         }
2036 }
2037
2038 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2039 {
2040         kvm_x86_ops->vcpu_put(vcpu);
2041         kvm_put_guest_fpu(vcpu);
2042         vcpu->arch.last_host_tsc = native_read_tsc();
2043 }
2044
2045 static int is_efer_nx(void)
2046 {
2047         unsigned long long efer = 0;
2048
2049         rdmsrl_safe(MSR_EFER, &efer);
2050         return efer & EFER_NX;
2051 }
2052
2053 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
2054 {
2055         int i;
2056         struct kvm_cpuid_entry2 *e, *entry;
2057
2058         entry = NULL;
2059         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2060                 e = &vcpu->arch.cpuid_entries[i];
2061                 if (e->function == 0x80000001) {
2062                         entry = e;
2063                         break;
2064                 }
2065         }
2066         if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
2067                 entry->edx &= ~(1 << 20);
2068                 printk(KERN_INFO "kvm: guest NX capability removed\n");
2069         }
2070 }
2071
2072 /* when an old userspace process fills a new kernel module */
2073 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2074                                     struct kvm_cpuid *cpuid,
2075                                     struct kvm_cpuid_entry __user *entries)
2076 {
2077         int r, i;
2078         struct kvm_cpuid_entry *cpuid_entries;
2079
2080         r = -E2BIG;
2081         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2082                 goto out;
2083         r = -ENOMEM;
2084         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
2085         if (!cpuid_entries)
2086                 goto out;
2087         r = -EFAULT;
2088         if (copy_from_user(cpuid_entries, entries,
2089                            cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2090                 goto out_free;
2091         for (i = 0; i < cpuid->nent; i++) {
2092                 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
2093                 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
2094                 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
2095                 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
2096                 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
2097                 vcpu->arch.cpuid_entries[i].index = 0;
2098                 vcpu->arch.cpuid_entries[i].flags = 0;
2099                 vcpu->arch.cpuid_entries[i].padding[0] = 0;
2100                 vcpu->arch.cpuid_entries[i].padding[1] = 0;
2101                 vcpu->arch.cpuid_entries[i].padding[2] = 0;
2102         }
2103         vcpu->arch.cpuid_nent = cpuid->nent;
2104         cpuid_fix_nx_cap(vcpu);
2105         r = 0;
2106         kvm_apic_set_version(vcpu);
2107         kvm_x86_ops->cpuid_update(vcpu);
2108         update_cpuid(vcpu);
2109
2110 out_free:
2111         vfree(cpuid_entries);
2112 out:
2113         return r;
2114 }
2115
2116 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
2117                                      struct kvm_cpuid2 *cpuid,
2118                                      struct kvm_cpuid_entry2 __user *entries)
2119 {
2120         int r;
2121
2122         r = -E2BIG;
2123         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2124                 goto out;
2125         r = -EFAULT;
2126         if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
2127                            cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
2128                 goto out;
2129         vcpu->arch.cpuid_nent = cpuid->nent;
2130         kvm_apic_set_version(vcpu);
2131         kvm_x86_ops->cpuid_update(vcpu);
2132         update_cpuid(vcpu);
2133         return 0;
2134
2135 out:
2136         return r;
2137 }
2138
2139 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
2140                                      struct kvm_cpuid2 *cpuid,
2141                                      struct kvm_cpuid_entry2 __user *entries)
2142 {
2143         int r;
2144
2145         r = -E2BIG;
2146         if (cpuid->nent < vcpu->arch.cpuid_nent)
2147                 goto out;
2148         r = -EFAULT;
2149         if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
2150                          vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
2151                 goto out;
2152         return 0;
2153
2154 out:
2155         cpuid->nent = vcpu->arch.cpuid_nent;
2156         return r;
2157 }
2158
2159 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2160                            u32 index)
2161 {
2162         entry->function = function;
2163         entry->index = index;
2164         cpuid_count(entry->function, entry->index,
2165                     &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
2166         entry->flags = 0;
2167 }
2168
2169 #define F(x) bit(X86_FEATURE_##x)
2170
2171 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2172                          u32 index, int *nent, int maxnent)
2173 {
2174         unsigned f_nx = is_efer_nx() ? F(NX) : 0;
2175 #ifdef CONFIG_X86_64
2176         unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
2177                                 ? F(GBPAGES) : 0;
2178         unsigned f_lm = F(LM);
2179 #else
2180         unsigned f_gbpages = 0;
2181         unsigned f_lm = 0;
2182 #endif
2183         unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
2184
2185         /* cpuid 1.edx */
2186         const u32 kvm_supported_word0_x86_features =
2187                 F(FPU) | F(VME) | F(DE) | F(PSE) |
2188                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2189                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
2190                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2191                 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
2192                 0 /* Reserved, DS, ACPI */ | F(MMX) |
2193                 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
2194                 0 /* HTT, TM, Reserved, PBE */;
2195         /* cpuid 0x80000001.edx */
2196         const u32 kvm_supported_word1_x86_features =
2197                 F(FPU) | F(VME) | F(DE) | F(PSE) |
2198                 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2199                 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
2200                 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2201                 F(PAT) | F(PSE36) | 0 /* Reserved */ |
2202                 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
2203                 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
2204                 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
2205         /* cpuid 1.ecx */
2206         const u32 kvm_supported_word4_x86_features =
2207                 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
2208                 0 /* DS-CPL, VMX, SMX, EST */ |
2209                 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
2210                 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
2211                 0 /* Reserved, DCA */ | F(XMM4_1) |
2212                 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
2213                 0 /* Reserved, AES */ | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX);
2214         /* cpuid 0x80000001.ecx */
2215         const u32 kvm_supported_word6_x86_features =
2216                 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
2217                 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
2218                 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
2219                 0 /* SKINIT */ | 0 /* WDT */;
2220
2221         /* all calls to cpuid_count() should be made on the same cpu */
2222         get_cpu();
2223         do_cpuid_1_ent(entry, function, index);
2224         ++*nent;
2225
2226         switch (function) {
2227         case 0:
2228                 entry->eax = min(entry->eax, (u32)0xd);
2229                 break;
2230         case 1:
2231                 entry->edx &= kvm_supported_word0_x86_features;
2232                 entry->ecx &= kvm_supported_word4_x86_features;
2233                 /* we support x2apic emulation even if host does not support
2234                  * it since we emulate x2apic in software */
2235                 entry->ecx |= F(X2APIC);
2236                 break;
2237         /* function 2 entries are STATEFUL. That is, repeated cpuid commands
2238          * may return different values. This forces us to get_cpu() before
2239          * issuing the first command, and also to emulate this annoying behavior
2240          * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
2241         case 2: {
2242                 int t, times = entry->eax & 0xff;
2243
2244                 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2245                 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2246                 for (t = 1; t < times && *nent < maxnent; ++t) {
2247                         do_cpuid_1_ent(&entry[t], function, 0);
2248                         entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2249                         ++*nent;
2250                 }
2251                 break;
2252         }
2253         /* function 4 and 0xb have additional index. */
2254         case 4: {
2255                 int i, cache_type;
2256
2257                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2258                 /* read more entries until cache_type is zero */
2259                 for (i = 1; *nent < maxnent; ++i) {
2260                         cache_type = entry[i - 1].eax & 0x1f;
2261                         if (!cache_type)
2262                                 break;
2263                         do_cpuid_1_ent(&entry[i], function, i);
2264                         entry[i].flags |=
2265                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2266                         ++*nent;
2267                 }
2268                 break;
2269         }
2270         case 0xb: {
2271                 int i, level_type;
2272
2273                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2274                 /* read more entries until level_type is zero */
2275                 for (i = 1; *nent < maxnent; ++i) {
2276                         level_type = entry[i - 1].ecx & 0xff00;
2277                         if (!level_type)
2278                                 break;
2279                         do_cpuid_1_ent(&entry[i], function, i);
2280                         entry[i].flags |=
2281                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2282                         ++*nent;
2283                 }
2284                 break;
2285         }
2286         case 0xd: {
2287                 int i;
2288
2289                 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2290                 for (i = 1; *nent < maxnent; ++i) {
2291                         if (entry[i - 1].eax == 0 && i != 2)
2292                                 break;
2293                         do_cpuid_1_ent(&entry[i], function, i);
2294                         entry[i].flags |=
2295                                KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2296                         ++*nent;
2297                 }
2298                 break;
2299         }
2300         case KVM_CPUID_SIGNATURE: {
2301                 char signature[12] = "KVMKVMKVM\0\0";
2302                 u32 *sigptr = (u32 *)signature;
2303                 entry->eax = 0;
2304                 entry->ebx = sigptr[0];
2305                 entry->ecx = sigptr[1];
2306                 entry->edx = sigptr[2];
2307                 break;
2308         }
2309         case KVM_CPUID_FEATURES:
2310                 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
2311                              (1 << KVM_FEATURE_NOP_IO_DELAY) |
2312                              (1 << KVM_FEATURE_CLOCKSOURCE2) |
2313                              (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
2314                 entry->ebx = 0;
2315                 entry->ecx = 0;
2316                 entry->edx = 0;
2317                 break;
2318         case 0x80000000:
2319                 entry->eax = min(entry->eax, 0x8000001a);
2320                 break;
2321         case 0x80000001:
2322                 entry->edx &= kvm_supported_word1_x86_features;
2323                 entry->ecx &= kvm_supported_word6_x86_features;
2324                 break;
2325         }
2326
2327         kvm_x86_ops->set_supported_cpuid(function, entry);
2328
2329         put_cpu();
2330 }
2331
2332 #undef F
2333
2334 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
2335                                      struct kvm_cpuid_entry2 __user *entries)
2336 {
2337         struct kvm_cpuid_entry2 *cpuid_entries;
2338         int limit, nent = 0, r = -E2BIG;
2339         u32 func;
2340
2341         if (cpuid->nent < 1)
2342                 goto out;
2343         if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2344                 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
2345         r = -ENOMEM;
2346         cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
2347         if (!cpuid_entries)
2348                 goto out;
2349
2350         do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
2351         limit = cpuid_entries[0].eax;
2352         for (func = 1; func <= limit && nent < cpuid->nent; ++func)
2353                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2354                              &nent, cpuid->nent);
2355         r = -E2BIG;
2356         if (nent >= cpuid->nent)
2357                 goto out_free;
2358
2359         do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
2360         limit = cpuid_entries[nent - 1].eax;
2361         for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
2362                 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2363                              &nent, cpuid->nent);
2364
2365
2366
2367         r = -E2BIG;
2368         if (nent >= cpuid->nent)
2369                 goto out_free;
2370
2371         do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
2372                      cpuid->nent);
2373
2374         r = -E2BIG;
2375         if (nent >= cpuid->nent)
2376                 goto out_free;
2377
2378         do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
2379                      cpuid->nent);
2380
2381         r = -E2BIG;
2382         if (nent >= cpuid->nent)
2383                 goto out_free;
2384
2385         r = -EFAULT;
2386         if (copy_to_user(entries, cpuid_entries,
2387                          nent * sizeof(struct kvm_cpuid_entry2)))
2388                 goto out_free;
2389         cpuid->nent = nent;
2390         r = 0;
2391
2392 out_free:
2393         vfree(cpuid_entries);
2394 out:
2395         return r;
2396 }
2397
2398 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2399                                     struct kvm_lapic_state *s)
2400 {
2401         memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2402
2403         return 0;
2404 }
2405
2406 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2407                                     struct kvm_lapic_state *s)
2408 {
2409         memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2410         kvm_apic_post_state_restore(vcpu);
2411         update_cr8_intercept(vcpu);
2412
2413         return 0;
2414 }
2415
2416 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2417                                     struct kvm_interrupt *irq)
2418 {
2419         if (irq->irq < 0 || irq->irq >= 256)
2420                 return -EINVAL;
2421         if (irqchip_in_kernel(vcpu->kvm))
2422                 return -ENXIO;
2423
2424         kvm_queue_interrupt(vcpu, irq->irq, false);
2425         kvm_make_request(KVM_REQ_EVENT, vcpu);
2426
2427         return 0;
2428 }
2429
2430 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2431 {
2432         kvm_inject_nmi(vcpu);
2433
2434         return 0;
2435 }
2436
2437 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2438                                            struct kvm_tpr_access_ctl *tac)
2439 {
2440         if (tac->flags)
2441                 return -EINVAL;
2442         vcpu->arch.tpr_access_reporting = !!tac->enabled;
2443         return 0;
2444 }
2445
2446 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2447                                         u64 mcg_cap)
2448 {
2449         int r;
2450         unsigned bank_num = mcg_cap & 0xff, bank;
2451
2452         r = -EINVAL;
2453         if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2454                 goto out;
2455         if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2456                 goto out;
2457         r = 0;
2458         vcpu->arch.mcg_cap = mcg_cap;
2459         /* Init IA32_MCG_CTL to all 1s */
2460         if (mcg_cap & MCG_CTL_P)
2461                 vcpu->arch.mcg_ctl = ~(u64)0;
2462         /* Init IA32_MCi_CTL to all 1s */
2463         for (bank = 0; bank < bank_num; bank++)
2464                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2465 out:
2466         return r;
2467 }
2468
2469 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2470                                       struct kvm_x86_mce *mce)
2471 {
2472         u64 mcg_cap = vcpu->arch.mcg_cap;
2473         unsigned bank_num = mcg_cap & 0xff;
2474         u64 *banks = vcpu->arch.mce_banks;
2475
2476         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2477                 return -EINVAL;
2478         /*
2479          * if IA32_MCG_CTL is not all 1s, the uncorrected error
2480          * reporting is disabled
2481          */
2482         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2483             vcpu->arch.mcg_ctl != ~(u64)0)
2484                 return 0;
2485         banks += 4 * mce->bank;
2486         /*
2487          * if IA32_MCi_CTL is not all 1s, the uncorrected error
2488          * reporting is disabled for the bank
2489          */
2490         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2491                 return 0;
2492         if (mce->status & MCI_STATUS_UC) {
2493                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2494                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2495                         printk(KERN_DEBUG "kvm: set_mce: "
2496                                "injects mce exception while "
2497                                "previous one is in progress!\n");
2498                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2499                         return 0;
2500                 }
2501                 if (banks[1] & MCI_STATUS_VAL)
2502                         mce->status |= MCI_STATUS_OVER;
2503                 banks[2] = mce->addr;
2504                 banks[3] = mce->misc;
2505                 vcpu->arch.mcg_status = mce->mcg_status;
2506                 banks[1] = mce->status;
2507                 kvm_queue_exception(vcpu, MC_VECTOR);
2508         } else if (!(banks[1] & MCI_STATUS_VAL)
2509                    || !(banks[1] & MCI_STATUS_UC)) {
2510                 if (banks[1] & MCI_STATUS_VAL)
2511                         mce->status |= MCI_STATUS_OVER;
2512                 banks[2] = mce->addr;
2513                 banks[3] = mce->misc;
2514                 banks[1] = mce->status;
2515         } else
2516                 banks[1] |= MCI_STATUS_OVER;
2517         return 0;
2518 }
2519
2520 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2521                                                struct kvm_vcpu_events *events)
2522 {
2523         events->exception.injected =
2524                 vcpu->arch.exception.pending &&
2525                 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2526         events->exception.nr = vcpu->arch.exception.nr;
2527         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2528         events->exception.error_code = vcpu->arch.exception.error_code;
2529
2530         events->interrupt.injected =
2531                 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2532         events->interrupt.nr = vcpu->arch.interrupt.nr;
2533         events->interrupt.soft = 0;
2534         events->interrupt.shadow =
2535                 kvm_x86_ops->get_interrupt_shadow(vcpu,
2536                         KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2537
2538         events->nmi.injected = vcpu->arch.nmi_injected;
2539         events->nmi.pending = vcpu->arch.nmi_pending;
2540         events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2541
2542         events->sipi_vector = vcpu->arch.sipi_vector;
2543
2544         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2545                          | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2546                          | KVM_VCPUEVENT_VALID_SHADOW);
2547 }
2548
2549 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2550                                               struct kvm_vcpu_events *events)
2551 {
2552         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2553                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2554                               | KVM_VCPUEVENT_VALID_SHADOW))
2555                 return -EINVAL;
2556
2557         vcpu->arch.exception.pending = events->exception.injected;
2558         vcpu->arch.exception.nr = events->exception.nr;
2559         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2560         vcpu->arch.exception.error_code = events->exception.error_code;
2561
2562         vcpu->arch.interrupt.pending = events->interrupt.injected;
2563         vcpu->arch.interrupt.nr = events->interrupt.nr;
2564         vcpu->arch.interrupt.soft = events->interrupt.soft;
2565         if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
2566                 kvm_pic_clear_isr_ack(vcpu->kvm);
2567         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2568                 kvm_x86_ops->set_interrupt_shadow(vcpu,
2569                                                   events->interrupt.shadow);
2570
2571         vcpu->arch.nmi_injected = events->nmi.injected;
2572         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2573                 vcpu->arch.nmi_pending = events->nmi.pending;
2574         kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2575
2576         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2577                 vcpu->arch.sipi_vector = events->sipi_vector;
2578
2579         kvm_make_request(KVM_REQ_EVENT, vcpu);
2580
2581         return 0;
2582 }
2583
2584 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2585                                              struct kvm_debugregs *dbgregs)
2586 {
2587         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2588         dbgregs->dr6 = vcpu->arch.dr6;
2589         dbgregs->dr7 = vcpu->arch.dr7;
2590         dbgregs->flags = 0;
2591 }
2592
2593 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2594                                             struct kvm_debugregs *dbgregs)
2595 {
2596         if (dbgregs->flags)
2597                 return -EINVAL;
2598
2599         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2600         vcpu->arch.dr6 = dbgregs->dr6;
2601         vcpu->arch.dr7 = dbgregs->dr7;
2602
2603         return 0;
2604 }
2605
2606 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2607                                          struct kvm_xsave *guest_xsave)
2608 {
2609         if (cpu_has_xsave)
2610                 memcpy(guest_xsave->region,
2611                         &vcpu->arch.guest_fpu.state->xsave,
2612                         xstate_size);
2613         else {
2614                 memcpy(guest_xsave->region,
2615                         &vcpu->arch.guest_fpu.state->fxsave,
2616                         sizeof(struct i387_fxsave_struct));
2617                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2618                         XSTATE_FPSSE;
2619         }
2620 }
2621
2622 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2623                                         struct kvm_xsave *guest_xsave)
2624 {
2625         u64 xstate_bv =
2626                 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2627
2628         if (cpu_has_xsave)
2629                 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2630                         guest_xsave->region, xstate_size);
2631         else {
2632                 if (xstate_bv & ~XSTATE_FPSSE)
2633                         return -EINVAL;
2634                 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2635                         guest_xsave->region, sizeof(struct i387_fxsave_struct));
2636         }
2637         return 0;
2638 }
2639
2640 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2641                                         struct kvm_xcrs *guest_xcrs)
2642 {
2643         if (!cpu_has_xsave) {
2644                 guest_xcrs->nr_xcrs = 0;
2645                 return;
2646         }
2647
2648         guest_xcrs->nr_xcrs = 1;
2649         guest_xcrs->flags = 0;
2650         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2651         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2652 }
2653
2654 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2655                                        struct kvm_xcrs *guest_xcrs)
2656 {
2657         int i, r = 0;
2658
2659         if (!cpu_has_xsave)
2660                 return -EINVAL;
2661
2662         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2663                 return -EINVAL;
2664
2665         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2666                 /* Only support XCR0 currently */
2667                 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2668                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2669                                 guest_xcrs->xcrs[0].value);
2670                         break;
2671                 }
2672         if (r)
2673                 r = -EINVAL;
2674         return r;
2675 }
2676
2677 long kvm_arch_vcpu_ioctl(struct file *filp,
2678                          unsigned int ioctl, unsigned long arg)
2679 {
2680         struct kvm_vcpu *vcpu = filp->private_data;
2681         void __user *argp = (void __user *)arg;
2682         int r;
2683         union {
2684                 struct kvm_lapic_state *lapic;
2685                 struct kvm_xsave *xsave;
2686                 struct kvm_xcrs *xcrs;
2687                 void *buffer;
2688         } u;
2689
2690         u.buffer = NULL;
2691         switch (ioctl) {
2692         case KVM_GET_LAPIC: {
2693                 r = -EINVAL;
2694                 if (!vcpu->arch.apic)
2695                         goto out;
2696                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2697
2698                 r = -ENOMEM;
2699                 if (!u.lapic)
2700                         goto out;
2701                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
2702                 if (r)
2703                         goto out;
2704                 r = -EFAULT;
2705                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
2706                         goto out;
2707                 r = 0;
2708                 break;
2709         }
2710         case KVM_SET_LAPIC: {
2711                 r = -EINVAL;
2712                 if (!vcpu->arch.apic)
2713                         goto out;
2714                 u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2715                 r = -ENOMEM;
2716                 if (!u.lapic)
2717                         goto out;
2718                 r = -EFAULT;
2719                 if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
2720                         goto out;
2721                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
2722                 if (r)
2723                         goto out;
2724                 r = 0;
2725                 break;
2726         }
2727         case KVM_INTERRUPT: {
2728                 struct kvm_interrupt irq;
2729
2730                 r = -EFAULT;
2731                 if (copy_from_user(&irq, argp, sizeof irq))
2732                         goto out;
2733                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
2734                 if (r)
2735                         goto out;
2736                 r = 0;
2737                 break;
2738         }
2739         case KVM_NMI: {
2740                 r = kvm_vcpu_ioctl_nmi(vcpu);
2741                 if (r)
2742                         goto out;
2743                 r = 0;
2744                 break;
2745         }
2746         case KVM_SET_CPUID: {
2747                 struct kvm_cpuid __user *cpuid_arg = argp;
2748                 struct kvm_cpuid cpuid;
2749
2750                 r = -EFAULT;
2751                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2752                         goto out;
2753                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
2754                 if (r)
2755                         goto out;
2756                 break;
2757         }
2758         case KVM_SET_CPUID2: {
2759                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2760                 struct kvm_cpuid2 cpuid;
2761
2762                 r = -EFAULT;
2763                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2764                         goto out;
2765                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
2766                                               cpuid_arg->entries);
2767                 if (r)
2768                         goto out;
2769                 break;
2770         }
2771         case KVM_GET_CPUID2: {
2772                 struct kvm_cpuid2 __user *cpuid_arg = argp;
2773                 struct kvm_cpuid2 cpuid;
2774
2775                 r = -EFAULT;
2776                 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2777                         goto out;
2778                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
2779                                               cpuid_arg->entries);
2780                 if (r)
2781                         goto out;
2782                 r = -EFAULT;
2783                 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2784                         goto out;
2785                 r = 0;
2786                 break;
2787         }
2788         case KVM_GET_MSRS:
2789                 r = msr_io(vcpu, argp, kvm_get_msr, 1);
2790                 break;
2791         case KVM_SET_MSRS:
2792                 r = msr_io(vcpu, argp, do_set_msr, 0);
2793                 break;
2794         case KVM_TPR_ACCESS_REPORTING: {
2795                 struct kvm_tpr_access_ctl tac;
2796
2797                 r = -EFAULT;
2798                 if (copy_from_user(&tac, argp, sizeof tac))
2799                         goto out;
2800                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
2801                 if (r)
2802                         goto out;
2803                 r = -EFAULT;
2804                 if (copy_to_user(argp, &tac, sizeof tac))
2805                         goto out;
2806                 r = 0;
2807                 break;
2808         };
2809         case KVM_SET_VAPIC_ADDR: {
2810                 struct kvm_vapic_addr va;
2811
2812                 r = -EINVAL;
2813                 if (!irqchip_in_kernel(vcpu->kvm))
2814                         goto out;
2815                 r = -EFAULT;
2816                 if (copy_from_user(&va, argp, sizeof va))
2817                         goto out;
2818                 r = 0;
2819                 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
2820                 break;
2821         }
2822         case KVM_X86_SETUP_MCE: {
2823                 u64 mcg_cap;
2824
2825                 r = -EFAULT;
2826                 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
2827                         goto out;
2828                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
2829                 break;
2830         }
2831         case KVM_X86_SET_MCE: {
2832                 struct kvm_x86_mce mce;
2833
2834                 r = -EFAULT;
2835                 if (copy_from_user(&mce, argp, sizeof mce))
2836                         goto out;
2837                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
2838                 break;
2839         }
2840         case KVM_GET_VCPU_EVENTS: {
2841                 struct kvm_vcpu_events events;
2842
2843                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
2844
2845                 r = -EFAULT;
2846                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
2847                         break;
2848                 r = 0;
2849                 break;
2850         }
2851         case KVM_SET_VCPU_EVENTS: {
2852                 struct kvm_vcpu_events events;
2853
2854                 r = -EFAULT;
2855                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
2856                         break;
2857
2858                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
2859                 break;
2860         }
2861         case KVM_GET_DEBUGREGS: {
2862                 struct kvm_debugregs dbgregs;
2863
2864                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
2865
2866                 r = -EFAULT;
2867                 if (copy_to_user(argp, &dbgregs,
2868                                  sizeof(struct kvm_debugregs)))
2869                         break;
2870                 r = 0;
2871                 break;
2872         }
2873         case KVM_SET_DEBUGREGS: {
2874                 struct kvm_debugregs dbgregs;
2875
2876                 r = -EFAULT;
2877                 if (copy_from_user(&dbgregs, argp,
2878                                    sizeof(struct kvm_debugregs)))
2879                         break;
2880
2881                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
2882                 break;
2883         }
2884         case KVM_GET_XSAVE: {
2885                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2886                 r = -ENOMEM;
2887                 if (!u.xsave)
2888                         break;
2889
2890                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
2891
2892                 r = -EFAULT;
2893                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
2894                         break;
2895                 r = 0;
2896                 break;
2897         }
2898         case KVM_SET_XSAVE: {
2899                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
2900                 r = -ENOMEM;
2901                 if (!u.xsave)
2902                         break;
2903
2904                 r = -EFAULT;
2905                 if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
2906                         break;
2907
2908                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
2909                 break;
2910         }
2911         case KVM_GET_XCRS: {
2912                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2913                 r = -ENOMEM;
2914                 if (!u.xcrs)
2915                         break;
2916
2917                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
2918
2919                 r = -EFAULT;
2920                 if (copy_to_user(argp, u.xcrs,
2921                                  sizeof(struct kvm_xcrs)))
2922                         break;
2923                 r = 0;
2924                 break;
2925         }
2926         case KVM_SET_XCRS: {
2927                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
2928                 r = -ENOMEM;
2929                 if (!u.xcrs)
2930                         break;
2931
2932                 r = -EFAULT;
2933                 if (copy_from_user(u.xcrs, argp,
2934                                    sizeof(struct kvm_xcrs)))
2935                         break;
2936
2937                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
2938                 break;
2939         }
2940         default:
2941                 r = -EINVAL;
2942         }
2943 out:
2944         kfree(u.buffer);
2945         return r;
2946 }
2947
2948 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
2949 {
2950         int ret;
2951
2952         if (addr > (unsigned int)(-3 * PAGE_SIZE))
2953                 return -1;
2954         ret = kvm_x86_ops->set_tss_addr(kvm, addr);
2955         return ret;
2956 }
2957
2958 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
2959                                               u64 ident_addr)
2960 {
2961         kvm->arch.ept_identity_map_addr = ident_addr;
2962         return 0;
2963 }
2964
2965 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
2966                                           u32 kvm_nr_mmu_pages)
2967 {
2968         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
2969                 return -EINVAL;
2970
2971         mutex_lock(&kvm->slots_lock);
2972         spin_lock(&kvm->mmu_lock);
2973
2974         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
2975         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
2976
2977         spin_unlock(&kvm->mmu_lock);
2978         mutex_unlock(&kvm->slots_lock);
2979         return 0;
2980 }
2981
2982 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
2983 {
2984         return kvm->arch.n_max_mmu_pages;
2985 }
2986
2987 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
2988 {
2989         int r;
2990
2991         r = 0;
2992         switch (chip->chip_id) {
2993         case KVM_IRQCHIP_PIC_MASTER:
2994                 memcpy(&chip->chip.pic,
2995                         &pic_irqchip(kvm)->pics[0],
2996                         sizeof(struct kvm_pic_state));
2997                 break;
2998         case KVM_IRQCHIP_PIC_SLAVE:
2999                 memcpy(&chip->chip.pic,
3000                         &pic_irqchip(kvm)->pics[1],
3001                         sizeof(struct kvm_pic_state));
3002                 break;
3003         case KVM_IRQCHIP_IOAPIC:
3004                 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3005                 break;
3006         default:
3007                 r = -EINVAL;
3008                 break;
3009         }
3010         return r;
3011 }
3012
3013 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3014 {
3015         int r;
3016
3017         r = 0;
3018         switch (chip->chip_id) {
3019         case KVM_IRQCHIP_PIC_MASTER:
3020                 spin_lock(&pic_irqchip(kvm)->lock);
3021                 memcpy(&pic_irqchip(kvm)->pics[0],
3022                         &chip->chip.pic,
3023                         sizeof(struct kvm_pic_state));
3024                 spin_unlock(&pic_irqchip(kvm)->lock);
3025                 break;
3026         case KVM_IRQCHIP_PIC_SLAVE:
3027                 spin_lock(&pic_irqchip(kvm)->lock);
3028                 memcpy(&pic_irqchip(kvm)->pics[1],
3029                         &chip->chip.pic,
3030                         sizeof(struct kvm_pic_state));
3031                 spin_unlock(&pic_irqchip(kvm)->lock);
3032                 break;
3033         case KVM_IRQCHIP_IOAPIC:
3034                 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3035                 break;
3036         default:
3037                 r = -EINVAL;
3038                 break;
3039         }
3040         kvm_pic_update_irq(pic_irqchip(kvm));
3041         return r;
3042 }
3043
3044 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3045 {
3046         int r = 0;
3047
3048         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3049         memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3050         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3051         return r;
3052 }
3053
3054 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3055 {
3056         int r = 0;
3057
3058         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3059         memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3060         kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3061         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3062         return r;
3063 }
3064
3065 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3066 {
3067         int r = 0;
3068
3069         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3070         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3071                 sizeof(ps->channels));
3072         ps->flags = kvm->arch.vpit->pit_state.flags;
3073         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3074         return r;
3075 }
3076
3077 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3078 {
3079         int r = 0, start = 0;
3080         u32 prev_legacy, cur_legacy;
3081         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3082         prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3083         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3084         if (!prev_legacy && cur_legacy)
3085                 start = 1;
3086         memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3087                sizeof(kvm->arch.vpit->pit_state.channels));
3088         kvm->arch.vpit->pit_state.flags = ps->flags;
3089         kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3090         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3091         return r;
3092 }
3093
3094 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3095                                  struct kvm_reinject_control *control)
3096 {
3097         if (!kvm->arch.vpit)
3098                 return -ENXIO;
3099         mutex_lock(&kvm->arch.vpit->pit_state.lock);
3100         kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
3101         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3102         return 0;
3103 }
3104
3105 /*
3106  * Get (and clear) the dirty memory log for a memory slot.
3107  */
3108 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
3109                                       struct kvm_dirty_log *log)
3110 {
3111         int r, i;
3112         struct kvm_memory_slot *memslot;
3113         unsigned long n;
3114         unsigned long is_dirty = 0;
3115
3116         mutex_lock(&kvm->slots_lock);
3117
3118         r = -EINVAL;
3119         if (log->slot >= KVM_MEMORY_SLOTS)
3120                 goto out;
3121
3122         memslot = &kvm->memslots->memslots[log->slot];
3123         r = -ENOENT;
3124         if (!memslot->dirty_bitmap)
3125                 goto out;
3126
3127         n = kvm_dirty_bitmap_bytes(memslot);
3128
3129         for (i = 0; !is_dirty && i < n/sizeof(long); i++)
3130                 is_dirty = memslot->dirty_bitmap[i];
3131
3132         /* If nothing is dirty, don't bother messing with page tables. */
3133         if (is_dirty) {
3134                 struct kvm_memslots *slots, *old_slots;
3135                 unsigned long *dirty_bitmap;
3136
3137                 spin_lock(&kvm->mmu_lock);
3138                 kvm_mmu_slot_remove_write_access(kvm, log->slot);
3139                 spin_unlock(&kvm->mmu_lock);
3140
3141                 r = -ENOMEM;
3142                 dirty_bitmap = vmalloc(n);
3143                 if (!dirty_bitmap)
3144                         goto out;
3145                 memset(dirty_bitmap, 0, n);
3146
3147                 r = -ENOMEM;
3148                 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
3149                 if (!slots) {
3150                         vfree(dirty_bitmap);
3151                         goto out;
3152                 }
3153                 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
3154                 slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
3155
3156                 old_slots = kvm->memslots;
3157                 rcu_assign_pointer(kvm->memslots, slots);
3158                 synchronize_srcu_expedited(&kvm->srcu);
3159                 dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
3160                 kfree(old_slots);
3161
3162                 r = -EFAULT;
3163                 if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n)) {
3164                         vfree(dirty_bitmap);
3165                         goto out;
3166                 }
3167                 vfree(dirty_bitmap);
3168         } else {
3169                 r = -EFAULT;
3170                 if (clear_user(log->dirty_bitmap, n))
3171                         goto out;
3172         }
3173
3174         r = 0;
3175 out:
3176         mutex_unlock(&kvm->slots_lock);
3177         return r;
3178 }
3179
3180 long kvm_arch_vm_ioctl(struct file *filp,
3181                        unsigned int ioctl, unsigned long arg)
3182 {
3183         struct kvm *kvm = filp->private_data;
3184         void __user *argp = (void __user *)arg;
3185         int r = -ENOTTY;
3186         /*
3187          * This union makes it completely explicit to gcc-3.x
3188          * that these two variables' stack usage should be
3189          * combined, not added together.
3190          */
3191         union {
3192                 struct kvm_pit_state ps;
3193                 struct kvm_pit_state2 ps2;
3194                 struct kvm_pit_config pit_config;
3195         } u;
3196
3197         switch (ioctl) {
3198         case KVM_SET_TSS_ADDR:
3199                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3200                 if (r < 0)
3201                         goto out;
3202                 break;
3203         case KVM_SET_IDENTITY_MAP_ADDR: {
3204                 u64 ident_addr;
3205
3206                 r = -EFAULT;
3207                 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3208                         goto out;
3209                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3210                 if (r < 0)
3211                         goto out;
3212                 break;
3213         }
3214         case KVM_SET_NR_MMU_PAGES:
3215                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3216                 if (r)
3217                         goto out;
3218                 break;
3219         case KVM_GET_NR_MMU_PAGES:
3220                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3221                 break;
3222         case KVM_CREATE_IRQCHIP: {
3223                 struct kvm_pic *vpic;
3224
3225                 mutex_lock(&kvm->lock);
3226                 r = -EEXIST;
3227                 if (kvm->arch.vpic)
3228                         goto create_irqchip_unlock;
3229                 r = -ENOMEM;
3230                 vpic = kvm_create_pic(kvm);
3231                 if (vpic) {
3232                         r = kvm_ioapic_init(kvm);
3233                         if (r) {
3234                                 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3235                                                           &vpic->dev);
3236                                 kfree(vpic);
3237                                 goto create_irqchip_unlock;
3238                         }
3239                 } else
3240                         goto create_irqchip_unlock;
3241                 smp_wmb();
3242                 kvm->arch.vpic = vpic;
3243                 smp_wmb();
3244                 r = kvm_setup_default_irq_routing(kvm);
3245                 if (r) {
3246                         mutex_lock(&kvm->irq_lock);
3247                         kvm_ioapic_destroy(kvm);
3248                         kvm_destroy_pic(kvm);
3249                         mutex_unlock(&kvm->irq_lock);
3250                 }
3251         create_irqchip_unlock:
3252                 mutex_unlock(&kvm->lock);
3253                 break;
3254         }
3255         case KVM_CREATE_PIT:
3256                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3257                 goto create_pit;
3258         case KVM_CREATE_PIT2:
3259                 r = -EFAULT;
3260                 if (copy_from_user(&u.pit_config, argp,
3261                                    sizeof(struct kvm_pit_config)))
3262                         goto out;
3263         create_pit:
3264                 mutex_lock(&kvm->slots_lock);
3265                 r = -EEXIST;
3266                 if (kvm->arch.vpit)
3267                         goto create_pit_unlock;
3268                 r = -ENOMEM;
3269                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3270                 if (kvm->arch.vpit)
3271                         r = 0;
3272         create_pit_unlock:
3273                 mutex_unlock(&kvm->slots_lock);
3274                 break;
3275         case KVM_IRQ_LINE_STATUS:
3276         case KVM_IRQ_LINE: {
3277                 struct kvm_irq_level irq_event;
3278
3279                 r = -EFAULT;
3280                 if (copy_from_user(&irq_event, argp, sizeof irq_event))
3281                         goto out;
3282                 r = -ENXIO;
3283                 if (irqchip_in_kernel(kvm)) {
3284                         __s32 status;
3285                         status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3286                                         irq_event.irq, irq_event.level);
3287                         if (ioctl == KVM_IRQ_LINE_STATUS) {
3288                                 r = -EFAULT;
3289                                 irq_event.status = status;
3290                                 if (copy_to_user(argp, &irq_event,
3291                                                         sizeof irq_event))
3292                                         goto out;
3293                         }
3294                         r = 0;
3295                 }
3296                 break;
3297         }
3298         case KVM_GET_IRQCHIP: {
3299                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3300                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3301
3302                 r = -ENOMEM;
3303                 if (!chip)
3304                         goto out;
3305                 r = -EFAULT;
3306                 if (copy_from_user(chip, argp, sizeof *chip))
3307                         goto get_irqchip_out;
3308                 r = -ENXIO;
3309                 if (!irqchip_in_kernel(kvm))
3310                         goto get_irqchip_out;
3311                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3312                 if (r)
3313                         goto get_irqchip_out;
3314                 r = -EFAULT;
3315                 if (copy_to_user(argp, chip, sizeof *chip))
3316                         goto get_irqchip_out;
3317                 r = 0;
3318         get_irqchip_out:
3319                 kfree(chip);
3320                 if (r)
3321                         goto out;
3322                 break;
3323         }
3324         case KVM_SET_IRQCHIP: {
3325                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3326                 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3327
3328                 r = -ENOMEM;
3329                 if (!chip)
3330                         goto out;
3331                 r = -EFAULT;
3332                 if (copy_from_user(chip, argp, sizeof *chip))
3333                         goto set_irqchip_out;
3334                 r = -ENXIO;
3335                 if (!irqchip_in_kernel(kvm))
3336                         goto set_irqchip_out;
3337                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3338                 if (r)
3339                         goto set_irqchip_out;
3340                 r = 0;
3341         set_irqchip_out:
3342                 kfree(chip);
3343                 if (r)
3344                         goto out;
3345                 break;
3346         }
3347         case KVM_GET_PIT: {
3348                 r = -EFAULT;
3349                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3350                         goto out;
3351                 r = -ENXIO;
3352                 if (!kvm->arch.vpit)
3353                         goto out;
3354                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3355                 if (r)
3356                         goto out;
3357                 r = -EFAULT;
3358                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3359                         goto out;
3360                 r = 0;
3361                 break;
3362         }
3363         case KVM_SET_PIT: {
3364                 r = -EFAULT;
3365                 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3366                         goto out;
3367                 r = -ENXIO;
3368                 if (!kvm->arch.vpit)
3369                         goto out;
3370                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3371                 if (r)
3372                         goto out;
3373                 r = 0;
3374                 break;
3375         }
3376         case KVM_GET_PIT2: {
3377                 r = -ENXIO;
3378                 if (!kvm->arch.vpit)
3379                         goto out;
3380                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3381                 if (r)
3382                         goto out;
3383                 r = -EFAULT;
3384                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3385                         goto out;
3386                 r = 0;
3387                 break;
3388         }
3389         case KVM_SET_PIT2: {
3390                 r = -EFAULT;
3391                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3392                         goto out;
3393                 r = -ENXIO;
3394                 if (!kvm->arch.vpit)
3395                         goto out;
3396                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3397                 if (r)
3398                         goto out;
3399                 r = 0;
3400                 break;
3401         }
3402         case KVM_REINJECT_CONTROL: {
3403                 struct kvm_reinject_control control;
3404                 r =  -EFAULT;
3405                 if (copy_from_user(&control, argp, sizeof(control)))
3406                         goto out;
3407                 r = kvm_vm_ioctl_reinject(kvm, &control);
3408                 if (r)
3409                         goto out;
3410                 r = 0;
3411                 break;
3412         }
3413         case KVM_XEN_HVM_CONFIG: {
3414                 r = -EFAULT;
3415                 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3416                                    sizeof(struct kvm_xen_hvm_config)))
3417                         goto out;
3418                 r = -EINVAL;
3419                 if (kvm->arch.xen_hvm_config.flags)
3420                         goto out;
3421                 r = 0;
3422                 break;
3423         }
3424         case KVM_SET_CLOCK: {
3425                 struct kvm_clock_data user_ns;
3426                 u64 now_ns;
3427                 s64 delta;
3428
3429                 r = -EFAULT;
3430                 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3431                         goto out;
3432
3433                 r = -EINVAL;
3434                 if (user_ns.flags)
3435                         goto out;
3436
3437                 r = 0;
3438                 now_ns = get_kernel_ns();
3439                 delta = user_ns.clock - now_ns;
3440                 kvm->arch.kvmclock_offset = delta;
3441                 break;
3442         }
3443         case KVM_GET_CLOCK: {
3444                 struct kvm_clock_data user_ns;
3445                 u64 now_ns;
3446
3447                 now_ns = get_kernel_ns();
3448                 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3449                 user_ns.flags = 0;
3450
3451                 r = -EFAULT;
3452                 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3453                         goto out;
3454                 r = 0;
3455                 break;
3456         }
3457
3458         default:
3459                 ;
3460         }
3461 out:
3462         return r;
3463 }
3464
3465 static void kvm_init_msr_list(void)
3466 {
3467         u32 dummy[2];
3468         unsigned i, j;
3469
3470         /* skip the first msrs in the list. KVM-specific */
3471         for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3472                 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3473                         continue;
3474                 if (j < i)
3475                         msrs_to_save[j] = msrs_to_save[i];
3476                 j++;
3477         }
3478         num_msrs_to_save = j;
3479 }
3480
3481 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3482                            const void *v)
3483 {
3484         if (vcpu->arch.apic &&
3485             !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
3486                 return 0;
3487
3488         return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3489 }
3490
3491 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3492 {
3493         if (vcpu->arch.apic &&
3494             !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
3495                 return 0;
3496
3497         return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
3498 }
3499
3500 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3501                         struct kvm_segment *var, int seg)
3502 {
3503         kvm_x86_ops->set_segment(vcpu, var, seg);
3504 }
3505
3506 void kvm_get_segment(struct kvm_vcpu *vcpu,
3507                      struct kvm_segment *var, int seg)
3508 {
3509         kvm_x86_ops->get_segment(vcpu, var, seg);
3510 }
3511
3512 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3513 {
3514         return gpa;
3515 }
3516
3517 static gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3518 {
3519         gpa_t t_gpa;
3520         u32 error;
3521
3522         BUG_ON(!mmu_is_nested(vcpu));
3523
3524         /* NPT walks are always user-walks */
3525         access |= PFERR_USER_MASK;
3526         t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &error);
3527         if (t_gpa == UNMAPPED_GVA)
3528                 vcpu->arch.fault.nested = true;
3529
3530         return t_gpa;
3531 }
3532
3533 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3534 {
3535         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3536         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, error);
3537 }
3538
3539  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3540 {
3541         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3542         access |= PFERR_FETCH_MASK;
3543         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, error);
3544 }
3545
3546 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3547 {
3548         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3549         access |= PFERR_WRITE_MASK;
3550         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, error);
3551 }
3552
3553 /* uses this to access any guest's mapped memory without checking CPL */
3554 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
3555 {
3556         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, error);
3557 }
3558
3559 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3560                                       struct kvm_vcpu *vcpu, u32 access,
3561                                       u32 *error)
3562 {
3563         void *data = val;
3564         int r = X86EMUL_CONTINUE;
3565
3566         while (bytes) {
3567                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3568                                                             error);
3569                 unsigned offset = addr & (PAGE_SIZE-1);
3570                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3571                 int ret;
3572
3573                 if (gpa == UNMAPPED_GVA) {
3574                         r = X86EMUL_PROPAGATE_FAULT;
3575                         goto out;
3576                 }
3577                 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3578                 if (ret < 0) {
3579                         r = X86EMUL_IO_NEEDED;
3580                         goto out;
3581                 }
3582
3583                 bytes -= toread;
3584                 data += toread;
3585                 addr += toread;
3586         }
3587 out:
3588         return r;
3589 }
3590
3591 /* used for instruction fetching */
3592 static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
3593                                 struct kvm_vcpu *vcpu, u32 *error)
3594 {
3595         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3596         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3597                                           access | PFERR_FETCH_MASK, error);
3598 }
3599
3600 static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
3601                                struct kvm_vcpu *vcpu, u32 *error)
3602 {
3603         u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3604         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3605                                           error);
3606 }
3607
3608 static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
3609                                struct kvm_vcpu *vcpu, u32 *error)
3610 {
3611         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, error);
3612 }
3613
3614 static int kvm_write_guest_virt_system(gva_t addr, void *val,
3615                                        unsigned int bytes,
3616                                        struct kvm_vcpu *vcpu,
3617                                        u32 *error)
3618 {
3619         void *data = val;
3620         int r = X86EMUL_CONTINUE;
3621
3622         while (bytes) {
3623                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3624                                                              PFERR_WRITE_MASK,
3625                                                              error);
3626                 unsigned offset = addr & (PAGE_SIZE-1);
3627                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3628                 int ret;
3629
3630                 if (gpa == UNMAPPED_GVA) {
3631                         r = X86EMUL_PROPAGATE_FAULT;
3632                         goto out;
3633                 }
3634                 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3635                 if (ret < 0) {
3636                         r = X86EMUL_IO_NEEDED;
3637                         goto out;
3638                 }
3639
3640                 bytes -= towrite;
3641                 data += towrite;
3642                 addr += towrite;
3643         }
3644 out:
3645         return r;
3646 }
3647
3648 static int emulator_read_emulated(unsigned long addr,
3649                                   void *val,
3650                                   unsigned int bytes,
3651                                   unsigned int *error_code,
3652                                   struct kvm_vcpu *vcpu)
3653 {
3654         gpa_t                 gpa;
3655
3656         if (vcpu->mmio_read_completed) {
3657                 memcpy(val, vcpu->mmio_data, bytes);
3658                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
3659                                vcpu->mmio_phys_addr, *(u64 *)val);
3660                 vcpu->mmio_read_completed = 0;
3661                 return X86EMUL_CONTINUE;
3662         }
3663
3664         gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, error_code);
3665
3666         if (gpa == UNMAPPED_GVA)
3667                 return X86EMUL_PROPAGATE_FAULT;
3668
3669         /* For APIC access vmexit */
3670         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3671                 goto mmio;
3672
3673         if (kvm_read_guest_virt(addr, val, bytes, vcpu, NULL)
3674                                 == X86EMUL_CONTINUE)
3675                 return X86EMUL_CONTINUE;
3676
3677 mmio:
3678         /*
3679          * Is this MMIO handled locally?
3680          */
3681         if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
3682                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
3683                 return X86EMUL_CONTINUE;
3684         }
3685
3686         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
3687
3688         vcpu->mmio_needed = 1;
3689         vcpu->run->exit_reason = KVM_EXIT_MMIO;
3690         vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3691         vcpu->run->mmio.len = vcpu->mmio_size = bytes;
3692         vcpu->run->mmio.is_write = vcpu->mmio_is_write = 0;
3693
3694         return X86EMUL_IO_NEEDED;
3695 }
3696
3697 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
3698                           const void *val, int bytes)
3699 {
3700         int ret;
3701
3702         ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
3703         if (ret < 0)
3704                 return 0;
3705         kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
3706         return 1;
3707 }
3708
3709 static int emulator_write_emulated_onepage(unsigned long addr,
3710                                            const void *val,
3711                                            unsigned int bytes,
3712                                            unsigned int *error_code,
3713                                            struct kvm_vcpu *vcpu)
3714 {
3715         gpa_t                 gpa;
3716
3717         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, error_code);
3718
3719         if (gpa == UNMAPPED_GVA)
3720                 return X86EMUL_PROPAGATE_FAULT;
3721
3722         /* For APIC access vmexit */
3723         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3724                 goto mmio;
3725
3726         if (emulator_write_phys(vcpu, gpa, val, bytes))
3727                 return X86EMUL_CONTINUE;
3728
3729 mmio:
3730         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
3731         /*
3732          * Is this MMIO handled locally?
3733          */
3734         if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
3735                 return X86EMUL_CONTINUE;
3736
3737         vcpu->mmio_needed = 1;
3738         vcpu->run->exit_reason = KVM_EXIT_MMIO;
3739         vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
3740         vcpu->run->mmio.len = vcpu->mmio_size = bytes;
3741         vcpu->run->mmio.is_write = vcpu->mmio_is_write = 1;
3742         memcpy(vcpu->run->mmio.data, val, bytes);
3743
3744         return X86EMUL_CONTINUE;
3745 }
3746
3747 int emulator_write_emulated(unsigned long addr,
3748                             const void *val,
3749                             unsigned int bytes,
3750                             unsigned int *error_code,
3751                             struct kvm_vcpu *vcpu)
3752 {
3753         /* Crossing a page boundary? */
3754         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
3755                 int rc, now;
3756
3757                 now = -addr & ~PAGE_MASK;
3758                 rc = emulator_write_emulated_onepage(addr, val, now, error_code,
3759                                                      vcpu);
3760                 if (rc != X86EMUL_CONTINUE)
3761                         return rc;
3762                 addr += now;
3763                 val += now;
3764                 bytes -= now;
3765         }
3766         return emulator_write_emulated_onepage(addr, val, bytes, error_code,
3767                                                vcpu);
3768 }
3769
3770 #define CMPXCHG_TYPE(t, ptr, old, new) \
3771         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
3772
3773 #ifdef CONFIG_X86_64
3774 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
3775 #else
3776 #  define CMPXCHG64(ptr, old, new) \
3777         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
3778 #endif
3779
3780 static int emulator_cmpxchg_emulated(unsigned long addr,
3781                                      const void *old,
3782                                      const void *new,
3783                                      unsigned int bytes,
3784                                      unsigned int *error_code,
3785                                      struct kvm_vcpu *vcpu)
3786 {
3787         gpa_t gpa;
3788         struct page *page;
3789         char *kaddr;
3790         bool exchanged;
3791
3792         /* guests cmpxchg8b have to be emulated atomically */
3793         if (bytes > 8 || (bytes & (bytes - 1)))
3794                 goto emul_write;
3795
3796         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
3797
3798         if (gpa == UNMAPPED_GVA ||
3799             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
3800                 goto emul_write;
3801
3802         if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
3803                 goto emul_write;
3804
3805         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3806         if (is_error_page(page)) {
3807                 kvm_release_page_clean(page);
3808                 goto emul_write;
3809         }
3810
3811         kaddr = kmap_atomic(page, KM_USER0);
3812         kaddr += offset_in_page(gpa);
3813         switch (bytes) {
3814         case 1:
3815                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
3816                 break;
3817         case 2:
3818                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
3819                 break;
3820         case 4:
3821                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
3822                 break;
3823         case 8:
3824                 exchanged = CMPXCHG64(kaddr, old, new);
3825                 break;
3826         default:
3827                 BUG();
3828         }
3829         kunmap_atomic(kaddr, KM_USER0);
3830         kvm_release_page_dirty(page);
3831
3832         if (!exchanged)
3833                 return X86EMUL_CMPXCHG_FAILED;
3834
3835         kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
3836
3837         return X86EMUL_CONTINUE;
3838
3839 emul_write:
3840         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
3841
3842         return emulator_write_emulated(addr, new, bytes, error_code, vcpu);
3843 }
3844
3845 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
3846 {
3847         /* TODO: String I/O for in kernel device */
3848         int r;
3849
3850         if (vcpu->arch.pio.in)
3851                 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
3852                                     vcpu->arch.pio.size, pd);
3853         else
3854                 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
3855                                      vcpu->arch.pio.port, vcpu->arch.pio.size,
3856                                      pd);
3857         return r;
3858 }
3859
3860
3861 static int emulator_pio_in_emulated(int size, unsigned short port, void *val,
3862                              unsigned int count, struct kvm_vcpu *vcpu)
3863 {
3864         if (vcpu->arch.pio.count)
3865                 goto data_avail;
3866
3867         trace_kvm_pio(0, port, size, 1);
3868
3869         vcpu->arch.pio.port = port;
3870         vcpu->arch.pio.in = 1;
3871         vcpu->arch.pio.count  = count;
3872         vcpu->arch.pio.size = size;
3873
3874         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3875         data_avail:
3876                 memcpy(val, vcpu->arch.pio_data, size * count);
3877                 vcpu->arch.pio.count = 0;
3878                 return 1;
3879         }
3880
3881         vcpu->run->exit_reason = KVM_EXIT_IO;
3882         vcpu->run->io.direction = KVM_EXIT_IO_IN;
3883         vcpu->run->io.size = size;
3884         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3885         vcpu->run->io.count = count;
3886         vcpu->run->io.port = port;
3887
3888         return 0;
3889 }
3890
3891 static int emulator_pio_out_emulated(int size, unsigned short port,
3892                               const void *val, unsigned int count,
3893                               struct kvm_vcpu *vcpu)
3894 {
3895         trace_kvm_pio(1, port, size, 1);
3896
3897         vcpu->arch.pio.port = port;
3898         vcpu->arch.pio.in = 0;
3899         vcpu->arch.pio.count = count;
3900         vcpu->arch.pio.size = size;
3901
3902         memcpy(vcpu->arch.pio_data, val, size * count);
3903
3904         if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
3905                 vcpu->arch.pio.count = 0;
3906                 return 1;
3907         }
3908
3909         vcpu->run->exit_reason = KVM_EXIT_IO;
3910         vcpu->run->io.direction = KVM_EXIT_IO_OUT;
3911         vcpu->run->io.size = size;
3912         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
3913         vcpu->run->io.count = count;
3914         vcpu->run->io.port = port;
3915
3916         return 0;
3917 }
3918
3919 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
3920 {
3921         return kvm_x86_ops->get_segment_base(vcpu, seg);
3922 }
3923
3924 int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
3925 {
3926         kvm_mmu_invlpg(vcpu, address);
3927         return X86EMUL_CONTINUE;
3928 }
3929
3930 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
3931 {
3932         if (!need_emulate_wbinvd(vcpu))
3933                 return X86EMUL_CONTINUE;
3934
3935         if (kvm_x86_ops->has_wbinvd_exit()) {
3936                 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
3937                                 wbinvd_ipi, NULL, 1);
3938                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
3939         }
3940         wbinvd();
3941         return X86EMUL_CONTINUE;
3942 }
3943 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
3944
3945 int emulate_clts(struct kvm_vcpu *vcpu)
3946 {
3947         kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
3948         kvm_x86_ops->fpu_activate(vcpu);
3949         return X86EMUL_CONTINUE;
3950 }
3951
3952 int emulator_get_dr(int dr, unsigned long *dest, struct kvm_vcpu *vcpu)
3953 {
3954         return _kvm_get_dr(vcpu, dr, dest);
3955 }
3956
3957 int emulator_set_dr(int dr, unsigned long value, struct kvm_vcpu *vcpu)
3958 {
3959
3960         return __kvm_set_dr(vcpu, dr, value);
3961 }
3962
3963 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
3964 {
3965         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
3966 }
3967
3968 static unsigned long emulator_get_cr(int cr, struct kvm_vcpu *vcpu)
3969 {
3970         unsigned long value;
3971
3972         switch (cr) {
3973         case 0:
3974                 value = kvm_read_cr0(vcpu);
3975                 break;
3976         case 2:
3977                 value = vcpu->arch.cr2;
3978                 break;
3979         case 3:
3980                 value = vcpu->arch.cr3;
3981                 break;
3982         case 4:
3983                 value = kvm_read_cr4(vcpu);
3984                 break;
3985         case 8:
3986                 value = kvm_get_cr8(vcpu);
3987                 break;
3988         default:
3989                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
3990                 return 0;
3991         }
3992
3993         return value;
3994 }
3995
3996 static int emulator_set_cr(int cr, unsigned long val, struct kvm_vcpu *vcpu)
3997 {
3998         int res = 0;
3999
4000         switch (cr) {
4001         case 0:
4002                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4003                 break;
4004         case 2:
4005                 vcpu->arch.cr2 = val;
4006                 break;
4007         case 3:
4008                 res = kvm_set_cr3(vcpu, val);
4009                 break;
4010         case 4:
4011                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4012                 break;
4013         case 8:
4014                 res = __kvm_set_cr8(vcpu, val & 0xfUL);
4015                 break;
4016         default:
4017                 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4018                 res = -1;
4019         }
4020
4021         return res;
4022 }
4023
4024 static int emulator_get_cpl(struct kvm_vcpu *vcpu)
4025 {
4026         return kvm_x86_ops->get_cpl(vcpu);
4027 }
4028
4029 static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
4030 {
4031         kvm_x86_ops->get_gdt(vcpu, dt);
4032 }
4033
4034 static void emulator_get_idt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
4035 {
4036         kvm_x86_ops->get_idt(vcpu, dt);
4037 }
4038
4039 static unsigned long emulator_get_cached_segment_base(int seg,
4040                                                       struct kvm_vcpu *vcpu)
4041 {
4042         return get_segment_base(vcpu, seg);
4043 }
4044
4045 static bool emulator_get_cached_descriptor(struct desc_struct *desc, int seg,
4046                                            struct kvm_vcpu *vcpu)
4047 {
4048         struct kvm_segment var;
4049
4050         kvm_get_segment(vcpu, &var, seg);
4051
4052         if (var.unusable)
4053                 return false;
4054
4055         if (var.g)
4056                 var.limit >>= 12;
4057         set_desc_limit(desc, var.limit);
4058         set_desc_base(desc, (unsigned long)var.base);
4059         desc->type = var.type;
4060         desc->s = var.s;
4061         desc->dpl = var.dpl;
4062         desc->p = var.present;
4063         desc->avl = var.avl;
4064         desc->l = var.l;
4065         desc->d = var.db;
4066         desc->g = var.g;
4067
4068         return true;
4069 }
4070
4071 static void emulator_set_cached_descriptor(struct desc_struct *desc, int seg,
4072                                            struct kvm_vcpu *vcpu)
4073 {
4074         struct kvm_segment var;
4075
4076         /* needed to preserve selector */
4077         kvm_get_segment(vcpu, &var, seg);
4078
4079         var.base = get_desc_base(desc);
4080         var.limit = get_desc_limit(desc);
4081         if (desc->g)
4082                 var.limit = (var.limit << 12) | 0xfff;
4083         var.type = desc->type;
4084         var.present = desc->p;
4085         var.dpl = desc->dpl;
4086         var.db = desc->d;
4087         var.s = desc->s;
4088         var.l = desc->l;
4089         var.g = desc->g;
4090         var.avl = desc->avl;
4091         var.present = desc->p;
4092         var.unusable = !var.present;
4093         var.padding = 0;
4094
4095         kvm_set_segment(vcpu, &var, seg);
4096         return;
4097 }
4098
4099 static u16 emulator_get_segment_selector(int seg, struct kvm_vcpu *vcpu)
4100 {
4101         struct kvm_segment kvm_seg;
4102
4103         kvm_get_segment(vcpu, &kvm_seg, seg);
4104         return kvm_seg.selector;
4105 }
4106
4107 static void emulator_set_segment_selector(u16 sel, int seg,
4108                                           struct kvm_vcpu *vcpu)
4109 {
4110         struct kvm_segment kvm_seg;
4111
4112         kvm_get_segment(vcpu, &kvm_seg, seg);
4113         kvm_seg.selector = sel;
4114         kvm_set_segment(vcpu, &kvm_seg, seg);
4115 }
4116
4117 static struct x86_emulate_ops emulate_ops = {
4118         .read_std            = kvm_read_guest_virt_system,
4119         .write_std           = kvm_write_guest_virt_system,
4120         .fetch               = kvm_fetch_guest_virt,
4121         .read_emulated       = emulator_read_emulated,
4122         .write_emulated      = emulator_write_emulated,
4123         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
4124         .pio_in_emulated     = emulator_pio_in_emulated,
4125         .pio_out_emulated    = emulator_pio_out_emulated,
4126         .get_cached_descriptor = emulator_get_cached_descriptor,
4127         .set_cached_descriptor = emulator_set_cached_descriptor,
4128         .get_segment_selector = emulator_get_segment_selector,
4129         .set_segment_selector = emulator_set_segment_selector,
4130         .get_cached_segment_base = emulator_get_cached_segment_base,
4131         .get_gdt             = emulator_get_gdt,
4132         .get_idt             = emulator_get_idt,
4133         .get_cr              = emulator_get_cr,
4134         .set_cr              = emulator_set_cr,
4135         .cpl                 = emulator_get_cpl,
4136         .get_dr              = emulator_get_dr,
4137         .set_dr              = emulator_set_dr,
4138         .set_msr             = kvm_set_msr,
4139         .get_msr             = kvm_get_msr,
4140 };
4141
4142 static void cache_all_regs(struct kvm_vcpu *vcpu)
4143 {
4144         kvm_register_read(vcpu, VCPU_REGS_RAX);
4145         kvm_register_read(vcpu, VCPU_REGS_RSP);
4146         kvm_register_read(vcpu, VCPU_REGS_RIP);
4147         vcpu->arch.regs_dirty = ~0;
4148 }
4149
4150 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4151 {
4152         u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4153         /*
4154          * an sti; sti; sequence only disable interrupts for the first
4155          * instruction. So, if the last instruction, be it emulated or
4156          * not, left the system with the INT_STI flag enabled, it
4157          * means that the last instruction is an sti. We should not
4158          * leave the flag on in this case. The same goes for mov ss
4159          */
4160         if (!(int_shadow & mask))
4161                 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4162 }
4163
4164 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4165 {
4166         struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4167         if (ctxt->exception == PF_VECTOR)
4168                 kvm_propagate_fault(vcpu);
4169         else if (ctxt->error_code_valid)
4170                 kvm_queue_exception_e(vcpu, ctxt->exception, ctxt->error_code);
4171         else
4172                 kvm_queue_exception(vcpu, ctxt->exception);
4173 }
4174
4175 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4176 {
4177         struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4178         int cs_db, cs_l;
4179
4180         cache_all_regs(vcpu);
4181
4182         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4183
4184         vcpu->arch.emulate_ctxt.vcpu = vcpu;
4185         vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
4186         vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
4187         vcpu->arch.emulate_ctxt.mode =
4188                 (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
4189                 (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
4190                 ? X86EMUL_MODE_VM86 : cs_l
4191                 ? X86EMUL_MODE_PROT64 : cs_db
4192                 ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
4193         memset(c, 0, sizeof(struct decode_cache));
4194         memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4195 }
4196
4197 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq)
4198 {
4199         struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4200         int ret;
4201
4202         init_emulate_ctxt(vcpu);
4203
4204         vcpu->arch.emulate_ctxt.decode.op_bytes = 2;
4205         vcpu->arch.emulate_ctxt.decode.ad_bytes = 2;
4206         vcpu->arch.emulate_ctxt.decode.eip = vcpu->arch.emulate_ctxt.eip;
4207         ret = emulate_int_real(&vcpu->arch.emulate_ctxt, &emulate_ops, irq);
4208
4209         if (ret != X86EMUL_CONTINUE)
4210                 return EMULATE_FAIL;
4211
4212         vcpu->arch.emulate_ctxt.eip = c->eip;
4213         memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
4214         kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
4215         kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4216
4217         if (irq == NMI_VECTOR)
4218                 vcpu->arch.nmi_pending = false;
4219         else
4220                 vcpu->arch.interrupt.pending = false;
4221
4222         return EMULATE_DONE;
4223 }
4224 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4225
4226 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4227 {
4228         ++vcpu->stat.insn_emulation_fail;
4229         trace_kvm_emulate_insn_failed(vcpu);
4230         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4231         vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4232         vcpu->run->internal.ndata = 0;
4233         kvm_queue_exception(vcpu, UD_VECTOR);
4234         return EMULATE_FAIL;
4235 }
4236
4237 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4238 {
4239         gpa_t gpa;
4240
4241         if (tdp_enabled)
4242                 return false;
4243
4244         /*
4245          * if emulation was due to access to shadowed page table
4246          * and it failed try to unshadow page and re-entetr the
4247          * guest to let CPU execute the instruction.
4248          */
4249         if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4250                 return true;
4251
4252         gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4253
4254         if (gpa == UNMAPPED_GVA)
4255                 return true; /* let cpu generate fault */
4256
4257         if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
4258                 return true;
4259
4260         return false;
4261 }
4262
4263 int emulate_instruction(struct kvm_vcpu *vcpu,
4264                         unsigned long cr2,
4265                         u16 error_code,
4266                         int emulation_type)
4267 {
4268         int r;
4269         struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
4270
4271         kvm_clear_exception_queue(vcpu);
4272         vcpu->arch.mmio_fault_cr2 = cr2;
4273         /*
4274          * TODO: fix emulate.c to use guest_read/write_register
4275          * instead of direct ->regs accesses, can save hundred cycles
4276          * on Intel for instructions that don't read/change RSP, for
4277          * for example.
4278          */
4279         cache_all_regs(vcpu);
4280
4281         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4282                 init_emulate_ctxt(vcpu);
4283                 vcpu->arch.emulate_ctxt.interruptibility = 0;
4284                 vcpu->arch.emulate_ctxt.exception = -1;
4285                 vcpu->arch.emulate_ctxt.perm_ok = false;
4286
4287                 r = x86_decode_insn(&vcpu->arch.emulate_ctxt);
4288                 if (r == X86EMUL_PROPAGATE_FAULT)
4289                         goto done;
4290
4291                 trace_kvm_emulate_insn_start(vcpu);
4292
4293                 /* Only allow emulation of specific instructions on #UD
4294                  * (namely VMMCALL, sysenter, sysexit, syscall)*/
4295                 if (emulation_type & EMULTYPE_TRAP_UD) {
4296                         if (!c->twobyte)
4297                                 return EMULATE_FAIL;
4298                         switch (c->b) {
4299                         case 0x01: /* VMMCALL */
4300                                 if (c->modrm_mod != 3 || c->modrm_rm != 1)
4301                                         return EMULATE_FAIL;
4302                                 break;
4303                         case 0x34: /* sysenter */
4304                         case 0x35: /* sysexit */
4305                                 if (c->modrm_mod != 0 || c->modrm_rm != 0)
4306                                         return EMULATE_FAIL;
4307                                 break;
4308                         case 0x05: /* syscall */
4309                                 if (c->modrm_mod != 0 || c->modrm_rm != 0)
4310                                         return EMULATE_FAIL;
4311                                 break;
4312                         default:
4313                                 return EMULATE_FAIL;
4314                         }
4315
4316                         if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
4317                                 return EMULATE_FAIL;
4318                 }
4319
4320                 ++vcpu->stat.insn_emulation;
4321                 if (r)  {
4322                         if (reexecute_instruction(vcpu, cr2))
4323                                 return EMULATE_DONE;
4324                         if (emulation_type & EMULTYPE_SKIP)
4325                                 return EMULATE_FAIL;
4326                         return handle_emulation_failure(vcpu);
4327                 }
4328         }
4329
4330         if (emulation_type & EMULTYPE_SKIP) {
4331                 kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
4332                 return EMULATE_DONE;
4333         }
4334
4335         /* this is needed for vmware backdor interface to work since it
4336            changes registers values  during IO operation */
4337         memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
4338
4339 restart:
4340         r = x86_emulate_insn(&vcpu->arch.emulate_ctxt);
4341
4342         if (r == EMULATION_FAILED) {
4343                 if (reexecute_instruction(vcpu, cr2))
4344                         return EMULATE_DONE;
4345
4346                 return handle_emulation_failure(vcpu);
4347         }
4348
4349 done:
4350         if (vcpu->arch.emulate_ctxt.exception >= 0) {
4351                 inject_emulated_exception(vcpu);
4352                 r = EMULATE_DONE;
4353         } else if (vcpu->arch.pio.count) {
4354                 if (!vcpu->arch.pio.in)
4355                         vcpu->arch.pio.count = 0;
4356                 r = EMULATE_DO_MMIO;
4357         } else if (vcpu->mmio_needed) {
4358                 if (vcpu->mmio_is_write)
4359                         vcpu->mmio_needed = 0;
4360                 r = EMULATE_DO_MMIO;
4361         } else if (r == EMULATION_RESTART)
4362                 goto restart;
4363         else
4364                 r = EMULATE_DONE;
4365
4366         toggle_interruptibility(vcpu, vcpu->arch.emulate_ctxt.interruptibility);
4367         kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
4368         kvm_make_request(KVM_REQ_EVENT, vcpu);
4369         memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
4370         kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
4371
4372         return r;
4373 }
4374 EXPORT_SYMBOL_GPL(emulate_instruction);
4375
4376 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4377 {
4378         unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4379         int ret = emulator_pio_out_emulated(size, port, &val, 1, vcpu);
4380         /* do not return to emulator after return from userspace */
4381         vcpu->arch.pio.count = 0;
4382         return ret;
4383 }
4384 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4385
4386 static void tsc_bad(void *info)
4387 {
4388         __get_cpu_var(cpu_tsc_khz) = 0;
4389 }
4390
4391 static void tsc_khz_changed(void *data)
4392 {
4393         struct cpufreq_freqs *freq = data;
4394         unsigned long khz = 0;
4395
4396         if (data)
4397                 khz = freq->new;
4398         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4399                 khz = cpufreq_quick_get(raw_smp_processor_id());
4400         if (!khz)
4401                 khz = tsc_khz;
4402         __get_cpu_var(cpu_tsc_khz) = khz;
4403 }
4404
4405 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4406                                      void *data)
4407 {
4408         struct cpufreq_freqs *freq = data;
4409         struct kvm *kvm;
4410         struct kvm_vcpu *vcpu;
4411         int i, send_ipi = 0;
4412
4413         /*
4414          * We allow guests to temporarily run on slowing clocks,
4415          * provided we notify them after, or to run on accelerating
4416          * clocks, provided we notify them before.  Thus time never
4417          * goes backwards.
4418          *
4419          * However, we have a problem.  We can't atomically update
4420          * the frequency of a given CPU from this function; it is
4421          * merely a notifier, which can be called from any CPU.
4422          * Changing the TSC frequency at arbitrary points in time
4423          * requires a recomputation of local variables related to
4424          * the TSC for each VCPU.  We must flag these local variables
4425          * to be updated and be sure the update takes place with the
4426          * new frequency before any guests proceed.
4427          *
4428          * Unfortunately, the combination of hotplug CPU and frequency
4429          * change creates an intractable locking scenario; the order
4430          * of when these callouts happen is undefined with respect to
4431          * CPU hotplug, and they can race with each other.  As such,
4432          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4433          * undefined; you can actually have a CPU frequency change take
4434          * place in between the computation of X and the setting of the
4435          * variable.  To protect against this problem, all updates of
4436          * the per_cpu tsc_khz variable are done in an interrupt
4437          * protected IPI, and all callers wishing to update the value
4438          * must wait for a synchronous IPI to complete (which is trivial
4439          * if the caller is on the CPU already).  This establishes the
4440          * necessary total order on variable updates.
4441          *
4442          * Note that because a guest time update may take place
4443          * anytime after the setting of the VCPU's request bit, the
4444          * correct TSC value must be set before the request.  However,
4445          * to ensure the update actually makes it to any guest which
4446          * starts running in hardware virtualization between the set
4447          * and the acquisition of the spinlock, we must also ping the
4448          * CPU after setting the request bit.
4449          *
4450          */
4451
4452         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4453                 return 0;
4454         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4455                 return 0;
4456
4457         smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4458
4459         spin_lock(&kvm_lock);
4460         list_for_each_entry(kvm, &vm_list, vm_list) {
4461                 kvm_for_each_vcpu(i, vcpu, kvm) {
4462                         if (vcpu->cpu != freq->cpu)
4463                                 continue;
4464                         if (!kvm_request_guest_time_update(vcpu))
4465                                 continue;
4466                         if (vcpu->cpu != smp_processor_id())
4467                                 send_ipi = 1;
4468                 }
4469         }
4470         spin_unlock(&kvm_lock);
4471
4472         if (freq->old < freq->new && send_ipi) {
4473                 /*
4474                  * We upscale the frequency.  Must make the guest
4475                  * doesn't see old kvmclock values while running with
4476                  * the new frequency, otherwise we risk the guest sees
4477                  * time go backwards.
4478                  *
4479                  * In case we update the frequency for another cpu
4480                  * (which might be in guest context) send an interrupt
4481                  * to kick the cpu out of guest context.  Next time
4482                  * guest context is entered kvmclock will be updated,
4483                  * so the guest will not see stale values.
4484                  */
4485                 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4486         }
4487         return 0;
4488 }
4489
4490 static struct notifier_block kvmclock_cpufreq_notifier_block = {
4491         .notifier_call  = kvmclock_cpufreq_notifier
4492 };
4493
4494 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
4495                                         unsigned long action, void *hcpu)
4496 {
4497         unsigned int cpu = (unsigned long)hcpu;
4498
4499         switch (action) {
4500                 case CPU_ONLINE:
4501                 case CPU_DOWN_FAILED:
4502                         smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4503                         break;
4504                 case CPU_DOWN_PREPARE:
4505                         smp_call_function_single(cpu, tsc_bad, NULL, 1);
4506                         break;
4507         }
4508         return NOTIFY_OK;
4509 }
4510
4511 static struct notifier_block kvmclock_cpu_notifier_block = {
4512         .notifier_call  = kvmclock_cpu_notifier,
4513         .priority = -INT_MAX
4514 };
4515
4516 static void kvm_timer_init(void)
4517 {
4518         int cpu;
4519
4520         register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4521         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
4522                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
4523                                           CPUFREQ_TRANSITION_NOTIFIER);
4524         }
4525         for_each_online_cpu(cpu)
4526                 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4527 }
4528
4529 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
4530
4531 static int kvm_is_in_guest(void)
4532 {
4533         return percpu_read(current_vcpu) != NULL;
4534 }
4535
4536 static int kvm_is_user_mode(void)
4537 {
4538         int user_mode = 3;
4539
4540         if (percpu_read(current_vcpu))
4541                 user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
4542
4543         return user_mode != 0;
4544 }
4545
4546 static unsigned long kvm_get_guest_ip(void)
4547 {
4548         unsigned long ip = 0;
4549
4550         if (percpu_read(current_vcpu))
4551                 ip = kvm_rip_read(percpu_read(current_vcpu));
4552
4553         return ip;
4554 }
4555
4556 static struct perf_guest_info_callbacks kvm_guest_cbs = {
4557         .is_in_guest            = kvm_is_in_guest,
4558         .is_user_mode           = kvm_is_user_mode,
4559         .get_guest_ip           = kvm_get_guest_ip,
4560 };
4561
4562 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
4563 {
4564         percpu_write(current_vcpu, vcpu);
4565 }
4566 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
4567
4568 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
4569 {
4570         percpu_write(current_vcpu, NULL);
4571 }
4572 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
4573
4574 int kvm_arch_init(void *opaque)
4575 {
4576         int r;
4577         struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
4578
4579         if (kvm_x86_ops) {
4580                 printk(KERN_ERR "kvm: already loaded the other module\n");
4581                 r = -EEXIST;
4582                 goto out;
4583         }
4584
4585         if (!ops->cpu_has_kvm_support()) {
4586                 printk(KERN_ERR "kvm: no hardware support\n");
4587                 r = -EOPNOTSUPP;
4588                 goto out;
4589         }
4590         if (ops->disabled_by_bios()) {
4591                 printk(KERN_ERR "kvm: disabled by bios\n");
4592                 r = -EOPNOTSUPP;
4593                 goto out;
4594         }
4595
4596         r = kvm_mmu_module_init();
4597         if (r)
4598                 goto out;
4599
4600         kvm_init_msr_list();
4601
4602         kvm_x86_ops = ops;
4603         kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
4604         kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
4605         kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
4606                         PT_DIRTY_MASK, PT64_NX_MASK, 0);
4607
4608         kvm_timer_init();
4609
4610         perf_register_guest_info_callbacks(&kvm_guest_cbs);
4611
4612         if (cpu_has_xsave)
4613                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
4614
4615         return 0;
4616
4617 out:
4618         return r;
4619 }
4620
4621 void kvm_arch_exit(void)
4622 {
4623         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
4624
4625         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4626                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
4627                                             CPUFREQ_TRANSITION_NOTIFIER);
4628         unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
4629         kvm_x86_ops = NULL;
4630         kvm_mmu_module_exit();
4631 }
4632
4633 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
4634 {
4635         ++vcpu->stat.halt_exits;
4636         if (irqchip_in_kernel(vcpu->kvm)) {
4637                 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
4638                 return 1;
4639         } else {
4640                 vcpu->run->exit_reason = KVM_EXIT_HLT;
4641                 return 0;
4642         }
4643 }
4644 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
4645
4646 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
4647                            unsigned long a1)
4648 {
4649         if (is_long_mode(vcpu))
4650                 return a0;
4651         else
4652                 return a0 | ((gpa_t)a1 << 32);
4653 }
4654
4655 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
4656 {
4657         u64 param, ingpa, outgpa, ret;
4658         uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
4659         bool fast, longmode;
4660         int cs_db, cs_l;
4661
4662         /*
4663          * hypercall generates UD from non zero cpl and real mode
4664          * per HYPER-V spec
4665          */
4666         if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
4667                 kvm_queue_exception(vcpu, UD_VECTOR);
4668                 return 0;
4669         }
4670
4671         kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4672         longmode = is_long_mode(vcpu) && cs_l == 1;
4673
4674         if (!longmode) {
4675                 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
4676                         (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
4677                 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
4678                         (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
4679                 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
4680                         (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
4681         }
4682 #ifdef CONFIG_X86_64
4683         else {
4684                 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
4685                 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
4686                 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
4687         }
4688 #endif
4689
4690         code = param & 0xffff;
4691         fast = (param >> 16) & 0x1;
4692         rep_cnt = (param >> 32) & 0xfff;
4693         rep_idx = (param >> 48) & 0xfff;
4694
4695         trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
4696
4697         switch (code) {
4698         case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
4699                 kvm_vcpu_on_spin(vcpu);
4700                 break;
4701         default:
4702                 res = HV_STATUS_INVALID_HYPERCALL_CODE;
4703                 break;
4704         }
4705
4706         ret = res | (((u64)rep_done & 0xfff) << 32);
4707         if (longmode) {
4708                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4709         } else {
4710                 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
4711                 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
4712         }
4713
4714         return 1;
4715 }
4716
4717 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
4718 {
4719         unsigned long nr, a0, a1, a2, a3, ret;
4720         int r = 1;
4721
4722         if (kvm_hv_hypercall_enabled(vcpu->kvm))
4723                 return kvm_hv_hypercall(vcpu);
4724
4725         nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
4726         a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
4727         a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
4728         a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
4729         a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
4730
4731         trace_kvm_hypercall(nr, a0, a1, a2, a3);
4732
4733         if (!is_long_mode(vcpu)) {
4734                 nr &= 0xFFFFFFFF;
4735                 a0 &= 0xFFFFFFFF;
4736                 a1 &= 0xFFFFFFFF;
4737                 a2 &= 0xFFFFFFFF;
4738                 a3 &= 0xFFFFFFFF;
4739         }
4740
4741         if (kvm_x86_ops->get_cpl(vcpu) != 0) {
4742                 ret = -KVM_EPERM;
4743                 goto out;
4744         }
4745
4746         switch (nr) {
4747         case KVM_HC_VAPIC_POLL_IRQ:
4748                 ret = 0;
4749                 break;
4750         case KVM_HC_MMU_OP:
4751                 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
4752                 break;
4753         default:
4754                 ret = -KVM_ENOSYS;
4755                 break;
4756         }
4757 out:
4758         kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
4759         ++vcpu->stat.hypercalls;
4760         return r;
4761 }
4762 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
4763
4764 int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
4765 {
4766         char instruction[3];
4767         unsigned long rip = kvm_rip_read(vcpu);
4768
4769         /*
4770          * Blow out the MMU to ensure that no other VCPU has an active mapping
4771          * to ensure that the updated hypercall appears atomically across all
4772          * VCPUs.
4773          */
4774         kvm_mmu_zap_all(vcpu->kvm);
4775
4776         kvm_x86_ops->patch_hypercall(vcpu, instruction);
4777
4778         return emulator_write_emulated(rip, instruction, 3, NULL, vcpu);
4779 }
4780
4781 void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4782 {
4783         struct desc_ptr dt = { limit, base };
4784
4785         kvm_x86_ops->set_gdt(vcpu, &dt);
4786 }
4787
4788 void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
4789 {
4790         struct desc_ptr dt = { limit, base };
4791
4792         kvm_x86_ops->set_idt(vcpu, &dt);
4793 }
4794
4795 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
4796 {
4797         struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
4798         int j, nent = vcpu->arch.cpuid_nent;
4799
4800         e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
4801         /* when no next entry is found, the current entry[i] is reselected */
4802         for (j = i + 1; ; j = (j + 1) % nent) {
4803                 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
4804                 if (ej->function == e->function) {
4805                         ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
4806                         return j;
4807                 }
4808         }
4809         return 0; /* silence gcc, even though control never reaches here */
4810 }
4811
4812 /* find an entry with matching function, matching index (if needed), and that
4813  * should be read next (if it's stateful) */
4814 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
4815         u32 function, u32 index)
4816 {
4817         if (e->function != function)
4818                 return 0;
4819         if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
4820                 return 0;
4821         if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
4822             !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
4823                 return 0;
4824         return 1;
4825 }
4826
4827 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
4828                                               u32 function, u32 index)
4829 {
4830         int i;
4831         struct kvm_cpuid_entry2 *best = NULL;
4832
4833         for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
4834                 struct kvm_cpuid_entry2 *e;
4835
4836                 e = &vcpu->arch.cpuid_entries[i];
4837                 if (is_matching_cpuid_entry(e, function, index)) {
4838                         if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
4839                                 move_to_next_stateful_cpuid_entry(vcpu, i);
4840                         best = e;
4841                         break;
4842                 }
4843                 /*
4844                  * Both basic or both extended?
4845                  */
4846                 if (((e->function ^ function) & 0x80000000) == 0)
4847                         if (!best || e->function > best->function)
4848                                 best = e;
4849         }
4850         return best;
4851 }
4852 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
4853
4854 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
4855 {
4856         struct kvm_cpuid_entry2 *best;
4857
4858         best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
4859         if (!best || best->eax < 0x80000008)
4860                 goto not_found;
4861         best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
4862         if (best)
4863                 return best->eax & 0xff;
4864 not_found:
4865         return 36;
4866 }
4867
4868 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
4869 {
4870         u32 function, index;
4871         struct kvm_cpuid_entry2 *best;
4872
4873         function = kvm_register_read(vcpu, VCPU_REGS_RAX);
4874         index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4875         kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
4876         kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
4877         kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
4878         kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
4879         best = kvm_find_cpuid_entry(vcpu, function, index);
4880         if (best) {
4881                 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
4882                 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
4883                 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
4884                 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
4885         }
4886         kvm_x86_ops->skip_emulated_instruction(vcpu);
4887         trace_kvm_cpuid(function,
4888                         kvm_register_read(vcpu, VCPU_REGS_RAX),
4889                         kvm_register_read(vcpu, VCPU_REGS_RBX),
4890                         kvm_register_read(vcpu, VCPU_REGS_RCX),
4891                         kvm_register_read(vcpu, VCPU_REGS_RDX));
4892 }
4893 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
4894
4895 /*
4896  * Check if userspace requested an interrupt window, and that the
4897  * interrupt window is open.
4898  *
4899  * No need to exit to userspace if we already have an interrupt queued.
4900  */
4901 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
4902 {
4903         return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
4904                 vcpu->run->request_interrupt_window &&
4905                 kvm_arch_interrupt_allowed(vcpu));
4906 }
4907
4908 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
4909 {
4910         struct kvm_run *kvm_run = vcpu->run;
4911
4912         kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
4913         kvm_run->cr8 = kvm_get_cr8(vcpu);
4914         kvm_run->apic_base = kvm_get_apic_base(vcpu);
4915         if (irqchip_in_kernel(vcpu->kvm))
4916                 kvm_run->ready_for_interrupt_injection = 1;
4917         else
4918                 kvm_run->ready_for_interrupt_injection =
4919                         kvm_arch_interrupt_allowed(vcpu) &&
4920                         !kvm_cpu_has_interrupt(vcpu) &&
4921                         !kvm_event_needs_reinjection(vcpu);
4922 }
4923
4924 static void vapic_enter(struct kvm_vcpu *vcpu)
4925 {
4926         struct kvm_lapic *apic = vcpu->arch.apic;
4927         struct page *page;
4928
4929         if (!apic || !apic->vapic_addr)
4930                 return;
4931
4932         page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4933
4934         vcpu->arch.apic->vapic_page = page;
4935 }
4936
4937 static void vapic_exit(struct kvm_vcpu *vcpu)
4938 {
4939         struct kvm_lapic *apic = vcpu->arch.apic;
4940         int idx;
4941
4942         if (!apic || !apic->vapic_addr)
4943                 return;
4944
4945         idx = srcu_read_lock(&vcpu->kvm->srcu);
4946         kvm_release_page_dirty(apic->vapic_page);
4947         mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
4948         srcu_read_unlock(&vcpu->kvm->srcu, idx);
4949 }
4950
4951 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
4952 {
4953         int max_irr, tpr;
4954
4955         if (!kvm_x86_ops->update_cr8_intercept)
4956                 return;
4957
4958         if (!vcpu->arch.apic)
4959                 return;
4960
4961         if (!vcpu->arch.apic->vapic_addr)
4962                 max_irr = kvm_lapic_find_highest_irr(vcpu);
4963         else
4964                 max_irr = -1;
4965
4966         if (max_irr != -1)
4967                 max_irr >>= 4;
4968
4969         tpr = kvm_lapic_get_cr8(vcpu);
4970
4971         kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
4972 }
4973
4974 static void inject_pending_event(struct kvm_vcpu *vcpu)
4975 {
4976         /* try to reinject previous events if any */
4977         if (vcpu->arch.exception.pending) {
4978                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
4979                                         vcpu->arch.exception.has_error_code,
4980                                         vcpu->arch.exception.error_code);
4981                 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
4982                                           vcpu->arch.exception.has_error_code,
4983                                           vcpu->arch.exception.error_code,
4984                                           vcpu->arch.exception.reinject);
4985                 return;
4986         }
4987
4988         if (vcpu->arch.nmi_injected) {
4989                 kvm_x86_ops->set_nmi(vcpu);
4990                 return;
4991         }
4992
4993         if (vcpu->arch.interrupt.pending) {
4994                 kvm_x86_ops->set_irq(vcpu);
4995                 return;
4996         }
4997
4998         /* try to inject new event if pending */
4999         if (vcpu->arch.nmi_pending) {
5000                 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5001                         vcpu->arch.nmi_pending = false;
5002                         vcpu->arch.nmi_injected = true;
5003                         kvm_x86_ops->set_nmi(vcpu);
5004                 }
5005         } else if (kvm_cpu_has_interrupt(vcpu)) {
5006                 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5007                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5008                                             false);
5009                         kvm_x86_ops->set_irq(vcpu);
5010                 }
5011         }
5012 }
5013
5014 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5015 {
5016         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5017                         !vcpu->guest_xcr0_loaded) {
5018                 /* kvm_set_xcr() also depends on this */
5019                 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5020                 vcpu->guest_xcr0_loaded = 1;
5021         }
5022 }
5023
5024 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5025 {
5026         if (vcpu->guest_xcr0_loaded) {
5027                 if (vcpu->arch.xcr0 != host_xcr0)
5028                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5029                 vcpu->guest_xcr0_loaded = 0;
5030         }
5031 }
5032
5033 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5034 {
5035         int r;
5036         bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5037                 vcpu->run->request_interrupt_window;
5038
5039         if (vcpu->requests) {
5040                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5041                         kvm_mmu_unload(vcpu);
5042                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5043                         __kvm_migrate_timers(vcpu);
5044                 if (kvm_check_request(KVM_REQ_KVMCLOCK_UPDATE, vcpu)) {
5045                         r = kvm_write_guest_time(vcpu);
5046                         if (unlikely(r))
5047                                 goto out;
5048                 }
5049                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5050                         kvm_mmu_sync_roots(vcpu);
5051                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5052                         kvm_x86_ops->tlb_flush(vcpu);
5053                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5054                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5055                         r = 0;
5056                         goto out;
5057                 }
5058                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5059                         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5060                         r = 0;
5061                         goto out;
5062                 }
5063                 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5064                         vcpu->fpu_active = 0;
5065                         kvm_x86_ops->fpu_deactivate(vcpu);
5066                 }
5067         }
5068
5069         r = kvm_mmu_reload(vcpu);
5070         if (unlikely(r))
5071                 goto out;
5072
5073         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5074                 inject_pending_event(vcpu);
5075
5076                 /* enable NMI/IRQ window open exits if needed */
5077                 if (vcpu->arch.nmi_pending)
5078                         kvm_x86_ops->enable_nmi_window(vcpu);
5079                 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5080                         kvm_x86_ops->enable_irq_window(vcpu);
5081
5082                 if (kvm_lapic_enabled(vcpu)) {
5083                         update_cr8_intercept(vcpu);
5084                         kvm_lapic_sync_to_vapic(vcpu);
5085                 }
5086         }
5087
5088         preempt_disable();
5089
5090         kvm_x86_ops->prepare_guest_switch(vcpu);
5091         if (vcpu->fpu_active)
5092                 kvm_load_guest_fpu(vcpu);
5093         kvm_load_guest_xcr0(vcpu);
5094
5095         atomic_set(&vcpu->guest_mode, 1);
5096         smp_wmb();
5097
5098         local_irq_disable();
5099
5100         if (!atomic_read(&vcpu->guest_mode) || vcpu->requests
5101             || need_resched() || signal_pending(current)) {
5102                 atomic_set(&vcpu->guest_mode, 0);
5103                 smp_wmb();
5104                 local_irq_enable();
5105                 preempt_enable();
5106                 kvm_x86_ops->cancel_injection(vcpu);
5107                 r = 1;
5108                 goto out;
5109         }
5110
5111         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5112
5113         kvm_guest_enter();
5114
5115         if (unlikely(vcpu->arch.switch_db_regs)) {
5116                 set_debugreg(0, 7);
5117                 set_debugreg(vcpu->arch.eff_db[0], 0);
5118                 set_debugreg(vcpu->arch.eff_db[1], 1);
5119                 set_debugreg(vcpu->arch.eff_db[2], 2);
5120                 set_debugreg(vcpu->arch.eff_db[3], 3);
5121         }
5122
5123         trace_kvm_entry(vcpu->vcpu_id);
5124         kvm_x86_ops->run(vcpu);
5125
5126         /*
5127          * If the guest has used debug registers, at least dr7
5128          * will be disabled while returning to the host.
5129          * If we don't have active breakpoints in the host, we don't
5130          * care about the messed up debug address registers. But if
5131          * we have some of them active, restore the old state.
5132          */
5133         if (hw_breakpoint_active())
5134                 hw_breakpoint_restore();
5135
5136         kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc);
5137
5138         atomic_set(&vcpu->guest_mode, 0);
5139         smp_wmb();
5140         local_irq_enable();
5141
5142         ++vcpu->stat.exits;
5143
5144         /*
5145          * We must have an instruction between local_irq_enable() and
5146          * kvm_guest_exit(), so the timer interrupt isn't delayed by
5147          * the interrupt shadow.  The stat.exits increment will do nicely.
5148          * But we need to prevent reordering, hence this barrier():
5149          */
5150         barrier();
5151
5152         kvm_guest_exit();
5153
5154         preempt_enable();
5155
5156         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5157
5158         /*
5159          * Profile KVM exit RIPs:
5160          */
5161         if (unlikely(prof_on == KVM_PROFILING)) {
5162                 unsigned long rip = kvm_rip_read(vcpu);
5163                 profile_hit(KVM_PROFILING, (void *)rip);
5164         }
5165
5166
5167         kvm_lapic_sync_from_vapic(vcpu);
5168
5169         r = kvm_x86_ops->handle_exit(vcpu);
5170 out:
5171         return r;
5172 }
5173
5174
5175 static int __vcpu_run(struct kvm_vcpu *vcpu)
5176 {
5177         int r;
5178         struct kvm *kvm = vcpu->kvm;
5179
5180         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5181                 pr_debug("vcpu %d received sipi with vector # %x\n",
5182                          vcpu->vcpu_id, vcpu->arch.sipi_vector);
5183                 kvm_lapic_reset(vcpu);
5184                 r = kvm_arch_vcpu_reset(vcpu);
5185                 if (r)
5186                         return r;
5187                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5188         }
5189
5190         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5191         vapic_enter(vcpu);
5192
5193         r = 1;
5194         while (r > 0) {
5195                 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
5196                         r = vcpu_enter_guest(vcpu);
5197                 else {
5198                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5199                         kvm_vcpu_block(vcpu);
5200                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5201                         if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5202                         {
5203                                 switch(vcpu->arch.mp_state) {
5204                                 case KVM_MP_STATE_HALTED:
5205                                         vcpu->arch.mp_state =
5206                                                 KVM_MP_STATE_RUNNABLE;
5207                                 case KVM_MP_STATE_RUNNABLE:
5208                                         break;
5209                                 case KVM_MP_STATE_SIPI_RECEIVED:
5210                                 default:
5211                                         r = -EINTR;
5212                                         break;
5213                                 }
5214                         }
5215                 }
5216
5217                 if (r <= 0)
5218                         break;
5219
5220                 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5221                 if (kvm_cpu_has_pending_timer(vcpu))
5222                         kvm_inject_pending_timer_irqs(vcpu);
5223
5224                 if (dm_request_for_irq_injection(vcpu)) {
5225                         r = -EINTR;
5226                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5227                         ++vcpu->stat.request_irq_exits;
5228                 }
5229                 if (signal_pending(current)) {
5230                         r = -EINTR;
5231                         vcpu->run->exit_reason = KVM_EXIT_INTR;
5232                         ++vcpu->stat.signal_exits;
5233                 }
5234                 if (need_resched()) {
5235                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5236                         kvm_resched(vcpu);
5237                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5238                 }
5239         }
5240
5241         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5242
5243         vapic_exit(vcpu);
5244
5245         return r;
5246 }
5247
5248 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5249 {
5250         int r;
5251         sigset_t sigsaved;
5252
5253         if (vcpu->sigset_active)
5254                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5255
5256         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5257                 kvm_vcpu_block(vcpu);
5258                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5259                 r = -EAGAIN;
5260                 goto out;
5261         }
5262
5263         /* re-sync apic's tpr */
5264         if (!irqchip_in_kernel(vcpu->kvm))
5265                 kvm_set_cr8(vcpu, kvm_run->cr8);
5266
5267         if (vcpu->arch.pio.count || vcpu->mmio_needed) {
5268                 if (vcpu->mmio_needed) {
5269                         memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
5270                         vcpu->mmio_read_completed = 1;
5271                         vcpu->mmio_needed = 0;
5272                 }
5273                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5274                 r = emulate_instruction(vcpu, 0, 0, EMULTYPE_NO_DECODE);
5275                 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5276                 if (r != EMULATE_DONE) {
5277                         r = 0;
5278                         goto out;
5279                 }
5280         }
5281         if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
5282                 kvm_register_write(vcpu, VCPU_REGS_RAX,
5283                                      kvm_run->hypercall.ret);
5284
5285         r = __vcpu_run(vcpu);
5286
5287 out:
5288         post_kvm_run_save(vcpu);
5289         if (vcpu->sigset_active)
5290                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5291
5292         return r;
5293 }
5294
5295 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5296 {
5297         regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5298         regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5299         regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5300         regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5301         regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
5302         regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
5303         regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5304         regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5305 #ifdef CONFIG_X86_64
5306         regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
5307         regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
5308         regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
5309         regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
5310         regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
5311         regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
5312         regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
5313         regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
5314 #endif
5315
5316         regs->rip = kvm_rip_read(vcpu);
5317         regs->rflags = kvm_get_rflags(vcpu);
5318
5319         return 0;
5320 }
5321
5322 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5323 {
5324         kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
5325         kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
5326         kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
5327         kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
5328         kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
5329         kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
5330         kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
5331         kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
5332 #ifdef CONFIG_X86_64
5333         kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
5334         kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
5335         kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
5336         kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
5337         kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
5338         kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
5339         kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
5340         kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
5341 #endif
5342
5343         kvm_rip_write(vcpu, regs->rip);
5344         kvm_set_rflags(vcpu, regs->rflags);
5345
5346         vcpu->arch.exception.pending = false;
5347
5348         kvm_make_request(KVM_REQ_EVENT, vcpu);
5349
5350         return 0;
5351 }
5352
5353 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
5354 {
5355         struct kvm_segment cs;
5356
5357         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
5358         *db = cs.db;
5359         *l = cs.l;
5360 }
5361 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
5362
5363 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
5364                                   struct kvm_sregs *sregs)
5365 {
5366         struct desc_ptr dt;
5367
5368         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5369         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5370         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5371         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5372         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5373         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5374
5375         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5376         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5377
5378         kvm_x86_ops->get_idt(vcpu, &dt);
5379         sregs->idt.limit = dt.size;
5380         sregs->idt.base = dt.address;
5381         kvm_x86_ops->get_gdt(vcpu, &dt);
5382         sregs->gdt.limit = dt.size;
5383         sregs->gdt.base = dt.address;
5384
5385         sregs->cr0 = kvm_read_cr0(vcpu);
5386         sregs->cr2 = vcpu->arch.cr2;
5387         sregs->cr3 = vcpu->arch.cr3;
5388         sregs->cr4 = kvm_read_cr4(vcpu);
5389         sregs->cr8 = kvm_get_cr8(vcpu);
5390         sregs->efer = vcpu->arch.efer;
5391         sregs->apic_base = kvm_get_apic_base(vcpu);
5392
5393         memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
5394
5395         if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
5396                 set_bit(vcpu->arch.interrupt.nr,
5397                         (unsigned long *)sregs->interrupt_bitmap);
5398
5399         return 0;
5400 }
5401
5402 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
5403                                     struct kvm_mp_state *mp_state)
5404 {
5405         mp_state->mp_state = vcpu->arch.mp_state;
5406         return 0;
5407 }
5408
5409 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
5410                                     struct kvm_mp_state *mp_state)
5411 {
5412         vcpu->arch.mp_state = mp_state->mp_state;
5413         kvm_make_request(KVM_REQ_EVENT, vcpu);
5414         return 0;
5415 }
5416
5417 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
5418                     bool has_error_code, u32 error_code)
5419 {
5420         struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
5421         int ret;
5422
5423         init_emulate_ctxt(vcpu);
5424
5425         ret = emulator_task_switch(&vcpu->arch.emulate_ctxt,
5426                                    tss_selector, reason, has_error_code,
5427                                    error_code);
5428
5429         if (ret)
5430                 return EMULATE_FAIL;
5431
5432         memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
5433         kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
5434         kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
5435         kvm_make_request(KVM_REQ_EVENT, vcpu);
5436         return EMULATE_DONE;
5437 }
5438 EXPORT_SYMBOL_GPL(kvm_task_switch);
5439
5440 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
5441                                   struct kvm_sregs *sregs)
5442 {
5443         int mmu_reset_needed = 0;
5444         int pending_vec, max_bits;
5445         struct desc_ptr dt;
5446
5447         dt.size = sregs->idt.limit;
5448         dt.address = sregs->idt.base;
5449         kvm_x86_ops->set_idt(vcpu, &dt);
5450         dt.size = sregs->gdt.limit;
5451         dt.address = sregs->gdt.base;
5452         kvm_x86_ops->set_gdt(vcpu, &dt);
5453
5454         vcpu->arch.cr2 = sregs->cr2;
5455         mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
5456         vcpu->arch.cr3 = sregs->cr3;
5457
5458         kvm_set_cr8(vcpu, sregs->cr8);
5459
5460         mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
5461         kvm_x86_ops->set_efer(vcpu, sregs->efer);
5462         kvm_set_apic_base(vcpu, sregs->apic_base);
5463
5464         mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
5465         kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
5466         vcpu->arch.cr0 = sregs->cr0;
5467
5468         mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
5469         kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
5470         if (!is_long_mode(vcpu) && is_pae(vcpu)) {
5471                 load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3);
5472                 mmu_reset_needed = 1;
5473         }
5474
5475         if (mmu_reset_needed)
5476                 kvm_mmu_reset_context(vcpu);
5477
5478         max_bits = (sizeof sregs->interrupt_bitmap) << 3;
5479         pending_vec = find_first_bit(
5480                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
5481         if (pending_vec < max_bits) {
5482                 kvm_queue_interrupt(vcpu, pending_vec, false);
5483                 pr_debug("Set back pending irq %d\n", pending_vec);
5484                 if (irqchip_in_kernel(vcpu->kvm))
5485                         kvm_pic_clear_isr_ack(vcpu->kvm);
5486         }
5487
5488         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5489         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5490         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5491         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5492         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5493         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5494
5495         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5496         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5497
5498         update_cr8_intercept(vcpu);
5499
5500         /* Older userspace won't unhalt the vcpu on reset. */
5501         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
5502             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
5503             !is_protmode(vcpu))
5504                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5505
5506         kvm_make_request(KVM_REQ_EVENT, vcpu);
5507
5508         return 0;
5509 }
5510
5511 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
5512                                         struct kvm_guest_debug *dbg)
5513 {
5514         unsigned long rflags;
5515         int i, r;
5516
5517         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
5518                 r = -EBUSY;
5519                 if (vcpu->arch.exception.pending)
5520                         goto out;
5521                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
5522                         kvm_queue_exception(vcpu, DB_VECTOR);
5523                 else
5524                         kvm_queue_exception(vcpu, BP_VECTOR);
5525         }
5526
5527         /*
5528          * Read rflags as long as potentially injected trace flags are still
5529          * filtered out.
5530          */
5531         rflags = kvm_get_rflags(vcpu);
5532
5533         vcpu->guest_debug = dbg->control;
5534         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
5535                 vcpu->guest_debug = 0;
5536
5537         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5538                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
5539                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
5540                 vcpu->arch.switch_db_regs =
5541                         (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
5542         } else {
5543                 for (i = 0; i < KVM_NR_DB_REGS; i++)
5544                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
5545                 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
5546         }
5547
5548         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
5549                 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
5550                         get_segment_base(vcpu, VCPU_SREG_CS);
5551
5552         /*
5553          * Trigger an rflags update that will inject or remove the trace
5554          * flags.
5555          */
5556         kvm_set_rflags(vcpu, rflags);
5557
5558         kvm_x86_ops->set_guest_debug(vcpu, dbg);
5559
5560         r = 0;
5561
5562 out:
5563
5564         return r;
5565 }
5566
5567 /*
5568  * Translate a guest virtual address to a guest physical address.
5569  */
5570 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
5571                                     struct kvm_translation *tr)
5572 {
5573         unsigned long vaddr = tr->linear_address;
5574         gpa_t gpa;
5575         int idx;
5576
5577         idx = srcu_read_lock(&vcpu->kvm->srcu);
5578         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
5579         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5580         tr->physical_address = gpa;
5581         tr->valid = gpa != UNMAPPED_GVA;
5582         tr->writeable = 1;
5583         tr->usermode = 0;
5584
5585         return 0;
5586 }
5587
5588 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5589 {
5590         struct i387_fxsave_struct *fxsave =
5591                         &vcpu->arch.guest_fpu.state->fxsave;
5592
5593         memcpy(fpu->fpr, fxsave->st_space, 128);
5594         fpu->fcw = fxsave->cwd;
5595         fpu->fsw = fxsave->swd;
5596         fpu->ftwx = fxsave->twd;
5597         fpu->last_opcode = fxsave->fop;
5598         fpu->last_ip = fxsave->rip;
5599         fpu->last_dp = fxsave->rdp;
5600         memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
5601
5602         return 0;
5603 }
5604
5605 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
5606 {
5607         struct i387_fxsave_struct *fxsave =
5608                         &vcpu->arch.guest_fpu.state->fxsave;
5609
5610         memcpy(fxsave->st_space, fpu->fpr, 128);
5611         fxsave->cwd = fpu->fcw;
5612         fxsave->swd = fpu->fsw;
5613         fxsave->twd = fpu->ftwx;
5614         fxsave->fop = fpu->last_opcode;
5615         fxsave->rip = fpu->last_ip;
5616         fxsave->rdp = fpu->last_dp;
5617         memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
5618
5619         return 0;
5620 }
5621
5622 int fx_init(struct kvm_vcpu *vcpu)
5623 {
5624         int err;
5625
5626         err = fpu_alloc(&vcpu->arch.guest_fpu);
5627         if (err)
5628                 return err;
5629
5630         fpu_finit(&vcpu->arch.guest_fpu);
5631
5632         /*
5633          * Ensure guest xcr0 is valid for loading
5634          */
5635         vcpu->arch.xcr0 = XSTATE_FP;
5636
5637         vcpu->arch.cr0 |= X86_CR0_ET;
5638
5639         return 0;
5640 }
5641 EXPORT_SYMBOL_GPL(fx_init);
5642
5643 static void fx_free(struct kvm_vcpu *vcpu)
5644 {
5645         fpu_free(&vcpu->arch.guest_fpu);
5646 }
5647
5648 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
5649 {
5650         if (vcpu->guest_fpu_loaded)
5651                 return;
5652
5653         /*
5654          * Restore all possible states in the guest,
5655          * and assume host would use all available bits.
5656          * Guest xcr0 would be loaded later.
5657          */
5658         kvm_put_guest_xcr0(vcpu);
5659         vcpu->guest_fpu_loaded = 1;
5660         unlazy_fpu(current);
5661         fpu_restore_checking(&vcpu->arch.guest_fpu);
5662         trace_kvm_fpu(1);
5663 }
5664
5665 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
5666 {
5667         kvm_put_guest_xcr0(vcpu);
5668
5669         if (!vcpu->guest_fpu_loaded)
5670                 return;
5671
5672         vcpu->guest_fpu_loaded = 0;
5673         fpu_save_init(&vcpu->arch.guest_fpu);
5674         ++vcpu->stat.fpu_reload;
5675         kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
5676         trace_kvm_fpu(0);
5677 }
5678
5679 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
5680 {
5681         if (vcpu->arch.time_page) {
5682                 kvm_release_page_dirty(vcpu->arch.time_page);
5683                 vcpu->arch.time_page = NULL;
5684         }
5685
5686         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
5687         fx_free(vcpu);
5688         kvm_x86_ops->vcpu_free(vcpu);
5689 }
5690
5691 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
5692                                                 unsigned int id)
5693 {
5694         if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
5695                 printk_once(KERN_WARNING
5696                 "kvm: SMP vm created on host with unstable TSC; "
5697                 "guest TSC will not be reliable\n");
5698         return kvm_x86_ops->vcpu_create(kvm, id);
5699 }
5700
5701 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
5702 {
5703         int r;
5704
5705         vcpu->arch.mtrr_state.have_fixed = 1;
5706         vcpu_load(vcpu);
5707         r = kvm_arch_vcpu_reset(vcpu);
5708         if (r == 0)
5709                 r = kvm_mmu_setup(vcpu);
5710         vcpu_put(vcpu);
5711         if (r < 0)
5712                 goto free_vcpu;
5713
5714         return 0;
5715 free_vcpu:
5716         kvm_x86_ops->vcpu_free(vcpu);
5717         return r;
5718 }
5719
5720 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
5721 {
5722         vcpu_load(vcpu);
5723         kvm_mmu_unload(vcpu);
5724         vcpu_put(vcpu);
5725
5726         fx_free(vcpu);
5727         kvm_x86_ops->vcpu_free(vcpu);
5728 }
5729
5730 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
5731 {
5732         vcpu->arch.nmi_pending = false;
5733         vcpu->arch.nmi_injected = false;
5734
5735         vcpu->arch.switch_db_regs = 0;
5736         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
5737         vcpu->arch.dr6 = DR6_FIXED_1;
5738         vcpu->arch.dr7 = DR7_FIXED_1;
5739
5740         kvm_make_request(KVM_REQ_EVENT, vcpu);
5741
5742         return kvm_x86_ops->vcpu_reset(vcpu);
5743 }
5744
5745 int kvm_arch_hardware_enable(void *garbage)
5746 {
5747         struct kvm *kvm;
5748         struct kvm_vcpu *vcpu;
5749         int i;
5750
5751         kvm_shared_msr_cpu_online();
5752         list_for_each_entry(kvm, &vm_list, vm_list)
5753                 kvm_for_each_vcpu(i, vcpu, kvm)
5754                         if (vcpu->cpu == smp_processor_id())
5755                                 kvm_request_guest_time_update(vcpu);
5756         return kvm_x86_ops->hardware_enable(garbage);
5757 }
5758
5759 void kvm_arch_hardware_disable(void *garbage)
5760 {
5761         kvm_x86_ops->hardware_disable(garbage);
5762         drop_user_return_notifiers(garbage);
5763 }
5764
5765 int kvm_arch_hardware_setup(void)
5766 {
5767         return kvm_x86_ops->hardware_setup();
5768 }
5769
5770 void kvm_arch_hardware_unsetup(void)
5771 {
5772         kvm_x86_ops->hardware_unsetup();
5773 }
5774
5775 void kvm_arch_check_processor_compat(void *rtn)
5776 {
5777         kvm_x86_ops->check_processor_compatibility(rtn);
5778 }
5779
5780 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
5781 {
5782         struct page *page;
5783         struct kvm *kvm;
5784         int r;
5785
5786         BUG_ON(vcpu->kvm == NULL);
5787         kvm = vcpu->kvm;
5788
5789         vcpu->arch.emulate_ctxt.ops = &emulate_ops;
5790         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
5791         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
5792         vcpu->arch.mmu.translate_gpa = translate_gpa;
5793         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5794         if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
5795                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5796         else
5797                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
5798
5799         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
5800         if (!page) {
5801                 r = -ENOMEM;
5802                 goto fail;
5803         }
5804         vcpu->arch.pio_data = page_address(page);
5805
5806         r = kvm_mmu_create(vcpu);
5807         if (r < 0)
5808                 goto fail_free_pio_data;
5809
5810         if (irqchip_in_kernel(kvm)) {
5811                 r = kvm_create_lapic(vcpu);
5812                 if (r < 0)
5813                         goto fail_mmu_destroy;
5814         }
5815
5816         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
5817                                        GFP_KERNEL);
5818         if (!vcpu->arch.mce_banks) {
5819                 r = -ENOMEM;
5820                 goto fail_free_lapic;
5821         }
5822         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
5823
5824         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
5825                 goto fail_free_mce_banks;
5826
5827         return 0;
5828 fail_free_mce_banks:
5829         kfree(vcpu->arch.mce_banks);
5830 fail_free_lapic:
5831         kvm_free_lapic(vcpu);
5832 fail_mmu_destroy:
5833         kvm_mmu_destroy(vcpu);
5834 fail_free_pio_data:
5835         free_page((unsigned long)vcpu->arch.pio_data);
5836 fail:
5837         return r;
5838 }
5839
5840 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
5841 {
5842         int idx;
5843
5844         kfree(vcpu->arch.mce_banks);
5845         kvm_free_lapic(vcpu);
5846         idx = srcu_read_lock(&vcpu->kvm->srcu);
5847         kvm_mmu_destroy(vcpu);
5848         srcu_read_unlock(&vcpu->kvm->srcu, idx);
5849         free_page((unsigned long)vcpu->arch.pio_data);
5850 }
5851
5852 struct  kvm *kvm_arch_create_vm(void)
5853 {
5854         struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
5855
5856         if (!kvm)
5857                 return ERR_PTR(-ENOMEM);
5858
5859         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
5860         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
5861
5862         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
5863         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
5864
5865         spin_lock_init(&kvm->arch.tsc_write_lock);
5866
5867         return kvm;
5868 }
5869
5870 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
5871 {
5872         vcpu_load(vcpu);
5873         kvm_mmu_unload(vcpu);
5874         vcpu_put(vcpu);
5875 }
5876
5877 static void kvm_free_vcpus(struct kvm *kvm)
5878 {
5879         unsigned int i;
5880         struct kvm_vcpu *vcpu;
5881
5882         /*
5883          * Unpin any mmu pages first.
5884          */
5885         kvm_for_each_vcpu(i, vcpu, kvm)
5886                 kvm_unload_vcpu_mmu(vcpu);
5887         kvm_for_each_vcpu(i, vcpu, kvm)
5888                 kvm_arch_vcpu_free(vcpu);
5889
5890         mutex_lock(&kvm->lock);
5891         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
5892                 kvm->vcpus[i] = NULL;
5893
5894         atomic_set(&kvm->online_vcpus, 0);
5895         mutex_unlock(&kvm->lock);
5896 }
5897
5898 void kvm_arch_sync_events(struct kvm *kvm)
5899 {
5900         kvm_free_all_assigned_devices(kvm);
5901         kvm_free_pit(kvm);
5902 }
5903
5904 void kvm_arch_destroy_vm(struct kvm *kvm)
5905 {
5906         kvm_iommu_unmap_guest(kvm);
5907         kfree(kvm->arch.vpic);
5908         kfree(kvm->arch.vioapic);
5909         kvm_free_vcpus(kvm);
5910         kvm_free_physmem(kvm);
5911         if (kvm->arch.apic_access_page)
5912                 put_page(kvm->arch.apic_access_page);
5913         if (kvm->arch.ept_identity_pagetable)
5914                 put_page(kvm->arch.ept_identity_pagetable);
5915         cleanup_srcu_struct(&kvm->srcu);
5916         kfree(kvm);
5917 }
5918
5919 int kvm_arch_prepare_memory_region(struct kvm *kvm,
5920                                 struct kvm_memory_slot *memslot,
5921                                 struct kvm_memory_slot old,
5922                                 struct kvm_userspace_memory_region *mem,
5923                                 int user_alloc)
5924 {
5925         int npages = memslot->npages;
5926         int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
5927
5928         /* Prevent internal slot pages from being moved by fork()/COW. */
5929         if (memslot->id >= KVM_MEMORY_SLOTS)
5930                 map_flags = MAP_SHARED | MAP_ANONYMOUS;
5931
5932         /*To keep backward compatibility with older userspace,
5933          *x86 needs to hanlde !user_alloc case.
5934          */
5935         if (!user_alloc) {
5936                 if (npages && !old.rmap) {
5937                         unsigned long userspace_addr;
5938
5939                         down_write(&current->mm->mmap_sem);
5940                         userspace_addr = do_mmap(NULL, 0,
5941                                                  npages * PAGE_SIZE,
5942                                                  PROT_READ | PROT_WRITE,
5943                                                  map_flags,
5944                                                  0);
5945                         up_write(&current->mm->mmap_sem);
5946
5947                         if (IS_ERR((void *)userspace_addr))
5948                                 return PTR_ERR((void *)userspace_addr);
5949
5950                         memslot->userspace_addr = userspace_addr;
5951                 }
5952         }
5953
5954
5955         return 0;
5956 }
5957
5958 void kvm_arch_commit_memory_region(struct kvm *kvm,
5959                                 struct kvm_userspace_memory_region *mem,
5960                                 struct kvm_memory_slot old,
5961                                 int user_alloc)
5962 {
5963
5964         int npages = mem->memory_size >> PAGE_SHIFT;
5965
5966         if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
5967                 int ret;
5968
5969                 down_write(&current->mm->mmap_sem);
5970                 ret = do_munmap(current->mm, old.userspace_addr,
5971                                 old.npages * PAGE_SIZE);
5972                 up_write(&current->mm->mmap_sem);
5973                 if (ret < 0)
5974                         printk(KERN_WARNING
5975                                "kvm_vm_ioctl_set_memory_region: "
5976                                "failed to munmap memory\n");
5977         }
5978
5979         spin_lock(&kvm->mmu_lock);
5980         if (!kvm->arch.n_requested_mmu_pages) {
5981                 unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
5982                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
5983         }
5984
5985         kvm_mmu_slot_remove_write_access(kvm, mem->slot);
5986         spin_unlock(&kvm->mmu_lock);
5987 }
5988
5989 void kvm_arch_flush_shadow(struct kvm *kvm)
5990 {
5991         kvm_mmu_zap_all(kvm);
5992         kvm_reload_remote_mmus(kvm);
5993 }
5994
5995 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
5996 {
5997         return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
5998                 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
5999                 || vcpu->arch.nmi_pending ||
6000                 (kvm_arch_interrupt_allowed(vcpu) &&
6001                  kvm_cpu_has_interrupt(vcpu));
6002 }
6003
6004 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
6005 {
6006         int me;
6007         int cpu = vcpu->cpu;
6008
6009         if (waitqueue_active(&vcpu->wq)) {
6010                 wake_up_interruptible(&vcpu->wq);
6011                 ++vcpu->stat.halt_wakeup;
6012         }
6013
6014         me = get_cpu();
6015         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
6016                 if (atomic_xchg(&vcpu->guest_mode, 0))
6017                         smp_send_reschedule(cpu);
6018         put_cpu();
6019 }
6020
6021 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
6022 {
6023         return kvm_x86_ops->interrupt_allowed(vcpu);
6024 }
6025
6026 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
6027 {
6028         unsigned long current_rip = kvm_rip_read(vcpu) +
6029                 get_segment_base(vcpu, VCPU_SREG_CS);
6030
6031         return current_rip == linear_rip;
6032 }
6033 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
6034
6035 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
6036 {
6037         unsigned long rflags;
6038
6039         rflags = kvm_x86_ops->get_rflags(vcpu);
6040         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6041                 rflags &= ~X86_EFLAGS_TF;
6042         return rflags;
6043 }
6044 EXPORT_SYMBOL_GPL(kvm_get_rflags);
6045
6046 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
6047 {
6048         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
6049             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
6050                 rflags |= X86_EFLAGS_TF;
6051         kvm_x86_ops->set_rflags(vcpu, rflags);
6052         kvm_make_request(KVM_REQ_EVENT, vcpu);
6053 }
6054 EXPORT_SYMBOL_GPL(kvm_set_rflags);
6055
6056 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
6057 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
6058 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
6059 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
6060 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
6061 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
6062 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
6063 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
6064 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
6065 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
6066 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
6067 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);