92612fb162dbb304343ea793702413a7481d4f30
[pandora-kernel.git] / arch / x86 / kvm / vmx.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include "irq.h"
20 #include "mmu.h"
21
22 #include <linux/kvm_host.h>
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/mm.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/moduleparam.h>
29 #include <linux/ftrace_event.h>
30 #include <linux/slab.h>
31 #include <linux/tboot.h>
32 #include "kvm_cache_regs.h"
33 #include "x86.h"
34
35 #include <asm/io.h>
36 #include <asm/desc.h>
37 #include <asm/vmx.h>
38 #include <asm/virtext.h>
39 #include <asm/mce.h>
40 #include <asm/i387.h>
41 #include <asm/xcr.h>
42
43 #include "trace.h"
44
45 #define __ex(x) __kvm_handle_fault_on_reboot(x)
46
47 MODULE_AUTHOR("Qumranet");
48 MODULE_LICENSE("GPL");
49
50 static int __read_mostly bypass_guest_pf = 1;
51 module_param(bypass_guest_pf, bool, S_IRUGO);
52
53 static int __read_mostly enable_vpid = 1;
54 module_param_named(vpid, enable_vpid, bool, 0444);
55
56 static int __read_mostly flexpriority_enabled = 1;
57 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
58
59 static int __read_mostly enable_ept = 1;
60 module_param_named(ept, enable_ept, bool, S_IRUGO);
61
62 static int __read_mostly enable_unrestricted_guest = 1;
63 module_param_named(unrestricted_guest,
64                         enable_unrestricted_guest, bool, S_IRUGO);
65
66 static int __read_mostly emulate_invalid_guest_state = 0;
67 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
68
69 static int __read_mostly vmm_exclusive = 1;
70 module_param(vmm_exclusive, bool, S_IRUGO);
71
72 #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST                           \
73         (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
74 #define KVM_GUEST_CR0_MASK                                              \
75         (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
76 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST                         \
77         (X86_CR0_WP | X86_CR0_NE)
78 #define KVM_VM_CR0_ALWAYS_ON                                            \
79         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
80 #define KVM_CR4_GUEST_OWNED_BITS                                      \
81         (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
82          | X86_CR4_OSXMMEXCPT)
83
84 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
85 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
86
87 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
88
89 /*
90  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
91  * ple_gap:    upper bound on the amount of time between two successive
92  *             executions of PAUSE in a loop. Also indicate if ple enabled.
93  *             According to test, this time is usually small than 41 cycles.
94  * ple_window: upper bound on the amount of time a guest is allowed to execute
95  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
96  *             less than 2^12 cycles
97  * Time is measured based on a counter that runs at the same rate as the TSC,
98  * refer SDM volume 3b section 21.6.13 & 22.1.3.
99  */
100 #define KVM_VMX_DEFAULT_PLE_GAP    41
101 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
102 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
103 module_param(ple_gap, int, S_IRUGO);
104
105 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
106 module_param(ple_window, int, S_IRUGO);
107
108 #define NR_AUTOLOAD_MSRS 1
109
110 struct vmcs {
111         u32 revision_id;
112         u32 abort;
113         char data[0];
114 };
115
116 struct shared_msr_entry {
117         unsigned index;
118         u64 data;
119         u64 mask;
120 };
121
122 struct vcpu_vmx {
123         struct kvm_vcpu       vcpu;
124         struct list_head      local_vcpus_link;
125         unsigned long         host_rsp;
126         int                   launched;
127         u8                    fail;
128         u32                   exit_intr_info;
129         u32                   idt_vectoring_info;
130         struct shared_msr_entry *guest_msrs;
131         int                   nmsrs;
132         int                   save_nmsrs;
133 #ifdef CONFIG_X86_64
134         u64                   msr_host_kernel_gs_base;
135         u64                   msr_guest_kernel_gs_base;
136 #endif
137         struct vmcs          *vmcs;
138         struct msr_autoload {
139                 unsigned nr;
140                 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
141                 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
142         } msr_autoload;
143         struct {
144                 int           loaded;
145                 u16           fs_sel, gs_sel, ldt_sel;
146                 int           gs_ldt_reload_needed;
147                 int           fs_reload_needed;
148         } host_state;
149         struct {
150                 int vm86_active;
151                 ulong save_rflags;
152                 struct kvm_save_segment {
153                         u16 selector;
154                         unsigned long base;
155                         u32 limit;
156                         u32 ar;
157                 } tr, es, ds, fs, gs;
158         } rmode;
159         int vpid;
160         bool emulation_required;
161
162         /* Support for vnmi-less CPUs */
163         int soft_vnmi_blocked;
164         ktime_t entry_time;
165         s64 vnmi_blocked_time;
166         u32 exit_reason;
167
168         bool rdtscp_enabled;
169 };
170
171 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
172 {
173         return container_of(vcpu, struct vcpu_vmx, vcpu);
174 }
175
176 static int init_rmode(struct kvm *kvm);
177 static u64 construct_eptp(unsigned long root_hpa);
178 static void kvm_cpu_vmxon(u64 addr);
179 static void kvm_cpu_vmxoff(void);
180
181 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
182 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
183 static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
184 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
185
186 static unsigned long *vmx_io_bitmap_a;
187 static unsigned long *vmx_io_bitmap_b;
188 static unsigned long *vmx_msr_bitmap_legacy;
189 static unsigned long *vmx_msr_bitmap_longmode;
190
191 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
192 static DEFINE_SPINLOCK(vmx_vpid_lock);
193
194 static struct vmcs_config {
195         int size;
196         int order;
197         u32 revision_id;
198         u32 pin_based_exec_ctrl;
199         u32 cpu_based_exec_ctrl;
200         u32 cpu_based_2nd_exec_ctrl;
201         u32 vmexit_ctrl;
202         u32 vmentry_ctrl;
203 } vmcs_config;
204
205 static struct vmx_capability {
206         u32 ept;
207         u32 vpid;
208 } vmx_capability;
209
210 #define VMX_SEGMENT_FIELD(seg)                                  \
211         [VCPU_SREG_##seg] = {                                   \
212                 .selector = GUEST_##seg##_SELECTOR,             \
213                 .base = GUEST_##seg##_BASE,                     \
214                 .limit = GUEST_##seg##_LIMIT,                   \
215                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
216         }
217
218 static struct kvm_vmx_segment_field {
219         unsigned selector;
220         unsigned base;
221         unsigned limit;
222         unsigned ar_bytes;
223 } kvm_vmx_segment_fields[] = {
224         VMX_SEGMENT_FIELD(CS),
225         VMX_SEGMENT_FIELD(DS),
226         VMX_SEGMENT_FIELD(ES),
227         VMX_SEGMENT_FIELD(FS),
228         VMX_SEGMENT_FIELD(GS),
229         VMX_SEGMENT_FIELD(SS),
230         VMX_SEGMENT_FIELD(TR),
231         VMX_SEGMENT_FIELD(LDTR),
232 };
233
234 static u64 host_efer;
235
236 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
237
238 /*
239  * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
240  * away by decrementing the array size.
241  */
242 static const u32 vmx_msr_index[] = {
243 #ifdef CONFIG_X86_64
244         MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
245 #endif
246         MSR_EFER, MSR_TSC_AUX, MSR_STAR,
247 };
248 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
249
250 static inline bool is_page_fault(u32 intr_info)
251 {
252         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
253                              INTR_INFO_VALID_MASK)) ==
254                 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
255 }
256
257 static inline bool is_no_device(u32 intr_info)
258 {
259         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
260                              INTR_INFO_VALID_MASK)) ==
261                 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
262 }
263
264 static inline bool is_invalid_opcode(u32 intr_info)
265 {
266         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
267                              INTR_INFO_VALID_MASK)) ==
268                 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
269 }
270
271 static inline bool is_external_interrupt(u32 intr_info)
272 {
273         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
274                 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
275 }
276
277 static inline bool is_machine_check(u32 intr_info)
278 {
279         return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
280                              INTR_INFO_VALID_MASK)) ==
281                 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
282 }
283
284 static inline bool cpu_has_vmx_msr_bitmap(void)
285 {
286         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
287 }
288
289 static inline bool cpu_has_vmx_tpr_shadow(void)
290 {
291         return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
292 }
293
294 static inline bool vm_need_tpr_shadow(struct kvm *kvm)
295 {
296         return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
297 }
298
299 static inline bool cpu_has_secondary_exec_ctrls(void)
300 {
301         return vmcs_config.cpu_based_exec_ctrl &
302                 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
303 }
304
305 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
306 {
307         return vmcs_config.cpu_based_2nd_exec_ctrl &
308                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
309 }
310
311 static inline bool cpu_has_vmx_flexpriority(void)
312 {
313         return cpu_has_vmx_tpr_shadow() &&
314                 cpu_has_vmx_virtualize_apic_accesses();
315 }
316
317 static inline bool cpu_has_vmx_ept_execute_only(void)
318 {
319         return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
320 }
321
322 static inline bool cpu_has_vmx_eptp_uncacheable(void)
323 {
324         return vmx_capability.ept & VMX_EPTP_UC_BIT;
325 }
326
327 static inline bool cpu_has_vmx_eptp_writeback(void)
328 {
329         return vmx_capability.ept & VMX_EPTP_WB_BIT;
330 }
331
332 static inline bool cpu_has_vmx_ept_2m_page(void)
333 {
334         return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
335 }
336
337 static inline bool cpu_has_vmx_ept_1g_page(void)
338 {
339         return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
340 }
341
342 static inline bool cpu_has_vmx_ept_4levels(void)
343 {
344         return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
345 }
346
347 static inline bool cpu_has_vmx_invept_individual_addr(void)
348 {
349         return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
350 }
351
352 static inline bool cpu_has_vmx_invept_context(void)
353 {
354         return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
355 }
356
357 static inline bool cpu_has_vmx_invept_global(void)
358 {
359         return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
360 }
361
362 static inline bool cpu_has_vmx_invvpid_single(void)
363 {
364         return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
365 }
366
367 static inline bool cpu_has_vmx_invvpid_global(void)
368 {
369         return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
370 }
371
372 static inline bool cpu_has_vmx_ept(void)
373 {
374         return vmcs_config.cpu_based_2nd_exec_ctrl &
375                 SECONDARY_EXEC_ENABLE_EPT;
376 }
377
378 static inline bool cpu_has_vmx_unrestricted_guest(void)
379 {
380         return vmcs_config.cpu_based_2nd_exec_ctrl &
381                 SECONDARY_EXEC_UNRESTRICTED_GUEST;
382 }
383
384 static inline bool cpu_has_vmx_ple(void)
385 {
386         return vmcs_config.cpu_based_2nd_exec_ctrl &
387                 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
388 }
389
390 static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
391 {
392         return flexpriority_enabled && irqchip_in_kernel(kvm);
393 }
394
395 static inline bool cpu_has_vmx_vpid(void)
396 {
397         return vmcs_config.cpu_based_2nd_exec_ctrl &
398                 SECONDARY_EXEC_ENABLE_VPID;
399 }
400
401 static inline bool cpu_has_vmx_rdtscp(void)
402 {
403         return vmcs_config.cpu_based_2nd_exec_ctrl &
404                 SECONDARY_EXEC_RDTSCP;
405 }
406
407 static inline bool cpu_has_virtual_nmis(void)
408 {
409         return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
410 }
411
412 static inline bool cpu_has_vmx_wbinvd_exit(void)
413 {
414         return vmcs_config.cpu_based_2nd_exec_ctrl &
415                 SECONDARY_EXEC_WBINVD_EXITING;
416 }
417
418 static inline bool report_flexpriority(void)
419 {
420         return flexpriority_enabled;
421 }
422
423 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
424 {
425         int i;
426
427         for (i = 0; i < vmx->nmsrs; ++i)
428                 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
429                         return i;
430         return -1;
431 }
432
433 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
434 {
435     struct {
436         u64 vpid : 16;
437         u64 rsvd : 48;
438         u64 gva;
439     } operand = { vpid, 0, gva };
440
441     asm volatile (__ex(ASM_VMX_INVVPID)
442                   /* CF==1 or ZF==1 --> rc = -1 */
443                   "; ja 1f ; ud2 ; 1:"
444                   : : "a"(&operand), "c"(ext) : "cc", "memory");
445 }
446
447 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
448 {
449         struct {
450                 u64 eptp, gpa;
451         } operand = {eptp, gpa};
452
453         asm volatile (__ex(ASM_VMX_INVEPT)
454                         /* CF==1 or ZF==1 --> rc = -1 */
455                         "; ja 1f ; ud2 ; 1:\n"
456                         : : "a" (&operand), "c" (ext) : "cc", "memory");
457 }
458
459 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
460 {
461         int i;
462
463         i = __find_msr_index(vmx, msr);
464         if (i >= 0)
465                 return &vmx->guest_msrs[i];
466         return NULL;
467 }
468
469 static void vmcs_clear(struct vmcs *vmcs)
470 {
471         u64 phys_addr = __pa(vmcs);
472         u8 error;
473
474         asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
475                       : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
476                       : "cc", "memory");
477         if (error)
478                 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
479                        vmcs, phys_addr);
480 }
481
482 static void vmcs_load(struct vmcs *vmcs)
483 {
484         u64 phys_addr = __pa(vmcs);
485         u8 error;
486
487         asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
488                         : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
489                         : "cc", "memory");
490         if (error)
491                 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
492                        vmcs, phys_addr);
493 }
494
495 static void __vcpu_clear(void *arg)
496 {
497         struct vcpu_vmx *vmx = arg;
498         int cpu = raw_smp_processor_id();
499
500         if (vmx->vcpu.cpu == cpu)
501                 vmcs_clear(vmx->vmcs);
502         if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
503                 per_cpu(current_vmcs, cpu) = NULL;
504         list_del(&vmx->local_vcpus_link);
505         vmx->vcpu.cpu = -1;
506         vmx->launched = 0;
507 }
508
509 static void vcpu_clear(struct vcpu_vmx *vmx)
510 {
511         if (vmx->vcpu.cpu == -1)
512                 return;
513         smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
514 }
515
516 static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
517 {
518         if (vmx->vpid == 0)
519                 return;
520
521         if (cpu_has_vmx_invvpid_single())
522                 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
523 }
524
525 static inline void vpid_sync_vcpu_global(void)
526 {
527         if (cpu_has_vmx_invvpid_global())
528                 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
529 }
530
531 static inline void vpid_sync_context(struct vcpu_vmx *vmx)
532 {
533         if (cpu_has_vmx_invvpid_single())
534                 vpid_sync_vcpu_single(vmx);
535         else
536                 vpid_sync_vcpu_global();
537 }
538
539 static inline void ept_sync_global(void)
540 {
541         if (cpu_has_vmx_invept_global())
542                 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
543 }
544
545 static inline void ept_sync_context(u64 eptp)
546 {
547         if (enable_ept) {
548                 if (cpu_has_vmx_invept_context())
549                         __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
550                 else
551                         ept_sync_global();
552         }
553 }
554
555 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
556 {
557         if (enable_ept) {
558                 if (cpu_has_vmx_invept_individual_addr())
559                         __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
560                                         eptp, gpa);
561                 else
562                         ept_sync_context(eptp);
563         }
564 }
565
566 static unsigned long vmcs_readl(unsigned long field)
567 {
568         unsigned long value;
569
570         asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
571                       : "=a"(value) : "d"(field) : "cc");
572         return value;
573 }
574
575 static u16 vmcs_read16(unsigned long field)
576 {
577         return vmcs_readl(field);
578 }
579
580 static u32 vmcs_read32(unsigned long field)
581 {
582         return vmcs_readl(field);
583 }
584
585 static u64 vmcs_read64(unsigned long field)
586 {
587 #ifdef CONFIG_X86_64
588         return vmcs_readl(field);
589 #else
590         return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
591 #endif
592 }
593
594 static noinline void vmwrite_error(unsigned long field, unsigned long value)
595 {
596         printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
597                field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
598         dump_stack();
599 }
600
601 static void vmcs_writel(unsigned long field, unsigned long value)
602 {
603         u8 error;
604
605         asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
606                        : "=q"(error) : "a"(value), "d"(field) : "cc");
607         if (unlikely(error))
608                 vmwrite_error(field, value);
609 }
610
611 static void vmcs_write16(unsigned long field, u16 value)
612 {
613         vmcs_writel(field, value);
614 }
615
616 static void vmcs_write32(unsigned long field, u32 value)
617 {
618         vmcs_writel(field, value);
619 }
620
621 static void vmcs_write64(unsigned long field, u64 value)
622 {
623         vmcs_writel(field, value);
624 #ifndef CONFIG_X86_64
625         asm volatile ("");
626         vmcs_writel(field+1, value >> 32);
627 #endif
628 }
629
630 static void vmcs_clear_bits(unsigned long field, u32 mask)
631 {
632         vmcs_writel(field, vmcs_readl(field) & ~mask);
633 }
634
635 static void vmcs_set_bits(unsigned long field, u32 mask)
636 {
637         vmcs_writel(field, vmcs_readl(field) | mask);
638 }
639
640 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
641 {
642         u32 eb;
643
644         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
645              (1u << NM_VECTOR) | (1u << DB_VECTOR);
646         if ((vcpu->guest_debug &
647              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
648             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
649                 eb |= 1u << BP_VECTOR;
650         if (to_vmx(vcpu)->rmode.vm86_active)
651                 eb = ~0;
652         if (enable_ept)
653                 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
654         if (vcpu->fpu_active)
655                 eb &= ~(1u << NM_VECTOR);
656         vmcs_write32(EXCEPTION_BITMAP, eb);
657 }
658
659 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
660 {
661         unsigned i;
662         struct msr_autoload *m = &vmx->msr_autoload;
663
664         for (i = 0; i < m->nr; ++i)
665                 if (m->guest[i].index == msr)
666                         break;
667
668         if (i == m->nr)
669                 return;
670         --m->nr;
671         m->guest[i] = m->guest[m->nr];
672         m->host[i] = m->host[m->nr];
673         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
674         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
675 }
676
677 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
678                                   u64 guest_val, u64 host_val)
679 {
680         unsigned i;
681         struct msr_autoload *m = &vmx->msr_autoload;
682
683         for (i = 0; i < m->nr; ++i)
684                 if (m->guest[i].index == msr)
685                         break;
686
687         if (i == m->nr) {
688                 ++m->nr;
689                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
690                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
691         }
692
693         m->guest[i].index = msr;
694         m->guest[i].value = guest_val;
695         m->host[i].index = msr;
696         m->host[i].value = host_val;
697 }
698
699 static void reload_tss(void)
700 {
701         /*
702          * VT restores TR but not its size.  Useless.
703          */
704         struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
705         struct desc_struct *descs;
706
707         descs = (void *)gdt->address;
708         descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
709         load_TR_desc();
710 }
711
712 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
713 {
714         u64 guest_efer;
715         u64 ignore_bits;
716
717         guest_efer = vmx->vcpu.arch.efer;
718
719         /*
720          * NX is emulated; LMA and LME handled by hardware; SCE meaninless
721          * outside long mode
722          */
723         ignore_bits = EFER_NX | EFER_SCE;
724 #ifdef CONFIG_X86_64
725         ignore_bits |= EFER_LMA | EFER_LME;
726         /* SCE is meaningful only in long mode on Intel */
727         if (guest_efer & EFER_LMA)
728                 ignore_bits &= ~(u64)EFER_SCE;
729 #endif
730         guest_efer &= ~ignore_bits;
731         guest_efer |= host_efer & ignore_bits;
732         vmx->guest_msrs[efer_offset].data = guest_efer;
733         vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
734
735         clear_atomic_switch_msr(vmx, MSR_EFER);
736         /* On ept, can't emulate nx, and must switch nx atomically */
737         if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
738                 guest_efer = vmx->vcpu.arch.efer;
739                 if (!(guest_efer & EFER_LMA))
740                         guest_efer &= ~EFER_LME;
741                 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
742                 return false;
743         }
744
745         return true;
746 }
747
748 static unsigned long segment_base(u16 selector)
749 {
750         struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
751         struct desc_struct *d;
752         unsigned long table_base;
753         unsigned long v;
754
755         if (!(selector & ~3))
756                 return 0;
757
758         table_base = gdt->address;
759
760         if (selector & 4) {           /* from ldt */
761                 u16 ldt_selector = kvm_read_ldt();
762
763                 if (!(ldt_selector & ~3))
764                         return 0;
765
766                 table_base = segment_base(ldt_selector);
767         }
768         d = (struct desc_struct *)(table_base + (selector & ~7));
769         v = get_desc_base(d);
770 #ifdef CONFIG_X86_64
771        if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
772                v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
773 #endif
774         return v;
775 }
776
777 static inline unsigned long kvm_read_tr_base(void)
778 {
779         u16 tr;
780         asm("str %0" : "=g"(tr));
781         return segment_base(tr);
782 }
783
784 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
785 {
786         struct vcpu_vmx *vmx = to_vmx(vcpu);
787         int i;
788
789         if (vmx->host_state.loaded)
790                 return;
791
792         vmx->host_state.loaded = 1;
793         /*
794          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
795          * allow segment selectors with cpl > 0 or ti == 1.
796          */
797         vmx->host_state.ldt_sel = kvm_read_ldt();
798         vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
799         savesegment(fs, vmx->host_state.fs_sel);
800         if (!(vmx->host_state.fs_sel & 7)) {
801                 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
802                 vmx->host_state.fs_reload_needed = 0;
803         } else {
804                 vmcs_write16(HOST_FS_SELECTOR, 0);
805                 vmx->host_state.fs_reload_needed = 1;
806         }
807         savesegment(gs, vmx->host_state.gs_sel);
808         if (!(vmx->host_state.gs_sel & 7))
809                 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
810         else {
811                 vmcs_write16(HOST_GS_SELECTOR, 0);
812                 vmx->host_state.gs_ldt_reload_needed = 1;
813         }
814
815 #ifdef CONFIG_X86_64
816         vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
817         vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
818 #else
819         vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
820         vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
821 #endif
822
823 #ifdef CONFIG_X86_64
824         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
825         if (is_long_mode(&vmx->vcpu))
826                 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
827 #endif
828         for (i = 0; i < vmx->save_nmsrs; ++i)
829                 kvm_set_shared_msr(vmx->guest_msrs[i].index,
830                                    vmx->guest_msrs[i].data,
831                                    vmx->guest_msrs[i].mask);
832 }
833
834 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
835 {
836         if (!vmx->host_state.loaded)
837                 return;
838
839         ++vmx->vcpu.stat.host_state_reload;
840         vmx->host_state.loaded = 0;
841 #ifdef CONFIG_X86_64
842         if (is_long_mode(&vmx->vcpu))
843                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
844 #endif
845         if (vmx->host_state.gs_ldt_reload_needed) {
846                 kvm_load_ldt(vmx->host_state.ldt_sel);
847 #ifdef CONFIG_X86_64
848                 load_gs_index(vmx->host_state.gs_sel);
849 #else
850                 loadsegment(gs, vmx->host_state.gs_sel);
851 #endif
852         }
853         if (vmx->host_state.fs_reload_needed)
854                 loadsegment(fs, vmx->host_state.fs_sel);
855         reload_tss();
856 #ifdef CONFIG_X86_64
857         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
858 #endif
859         if (current_thread_info()->status & TS_USEDFPU)
860                 clts();
861         load_gdt(&__get_cpu_var(host_gdt));
862 }
863
864 static void vmx_load_host_state(struct vcpu_vmx *vmx)
865 {
866         preempt_disable();
867         __vmx_load_host_state(vmx);
868         preempt_enable();
869 }
870
871 /*
872  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
873  * vcpu mutex is already taken.
874  */
875 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
876 {
877         struct vcpu_vmx *vmx = to_vmx(vcpu);
878         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
879
880         if (!vmm_exclusive)
881                 kvm_cpu_vmxon(phys_addr);
882         else if (vcpu->cpu != cpu)
883                 vcpu_clear(vmx);
884
885         if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
886                 per_cpu(current_vmcs, cpu) = vmx->vmcs;
887                 vmcs_load(vmx->vmcs);
888         }
889
890         if (vcpu->cpu != cpu) {
891                 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
892                 unsigned long sysenter_esp;
893
894                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
895                 local_irq_disable();
896                 list_add(&vmx->local_vcpus_link,
897                          &per_cpu(vcpus_on_cpu, cpu));
898                 local_irq_enable();
899
900                 /*
901                  * Linux uses per-cpu TSS and GDT, so set these when switching
902                  * processors.
903                  */
904                 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
905                 vmcs_writel(HOST_GDTR_BASE, gdt->address);   /* 22.2.4 */
906
907                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
908                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
909         }
910 }
911
912 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
913 {
914         __vmx_load_host_state(to_vmx(vcpu));
915         if (!vmm_exclusive) {
916                 __vcpu_clear(to_vmx(vcpu));
917                 kvm_cpu_vmxoff();
918         }
919 }
920
921 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
922 {
923         ulong cr0;
924
925         if (vcpu->fpu_active)
926                 return;
927         vcpu->fpu_active = 1;
928         cr0 = vmcs_readl(GUEST_CR0);
929         cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
930         cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
931         vmcs_writel(GUEST_CR0, cr0);
932         update_exception_bitmap(vcpu);
933         vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
934         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
935 }
936
937 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
938
939 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
940 {
941         vmx_decache_cr0_guest_bits(vcpu);
942         vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
943         update_exception_bitmap(vcpu);
944         vcpu->arch.cr0_guest_owned_bits = 0;
945         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
946         vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
947 }
948
949 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
950 {
951         unsigned long rflags, save_rflags;
952
953         rflags = vmcs_readl(GUEST_RFLAGS);
954         if (to_vmx(vcpu)->rmode.vm86_active) {
955                 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
956                 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
957                 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
958         }
959         return rflags;
960 }
961
962 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
963 {
964         if (to_vmx(vcpu)->rmode.vm86_active) {
965                 to_vmx(vcpu)->rmode.save_rflags = rflags;
966                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
967         }
968         vmcs_writel(GUEST_RFLAGS, rflags);
969 }
970
971 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
972 {
973         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
974         int ret = 0;
975
976         if (interruptibility & GUEST_INTR_STATE_STI)
977                 ret |= KVM_X86_SHADOW_INT_STI;
978         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
979                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
980
981         return ret & mask;
982 }
983
984 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
985 {
986         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
987         u32 interruptibility = interruptibility_old;
988
989         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
990
991         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
992                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
993         else if (mask & KVM_X86_SHADOW_INT_STI)
994                 interruptibility |= GUEST_INTR_STATE_STI;
995
996         if ((interruptibility != interruptibility_old))
997                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
998 }
999
1000 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1001 {
1002         unsigned long rip;
1003
1004         rip = kvm_rip_read(vcpu);
1005         rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1006         kvm_rip_write(vcpu, rip);
1007
1008         /* skipping an emulated instruction also counts */
1009         vmx_set_interrupt_shadow(vcpu, 0);
1010 }
1011
1012 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
1013                                 bool has_error_code, u32 error_code,
1014                                 bool reinject)
1015 {
1016         struct vcpu_vmx *vmx = to_vmx(vcpu);
1017         u32 intr_info = nr | INTR_INFO_VALID_MASK;
1018
1019         if (has_error_code) {
1020                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1021                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1022         }
1023
1024         if (vmx->rmode.vm86_active) {
1025                 if (kvm_inject_realmode_interrupt(vcpu, nr) != EMULATE_DONE)
1026                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1027                 return;
1028         }
1029
1030         if (kvm_exception_is_soft(nr)) {
1031                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1032                              vmx->vcpu.arch.event_exit_inst_len);
1033                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1034         } else
1035                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1036
1037         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1038 }
1039
1040 static bool vmx_rdtscp_supported(void)
1041 {
1042         return cpu_has_vmx_rdtscp();
1043 }
1044
1045 /*
1046  * Swap MSR entry in host/guest MSR entry array.
1047  */
1048 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1049 {
1050         struct shared_msr_entry tmp;
1051
1052         tmp = vmx->guest_msrs[to];
1053         vmx->guest_msrs[to] = vmx->guest_msrs[from];
1054         vmx->guest_msrs[from] = tmp;
1055 }
1056
1057 /*
1058  * Set up the vmcs to automatically save and restore system
1059  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1060  * mode, as fiddling with msrs is very expensive.
1061  */
1062 static void setup_msrs(struct vcpu_vmx *vmx)
1063 {
1064         int save_nmsrs, index;
1065         unsigned long *msr_bitmap;
1066
1067         vmx_load_host_state(vmx);
1068         save_nmsrs = 0;
1069 #ifdef CONFIG_X86_64
1070         if (is_long_mode(&vmx->vcpu)) {
1071                 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1072                 if (index >= 0)
1073                         move_msr_up(vmx, index, save_nmsrs++);
1074                 index = __find_msr_index(vmx, MSR_LSTAR);
1075                 if (index >= 0)
1076                         move_msr_up(vmx, index, save_nmsrs++);
1077                 index = __find_msr_index(vmx, MSR_CSTAR);
1078                 if (index >= 0)
1079                         move_msr_up(vmx, index, save_nmsrs++);
1080                 index = __find_msr_index(vmx, MSR_TSC_AUX);
1081                 if (index >= 0 && vmx->rdtscp_enabled)
1082                         move_msr_up(vmx, index, save_nmsrs++);
1083                 /*
1084                  * MSR_STAR is only needed on long mode guests, and only
1085                  * if efer.sce is enabled.
1086                  */
1087                 index = __find_msr_index(vmx, MSR_STAR);
1088                 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
1089                         move_msr_up(vmx, index, save_nmsrs++);
1090         }
1091 #endif
1092         index = __find_msr_index(vmx, MSR_EFER);
1093         if (index >= 0 && update_transition_efer(vmx, index))
1094                 move_msr_up(vmx, index, save_nmsrs++);
1095
1096         vmx->save_nmsrs = save_nmsrs;
1097
1098         if (cpu_has_vmx_msr_bitmap()) {
1099                 if (is_long_mode(&vmx->vcpu))
1100                         msr_bitmap = vmx_msr_bitmap_longmode;
1101                 else
1102                         msr_bitmap = vmx_msr_bitmap_legacy;
1103
1104                 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
1105         }
1106 }
1107
1108 /*
1109  * reads and returns guest's timestamp counter "register"
1110  * guest_tsc = host_tsc + tsc_offset    -- 21.3
1111  */
1112 static u64 guest_read_tsc(void)
1113 {
1114         u64 host_tsc, tsc_offset;
1115
1116         rdtscll(host_tsc);
1117         tsc_offset = vmcs_read64(TSC_OFFSET);
1118         return host_tsc + tsc_offset;
1119 }
1120
1121 /*
1122  * writes 'offset' into guest's timestamp counter offset register
1123  */
1124 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1125 {
1126         vmcs_write64(TSC_OFFSET, offset);
1127 }
1128
1129 static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
1130 {
1131         u64 offset = vmcs_read64(TSC_OFFSET);
1132         vmcs_write64(TSC_OFFSET, offset + adjustment);
1133 }
1134
1135 /*
1136  * Reads an msr value (of 'msr_index') into 'pdata'.
1137  * Returns 0 on success, non-0 otherwise.
1138  * Assumes vcpu_load() was already called.
1139  */
1140 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1141 {
1142         u64 data;
1143         struct shared_msr_entry *msr;
1144
1145         if (!pdata) {
1146                 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
1147                 return -EINVAL;
1148         }
1149
1150         switch (msr_index) {
1151 #ifdef CONFIG_X86_64
1152         case MSR_FS_BASE:
1153                 data = vmcs_readl(GUEST_FS_BASE);
1154                 break;
1155         case MSR_GS_BASE:
1156                 data = vmcs_readl(GUEST_GS_BASE);
1157                 break;
1158         case MSR_KERNEL_GS_BASE:
1159                 vmx_load_host_state(to_vmx(vcpu));
1160                 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
1161                 break;
1162 #endif
1163         case MSR_EFER:
1164                 return kvm_get_msr_common(vcpu, msr_index, pdata);
1165         case MSR_IA32_TSC:
1166                 data = guest_read_tsc();
1167                 break;
1168         case MSR_IA32_SYSENTER_CS:
1169                 data = vmcs_read32(GUEST_SYSENTER_CS);
1170                 break;
1171         case MSR_IA32_SYSENTER_EIP:
1172                 data = vmcs_readl(GUEST_SYSENTER_EIP);
1173                 break;
1174         case MSR_IA32_SYSENTER_ESP:
1175                 data = vmcs_readl(GUEST_SYSENTER_ESP);
1176                 break;
1177         case MSR_TSC_AUX:
1178                 if (!to_vmx(vcpu)->rdtscp_enabled)
1179                         return 1;
1180                 /* Otherwise falls through */
1181         default:
1182                 vmx_load_host_state(to_vmx(vcpu));
1183                 msr = find_msr_entry(to_vmx(vcpu), msr_index);
1184                 if (msr) {
1185                         vmx_load_host_state(to_vmx(vcpu));
1186                         data = msr->data;
1187                         break;
1188                 }
1189                 return kvm_get_msr_common(vcpu, msr_index, pdata);
1190         }
1191
1192         *pdata = data;
1193         return 0;
1194 }
1195
1196 /*
1197  * Writes msr value into into the appropriate "register".
1198  * Returns 0 on success, non-0 otherwise.
1199  * Assumes vcpu_load() was already called.
1200  */
1201 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1202 {
1203         struct vcpu_vmx *vmx = to_vmx(vcpu);
1204         struct shared_msr_entry *msr;
1205         int ret = 0;
1206
1207         switch (msr_index) {
1208         case MSR_EFER:
1209                 vmx_load_host_state(vmx);
1210                 ret = kvm_set_msr_common(vcpu, msr_index, data);
1211                 break;
1212 #ifdef CONFIG_X86_64
1213         case MSR_FS_BASE:
1214                 vmcs_writel(GUEST_FS_BASE, data);
1215                 break;
1216         case MSR_GS_BASE:
1217                 vmcs_writel(GUEST_GS_BASE, data);
1218                 break;
1219         case MSR_KERNEL_GS_BASE:
1220                 vmx_load_host_state(vmx);
1221                 vmx->msr_guest_kernel_gs_base = data;
1222                 break;
1223 #endif
1224         case MSR_IA32_SYSENTER_CS:
1225                 vmcs_write32(GUEST_SYSENTER_CS, data);
1226                 break;
1227         case MSR_IA32_SYSENTER_EIP:
1228                 vmcs_writel(GUEST_SYSENTER_EIP, data);
1229                 break;
1230         case MSR_IA32_SYSENTER_ESP:
1231                 vmcs_writel(GUEST_SYSENTER_ESP, data);
1232                 break;
1233         case MSR_IA32_TSC:
1234                 kvm_write_tsc(vcpu, data);
1235                 break;
1236         case MSR_IA32_CR_PAT:
1237                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
1238                         vmcs_write64(GUEST_IA32_PAT, data);
1239                         vcpu->arch.pat = data;
1240                         break;
1241                 }
1242                 ret = kvm_set_msr_common(vcpu, msr_index, data);
1243                 break;
1244         case MSR_TSC_AUX:
1245                 if (!vmx->rdtscp_enabled)
1246                         return 1;
1247                 /* Check reserved bit, higher 32 bits should be zero */
1248                 if ((data >> 32) != 0)
1249                         return 1;
1250                 /* Otherwise falls through */
1251         default:
1252                 msr = find_msr_entry(vmx, msr_index);
1253                 if (msr) {
1254                         vmx_load_host_state(vmx);
1255                         msr->data = data;
1256                         break;
1257                 }
1258                 ret = kvm_set_msr_common(vcpu, msr_index, data);
1259         }
1260
1261         return ret;
1262 }
1263
1264 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1265 {
1266         __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
1267         switch (reg) {
1268         case VCPU_REGS_RSP:
1269                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
1270                 break;
1271         case VCPU_REGS_RIP:
1272                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
1273                 break;
1274         case VCPU_EXREG_PDPTR:
1275                 if (enable_ept)
1276                         ept_save_pdptrs(vcpu);
1277                 break;
1278         default:
1279                 break;
1280         }
1281 }
1282
1283 static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1284 {
1285         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1286                 vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
1287         else
1288                 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
1289
1290         update_exception_bitmap(vcpu);
1291 }
1292
1293 static __init int cpu_has_kvm_support(void)
1294 {
1295         return cpu_has_vmx();
1296 }
1297
1298 static __init int vmx_disabled_by_bios(void)
1299 {
1300         u64 msr;
1301
1302         rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
1303         if (msr & FEATURE_CONTROL_LOCKED) {
1304                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
1305                         && tboot_enabled())
1306                         return 1;
1307                 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
1308                         && !tboot_enabled()) {
1309                         printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
1310                                 " activate TXT before enabling KVM\n");
1311                         return 1;
1312                 }
1313         }
1314
1315         return 0;
1316         /* locked but not enabled */
1317 }
1318
1319 static void kvm_cpu_vmxon(u64 addr)
1320 {
1321         asm volatile (ASM_VMX_VMXON_RAX
1322                         : : "a"(&addr), "m"(addr)
1323                         : "memory", "cc");
1324 }
1325
1326 static int hardware_enable(void *garbage)
1327 {
1328         int cpu = raw_smp_processor_id();
1329         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1330         u64 old, test_bits;
1331
1332         if (read_cr4() & X86_CR4_VMXE)
1333                 return -EBUSY;
1334
1335         INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
1336         rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
1337
1338         test_bits = FEATURE_CONTROL_LOCKED;
1339         test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1340         if (tboot_enabled())
1341                 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
1342
1343         if ((old & test_bits) != test_bits) {
1344                 /* enable and lock */
1345                 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
1346         }
1347         write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
1348
1349         if (vmm_exclusive) {
1350                 kvm_cpu_vmxon(phys_addr);
1351                 ept_sync_global();
1352         }
1353
1354         store_gdt(&__get_cpu_var(host_gdt));
1355
1356         return 0;
1357 }
1358
1359 static void vmclear_local_vcpus(void)
1360 {
1361         int cpu = raw_smp_processor_id();
1362         struct vcpu_vmx *vmx, *n;
1363
1364         list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
1365                                  local_vcpus_link)
1366                 __vcpu_clear(vmx);
1367 }
1368
1369
1370 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
1371  * tricks.
1372  */
1373 static void kvm_cpu_vmxoff(void)
1374 {
1375         asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1376 }
1377
1378 static void hardware_disable(void *garbage)
1379 {
1380         if (vmm_exclusive) {
1381                 vmclear_local_vcpus();
1382                 kvm_cpu_vmxoff();
1383         }
1384         write_cr4(read_cr4() & ~X86_CR4_VMXE);
1385 }
1386
1387 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
1388                                       u32 msr, u32 *result)
1389 {
1390         u32 vmx_msr_low, vmx_msr_high;
1391         u32 ctl = ctl_min | ctl_opt;
1392
1393         rdmsr(msr, vmx_msr_low, vmx_msr_high);
1394
1395         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
1396         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
1397
1398         /* Ensure minimum (required) set of control bits are supported. */
1399         if (ctl_min & ~ctl)
1400                 return -EIO;
1401
1402         *result = ctl;
1403         return 0;
1404 }
1405
1406 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
1407 {
1408         u32 vmx_msr_low, vmx_msr_high;
1409         u32 min, opt, min2, opt2;
1410         u32 _pin_based_exec_control = 0;
1411         u32 _cpu_based_exec_control = 0;
1412         u32 _cpu_based_2nd_exec_control = 0;
1413         u32 _vmexit_control = 0;
1414         u32 _vmentry_control = 0;
1415
1416         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
1417         opt = PIN_BASED_VIRTUAL_NMIS;
1418         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
1419                                 &_pin_based_exec_control) < 0)
1420                 return -EIO;
1421
1422         min = CPU_BASED_HLT_EXITING |
1423 #ifdef CONFIG_X86_64
1424               CPU_BASED_CR8_LOAD_EXITING |
1425               CPU_BASED_CR8_STORE_EXITING |
1426 #endif
1427               CPU_BASED_CR3_LOAD_EXITING |
1428               CPU_BASED_CR3_STORE_EXITING |
1429               CPU_BASED_USE_IO_BITMAPS |
1430               CPU_BASED_MOV_DR_EXITING |
1431               CPU_BASED_USE_TSC_OFFSETING |
1432               CPU_BASED_MWAIT_EXITING |
1433               CPU_BASED_MONITOR_EXITING |
1434               CPU_BASED_INVLPG_EXITING;
1435         opt = CPU_BASED_TPR_SHADOW |
1436               CPU_BASED_USE_MSR_BITMAPS |
1437               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1438         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1439                                 &_cpu_based_exec_control) < 0)
1440                 return -EIO;
1441 #ifdef CONFIG_X86_64
1442         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1443                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1444                                            ~CPU_BASED_CR8_STORE_EXITING;
1445 #endif
1446         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1447                 min2 = 0;
1448                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1449                         SECONDARY_EXEC_WBINVD_EXITING |
1450                         SECONDARY_EXEC_ENABLE_VPID |
1451                         SECONDARY_EXEC_ENABLE_EPT |
1452                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
1453                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
1454                         SECONDARY_EXEC_RDTSCP;
1455                 if (adjust_vmx_controls(min2, opt2,
1456                                         MSR_IA32_VMX_PROCBASED_CTLS2,
1457                                         &_cpu_based_2nd_exec_control) < 0)
1458                         return -EIO;
1459         }
1460 #ifndef CONFIG_X86_64
1461         if (!(_cpu_based_2nd_exec_control &
1462                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1463                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1464 #endif
1465         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
1466                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
1467                    enabled */
1468                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
1469                                              CPU_BASED_CR3_STORE_EXITING |
1470                                              CPU_BASED_INVLPG_EXITING);
1471                 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
1472                       vmx_capability.ept, vmx_capability.vpid);
1473         }
1474
1475         min = 0;
1476 #ifdef CONFIG_X86_64
1477         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1478 #endif
1479         opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
1480         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1481                                 &_vmexit_control) < 0)
1482                 return -EIO;
1483
1484         min = 0;
1485         opt = VM_ENTRY_LOAD_IA32_PAT;
1486         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1487                                 &_vmentry_control) < 0)
1488                 return -EIO;
1489
1490         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1491
1492         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1493         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1494                 return -EIO;
1495
1496 #ifdef CONFIG_X86_64
1497         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1498         if (vmx_msr_high & (1u<<16))
1499                 return -EIO;
1500 #endif
1501
1502         /* Require Write-Back (WB) memory type for VMCS accesses. */
1503         if (((vmx_msr_high >> 18) & 15) != 6)
1504                 return -EIO;
1505
1506         vmcs_conf->size = vmx_msr_high & 0x1fff;
1507         vmcs_conf->order = get_order(vmcs_config.size);
1508         vmcs_conf->revision_id = vmx_msr_low;
1509
1510         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1511         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1512         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1513         vmcs_conf->vmexit_ctrl         = _vmexit_control;
1514         vmcs_conf->vmentry_ctrl        = _vmentry_control;
1515
1516         return 0;
1517 }
1518
1519 static struct vmcs *alloc_vmcs_cpu(int cpu)
1520 {
1521         int node = cpu_to_node(cpu);
1522         struct page *pages;
1523         struct vmcs *vmcs;
1524
1525         pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
1526         if (!pages)
1527                 return NULL;
1528         vmcs = page_address(pages);
1529         memset(vmcs, 0, vmcs_config.size);
1530         vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1531         return vmcs;
1532 }
1533
1534 static struct vmcs *alloc_vmcs(void)
1535 {
1536         return alloc_vmcs_cpu(raw_smp_processor_id());
1537 }
1538
1539 static void free_vmcs(struct vmcs *vmcs)
1540 {
1541         free_pages((unsigned long)vmcs, vmcs_config.order);
1542 }
1543
1544 static void free_kvm_area(void)
1545 {
1546         int cpu;
1547
1548         for_each_possible_cpu(cpu) {
1549                 free_vmcs(per_cpu(vmxarea, cpu));
1550                 per_cpu(vmxarea, cpu) = NULL;
1551         }
1552 }
1553
1554 static __init int alloc_kvm_area(void)
1555 {
1556         int cpu;
1557
1558         for_each_possible_cpu(cpu) {
1559                 struct vmcs *vmcs;
1560
1561                 vmcs = alloc_vmcs_cpu(cpu);
1562                 if (!vmcs) {
1563                         free_kvm_area();
1564                         return -ENOMEM;
1565                 }
1566
1567                 per_cpu(vmxarea, cpu) = vmcs;
1568         }
1569         return 0;
1570 }
1571
1572 static __init int hardware_setup(void)
1573 {
1574         if (setup_vmcs_config(&vmcs_config) < 0)
1575                 return -EIO;
1576
1577         if (boot_cpu_has(X86_FEATURE_NX))
1578                 kvm_enable_efer_bits(EFER_NX);
1579
1580         if (!cpu_has_vmx_vpid())
1581                 enable_vpid = 0;
1582
1583         if (!cpu_has_vmx_ept() ||
1584             !cpu_has_vmx_ept_4levels()) {
1585                 enable_ept = 0;
1586                 enable_unrestricted_guest = 0;
1587         }
1588
1589         if (!cpu_has_vmx_unrestricted_guest())
1590                 enable_unrestricted_guest = 0;
1591
1592         if (!cpu_has_vmx_flexpriority())
1593                 flexpriority_enabled = 0;
1594
1595         if (!cpu_has_vmx_tpr_shadow())
1596                 kvm_x86_ops->update_cr8_intercept = NULL;
1597
1598         if (enable_ept && !cpu_has_vmx_ept_2m_page())
1599                 kvm_disable_largepages();
1600
1601         if (!cpu_has_vmx_ple())
1602                 ple_gap = 0;
1603
1604         return alloc_kvm_area();
1605 }
1606
1607 static __exit void hardware_unsetup(void)
1608 {
1609         free_kvm_area();
1610 }
1611
1612 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1613 {
1614         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1615
1616         if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1617                 vmcs_write16(sf->selector, save->selector);
1618                 vmcs_writel(sf->base, save->base);
1619                 vmcs_write32(sf->limit, save->limit);
1620                 vmcs_write32(sf->ar_bytes, save->ar);
1621         } else {
1622                 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1623                         << AR_DPL_SHIFT;
1624                 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1625         }
1626 }
1627
1628 static void enter_pmode(struct kvm_vcpu *vcpu)
1629 {
1630         unsigned long flags;
1631         struct vcpu_vmx *vmx = to_vmx(vcpu);
1632
1633         vmx->emulation_required = 1;
1634         vmx->rmode.vm86_active = 0;
1635
1636         vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
1637         vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
1638         vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
1639
1640         flags = vmcs_readl(GUEST_RFLAGS);
1641         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1642         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1643         vmcs_writel(GUEST_RFLAGS, flags);
1644
1645         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1646                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1647
1648         update_exception_bitmap(vcpu);
1649
1650         if (emulate_invalid_guest_state)
1651                 return;
1652
1653         fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
1654         fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
1655         fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
1656         fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
1657
1658         vmcs_write16(GUEST_SS_SELECTOR, 0);
1659         vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1660
1661         vmcs_write16(GUEST_CS_SELECTOR,
1662                      vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1663         vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1664 }
1665
1666 static gva_t rmode_tss_base(struct kvm *kvm)
1667 {
1668         if (!kvm->arch.tss_addr) {
1669                 struct kvm_memslots *slots;
1670                 gfn_t base_gfn;
1671
1672                 slots = kvm_memslots(kvm);
1673                 base_gfn = slots->memslots[0].base_gfn +
1674                                  kvm->memslots->memslots[0].npages - 3;
1675                 return base_gfn << PAGE_SHIFT;
1676         }
1677         return kvm->arch.tss_addr;
1678 }
1679
1680 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1681 {
1682         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1683
1684         save->selector = vmcs_read16(sf->selector);
1685         save->base = vmcs_readl(sf->base);
1686         save->limit = vmcs_read32(sf->limit);
1687         save->ar = vmcs_read32(sf->ar_bytes);
1688         vmcs_write16(sf->selector, save->base >> 4);
1689         vmcs_write32(sf->base, save->base & 0xfffff);
1690         vmcs_write32(sf->limit, 0xffff);
1691         vmcs_write32(sf->ar_bytes, 0xf3);
1692 }
1693
1694 static void enter_rmode(struct kvm_vcpu *vcpu)
1695 {
1696         unsigned long flags;
1697         struct vcpu_vmx *vmx = to_vmx(vcpu);
1698
1699         if (enable_unrestricted_guest)
1700                 return;
1701
1702         vmx->emulation_required = 1;
1703         vmx->rmode.vm86_active = 1;
1704
1705         vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1706         vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1707
1708         vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1709         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1710
1711         vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1712         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1713
1714         flags = vmcs_readl(GUEST_RFLAGS);
1715         vmx->rmode.save_rflags = flags;
1716
1717         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1718
1719         vmcs_writel(GUEST_RFLAGS, flags);
1720         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1721         update_exception_bitmap(vcpu);
1722
1723         if (emulate_invalid_guest_state)
1724                 goto continue_rmode;
1725
1726         vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1727         vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1728         vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1729
1730         vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1731         vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1732         if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1733                 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1734         vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1735
1736         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
1737         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
1738         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
1739         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
1740
1741 continue_rmode:
1742         kvm_mmu_reset_context(vcpu);
1743         init_rmode(vcpu->kvm);
1744 }
1745
1746 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1747 {
1748         struct vcpu_vmx *vmx = to_vmx(vcpu);
1749         struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1750
1751         if (!msr)
1752                 return;
1753
1754         /*
1755          * Force kernel_gs_base reloading before EFER changes, as control
1756          * of this msr depends on is_long_mode().
1757          */
1758         vmx_load_host_state(to_vmx(vcpu));
1759         vcpu->arch.efer = efer;
1760         if (efer & EFER_LMA) {
1761                 vmcs_write32(VM_ENTRY_CONTROLS,
1762                              vmcs_read32(VM_ENTRY_CONTROLS) |
1763                              VM_ENTRY_IA32E_MODE);
1764                 msr->data = efer;
1765         } else {
1766                 vmcs_write32(VM_ENTRY_CONTROLS,
1767                              vmcs_read32(VM_ENTRY_CONTROLS) &
1768                              ~VM_ENTRY_IA32E_MODE);
1769
1770                 msr->data = efer & ~EFER_LME;
1771         }
1772         setup_msrs(vmx);
1773 }
1774
1775 #ifdef CONFIG_X86_64
1776
1777 static void enter_lmode(struct kvm_vcpu *vcpu)
1778 {
1779         u32 guest_tr_ar;
1780
1781         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1782         if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1783                 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1784                        __func__);
1785                 vmcs_write32(GUEST_TR_AR_BYTES,
1786                              (guest_tr_ar & ~AR_TYPE_MASK)
1787                              | AR_TYPE_BUSY_64_TSS);
1788         }
1789         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
1790 }
1791
1792 static void exit_lmode(struct kvm_vcpu *vcpu)
1793 {
1794         vmcs_write32(VM_ENTRY_CONTROLS,
1795                      vmcs_read32(VM_ENTRY_CONTROLS)
1796                      & ~VM_ENTRY_IA32E_MODE);
1797         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
1798 }
1799
1800 #endif
1801
1802 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1803 {
1804         vpid_sync_context(to_vmx(vcpu));
1805         if (enable_ept) {
1806                 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
1807                         return;
1808                 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
1809         }
1810 }
1811
1812 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1813 {
1814         ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
1815
1816         vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
1817         vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
1818 }
1819
1820 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1821 {
1822         ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
1823
1824         vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
1825         vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
1826 }
1827
1828 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
1829 {
1830         if (!test_bit(VCPU_EXREG_PDPTR,
1831                       (unsigned long *)&vcpu->arch.regs_dirty))
1832                 return;
1833
1834         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1835                 vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
1836                 vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
1837                 vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
1838                 vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
1839         }
1840 }
1841
1842 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
1843 {
1844         if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1845                 vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
1846                 vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
1847                 vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
1848                 vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
1849         }
1850
1851         __set_bit(VCPU_EXREG_PDPTR,
1852                   (unsigned long *)&vcpu->arch.regs_avail);
1853         __set_bit(VCPU_EXREG_PDPTR,
1854                   (unsigned long *)&vcpu->arch.regs_dirty);
1855 }
1856
1857 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1858
1859 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
1860                                         unsigned long cr0,
1861                                         struct kvm_vcpu *vcpu)
1862 {
1863         if (!(cr0 & X86_CR0_PG)) {
1864                 /* From paging/starting to nonpaging */
1865                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1866                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1867                              (CPU_BASED_CR3_LOAD_EXITING |
1868                               CPU_BASED_CR3_STORE_EXITING));
1869                 vcpu->arch.cr0 = cr0;
1870                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1871         } else if (!is_paging(vcpu)) {
1872                 /* From nonpaging to paging */
1873                 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1874                              vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1875                              ~(CPU_BASED_CR3_LOAD_EXITING |
1876                                CPU_BASED_CR3_STORE_EXITING));
1877                 vcpu->arch.cr0 = cr0;
1878                 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1879         }
1880
1881         if (!(cr0 & X86_CR0_WP))
1882                 *hw_cr0 &= ~X86_CR0_WP;
1883 }
1884
1885 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1886 {
1887         struct vcpu_vmx *vmx = to_vmx(vcpu);
1888         unsigned long hw_cr0;
1889
1890         if (enable_unrestricted_guest)
1891                 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
1892                         | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
1893         else
1894                 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
1895
1896         if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
1897                 enter_pmode(vcpu);
1898
1899         if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
1900                 enter_rmode(vcpu);
1901
1902 #ifdef CONFIG_X86_64
1903         if (vcpu->arch.efer & EFER_LME) {
1904                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1905                         enter_lmode(vcpu);
1906                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1907                         exit_lmode(vcpu);
1908         }
1909 #endif
1910
1911         if (enable_ept)
1912                 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
1913
1914         if (!vcpu->fpu_active)
1915                 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
1916
1917         vmcs_writel(CR0_READ_SHADOW, cr0);
1918         vmcs_writel(GUEST_CR0, hw_cr0);
1919         vcpu->arch.cr0 = cr0;
1920 }
1921
1922 static u64 construct_eptp(unsigned long root_hpa)
1923 {
1924         u64 eptp;
1925
1926         /* TODO write the value reading from MSR */
1927         eptp = VMX_EPT_DEFAULT_MT |
1928                 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
1929         eptp |= (root_hpa & PAGE_MASK);
1930
1931         return eptp;
1932 }
1933
1934 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1935 {
1936         unsigned long guest_cr3;
1937         u64 eptp;
1938
1939         guest_cr3 = cr3;
1940         if (enable_ept) {
1941                 eptp = construct_eptp(cr3);
1942                 vmcs_write64(EPT_POINTER, eptp);
1943                 guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
1944                         vcpu->kvm->arch.ept_identity_map_addr;
1945                 ept_load_pdptrs(vcpu);
1946         }
1947
1948         vmx_flush_tlb(vcpu);
1949         vmcs_writel(GUEST_CR3, guest_cr3);
1950 }
1951
1952 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1953 {
1954         unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
1955                     KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1956
1957         vcpu->arch.cr4 = cr4;
1958         if (enable_ept) {
1959                 if (!is_paging(vcpu)) {
1960                         hw_cr4 &= ~X86_CR4_PAE;
1961                         hw_cr4 |= X86_CR4_PSE;
1962                 } else if (!(cr4 & X86_CR4_PAE)) {
1963                         hw_cr4 &= ~X86_CR4_PAE;
1964                 }
1965         }
1966
1967         vmcs_writel(CR4_READ_SHADOW, cr4);
1968         vmcs_writel(GUEST_CR4, hw_cr4);
1969 }
1970
1971 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1972 {
1973         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1974
1975         return vmcs_readl(sf->base);
1976 }
1977
1978 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1979                             struct kvm_segment *var, int seg)
1980 {
1981         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1982         u32 ar;
1983
1984         var->base = vmcs_readl(sf->base);
1985         var->limit = vmcs_read32(sf->limit);
1986         var->selector = vmcs_read16(sf->selector);
1987         ar = vmcs_read32(sf->ar_bytes);
1988         if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
1989                 ar = 0;
1990         var->type = ar & 15;
1991         var->s = (ar >> 4) & 1;
1992         var->dpl = (ar >> 5) & 3;
1993         var->present = (ar >> 7) & 1;
1994         var->avl = (ar >> 12) & 1;
1995         var->l = (ar >> 13) & 1;
1996         var->db = (ar >> 14) & 1;
1997         var->g = (ar >> 15) & 1;
1998         var->unusable = (ar >> 16) & 1;
1999 }
2000
2001 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
2002 {
2003         if (!is_protmode(vcpu))
2004                 return 0;
2005
2006         if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
2007                 return 3;
2008
2009         return vmcs_read16(GUEST_CS_SELECTOR) & 3;
2010 }
2011
2012 static u32 vmx_segment_access_rights(struct kvm_segment *var)
2013 {
2014         u32 ar;
2015
2016         if (var->unusable)
2017                 ar = 1 << 16;
2018         else {
2019                 ar = var->type & 15;
2020                 ar |= (var->s & 1) << 4;
2021                 ar |= (var->dpl & 3) << 5;
2022                 ar |= (var->present & 1) << 7;
2023                 ar |= (var->avl & 1) << 12;
2024                 ar |= (var->l & 1) << 13;
2025                 ar |= (var->db & 1) << 14;
2026                 ar |= (var->g & 1) << 15;
2027         }
2028         if (ar == 0) /* a 0 value means unusable */
2029                 ar = AR_UNUSABLE_MASK;
2030
2031         return ar;
2032 }
2033
2034 static void vmx_set_segment(struct kvm_vcpu *vcpu,
2035                             struct kvm_segment *var, int seg)
2036 {
2037         struct vcpu_vmx *vmx = to_vmx(vcpu);
2038         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2039         u32 ar;
2040
2041         if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
2042                 vmx->rmode.tr.selector = var->selector;
2043                 vmx->rmode.tr.base = var->base;
2044                 vmx->rmode.tr.limit = var->limit;
2045                 vmx->rmode.tr.ar = vmx_segment_access_rights(var);
2046                 return;
2047         }
2048         vmcs_writel(sf->base, var->base);
2049         vmcs_write32(sf->limit, var->limit);
2050         vmcs_write16(sf->selector, var->selector);
2051         if (vmx->rmode.vm86_active && var->s) {
2052                 /*
2053                  * Hack real-mode segments into vm86 compatibility.
2054                  */
2055                 if (var->base == 0xffff0000 && var->selector == 0xf000)
2056                         vmcs_writel(sf->base, 0xf0000);
2057                 ar = 0xf3;
2058         } else
2059                 ar = vmx_segment_access_rights(var);
2060
2061         /*
2062          *   Fix the "Accessed" bit in AR field of segment registers for older
2063          * qemu binaries.
2064          *   IA32 arch specifies that at the time of processor reset the
2065          * "Accessed" bit in the AR field of segment registers is 1. And qemu
2066          * is setting it to 0 in the usedland code. This causes invalid guest
2067          * state vmexit when "unrestricted guest" mode is turned on.
2068          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
2069          * tree. Newer qemu binaries with that qemu fix would not need this
2070          * kvm hack.
2071          */
2072         if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
2073                 ar |= 0x1; /* Accessed */
2074
2075         vmcs_write32(sf->ar_bytes, ar);
2076 }
2077
2078 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
2079 {
2080         u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
2081
2082         *db = (ar >> 14) & 1;
2083         *l = (ar >> 13) & 1;
2084 }
2085
2086 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2087 {
2088         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
2089         dt->address = vmcs_readl(GUEST_IDTR_BASE);
2090 }
2091
2092 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2093 {
2094         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
2095         vmcs_writel(GUEST_IDTR_BASE, dt->address);
2096 }
2097
2098 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2099 {
2100         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
2101         dt->address = vmcs_readl(GUEST_GDTR_BASE);
2102 }
2103
2104 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
2105 {
2106         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
2107         vmcs_writel(GUEST_GDTR_BASE, dt->address);
2108 }
2109
2110 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
2111 {
2112         struct kvm_segment var;
2113         u32 ar;
2114
2115         vmx_get_segment(vcpu, &var, seg);
2116         ar = vmx_segment_access_rights(&var);
2117
2118         if (var.base != (var.selector << 4))
2119                 return false;
2120         if (var.limit != 0xffff)
2121                 return false;
2122         if (ar != 0xf3)
2123                 return false;
2124
2125         return true;
2126 }
2127
2128 static bool code_segment_valid(struct kvm_vcpu *vcpu)
2129 {
2130         struct kvm_segment cs;
2131         unsigned int cs_rpl;
2132
2133         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
2134         cs_rpl = cs.selector & SELECTOR_RPL_MASK;
2135
2136         if (cs.unusable)
2137                 return false;
2138         if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
2139                 return false;
2140         if (!cs.s)
2141                 return false;
2142         if (cs.type & AR_TYPE_WRITEABLE_MASK) {
2143                 if (cs.dpl > cs_rpl)
2144                         return false;
2145         } else {
2146                 if (cs.dpl != cs_rpl)
2147                         return false;
2148         }
2149         if (!cs.present)
2150                 return false;
2151
2152         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
2153         return true;
2154 }
2155
2156 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
2157 {
2158         struct kvm_segment ss;
2159         unsigned int ss_rpl;
2160
2161         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
2162         ss_rpl = ss.selector & SELECTOR_RPL_MASK;
2163
2164         if (ss.unusable)
2165                 return true;
2166         if (ss.type != 3 && ss.type != 7)
2167                 return false;
2168         if (!ss.s)
2169                 return false;
2170         if (ss.dpl != ss_rpl) /* DPL != RPL */
2171                 return false;
2172         if (!ss.present)
2173                 return false;
2174
2175         return true;
2176 }
2177
2178 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
2179 {
2180         struct kvm_segment var;
2181         unsigned int rpl;
2182
2183         vmx_get_segment(vcpu, &var, seg);
2184         rpl = var.selector & SELECTOR_RPL_MASK;
2185
2186         if (var.unusable)
2187                 return true;
2188         if (!var.s)
2189                 return false;
2190         if (!var.present)
2191                 return false;
2192         if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
2193                 if (var.dpl < rpl) /* DPL < RPL */
2194                         return false;
2195         }
2196
2197         /* TODO: Add other members to kvm_segment_field to allow checking for other access
2198          * rights flags
2199          */
2200         return true;
2201 }
2202
2203 static bool tr_valid(struct kvm_vcpu *vcpu)
2204 {
2205         struct kvm_segment tr;
2206
2207         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
2208
2209         if (tr.unusable)
2210                 return false;
2211         if (tr.selector & SELECTOR_TI_MASK)     /* TI = 1 */
2212                 return false;
2213         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
2214                 return false;
2215         if (!tr.present)
2216                 return false;
2217
2218         return true;
2219 }
2220
2221 static bool ldtr_valid(struct kvm_vcpu *vcpu)
2222 {
2223         struct kvm_segment ldtr;
2224
2225         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
2226
2227         if (ldtr.unusable)
2228                 return true;
2229         if (ldtr.selector & SELECTOR_TI_MASK)   /* TI = 1 */
2230                 return false;
2231         if (ldtr.type != 2)
2232                 return false;
2233         if (!ldtr.present)
2234                 return false;
2235
2236         return true;
2237 }
2238
2239 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
2240 {
2241         struct kvm_segment cs, ss;
2242
2243         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
2244         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
2245
2246         return ((cs.selector & SELECTOR_RPL_MASK) ==
2247                  (ss.selector & SELECTOR_RPL_MASK));
2248 }
2249
2250 /*
2251  * Check if guest state is valid. Returns true if valid, false if
2252  * not.
2253  * We assume that registers are always usable
2254  */
2255 static bool guest_state_valid(struct kvm_vcpu *vcpu)
2256 {
2257         /* real mode guest state checks */
2258         if (!is_protmode(vcpu)) {
2259                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
2260                         return false;
2261                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
2262                         return false;
2263                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
2264                         return false;
2265                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
2266                         return false;
2267                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
2268                         return false;
2269                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
2270                         return false;
2271         } else {
2272         /* protected mode guest state checks */
2273                 if (!cs_ss_rpl_check(vcpu))
2274                         return false;
2275                 if (!code_segment_valid(vcpu))
2276                         return false;
2277                 if (!stack_segment_valid(vcpu))
2278                         return false;
2279                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
2280                         return false;
2281                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
2282                         return false;
2283                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
2284                         return false;
2285                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
2286                         return false;
2287                 if (!tr_valid(vcpu))
2288                         return false;
2289                 if (!ldtr_valid(vcpu))
2290                         return false;
2291         }
2292         /* TODO:
2293          * - Add checks on RIP
2294          * - Add checks on RFLAGS
2295          */
2296
2297         return true;
2298 }
2299
2300 static int init_rmode_tss(struct kvm *kvm)
2301 {
2302         gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
2303         u16 data = 0;
2304         int ret = 0;
2305         int r;
2306
2307         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2308         if (r < 0)
2309                 goto out;
2310         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
2311         r = kvm_write_guest_page(kvm, fn++, &data,
2312                         TSS_IOPB_BASE_OFFSET, sizeof(u16));
2313         if (r < 0)
2314                 goto out;
2315         r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
2316         if (r < 0)
2317                 goto out;
2318         r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2319         if (r < 0)
2320                 goto out;
2321         data = ~0;
2322         r = kvm_write_guest_page(kvm, fn, &data,
2323                                  RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
2324                                  sizeof(u8));
2325         if (r < 0)
2326                 goto out;
2327
2328         ret = 1;
2329 out:
2330         return ret;
2331 }
2332
2333 static int init_rmode_identity_map(struct kvm *kvm)
2334 {
2335         int i, r, ret;
2336         pfn_t identity_map_pfn;
2337         u32 tmp;
2338
2339         if (!enable_ept)
2340                 return 1;
2341         if (unlikely(!kvm->arch.ept_identity_pagetable)) {
2342                 printk(KERN_ERR "EPT: identity-mapping pagetable "
2343                         "haven't been allocated!\n");
2344                 return 0;
2345         }
2346         if (likely(kvm->arch.ept_identity_pagetable_done))
2347                 return 1;
2348         ret = 0;
2349         identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
2350         r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
2351         if (r < 0)
2352                 goto out;
2353         /* Set up identity-mapping pagetable for EPT in real mode */
2354         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
2355                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
2356                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
2357                 r = kvm_write_guest_page(kvm, identity_map_pfn,
2358                                 &tmp, i * sizeof(tmp), sizeof(tmp));
2359                 if (r < 0)
2360                         goto out;
2361         }
2362         kvm->arch.ept_identity_pagetable_done = true;
2363         ret = 1;
2364 out:
2365         return ret;
2366 }
2367
2368 static void seg_setup(int seg)
2369 {
2370         struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2371         unsigned int ar;
2372
2373         vmcs_write16(sf->selector, 0);
2374         vmcs_writel(sf->base, 0);
2375         vmcs_write32(sf->limit, 0xffff);
2376         if (enable_unrestricted_guest) {
2377                 ar = 0x93;
2378                 if (seg == VCPU_SREG_CS)
2379                         ar |= 0x08; /* code segment */
2380         } else
2381                 ar = 0xf3;
2382
2383         vmcs_write32(sf->ar_bytes, ar);
2384 }
2385
2386 static int alloc_apic_access_page(struct kvm *kvm)
2387 {
2388         struct kvm_userspace_memory_region kvm_userspace_mem;
2389         int r = 0;
2390
2391         mutex_lock(&kvm->slots_lock);
2392         if (kvm->arch.apic_access_page)
2393                 goto out;
2394         kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
2395         kvm_userspace_mem.flags = 0;
2396         kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
2397         kvm_userspace_mem.memory_size = PAGE_SIZE;
2398         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2399         if (r)
2400                 goto out;
2401
2402         kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
2403 out:
2404         mutex_unlock(&kvm->slots_lock);
2405         return r;
2406 }
2407
2408 static int alloc_identity_pagetable(struct kvm *kvm)
2409 {
2410         struct kvm_userspace_memory_region kvm_userspace_mem;
2411         int r = 0;
2412
2413         mutex_lock(&kvm->slots_lock);
2414         if (kvm->arch.ept_identity_pagetable)
2415                 goto out;
2416         kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
2417         kvm_userspace_mem.flags = 0;
2418         kvm_userspace_mem.guest_phys_addr =
2419                 kvm->arch.ept_identity_map_addr;
2420         kvm_userspace_mem.memory_size = PAGE_SIZE;
2421         r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2422         if (r)
2423                 goto out;
2424
2425         kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
2426                         kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
2427 out:
2428         mutex_unlock(&kvm->slots_lock);
2429         return r;
2430 }
2431
2432 static void allocate_vpid(struct vcpu_vmx *vmx)
2433 {
2434         int vpid;
2435
2436         vmx->vpid = 0;
2437         if (!enable_vpid)
2438                 return;
2439         spin_lock(&vmx_vpid_lock);
2440         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
2441         if (vpid < VMX_NR_VPIDS) {
2442                 vmx->vpid = vpid;
2443                 __set_bit(vpid, vmx_vpid_bitmap);
2444         }
2445         spin_unlock(&vmx_vpid_lock);
2446 }
2447
2448 static void free_vpid(struct vcpu_vmx *vmx)
2449 {
2450         if (!enable_vpid)
2451                 return;
2452         spin_lock(&vmx_vpid_lock);
2453         if (vmx->vpid != 0)
2454                 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
2455         spin_unlock(&vmx_vpid_lock);
2456 }
2457
2458 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
2459 {
2460         int f = sizeof(unsigned long);
2461
2462         if (!cpu_has_vmx_msr_bitmap())
2463                 return;
2464
2465         /*
2466          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
2467          * have the write-low and read-high bitmap offsets the wrong way round.
2468          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
2469          */
2470         if (msr <= 0x1fff) {
2471                 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
2472                 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
2473         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
2474                 msr &= 0x1fff;
2475                 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
2476                 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
2477         }
2478 }
2479
2480 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
2481 {
2482         if (!longmode_only)
2483                 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
2484         __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
2485 }
2486
2487 /*
2488  * Sets up the vmcs for emulated real mode.
2489  */
2490 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
2491 {
2492         u32 host_sysenter_cs, msr_low, msr_high;
2493         u32 junk;
2494         u64 host_pat;
2495         unsigned long a;
2496         struct desc_ptr dt;
2497         int i;
2498         unsigned long kvm_vmx_return;
2499         u32 exec_control;
2500
2501         /* I/O */
2502         vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
2503         vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
2504
2505         if (cpu_has_vmx_msr_bitmap())
2506                 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
2507
2508         vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
2509
2510         /* Control */
2511         vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
2512                 vmcs_config.pin_based_exec_ctrl);
2513
2514         exec_control = vmcs_config.cpu_based_exec_ctrl;
2515         if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
2516                 exec_control &= ~CPU_BASED_TPR_SHADOW;
2517 #ifdef CONFIG_X86_64
2518                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
2519                                 CPU_BASED_CR8_LOAD_EXITING;
2520 #endif
2521         }
2522         if (!enable_ept)
2523                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
2524                                 CPU_BASED_CR3_LOAD_EXITING  |
2525                                 CPU_BASED_INVLPG_EXITING;
2526         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
2527
2528         if (cpu_has_secondary_exec_ctrls()) {
2529                 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
2530                 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2531                         exec_control &=
2532                                 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
2533                 if (vmx->vpid == 0)
2534                         exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
2535                 if (!enable_ept) {
2536                         exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
2537                         enable_unrestricted_guest = 0;
2538                 }
2539                 if (!enable_unrestricted_guest)
2540                         exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2541                 if (!ple_gap)
2542                         exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
2543                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
2544         }
2545
2546         if (ple_gap) {
2547                 vmcs_write32(PLE_GAP, ple_gap);
2548                 vmcs_write32(PLE_WINDOW, ple_window);
2549         }
2550
2551         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
2552         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
2553         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
2554
2555         vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS);  /* 22.2.3 */
2556         vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
2557         vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
2558
2559         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
2560         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2561         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2562         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
2563         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
2564         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
2565 #ifdef CONFIG_X86_64
2566         rdmsrl(MSR_FS_BASE, a);
2567         vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
2568         rdmsrl(MSR_GS_BASE, a);
2569         vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
2570 #else
2571         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
2572         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
2573 #endif
2574
2575         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
2576
2577         native_store_idt(&dt);
2578         vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
2579
2580         asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
2581         vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
2582         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
2583         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2584         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
2585         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2586         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
2587
2588         rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
2589         vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
2590         rdmsrl(MSR_IA32_SYSENTER_ESP, a);
2591         vmcs_writel(HOST_IA32_SYSENTER_ESP, a);   /* 22.2.3 */
2592         rdmsrl(MSR_IA32_SYSENTER_EIP, a);
2593         vmcs_writel(HOST_IA32_SYSENTER_EIP, a);   /* 22.2.3 */
2594
2595         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
2596                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2597                 host_pat = msr_low | ((u64) msr_high << 32);
2598                 vmcs_write64(HOST_IA32_PAT, host_pat);
2599         }
2600         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2601                 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2602                 host_pat = msr_low | ((u64) msr_high << 32);
2603                 /* Write the default value follow host pat */
2604                 vmcs_write64(GUEST_IA32_PAT, host_pat);
2605                 /* Keep arch.pat sync with GUEST_IA32_PAT */
2606                 vmx->vcpu.arch.pat = host_pat;
2607         }
2608
2609         for (i = 0; i < NR_VMX_MSR; ++i) {
2610                 u32 index = vmx_msr_index[i];
2611                 u32 data_low, data_high;
2612                 int j = vmx->nmsrs;
2613
2614                 if (rdmsr_safe(index, &data_low, &data_high) < 0)
2615                         continue;
2616                 if (wrmsr_safe(index, data_low, data_high) < 0)
2617                         continue;
2618                 vmx->guest_msrs[j].index = i;
2619                 vmx->guest_msrs[j].data = 0;
2620                 vmx->guest_msrs[j].mask = -1ull;
2621                 ++vmx->nmsrs;
2622         }
2623
2624         vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
2625
2626         /* 22.2.1, 20.8.1 */
2627         vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
2628
2629         vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
2630         vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
2631         if (enable_ept)
2632                 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
2633         vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
2634
2635         kvm_write_tsc(&vmx->vcpu, 0);
2636
2637         return 0;
2638 }
2639
2640 static int init_rmode(struct kvm *kvm)
2641 {
2642         int idx, ret = 0;
2643
2644         idx = srcu_read_lock(&kvm->srcu);
2645         if (!init_rmode_tss(kvm))
2646                 goto exit;
2647         if (!init_rmode_identity_map(kvm))
2648                 goto exit;
2649
2650         ret = 1;
2651 exit:
2652         srcu_read_unlock(&kvm->srcu, idx);
2653         return ret;
2654 }
2655
2656 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
2657 {
2658         struct vcpu_vmx *vmx = to_vmx(vcpu);
2659         u64 msr;
2660         int ret;
2661
2662         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
2663         if (!init_rmode(vmx->vcpu.kvm)) {
2664                 ret = -ENOMEM;
2665                 goto out;
2666         }
2667
2668         vmx->rmode.vm86_active = 0;
2669
2670         vmx->soft_vnmi_blocked = 0;
2671
2672         vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2673         kvm_set_cr8(&vmx->vcpu, 0);
2674         msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
2675         if (kvm_vcpu_is_bsp(&vmx->vcpu))
2676                 msr |= MSR_IA32_APICBASE_BSP;
2677         kvm_set_apic_base(&vmx->vcpu, msr);
2678
2679         ret = fx_init(&vmx->vcpu);
2680         if (ret != 0)
2681                 goto out;
2682
2683         seg_setup(VCPU_SREG_CS);
2684         /*
2685          * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2686          * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4.  Sigh.
2687          */
2688         if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
2689                 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
2690                 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
2691         } else {
2692                 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
2693                 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
2694         }
2695
2696         seg_setup(VCPU_SREG_DS);
2697         seg_setup(VCPU_SREG_ES);
2698         seg_setup(VCPU_SREG_FS);
2699         seg_setup(VCPU_SREG_GS);
2700         seg_setup(VCPU_SREG_SS);
2701
2702         vmcs_write16(GUEST_TR_SELECTOR, 0);
2703         vmcs_writel(GUEST_TR_BASE, 0);
2704         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
2705         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2706
2707         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
2708         vmcs_writel(GUEST_LDTR_BASE, 0);
2709         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
2710         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
2711
2712         vmcs_write32(GUEST_SYSENTER_CS, 0);
2713         vmcs_writel(GUEST_SYSENTER_ESP, 0);
2714         vmcs_writel(GUEST_SYSENTER_EIP, 0);
2715
2716         vmcs_writel(GUEST_RFLAGS, 0x02);
2717         if (kvm_vcpu_is_bsp(&vmx->vcpu))
2718                 kvm_rip_write(vcpu, 0xfff0);
2719         else
2720                 kvm_rip_write(vcpu, 0);
2721         kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
2722
2723         vmcs_writel(GUEST_DR7, 0x400);
2724
2725         vmcs_writel(GUEST_GDTR_BASE, 0);
2726         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
2727
2728         vmcs_writel(GUEST_IDTR_BASE, 0);
2729         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
2730
2731         vmcs_write32(GUEST_ACTIVITY_STATE, 0);
2732         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
2733         vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
2734
2735         /* Special registers */
2736         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
2737
2738         setup_msrs(vmx);
2739
2740         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
2741
2742         if (cpu_has_vmx_tpr_shadow()) {
2743                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
2744                 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
2745                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
2746                                 page_to_phys(vmx->vcpu.arch.apic->regs_page));
2747                 vmcs_write32(TPR_THRESHOLD, 0);
2748         }
2749
2750         if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2751                 vmcs_write64(APIC_ACCESS_ADDR,
2752                              page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
2753
2754         if (vmx->vpid != 0)
2755                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2756
2757         vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
2758         vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
2759         vmx_set_cr4(&vmx->vcpu, 0);
2760         vmx_set_efer(&vmx->vcpu, 0);
2761         vmx_fpu_activate(&vmx->vcpu);
2762         update_exception_bitmap(&vmx->vcpu);
2763
2764         vpid_sync_context(vmx);
2765
2766         ret = 0;
2767
2768         /* HACK: Don't enable emulation on guest boot/reset */
2769         vmx->emulation_required = 0;
2770
2771 out:
2772         return ret;
2773 }
2774
2775 static void enable_irq_window(struct kvm_vcpu *vcpu)
2776 {
2777         u32 cpu_based_vm_exec_control;
2778
2779         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2780         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2781         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2782 }
2783
2784 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2785 {
2786         u32 cpu_based_vm_exec_control;
2787
2788         if (!cpu_has_virtual_nmis()) {
2789                 enable_irq_window(vcpu);
2790                 return;
2791         }
2792
2793         if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
2794                 enable_irq_window(vcpu);
2795                 return;
2796         }
2797         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2798         cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
2799         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2800 }
2801
2802 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
2803 {
2804         struct vcpu_vmx *vmx = to_vmx(vcpu);
2805         uint32_t intr;
2806         int irq = vcpu->arch.interrupt.nr;
2807
2808         trace_kvm_inj_virq(irq);
2809
2810         ++vcpu->stat.irq_injections;
2811         if (vmx->rmode.vm86_active) {
2812                 if (kvm_inject_realmode_interrupt(vcpu, irq) != EMULATE_DONE)
2813                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2814                 return;
2815         }
2816         intr = irq | INTR_INFO_VALID_MASK;
2817         if (vcpu->arch.interrupt.soft) {
2818                 intr |= INTR_TYPE_SOFT_INTR;
2819                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2820                              vmx->vcpu.arch.event_exit_inst_len);
2821         } else
2822                 intr |= INTR_TYPE_EXT_INTR;
2823         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
2824 }
2825
2826 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
2827 {
2828         struct vcpu_vmx *vmx = to_vmx(vcpu);
2829
2830         if (!cpu_has_virtual_nmis()) {
2831                 /*
2832                  * Tracking the NMI-blocked state in software is built upon
2833                  * finding the next open IRQ window. This, in turn, depends on
2834                  * well-behaving guests: They have to keep IRQs disabled at
2835                  * least as long as the NMI handler runs. Otherwise we may
2836                  * cause NMI nesting, maybe breaking the guest. But as this is
2837                  * highly unlikely, we can live with the residual risk.
2838                  */
2839                 vmx->soft_vnmi_blocked = 1;
2840                 vmx->vnmi_blocked_time = 0;
2841         }
2842
2843         ++vcpu->stat.nmi_injections;
2844         if (vmx->rmode.vm86_active) {
2845                 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR) != EMULATE_DONE)
2846                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2847                 return;
2848         }
2849         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2850                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
2851 }
2852
2853 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
2854 {
2855         if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
2856                 return 0;
2857
2858         return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2859                   (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
2860                    | GUEST_INTR_STATE_NMI));
2861 }
2862
2863 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
2864 {
2865         if (!cpu_has_virtual_nmis())
2866                 return to_vmx(vcpu)->soft_vnmi_blocked;
2867         return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
2868 }
2869
2870 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
2871 {
2872         struct vcpu_vmx *vmx = to_vmx(vcpu);
2873
2874         if (!cpu_has_virtual_nmis()) {
2875                 if (vmx->soft_vnmi_blocked != masked) {
2876                         vmx->soft_vnmi_blocked = masked;
2877                         vmx->vnmi_blocked_time = 0;
2878                 }
2879         } else {
2880                 if (masked)
2881                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
2882                                       GUEST_INTR_STATE_NMI);
2883                 else
2884                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
2885                                         GUEST_INTR_STATE_NMI);
2886         }
2887 }
2888
2889 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
2890 {
2891         return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2892                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2893                         (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
2894 }
2895
2896 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
2897 {
2898         int ret;
2899         struct kvm_userspace_memory_region tss_mem = {
2900                 .slot = TSS_PRIVATE_MEMSLOT,
2901                 .guest_phys_addr = addr,
2902                 .memory_size = PAGE_SIZE * 3,
2903                 .flags = 0,
2904         };
2905
2906         ret = kvm_set_memory_region(kvm, &tss_mem, 0);
2907         if (ret)
2908                 return ret;
2909         kvm->arch.tss_addr = addr;
2910         return 0;
2911 }
2912
2913 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
2914                                   int vec, u32 err_code)
2915 {
2916         /*
2917          * Instruction with address size override prefix opcode 0x67
2918          * Cause the #SS fault with 0 error code in VM86 mode.
2919          */
2920         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
2921                 if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE)
2922                         return 1;
2923         /*
2924          * Forward all other exceptions that are valid in real mode.
2925          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
2926          *        the required debugging infrastructure rework.
2927          */
2928         switch (vec) {
2929         case DB_VECTOR:
2930                 if (vcpu->guest_debug &
2931                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
2932                         return 0;
2933                 kvm_queue_exception(vcpu, vec);
2934                 return 1;
2935         case BP_VECTOR:
2936                 /*
2937                  * Update instruction length as we may reinject the exception
2938                  * from user space while in guest debugging mode.
2939                  */
2940                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
2941                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2942                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2943                         return 0;
2944                 /* fall through */
2945         case DE_VECTOR:
2946         case OF_VECTOR:
2947         case BR_VECTOR:
2948         case UD_VECTOR:
2949         case DF_VECTOR:
2950         case SS_VECTOR:
2951         case GP_VECTOR:
2952         case MF_VECTOR:
2953                 kvm_queue_exception(vcpu, vec);
2954                 return 1;
2955         }
2956         return 0;
2957 }
2958
2959 /*
2960  * Trigger machine check on the host. We assume all the MSRs are already set up
2961  * by the CPU and that we still run on the same CPU as the MCE occurred on.
2962  * We pass a fake environment to the machine check handler because we want
2963  * the guest to be always treated like user space, no matter what context
2964  * it used internally.
2965  */
2966 static void kvm_machine_check(void)
2967 {
2968 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
2969         struct pt_regs regs = {
2970                 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
2971                 .flags = X86_EFLAGS_IF,
2972         };
2973
2974         do_machine_check(&regs, 0);
2975 #endif
2976 }
2977
2978 static int handle_machine_check(struct kvm_vcpu *vcpu)
2979 {
2980         /* already handled by vcpu_run */
2981         return 1;
2982 }
2983
2984 static int handle_exception(struct kvm_vcpu *vcpu)
2985 {
2986         struct vcpu_vmx *vmx = to_vmx(vcpu);
2987         struct kvm_run *kvm_run = vcpu->run;
2988         u32 intr_info, ex_no, error_code;
2989         unsigned long cr2, rip, dr6;
2990         u32 vect_info;
2991         enum emulation_result er;
2992
2993         vect_info = vmx->idt_vectoring_info;
2994         intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2995
2996         if (is_machine_check(intr_info))
2997                 return handle_machine_check(vcpu);
2998
2999         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
3000             !is_page_fault(intr_info)) {
3001                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3002                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
3003                 vcpu->run->internal.ndata = 2;
3004                 vcpu->run->internal.data[0] = vect_info;
3005                 vcpu->run->internal.data[1] = intr_info;
3006                 return 0;
3007         }
3008
3009         if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
3010                 return 1;  /* already handled by vmx_vcpu_run() */
3011
3012         if (is_no_device(intr_info)) {
3013                 vmx_fpu_activate(vcpu);
3014                 return 1;
3015         }
3016
3017         if (is_invalid_opcode(intr_info)) {
3018                 er = emulate_instruction(vcpu, 0, 0, EMULTYPE_TRAP_UD);
3019                 if (er != EMULATE_DONE)
3020                         kvm_queue_exception(vcpu, UD_VECTOR);
3021                 return 1;
3022         }
3023
3024         error_code = 0;
3025         rip = kvm_rip_read(vcpu);
3026         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
3027                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
3028         if (is_page_fault(intr_info)) {
3029                 /* EPT won't cause page fault directly */
3030                 if (enable_ept)
3031                         BUG();
3032                 cr2 = vmcs_readl(EXIT_QUALIFICATION);
3033                 trace_kvm_page_fault(cr2, error_code);
3034
3035                 if (kvm_event_needs_reinjection(vcpu))
3036                         kvm_mmu_unprotect_page_virt(vcpu, cr2);
3037                 return kvm_mmu_page_fault(vcpu, cr2, error_code);
3038         }
3039
3040         if (vmx->rmode.vm86_active &&
3041             handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
3042                                                                 error_code)) {
3043                 if (vcpu->arch.halt_request) {
3044                         vcpu->arch.halt_request = 0;
3045                         return kvm_emulate_halt(vcpu);
3046                 }
3047                 return 1;
3048         }
3049
3050         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
3051         switch (ex_no) {
3052         case DB_VECTOR:
3053                 dr6 = vmcs_readl(EXIT_QUALIFICATION);
3054                 if (!(vcpu->guest_debug &
3055                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
3056                         vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
3057                         kvm_queue_exception(vcpu, DB_VECTOR);
3058                         return 1;
3059                 }
3060                 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
3061                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
3062                 /* fall through */
3063         case BP_VECTOR:
3064                 /*
3065                  * Update instruction length as we may reinject #BP from
3066                  * user space while in guest debugging mode. Reading it for
3067                  * #DB as well causes no harm, it is not used in that case.
3068                  */
3069                 vmx->vcpu.arch.event_exit_inst_len =
3070                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3071                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
3072                 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
3073                 kvm_run->debug.arch.exception = ex_no;
3074                 break;
3075         default:
3076                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
3077                 kvm_run->ex.exception = ex_no;
3078                 kvm_run->ex.error_code = error_code;
3079                 break;
3080         }
3081         return 0;
3082 }
3083
3084 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
3085 {
3086         ++vcpu->stat.irq_exits;
3087         return 1;
3088 }
3089
3090 static int handle_triple_fault(struct kvm_vcpu *vcpu)
3091 {
3092         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
3093         return 0;
3094 }
3095
3096 static int handle_io(struct kvm_vcpu *vcpu)
3097 {
3098         unsigned long exit_qualification;
3099         int size, in, string;
3100         unsigned port;
3101
3102         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3103         string = (exit_qualification & 16) != 0;
3104         in = (exit_qualification & 8) != 0;
3105
3106         ++vcpu->stat.io_exits;
3107
3108         if (string || in)
3109                 return emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE;
3110
3111         port = exit_qualification >> 16;
3112         size = (exit_qualification & 7) + 1;
3113         skip_emulated_instruction(vcpu);
3114
3115         return kvm_fast_pio_out(vcpu, size, port);
3116 }
3117
3118 static void
3119 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3120 {
3121         /*
3122          * Patch in the VMCALL instruction:
3123          */
3124         hypercall[0] = 0x0f;
3125         hypercall[1] = 0x01;
3126         hypercall[2] = 0xc1;
3127 }
3128
3129 static void complete_insn_gp(struct kvm_vcpu *vcpu, int err)
3130 {
3131         if (err)
3132                 kvm_inject_gp(vcpu, 0);
3133         else
3134                 skip_emulated_instruction(vcpu);
3135 }
3136
3137 static int handle_cr(struct kvm_vcpu *vcpu)
3138 {
3139         unsigned long exit_qualification, val;
3140         int cr;
3141         int reg;
3142         int err;
3143
3144         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3145         cr = exit_qualification & 15;
3146         reg = (exit_qualification >> 8) & 15;
3147         switch ((exit_qualification >> 4) & 3) {
3148         case 0: /* mov to cr */
3149                 val = kvm_register_read(vcpu, reg);
3150                 trace_kvm_cr_write(cr, val);
3151                 switch (cr) {
3152                 case 0:
3153                         err = kvm_set_cr0(vcpu, val);
3154                         complete_insn_gp(vcpu, err);
3155                         return 1;
3156                 case 3:
3157                         err = kvm_set_cr3(vcpu, val);
3158                         complete_insn_gp(vcpu, err);
3159                         return 1;
3160                 case 4:
3161                         err = kvm_set_cr4(vcpu, val);
3162                         complete_insn_gp(vcpu, err);
3163                         return 1;
3164                 case 8: {
3165                                 u8 cr8_prev = kvm_get_cr8(vcpu);
3166                                 u8 cr8 = kvm_register_read(vcpu, reg);
3167                                 kvm_set_cr8(vcpu, cr8);
3168                                 skip_emulated_instruction(vcpu);
3169                                 if (irqchip_in_kernel(vcpu->kvm))
3170                                         return 1;
3171                                 if (cr8_prev <= cr8)
3172                                         return 1;
3173                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
3174                                 return 0;
3175                         }
3176                 };
3177                 break;
3178         case 2: /* clts */
3179                 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
3180                 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
3181                 skip_emulated_instruction(vcpu);
3182                 vmx_fpu_activate(vcpu);
3183                 return 1;
3184         case 1: /*mov from cr*/
3185                 switch (cr) {
3186                 case 3:
3187                         kvm_register_write(vcpu, reg, vcpu->arch.cr3);
3188                         trace_kvm_cr_read(cr, vcpu->arch.cr3);
3189                         skip_emulated_instruction(vcpu);
3190                         return 1;
3191                 case 8:
3192                         val = kvm_get_cr8(vcpu);
3193                         kvm_register_write(vcpu, reg, val);
3194                         trace_kvm_cr_read(cr, val);
3195                         skip_emulated_instruction(vcpu);
3196                         return 1;
3197                 }
3198                 break;
3199         case 3: /* lmsw */
3200                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
3201                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
3202                 kvm_lmsw(vcpu, val);
3203
3204                 skip_emulated_instruction(vcpu);
3205                 return 1;
3206         default:
3207                 break;
3208         }
3209         vcpu->run->exit_reason = 0;
3210         pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
3211                (int)(exit_qualification >> 4) & 3, cr);
3212         return 0;
3213 }
3214
3215 static int handle_dr(struct kvm_vcpu *vcpu)
3216 {
3217         unsigned long exit_qualification;
3218         int dr, reg;
3219
3220         /* Do not handle if the CPL > 0, will trigger GP on re-entry */
3221         if (!kvm_require_cpl(vcpu, 0))
3222                 return 1;
3223         dr = vmcs_readl(GUEST_DR7);
3224         if (dr & DR7_GD) {
3225                 /*
3226                  * As the vm-exit takes precedence over the debug trap, we
3227                  * need to emulate the latter, either for the host or the
3228                  * guest debugging itself.
3229                  */
3230                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
3231                         vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
3232                         vcpu->run->debug.arch.dr7 = dr;
3233                         vcpu->run->debug.arch.pc =
3234                                 vmcs_readl(GUEST_CS_BASE) +
3235                                 vmcs_readl(GUEST_RIP);
3236                         vcpu->run->debug.arch.exception = DB_VECTOR;
3237                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
3238                         return 0;
3239                 } else {
3240                         vcpu->arch.dr7 &= ~DR7_GD;
3241                         vcpu->arch.dr6 |= DR6_BD;
3242                         vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
3243                         kvm_queue_exception(vcpu, DB_VECTOR);
3244                         return 1;
3245                 }
3246         }
3247
3248         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3249         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
3250         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
3251         if (exit_qualification & TYPE_MOV_FROM_DR) {
3252                 unsigned long val;
3253                 if (!kvm_get_dr(vcpu, dr, &val))
3254                         kvm_register_write(vcpu, reg, val);
3255         } else
3256                 kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
3257         skip_emulated_instruction(vcpu);
3258         return 1;
3259 }
3260
3261 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
3262 {
3263         vmcs_writel(GUEST_DR7, val);
3264 }
3265
3266 static int handle_cpuid(struct kvm_vcpu *vcpu)
3267 {
3268         kvm_emulate_cpuid(vcpu);
3269         return 1;
3270 }
3271
3272 static int handle_rdmsr(struct kvm_vcpu *vcpu)
3273 {
3274         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3275         u64 data;
3276
3277         if (vmx_get_msr(vcpu, ecx, &data)) {
3278                 trace_kvm_msr_read_ex(ecx);
3279                 kvm_inject_gp(vcpu, 0);
3280                 return 1;
3281         }
3282
3283         trace_kvm_msr_read(ecx, data);
3284
3285         /* FIXME: handling of bits 32:63 of rax, rdx */
3286         vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
3287         vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
3288         skip_emulated_instruction(vcpu);
3289         return 1;
3290 }
3291
3292 static int handle_wrmsr(struct kvm_vcpu *vcpu)
3293 {
3294         u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3295         u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
3296                 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
3297
3298         if (vmx_set_msr(vcpu, ecx, data) != 0) {
3299                 trace_kvm_msr_write_ex(ecx, data);
3300                 kvm_inject_gp(vcpu, 0);
3301                 return 1;
3302         }
3303
3304         trace_kvm_msr_write(ecx, data);
3305         skip_emulated_instruction(vcpu);
3306         return 1;
3307 }
3308
3309 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
3310 {
3311         kvm_make_request(KVM_REQ_EVENT, vcpu);
3312         return 1;
3313 }
3314
3315 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
3316 {
3317         u32 cpu_based_vm_exec_control;
3318
3319         /* clear pending irq */
3320         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3321         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
3322         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3323
3324         kvm_make_request(KVM_REQ_EVENT, vcpu);
3325
3326         ++vcpu->stat.irq_window_exits;
3327
3328         /*
3329          * If the user space waits to inject interrupts, exit as soon as
3330          * possible
3331          */
3332         if (!irqchip_in_kernel(vcpu->kvm) &&
3333             vcpu->run->request_interrupt_window &&
3334             !kvm_cpu_has_interrupt(vcpu)) {
3335                 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3336                 return 0;
3337         }
3338         return 1;
3339 }
3340
3341 static int handle_halt(struct kvm_vcpu *vcpu)
3342 {
3343         skip_emulated_instruction(vcpu);
3344         return kvm_emulate_halt(vcpu);
3345 }
3346
3347 static int handle_vmcall(struct kvm_vcpu *vcpu)
3348 {
3349         skip_emulated_instruction(vcpu);
3350         kvm_emulate_hypercall(vcpu);
3351         return 1;
3352 }
3353
3354 static int handle_vmx_insn(struct kvm_vcpu *vcpu)
3355 {
3356         kvm_queue_exception(vcpu, UD_VECTOR);
3357         return 1;
3358 }
3359
3360 static int handle_invd(struct kvm_vcpu *vcpu)
3361 {
3362         return emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE;
3363 }
3364
3365 static int handle_invlpg(struct kvm_vcpu *vcpu)
3366 {
3367         unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3368
3369         kvm_mmu_invlpg(vcpu, exit_qualification);
3370         skip_emulated_instruction(vcpu);
3371         return 1;
3372 }
3373
3374 static int handle_wbinvd(struct kvm_vcpu *vcpu)
3375 {
3376         skip_emulated_instruction(vcpu);
3377         kvm_emulate_wbinvd(vcpu);
3378         return 1;
3379 }
3380
3381 static int handle_xsetbv(struct kvm_vcpu *vcpu)
3382 {
3383         u64 new_bv = kvm_read_edx_eax(vcpu);
3384         u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
3385
3386         if (kvm_set_xcr(vcpu, index, new_bv) == 0)
3387                 skip_emulated_instruction(vcpu);
3388         return 1;
3389 }
3390
3391 static int handle_apic_access(struct kvm_vcpu *vcpu)
3392 {
3393         return emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE;
3394 }
3395
3396 static int handle_task_switch(struct kvm_vcpu *vcpu)
3397 {
3398         struct vcpu_vmx *vmx = to_vmx(vcpu);
3399         unsigned long exit_qualification;
3400         bool has_error_code = false;
3401         u32 error_code = 0;
3402         u16 tss_selector;
3403         int reason, type, idt_v;
3404
3405         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
3406         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
3407
3408         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3409
3410         reason = (u32)exit_qualification >> 30;
3411         if (reason == TASK_SWITCH_GATE && idt_v) {
3412                 switch (type) {
3413                 case INTR_TYPE_NMI_INTR:
3414                         vcpu->arch.nmi_injected = false;
3415                         if (cpu_has_virtual_nmis())
3416                                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3417                                               GUEST_INTR_STATE_NMI);
3418                         break;
3419                 case INTR_TYPE_EXT_INTR:
3420                 case INTR_TYPE_SOFT_INTR:
3421                         kvm_clear_interrupt_queue(vcpu);
3422                         break;
3423                 case INTR_TYPE_HARD_EXCEPTION:
3424                         if (vmx->idt_vectoring_info &
3425                             VECTORING_INFO_DELIVER_CODE_MASK) {
3426                                 has_error_code = true;
3427                                 error_code =
3428                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
3429                         }
3430                         /* fall through */
3431                 case INTR_TYPE_SOFT_EXCEPTION:
3432                         kvm_clear_exception_queue(vcpu);
3433                         break;
3434                 default:
3435                         break;
3436                 }
3437         }
3438         tss_selector = exit_qualification;
3439
3440         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
3441                        type != INTR_TYPE_EXT_INTR &&
3442                        type != INTR_TYPE_NMI_INTR))
3443                 skip_emulated_instruction(vcpu);
3444
3445         if (kvm_task_switch(vcpu, tss_selector, reason,
3446                                 has_error_code, error_code) == EMULATE_FAIL) {
3447                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3448                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3449                 vcpu->run->internal.ndata = 0;
3450                 return 0;
3451         }
3452
3453         /* clear all local breakpoint enable flags */
3454         vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
3455
3456         /*
3457          * TODO: What about debug traps on tss switch?
3458          *       Are we supposed to inject them and update dr6?
3459          */
3460
3461         return 1;
3462 }
3463
3464 static int handle_ept_violation(struct kvm_vcpu *vcpu)
3465 {
3466         unsigned long exit_qualification;
3467         gpa_t gpa;
3468         int gla_validity;
3469
3470         exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3471
3472         if (exit_qualification & (1 << 6)) {
3473                 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
3474                 return -EINVAL;
3475         }
3476
3477         gla_validity = (exit_qualification >> 7) & 0x3;
3478         if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
3479                 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
3480                 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
3481                         (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
3482                         vmcs_readl(GUEST_LINEAR_ADDRESS));
3483                 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
3484                         (long unsigned int)exit_qualification);
3485                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3486                 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
3487                 return 0;
3488         }
3489
3490         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3491         trace_kvm_page_fault(gpa, exit_qualification);
3492         return kvm_mmu_page_fault(vcpu, gpa, exit_qualification & 0x3);
3493 }
3494
3495 static u64 ept_rsvd_mask(u64 spte, int level)
3496 {
3497         int i;
3498         u64 mask = 0;
3499
3500         for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
3501                 mask |= (1ULL << i);
3502
3503         if (level > 2)
3504                 /* bits 7:3 reserved */
3505                 mask |= 0xf8;
3506         else if (level == 2) {
3507                 if (spte & (1ULL << 7))
3508                         /* 2MB ref, bits 20:12 reserved */
3509                         mask |= 0x1ff000;
3510                 else
3511                         /* bits 6:3 reserved */
3512                         mask |= 0x78;
3513         }
3514
3515         return mask;
3516 }
3517
3518 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
3519                                        int level)
3520 {
3521         printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
3522
3523         /* 010b (write-only) */
3524         WARN_ON((spte & 0x7) == 0x2);
3525
3526         /* 110b (write/execute) */
3527         WARN_ON((spte & 0x7) == 0x6);
3528
3529         /* 100b (execute-only) and value not supported by logical processor */
3530         if (!cpu_has_vmx_ept_execute_only())
3531                 WARN_ON((spte & 0x7) == 0x4);
3532
3533         /* not 000b */
3534         if ((spte & 0x7)) {
3535                 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
3536
3537                 if (rsvd_bits != 0) {
3538                         printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
3539                                          __func__, rsvd_bits);
3540                         WARN_ON(1);
3541                 }
3542
3543                 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
3544                         u64 ept_mem_type = (spte & 0x38) >> 3;
3545
3546                         if (ept_mem_type == 2 || ept_mem_type == 3 ||
3547                             ept_mem_type == 7) {
3548                                 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
3549                                                 __func__, ept_mem_type);
3550                                 WARN_ON(1);
3551                         }
3552                 }
3553         }
3554 }
3555
3556 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
3557 {
3558         u64 sptes[4];
3559         int nr_sptes, i;
3560         gpa_t gpa;
3561
3562         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3563
3564         printk(KERN_ERR "EPT: Misconfiguration.\n");
3565         printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
3566
3567         nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
3568
3569         for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
3570                 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
3571
3572         vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3573         vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
3574
3575         return 0;
3576 }
3577
3578 static int handle_nmi_window(struct kvm_vcpu *vcpu)
3579 {
3580         u32 cpu_based_vm_exec_control;
3581
3582         /* clear pending NMI */
3583         cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3584         cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
3585         vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3586         ++vcpu->stat.nmi_window_exits;
3587         kvm_make_request(KVM_REQ_EVENT, vcpu);
3588
3589         return 1;
3590 }
3591
3592 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
3593 {
3594         struct vcpu_vmx *vmx = to_vmx(vcpu);
3595         enum emulation_result err = EMULATE_DONE;
3596         int ret = 1;
3597         u32 cpu_exec_ctrl;
3598         bool intr_window_requested;
3599
3600         cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3601         intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
3602
3603         while (!guest_state_valid(vcpu)) {
3604                 if (intr_window_requested
3605                     && (kvm_get_rflags(&vmx->vcpu) & X86_EFLAGS_IF))
3606                         return handle_interrupt_window(&vmx->vcpu);
3607
3608                 err = emulate_instruction(vcpu, 0, 0, 0);
3609
3610                 if (err == EMULATE_DO_MMIO) {
3611                         ret = 0;
3612                         goto out;
3613                 }
3614
3615                 if (err != EMULATE_DONE)
3616                         return 0;
3617
3618                 if (signal_pending(current))
3619                         goto out;
3620                 if (need_resched())
3621                         schedule();
3622         }
3623
3624         vmx->emulation_required = 0;
3625 out:
3626         return ret;
3627 }
3628
3629 /*
3630  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
3631  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
3632  */
3633 static int handle_pause(struct kvm_vcpu *vcpu)
3634 {
3635         skip_emulated_instruction(vcpu);
3636         kvm_vcpu_on_spin(vcpu);
3637
3638         return 1;
3639 }
3640
3641 static int handle_invalid_op(struct kvm_vcpu *vcpu)
3642 {
3643         kvm_queue_exception(vcpu, UD_VECTOR);
3644         return 1;
3645 }
3646
3647 /*
3648  * The exit handlers return 1 if the exit was handled fully and guest execution
3649  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
3650  * to be done to userspace and return 0.
3651  */
3652 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3653         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
3654         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
3655         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
3656         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
3657         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
3658         [EXIT_REASON_CR_ACCESS]               = handle_cr,
3659         [EXIT_REASON_DR_ACCESS]               = handle_dr,
3660         [EXIT_REASON_CPUID]                   = handle_cpuid,
3661         [EXIT_REASON_MSR_READ]                = handle_rdmsr,
3662         [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
3663         [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
3664         [EXIT_REASON_HLT]                     = handle_halt,
3665         [EXIT_REASON_INVD]                    = handle_invd,
3666         [EXIT_REASON_INVLPG]                  = handle_invlpg,
3667         [EXIT_REASON_VMCALL]                  = handle_vmcall,
3668         [EXIT_REASON_VMCLEAR]                 = handle_vmx_insn,
3669         [EXIT_REASON_VMLAUNCH]                = handle_vmx_insn,
3670         [EXIT_REASON_VMPTRLD]                 = handle_vmx_insn,
3671         [EXIT_REASON_VMPTRST]                 = handle_vmx_insn,
3672         [EXIT_REASON_VMREAD]                  = handle_vmx_insn,
3673         [EXIT_REASON_VMRESUME]                = handle_vmx_insn,
3674         [EXIT_REASON_VMWRITE]                 = handle_vmx_insn,
3675         [EXIT_REASON_VMOFF]                   = handle_vmx_insn,
3676         [EXIT_REASON_VMON]                    = handle_vmx_insn,
3677         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
3678         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
3679         [EXIT_REASON_WBINVD]                  = handle_wbinvd,
3680         [EXIT_REASON_XSETBV]                  = handle_xsetbv,
3681         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
3682         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
3683         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
3684         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
3685         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
3686         [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_invalid_op,
3687         [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_invalid_op,
3688 };
3689
3690 static const int kvm_vmx_max_exit_handlers =
3691         ARRAY_SIZE(kvm_vmx_exit_handlers);
3692
3693 /*
3694  * The guest has exited.  See if we can fix it or if we need userspace
3695  * assistance.
3696  */
3697 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
3698 {
3699         struct vcpu_vmx *vmx = to_vmx(vcpu);
3700         u32 exit_reason = vmx->exit_reason;
3701         u32 vectoring_info = vmx->idt_vectoring_info;
3702
3703         trace_kvm_exit(exit_reason, vcpu);
3704
3705         /* If guest state is invalid, start emulating */
3706         if (vmx->emulation_required && emulate_invalid_guest_state)
3707                 return handle_invalid_guest_state(vcpu);
3708
3709         /* Access CR3 don't cause VMExit in paging mode, so we need
3710          * to sync with guest real CR3. */
3711         if (enable_ept && is_paging(vcpu))
3712                 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3713
3714         if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
3715                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3716                 vcpu->run->fail_entry.hardware_entry_failure_reason
3717                         = exit_reason;
3718                 return 0;
3719         }
3720
3721         if (unlikely(vmx->fail)) {
3722                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3723                 vcpu->run->fail_entry.hardware_entry_failure_reason
3724                         = vmcs_read32(VM_INSTRUCTION_ERROR);
3725                 return 0;
3726         }
3727
3728         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
3729                         (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
3730                         exit_reason != EXIT_REASON_EPT_VIOLATION &&
3731                         exit_reason != EXIT_REASON_TASK_SWITCH))
3732                 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
3733                        "(0x%x) and exit reason is 0x%x\n",
3734                        __func__, vectoring_info, exit_reason);
3735
3736         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
3737                 if (vmx_interrupt_allowed(vcpu)) {
3738                         vmx->soft_vnmi_blocked = 0;
3739                 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
3740                            vcpu->arch.nmi_pending) {
3741                         /*
3742                          * This CPU don't support us in finding the end of an
3743                          * NMI-blocked window if the guest runs with IRQs
3744                          * disabled. So we pull the trigger after 1 s of
3745                          * futile waiting, but inform the user about this.
3746                          */
3747                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
3748                                "state on VCPU %d after 1 s timeout\n",
3749                                __func__, vcpu->vcpu_id);
3750                         vmx->soft_vnmi_blocked = 0;
3751                 }
3752         }
3753
3754         if (exit_reason < kvm_vmx_max_exit_handlers
3755             && kvm_vmx_exit_handlers[exit_reason])
3756                 return kvm_vmx_exit_handlers[exit_reason](vcpu);
3757         else {
3758                 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3759                 vcpu->run->hw.hardware_exit_reason = exit_reason;
3760         }
3761         return 0;
3762 }
3763
3764 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3765 {
3766         if (irr == -1 || tpr < irr) {
3767                 vmcs_write32(TPR_THRESHOLD, 0);
3768                 return;
3769         }
3770
3771         vmcs_write32(TPR_THRESHOLD, irr);
3772 }
3773
3774 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
3775 {
3776         u32 exit_intr_info = vmx->exit_intr_info;
3777
3778         /* Handle machine checks before interrupts are enabled */
3779         if ((vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
3780             || (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI
3781                 && is_machine_check(exit_intr_info)))
3782                 kvm_machine_check();
3783
3784         /* We need to handle NMIs before interrupts are enabled */
3785         if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
3786             (exit_intr_info & INTR_INFO_VALID_MASK)) {
3787                 kvm_before_handle_nmi(&vmx->vcpu);
3788                 asm("int $2");
3789                 kvm_after_handle_nmi(&vmx->vcpu);
3790         }
3791 }
3792
3793 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
3794 {
3795         u32 exit_intr_info = vmx->exit_intr_info;
3796         bool unblock_nmi;
3797         u8 vector;
3798         bool idtv_info_valid;
3799
3800         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
3801
3802         if (cpu_has_virtual_nmis()) {
3803                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
3804                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
3805                 /*
3806                  * SDM 3: 27.7.1.2 (September 2008)
3807                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
3808                  * a guest IRET fault.
3809                  * SDM 3: 23.2.2 (September 2008)
3810                  * Bit 12 is undefined in any of the following cases:
3811                  *  If the VM exit sets the valid bit in the IDT-vectoring
3812                  *   information field.
3813                  *  If the VM exit is due to a double fault.
3814                  */
3815                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
3816                     vector != DF_VECTOR && !idtv_info_valid)
3817                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3818                                       GUEST_INTR_STATE_NMI);
3819         } else if (unlikely(vmx->soft_vnmi_blocked))
3820                 vmx->vnmi_blocked_time +=
3821                         ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
3822 }
3823
3824 static void __vmx_complete_interrupts(struct vcpu_vmx *vmx,
3825                                       u32 idt_vectoring_info,
3826                                       int instr_len_field,
3827                                       int error_code_field)
3828 {
3829         u8 vector;
3830         int type;
3831         bool idtv_info_valid;
3832
3833         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
3834
3835         vmx->vcpu.arch.nmi_injected = false;
3836         kvm_clear_exception_queue(&vmx->vcpu);
3837         kvm_clear_interrupt_queue(&vmx->vcpu);
3838
3839         if (!idtv_info_valid)
3840                 return;
3841
3842         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
3843
3844         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
3845         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
3846
3847         switch (type) {
3848         case INTR_TYPE_NMI_INTR:
3849                 vmx->vcpu.arch.nmi_injected = true;
3850                 /*
3851                  * SDM 3: 27.7.1.2 (September 2008)
3852                  * Clear bit "block by NMI" before VM entry if a NMI
3853                  * delivery faulted.
3854                  */
3855                 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
3856                                 GUEST_INTR_STATE_NMI);
3857                 break;
3858         case INTR_TYPE_SOFT_EXCEPTION:
3859                 vmx->vcpu.arch.event_exit_inst_len =
3860                         vmcs_read32(instr_len_field);
3861                 /* fall through */
3862         case INTR_TYPE_HARD_EXCEPTION:
3863                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
3864                         u32 err = vmcs_read32(error_code_field);
3865                         kvm_queue_exception_e(&vmx->vcpu, vector, err);
3866                 } else
3867                         kvm_queue_exception(&vmx->vcpu, vector);
3868                 break;
3869         case INTR_TYPE_SOFT_INTR:
3870                 vmx->vcpu.arch.event_exit_inst_len =
3871                         vmcs_read32(instr_len_field);
3872                 /* fall through */
3873         case INTR_TYPE_EXT_INTR:
3874                 kvm_queue_interrupt(&vmx->vcpu, vector,
3875                         type == INTR_TYPE_SOFT_INTR);
3876                 break;
3877         default:
3878                 break;
3879         }
3880 }
3881
3882 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
3883 {
3884         __vmx_complete_interrupts(vmx, vmx->idt_vectoring_info,
3885                                   VM_EXIT_INSTRUCTION_LEN,
3886                                   IDT_VECTORING_ERROR_CODE);
3887 }
3888
3889 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
3890 {
3891         __vmx_complete_interrupts(to_vmx(vcpu),
3892                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
3893                                   VM_ENTRY_INSTRUCTION_LEN,
3894                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
3895
3896         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
3897 }
3898
3899 #ifdef CONFIG_X86_64
3900 #define R "r"
3901 #define Q "q"
3902 #else
3903 #define R "e"
3904 #define Q "l"
3905 #endif
3906
3907 /*
3908  * We put this into a separate noinline function to prevent the compiler
3909  * from duplicating the code. This is needed because this code
3910  * uses non local labels that cannot be duplicated.
3911  * Do not put any flow control into this function.
3912  * Better would be to put this whole monstrosity into a .S file.
3913  */
3914 static void noinline do_vmx_vcpu_run(struct kvm_vcpu *vcpu)
3915 {
3916         struct vcpu_vmx *vmx = to_vmx(vcpu);
3917         asm volatile(
3918                 /* Store host registers */
3919                 "push %%"R"dx; push %%"R"bp;"
3920                 "push %%"R"cx \n\t"
3921                 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
3922                 "je 1f \n\t"
3923                 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
3924                 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
3925                 "1: \n\t"
3926                 /* Reload cr2 if changed */
3927                 "mov %c[cr2](%0), %%"R"ax \n\t"
3928                 "mov %%cr2, %%"R"dx \n\t"
3929                 "cmp %%"R"ax, %%"R"dx \n\t"
3930                 "je 2f \n\t"
3931                 "mov %%"R"ax, %%cr2 \n\t"
3932                 "2: \n\t"
3933                 /* Check if vmlaunch of vmresume is needed */
3934                 "cmpl $0, %c[launched](%0) \n\t"
3935                 /* Load guest registers.  Don't clobber flags. */
3936                 "mov %c[rax](%0), %%"R"ax \n\t"
3937                 "mov %c[rbx](%0), %%"R"bx \n\t"
3938                 "mov %c[rdx](%0), %%"R"dx \n\t"
3939                 "mov %c[rsi](%0), %%"R"si \n\t"
3940                 "mov %c[rdi](%0), %%"R"di \n\t"
3941                 "mov %c[rbp](%0), %%"R"bp \n\t"
3942 #ifdef CONFIG_X86_64
3943                 "mov %c[r8](%0),  %%r8  \n\t"
3944                 "mov %c[r9](%0),  %%r9  \n\t"
3945                 "mov %c[r10](%0), %%r10 \n\t"
3946                 "mov %c[r11](%0), %%r11 \n\t"
3947                 "mov %c[r12](%0), %%r12 \n\t"
3948                 "mov %c[r13](%0), %%r13 \n\t"
3949                 "mov %c[r14](%0), %%r14 \n\t"
3950                 "mov %c[r15](%0), %%r15 \n\t"
3951 #endif
3952                 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
3953
3954                 /* Enter guest mode */
3955                 "jne .Llaunched \n\t"
3956                 __ex(ASM_VMX_VMLAUNCH) "\n\t"
3957                 "jmp .Lkvm_vmx_return \n\t"
3958                 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
3959                 ".Lkvm_vmx_return: "
3960                 /* Save guest registers, load host registers, keep flags */
3961                 "xchg %0,     (%%"R"sp) \n\t"
3962                 "mov %%"R"ax, %c[rax](%0) \n\t"
3963                 "mov %%"R"bx, %c[rbx](%0) \n\t"
3964                 "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
3965                 "mov %%"R"dx, %c[rdx](%0) \n\t"
3966                 "mov %%"R"si, %c[rsi](%0) \n\t"
3967                 "mov %%"R"di, %c[rdi](%0) \n\t"
3968                 "mov %%"R"bp, %c[rbp](%0) \n\t"
3969 #ifdef CONFIG_X86_64
3970                 "mov %%r8,  %c[r8](%0) \n\t"
3971                 "mov %%r9,  %c[r9](%0) \n\t"
3972                 "mov %%r10, %c[r10](%0) \n\t"
3973                 "mov %%r11, %c[r11](%0) \n\t"
3974                 "mov %%r12, %c[r12](%0) \n\t"
3975                 "mov %%r13, %c[r13](%0) \n\t"
3976                 "mov %%r14, %c[r14](%0) \n\t"
3977                 "mov %%r15, %c[r15](%0) \n\t"
3978 #endif
3979                 "mov %%cr2, %%"R"ax   \n\t"
3980                 "mov %%"R"ax, %c[cr2](%0) \n\t"
3981
3982                 "pop  %%"R"bp; pop  %%"R"bp; pop  %%"R"dx \n\t"
3983                 "setbe %c[fail](%0) \n\t"
3984               : : "c"(vmx), "d"((unsigned long)HOST_RSP),
3985                 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
3986                 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
3987                 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
3988                 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
3989                 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
3990                 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
3991                 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
3992                 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
3993                 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
3994                 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
3995 #ifdef CONFIG_X86_64
3996                 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
3997                 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
3998                 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
3999                 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
4000                 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
4001                 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
4002                 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
4003                 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
4004 #endif
4005                 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
4006               : "cc", "memory"
4007                 , R"ax", R"bx", R"di", R"si"
4008 #ifdef CONFIG_X86_64
4009                 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
4010 #endif
4011               );
4012 }
4013
4014 static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
4015 {
4016         struct vcpu_vmx *vmx = to_vmx(vcpu);
4017
4018         /* Record the guest's net vcpu time for enforced NMI injections. */
4019         if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
4020                 vmx->entry_time = ktime_get();
4021
4022         /* Don't enter VMX if guest state is invalid, let the exit handler
4023            start emulation until we arrive back to a valid state */
4024         if (vmx->emulation_required && emulate_invalid_guest_state)
4025                 return;
4026
4027         if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
4028                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
4029         if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
4030                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
4031
4032         /* When single-stepping over STI and MOV SS, we must clear the
4033          * corresponding interruptibility bits in the guest state. Otherwise
4034          * vmentry fails as it then expects bit 14 (BS) in pending debug
4035          * exceptions being set, but that's not correct for the guest debugging
4036          * case. */
4037         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
4038                 vmx_set_interrupt_shadow(vcpu, 0);
4039
4040         do_vmx_vcpu_run(vcpu);
4041
4042         vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
4043                                   | (1 << VCPU_EXREG_PDPTR));
4044         vcpu->arch.regs_dirty = 0;
4045
4046         vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
4047
4048         asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
4049         vmx->launched = 1;
4050
4051         vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
4052         vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
4053
4054         vmx_complete_atomic_exit(vmx);
4055         vmx_recover_nmi_blocking(vmx);
4056         vmx_complete_interrupts(vmx);
4057 }
4058
4059 #undef R
4060 #undef Q
4061
4062 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
4063 {
4064         struct vcpu_vmx *vmx = to_vmx(vcpu);
4065
4066         if (vmx->vmcs) {
4067                 vcpu_clear(vmx);
4068                 free_vmcs(vmx->vmcs);
4069                 vmx->vmcs = NULL;
4070         }
4071 }
4072
4073 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
4074 {
4075         struct vcpu_vmx *vmx = to_vmx(vcpu);
4076
4077         free_vpid(vmx);
4078         vmx_free_vmcs(vcpu);
4079         kfree(vmx->guest_msrs);
4080         kvm_vcpu_uninit(vcpu);
4081         kmem_cache_free(kvm_vcpu_cache, vmx);
4082 }
4083
4084 static inline void vmcs_init(struct vmcs *vmcs)
4085 {
4086         u64 phys_addr = __pa(per_cpu(vmxarea, raw_smp_processor_id()));
4087
4088         if (!vmm_exclusive)
4089                 kvm_cpu_vmxon(phys_addr);
4090
4091         vmcs_clear(vmcs);
4092
4093         if (!vmm_exclusive)
4094                 kvm_cpu_vmxoff();
4095 }
4096
4097 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
4098 {
4099         int err;
4100         struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
4101         int cpu;
4102
4103         if (!vmx)
4104                 return ERR_PTR(-ENOMEM);
4105
4106         allocate_vpid(vmx);
4107
4108         err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
4109         if (err)
4110                 goto free_vcpu;
4111
4112         vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
4113         if (!vmx->guest_msrs) {
4114                 err = -ENOMEM;
4115                 goto uninit_vcpu;
4116         }
4117
4118         vmx->vmcs = alloc_vmcs();
4119         if (!vmx->vmcs)
4120                 goto free_msrs;
4121
4122         vmcs_init(vmx->vmcs);
4123
4124         cpu = get_cpu();
4125         vmx_vcpu_load(&vmx->vcpu, cpu);
4126         vmx->vcpu.cpu = cpu;
4127         err = vmx_vcpu_setup(vmx);
4128         vmx_vcpu_put(&vmx->vcpu);
4129         put_cpu();
4130         if (err)
4131                 goto free_vmcs;
4132         if (vm_need_virtualize_apic_accesses(kvm))
4133                 if (alloc_apic_access_page(kvm) != 0)
4134                         goto free_vmcs;
4135
4136         if (enable_ept) {
4137                 if (!kvm->arch.ept_identity_map_addr)
4138                         kvm->arch.ept_identity_map_addr =
4139                                 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
4140                 if (alloc_identity_pagetable(kvm) != 0)
4141                         goto free_vmcs;
4142         }
4143
4144         return &vmx->vcpu;
4145
4146 free_vmcs:
4147         free_vmcs(vmx->vmcs);
4148 free_msrs:
4149         kfree(vmx->guest_msrs);
4150 uninit_vcpu:
4151         kvm_vcpu_uninit(&vmx->vcpu);
4152 free_vcpu:
4153         free_vpid(vmx);
4154         kmem_cache_free(kvm_vcpu_cache, vmx);
4155         return ERR_PTR(err);
4156 }
4157
4158 static void __init vmx_check_processor_compat(void *rtn)
4159 {
4160         struct vmcs_config vmcs_conf;
4161
4162         *(int *)rtn = 0;
4163         if (setup_vmcs_config(&vmcs_conf) < 0)
4164                 *(int *)rtn = -EIO;
4165         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
4166                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
4167                                 smp_processor_id());
4168                 *(int *)rtn = -EIO;
4169         }
4170 }
4171
4172 static int get_ept_level(void)
4173 {
4174         return VMX_EPT_DEFAULT_GAW + 1;
4175 }
4176
4177 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
4178 {
4179         u64 ret;
4180
4181         /* For VT-d and EPT combination
4182          * 1. MMIO: always map as UC
4183          * 2. EPT with VT-d:
4184          *   a. VT-d without snooping control feature: can't guarantee the
4185          *      result, try to trust guest.
4186          *   b. VT-d with snooping control feature: snooping control feature of
4187          *      VT-d engine can guarantee the cache correctness. Just set it
4188          *      to WB to keep consistent with host. So the same as item 3.
4189          * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
4190          *    consistent with host MTRR
4191          */
4192         if (is_mmio)
4193                 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
4194         else if (vcpu->kvm->arch.iommu_domain &&
4195                 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
4196                 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
4197                       VMX_EPT_MT_EPTE_SHIFT;
4198         else
4199                 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
4200                         | VMX_EPT_IPAT_BIT;
4201
4202         return ret;
4203 }
4204
4205 #define _ER(x) { EXIT_REASON_##x, #x }
4206
4207 static const struct trace_print_flags vmx_exit_reasons_str[] = {
4208         _ER(EXCEPTION_NMI),
4209         _ER(EXTERNAL_INTERRUPT),
4210         _ER(TRIPLE_FAULT),
4211         _ER(PENDING_INTERRUPT),
4212         _ER(NMI_WINDOW),
4213         _ER(TASK_SWITCH),
4214         _ER(CPUID),
4215         _ER(HLT),
4216         _ER(INVLPG),
4217         _ER(RDPMC),
4218         _ER(RDTSC),
4219         _ER(VMCALL),
4220         _ER(VMCLEAR),
4221         _ER(VMLAUNCH),
4222         _ER(VMPTRLD),
4223         _ER(VMPTRST),
4224         _ER(VMREAD),
4225         _ER(VMRESUME),
4226         _ER(VMWRITE),
4227         _ER(VMOFF),
4228         _ER(VMON),
4229         _ER(CR_ACCESS),
4230         _ER(DR_ACCESS),
4231         _ER(IO_INSTRUCTION),
4232         _ER(MSR_READ),
4233         _ER(MSR_WRITE),
4234         _ER(MWAIT_INSTRUCTION),
4235         _ER(MONITOR_INSTRUCTION),
4236         _ER(PAUSE_INSTRUCTION),
4237         _ER(MCE_DURING_VMENTRY),
4238         _ER(TPR_BELOW_THRESHOLD),
4239         _ER(APIC_ACCESS),
4240         _ER(EPT_VIOLATION),
4241         _ER(EPT_MISCONFIG),
4242         _ER(WBINVD),
4243         { -1, NULL }
4244 };
4245
4246 #undef _ER
4247
4248 static int vmx_get_lpage_level(void)
4249 {
4250         if (enable_ept && !cpu_has_vmx_ept_1g_page())
4251                 return PT_DIRECTORY_LEVEL;
4252         else
4253                 /* For shadow and EPT supported 1GB page */
4254                 return PT_PDPE_LEVEL;
4255 }
4256
4257 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
4258 {
4259         struct kvm_cpuid_entry2 *best;
4260         struct vcpu_vmx *vmx = to_vmx(vcpu);
4261         u32 exec_control;
4262
4263         vmx->rdtscp_enabled = false;
4264         if (vmx_rdtscp_supported()) {
4265                 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
4266                 if (exec_control & SECONDARY_EXEC_RDTSCP) {
4267                         best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
4268                         if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
4269                                 vmx->rdtscp_enabled = true;
4270                         else {
4271                                 exec_control &= ~SECONDARY_EXEC_RDTSCP;
4272                                 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4273                                                 exec_control);
4274                         }
4275                 }
4276         }
4277 }
4278
4279 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
4280 {
4281 }
4282
4283 static struct kvm_x86_ops vmx_x86_ops = {
4284         .cpu_has_kvm_support = cpu_has_kvm_support,
4285         .disabled_by_bios = vmx_disabled_by_bios,
4286         .hardware_setup = hardware_setup,
4287         .hardware_unsetup = hardware_unsetup,
4288         .check_processor_compatibility = vmx_check_processor_compat,
4289         .hardware_enable = hardware_enable,
4290         .hardware_disable = hardware_disable,
4291         .cpu_has_accelerated_tpr = report_flexpriority,
4292
4293         .vcpu_create = vmx_create_vcpu,
4294         .vcpu_free = vmx_free_vcpu,
4295         .vcpu_reset = vmx_vcpu_reset,
4296
4297         .prepare_guest_switch = vmx_save_host_state,
4298         .vcpu_load = vmx_vcpu_load,
4299         .vcpu_put = vmx_vcpu_put,
4300
4301         .set_guest_debug = set_guest_debug,
4302         .get_msr = vmx_get_msr,
4303         .set_msr = vmx_set_msr,
4304         .get_segment_base = vmx_get_segment_base,
4305         .get_segment = vmx_get_segment,
4306         .set_segment = vmx_set_segment,
4307         .get_cpl = vmx_get_cpl,
4308         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
4309         .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
4310         .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
4311         .set_cr0 = vmx_set_cr0,
4312         .set_cr3 = vmx_set_cr3,
4313         .set_cr4 = vmx_set_cr4,
4314         .set_efer = vmx_set_efer,
4315         .get_idt = vmx_get_idt,
4316         .set_idt = vmx_set_idt,
4317         .get_gdt = vmx_get_gdt,
4318         .set_gdt = vmx_set_gdt,
4319         .set_dr7 = vmx_set_dr7,
4320         .cache_reg = vmx_cache_reg,
4321         .get_rflags = vmx_get_rflags,
4322         .set_rflags = vmx_set_rflags,
4323         .fpu_activate = vmx_fpu_activate,
4324         .fpu_deactivate = vmx_fpu_deactivate,
4325
4326         .tlb_flush = vmx_flush_tlb,
4327
4328         .run = vmx_vcpu_run,
4329         .handle_exit = vmx_handle_exit,
4330         .skip_emulated_instruction = skip_emulated_instruction,
4331         .set_interrupt_shadow = vmx_set_interrupt_shadow,
4332         .get_interrupt_shadow = vmx_get_interrupt_shadow,
4333         .patch_hypercall = vmx_patch_hypercall,
4334         .set_irq = vmx_inject_irq,
4335         .set_nmi = vmx_inject_nmi,
4336         .queue_exception = vmx_queue_exception,
4337         .cancel_injection = vmx_cancel_injection,
4338         .interrupt_allowed = vmx_interrupt_allowed,
4339         .nmi_allowed = vmx_nmi_allowed,
4340         .get_nmi_mask = vmx_get_nmi_mask,
4341         .set_nmi_mask = vmx_set_nmi_mask,
4342         .enable_nmi_window = enable_nmi_window,
4343         .enable_irq_window = enable_irq_window,
4344         .update_cr8_intercept = update_cr8_intercept,
4345
4346         .set_tss_addr = vmx_set_tss_addr,
4347         .get_tdp_level = get_ept_level,
4348         .get_mt_mask = vmx_get_mt_mask,
4349
4350         .exit_reasons_str = vmx_exit_reasons_str,
4351         .get_lpage_level = vmx_get_lpage_level,
4352
4353         .cpuid_update = vmx_cpuid_update,
4354
4355         .rdtscp_supported = vmx_rdtscp_supported,
4356
4357         .set_supported_cpuid = vmx_set_supported_cpuid,
4358
4359         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
4360
4361         .write_tsc_offset = vmx_write_tsc_offset,
4362         .adjust_tsc_offset = vmx_adjust_tsc_offset,
4363
4364         .set_tdp_cr3 = vmx_set_cr3,
4365 };
4366
4367 static int __init vmx_init(void)
4368 {
4369         int r, i;
4370
4371         rdmsrl_safe(MSR_EFER, &host_efer);
4372
4373         for (i = 0; i < NR_VMX_MSR; ++i)
4374                 kvm_define_shared_msr(i, vmx_msr_index[i]);
4375
4376         vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
4377         if (!vmx_io_bitmap_a)
4378                 return -ENOMEM;
4379
4380         vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
4381         if (!vmx_io_bitmap_b) {
4382                 r = -ENOMEM;
4383                 goto out;
4384         }
4385
4386         vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
4387         if (!vmx_msr_bitmap_legacy) {
4388                 r = -ENOMEM;
4389                 goto out1;
4390         }
4391
4392         vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
4393         if (!vmx_msr_bitmap_longmode) {
4394                 r = -ENOMEM;
4395                 goto out2;
4396         }
4397
4398         /*
4399          * Allow direct access to the PC debug port (it is often used for I/O
4400          * delays, but the vmexits simply slow things down).
4401          */
4402         memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
4403         clear_bit(0x80, vmx_io_bitmap_a);
4404
4405         memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
4406
4407         memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
4408         memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
4409
4410         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
4411
4412         r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
4413                      __alignof__(struct vcpu_vmx), THIS_MODULE);
4414         if (r)
4415                 goto out3;
4416
4417         vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
4418         vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
4419         vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
4420         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
4421         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
4422         vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
4423
4424         if (enable_ept) {
4425                 bypass_guest_pf = 0;
4426                 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
4427                                 VMX_EPT_EXECUTABLE_MASK);
4428                 kvm_enable_tdp();
4429         } else
4430                 kvm_disable_tdp();
4431
4432         if (bypass_guest_pf)
4433                 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
4434
4435         return 0;
4436
4437 out3:
4438         free_page((unsigned long)vmx_msr_bitmap_longmode);
4439 out2:
4440         free_page((unsigned long)vmx_msr_bitmap_legacy);
4441 out1:
4442         free_page((unsigned long)vmx_io_bitmap_b);
4443 out:
4444         free_page((unsigned long)vmx_io_bitmap_a);
4445         return r;
4446 }
4447
4448 static void __exit vmx_exit(void)
4449 {
4450         free_page((unsigned long)vmx_msr_bitmap_legacy);
4451         free_page((unsigned long)vmx_msr_bitmap_longmode);
4452         free_page((unsigned long)vmx_io_bitmap_b);
4453         free_page((unsigned long)vmx_io_bitmap_a);
4454
4455         kvm_exit();
4456 }
4457
4458 module_init(vmx_init)
4459 module_exit(vmx_exit)