53c9039583fdabab5fae2c946a61f8379aebd7ba
[pandora-kernel.git] / arch / x86 / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  * Copyright 2010 Red Hat, Inc. and/or its affilates.
8  *
9  * Authors:
10  *   Yaniv Kamay  <yaniv@qumranet.com>
11  *   Avi Kivity   <avi@qumranet.com>
12  *
13  * This work is licensed under the terms of the GNU GPL, version 2.  See
14  * the COPYING file in the top-level directory.
15  *
16  */
17 #include <linux/kvm_host.h>
18
19 #include "irq.h"
20 #include "mmu.h"
21 #include "kvm_cache_regs.h"
22 #include "x86.h"
23
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/vmalloc.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/ftrace_event.h>
30 #include <linux/slab.h>
31
32 #include <asm/tlbflush.h>
33 #include <asm/desc.h>
34
35 #include <asm/virtext.h>
36 #include "trace.h"
37
38 #define __ex(x) __kvm_handle_fault_on_reboot(x)
39
40 MODULE_AUTHOR("Qumranet");
41 MODULE_LICENSE("GPL");
42
43 #define IOPM_ALLOC_ORDER 2
44 #define MSRPM_ALLOC_ORDER 1
45
46 #define SEG_TYPE_LDT 2
47 #define SEG_TYPE_BUSY_TSS16 3
48
49 #define SVM_FEATURE_NPT            (1 <<  0)
50 #define SVM_FEATURE_LBRV           (1 <<  1)
51 #define SVM_FEATURE_SVML           (1 <<  2)
52 #define SVM_FEATURE_NRIP           (1 <<  3)
53 #define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
54
55 #define NESTED_EXIT_HOST        0       /* Exit handled on host level */
56 #define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
57 #define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
58
59 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
60
61 static bool erratum_383_found __read_mostly;
62
63 static const u32 host_save_user_msrs[] = {
64 #ifdef CONFIG_X86_64
65         MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
66         MSR_FS_BASE,
67 #endif
68         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
69 };
70
71 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
72
73 struct kvm_vcpu;
74
75 struct nested_state {
76         struct vmcb *hsave;
77         u64 hsave_msr;
78         u64 vm_cr_msr;
79         u64 vmcb;
80
81         /* These are the merged vectors */
82         u32 *msrpm;
83
84         /* gpa pointers to the real vectors */
85         u64 vmcb_msrpm;
86         u64 vmcb_iopm;
87
88         /* A VMEXIT is required but not yet emulated */
89         bool exit_required;
90
91         /*
92          * If we vmexit during an instruction emulation we need this to restore
93          * the l1 guest rip after the emulation
94          */
95         unsigned long vmexit_rip;
96         unsigned long vmexit_rsp;
97         unsigned long vmexit_rax;
98
99         /* cache for intercepts of the guest */
100         u16 intercept_cr_read;
101         u16 intercept_cr_write;
102         u16 intercept_dr_read;
103         u16 intercept_dr_write;
104         u32 intercept_exceptions;
105         u64 intercept;
106
107 };
108
109 #define MSRPM_OFFSETS   16
110 static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
111
112 struct vcpu_svm {
113         struct kvm_vcpu vcpu;
114         struct vmcb *vmcb;
115         unsigned long vmcb_pa;
116         struct svm_cpu_data *svm_data;
117         uint64_t asid_generation;
118         uint64_t sysenter_esp;
119         uint64_t sysenter_eip;
120
121         u64 next_rip;
122
123         u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
124         u64 host_gs_base;
125
126         u32 *msrpm;
127
128         struct nested_state nested;
129
130         bool nmi_singlestep;
131
132         unsigned int3_injected;
133         unsigned long int3_rip;
134 };
135
136 #define MSR_INVALID                     0xffffffffU
137
138 static struct svm_direct_access_msrs {
139         u32 index;   /* Index of the MSR */
140         bool always; /* True if intercept is always on */
141 } direct_access_msrs[] = {
142         { .index = MSR_STAR,                            .always = true  },
143         { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
144 #ifdef CONFIG_X86_64
145         { .index = MSR_GS_BASE,                         .always = true  },
146         { .index = MSR_FS_BASE,                         .always = true  },
147         { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
148         { .index = MSR_LSTAR,                           .always = true  },
149         { .index = MSR_CSTAR,                           .always = true  },
150         { .index = MSR_SYSCALL_MASK,                    .always = true  },
151 #endif
152         { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
153         { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
154         { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
155         { .index = MSR_IA32_LASTINTTOIP,                .always = false },
156         { .index = MSR_INVALID,                         .always = false },
157 };
158
159 /* enable NPT for AMD64 and X86 with PAE */
160 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
161 static bool npt_enabled = true;
162 #else
163 static bool npt_enabled;
164 #endif
165 static int npt = 1;
166
167 module_param(npt, int, S_IRUGO);
168
169 static int nested = 1;
170 module_param(nested, int, S_IRUGO);
171
172 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
173 static void svm_complete_interrupts(struct vcpu_svm *svm);
174
175 static int nested_svm_exit_handled(struct vcpu_svm *svm);
176 static int nested_svm_intercept(struct vcpu_svm *svm);
177 static int nested_svm_vmexit(struct vcpu_svm *svm);
178 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
179                                       bool has_error_code, u32 error_code);
180
181 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
182 {
183         return container_of(vcpu, struct vcpu_svm, vcpu);
184 }
185
186 static inline bool is_nested(struct vcpu_svm *svm)
187 {
188         return svm->nested.vmcb;
189 }
190
191 static inline void enable_gif(struct vcpu_svm *svm)
192 {
193         svm->vcpu.arch.hflags |= HF_GIF_MASK;
194 }
195
196 static inline void disable_gif(struct vcpu_svm *svm)
197 {
198         svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
199 }
200
201 static inline bool gif_set(struct vcpu_svm *svm)
202 {
203         return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
204 }
205
206 static unsigned long iopm_base;
207
208 struct kvm_ldttss_desc {
209         u16 limit0;
210         u16 base0;
211         unsigned base1:8, type:5, dpl:2, p:1;
212         unsigned limit1:4, zero0:3, g:1, base2:8;
213         u32 base3;
214         u32 zero1;
215 } __attribute__((packed));
216
217 struct svm_cpu_data {
218         int cpu;
219
220         u64 asid_generation;
221         u32 max_asid;
222         u32 next_asid;
223         struct kvm_ldttss_desc *tss_desc;
224
225         struct page *save_area;
226 };
227
228 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
229 static uint32_t svm_features;
230
231 struct svm_init_data {
232         int cpu;
233         int r;
234 };
235
236 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
237
238 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
239 #define MSRS_RANGE_SIZE 2048
240 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
241
242 static u32 svm_msrpm_offset(u32 msr)
243 {
244         u32 offset;
245         int i;
246
247         for (i = 0; i < NUM_MSR_MAPS; i++) {
248                 if (msr < msrpm_ranges[i] ||
249                     msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
250                         continue;
251
252                 offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
253                 offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
254
255                 /* Now we have the u8 offset - but need the u32 offset */
256                 return offset / 4;
257         }
258
259         /* MSR not in any range */
260         return MSR_INVALID;
261 }
262
263 #define MAX_INST_SIZE 15
264
265 static inline u32 svm_has(u32 feat)
266 {
267         return svm_features & feat;
268 }
269
270 static inline void clgi(void)
271 {
272         asm volatile (__ex(SVM_CLGI));
273 }
274
275 static inline void stgi(void)
276 {
277         asm volatile (__ex(SVM_STGI));
278 }
279
280 static inline void invlpga(unsigned long addr, u32 asid)
281 {
282         asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
283 }
284
285 static inline void force_new_asid(struct kvm_vcpu *vcpu)
286 {
287         to_svm(vcpu)->asid_generation--;
288 }
289
290 static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
291 {
292         force_new_asid(vcpu);
293 }
294
295 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
296 {
297         vcpu->arch.efer = efer;
298         if (!npt_enabled && !(efer & EFER_LMA))
299                 efer &= ~EFER_LME;
300
301         to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
302 }
303
304 static int is_external_interrupt(u32 info)
305 {
306         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
307         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
308 }
309
310 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
311 {
312         struct vcpu_svm *svm = to_svm(vcpu);
313         u32 ret = 0;
314
315         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
316                 ret |= KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
317         return ret & mask;
318 }
319
320 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
321 {
322         struct vcpu_svm *svm = to_svm(vcpu);
323
324         if (mask == 0)
325                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
326         else
327                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
328
329 }
330
331 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
332 {
333         struct vcpu_svm *svm = to_svm(vcpu);
334
335         if (svm->vmcb->control.next_rip != 0)
336                 svm->next_rip = svm->vmcb->control.next_rip;
337
338         if (!svm->next_rip) {
339                 if (emulate_instruction(vcpu, 0, 0, EMULTYPE_SKIP) !=
340                                 EMULATE_DONE)
341                         printk(KERN_DEBUG "%s: NOP\n", __func__);
342                 return;
343         }
344         if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
345                 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
346                        __func__, kvm_rip_read(vcpu), svm->next_rip);
347
348         kvm_rip_write(vcpu, svm->next_rip);
349         svm_set_interrupt_shadow(vcpu, 0);
350 }
351
352 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
353                                 bool has_error_code, u32 error_code,
354                                 bool reinject)
355 {
356         struct vcpu_svm *svm = to_svm(vcpu);
357
358         /*
359          * If we are within a nested VM we'd better #VMEXIT and let the guest
360          * handle the exception
361          */
362         if (!reinject &&
363             nested_svm_check_exception(svm, nr, has_error_code, error_code))
364                 return;
365
366         if (nr == BP_VECTOR && !svm_has(SVM_FEATURE_NRIP)) {
367                 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
368
369                 /*
370                  * For guest debugging where we have to reinject #BP if some
371                  * INT3 is guest-owned:
372                  * Emulate nRIP by moving RIP forward. Will fail if injection
373                  * raises a fault that is not intercepted. Still better than
374                  * failing in all cases.
375                  */
376                 skip_emulated_instruction(&svm->vcpu);
377                 rip = kvm_rip_read(&svm->vcpu);
378                 svm->int3_rip = rip + svm->vmcb->save.cs.base;
379                 svm->int3_injected = rip - old_rip;
380         }
381
382         svm->vmcb->control.event_inj = nr
383                 | SVM_EVTINJ_VALID
384                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
385                 | SVM_EVTINJ_TYPE_EXEPT;
386         svm->vmcb->control.event_inj_err = error_code;
387 }
388
389 static void svm_init_erratum_383(void)
390 {
391         u32 low, high;
392         int err;
393         u64 val;
394
395         if (!cpu_has_amd_erratum(amd_erratum_383))
396                 return;
397
398         /* Use _safe variants to not break nested virtualization */
399         val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
400         if (err)
401                 return;
402
403         val |= (1ULL << 47);
404
405         low  = lower_32_bits(val);
406         high = upper_32_bits(val);
407
408         native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
409
410         erratum_383_found = true;
411 }
412
413 static int has_svm(void)
414 {
415         const char *msg;
416
417         if (!cpu_has_svm(&msg)) {
418                 printk(KERN_INFO "has_svm: %s\n", msg);
419                 return 0;
420         }
421
422         return 1;
423 }
424
425 static void svm_hardware_disable(void *garbage)
426 {
427         cpu_svm_disable();
428 }
429
430 static int svm_hardware_enable(void *garbage)
431 {
432
433         struct svm_cpu_data *sd;
434         uint64_t efer;
435         struct desc_ptr gdt_descr;
436         struct desc_struct *gdt;
437         int me = raw_smp_processor_id();
438
439         rdmsrl(MSR_EFER, efer);
440         if (efer & EFER_SVME)
441                 return -EBUSY;
442
443         if (!has_svm()) {
444                 printk(KERN_ERR "svm_hardware_enable: err EOPNOTSUPP on %d\n",
445                        me);
446                 return -EINVAL;
447         }
448         sd = per_cpu(svm_data, me);
449
450         if (!sd) {
451                 printk(KERN_ERR "svm_hardware_enable: svm_data is NULL on %d\n",
452                        me);
453                 return -EINVAL;
454         }
455
456         sd->asid_generation = 1;
457         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
458         sd->next_asid = sd->max_asid + 1;
459
460         native_store_gdt(&gdt_descr);
461         gdt = (struct desc_struct *)gdt_descr.address;
462         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
463
464         wrmsrl(MSR_EFER, efer | EFER_SVME);
465
466         wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
467
468         svm_init_erratum_383();
469
470         return 0;
471 }
472
473 static void svm_cpu_uninit(int cpu)
474 {
475         struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
476
477         if (!sd)
478                 return;
479
480         per_cpu(svm_data, raw_smp_processor_id()) = NULL;
481         __free_page(sd->save_area);
482         kfree(sd);
483 }
484
485 static int svm_cpu_init(int cpu)
486 {
487         struct svm_cpu_data *sd;
488         int r;
489
490         sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
491         if (!sd)
492                 return -ENOMEM;
493         sd->cpu = cpu;
494         sd->save_area = alloc_page(GFP_KERNEL);
495         r = -ENOMEM;
496         if (!sd->save_area)
497                 goto err_1;
498
499         per_cpu(svm_data, cpu) = sd;
500
501         return 0;
502
503 err_1:
504         kfree(sd);
505         return r;
506
507 }
508
509 static bool valid_msr_intercept(u32 index)
510 {
511         int i;
512
513         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
514                 if (direct_access_msrs[i].index == index)
515                         return true;
516
517         return false;
518 }
519
520 static void set_msr_interception(u32 *msrpm, unsigned msr,
521                                  int read, int write)
522 {
523         u8 bit_read, bit_write;
524         unsigned long tmp;
525         u32 offset;
526
527         /*
528          * If this warning triggers extend the direct_access_msrs list at the
529          * beginning of the file
530          */
531         WARN_ON(!valid_msr_intercept(msr));
532
533         offset    = svm_msrpm_offset(msr);
534         bit_read  = 2 * (msr & 0x0f);
535         bit_write = 2 * (msr & 0x0f) + 1;
536         tmp       = msrpm[offset];
537
538         BUG_ON(offset == MSR_INVALID);
539
540         read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
541         write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
542
543         msrpm[offset] = tmp;
544 }
545
546 static void svm_vcpu_init_msrpm(u32 *msrpm)
547 {
548         int i;
549
550         memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
551
552         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
553                 if (!direct_access_msrs[i].always)
554                         continue;
555
556                 set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
557         }
558 }
559
560 static void add_msr_offset(u32 offset)
561 {
562         int i;
563
564         for (i = 0; i < MSRPM_OFFSETS; ++i) {
565
566                 /* Offset already in list? */
567                 if (msrpm_offsets[i] == offset)
568                         return;
569
570                 /* Slot used by another offset? */
571                 if (msrpm_offsets[i] != MSR_INVALID)
572                         continue;
573
574                 /* Add offset to list */
575                 msrpm_offsets[i] = offset;
576
577                 return;
578         }
579
580         /*
581          * If this BUG triggers the msrpm_offsets table has an overflow. Just
582          * increase MSRPM_OFFSETS in this case.
583          */
584         BUG();
585 }
586
587 static void init_msrpm_offsets(void)
588 {
589         int i;
590
591         memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
592
593         for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
594                 u32 offset;
595
596                 offset = svm_msrpm_offset(direct_access_msrs[i].index);
597                 BUG_ON(offset == MSR_INVALID);
598
599                 add_msr_offset(offset);
600         }
601 }
602
603 static void svm_enable_lbrv(struct vcpu_svm *svm)
604 {
605         u32 *msrpm = svm->msrpm;
606
607         svm->vmcb->control.lbr_ctl = 1;
608         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
609         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
610         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
611         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
612 }
613
614 static void svm_disable_lbrv(struct vcpu_svm *svm)
615 {
616         u32 *msrpm = svm->msrpm;
617
618         svm->vmcb->control.lbr_ctl = 0;
619         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
620         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
621         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
622         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
623 }
624
625 static __init int svm_hardware_setup(void)
626 {
627         int cpu;
628         struct page *iopm_pages;
629         void *iopm_va;
630         int r;
631
632         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
633
634         if (!iopm_pages)
635                 return -ENOMEM;
636
637         iopm_va = page_address(iopm_pages);
638         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
639         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
640
641         init_msrpm_offsets();
642
643         if (boot_cpu_has(X86_FEATURE_NX))
644                 kvm_enable_efer_bits(EFER_NX);
645
646         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
647                 kvm_enable_efer_bits(EFER_FFXSR);
648
649         if (nested) {
650                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
651                 kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
652         }
653
654         for_each_possible_cpu(cpu) {
655                 r = svm_cpu_init(cpu);
656                 if (r)
657                         goto err;
658         }
659
660         svm_features = cpuid_edx(SVM_CPUID_FUNC);
661
662         if (!svm_has(SVM_FEATURE_NPT))
663                 npt_enabled = false;
664
665         if (npt_enabled && !npt) {
666                 printk(KERN_INFO "kvm: Nested Paging disabled\n");
667                 npt_enabled = false;
668         }
669
670         if (npt_enabled) {
671                 printk(KERN_INFO "kvm: Nested Paging enabled\n");
672                 kvm_enable_tdp();
673         } else
674                 kvm_disable_tdp();
675
676         return 0;
677
678 err:
679         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
680         iopm_base = 0;
681         return r;
682 }
683
684 static __exit void svm_hardware_unsetup(void)
685 {
686         int cpu;
687
688         for_each_possible_cpu(cpu)
689                 svm_cpu_uninit(cpu);
690
691         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
692         iopm_base = 0;
693 }
694
695 static void init_seg(struct vmcb_seg *seg)
696 {
697         seg->selector = 0;
698         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
699                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
700         seg->limit = 0xffff;
701         seg->base = 0;
702 }
703
704 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
705 {
706         seg->selector = 0;
707         seg->attrib = SVM_SELECTOR_P_MASK | type;
708         seg->limit = 0xffff;
709         seg->base = 0;
710 }
711
712 static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
713 {
714         struct vcpu_svm *svm = to_svm(vcpu);
715         u64 g_tsc_offset = 0;
716
717         if (is_nested(svm)) {
718                 g_tsc_offset = svm->vmcb->control.tsc_offset -
719                                svm->nested.hsave->control.tsc_offset;
720                 svm->nested.hsave->control.tsc_offset = offset;
721         }
722
723         svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
724 }
725
726 static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
727 {
728         struct vcpu_svm *svm = to_svm(vcpu);
729
730         svm->vmcb->control.tsc_offset += adjustment;
731         if (is_nested(svm))
732                 svm->nested.hsave->control.tsc_offset += adjustment;
733 }
734
735 static void init_vmcb(struct vcpu_svm *svm)
736 {
737         struct vmcb_control_area *control = &svm->vmcb->control;
738         struct vmcb_save_area *save = &svm->vmcb->save;
739
740         svm->vcpu.fpu_active = 1;
741
742         control->intercept_cr_read =    INTERCEPT_CR0_MASK |
743                                         INTERCEPT_CR3_MASK |
744                                         INTERCEPT_CR4_MASK;
745
746         control->intercept_cr_write =   INTERCEPT_CR0_MASK |
747                                         INTERCEPT_CR3_MASK |
748                                         INTERCEPT_CR4_MASK |
749                                         INTERCEPT_CR8_MASK;
750
751         control->intercept_dr_read =    INTERCEPT_DR0_MASK |
752                                         INTERCEPT_DR1_MASK |
753                                         INTERCEPT_DR2_MASK |
754                                         INTERCEPT_DR3_MASK |
755                                         INTERCEPT_DR4_MASK |
756                                         INTERCEPT_DR5_MASK |
757                                         INTERCEPT_DR6_MASK |
758                                         INTERCEPT_DR7_MASK;
759
760         control->intercept_dr_write =   INTERCEPT_DR0_MASK |
761                                         INTERCEPT_DR1_MASK |
762                                         INTERCEPT_DR2_MASK |
763                                         INTERCEPT_DR3_MASK |
764                                         INTERCEPT_DR4_MASK |
765                                         INTERCEPT_DR5_MASK |
766                                         INTERCEPT_DR6_MASK |
767                                         INTERCEPT_DR7_MASK;
768
769         control->intercept_exceptions = (1 << PF_VECTOR) |
770                                         (1 << UD_VECTOR) |
771                                         (1 << MC_VECTOR);
772
773
774         control->intercept =    (1ULL << INTERCEPT_INTR) |
775                                 (1ULL << INTERCEPT_NMI) |
776                                 (1ULL << INTERCEPT_SMI) |
777                                 (1ULL << INTERCEPT_SELECTIVE_CR0) |
778                                 (1ULL << INTERCEPT_CPUID) |
779                                 (1ULL << INTERCEPT_INVD) |
780                                 (1ULL << INTERCEPT_HLT) |
781                                 (1ULL << INTERCEPT_INVLPG) |
782                                 (1ULL << INTERCEPT_INVLPGA) |
783                                 (1ULL << INTERCEPT_IOIO_PROT) |
784                                 (1ULL << INTERCEPT_MSR_PROT) |
785                                 (1ULL << INTERCEPT_TASK_SWITCH) |
786                                 (1ULL << INTERCEPT_SHUTDOWN) |
787                                 (1ULL << INTERCEPT_VMRUN) |
788                                 (1ULL << INTERCEPT_VMMCALL) |
789                                 (1ULL << INTERCEPT_VMLOAD) |
790                                 (1ULL << INTERCEPT_VMSAVE) |
791                                 (1ULL << INTERCEPT_STGI) |
792                                 (1ULL << INTERCEPT_CLGI) |
793                                 (1ULL << INTERCEPT_SKINIT) |
794                                 (1ULL << INTERCEPT_WBINVD) |
795                                 (1ULL << INTERCEPT_MONITOR) |
796                                 (1ULL << INTERCEPT_MWAIT);
797
798         control->iopm_base_pa = iopm_base;
799         control->msrpm_base_pa = __pa(svm->msrpm);
800         control->int_ctl = V_INTR_MASKING_MASK;
801
802         init_seg(&save->es);
803         init_seg(&save->ss);
804         init_seg(&save->ds);
805         init_seg(&save->fs);
806         init_seg(&save->gs);
807
808         save->cs.selector = 0xf000;
809         /* Executable/Readable Code Segment */
810         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
811                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
812         save->cs.limit = 0xffff;
813         /*
814          * cs.base should really be 0xffff0000, but vmx can't handle that, so
815          * be consistent with it.
816          *
817          * Replace when we have real mode working for vmx.
818          */
819         save->cs.base = 0xf0000;
820
821         save->gdtr.limit = 0xffff;
822         save->idtr.limit = 0xffff;
823
824         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
825         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
826
827         svm_set_efer(&svm->vcpu, 0);
828         save->dr6 = 0xffff0ff0;
829         save->dr7 = 0x400;
830         save->rflags = 2;
831         save->rip = 0x0000fff0;
832         svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
833
834         /*
835          * This is the guest-visible cr0 value.
836          * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
837          */
838         svm->vcpu.arch.cr0 = 0;
839         (void)kvm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
840
841         save->cr4 = X86_CR4_PAE;
842         /* rdx = ?? */
843
844         if (npt_enabled) {
845                 /* Setup VMCB for Nested Paging */
846                 control->nested_ctl = 1;
847                 control->intercept &= ~((1ULL << INTERCEPT_TASK_SWITCH) |
848                                         (1ULL << INTERCEPT_INVLPG));
849                 control->intercept_exceptions &= ~(1 << PF_VECTOR);
850                 control->intercept_cr_read &= ~INTERCEPT_CR3_MASK;
851                 control->intercept_cr_write &= ~INTERCEPT_CR3_MASK;
852                 save->g_pat = 0x0007040600070406ULL;
853                 save->cr3 = 0;
854                 save->cr4 = 0;
855         }
856         force_new_asid(&svm->vcpu);
857
858         svm->nested.vmcb = 0;
859         svm->vcpu.arch.hflags = 0;
860
861         if (svm_has(SVM_FEATURE_PAUSE_FILTER)) {
862                 control->pause_filter_count = 3000;
863                 control->intercept |= (1ULL << INTERCEPT_PAUSE);
864         }
865
866         enable_gif(svm);
867 }
868
869 static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
870 {
871         struct vcpu_svm *svm = to_svm(vcpu);
872
873         init_vmcb(svm);
874
875         if (!kvm_vcpu_is_bsp(vcpu)) {
876                 kvm_rip_write(vcpu, 0);
877                 svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
878                 svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
879         }
880         vcpu->arch.regs_avail = ~0;
881         vcpu->arch.regs_dirty = ~0;
882
883         return 0;
884 }
885
886 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
887 {
888         struct vcpu_svm *svm;
889         struct page *page;
890         struct page *msrpm_pages;
891         struct page *hsave_page;
892         struct page *nested_msrpm_pages;
893         int err;
894
895         svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
896         if (!svm) {
897                 err = -ENOMEM;
898                 goto out;
899         }
900
901         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
902         if (err)
903                 goto free_svm;
904
905         err = -ENOMEM;
906         page = alloc_page(GFP_KERNEL);
907         if (!page)
908                 goto uninit;
909
910         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
911         if (!msrpm_pages)
912                 goto free_page1;
913
914         nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
915         if (!nested_msrpm_pages)
916                 goto free_page2;
917
918         hsave_page = alloc_page(GFP_KERNEL);
919         if (!hsave_page)
920                 goto free_page3;
921
922         svm->nested.hsave = page_address(hsave_page);
923
924         svm->msrpm = page_address(msrpm_pages);
925         svm_vcpu_init_msrpm(svm->msrpm);
926
927         svm->nested.msrpm = page_address(nested_msrpm_pages);
928         svm_vcpu_init_msrpm(svm->nested.msrpm);
929
930         svm->vmcb = page_address(page);
931         clear_page(svm->vmcb);
932         svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
933         svm->asid_generation = 0;
934         init_vmcb(svm);
935         kvm_write_tsc(&svm->vcpu, 0);
936
937         err = fx_init(&svm->vcpu);
938         if (err)
939                 goto free_page4;
940
941         svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
942         if (kvm_vcpu_is_bsp(&svm->vcpu))
943                 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
944
945         return &svm->vcpu;
946
947 free_page4:
948         __free_page(hsave_page);
949 free_page3:
950         __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
951 free_page2:
952         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
953 free_page1:
954         __free_page(page);
955 uninit:
956         kvm_vcpu_uninit(&svm->vcpu);
957 free_svm:
958         kmem_cache_free(kvm_vcpu_cache, svm);
959 out:
960         return ERR_PTR(err);
961 }
962
963 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
964 {
965         struct vcpu_svm *svm = to_svm(vcpu);
966
967         __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
968         __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
969         __free_page(virt_to_page(svm->nested.hsave));
970         __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
971         kvm_vcpu_uninit(vcpu);
972         kmem_cache_free(kvm_vcpu_cache, svm);
973 }
974
975 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
976 {
977         struct vcpu_svm *svm = to_svm(vcpu);
978         int i;
979
980         if (unlikely(cpu != vcpu->cpu)) {
981                 svm->asid_generation = 0;
982         }
983
984         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
985                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
986 }
987
988 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
989 {
990         struct vcpu_svm *svm = to_svm(vcpu);
991         int i;
992
993         ++vcpu->stat.host_state_reload;
994         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
995                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
996 }
997
998 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
999 {
1000         return to_svm(vcpu)->vmcb->save.rflags;
1001 }
1002
1003 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1004 {
1005         to_svm(vcpu)->vmcb->save.rflags = rflags;
1006 }
1007
1008 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1009 {
1010         switch (reg) {
1011         case VCPU_EXREG_PDPTR:
1012                 BUG_ON(!npt_enabled);
1013                 load_pdptrs(vcpu, vcpu->arch.cr3);
1014                 break;
1015         default:
1016                 BUG();
1017         }
1018 }
1019
1020 static void svm_set_vintr(struct vcpu_svm *svm)
1021 {
1022         svm->vmcb->control.intercept |= 1ULL << INTERCEPT_VINTR;
1023 }
1024
1025 static void svm_clear_vintr(struct vcpu_svm *svm)
1026 {
1027         svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
1028 }
1029
1030 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1031 {
1032         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1033
1034         switch (seg) {
1035         case VCPU_SREG_CS: return &save->cs;
1036         case VCPU_SREG_DS: return &save->ds;
1037         case VCPU_SREG_ES: return &save->es;
1038         case VCPU_SREG_FS: return &save->fs;
1039         case VCPU_SREG_GS: return &save->gs;
1040         case VCPU_SREG_SS: return &save->ss;
1041         case VCPU_SREG_TR: return &save->tr;
1042         case VCPU_SREG_LDTR: return &save->ldtr;
1043         }
1044         BUG();
1045         return NULL;
1046 }
1047
1048 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1049 {
1050         struct vmcb_seg *s = svm_seg(vcpu, seg);
1051
1052         return s->base;
1053 }
1054
1055 static void svm_get_segment(struct kvm_vcpu *vcpu,
1056                             struct kvm_segment *var, int seg)
1057 {
1058         struct vmcb_seg *s = svm_seg(vcpu, seg);
1059
1060         var->base = s->base;
1061         var->limit = s->limit;
1062         var->selector = s->selector;
1063         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1064         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1065         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1066         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1067         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1068         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1069         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1070         var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
1071
1072         /*
1073          * AMD's VMCB does not have an explicit unusable field, so emulate it
1074          * for cross vendor migration purposes by "not present"
1075          */
1076         var->unusable = !var->present || (var->type == 0);
1077
1078         switch (seg) {
1079         case VCPU_SREG_CS:
1080                 /*
1081                  * SVM always stores 0 for the 'G' bit in the CS selector in
1082                  * the VMCB on a VMEXIT. This hurts cross-vendor migration:
1083                  * Intel's VMENTRY has a check on the 'G' bit.
1084                  */
1085                 var->g = s->limit > 0xfffff;
1086                 break;
1087         case VCPU_SREG_TR:
1088                 /*
1089                  * Work around a bug where the busy flag in the tr selector
1090                  * isn't exposed
1091                  */
1092                 var->type |= 0x2;
1093                 break;
1094         case VCPU_SREG_DS:
1095         case VCPU_SREG_ES:
1096         case VCPU_SREG_FS:
1097         case VCPU_SREG_GS:
1098                 /*
1099                  * The accessed bit must always be set in the segment
1100                  * descriptor cache, although it can be cleared in the
1101                  * descriptor, the cached bit always remains at 1. Since
1102                  * Intel has a check on this, set it here to support
1103                  * cross-vendor migration.
1104                  */
1105                 if (!var->unusable)
1106                         var->type |= 0x1;
1107                 break;
1108         case VCPU_SREG_SS:
1109                 /*
1110                  * On AMD CPUs sometimes the DB bit in the segment
1111                  * descriptor is left as 1, although the whole segment has
1112                  * been made unusable. Clear it here to pass an Intel VMX
1113                  * entry check when cross vendor migrating.
1114                  */
1115                 if (var->unusable)
1116                         var->db = 0;
1117                 break;
1118         }
1119 }
1120
1121 static int svm_get_cpl(struct kvm_vcpu *vcpu)
1122 {
1123         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1124
1125         return save->cpl;
1126 }
1127
1128 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1129 {
1130         struct vcpu_svm *svm = to_svm(vcpu);
1131
1132         dt->size = svm->vmcb->save.idtr.limit;
1133         dt->address = svm->vmcb->save.idtr.base;
1134 }
1135
1136 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1137 {
1138         struct vcpu_svm *svm = to_svm(vcpu);
1139
1140         svm->vmcb->save.idtr.limit = dt->size;
1141         svm->vmcb->save.idtr.base = dt->address ;
1142 }
1143
1144 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1145 {
1146         struct vcpu_svm *svm = to_svm(vcpu);
1147
1148         dt->size = svm->vmcb->save.gdtr.limit;
1149         dt->address = svm->vmcb->save.gdtr.base;
1150 }
1151
1152 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1153 {
1154         struct vcpu_svm *svm = to_svm(vcpu);
1155
1156         svm->vmcb->save.gdtr.limit = dt->size;
1157         svm->vmcb->save.gdtr.base = dt->address ;
1158 }
1159
1160 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1161 {
1162 }
1163
1164 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1165 {
1166 }
1167
1168 static void update_cr0_intercept(struct vcpu_svm *svm)
1169 {
1170         struct vmcb *vmcb = svm->vmcb;
1171         ulong gcr0 = svm->vcpu.arch.cr0;
1172         u64 *hcr0 = &svm->vmcb->save.cr0;
1173
1174         if (!svm->vcpu.fpu_active)
1175                 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1176         else
1177                 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1178                         | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1179
1180
1181         if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1182                 vmcb->control.intercept_cr_read &= ~INTERCEPT_CR0_MASK;
1183                 vmcb->control.intercept_cr_write &= ~INTERCEPT_CR0_MASK;
1184                 if (is_nested(svm)) {
1185                         struct vmcb *hsave = svm->nested.hsave;
1186
1187                         hsave->control.intercept_cr_read  &= ~INTERCEPT_CR0_MASK;
1188                         hsave->control.intercept_cr_write &= ~INTERCEPT_CR0_MASK;
1189                         vmcb->control.intercept_cr_read  |= svm->nested.intercept_cr_read;
1190                         vmcb->control.intercept_cr_write |= svm->nested.intercept_cr_write;
1191                 }
1192         } else {
1193                 svm->vmcb->control.intercept_cr_read |= INTERCEPT_CR0_MASK;
1194                 svm->vmcb->control.intercept_cr_write |= INTERCEPT_CR0_MASK;
1195                 if (is_nested(svm)) {
1196                         struct vmcb *hsave = svm->nested.hsave;
1197
1198                         hsave->control.intercept_cr_read |= INTERCEPT_CR0_MASK;
1199                         hsave->control.intercept_cr_write |= INTERCEPT_CR0_MASK;
1200                 }
1201         }
1202 }
1203
1204 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1205 {
1206         struct vcpu_svm *svm = to_svm(vcpu);
1207
1208         if (is_nested(svm)) {
1209                 /*
1210                  * We are here because we run in nested mode, the host kvm
1211                  * intercepts cr0 writes but the l1 hypervisor does not.
1212                  * But the L1 hypervisor may intercept selective cr0 writes.
1213                  * This needs to be checked here.
1214                  */
1215                 unsigned long old, new;
1216
1217                 /* Remove bits that would trigger a real cr0 write intercept */
1218                 old = vcpu->arch.cr0 & SVM_CR0_SELECTIVE_MASK;
1219                 new = cr0 & SVM_CR0_SELECTIVE_MASK;
1220
1221                 if (old == new) {
1222                         /* cr0 write with ts and mp unchanged */
1223                         svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
1224                         if (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE) {
1225                                 svm->nested.vmexit_rip = kvm_rip_read(vcpu);
1226                                 svm->nested.vmexit_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
1227                                 svm->nested.vmexit_rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
1228                                 return;
1229                         }
1230                 }
1231         }
1232
1233 #ifdef CONFIG_X86_64
1234         if (vcpu->arch.efer & EFER_LME) {
1235                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1236                         vcpu->arch.efer |= EFER_LMA;
1237                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1238                 }
1239
1240                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1241                         vcpu->arch.efer &= ~EFER_LMA;
1242                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1243                 }
1244         }
1245 #endif
1246         vcpu->arch.cr0 = cr0;
1247
1248         if (!npt_enabled)
1249                 cr0 |= X86_CR0_PG | X86_CR0_WP;
1250
1251         if (!vcpu->fpu_active)
1252                 cr0 |= X86_CR0_TS;
1253         /*
1254          * re-enable caching here because the QEMU bios
1255          * does not do it - this results in some delay at
1256          * reboot
1257          */
1258         cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1259         svm->vmcb->save.cr0 = cr0;
1260         update_cr0_intercept(svm);
1261 }
1262
1263 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1264 {
1265         unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
1266         unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1267
1268         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1269                 force_new_asid(vcpu);
1270
1271         vcpu->arch.cr4 = cr4;
1272         if (!npt_enabled)
1273                 cr4 |= X86_CR4_PAE;
1274         cr4 |= host_cr4_mce;
1275         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1276 }
1277
1278 static void svm_set_segment(struct kvm_vcpu *vcpu,
1279                             struct kvm_segment *var, int seg)
1280 {
1281         struct vcpu_svm *svm = to_svm(vcpu);
1282         struct vmcb_seg *s = svm_seg(vcpu, seg);
1283
1284         s->base = var->base;
1285         s->limit = var->limit;
1286         s->selector = var->selector;
1287         if (var->unusable)
1288                 s->attrib = 0;
1289         else {
1290                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1291                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1292                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1293                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1294                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1295                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1296                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1297                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1298         }
1299         if (seg == VCPU_SREG_CS)
1300                 svm->vmcb->save.cpl
1301                         = (svm->vmcb->save.cs.attrib
1302                            >> SVM_SELECTOR_DPL_SHIFT) & 3;
1303
1304 }
1305
1306 static void update_db_intercept(struct kvm_vcpu *vcpu)
1307 {
1308         struct vcpu_svm *svm = to_svm(vcpu);
1309
1310         svm->vmcb->control.intercept_exceptions &=
1311                 ~((1 << DB_VECTOR) | (1 << BP_VECTOR));
1312
1313         if (svm->nmi_singlestep)
1314                 svm->vmcb->control.intercept_exceptions |= (1 << DB_VECTOR);
1315
1316         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1317                 if (vcpu->guest_debug &
1318                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1319                         svm->vmcb->control.intercept_exceptions |=
1320                                 1 << DB_VECTOR;
1321                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1322                         svm->vmcb->control.intercept_exceptions |=
1323                                 1 << BP_VECTOR;
1324         } else
1325                 vcpu->guest_debug = 0;
1326 }
1327
1328 static void svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1329 {
1330         struct vcpu_svm *svm = to_svm(vcpu);
1331
1332         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1333                 svm->vmcb->save.dr7 = dbg->arch.debugreg[7];
1334         else
1335                 svm->vmcb->save.dr7 = vcpu->arch.dr7;
1336
1337         update_db_intercept(vcpu);
1338 }
1339
1340 static void load_host_msrs(struct kvm_vcpu *vcpu)
1341 {
1342 #ifdef CONFIG_X86_64
1343         wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
1344 #endif
1345 }
1346
1347 static void save_host_msrs(struct kvm_vcpu *vcpu)
1348 {
1349 #ifdef CONFIG_X86_64
1350         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
1351 #endif
1352 }
1353
1354 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1355 {
1356         if (sd->next_asid > sd->max_asid) {
1357                 ++sd->asid_generation;
1358                 sd->next_asid = 1;
1359                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1360         }
1361
1362         svm->asid_generation = sd->asid_generation;
1363         svm->vmcb->control.asid = sd->next_asid++;
1364 }
1365
1366 static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1367 {
1368         struct vcpu_svm *svm = to_svm(vcpu);
1369
1370         svm->vmcb->save.dr7 = value;
1371 }
1372
1373 static int pf_interception(struct vcpu_svm *svm)
1374 {
1375         u64 fault_address;
1376         u32 error_code;
1377
1378         fault_address  = svm->vmcb->control.exit_info_2;
1379         error_code = svm->vmcb->control.exit_info_1;
1380
1381         trace_kvm_page_fault(fault_address, error_code);
1382         if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1383                 kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1384         return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
1385 }
1386
1387 static int db_interception(struct vcpu_svm *svm)
1388 {
1389         struct kvm_run *kvm_run = svm->vcpu.run;
1390
1391         if (!(svm->vcpu.guest_debug &
1392               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1393                 !svm->nmi_singlestep) {
1394                 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1395                 return 1;
1396         }
1397
1398         if (svm->nmi_singlestep) {
1399                 svm->nmi_singlestep = false;
1400                 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1401                         svm->vmcb->save.rflags &=
1402                                 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1403                 update_db_intercept(&svm->vcpu);
1404         }
1405
1406         if (svm->vcpu.guest_debug &
1407             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1408                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1409                 kvm_run->debug.arch.pc =
1410                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1411                 kvm_run->debug.arch.exception = DB_VECTOR;
1412                 return 0;
1413         }
1414
1415         return 1;
1416 }
1417
1418 static int bp_interception(struct vcpu_svm *svm)
1419 {
1420         struct kvm_run *kvm_run = svm->vcpu.run;
1421
1422         kvm_run->exit_reason = KVM_EXIT_DEBUG;
1423         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1424         kvm_run->debug.arch.exception = BP_VECTOR;
1425         return 0;
1426 }
1427
1428 static int ud_interception(struct vcpu_svm *svm)
1429 {
1430         int er;
1431
1432         er = emulate_instruction(&svm->vcpu, 0, 0, EMULTYPE_TRAP_UD);
1433         if (er != EMULATE_DONE)
1434                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1435         return 1;
1436 }
1437
1438 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1439 {
1440         struct vcpu_svm *svm = to_svm(vcpu);
1441         u32 excp;
1442
1443         if (is_nested(svm)) {
1444                 u32 h_excp, n_excp;
1445
1446                 h_excp  = svm->nested.hsave->control.intercept_exceptions;
1447                 n_excp  = svm->nested.intercept_exceptions;
1448                 h_excp &= ~(1 << NM_VECTOR);
1449                 excp    = h_excp | n_excp;
1450         } else {
1451                 excp  = svm->vmcb->control.intercept_exceptions;
1452                 excp &= ~(1 << NM_VECTOR);
1453         }
1454
1455         svm->vmcb->control.intercept_exceptions = excp;
1456
1457         svm->vcpu.fpu_active = 1;
1458         update_cr0_intercept(svm);
1459 }
1460
1461 static int nm_interception(struct vcpu_svm *svm)
1462 {
1463         svm_fpu_activate(&svm->vcpu);
1464         return 1;
1465 }
1466
1467 static bool is_erratum_383(void)
1468 {
1469         int err, i;
1470         u64 value;
1471
1472         if (!erratum_383_found)
1473                 return false;
1474
1475         value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1476         if (err)
1477                 return false;
1478
1479         /* Bit 62 may or may not be set for this mce */
1480         value &= ~(1ULL << 62);
1481
1482         if (value != 0xb600000000010015ULL)
1483                 return false;
1484
1485         /* Clear MCi_STATUS registers */
1486         for (i = 0; i < 6; ++i)
1487                 native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1488
1489         value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1490         if (!err) {
1491                 u32 low, high;
1492
1493                 value &= ~(1ULL << 2);
1494                 low    = lower_32_bits(value);
1495                 high   = upper_32_bits(value);
1496
1497                 native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1498         }
1499
1500         /* Flush tlb to evict multi-match entries */
1501         __flush_tlb_all();
1502
1503         return true;
1504 }
1505
1506 static void svm_handle_mce(struct vcpu_svm *svm)
1507 {
1508         if (is_erratum_383()) {
1509                 /*
1510                  * Erratum 383 triggered. Guest state is corrupt so kill the
1511                  * guest.
1512                  */
1513                 pr_err("KVM: Guest triggered AMD Erratum 383\n");
1514
1515                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1516
1517                 return;
1518         }
1519
1520         /*
1521          * On an #MC intercept the MCE handler is not called automatically in
1522          * the host. So do it by hand here.
1523          */
1524         asm volatile (
1525                 "int $0x12\n");
1526         /* not sure if we ever come back to this point */
1527
1528         return;
1529 }
1530
1531 static int mc_interception(struct vcpu_svm *svm)
1532 {
1533         return 1;
1534 }
1535
1536 static int shutdown_interception(struct vcpu_svm *svm)
1537 {
1538         struct kvm_run *kvm_run = svm->vcpu.run;
1539
1540         /*
1541          * VMCB is undefined after a SHUTDOWN intercept
1542          * so reinitialize it.
1543          */
1544         clear_page(svm->vmcb);
1545         init_vmcb(svm);
1546
1547         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1548         return 0;
1549 }
1550
1551 static int io_interception(struct vcpu_svm *svm)
1552 {
1553         struct kvm_vcpu *vcpu = &svm->vcpu;
1554         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1555         int size, in, string;
1556         unsigned port;
1557
1558         ++svm->vcpu.stat.io_exits;
1559         string = (io_info & SVM_IOIO_STR_MASK) != 0;
1560         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1561         if (string || in)
1562                 return emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE;
1563
1564         port = io_info >> 16;
1565         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1566         svm->next_rip = svm->vmcb->control.exit_info_2;
1567         skip_emulated_instruction(&svm->vcpu);
1568
1569         return kvm_fast_pio_out(vcpu, size, port);
1570 }
1571
1572 static int nmi_interception(struct vcpu_svm *svm)
1573 {
1574         return 1;
1575 }
1576
1577 static int intr_interception(struct vcpu_svm *svm)
1578 {
1579         ++svm->vcpu.stat.irq_exits;
1580         return 1;
1581 }
1582
1583 static int nop_on_interception(struct vcpu_svm *svm)
1584 {
1585         return 1;
1586 }
1587
1588 static int halt_interception(struct vcpu_svm *svm)
1589 {
1590         svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1591         skip_emulated_instruction(&svm->vcpu);
1592         return kvm_emulate_halt(&svm->vcpu);
1593 }
1594
1595 static int vmmcall_interception(struct vcpu_svm *svm)
1596 {
1597         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1598         skip_emulated_instruction(&svm->vcpu);
1599         kvm_emulate_hypercall(&svm->vcpu);
1600         return 1;
1601 }
1602
1603 static int nested_svm_check_permissions(struct vcpu_svm *svm)
1604 {
1605         if (!(svm->vcpu.arch.efer & EFER_SVME)
1606             || !is_paging(&svm->vcpu)) {
1607                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1608                 return 1;
1609         }
1610
1611         if (svm->vmcb->save.cpl) {
1612                 kvm_inject_gp(&svm->vcpu, 0);
1613                 return 1;
1614         }
1615
1616        return 0;
1617 }
1618
1619 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
1620                                       bool has_error_code, u32 error_code)
1621 {
1622         int vmexit;
1623
1624         if (!is_nested(svm))
1625                 return 0;
1626
1627         svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
1628         svm->vmcb->control.exit_code_hi = 0;
1629         svm->vmcb->control.exit_info_1 = error_code;
1630         svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
1631
1632         vmexit = nested_svm_intercept(svm);
1633         if (vmexit == NESTED_EXIT_DONE)
1634                 svm->nested.exit_required = true;
1635
1636         return vmexit;
1637 }
1638
1639 /* This function returns true if it is save to enable the irq window */
1640 static inline bool nested_svm_intr(struct vcpu_svm *svm)
1641 {
1642         if (!is_nested(svm))
1643                 return true;
1644
1645         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1646                 return true;
1647
1648         if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
1649                 return false;
1650
1651         svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
1652         svm->vmcb->control.exit_info_1 = 0;
1653         svm->vmcb->control.exit_info_2 = 0;
1654
1655         if (svm->nested.intercept & 1ULL) {
1656                 /*
1657                  * The #vmexit can't be emulated here directly because this
1658                  * code path runs with irqs and preemtion disabled. A
1659                  * #vmexit emulation might sleep. Only signal request for
1660                  * the #vmexit here.
1661                  */
1662                 svm->nested.exit_required = true;
1663                 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
1664                 return false;
1665         }
1666
1667         return true;
1668 }
1669
1670 /* This function returns true if it is save to enable the nmi window */
1671 static inline bool nested_svm_nmi(struct vcpu_svm *svm)
1672 {
1673         if (!is_nested(svm))
1674                 return true;
1675
1676         if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
1677                 return true;
1678
1679         svm->vmcb->control.exit_code = SVM_EXIT_NMI;
1680         svm->nested.exit_required = true;
1681
1682         return false;
1683 }
1684
1685 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
1686 {
1687         struct page *page;
1688
1689         might_sleep();
1690
1691         page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
1692         if (is_error_page(page))
1693                 goto error;
1694
1695         *_page = page;
1696
1697         return kmap(page);
1698
1699 error:
1700         kvm_release_page_clean(page);
1701         kvm_inject_gp(&svm->vcpu, 0);
1702
1703         return NULL;
1704 }
1705
1706 static void nested_svm_unmap(struct page *page)
1707 {
1708         kunmap(page);
1709         kvm_release_page_dirty(page);
1710 }
1711
1712 static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
1713 {
1714         unsigned port;
1715         u8 val, bit;
1716         u64 gpa;
1717
1718         if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
1719                 return NESTED_EXIT_HOST;
1720
1721         port = svm->vmcb->control.exit_info_1 >> 16;
1722         gpa  = svm->nested.vmcb_iopm + (port / 8);
1723         bit  = port % 8;
1724         val  = 0;
1725
1726         if (kvm_read_guest(svm->vcpu.kvm, gpa, &val, 1))
1727                 val &= (1 << bit);
1728
1729         return val ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
1730 }
1731
1732 static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
1733 {
1734         u32 offset, msr, value;
1735         int write, mask;
1736
1737         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
1738                 return NESTED_EXIT_HOST;
1739
1740         msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
1741         offset = svm_msrpm_offset(msr);
1742         write  = svm->vmcb->control.exit_info_1 & 1;
1743         mask   = 1 << ((2 * (msr & 0xf)) + write);
1744
1745         if (offset == MSR_INVALID)
1746                 return NESTED_EXIT_DONE;
1747
1748         /* Offset is in 32 bit units but need in 8 bit units */
1749         offset *= 4;
1750
1751         if (kvm_read_guest(svm->vcpu.kvm, svm->nested.vmcb_msrpm + offset, &value, 4))
1752                 return NESTED_EXIT_DONE;
1753
1754         return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
1755 }
1756
1757 static int nested_svm_exit_special(struct vcpu_svm *svm)
1758 {
1759         u32 exit_code = svm->vmcb->control.exit_code;
1760
1761         switch (exit_code) {
1762         case SVM_EXIT_INTR:
1763         case SVM_EXIT_NMI:
1764         case SVM_EXIT_EXCP_BASE + MC_VECTOR:
1765                 return NESTED_EXIT_HOST;
1766         case SVM_EXIT_NPF:
1767                 /* For now we are always handling NPFs when using them */
1768                 if (npt_enabled)
1769                         return NESTED_EXIT_HOST;
1770                 break;
1771         case SVM_EXIT_EXCP_BASE + PF_VECTOR:
1772                 /* When we're shadowing, trap PFs */
1773                 if (!npt_enabled)
1774                         return NESTED_EXIT_HOST;
1775                 break;
1776         case SVM_EXIT_EXCP_BASE + NM_VECTOR:
1777                 nm_interception(svm);
1778                 break;
1779         default:
1780                 break;
1781         }
1782
1783         return NESTED_EXIT_CONTINUE;
1784 }
1785
1786 /*
1787  * If this function returns true, this #vmexit was already handled
1788  */
1789 static int nested_svm_intercept(struct vcpu_svm *svm)
1790 {
1791         u32 exit_code = svm->vmcb->control.exit_code;
1792         int vmexit = NESTED_EXIT_HOST;
1793
1794         switch (exit_code) {
1795         case SVM_EXIT_MSR:
1796                 vmexit = nested_svm_exit_handled_msr(svm);
1797                 break;
1798         case SVM_EXIT_IOIO:
1799                 vmexit = nested_svm_intercept_ioio(svm);
1800                 break;
1801         case SVM_EXIT_READ_CR0 ... SVM_EXIT_READ_CR8: {
1802                 u32 cr_bits = 1 << (exit_code - SVM_EXIT_READ_CR0);
1803                 if (svm->nested.intercept_cr_read & cr_bits)
1804                         vmexit = NESTED_EXIT_DONE;
1805                 break;
1806         }
1807         case SVM_EXIT_WRITE_CR0 ... SVM_EXIT_WRITE_CR8: {
1808                 u32 cr_bits = 1 << (exit_code - SVM_EXIT_WRITE_CR0);
1809                 if (svm->nested.intercept_cr_write & cr_bits)
1810                         vmexit = NESTED_EXIT_DONE;
1811                 break;
1812         }
1813         case SVM_EXIT_READ_DR0 ... SVM_EXIT_READ_DR7: {
1814                 u32 dr_bits = 1 << (exit_code - SVM_EXIT_READ_DR0);
1815                 if (svm->nested.intercept_dr_read & dr_bits)
1816                         vmexit = NESTED_EXIT_DONE;
1817                 break;
1818         }
1819         case SVM_EXIT_WRITE_DR0 ... SVM_EXIT_WRITE_DR7: {
1820                 u32 dr_bits = 1 << (exit_code - SVM_EXIT_WRITE_DR0);
1821                 if (svm->nested.intercept_dr_write & dr_bits)
1822                         vmexit = NESTED_EXIT_DONE;
1823                 break;
1824         }
1825         case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
1826                 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
1827                 if (svm->nested.intercept_exceptions & excp_bits)
1828                         vmexit = NESTED_EXIT_DONE;
1829                 break;
1830         }
1831         case SVM_EXIT_ERR: {
1832                 vmexit = NESTED_EXIT_DONE;
1833                 break;
1834         }
1835         default: {
1836                 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
1837                 if (svm->nested.intercept & exit_bits)
1838                         vmexit = NESTED_EXIT_DONE;
1839         }
1840         }
1841
1842         return vmexit;
1843 }
1844
1845 static int nested_svm_exit_handled(struct vcpu_svm *svm)
1846 {
1847         int vmexit;
1848
1849         vmexit = nested_svm_intercept(svm);
1850
1851         if (vmexit == NESTED_EXIT_DONE)
1852                 nested_svm_vmexit(svm);
1853
1854         return vmexit;
1855 }
1856
1857 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
1858 {
1859         struct vmcb_control_area *dst  = &dst_vmcb->control;
1860         struct vmcb_control_area *from = &from_vmcb->control;
1861
1862         dst->intercept_cr_read    = from->intercept_cr_read;
1863         dst->intercept_cr_write   = from->intercept_cr_write;
1864         dst->intercept_dr_read    = from->intercept_dr_read;
1865         dst->intercept_dr_write   = from->intercept_dr_write;
1866         dst->intercept_exceptions = from->intercept_exceptions;
1867         dst->intercept            = from->intercept;
1868         dst->iopm_base_pa         = from->iopm_base_pa;
1869         dst->msrpm_base_pa        = from->msrpm_base_pa;
1870         dst->tsc_offset           = from->tsc_offset;
1871         dst->asid                 = from->asid;
1872         dst->tlb_ctl              = from->tlb_ctl;
1873         dst->int_ctl              = from->int_ctl;
1874         dst->int_vector           = from->int_vector;
1875         dst->int_state            = from->int_state;
1876         dst->exit_code            = from->exit_code;
1877         dst->exit_code_hi         = from->exit_code_hi;
1878         dst->exit_info_1          = from->exit_info_1;
1879         dst->exit_info_2          = from->exit_info_2;
1880         dst->exit_int_info        = from->exit_int_info;
1881         dst->exit_int_info_err    = from->exit_int_info_err;
1882         dst->nested_ctl           = from->nested_ctl;
1883         dst->event_inj            = from->event_inj;
1884         dst->event_inj_err        = from->event_inj_err;
1885         dst->nested_cr3           = from->nested_cr3;
1886         dst->lbr_ctl              = from->lbr_ctl;
1887 }
1888
1889 static int nested_svm_vmexit(struct vcpu_svm *svm)
1890 {
1891         struct vmcb *nested_vmcb;
1892         struct vmcb *hsave = svm->nested.hsave;
1893         struct vmcb *vmcb = svm->vmcb;
1894         struct page *page;
1895
1896         trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
1897                                        vmcb->control.exit_info_1,
1898                                        vmcb->control.exit_info_2,
1899                                        vmcb->control.exit_int_info,
1900                                        vmcb->control.exit_int_info_err);
1901
1902         nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
1903         if (!nested_vmcb)
1904                 return 1;
1905
1906         /* Exit nested SVM mode */
1907         svm->nested.vmcb = 0;
1908
1909         /* Give the current vmcb to the guest */
1910         disable_gif(svm);
1911
1912         nested_vmcb->save.es     = vmcb->save.es;
1913         nested_vmcb->save.cs     = vmcb->save.cs;
1914         nested_vmcb->save.ss     = vmcb->save.ss;
1915         nested_vmcb->save.ds     = vmcb->save.ds;
1916         nested_vmcb->save.gdtr   = vmcb->save.gdtr;
1917         nested_vmcb->save.idtr   = vmcb->save.idtr;
1918         nested_vmcb->save.efer   = svm->vcpu.arch.efer;
1919         nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
1920         nested_vmcb->save.cr3    = svm->vcpu.arch.cr3;
1921         nested_vmcb->save.cr2    = vmcb->save.cr2;
1922         nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
1923         nested_vmcb->save.rflags = vmcb->save.rflags;
1924         nested_vmcb->save.rip    = vmcb->save.rip;
1925         nested_vmcb->save.rsp    = vmcb->save.rsp;
1926         nested_vmcb->save.rax    = vmcb->save.rax;
1927         nested_vmcb->save.dr7    = vmcb->save.dr7;
1928         nested_vmcb->save.dr6    = vmcb->save.dr6;
1929         nested_vmcb->save.cpl    = vmcb->save.cpl;
1930
1931         nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
1932         nested_vmcb->control.int_vector        = vmcb->control.int_vector;
1933         nested_vmcb->control.int_state         = vmcb->control.int_state;
1934         nested_vmcb->control.exit_code         = vmcb->control.exit_code;
1935         nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
1936         nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
1937         nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
1938         nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
1939         nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
1940         nested_vmcb->control.next_rip          = vmcb->control.next_rip;
1941
1942         /*
1943          * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
1944          * to make sure that we do not lose injected events. So check event_inj
1945          * here and copy it to exit_int_info if it is valid.
1946          * Exit_int_info and event_inj can't be both valid because the case
1947          * below only happens on a VMRUN instruction intercept which has
1948          * no valid exit_int_info set.
1949          */
1950         if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
1951                 struct vmcb_control_area *nc = &nested_vmcb->control;
1952
1953                 nc->exit_int_info     = vmcb->control.event_inj;
1954                 nc->exit_int_info_err = vmcb->control.event_inj_err;
1955         }
1956
1957         nested_vmcb->control.tlb_ctl           = 0;
1958         nested_vmcb->control.event_inj         = 0;
1959         nested_vmcb->control.event_inj_err     = 0;
1960
1961         /* We always set V_INTR_MASKING and remember the old value in hflags */
1962         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1963                 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
1964
1965         /* Restore the original control entries */
1966         copy_vmcb_control_area(vmcb, hsave);
1967
1968         kvm_clear_exception_queue(&svm->vcpu);
1969         kvm_clear_interrupt_queue(&svm->vcpu);
1970
1971         /* Restore selected save entries */
1972         svm->vmcb->save.es = hsave->save.es;
1973         svm->vmcb->save.cs = hsave->save.cs;
1974         svm->vmcb->save.ss = hsave->save.ss;
1975         svm->vmcb->save.ds = hsave->save.ds;
1976         svm->vmcb->save.gdtr = hsave->save.gdtr;
1977         svm->vmcb->save.idtr = hsave->save.idtr;
1978         svm->vmcb->save.rflags = hsave->save.rflags;
1979         svm_set_efer(&svm->vcpu, hsave->save.efer);
1980         svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
1981         svm_set_cr4(&svm->vcpu, hsave->save.cr4);
1982         if (npt_enabled) {
1983                 svm->vmcb->save.cr3 = hsave->save.cr3;
1984                 svm->vcpu.arch.cr3 = hsave->save.cr3;
1985         } else {
1986                 (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
1987         }
1988         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
1989         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
1990         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
1991         svm->vmcb->save.dr7 = 0;
1992         svm->vmcb->save.cpl = 0;
1993         svm->vmcb->control.exit_int_info = 0;
1994
1995         nested_svm_unmap(page);
1996
1997         kvm_mmu_reset_context(&svm->vcpu);
1998         kvm_mmu_load(&svm->vcpu);
1999
2000         return 0;
2001 }
2002
2003 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2004 {
2005         /*
2006          * This function merges the msr permission bitmaps of kvm and the
2007          * nested vmcb. It is omptimized in that it only merges the parts where
2008          * the kvm msr permission bitmap may contain zero bits
2009          */
2010         int i;
2011
2012         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2013                 return true;
2014
2015         for (i = 0; i < MSRPM_OFFSETS; i++) {
2016                 u32 value, p;
2017                 u64 offset;
2018
2019                 if (msrpm_offsets[i] == 0xffffffff)
2020                         break;
2021
2022                 p      = msrpm_offsets[i];
2023                 offset = svm->nested.vmcb_msrpm + (p * 4);
2024
2025                 if (kvm_read_guest(svm->vcpu.kvm, offset, &value, 4))
2026                         return false;
2027
2028                 svm->nested.msrpm[p] = svm->msrpm[p] | value;
2029         }
2030
2031         svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2032
2033         return true;
2034 }
2035
2036 static bool nested_vmcb_checks(struct vmcb *vmcb)
2037 {
2038         if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2039                 return false;
2040
2041         if (vmcb->control.asid == 0)
2042                 return false;
2043
2044         return true;
2045 }
2046
2047 static bool nested_svm_vmrun(struct vcpu_svm *svm)
2048 {
2049         struct vmcb *nested_vmcb;
2050         struct vmcb *hsave = svm->nested.hsave;
2051         struct vmcb *vmcb = svm->vmcb;
2052         struct page *page;
2053         u64 vmcb_gpa;
2054
2055         vmcb_gpa = svm->vmcb->save.rax;
2056
2057         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2058         if (!nested_vmcb)
2059                 return false;
2060
2061         if (!nested_vmcb_checks(nested_vmcb)) {
2062                 nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
2063                 nested_vmcb->control.exit_code_hi = 0;
2064                 nested_vmcb->control.exit_info_1  = 0;
2065                 nested_vmcb->control.exit_info_2  = 0;
2066
2067                 nested_svm_unmap(page);
2068
2069                 return false;
2070         }
2071
2072         trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2073                                nested_vmcb->save.rip,
2074                                nested_vmcb->control.int_ctl,
2075                                nested_vmcb->control.event_inj,
2076                                nested_vmcb->control.nested_ctl);
2077
2078         trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr_read,
2079                                     nested_vmcb->control.intercept_cr_write,
2080                                     nested_vmcb->control.intercept_exceptions,
2081                                     nested_vmcb->control.intercept);
2082
2083         /* Clear internal status */
2084         kvm_clear_exception_queue(&svm->vcpu);
2085         kvm_clear_interrupt_queue(&svm->vcpu);
2086
2087         /*
2088          * Save the old vmcb, so we don't need to pick what we save, but can
2089          * restore everything when a VMEXIT occurs
2090          */
2091         hsave->save.es     = vmcb->save.es;
2092         hsave->save.cs     = vmcb->save.cs;
2093         hsave->save.ss     = vmcb->save.ss;
2094         hsave->save.ds     = vmcb->save.ds;
2095         hsave->save.gdtr   = vmcb->save.gdtr;
2096         hsave->save.idtr   = vmcb->save.idtr;
2097         hsave->save.efer   = svm->vcpu.arch.efer;
2098         hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
2099         hsave->save.cr4    = svm->vcpu.arch.cr4;
2100         hsave->save.rflags = vmcb->save.rflags;
2101         hsave->save.rip    = kvm_rip_read(&svm->vcpu);
2102         hsave->save.rsp    = vmcb->save.rsp;
2103         hsave->save.rax    = vmcb->save.rax;
2104         if (npt_enabled)
2105                 hsave->save.cr3    = vmcb->save.cr3;
2106         else
2107                 hsave->save.cr3    = svm->vcpu.arch.cr3;
2108
2109         copy_vmcb_control_area(hsave, vmcb);
2110
2111         if (svm->vmcb->save.rflags & X86_EFLAGS_IF)
2112                 svm->vcpu.arch.hflags |= HF_HIF_MASK;
2113         else
2114                 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2115
2116         /* Load the nested guest state */
2117         svm->vmcb->save.es = nested_vmcb->save.es;
2118         svm->vmcb->save.cs = nested_vmcb->save.cs;
2119         svm->vmcb->save.ss = nested_vmcb->save.ss;
2120         svm->vmcb->save.ds = nested_vmcb->save.ds;
2121         svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2122         svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2123         svm->vmcb->save.rflags = nested_vmcb->save.rflags;
2124         svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2125         svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2126         svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2127         if (npt_enabled) {
2128                 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2129                 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2130         } else
2131                 (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2132
2133         /* Guest paging mode is active - reset mmu */
2134         kvm_mmu_reset_context(&svm->vcpu);
2135
2136         svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2137         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2138         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2139         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2140
2141         /* In case we don't even reach vcpu_run, the fields are not updated */
2142         svm->vmcb->save.rax = nested_vmcb->save.rax;
2143         svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2144         svm->vmcb->save.rip = nested_vmcb->save.rip;
2145         svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2146         svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2147         svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2148
2149         svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2150         svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
2151
2152         /* cache intercepts */
2153         svm->nested.intercept_cr_read    = nested_vmcb->control.intercept_cr_read;
2154         svm->nested.intercept_cr_write   = nested_vmcb->control.intercept_cr_write;
2155         svm->nested.intercept_dr_read    = nested_vmcb->control.intercept_dr_read;
2156         svm->nested.intercept_dr_write   = nested_vmcb->control.intercept_dr_write;
2157         svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2158         svm->nested.intercept            = nested_vmcb->control.intercept;
2159
2160         force_new_asid(&svm->vcpu);
2161         svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2162         if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2163                 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2164         else
2165                 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2166
2167         if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2168                 /* We only want the cr8 intercept bits of the guest */
2169                 svm->vmcb->control.intercept_cr_read &= ~INTERCEPT_CR8_MASK;
2170                 svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
2171         }
2172
2173         /* We don't want to see VMMCALLs from a nested guest */
2174         svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VMMCALL);
2175
2176         /*
2177          * We don't want a nested guest to be more powerful than the guest, so
2178          * all intercepts are ORed
2179          */
2180         svm->vmcb->control.intercept_cr_read |=
2181                 nested_vmcb->control.intercept_cr_read;
2182         svm->vmcb->control.intercept_cr_write |=
2183                 nested_vmcb->control.intercept_cr_write;
2184         svm->vmcb->control.intercept_dr_read |=
2185                 nested_vmcb->control.intercept_dr_read;
2186         svm->vmcb->control.intercept_dr_write |=
2187                 nested_vmcb->control.intercept_dr_write;
2188         svm->vmcb->control.intercept_exceptions |=
2189                 nested_vmcb->control.intercept_exceptions;
2190
2191         svm->vmcb->control.intercept |= nested_vmcb->control.intercept;
2192
2193         svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2194         svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2195         svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2196         svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2197         svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2198         svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2199
2200         nested_svm_unmap(page);
2201
2202         /* nested_vmcb is our indicator if nested SVM is activated */
2203         svm->nested.vmcb = vmcb_gpa;
2204
2205         enable_gif(svm);
2206
2207         return true;
2208 }
2209
2210 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2211 {
2212         to_vmcb->save.fs = from_vmcb->save.fs;
2213         to_vmcb->save.gs = from_vmcb->save.gs;
2214         to_vmcb->save.tr = from_vmcb->save.tr;
2215         to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2216         to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2217         to_vmcb->save.star = from_vmcb->save.star;
2218         to_vmcb->save.lstar = from_vmcb->save.lstar;
2219         to_vmcb->save.cstar = from_vmcb->save.cstar;
2220         to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2221         to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2222         to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2223         to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2224 }
2225
2226 static int vmload_interception(struct vcpu_svm *svm)
2227 {
2228         struct vmcb *nested_vmcb;
2229         struct page *page;
2230
2231         if (nested_svm_check_permissions(svm))
2232                 return 1;
2233
2234         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2235         skip_emulated_instruction(&svm->vcpu);
2236
2237         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2238         if (!nested_vmcb)
2239                 return 1;
2240
2241         nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2242         nested_svm_unmap(page);
2243
2244         return 1;
2245 }
2246
2247 static int vmsave_interception(struct vcpu_svm *svm)
2248 {
2249         struct vmcb *nested_vmcb;
2250         struct page *page;
2251
2252         if (nested_svm_check_permissions(svm))
2253                 return 1;
2254
2255         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2256         skip_emulated_instruction(&svm->vcpu);
2257
2258         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2259         if (!nested_vmcb)
2260                 return 1;
2261
2262         nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2263         nested_svm_unmap(page);
2264
2265         return 1;
2266 }
2267
2268 static int vmrun_interception(struct vcpu_svm *svm)
2269 {
2270         if (nested_svm_check_permissions(svm))
2271                 return 1;
2272
2273         /* Save rip after vmrun instruction */
2274         kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
2275
2276         if (!nested_svm_vmrun(svm))
2277                 return 1;
2278
2279         if (!nested_svm_vmrun_msrpm(svm))
2280                 goto failed;
2281
2282         return 1;
2283
2284 failed:
2285
2286         svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
2287         svm->vmcb->control.exit_code_hi = 0;
2288         svm->vmcb->control.exit_info_1  = 0;
2289         svm->vmcb->control.exit_info_2  = 0;
2290
2291         nested_svm_vmexit(svm);
2292
2293         return 1;
2294 }
2295
2296 static int stgi_interception(struct vcpu_svm *svm)
2297 {
2298         if (nested_svm_check_permissions(svm))
2299                 return 1;
2300
2301         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2302         skip_emulated_instruction(&svm->vcpu);
2303
2304         enable_gif(svm);
2305
2306         return 1;
2307 }
2308
2309 static int clgi_interception(struct vcpu_svm *svm)
2310 {
2311         if (nested_svm_check_permissions(svm))
2312                 return 1;
2313
2314         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2315         skip_emulated_instruction(&svm->vcpu);
2316
2317         disable_gif(svm);
2318
2319         /* After a CLGI no interrupts should come */
2320         svm_clear_vintr(svm);
2321         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2322
2323         return 1;
2324 }
2325
2326 static int invlpga_interception(struct vcpu_svm *svm)
2327 {
2328         struct kvm_vcpu *vcpu = &svm->vcpu;
2329
2330         trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX],
2331                           vcpu->arch.regs[VCPU_REGS_RAX]);
2332
2333         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2334         kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
2335
2336         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2337         skip_emulated_instruction(&svm->vcpu);
2338         return 1;
2339 }
2340
2341 static int skinit_interception(struct vcpu_svm *svm)
2342 {
2343         trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]);
2344
2345         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2346         return 1;
2347 }
2348
2349 static int invalid_op_interception(struct vcpu_svm *svm)
2350 {
2351         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2352         return 1;
2353 }
2354
2355 static int task_switch_interception(struct vcpu_svm *svm)
2356 {
2357         u16 tss_selector;
2358         int reason;
2359         int int_type = svm->vmcb->control.exit_int_info &
2360                 SVM_EXITINTINFO_TYPE_MASK;
2361         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2362         uint32_t type =
2363                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2364         uint32_t idt_v =
2365                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2366         bool has_error_code = false;
2367         u32 error_code = 0;
2368
2369         tss_selector = (u16)svm->vmcb->control.exit_info_1;
2370
2371         if (svm->vmcb->control.exit_info_2 &
2372             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2373                 reason = TASK_SWITCH_IRET;
2374         else if (svm->vmcb->control.exit_info_2 &
2375                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2376                 reason = TASK_SWITCH_JMP;
2377         else if (idt_v)
2378                 reason = TASK_SWITCH_GATE;
2379         else
2380                 reason = TASK_SWITCH_CALL;
2381
2382         if (reason == TASK_SWITCH_GATE) {
2383                 switch (type) {
2384                 case SVM_EXITINTINFO_TYPE_NMI:
2385                         svm->vcpu.arch.nmi_injected = false;
2386                         break;
2387                 case SVM_EXITINTINFO_TYPE_EXEPT:
2388                         if (svm->vmcb->control.exit_info_2 &
2389                             (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2390                                 has_error_code = true;
2391                                 error_code =
2392                                         (u32)svm->vmcb->control.exit_info_2;
2393                         }
2394                         kvm_clear_exception_queue(&svm->vcpu);
2395                         break;
2396                 case SVM_EXITINTINFO_TYPE_INTR:
2397                         kvm_clear_interrupt_queue(&svm->vcpu);
2398                         break;
2399                 default:
2400                         break;
2401                 }
2402         }
2403
2404         if (reason != TASK_SWITCH_GATE ||
2405             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2406             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2407              (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2408                 skip_emulated_instruction(&svm->vcpu);
2409
2410         if (kvm_task_switch(&svm->vcpu, tss_selector, reason,
2411                                 has_error_code, error_code) == EMULATE_FAIL) {
2412                 svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2413                 svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2414                 svm->vcpu.run->internal.ndata = 0;
2415                 return 0;
2416         }
2417         return 1;
2418 }
2419
2420 static int cpuid_interception(struct vcpu_svm *svm)
2421 {
2422         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2423         kvm_emulate_cpuid(&svm->vcpu);
2424         return 1;
2425 }
2426
2427 static int iret_interception(struct vcpu_svm *svm)
2428 {
2429         ++svm->vcpu.stat.nmi_window_exits;
2430         svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_IRET);
2431         svm->vcpu.arch.hflags |= HF_IRET_MASK;
2432         return 1;
2433 }
2434
2435 static int invlpg_interception(struct vcpu_svm *svm)
2436 {
2437         return emulate_instruction(&svm->vcpu, 0, 0, 0) == EMULATE_DONE;
2438 }
2439
2440 static int emulate_on_interception(struct vcpu_svm *svm)
2441 {
2442         return emulate_instruction(&svm->vcpu, 0, 0, 0) == EMULATE_DONE;
2443 }
2444
2445 static int cr0_write_interception(struct vcpu_svm *svm)
2446 {
2447         struct kvm_vcpu *vcpu = &svm->vcpu;
2448         int r;
2449
2450         r = emulate_instruction(&svm->vcpu, 0, 0, 0);
2451
2452         if (svm->nested.vmexit_rip) {
2453                 kvm_register_write(vcpu, VCPU_REGS_RIP, svm->nested.vmexit_rip);
2454                 kvm_register_write(vcpu, VCPU_REGS_RSP, svm->nested.vmexit_rsp);
2455                 kvm_register_write(vcpu, VCPU_REGS_RAX, svm->nested.vmexit_rax);
2456                 svm->nested.vmexit_rip = 0;
2457         }
2458
2459         return r == EMULATE_DONE;
2460 }
2461
2462 static int cr8_write_interception(struct vcpu_svm *svm)
2463 {
2464         struct kvm_run *kvm_run = svm->vcpu.run;
2465
2466         u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2467         /* instruction emulation calls kvm_set_cr8() */
2468         emulate_instruction(&svm->vcpu, 0, 0, 0);
2469         if (irqchip_in_kernel(svm->vcpu.kvm)) {
2470                 svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
2471                 return 1;
2472         }
2473         if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2474                 return 1;
2475         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2476         return 0;
2477 }
2478
2479 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
2480 {
2481         struct vcpu_svm *svm = to_svm(vcpu);
2482
2483         switch (ecx) {
2484         case MSR_IA32_TSC: {
2485                 u64 tsc_offset;
2486
2487                 if (is_nested(svm))
2488                         tsc_offset = svm->nested.hsave->control.tsc_offset;
2489                 else
2490                         tsc_offset = svm->vmcb->control.tsc_offset;
2491
2492                 *data = tsc_offset + native_read_tsc();
2493                 break;
2494         }
2495         case MSR_STAR:
2496                 *data = svm->vmcb->save.star;
2497                 break;
2498 #ifdef CONFIG_X86_64
2499         case MSR_LSTAR:
2500                 *data = svm->vmcb->save.lstar;
2501                 break;
2502         case MSR_CSTAR:
2503                 *data = svm->vmcb->save.cstar;
2504                 break;
2505         case MSR_KERNEL_GS_BASE:
2506                 *data = svm->vmcb->save.kernel_gs_base;
2507                 break;
2508         case MSR_SYSCALL_MASK:
2509                 *data = svm->vmcb->save.sfmask;
2510                 break;
2511 #endif
2512         case MSR_IA32_SYSENTER_CS:
2513                 *data = svm->vmcb->save.sysenter_cs;
2514                 break;
2515         case MSR_IA32_SYSENTER_EIP:
2516                 *data = svm->sysenter_eip;
2517                 break;
2518         case MSR_IA32_SYSENTER_ESP:
2519                 *data = svm->sysenter_esp;
2520                 break;
2521         /*
2522          * Nobody will change the following 5 values in the VMCB so we can
2523          * safely return them on rdmsr. They will always be 0 until LBRV is
2524          * implemented.
2525          */
2526         case MSR_IA32_DEBUGCTLMSR:
2527                 *data = svm->vmcb->save.dbgctl;
2528                 break;
2529         case MSR_IA32_LASTBRANCHFROMIP:
2530                 *data = svm->vmcb->save.br_from;
2531                 break;
2532         case MSR_IA32_LASTBRANCHTOIP:
2533                 *data = svm->vmcb->save.br_to;
2534                 break;
2535         case MSR_IA32_LASTINTFROMIP:
2536                 *data = svm->vmcb->save.last_excp_from;
2537                 break;
2538         case MSR_IA32_LASTINTTOIP:
2539                 *data = svm->vmcb->save.last_excp_to;
2540                 break;
2541         case MSR_VM_HSAVE_PA:
2542                 *data = svm->nested.hsave_msr;
2543                 break;
2544         case MSR_VM_CR:
2545                 *data = svm->nested.vm_cr_msr;
2546                 break;
2547         case MSR_IA32_UCODE_REV:
2548                 *data = 0x01000065;
2549                 break;
2550         default:
2551                 return kvm_get_msr_common(vcpu, ecx, data);
2552         }
2553         return 0;
2554 }
2555
2556 static int rdmsr_interception(struct vcpu_svm *svm)
2557 {
2558         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2559         u64 data;
2560
2561         if (svm_get_msr(&svm->vcpu, ecx, &data)) {
2562                 trace_kvm_msr_read_ex(ecx);
2563                 kvm_inject_gp(&svm->vcpu, 0);
2564         } else {
2565                 trace_kvm_msr_read(ecx, data);
2566
2567                 svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
2568                 svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
2569                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2570                 skip_emulated_instruction(&svm->vcpu);
2571         }
2572         return 1;
2573 }
2574
2575 static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
2576 {
2577         struct vcpu_svm *svm = to_svm(vcpu);
2578         int svm_dis, chg_mask;
2579
2580         if (data & ~SVM_VM_CR_VALID_MASK)
2581                 return 1;
2582
2583         chg_mask = SVM_VM_CR_VALID_MASK;
2584
2585         if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
2586                 chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
2587
2588         svm->nested.vm_cr_msr &= ~chg_mask;
2589         svm->nested.vm_cr_msr |= (data & chg_mask);
2590
2591         svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
2592
2593         /* check for svm_disable while efer.svme is set */
2594         if (svm_dis && (vcpu->arch.efer & EFER_SVME))
2595                 return 1;
2596
2597         return 0;
2598 }
2599
2600 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
2601 {
2602         struct vcpu_svm *svm = to_svm(vcpu);
2603
2604         switch (ecx) {
2605         case MSR_IA32_TSC:
2606                 kvm_write_tsc(vcpu, data);
2607                 break;
2608         case MSR_STAR:
2609                 svm->vmcb->save.star = data;
2610                 break;
2611 #ifdef CONFIG_X86_64
2612         case MSR_LSTAR:
2613                 svm->vmcb->save.lstar = data;
2614                 break;
2615         case MSR_CSTAR:
2616                 svm->vmcb->save.cstar = data;
2617                 break;
2618         case MSR_KERNEL_GS_BASE:
2619                 svm->vmcb->save.kernel_gs_base = data;
2620                 break;
2621         case MSR_SYSCALL_MASK:
2622                 svm->vmcb->save.sfmask = data;
2623                 break;
2624 #endif
2625         case MSR_IA32_SYSENTER_CS:
2626                 svm->vmcb->save.sysenter_cs = data;
2627                 break;
2628         case MSR_IA32_SYSENTER_EIP:
2629                 svm->sysenter_eip = data;
2630                 svm->vmcb->save.sysenter_eip = data;
2631                 break;
2632         case MSR_IA32_SYSENTER_ESP:
2633                 svm->sysenter_esp = data;
2634                 svm->vmcb->save.sysenter_esp = data;
2635                 break;
2636         case MSR_IA32_DEBUGCTLMSR:
2637                 if (!svm_has(SVM_FEATURE_LBRV)) {
2638                         pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2639                                         __func__, data);
2640                         break;
2641                 }
2642                 if (data & DEBUGCTL_RESERVED_BITS)
2643                         return 1;
2644
2645                 svm->vmcb->save.dbgctl = data;
2646                 if (data & (1ULL<<0))
2647                         svm_enable_lbrv(svm);
2648                 else
2649                         svm_disable_lbrv(svm);
2650                 break;
2651         case MSR_VM_HSAVE_PA:
2652                 svm->nested.hsave_msr = data;
2653                 break;
2654         case MSR_VM_CR:
2655                 return svm_set_vm_cr(vcpu, data);
2656         case MSR_VM_IGNNE:
2657                 pr_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2658                 break;
2659         default:
2660                 return kvm_set_msr_common(vcpu, ecx, data);
2661         }
2662         return 0;
2663 }
2664
2665 static int wrmsr_interception(struct vcpu_svm *svm)
2666 {
2667         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2668         u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
2669                 | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2670
2671
2672         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2673         if (svm_set_msr(&svm->vcpu, ecx, data)) {
2674                 trace_kvm_msr_write_ex(ecx, data);
2675                 kvm_inject_gp(&svm->vcpu, 0);
2676         } else {
2677                 trace_kvm_msr_write(ecx, data);
2678                 skip_emulated_instruction(&svm->vcpu);
2679         }
2680         return 1;
2681 }
2682
2683 static int msr_interception(struct vcpu_svm *svm)
2684 {
2685         if (svm->vmcb->control.exit_info_1)
2686                 return wrmsr_interception(svm);
2687         else
2688                 return rdmsr_interception(svm);
2689 }
2690
2691 static int interrupt_window_interception(struct vcpu_svm *svm)
2692 {
2693         struct kvm_run *kvm_run = svm->vcpu.run;
2694
2695         svm_clear_vintr(svm);
2696         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2697         /*
2698          * If the user space waits to inject interrupts, exit as soon as
2699          * possible
2700          */
2701         if (!irqchip_in_kernel(svm->vcpu.kvm) &&
2702             kvm_run->request_interrupt_window &&
2703             !kvm_cpu_has_interrupt(&svm->vcpu)) {
2704                 ++svm->vcpu.stat.irq_window_exits;
2705                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2706                 return 0;
2707         }
2708
2709         return 1;
2710 }
2711
2712 static int pause_interception(struct vcpu_svm *svm)
2713 {
2714         kvm_vcpu_on_spin(&(svm->vcpu));
2715         return 1;
2716 }
2717
2718 static int (*svm_exit_handlers[])(struct vcpu_svm *svm) = {
2719         [SVM_EXIT_READ_CR0]                     = emulate_on_interception,
2720         [SVM_EXIT_READ_CR3]                     = emulate_on_interception,
2721         [SVM_EXIT_READ_CR4]                     = emulate_on_interception,
2722         [SVM_EXIT_READ_CR8]                     = emulate_on_interception,
2723         [SVM_EXIT_CR0_SEL_WRITE]                = emulate_on_interception,
2724         [SVM_EXIT_WRITE_CR0]                    = cr0_write_interception,
2725         [SVM_EXIT_WRITE_CR3]                    = emulate_on_interception,
2726         [SVM_EXIT_WRITE_CR4]                    = emulate_on_interception,
2727         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
2728         [SVM_EXIT_READ_DR0]                     = emulate_on_interception,
2729         [SVM_EXIT_READ_DR1]                     = emulate_on_interception,
2730         [SVM_EXIT_READ_DR2]                     = emulate_on_interception,
2731         [SVM_EXIT_READ_DR3]                     = emulate_on_interception,
2732         [SVM_EXIT_READ_DR4]                     = emulate_on_interception,
2733         [SVM_EXIT_READ_DR5]                     = emulate_on_interception,
2734         [SVM_EXIT_READ_DR6]                     = emulate_on_interception,
2735         [SVM_EXIT_READ_DR7]                     = emulate_on_interception,
2736         [SVM_EXIT_WRITE_DR0]                    = emulate_on_interception,
2737         [SVM_EXIT_WRITE_DR1]                    = emulate_on_interception,
2738         [SVM_EXIT_WRITE_DR2]                    = emulate_on_interception,
2739         [SVM_EXIT_WRITE_DR3]                    = emulate_on_interception,
2740         [SVM_EXIT_WRITE_DR4]                    = emulate_on_interception,
2741         [SVM_EXIT_WRITE_DR5]                    = emulate_on_interception,
2742         [SVM_EXIT_WRITE_DR6]                    = emulate_on_interception,
2743         [SVM_EXIT_WRITE_DR7]                    = emulate_on_interception,
2744         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
2745         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
2746         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
2747         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
2748         [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
2749         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
2750         [SVM_EXIT_INTR]                         = intr_interception,
2751         [SVM_EXIT_NMI]                          = nmi_interception,
2752         [SVM_EXIT_SMI]                          = nop_on_interception,
2753         [SVM_EXIT_INIT]                         = nop_on_interception,
2754         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
2755         [SVM_EXIT_CPUID]                        = cpuid_interception,
2756         [SVM_EXIT_IRET]                         = iret_interception,
2757         [SVM_EXIT_INVD]                         = emulate_on_interception,
2758         [SVM_EXIT_PAUSE]                        = pause_interception,
2759         [SVM_EXIT_HLT]                          = halt_interception,
2760         [SVM_EXIT_INVLPG]                       = invlpg_interception,
2761         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
2762         [SVM_EXIT_IOIO]                         = io_interception,
2763         [SVM_EXIT_MSR]                          = msr_interception,
2764         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
2765         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
2766         [SVM_EXIT_VMRUN]                        = vmrun_interception,
2767         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
2768         [SVM_EXIT_VMLOAD]                       = vmload_interception,
2769         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
2770         [SVM_EXIT_STGI]                         = stgi_interception,
2771         [SVM_EXIT_CLGI]                         = clgi_interception,
2772         [SVM_EXIT_SKINIT]                       = skinit_interception,
2773         [SVM_EXIT_WBINVD]                       = emulate_on_interception,
2774         [SVM_EXIT_MONITOR]                      = invalid_op_interception,
2775         [SVM_EXIT_MWAIT]                        = invalid_op_interception,
2776         [SVM_EXIT_NPF]                          = pf_interception,
2777 };
2778
2779 void dump_vmcb(struct kvm_vcpu *vcpu)
2780 {
2781         struct vcpu_svm *svm = to_svm(vcpu);
2782         struct vmcb_control_area *control = &svm->vmcb->control;
2783         struct vmcb_save_area *save = &svm->vmcb->save;
2784
2785         pr_err("VMCB Control Area:\n");
2786         pr_err("cr_read:            %04x\n", control->intercept_cr_read);
2787         pr_err("cr_write:           %04x\n", control->intercept_cr_write);
2788         pr_err("dr_read:            %04x\n", control->intercept_dr_read);
2789         pr_err("dr_write:           %04x\n", control->intercept_dr_write);
2790         pr_err("exceptions:         %08x\n", control->intercept_exceptions);
2791         pr_err("intercepts:         %016llx\n", control->intercept);
2792         pr_err("pause filter count: %d\n", control->pause_filter_count);
2793         pr_err("iopm_base_pa:       %016llx\n", control->iopm_base_pa);
2794         pr_err("msrpm_base_pa:      %016llx\n", control->msrpm_base_pa);
2795         pr_err("tsc_offset:         %016llx\n", control->tsc_offset);
2796         pr_err("asid:               %d\n", control->asid);
2797         pr_err("tlb_ctl:            %d\n", control->tlb_ctl);
2798         pr_err("int_ctl:            %08x\n", control->int_ctl);
2799         pr_err("int_vector:         %08x\n", control->int_vector);
2800         pr_err("int_state:          %08x\n", control->int_state);
2801         pr_err("exit_code:          %08x\n", control->exit_code);
2802         pr_err("exit_info1:         %016llx\n", control->exit_info_1);
2803         pr_err("exit_info2:         %016llx\n", control->exit_info_2);
2804         pr_err("exit_int_info:      %08x\n", control->exit_int_info);
2805         pr_err("exit_int_info_err:  %08x\n", control->exit_int_info_err);
2806         pr_err("nested_ctl:         %lld\n", control->nested_ctl);
2807         pr_err("nested_cr3:         %016llx\n", control->nested_cr3);
2808         pr_err("event_inj:          %08x\n", control->event_inj);
2809         pr_err("event_inj_err:      %08x\n", control->event_inj_err);
2810         pr_err("lbr_ctl:            %lld\n", control->lbr_ctl);
2811         pr_err("next_rip:           %016llx\n", control->next_rip);
2812         pr_err("VMCB State Save Area:\n");
2813         pr_err("es:   s: %04x a: %04x l: %08x b: %016llx\n",
2814                 save->es.selector, save->es.attrib,
2815                 save->es.limit, save->es.base);
2816         pr_err("cs:   s: %04x a: %04x l: %08x b: %016llx\n",
2817                 save->cs.selector, save->cs.attrib,
2818                 save->cs.limit, save->cs.base);
2819         pr_err("ss:   s: %04x a: %04x l: %08x b: %016llx\n",
2820                 save->ss.selector, save->ss.attrib,
2821                 save->ss.limit, save->ss.base);
2822         pr_err("ds:   s: %04x a: %04x l: %08x b: %016llx\n",
2823                 save->ds.selector, save->ds.attrib,
2824                 save->ds.limit, save->ds.base);
2825         pr_err("fs:   s: %04x a: %04x l: %08x b: %016llx\n",
2826                 save->fs.selector, save->fs.attrib,
2827                 save->fs.limit, save->fs.base);
2828         pr_err("gs:   s: %04x a: %04x l: %08x b: %016llx\n",
2829                 save->gs.selector, save->gs.attrib,
2830                 save->gs.limit, save->gs.base);
2831         pr_err("gdtr: s: %04x a: %04x l: %08x b: %016llx\n",
2832                 save->gdtr.selector, save->gdtr.attrib,
2833                 save->gdtr.limit, save->gdtr.base);
2834         pr_err("ldtr: s: %04x a: %04x l: %08x b: %016llx\n",
2835                 save->ldtr.selector, save->ldtr.attrib,
2836                 save->ldtr.limit, save->ldtr.base);
2837         pr_err("idtr: s: %04x a: %04x l: %08x b: %016llx\n",
2838                 save->idtr.selector, save->idtr.attrib,
2839                 save->idtr.limit, save->idtr.base);
2840         pr_err("tr:   s: %04x a: %04x l: %08x b: %016llx\n",
2841                 save->tr.selector, save->tr.attrib,
2842                 save->tr.limit, save->tr.base);
2843         pr_err("cpl:            %d                efer:         %016llx\n",
2844                 save->cpl, save->efer);
2845         pr_err("cr0:            %016llx cr2:          %016llx\n",
2846                 save->cr0, save->cr2);
2847         pr_err("cr3:            %016llx cr4:          %016llx\n",
2848                 save->cr3, save->cr4);
2849         pr_err("dr6:            %016llx dr7:          %016llx\n",
2850                 save->dr6, save->dr7);
2851         pr_err("rip:            %016llx rflags:       %016llx\n",
2852                 save->rip, save->rflags);
2853         pr_err("rsp:            %016llx rax:          %016llx\n",
2854                 save->rsp, save->rax);
2855         pr_err("star:           %016llx lstar:        %016llx\n",
2856                 save->star, save->lstar);
2857         pr_err("cstar:          %016llx sfmask:       %016llx\n",
2858                 save->cstar, save->sfmask);
2859         pr_err("kernel_gs_base: %016llx sysenter_cs:  %016llx\n",
2860                 save->kernel_gs_base, save->sysenter_cs);
2861         pr_err("sysenter_esp:   %016llx sysenter_eip: %016llx\n",
2862                 save->sysenter_esp, save->sysenter_eip);
2863         pr_err("gpat:           %016llx dbgctl:       %016llx\n",
2864                 save->g_pat, save->dbgctl);
2865         pr_err("br_from:        %016llx br_to:        %016llx\n",
2866                 save->br_from, save->br_to);
2867         pr_err("excp_from:      %016llx excp_to:      %016llx\n",
2868                 save->last_excp_from, save->last_excp_to);
2869
2870 }
2871
2872 static int handle_exit(struct kvm_vcpu *vcpu)
2873 {
2874         struct vcpu_svm *svm = to_svm(vcpu);
2875         struct kvm_run *kvm_run = vcpu->run;
2876         u32 exit_code = svm->vmcb->control.exit_code;
2877
2878         trace_kvm_exit(exit_code, vcpu);
2879
2880         if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR0_MASK))
2881                 vcpu->arch.cr0 = svm->vmcb->save.cr0;
2882         if (npt_enabled)
2883                 vcpu->arch.cr3 = svm->vmcb->save.cr3;
2884
2885         if (unlikely(svm->nested.exit_required)) {
2886                 nested_svm_vmexit(svm);
2887                 svm->nested.exit_required = false;
2888
2889                 return 1;
2890         }
2891
2892         if (is_nested(svm)) {
2893                 int vmexit;
2894
2895                 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
2896                                         svm->vmcb->control.exit_info_1,
2897                                         svm->vmcb->control.exit_info_2,
2898                                         svm->vmcb->control.exit_int_info,
2899                                         svm->vmcb->control.exit_int_info_err);
2900
2901                 vmexit = nested_svm_exit_special(svm);
2902
2903                 if (vmexit == NESTED_EXIT_CONTINUE)
2904                         vmexit = nested_svm_exit_handled(svm);
2905
2906                 if (vmexit == NESTED_EXIT_DONE)
2907                         return 1;
2908         }
2909
2910         svm_complete_interrupts(svm);
2911
2912         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
2913                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2914                 kvm_run->fail_entry.hardware_entry_failure_reason
2915                         = svm->vmcb->control.exit_code;
2916                 pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
2917                 dump_vmcb(vcpu);
2918                 return 0;
2919         }
2920
2921         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
2922             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
2923             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH)
2924                 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
2925                        "exit_code 0x%x\n",
2926                        __func__, svm->vmcb->control.exit_int_info,
2927                        exit_code);
2928
2929         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
2930             || !svm_exit_handlers[exit_code]) {
2931                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2932                 kvm_run->hw.hardware_exit_reason = exit_code;
2933                 return 0;
2934         }
2935
2936         return svm_exit_handlers[exit_code](svm);
2937 }
2938
2939 static void reload_tss(struct kvm_vcpu *vcpu)
2940 {
2941         int cpu = raw_smp_processor_id();
2942
2943         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2944         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
2945         load_TR_desc();
2946 }
2947
2948 static void pre_svm_run(struct vcpu_svm *svm)
2949 {
2950         int cpu = raw_smp_processor_id();
2951
2952         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2953
2954         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
2955         /* FIXME: handle wraparound of asid_generation */
2956         if (svm->asid_generation != sd->asid_generation)
2957                 new_asid(svm, sd);
2958 }
2959
2960 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
2961 {
2962         struct vcpu_svm *svm = to_svm(vcpu);
2963
2964         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
2965         vcpu->arch.hflags |= HF_NMI_MASK;
2966         svm->vmcb->control.intercept |= (1ULL << INTERCEPT_IRET);
2967         ++vcpu->stat.nmi_injections;
2968 }
2969
2970 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
2971 {
2972         struct vmcb_control_area *control;
2973
2974         control = &svm->vmcb->control;
2975         control->int_vector = irq;
2976         control->int_ctl &= ~V_INTR_PRIO_MASK;
2977         control->int_ctl |= V_IRQ_MASK |
2978                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
2979 }
2980
2981 static void svm_set_irq(struct kvm_vcpu *vcpu)
2982 {
2983         struct vcpu_svm *svm = to_svm(vcpu);
2984
2985         BUG_ON(!(gif_set(svm)));
2986
2987         trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
2988         ++vcpu->stat.irq_injections;
2989
2990         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
2991                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
2992 }
2993
2994 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
2995 {
2996         struct vcpu_svm *svm = to_svm(vcpu);
2997
2998         if (is_nested(svm) && (vcpu->arch.hflags & HF_VINTR_MASK))
2999                 return;
3000
3001         if (irr == -1)
3002                 return;
3003
3004         if (tpr >= irr)
3005                 svm->vmcb->control.intercept_cr_write |= INTERCEPT_CR8_MASK;
3006 }
3007
3008 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3009 {
3010         struct vcpu_svm *svm = to_svm(vcpu);
3011         struct vmcb *vmcb = svm->vmcb;
3012         int ret;
3013         ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3014               !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3015         ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3016
3017         return ret;
3018 }
3019
3020 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3021 {
3022         struct vcpu_svm *svm = to_svm(vcpu);
3023
3024         return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3025 }
3026
3027 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3028 {
3029         struct vcpu_svm *svm = to_svm(vcpu);
3030
3031         if (masked) {
3032                 svm->vcpu.arch.hflags |= HF_NMI_MASK;
3033                 svm->vmcb->control.intercept |= (1ULL << INTERCEPT_IRET);
3034         } else {
3035                 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3036                 svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_IRET);
3037         }
3038 }
3039
3040 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3041 {
3042         struct vcpu_svm *svm = to_svm(vcpu);
3043         struct vmcb *vmcb = svm->vmcb;
3044         int ret;
3045
3046         if (!gif_set(svm) ||
3047              (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3048                 return 0;
3049
3050         ret = !!(vmcb->save.rflags & X86_EFLAGS_IF);
3051
3052         if (is_nested(svm))
3053                 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3054
3055         return ret;
3056 }
3057
3058 static void enable_irq_window(struct kvm_vcpu *vcpu)
3059 {
3060         struct vcpu_svm *svm = to_svm(vcpu);
3061
3062         /*
3063          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3064          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3065          * get that intercept, this function will be called again though and
3066          * we'll get the vintr intercept.
3067          */
3068         if (gif_set(svm) && nested_svm_intr(svm)) {
3069                 svm_set_vintr(svm);
3070                 svm_inject_irq(svm, 0x0);
3071         }
3072 }
3073
3074 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3075 {
3076         struct vcpu_svm *svm = to_svm(vcpu);
3077
3078         if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3079             == HF_NMI_MASK)
3080                 return; /* IRET will cause a vm exit */
3081
3082         /*
3083          * Something prevents NMI from been injected. Single step over possible
3084          * problem (IRET or exception injection or interrupt shadow)
3085          */
3086         svm->nmi_singlestep = true;
3087         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3088         update_db_intercept(vcpu);
3089 }
3090
3091 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3092 {
3093         return 0;
3094 }
3095
3096 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3097 {
3098         force_new_asid(vcpu);
3099 }
3100
3101 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3102 {
3103 }
3104
3105 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3106 {
3107         struct vcpu_svm *svm = to_svm(vcpu);
3108
3109         if (is_nested(svm) && (vcpu->arch.hflags & HF_VINTR_MASK))
3110                 return;
3111
3112         if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR8_MASK)) {
3113                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3114                 kvm_set_cr8(vcpu, cr8);
3115         }
3116 }
3117
3118 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3119 {
3120         struct vcpu_svm *svm = to_svm(vcpu);
3121         u64 cr8;
3122
3123         if (is_nested(svm) && (vcpu->arch.hflags & HF_VINTR_MASK))
3124                 return;
3125
3126         cr8 = kvm_get_cr8(vcpu);
3127         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3128         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3129 }
3130
3131 static void svm_complete_interrupts(struct vcpu_svm *svm)
3132 {
3133         u8 vector;
3134         int type;
3135         u32 exitintinfo = svm->vmcb->control.exit_int_info;
3136         unsigned int3_injected = svm->int3_injected;
3137
3138         svm->int3_injected = 0;
3139
3140         if (svm->vcpu.arch.hflags & HF_IRET_MASK)
3141                 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3142
3143         svm->vcpu.arch.nmi_injected = false;
3144         kvm_clear_exception_queue(&svm->vcpu);
3145         kvm_clear_interrupt_queue(&svm->vcpu);
3146
3147         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3148                 return;
3149
3150         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3151         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3152
3153         switch (type) {
3154         case SVM_EXITINTINFO_TYPE_NMI:
3155                 svm->vcpu.arch.nmi_injected = true;
3156                 break;
3157         case SVM_EXITINTINFO_TYPE_EXEPT:
3158                 /*
3159                  * In case of software exceptions, do not reinject the vector,
3160                  * but re-execute the instruction instead. Rewind RIP first
3161                  * if we emulated INT3 before.
3162                  */
3163                 if (kvm_exception_is_soft(vector)) {
3164                         if (vector == BP_VECTOR && int3_injected &&
3165                             kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3166                                 kvm_rip_write(&svm->vcpu,
3167                                               kvm_rip_read(&svm->vcpu) -
3168                                               int3_injected);
3169                         break;
3170                 }
3171                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3172                         u32 err = svm->vmcb->control.exit_int_info_err;
3173                         kvm_requeue_exception_e(&svm->vcpu, vector, err);
3174
3175                 } else
3176                         kvm_requeue_exception(&svm->vcpu, vector);
3177                 break;
3178         case SVM_EXITINTINFO_TYPE_INTR:
3179                 kvm_queue_interrupt(&svm->vcpu, vector, false);
3180                 break;
3181         default:
3182                 break;
3183         }
3184 }
3185
3186 #ifdef CONFIG_X86_64
3187 #define R "r"
3188 #else
3189 #define R "e"
3190 #endif
3191
3192 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3193 {
3194         struct vcpu_svm *svm = to_svm(vcpu);
3195         u16 fs_selector;
3196         u16 gs_selector;
3197         u16 ldt_selector;
3198
3199         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3200         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3201         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3202
3203         /*
3204          * A vmexit emulation is required before the vcpu can be executed
3205          * again.
3206          */
3207         if (unlikely(svm->nested.exit_required))
3208                 return;
3209
3210         pre_svm_run(svm);
3211
3212         sync_lapic_to_cr8(vcpu);
3213
3214         save_host_msrs(vcpu);
3215         savesegment(fs, fs_selector);
3216         savesegment(gs, gs_selector);
3217         ldt_selector = kvm_read_ldt();
3218         svm->vmcb->save.cr2 = vcpu->arch.cr2;
3219
3220         clgi();
3221
3222         local_irq_enable();
3223
3224         asm volatile (
3225                 "push %%"R"bp; \n\t"
3226                 "mov %c[rbx](%[svm]), %%"R"bx \n\t"
3227                 "mov %c[rcx](%[svm]), %%"R"cx \n\t"
3228                 "mov %c[rdx](%[svm]), %%"R"dx \n\t"
3229                 "mov %c[rsi](%[svm]), %%"R"si \n\t"
3230                 "mov %c[rdi](%[svm]), %%"R"di \n\t"
3231                 "mov %c[rbp](%[svm]), %%"R"bp \n\t"
3232 #ifdef CONFIG_X86_64
3233                 "mov %c[r8](%[svm]),  %%r8  \n\t"
3234                 "mov %c[r9](%[svm]),  %%r9  \n\t"
3235                 "mov %c[r10](%[svm]), %%r10 \n\t"
3236                 "mov %c[r11](%[svm]), %%r11 \n\t"
3237                 "mov %c[r12](%[svm]), %%r12 \n\t"
3238                 "mov %c[r13](%[svm]), %%r13 \n\t"
3239                 "mov %c[r14](%[svm]), %%r14 \n\t"
3240                 "mov %c[r15](%[svm]), %%r15 \n\t"
3241 #endif
3242
3243                 /* Enter guest mode */
3244                 "push %%"R"ax \n\t"
3245                 "mov %c[vmcb](%[svm]), %%"R"ax \n\t"
3246                 __ex(SVM_VMLOAD) "\n\t"
3247                 __ex(SVM_VMRUN) "\n\t"
3248                 __ex(SVM_VMSAVE) "\n\t"
3249                 "pop %%"R"ax \n\t"
3250
3251                 /* Save guest registers, load host registers */
3252                 "mov %%"R"bx, %c[rbx](%[svm]) \n\t"
3253                 "mov %%"R"cx, %c[rcx](%[svm]) \n\t"
3254                 "mov %%"R"dx, %c[rdx](%[svm]) \n\t"
3255                 "mov %%"R"si, %c[rsi](%[svm]) \n\t"
3256                 "mov %%"R"di, %c[rdi](%[svm]) \n\t"
3257                 "mov %%"R"bp, %c[rbp](%[svm]) \n\t"
3258 #ifdef CONFIG_X86_64
3259                 "mov %%r8,  %c[r8](%[svm]) \n\t"
3260                 "mov %%r9,  %c[r9](%[svm]) \n\t"
3261                 "mov %%r10, %c[r10](%[svm]) \n\t"
3262                 "mov %%r11, %c[r11](%[svm]) \n\t"
3263                 "mov %%r12, %c[r12](%[svm]) \n\t"
3264                 "mov %%r13, %c[r13](%[svm]) \n\t"
3265                 "mov %%r14, %c[r14](%[svm]) \n\t"
3266                 "mov %%r15, %c[r15](%[svm]) \n\t"
3267 #endif
3268                 "pop %%"R"bp"
3269                 :
3270                 : [svm]"a"(svm),
3271                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
3272                   [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
3273                   [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
3274                   [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
3275                   [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
3276                   [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
3277                   [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
3278 #ifdef CONFIG_X86_64
3279                   , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
3280                   [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
3281                   [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
3282                   [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
3283                   [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
3284                   [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
3285                   [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
3286                   [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
3287 #endif
3288                 : "cc", "memory"
3289                 , R"bx", R"cx", R"dx", R"si", R"di"
3290 #ifdef CONFIG_X86_64
3291                 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3292 #endif
3293                 );
3294
3295         vcpu->arch.cr2 = svm->vmcb->save.cr2;
3296         vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3297         vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3298         vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3299
3300         load_host_msrs(vcpu);
3301         loadsegment(fs, fs_selector);
3302 #ifdef CONFIG_X86_64
3303         load_gs_index(gs_selector);
3304         wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
3305 #else
3306         loadsegment(gs, gs_selector);
3307 #endif
3308         kvm_load_ldt(ldt_selector);
3309
3310         reload_tss(vcpu);
3311
3312         local_irq_disable();
3313
3314         stgi();
3315
3316         sync_cr8_to_lapic(vcpu);
3317
3318         svm->next_rip = 0;
3319
3320         if (npt_enabled) {
3321                 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3322                 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3323         }
3324
3325         /*
3326          * We need to handle MC intercepts here before the vcpu has a chance to
3327          * change the physical cpu
3328          */
3329         if (unlikely(svm->vmcb->control.exit_code ==
3330                      SVM_EXIT_EXCP_BASE + MC_VECTOR))
3331                 svm_handle_mce(svm);
3332 }
3333
3334 #undef R
3335
3336 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3337 {
3338         struct vcpu_svm *svm = to_svm(vcpu);
3339
3340         svm->vmcb->save.cr3 = root;
3341         force_new_asid(vcpu);
3342 }
3343
3344 static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3345 {
3346         struct vcpu_svm *svm = to_svm(vcpu);
3347
3348         svm->vmcb->control.nested_cr3 = root;
3349
3350         /* Also sync guest cr3 here in case we live migrate */
3351         svm->vmcb->save.cr3 = vcpu->arch.cr3;
3352
3353         force_new_asid(vcpu);
3354 }
3355
3356 static int is_disabled(void)
3357 {
3358         u64 vm_cr;
3359
3360         rdmsrl(MSR_VM_CR, vm_cr);
3361         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3362                 return 1;
3363
3364         return 0;
3365 }
3366
3367 static void
3368 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3369 {
3370         /*
3371          * Patch in the VMMCALL instruction:
3372          */
3373         hypercall[0] = 0x0f;
3374         hypercall[1] = 0x01;
3375         hypercall[2] = 0xd9;
3376 }
3377
3378 static void svm_check_processor_compat(void *rtn)
3379 {
3380         *(int *)rtn = 0;
3381 }
3382
3383 static bool svm_cpu_has_accelerated_tpr(void)
3384 {
3385         return false;
3386 }
3387
3388 static int get_npt_level(void)
3389 {
3390 #ifdef CONFIG_X86_64
3391         return PT64_ROOT_LEVEL;
3392 #else
3393         return PT32E_ROOT_LEVEL;
3394 #endif
3395 }
3396
3397 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
3398 {
3399         return 0;
3400 }
3401
3402 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
3403 {
3404 }
3405
3406 static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
3407 {
3408         switch (func) {
3409         case 0x8000000A:
3410                 entry->eax = 1; /* SVM revision 1 */
3411                 entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
3412                                    ASID emulation to nested SVM */
3413                 entry->ecx = 0; /* Reserved */
3414                 entry->edx = 0; /* Per default do not support any
3415                                    additional features */
3416
3417                 /* Support next_rip if host supports it */
3418                 if (svm_has(SVM_FEATURE_NRIP))
3419                         entry->edx |= SVM_FEATURE_NRIP;
3420
3421                 break;
3422         }
3423 }
3424
3425 static const struct trace_print_flags svm_exit_reasons_str[] = {
3426         { SVM_EXIT_READ_CR0,                    "read_cr0" },
3427         { SVM_EXIT_READ_CR3,                    "read_cr3" },
3428         { SVM_EXIT_READ_CR4,                    "read_cr4" },
3429         { SVM_EXIT_READ_CR8,                    "read_cr8" },
3430         { SVM_EXIT_WRITE_CR0,                   "write_cr0" },
3431         { SVM_EXIT_WRITE_CR3,                   "write_cr3" },
3432         { SVM_EXIT_WRITE_CR4,                   "write_cr4" },
3433         { SVM_EXIT_WRITE_CR8,                   "write_cr8" },
3434         { SVM_EXIT_READ_DR0,                    "read_dr0" },
3435         { SVM_EXIT_READ_DR1,                    "read_dr1" },
3436         { SVM_EXIT_READ_DR2,                    "read_dr2" },
3437         { SVM_EXIT_READ_DR3,                    "read_dr3" },
3438         { SVM_EXIT_WRITE_DR0,                   "write_dr0" },
3439         { SVM_EXIT_WRITE_DR1,                   "write_dr1" },
3440         { SVM_EXIT_WRITE_DR2,                   "write_dr2" },
3441         { SVM_EXIT_WRITE_DR3,                   "write_dr3" },
3442         { SVM_EXIT_WRITE_DR5,                   "write_dr5" },
3443         { SVM_EXIT_WRITE_DR7,                   "write_dr7" },
3444         { SVM_EXIT_EXCP_BASE + DB_VECTOR,       "DB excp" },
3445         { SVM_EXIT_EXCP_BASE + BP_VECTOR,       "BP excp" },
3446         { SVM_EXIT_EXCP_BASE + UD_VECTOR,       "UD excp" },
3447         { SVM_EXIT_EXCP_BASE + PF_VECTOR,       "PF excp" },
3448         { SVM_EXIT_EXCP_BASE + NM_VECTOR,       "NM excp" },
3449         { SVM_EXIT_EXCP_BASE + MC_VECTOR,       "MC excp" },
3450         { SVM_EXIT_INTR,                        "interrupt" },
3451         { SVM_EXIT_NMI,                         "nmi" },
3452         { SVM_EXIT_SMI,                         "smi" },
3453         { SVM_EXIT_INIT,                        "init" },
3454         { SVM_EXIT_VINTR,                       "vintr" },
3455         { SVM_EXIT_CPUID,                       "cpuid" },
3456         { SVM_EXIT_INVD,                        "invd" },
3457         { SVM_EXIT_HLT,                         "hlt" },
3458         { SVM_EXIT_INVLPG,                      "invlpg" },
3459         { SVM_EXIT_INVLPGA,                     "invlpga" },
3460         { SVM_EXIT_IOIO,                        "io" },
3461         { SVM_EXIT_MSR,                         "msr" },
3462         { SVM_EXIT_TASK_SWITCH,                 "task_switch" },
3463         { SVM_EXIT_SHUTDOWN,                    "shutdown" },
3464         { SVM_EXIT_VMRUN,                       "vmrun" },
3465         { SVM_EXIT_VMMCALL,                     "hypercall" },
3466         { SVM_EXIT_VMLOAD,                      "vmload" },
3467         { SVM_EXIT_VMSAVE,                      "vmsave" },
3468         { SVM_EXIT_STGI,                        "stgi" },
3469         { SVM_EXIT_CLGI,                        "clgi" },
3470         { SVM_EXIT_SKINIT,                      "skinit" },
3471         { SVM_EXIT_WBINVD,                      "wbinvd" },
3472         { SVM_EXIT_MONITOR,                     "monitor" },
3473         { SVM_EXIT_MWAIT,                       "mwait" },
3474         { SVM_EXIT_NPF,                         "npf" },
3475         { -1, NULL }
3476 };
3477
3478 static int svm_get_lpage_level(void)
3479 {
3480         return PT_PDPE_LEVEL;
3481 }
3482
3483 static bool svm_rdtscp_supported(void)
3484 {
3485         return false;
3486 }
3487
3488 static bool svm_has_wbinvd_exit(void)
3489 {
3490         return true;
3491 }
3492
3493 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
3494 {
3495         struct vcpu_svm *svm = to_svm(vcpu);
3496
3497         svm->vmcb->control.intercept_exceptions |= 1 << NM_VECTOR;
3498         if (is_nested(svm))
3499                 svm->nested.hsave->control.intercept_exceptions |= 1 << NM_VECTOR;
3500         update_cr0_intercept(svm);
3501 }
3502
3503 static struct kvm_x86_ops svm_x86_ops = {
3504         .cpu_has_kvm_support = has_svm,
3505         .disabled_by_bios = is_disabled,
3506         .hardware_setup = svm_hardware_setup,
3507         .hardware_unsetup = svm_hardware_unsetup,
3508         .check_processor_compatibility = svm_check_processor_compat,
3509         .hardware_enable = svm_hardware_enable,
3510         .hardware_disable = svm_hardware_disable,
3511         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
3512
3513         .vcpu_create = svm_create_vcpu,
3514         .vcpu_free = svm_free_vcpu,
3515         .vcpu_reset = svm_vcpu_reset,
3516
3517         .prepare_guest_switch = svm_prepare_guest_switch,
3518         .vcpu_load = svm_vcpu_load,
3519         .vcpu_put = svm_vcpu_put,
3520
3521         .set_guest_debug = svm_guest_debug,
3522         .get_msr = svm_get_msr,
3523         .set_msr = svm_set_msr,
3524         .get_segment_base = svm_get_segment_base,
3525         .get_segment = svm_get_segment,
3526         .set_segment = svm_set_segment,
3527         .get_cpl = svm_get_cpl,
3528         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
3529         .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
3530         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
3531         .set_cr0 = svm_set_cr0,
3532         .set_cr3 = svm_set_cr3,
3533         .set_cr4 = svm_set_cr4,
3534         .set_efer = svm_set_efer,
3535         .get_idt = svm_get_idt,
3536         .set_idt = svm_set_idt,
3537         .get_gdt = svm_get_gdt,
3538         .set_gdt = svm_set_gdt,
3539         .set_dr7 = svm_set_dr7,
3540         .cache_reg = svm_cache_reg,
3541         .get_rflags = svm_get_rflags,
3542         .set_rflags = svm_set_rflags,
3543         .fpu_activate = svm_fpu_activate,
3544         .fpu_deactivate = svm_fpu_deactivate,
3545
3546         .tlb_flush = svm_flush_tlb,
3547
3548         .run = svm_vcpu_run,
3549         .handle_exit = handle_exit,
3550         .skip_emulated_instruction = skip_emulated_instruction,
3551         .set_interrupt_shadow = svm_set_interrupt_shadow,
3552         .get_interrupt_shadow = svm_get_interrupt_shadow,
3553         .patch_hypercall = svm_patch_hypercall,
3554         .set_irq = svm_set_irq,
3555         .set_nmi = svm_inject_nmi,
3556         .queue_exception = svm_queue_exception,
3557         .interrupt_allowed = svm_interrupt_allowed,
3558         .nmi_allowed = svm_nmi_allowed,
3559         .get_nmi_mask = svm_get_nmi_mask,
3560         .set_nmi_mask = svm_set_nmi_mask,
3561         .enable_nmi_window = enable_nmi_window,
3562         .enable_irq_window = enable_irq_window,
3563         .update_cr8_intercept = update_cr8_intercept,
3564
3565         .set_tss_addr = svm_set_tss_addr,
3566         .get_tdp_level = get_npt_level,
3567         .get_mt_mask = svm_get_mt_mask,
3568
3569         .exit_reasons_str = svm_exit_reasons_str,
3570         .get_lpage_level = svm_get_lpage_level,
3571
3572         .cpuid_update = svm_cpuid_update,
3573
3574         .rdtscp_supported = svm_rdtscp_supported,
3575
3576         .set_supported_cpuid = svm_set_supported_cpuid,
3577
3578         .has_wbinvd_exit = svm_has_wbinvd_exit,
3579
3580         .write_tsc_offset = svm_write_tsc_offset,
3581         .adjust_tsc_offset = svm_adjust_tsc_offset,
3582
3583         .set_tdp_cr3 = set_tdp_cr3,
3584 };
3585
3586 static int __init svm_init(void)
3587 {
3588         return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
3589                         __alignof__(struct vcpu_svm), THIS_MODULE);
3590 }
3591
3592 static void __exit svm_exit(void)
3593 {
3594         kvm_exit();
3595 }
3596
3597 module_init(svm_init)
3598 module_exit(svm_exit)