44679530ad5db543828e59e70af5b1ec303d9acf
[pandora-kernel.git] / arch / x86 / kvm / svm.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * AMD SVM support
5  *
6  * Copyright (C) 2006 Qumranet, Inc.
7  *
8  * Authors:
9  *   Yaniv Kamay  <yaniv@qumranet.com>
10  *   Avi Kivity   <avi@qumranet.com>
11  *
12  * This work is licensed under the terms of the GNU GPL, version 2.  See
13  * the COPYING file in the top-level directory.
14  *
15  */
16 #include <linux/kvm_host.h>
17
18 #include "irq.h"
19 #include "mmu.h"
20 #include "kvm_cache_regs.h"
21 #include "x86.h"
22
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/vmalloc.h>
26 #include <linux/highmem.h>
27 #include <linux/sched.h>
28 #include <linux/ftrace_event.h>
29 #include <linux/slab.h>
30
31 #include <asm/desc.h>
32
33 #include <asm/virtext.h>
34 #include "trace.h"
35
36 #define __ex(x) __kvm_handle_fault_on_reboot(x)
37
38 MODULE_AUTHOR("Qumranet");
39 MODULE_LICENSE("GPL");
40
41 #define IOPM_ALLOC_ORDER 2
42 #define MSRPM_ALLOC_ORDER 1
43
44 #define SEG_TYPE_LDT 2
45 #define SEG_TYPE_BUSY_TSS16 3
46
47 #define SVM_FEATURE_NPT  (1 << 0)
48 #define SVM_FEATURE_LBRV (1 << 1)
49 #define SVM_FEATURE_SVML (1 << 2)
50 #define SVM_FEATURE_NRIP (1 << 3)
51 #define SVM_FEATURE_PAUSE_FILTER (1 << 10)
52
53 #define NESTED_EXIT_HOST        0       /* Exit handled on host level */
54 #define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
55 #define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
56
57 #define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
58
59 static const u32 host_save_user_msrs[] = {
60 #ifdef CONFIG_X86_64
61         MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
62         MSR_FS_BASE,
63 #endif
64         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
65 };
66
67 #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
68
69 struct kvm_vcpu;
70
71 struct nested_state {
72         struct vmcb *hsave;
73         u64 hsave_msr;
74         u64 vmcb;
75
76         /* These are the merged vectors */
77         u32 *msrpm;
78
79         /* gpa pointers to the real vectors */
80         u64 vmcb_msrpm;
81
82         /* A VMEXIT is required but not yet emulated */
83         bool exit_required;
84
85         /* cache for intercepts of the guest */
86         u16 intercept_cr_read;
87         u16 intercept_cr_write;
88         u16 intercept_dr_read;
89         u16 intercept_dr_write;
90         u32 intercept_exceptions;
91         u64 intercept;
92
93 };
94
95 struct vcpu_svm {
96         struct kvm_vcpu vcpu;
97         struct vmcb *vmcb;
98         unsigned long vmcb_pa;
99         struct svm_cpu_data *svm_data;
100         uint64_t asid_generation;
101         uint64_t sysenter_esp;
102         uint64_t sysenter_eip;
103
104         u64 next_rip;
105
106         u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
107         u64 host_gs_base;
108
109         u32 *msrpm;
110
111         struct nested_state nested;
112
113         bool nmi_singlestep;
114
115         unsigned int3_injected;
116         unsigned long int3_rip;
117 };
118
119 /* enable NPT for AMD64 and X86 with PAE */
120 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
121 static bool npt_enabled = true;
122 #else
123 static bool npt_enabled;
124 #endif
125 static int npt = 1;
126
127 module_param(npt, int, S_IRUGO);
128
129 static int nested = 1;
130 module_param(nested, int, S_IRUGO);
131
132 static void svm_flush_tlb(struct kvm_vcpu *vcpu);
133 static void svm_complete_interrupts(struct vcpu_svm *svm);
134
135 static int nested_svm_exit_handled(struct vcpu_svm *svm);
136 static int nested_svm_intercept(struct vcpu_svm *svm);
137 static int nested_svm_vmexit(struct vcpu_svm *svm);
138 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
139                                       bool has_error_code, u32 error_code);
140
141 static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
142 {
143         return container_of(vcpu, struct vcpu_svm, vcpu);
144 }
145
146 static inline bool is_nested(struct vcpu_svm *svm)
147 {
148         return svm->nested.vmcb;
149 }
150
151 static inline void enable_gif(struct vcpu_svm *svm)
152 {
153         svm->vcpu.arch.hflags |= HF_GIF_MASK;
154 }
155
156 static inline void disable_gif(struct vcpu_svm *svm)
157 {
158         svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
159 }
160
161 static inline bool gif_set(struct vcpu_svm *svm)
162 {
163         return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
164 }
165
166 static unsigned long iopm_base;
167
168 struct kvm_ldttss_desc {
169         u16 limit0;
170         u16 base0;
171         unsigned base1:8, type:5, dpl:2, p:1;
172         unsigned limit1:4, zero0:3, g:1, base2:8;
173         u32 base3;
174         u32 zero1;
175 } __attribute__((packed));
176
177 struct svm_cpu_data {
178         int cpu;
179
180         u64 asid_generation;
181         u32 max_asid;
182         u32 next_asid;
183         struct kvm_ldttss_desc *tss_desc;
184
185         struct page *save_area;
186 };
187
188 static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
189 static uint32_t svm_features;
190
191 struct svm_init_data {
192         int cpu;
193         int r;
194 };
195
196 static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
197
198 #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
199 #define MSRS_RANGE_SIZE 2048
200 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
201
202 #define MAX_INST_SIZE 15
203
204 static inline u32 svm_has(u32 feat)
205 {
206         return svm_features & feat;
207 }
208
209 static inline void clgi(void)
210 {
211         asm volatile (__ex(SVM_CLGI));
212 }
213
214 static inline void stgi(void)
215 {
216         asm volatile (__ex(SVM_STGI));
217 }
218
219 static inline void invlpga(unsigned long addr, u32 asid)
220 {
221         asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
222 }
223
224 static inline void force_new_asid(struct kvm_vcpu *vcpu)
225 {
226         to_svm(vcpu)->asid_generation--;
227 }
228
229 static inline void flush_guest_tlb(struct kvm_vcpu *vcpu)
230 {
231         force_new_asid(vcpu);
232 }
233
234 static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
235 {
236         if (!npt_enabled && !(efer & EFER_LMA))
237                 efer &= ~EFER_LME;
238
239         to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
240         vcpu->arch.efer = efer;
241 }
242
243 static int is_external_interrupt(u32 info)
244 {
245         info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
246         return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
247 }
248
249 static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
250 {
251         struct vcpu_svm *svm = to_svm(vcpu);
252         u32 ret = 0;
253
254         if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
255                 ret |= KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
256         return ret & mask;
257 }
258
259 static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
260 {
261         struct vcpu_svm *svm = to_svm(vcpu);
262
263         if (mask == 0)
264                 svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
265         else
266                 svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
267
268 }
269
270 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
271 {
272         struct vcpu_svm *svm = to_svm(vcpu);
273
274         if (!svm->next_rip) {
275                 if (emulate_instruction(vcpu, 0, 0, EMULTYPE_SKIP) !=
276                                 EMULATE_DONE)
277                         printk(KERN_DEBUG "%s: NOP\n", __func__);
278                 return;
279         }
280         if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
281                 printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
282                        __func__, kvm_rip_read(vcpu), svm->next_rip);
283
284         kvm_rip_write(vcpu, svm->next_rip);
285         svm_set_interrupt_shadow(vcpu, 0);
286 }
287
288 static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
289                                 bool has_error_code, u32 error_code)
290 {
291         struct vcpu_svm *svm = to_svm(vcpu);
292
293         /*
294          * If we are within a nested VM we'd better #VMEXIT and let the guest
295          * handle the exception
296          */
297         if (nested_svm_check_exception(svm, nr, has_error_code, error_code))
298                 return;
299
300         if (nr == BP_VECTOR && !svm_has(SVM_FEATURE_NRIP)) {
301                 unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
302
303                 /*
304                  * For guest debugging where we have to reinject #BP if some
305                  * INT3 is guest-owned:
306                  * Emulate nRIP by moving RIP forward. Will fail if injection
307                  * raises a fault that is not intercepted. Still better than
308                  * failing in all cases.
309                  */
310                 skip_emulated_instruction(&svm->vcpu);
311                 rip = kvm_rip_read(&svm->vcpu);
312                 svm->int3_rip = rip + svm->vmcb->save.cs.base;
313                 svm->int3_injected = rip - old_rip;
314         }
315
316         svm->vmcb->control.event_inj = nr
317                 | SVM_EVTINJ_VALID
318                 | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
319                 | SVM_EVTINJ_TYPE_EXEPT;
320         svm->vmcb->control.event_inj_err = error_code;
321 }
322
323 static int has_svm(void)
324 {
325         const char *msg;
326
327         if (!cpu_has_svm(&msg)) {
328                 printk(KERN_INFO "has_svm: %s\n", msg);
329                 return 0;
330         }
331
332         return 1;
333 }
334
335 static void svm_hardware_disable(void *garbage)
336 {
337         cpu_svm_disable();
338 }
339
340 static int svm_hardware_enable(void *garbage)
341 {
342
343         struct svm_cpu_data *sd;
344         uint64_t efer;
345         struct desc_ptr gdt_descr;
346         struct desc_struct *gdt;
347         int me = raw_smp_processor_id();
348
349         rdmsrl(MSR_EFER, efer);
350         if (efer & EFER_SVME)
351                 return -EBUSY;
352
353         if (!has_svm()) {
354                 printk(KERN_ERR "svm_hardware_enable: err EOPNOTSUPP on %d\n",
355                        me);
356                 return -EINVAL;
357         }
358         sd = per_cpu(svm_data, me);
359
360         if (!sd) {
361                 printk(KERN_ERR "svm_hardware_enable: svm_data is NULL on %d\n",
362                        me);
363                 return -EINVAL;
364         }
365
366         sd->asid_generation = 1;
367         sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
368         sd->next_asid = sd->max_asid + 1;
369
370         kvm_get_gdt(&gdt_descr);
371         gdt = (struct desc_struct *)gdt_descr.address;
372         sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
373
374         wrmsrl(MSR_EFER, efer | EFER_SVME);
375
376         wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
377
378         return 0;
379 }
380
381 static void svm_cpu_uninit(int cpu)
382 {
383         struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
384
385         if (!sd)
386                 return;
387
388         per_cpu(svm_data, raw_smp_processor_id()) = NULL;
389         __free_page(sd->save_area);
390         kfree(sd);
391 }
392
393 static int svm_cpu_init(int cpu)
394 {
395         struct svm_cpu_data *sd;
396         int r;
397
398         sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
399         if (!sd)
400                 return -ENOMEM;
401         sd->cpu = cpu;
402         sd->save_area = alloc_page(GFP_KERNEL);
403         r = -ENOMEM;
404         if (!sd->save_area)
405                 goto err_1;
406
407         per_cpu(svm_data, cpu) = sd;
408
409         return 0;
410
411 err_1:
412         kfree(sd);
413         return r;
414
415 }
416
417 static void set_msr_interception(u32 *msrpm, unsigned msr,
418                                  int read, int write)
419 {
420         int i;
421
422         for (i = 0; i < NUM_MSR_MAPS; i++) {
423                 if (msr >= msrpm_ranges[i] &&
424                     msr < msrpm_ranges[i] + MSRS_IN_RANGE) {
425                         u32 msr_offset = (i * MSRS_IN_RANGE + msr -
426                                           msrpm_ranges[i]) * 2;
427
428                         u32 *base = msrpm + (msr_offset / 32);
429                         u32 msr_shift = msr_offset % 32;
430                         u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1);
431                         *base = (*base & ~(0x3 << msr_shift)) |
432                                 (mask << msr_shift);
433                         return;
434                 }
435         }
436         BUG();
437 }
438
439 static void svm_vcpu_init_msrpm(u32 *msrpm)
440 {
441         memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
442
443 #ifdef CONFIG_X86_64
444         set_msr_interception(msrpm, MSR_GS_BASE, 1, 1);
445         set_msr_interception(msrpm, MSR_FS_BASE, 1, 1);
446         set_msr_interception(msrpm, MSR_KERNEL_GS_BASE, 1, 1);
447         set_msr_interception(msrpm, MSR_LSTAR, 1, 1);
448         set_msr_interception(msrpm, MSR_CSTAR, 1, 1);
449         set_msr_interception(msrpm, MSR_SYSCALL_MASK, 1, 1);
450 #endif
451         set_msr_interception(msrpm, MSR_K6_STAR, 1, 1);
452         set_msr_interception(msrpm, MSR_IA32_SYSENTER_CS, 1, 1);
453 }
454
455 static void svm_enable_lbrv(struct vcpu_svm *svm)
456 {
457         u32 *msrpm = svm->msrpm;
458
459         svm->vmcb->control.lbr_ctl = 1;
460         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
461         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
462         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
463         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
464 }
465
466 static void svm_disable_lbrv(struct vcpu_svm *svm)
467 {
468         u32 *msrpm = svm->msrpm;
469
470         svm->vmcb->control.lbr_ctl = 0;
471         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
472         set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
473         set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
474         set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
475 }
476
477 static __init int svm_hardware_setup(void)
478 {
479         int cpu;
480         struct page *iopm_pages;
481         void *iopm_va;
482         int r;
483
484         iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
485
486         if (!iopm_pages)
487                 return -ENOMEM;
488
489         iopm_va = page_address(iopm_pages);
490         memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
491         iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
492
493         if (boot_cpu_has(X86_FEATURE_NX))
494                 kvm_enable_efer_bits(EFER_NX);
495
496         if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
497                 kvm_enable_efer_bits(EFER_FFXSR);
498
499         if (nested) {
500                 printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
501                 kvm_enable_efer_bits(EFER_SVME);
502         }
503
504         for_each_possible_cpu(cpu) {
505                 r = svm_cpu_init(cpu);
506                 if (r)
507                         goto err;
508         }
509
510         svm_features = cpuid_edx(SVM_CPUID_FUNC);
511
512         if (!svm_has(SVM_FEATURE_NPT))
513                 npt_enabled = false;
514
515         if (npt_enabled && !npt) {
516                 printk(KERN_INFO "kvm: Nested Paging disabled\n");
517                 npt_enabled = false;
518         }
519
520         if (npt_enabled) {
521                 printk(KERN_INFO "kvm: Nested Paging enabled\n");
522                 kvm_enable_tdp();
523         } else
524                 kvm_disable_tdp();
525
526         return 0;
527
528 err:
529         __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
530         iopm_base = 0;
531         return r;
532 }
533
534 static __exit void svm_hardware_unsetup(void)
535 {
536         int cpu;
537
538         for_each_possible_cpu(cpu)
539                 svm_cpu_uninit(cpu);
540
541         __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
542         iopm_base = 0;
543 }
544
545 static void init_seg(struct vmcb_seg *seg)
546 {
547         seg->selector = 0;
548         seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
549                       SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
550         seg->limit = 0xffff;
551         seg->base = 0;
552 }
553
554 static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
555 {
556         seg->selector = 0;
557         seg->attrib = SVM_SELECTOR_P_MASK | type;
558         seg->limit = 0xffff;
559         seg->base = 0;
560 }
561
562 static void init_vmcb(struct vcpu_svm *svm)
563 {
564         struct vmcb_control_area *control = &svm->vmcb->control;
565         struct vmcb_save_area *save = &svm->vmcb->save;
566
567         svm->vcpu.fpu_active = 1;
568
569         control->intercept_cr_read =    INTERCEPT_CR0_MASK |
570                                         INTERCEPT_CR3_MASK |
571                                         INTERCEPT_CR4_MASK;
572
573         control->intercept_cr_write =   INTERCEPT_CR0_MASK |
574                                         INTERCEPT_CR3_MASK |
575                                         INTERCEPT_CR4_MASK |
576                                         INTERCEPT_CR8_MASK;
577
578         control->intercept_dr_read =    INTERCEPT_DR0_MASK |
579                                         INTERCEPT_DR1_MASK |
580                                         INTERCEPT_DR2_MASK |
581                                         INTERCEPT_DR3_MASK |
582                                         INTERCEPT_DR4_MASK |
583                                         INTERCEPT_DR5_MASK |
584                                         INTERCEPT_DR6_MASK |
585                                         INTERCEPT_DR7_MASK;
586
587         control->intercept_dr_write =   INTERCEPT_DR0_MASK |
588                                         INTERCEPT_DR1_MASK |
589                                         INTERCEPT_DR2_MASK |
590                                         INTERCEPT_DR3_MASK |
591                                         INTERCEPT_DR4_MASK |
592                                         INTERCEPT_DR5_MASK |
593                                         INTERCEPT_DR6_MASK |
594                                         INTERCEPT_DR7_MASK;
595
596         control->intercept_exceptions = (1 << PF_VECTOR) |
597                                         (1 << UD_VECTOR) |
598                                         (1 << MC_VECTOR);
599
600
601         control->intercept =    (1ULL << INTERCEPT_INTR) |
602                                 (1ULL << INTERCEPT_NMI) |
603                                 (1ULL << INTERCEPT_SMI) |
604                                 (1ULL << INTERCEPT_SELECTIVE_CR0) |
605                                 (1ULL << INTERCEPT_CPUID) |
606                                 (1ULL << INTERCEPT_INVD) |
607                                 (1ULL << INTERCEPT_HLT) |
608                                 (1ULL << INTERCEPT_INVLPG) |
609                                 (1ULL << INTERCEPT_INVLPGA) |
610                                 (1ULL << INTERCEPT_IOIO_PROT) |
611                                 (1ULL << INTERCEPT_MSR_PROT) |
612                                 (1ULL << INTERCEPT_TASK_SWITCH) |
613                                 (1ULL << INTERCEPT_SHUTDOWN) |
614                                 (1ULL << INTERCEPT_VMRUN) |
615                                 (1ULL << INTERCEPT_VMMCALL) |
616                                 (1ULL << INTERCEPT_VMLOAD) |
617                                 (1ULL << INTERCEPT_VMSAVE) |
618                                 (1ULL << INTERCEPT_STGI) |
619                                 (1ULL << INTERCEPT_CLGI) |
620                                 (1ULL << INTERCEPT_SKINIT) |
621                                 (1ULL << INTERCEPT_WBINVD) |
622                                 (1ULL << INTERCEPT_MONITOR) |
623                                 (1ULL << INTERCEPT_MWAIT);
624
625         control->iopm_base_pa = iopm_base;
626         control->msrpm_base_pa = __pa(svm->msrpm);
627         control->tsc_offset = 0;
628         control->int_ctl = V_INTR_MASKING_MASK;
629
630         init_seg(&save->es);
631         init_seg(&save->ss);
632         init_seg(&save->ds);
633         init_seg(&save->fs);
634         init_seg(&save->gs);
635
636         save->cs.selector = 0xf000;
637         /* Executable/Readable Code Segment */
638         save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
639                 SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
640         save->cs.limit = 0xffff;
641         /*
642          * cs.base should really be 0xffff0000, but vmx can't handle that, so
643          * be consistent with it.
644          *
645          * Replace when we have real mode working for vmx.
646          */
647         save->cs.base = 0xf0000;
648
649         save->gdtr.limit = 0xffff;
650         save->idtr.limit = 0xffff;
651
652         init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
653         init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
654
655         save->efer = EFER_SVME;
656         save->dr6 = 0xffff0ff0;
657         save->dr7 = 0x400;
658         save->rflags = 2;
659         save->rip = 0x0000fff0;
660         svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
661
662         /*
663          * This is the guest-visible cr0 value.
664          * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
665          */
666         svm->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
667         kvm_set_cr0(&svm->vcpu, svm->vcpu.arch.cr0);
668
669         save->cr4 = X86_CR4_PAE;
670         /* rdx = ?? */
671
672         if (npt_enabled) {
673                 /* Setup VMCB for Nested Paging */
674                 control->nested_ctl = 1;
675                 control->intercept &= ~((1ULL << INTERCEPT_TASK_SWITCH) |
676                                         (1ULL << INTERCEPT_INVLPG));
677                 control->intercept_exceptions &= ~(1 << PF_VECTOR);
678                 control->intercept_cr_read &= ~INTERCEPT_CR3_MASK;
679                 control->intercept_cr_write &= ~INTERCEPT_CR3_MASK;
680                 save->g_pat = 0x0007040600070406ULL;
681                 save->cr3 = 0;
682                 save->cr4 = 0;
683         }
684         force_new_asid(&svm->vcpu);
685
686         svm->nested.vmcb = 0;
687         svm->vcpu.arch.hflags = 0;
688
689         if (svm_has(SVM_FEATURE_PAUSE_FILTER)) {
690                 control->pause_filter_count = 3000;
691                 control->intercept |= (1ULL << INTERCEPT_PAUSE);
692         }
693
694         enable_gif(svm);
695 }
696
697 static int svm_vcpu_reset(struct kvm_vcpu *vcpu)
698 {
699         struct vcpu_svm *svm = to_svm(vcpu);
700
701         init_vmcb(svm);
702
703         if (!kvm_vcpu_is_bsp(vcpu)) {
704                 kvm_rip_write(vcpu, 0);
705                 svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12;
706                 svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8;
707         }
708         vcpu->arch.regs_avail = ~0;
709         vcpu->arch.regs_dirty = ~0;
710
711         return 0;
712 }
713
714 static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
715 {
716         struct vcpu_svm *svm;
717         struct page *page;
718         struct page *msrpm_pages;
719         struct page *hsave_page;
720         struct page *nested_msrpm_pages;
721         int err;
722
723         svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
724         if (!svm) {
725                 err = -ENOMEM;
726                 goto out;
727         }
728
729         err = kvm_vcpu_init(&svm->vcpu, kvm, id);
730         if (err)
731                 goto free_svm;
732
733         err = -ENOMEM;
734         page = alloc_page(GFP_KERNEL);
735         if (!page)
736                 goto uninit;
737
738         msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
739         if (!msrpm_pages)
740                 goto free_page1;
741
742         nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
743         if (!nested_msrpm_pages)
744                 goto free_page2;
745
746         hsave_page = alloc_page(GFP_KERNEL);
747         if (!hsave_page)
748                 goto free_page3;
749
750         svm->nested.hsave = page_address(hsave_page);
751
752         svm->msrpm = page_address(msrpm_pages);
753         svm_vcpu_init_msrpm(svm->msrpm);
754
755         svm->nested.msrpm = page_address(nested_msrpm_pages);
756
757         svm->vmcb = page_address(page);
758         clear_page(svm->vmcb);
759         svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
760         svm->asid_generation = 0;
761         init_vmcb(svm);
762
763         fx_init(&svm->vcpu);
764         svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
765         if (kvm_vcpu_is_bsp(&svm->vcpu))
766                 svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
767
768         return &svm->vcpu;
769
770 free_page3:
771         __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
772 free_page2:
773         __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
774 free_page1:
775         __free_page(page);
776 uninit:
777         kvm_vcpu_uninit(&svm->vcpu);
778 free_svm:
779         kmem_cache_free(kvm_vcpu_cache, svm);
780 out:
781         return ERR_PTR(err);
782 }
783
784 static void svm_free_vcpu(struct kvm_vcpu *vcpu)
785 {
786         struct vcpu_svm *svm = to_svm(vcpu);
787
788         __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
789         __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
790         __free_page(virt_to_page(svm->nested.hsave));
791         __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
792         kvm_vcpu_uninit(vcpu);
793         kmem_cache_free(kvm_vcpu_cache, svm);
794 }
795
796 static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
797 {
798         struct vcpu_svm *svm = to_svm(vcpu);
799         int i;
800
801         if (unlikely(cpu != vcpu->cpu)) {
802                 u64 delta;
803
804                 if (check_tsc_unstable()) {
805                         /*
806                          * Make sure that the guest sees a monotonically
807                          * increasing TSC.
808                          */
809                         delta = vcpu->arch.host_tsc - native_read_tsc();
810                         svm->vmcb->control.tsc_offset += delta;
811                         if (is_nested(svm))
812                                 svm->nested.hsave->control.tsc_offset += delta;
813                 }
814                 vcpu->cpu = cpu;
815                 kvm_migrate_timers(vcpu);
816                 svm->asid_generation = 0;
817         }
818
819         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
820                 rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
821 }
822
823 static void svm_vcpu_put(struct kvm_vcpu *vcpu)
824 {
825         struct vcpu_svm *svm = to_svm(vcpu);
826         int i;
827
828         ++vcpu->stat.host_state_reload;
829         for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
830                 wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
831
832         vcpu->arch.host_tsc = native_read_tsc();
833 }
834
835 static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
836 {
837         return to_svm(vcpu)->vmcb->save.rflags;
838 }
839
840 static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
841 {
842         to_svm(vcpu)->vmcb->save.rflags = rflags;
843 }
844
845 static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
846 {
847         switch (reg) {
848         case VCPU_EXREG_PDPTR:
849                 BUG_ON(!npt_enabled);
850                 load_pdptrs(vcpu, vcpu->arch.cr3);
851                 break;
852         default:
853                 BUG();
854         }
855 }
856
857 static void svm_set_vintr(struct vcpu_svm *svm)
858 {
859         svm->vmcb->control.intercept |= 1ULL << INTERCEPT_VINTR;
860 }
861
862 static void svm_clear_vintr(struct vcpu_svm *svm)
863 {
864         svm->vmcb->control.intercept &= ~(1ULL << INTERCEPT_VINTR);
865 }
866
867 static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
868 {
869         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
870
871         switch (seg) {
872         case VCPU_SREG_CS: return &save->cs;
873         case VCPU_SREG_DS: return &save->ds;
874         case VCPU_SREG_ES: return &save->es;
875         case VCPU_SREG_FS: return &save->fs;
876         case VCPU_SREG_GS: return &save->gs;
877         case VCPU_SREG_SS: return &save->ss;
878         case VCPU_SREG_TR: return &save->tr;
879         case VCPU_SREG_LDTR: return &save->ldtr;
880         }
881         BUG();
882         return NULL;
883 }
884
885 static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
886 {
887         struct vmcb_seg *s = svm_seg(vcpu, seg);
888
889         return s->base;
890 }
891
892 static void svm_get_segment(struct kvm_vcpu *vcpu,
893                             struct kvm_segment *var, int seg)
894 {
895         struct vmcb_seg *s = svm_seg(vcpu, seg);
896
897         var->base = s->base;
898         var->limit = s->limit;
899         var->selector = s->selector;
900         var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
901         var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
902         var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
903         var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
904         var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
905         var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
906         var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
907         var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
908
909         /*
910          * AMD's VMCB does not have an explicit unusable field, so emulate it
911          * for cross vendor migration purposes by "not present"
912          */
913         var->unusable = !var->present || (var->type == 0);
914
915         switch (seg) {
916         case VCPU_SREG_CS:
917                 /*
918                  * SVM always stores 0 for the 'G' bit in the CS selector in
919                  * the VMCB on a VMEXIT. This hurts cross-vendor migration:
920                  * Intel's VMENTRY has a check on the 'G' bit.
921                  */
922                 var->g = s->limit > 0xfffff;
923                 break;
924         case VCPU_SREG_TR:
925                 /*
926                  * Work around a bug where the busy flag in the tr selector
927                  * isn't exposed
928                  */
929                 var->type |= 0x2;
930                 break;
931         case VCPU_SREG_DS:
932         case VCPU_SREG_ES:
933         case VCPU_SREG_FS:
934         case VCPU_SREG_GS:
935                 /*
936                  * The accessed bit must always be set in the segment
937                  * descriptor cache, although it can be cleared in the
938                  * descriptor, the cached bit always remains at 1. Since
939                  * Intel has a check on this, set it here to support
940                  * cross-vendor migration.
941                  */
942                 if (!var->unusable)
943                         var->type |= 0x1;
944                 break;
945         case VCPU_SREG_SS:
946                 /*
947                  * On AMD CPUs sometimes the DB bit in the segment
948                  * descriptor is left as 1, although the whole segment has
949                  * been made unusable. Clear it here to pass an Intel VMX
950                  * entry check when cross vendor migrating.
951                  */
952                 if (var->unusable)
953                         var->db = 0;
954                 break;
955         }
956 }
957
958 static int svm_get_cpl(struct kvm_vcpu *vcpu)
959 {
960         struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
961
962         return save->cpl;
963 }
964
965 static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
966 {
967         struct vcpu_svm *svm = to_svm(vcpu);
968
969         dt->size = svm->vmcb->save.idtr.limit;
970         dt->address = svm->vmcb->save.idtr.base;
971 }
972
973 static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
974 {
975         struct vcpu_svm *svm = to_svm(vcpu);
976
977         svm->vmcb->save.idtr.limit = dt->size;
978         svm->vmcb->save.idtr.base = dt->address ;
979 }
980
981 static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
982 {
983         struct vcpu_svm *svm = to_svm(vcpu);
984
985         dt->size = svm->vmcb->save.gdtr.limit;
986         dt->address = svm->vmcb->save.gdtr.base;
987 }
988
989 static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
990 {
991         struct vcpu_svm *svm = to_svm(vcpu);
992
993         svm->vmcb->save.gdtr.limit = dt->size;
994         svm->vmcb->save.gdtr.base = dt->address ;
995 }
996
997 static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
998 {
999 }
1000
1001 static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1002 {
1003 }
1004
1005 static void update_cr0_intercept(struct vcpu_svm *svm)
1006 {
1007         struct vmcb *vmcb = svm->vmcb;
1008         ulong gcr0 = svm->vcpu.arch.cr0;
1009         u64 *hcr0 = &svm->vmcb->save.cr0;
1010
1011         if (!svm->vcpu.fpu_active)
1012                 *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1013         else
1014                 *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1015                         | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1016
1017
1018         if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1019                 vmcb->control.intercept_cr_read &= ~INTERCEPT_CR0_MASK;
1020                 vmcb->control.intercept_cr_write &= ~INTERCEPT_CR0_MASK;
1021                 if (is_nested(svm)) {
1022                         struct vmcb *hsave = svm->nested.hsave;
1023
1024                         hsave->control.intercept_cr_read  &= ~INTERCEPT_CR0_MASK;
1025                         hsave->control.intercept_cr_write &= ~INTERCEPT_CR0_MASK;
1026                         vmcb->control.intercept_cr_read  |= svm->nested.intercept_cr_read;
1027                         vmcb->control.intercept_cr_write |= svm->nested.intercept_cr_write;
1028                 }
1029         } else {
1030                 svm->vmcb->control.intercept_cr_read |= INTERCEPT_CR0_MASK;
1031                 svm->vmcb->control.intercept_cr_write |= INTERCEPT_CR0_MASK;
1032                 if (is_nested(svm)) {
1033                         struct vmcb *hsave = svm->nested.hsave;
1034
1035                         hsave->control.intercept_cr_read |= INTERCEPT_CR0_MASK;
1036                         hsave->control.intercept_cr_write |= INTERCEPT_CR0_MASK;
1037                 }
1038         }
1039 }
1040
1041 static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1042 {
1043         struct vcpu_svm *svm = to_svm(vcpu);
1044
1045 #ifdef CONFIG_X86_64
1046         if (vcpu->arch.efer & EFER_LME) {
1047                 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1048                         vcpu->arch.efer |= EFER_LMA;
1049                         svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1050                 }
1051
1052                 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1053                         vcpu->arch.efer &= ~EFER_LMA;
1054                         svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1055                 }
1056         }
1057 #endif
1058         vcpu->arch.cr0 = cr0;
1059
1060         if (!npt_enabled)
1061                 cr0 |= X86_CR0_PG | X86_CR0_WP;
1062
1063         if (!vcpu->fpu_active)
1064                 cr0 |= X86_CR0_TS;
1065         /*
1066          * re-enable caching here because the QEMU bios
1067          * does not do it - this results in some delay at
1068          * reboot
1069          */
1070         cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1071         svm->vmcb->save.cr0 = cr0;
1072         update_cr0_intercept(svm);
1073 }
1074
1075 static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1076 {
1077         unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
1078         unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1079
1080         if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1081                 force_new_asid(vcpu);
1082
1083         vcpu->arch.cr4 = cr4;
1084         if (!npt_enabled)
1085                 cr4 |= X86_CR4_PAE;
1086         cr4 |= host_cr4_mce;
1087         to_svm(vcpu)->vmcb->save.cr4 = cr4;
1088 }
1089
1090 static void svm_set_segment(struct kvm_vcpu *vcpu,
1091                             struct kvm_segment *var, int seg)
1092 {
1093         struct vcpu_svm *svm = to_svm(vcpu);
1094         struct vmcb_seg *s = svm_seg(vcpu, seg);
1095
1096         s->base = var->base;
1097         s->limit = var->limit;
1098         s->selector = var->selector;
1099         if (var->unusable)
1100                 s->attrib = 0;
1101         else {
1102                 s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1103                 s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1104                 s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1105                 s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1106                 s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1107                 s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1108                 s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1109                 s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1110         }
1111         if (seg == VCPU_SREG_CS)
1112                 svm->vmcb->save.cpl
1113                         = (svm->vmcb->save.cs.attrib
1114                            >> SVM_SELECTOR_DPL_SHIFT) & 3;
1115
1116 }
1117
1118 static void update_db_intercept(struct kvm_vcpu *vcpu)
1119 {
1120         struct vcpu_svm *svm = to_svm(vcpu);
1121
1122         svm->vmcb->control.intercept_exceptions &=
1123                 ~((1 << DB_VECTOR) | (1 << BP_VECTOR));
1124
1125         if (svm->nmi_singlestep)
1126                 svm->vmcb->control.intercept_exceptions |= (1 << DB_VECTOR);
1127
1128         if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1129                 if (vcpu->guest_debug &
1130                     (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1131                         svm->vmcb->control.intercept_exceptions |=
1132                                 1 << DB_VECTOR;
1133                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1134                         svm->vmcb->control.intercept_exceptions |=
1135                                 1 << BP_VECTOR;
1136         } else
1137                 vcpu->guest_debug = 0;
1138 }
1139
1140 static void svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1141 {
1142         struct vcpu_svm *svm = to_svm(vcpu);
1143
1144         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1145                 svm->vmcb->save.dr7 = dbg->arch.debugreg[7];
1146         else
1147                 svm->vmcb->save.dr7 = vcpu->arch.dr7;
1148
1149         update_db_intercept(vcpu);
1150 }
1151
1152 static void load_host_msrs(struct kvm_vcpu *vcpu)
1153 {
1154 #ifdef CONFIG_X86_64
1155         wrmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
1156 #endif
1157 }
1158
1159 static void save_host_msrs(struct kvm_vcpu *vcpu)
1160 {
1161 #ifdef CONFIG_X86_64
1162         rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host_gs_base);
1163 #endif
1164 }
1165
1166 static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1167 {
1168         if (sd->next_asid > sd->max_asid) {
1169                 ++sd->asid_generation;
1170                 sd->next_asid = 1;
1171                 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1172         }
1173
1174         svm->asid_generation = sd->asid_generation;
1175         svm->vmcb->control.asid = sd->next_asid++;
1176 }
1177
1178 static int svm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *dest)
1179 {
1180         struct vcpu_svm *svm = to_svm(vcpu);
1181
1182         switch (dr) {
1183         case 0 ... 3:
1184                 *dest = vcpu->arch.db[dr];
1185                 break;
1186         case 4:
1187                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
1188                         return EMULATE_FAIL; /* will re-inject UD */
1189                 /* fall through */
1190         case 6:
1191                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1192                         *dest = vcpu->arch.dr6;
1193                 else
1194                         *dest = svm->vmcb->save.dr6;
1195                 break;
1196         case 5:
1197                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
1198                         return EMULATE_FAIL; /* will re-inject UD */
1199                 /* fall through */
1200         case 7:
1201                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1202                         *dest = vcpu->arch.dr7;
1203                 else
1204                         *dest = svm->vmcb->save.dr7;
1205                 break;
1206         }
1207
1208         return EMULATE_DONE;
1209 }
1210
1211 static int svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value)
1212 {
1213         struct vcpu_svm *svm = to_svm(vcpu);
1214
1215         switch (dr) {
1216         case 0 ... 3:
1217                 vcpu->arch.db[dr] = value;
1218                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1219                         vcpu->arch.eff_db[dr] = value;
1220                 break;
1221         case 4:
1222                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
1223                         return EMULATE_FAIL; /* will re-inject UD */
1224                 /* fall through */
1225         case 6:
1226                 vcpu->arch.dr6 = (value & DR6_VOLATILE) | DR6_FIXED_1;
1227                 break;
1228         case 5:
1229                 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
1230                         return EMULATE_FAIL; /* will re-inject UD */
1231                 /* fall through */
1232         case 7:
1233                 vcpu->arch.dr7 = (value & DR7_VOLATILE) | DR7_FIXED_1;
1234                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1235                         svm->vmcb->save.dr7 = vcpu->arch.dr7;
1236                         vcpu->arch.switch_db_regs = (value & DR7_BP_EN_MASK);
1237                 }
1238                 break;
1239         }
1240
1241         return EMULATE_DONE;
1242 }
1243
1244 static int pf_interception(struct vcpu_svm *svm)
1245 {
1246         u64 fault_address;
1247         u32 error_code;
1248
1249         fault_address  = svm->vmcb->control.exit_info_2;
1250         error_code = svm->vmcb->control.exit_info_1;
1251
1252         trace_kvm_page_fault(fault_address, error_code);
1253         if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1254                 kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1255         return kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code);
1256 }
1257
1258 static int db_interception(struct vcpu_svm *svm)
1259 {
1260         struct kvm_run *kvm_run = svm->vcpu.run;
1261
1262         if (!(svm->vcpu.guest_debug &
1263               (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1264                 !svm->nmi_singlestep) {
1265                 kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1266                 return 1;
1267         }
1268
1269         if (svm->nmi_singlestep) {
1270                 svm->nmi_singlestep = false;
1271                 if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1272                         svm->vmcb->save.rflags &=
1273                                 ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1274                 update_db_intercept(&svm->vcpu);
1275         }
1276
1277         if (svm->vcpu.guest_debug &
1278             (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1279                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
1280                 kvm_run->debug.arch.pc =
1281                         svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1282                 kvm_run->debug.arch.exception = DB_VECTOR;
1283                 return 0;
1284         }
1285
1286         return 1;
1287 }
1288
1289 static int bp_interception(struct vcpu_svm *svm)
1290 {
1291         struct kvm_run *kvm_run = svm->vcpu.run;
1292
1293         kvm_run->exit_reason = KVM_EXIT_DEBUG;
1294         kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1295         kvm_run->debug.arch.exception = BP_VECTOR;
1296         return 0;
1297 }
1298
1299 static int ud_interception(struct vcpu_svm *svm)
1300 {
1301         int er;
1302
1303         er = emulate_instruction(&svm->vcpu, 0, 0, EMULTYPE_TRAP_UD);
1304         if (er != EMULATE_DONE)
1305                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1306         return 1;
1307 }
1308
1309 static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1310 {
1311         struct vcpu_svm *svm = to_svm(vcpu);
1312         u32 excp;
1313
1314         if (is_nested(svm)) {
1315                 u32 h_excp, n_excp;
1316
1317                 h_excp  = svm->nested.hsave->control.intercept_exceptions;
1318                 n_excp  = svm->nested.intercept_exceptions;
1319                 h_excp &= ~(1 << NM_VECTOR);
1320                 excp    = h_excp | n_excp;
1321         } else {
1322                 excp  = svm->vmcb->control.intercept_exceptions;
1323                 excp &= ~(1 << NM_VECTOR);
1324         }
1325
1326         svm->vmcb->control.intercept_exceptions = excp;
1327
1328         svm->vcpu.fpu_active = 1;
1329         update_cr0_intercept(svm);
1330 }
1331
1332 static int nm_interception(struct vcpu_svm *svm)
1333 {
1334         svm_fpu_activate(&svm->vcpu);
1335         return 1;
1336 }
1337
1338 static int mc_interception(struct vcpu_svm *svm)
1339 {
1340         /*
1341          * On an #MC intercept the MCE handler is not called automatically in
1342          * the host. So do it by hand here.
1343          */
1344         asm volatile (
1345                 "int $0x12\n");
1346         /* not sure if we ever come back to this point */
1347
1348         return 1;
1349 }
1350
1351 static int shutdown_interception(struct vcpu_svm *svm)
1352 {
1353         struct kvm_run *kvm_run = svm->vcpu.run;
1354
1355         /*
1356          * VMCB is undefined after a SHUTDOWN intercept
1357          * so reinitialize it.
1358          */
1359         clear_page(svm->vmcb);
1360         init_vmcb(svm);
1361
1362         kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1363         return 0;
1364 }
1365
1366 static int io_interception(struct vcpu_svm *svm)
1367 {
1368         u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1369         int size, in, string;
1370         unsigned port;
1371
1372         ++svm->vcpu.stat.io_exits;
1373
1374         svm->next_rip = svm->vmcb->control.exit_info_2;
1375
1376         string = (io_info & SVM_IOIO_STR_MASK) != 0;
1377
1378         if (string) {
1379                 if (emulate_instruction(&svm->vcpu,
1380                                         0, 0, 0) == EMULATE_DO_MMIO)
1381                         return 0;
1382                 return 1;
1383         }
1384
1385         in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1386         port = io_info >> 16;
1387         size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1388
1389         skip_emulated_instruction(&svm->vcpu);
1390         return kvm_emulate_pio(&svm->vcpu, in, size, port);
1391 }
1392
1393 static int nmi_interception(struct vcpu_svm *svm)
1394 {
1395         return 1;
1396 }
1397
1398 static int intr_interception(struct vcpu_svm *svm)
1399 {
1400         ++svm->vcpu.stat.irq_exits;
1401         return 1;
1402 }
1403
1404 static int nop_on_interception(struct vcpu_svm *svm)
1405 {
1406         return 1;
1407 }
1408
1409 static int halt_interception(struct vcpu_svm *svm)
1410 {
1411         svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1412         skip_emulated_instruction(&svm->vcpu);
1413         return kvm_emulate_halt(&svm->vcpu);
1414 }
1415
1416 static int vmmcall_interception(struct vcpu_svm *svm)
1417 {
1418         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1419         skip_emulated_instruction(&svm->vcpu);
1420         kvm_emulate_hypercall(&svm->vcpu);
1421         return 1;
1422 }
1423
1424 static int nested_svm_check_permissions(struct vcpu_svm *svm)
1425 {
1426         if (!(svm->vcpu.arch.efer & EFER_SVME)
1427             || !is_paging(&svm->vcpu)) {
1428                 kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1429                 return 1;
1430         }
1431
1432         if (svm->vmcb->save.cpl) {
1433                 kvm_inject_gp(&svm->vcpu, 0);
1434                 return 1;
1435         }
1436
1437        return 0;
1438 }
1439
1440 static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
1441                                       bool has_error_code, u32 error_code)
1442 {
1443         int vmexit;
1444
1445         if (!is_nested(svm))
1446                 return 0;
1447
1448         svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
1449         svm->vmcb->control.exit_code_hi = 0;
1450         svm->vmcb->control.exit_info_1 = error_code;
1451         svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
1452
1453         vmexit = nested_svm_intercept(svm);
1454         if (vmexit == NESTED_EXIT_DONE)
1455                 svm->nested.exit_required = true;
1456
1457         return vmexit;
1458 }
1459
1460 /* This function returns true if it is save to enable the irq window */
1461 static inline bool nested_svm_intr(struct vcpu_svm *svm)
1462 {
1463         if (!is_nested(svm))
1464                 return true;
1465
1466         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1467                 return true;
1468
1469         if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
1470                 return false;
1471
1472         svm->vmcb->control.exit_code = SVM_EXIT_INTR;
1473
1474         if (svm->nested.intercept & 1ULL) {
1475                 /*
1476                  * The #vmexit can't be emulated here directly because this
1477                  * code path runs with irqs and preemtion disabled. A
1478                  * #vmexit emulation might sleep. Only signal request for
1479                  * the #vmexit here.
1480                  */
1481                 svm->nested.exit_required = true;
1482                 trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
1483                 return false;
1484         }
1485
1486         return true;
1487 }
1488
1489 static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
1490 {
1491         struct page *page;
1492
1493         might_sleep();
1494
1495         page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
1496         if (is_error_page(page))
1497                 goto error;
1498
1499         *_page = page;
1500
1501         return kmap(page);
1502
1503 error:
1504         kvm_release_page_clean(page);
1505         kvm_inject_gp(&svm->vcpu, 0);
1506
1507         return NULL;
1508 }
1509
1510 static void nested_svm_unmap(struct page *page)
1511 {
1512         kunmap(page);
1513         kvm_release_page_dirty(page);
1514 }
1515
1516 static bool nested_svm_exit_handled_msr(struct vcpu_svm *svm)
1517 {
1518         u32 param = svm->vmcb->control.exit_info_1 & 1;
1519         u32 msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
1520         bool ret = false;
1521         u32 t0, t1;
1522         u8 val;
1523
1524         if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
1525                 return false;
1526
1527         switch (msr) {
1528         case 0 ... 0x1fff:
1529                 t0 = (msr * 2) % 8;
1530                 t1 = msr / 8;
1531                 break;
1532         case 0xc0000000 ... 0xc0001fff:
1533                 t0 = (8192 + msr - 0xc0000000) * 2;
1534                 t1 = (t0 / 8);
1535                 t0 %= 8;
1536                 break;
1537         case 0xc0010000 ... 0xc0011fff:
1538                 t0 = (16384 + msr - 0xc0010000) * 2;
1539                 t1 = (t0 / 8);
1540                 t0 %= 8;
1541                 break;
1542         default:
1543                 ret = true;
1544                 goto out;
1545         }
1546
1547         if (!kvm_read_guest(svm->vcpu.kvm, svm->nested.vmcb_msrpm + t1, &val, 1))
1548                 ret = val & ((1 << param) << t0);
1549
1550 out:
1551         return ret;
1552 }
1553
1554 static int nested_svm_exit_special(struct vcpu_svm *svm)
1555 {
1556         u32 exit_code = svm->vmcb->control.exit_code;
1557
1558         switch (exit_code) {
1559         case SVM_EXIT_INTR:
1560         case SVM_EXIT_NMI:
1561                 return NESTED_EXIT_HOST;
1562         case SVM_EXIT_NPF:
1563                 /* For now we are always handling NPFs when using them */
1564                 if (npt_enabled)
1565                         return NESTED_EXIT_HOST;
1566                 break;
1567         case SVM_EXIT_EXCP_BASE + PF_VECTOR:
1568                 /* When we're shadowing, trap PFs */
1569                 if (!npt_enabled)
1570                         return NESTED_EXIT_HOST;
1571                 break;
1572         case SVM_EXIT_EXCP_BASE + NM_VECTOR:
1573                 nm_interception(svm);
1574                 break;
1575         default:
1576                 break;
1577         }
1578
1579         return NESTED_EXIT_CONTINUE;
1580 }
1581
1582 /*
1583  * If this function returns true, this #vmexit was already handled
1584  */
1585 static int nested_svm_intercept(struct vcpu_svm *svm)
1586 {
1587         u32 exit_code = svm->vmcb->control.exit_code;
1588         int vmexit = NESTED_EXIT_HOST;
1589
1590         switch (exit_code) {
1591         case SVM_EXIT_MSR:
1592                 vmexit = nested_svm_exit_handled_msr(svm);
1593                 break;
1594         case SVM_EXIT_READ_CR0 ... SVM_EXIT_READ_CR8: {
1595                 u32 cr_bits = 1 << (exit_code - SVM_EXIT_READ_CR0);
1596                 if (svm->nested.intercept_cr_read & cr_bits)
1597                         vmexit = NESTED_EXIT_DONE;
1598                 break;
1599         }
1600         case SVM_EXIT_WRITE_CR0 ... SVM_EXIT_WRITE_CR8: {
1601                 u32 cr_bits = 1 << (exit_code - SVM_EXIT_WRITE_CR0);
1602                 if (svm->nested.intercept_cr_write & cr_bits)
1603                         vmexit = NESTED_EXIT_DONE;
1604                 break;
1605         }
1606         case SVM_EXIT_READ_DR0 ... SVM_EXIT_READ_DR7: {
1607                 u32 dr_bits = 1 << (exit_code - SVM_EXIT_READ_DR0);
1608                 if (svm->nested.intercept_dr_read & dr_bits)
1609                         vmexit = NESTED_EXIT_DONE;
1610                 break;
1611         }
1612         case SVM_EXIT_WRITE_DR0 ... SVM_EXIT_WRITE_DR7: {
1613                 u32 dr_bits = 1 << (exit_code - SVM_EXIT_WRITE_DR0);
1614                 if (svm->nested.intercept_dr_write & dr_bits)
1615                         vmexit = NESTED_EXIT_DONE;
1616                 break;
1617         }
1618         case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
1619                 u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
1620                 if (svm->nested.intercept_exceptions & excp_bits)
1621                         vmexit = NESTED_EXIT_DONE;
1622                 break;
1623         }
1624         default: {
1625                 u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
1626                 if (svm->nested.intercept & exit_bits)
1627                         vmexit = NESTED_EXIT_DONE;
1628         }
1629         }
1630
1631         return vmexit;
1632 }
1633
1634 static int nested_svm_exit_handled(struct vcpu_svm *svm)
1635 {
1636         int vmexit;
1637
1638         vmexit = nested_svm_intercept(svm);
1639
1640         if (vmexit == NESTED_EXIT_DONE)
1641                 nested_svm_vmexit(svm);
1642
1643         return vmexit;
1644 }
1645
1646 static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
1647 {
1648         struct vmcb_control_area *dst  = &dst_vmcb->control;
1649         struct vmcb_control_area *from = &from_vmcb->control;
1650
1651         dst->intercept_cr_read    = from->intercept_cr_read;
1652         dst->intercept_cr_write   = from->intercept_cr_write;
1653         dst->intercept_dr_read    = from->intercept_dr_read;
1654         dst->intercept_dr_write   = from->intercept_dr_write;
1655         dst->intercept_exceptions = from->intercept_exceptions;
1656         dst->intercept            = from->intercept;
1657         dst->iopm_base_pa         = from->iopm_base_pa;
1658         dst->msrpm_base_pa        = from->msrpm_base_pa;
1659         dst->tsc_offset           = from->tsc_offset;
1660         dst->asid                 = from->asid;
1661         dst->tlb_ctl              = from->tlb_ctl;
1662         dst->int_ctl              = from->int_ctl;
1663         dst->int_vector           = from->int_vector;
1664         dst->int_state            = from->int_state;
1665         dst->exit_code            = from->exit_code;
1666         dst->exit_code_hi         = from->exit_code_hi;
1667         dst->exit_info_1          = from->exit_info_1;
1668         dst->exit_info_2          = from->exit_info_2;
1669         dst->exit_int_info        = from->exit_int_info;
1670         dst->exit_int_info_err    = from->exit_int_info_err;
1671         dst->nested_ctl           = from->nested_ctl;
1672         dst->event_inj            = from->event_inj;
1673         dst->event_inj_err        = from->event_inj_err;
1674         dst->nested_cr3           = from->nested_cr3;
1675         dst->lbr_ctl              = from->lbr_ctl;
1676 }
1677
1678 static int nested_svm_vmexit(struct vcpu_svm *svm)
1679 {
1680         struct vmcb *nested_vmcb;
1681         struct vmcb *hsave = svm->nested.hsave;
1682         struct vmcb *vmcb = svm->vmcb;
1683         struct page *page;
1684
1685         trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
1686                                        vmcb->control.exit_info_1,
1687                                        vmcb->control.exit_info_2,
1688                                        vmcb->control.exit_int_info,
1689                                        vmcb->control.exit_int_info_err);
1690
1691         nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
1692         if (!nested_vmcb)
1693                 return 1;
1694
1695         /* Exit nested SVM mode */
1696         svm->nested.vmcb = 0;
1697
1698         /* Give the current vmcb to the guest */
1699         disable_gif(svm);
1700
1701         nested_vmcb->save.es     = vmcb->save.es;
1702         nested_vmcb->save.cs     = vmcb->save.cs;
1703         nested_vmcb->save.ss     = vmcb->save.ss;
1704         nested_vmcb->save.ds     = vmcb->save.ds;
1705         nested_vmcb->save.gdtr   = vmcb->save.gdtr;
1706         nested_vmcb->save.idtr   = vmcb->save.idtr;
1707         nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
1708         if (npt_enabled)
1709                 nested_vmcb->save.cr3    = vmcb->save.cr3;
1710         else
1711                 nested_vmcb->save.cr3    = svm->vcpu.arch.cr3;
1712         nested_vmcb->save.cr2    = vmcb->save.cr2;
1713         nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
1714         nested_vmcb->save.rflags = vmcb->save.rflags;
1715         nested_vmcb->save.rip    = vmcb->save.rip;
1716         nested_vmcb->save.rsp    = vmcb->save.rsp;
1717         nested_vmcb->save.rax    = vmcb->save.rax;
1718         nested_vmcb->save.dr7    = vmcb->save.dr7;
1719         nested_vmcb->save.dr6    = vmcb->save.dr6;
1720         nested_vmcb->save.cpl    = vmcb->save.cpl;
1721
1722         nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
1723         nested_vmcb->control.int_vector        = vmcb->control.int_vector;
1724         nested_vmcb->control.int_state         = vmcb->control.int_state;
1725         nested_vmcb->control.exit_code         = vmcb->control.exit_code;
1726         nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
1727         nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
1728         nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
1729         nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
1730         nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
1731
1732         /*
1733          * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
1734          * to make sure that we do not lose injected events. So check event_inj
1735          * here and copy it to exit_int_info if it is valid.
1736          * Exit_int_info and event_inj can't be both valid because the case
1737          * below only happens on a VMRUN instruction intercept which has
1738          * no valid exit_int_info set.
1739          */
1740         if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
1741                 struct vmcb_control_area *nc = &nested_vmcb->control;
1742
1743                 nc->exit_int_info     = vmcb->control.event_inj;
1744                 nc->exit_int_info_err = vmcb->control.event_inj_err;
1745         }
1746
1747         nested_vmcb->control.tlb_ctl           = 0;
1748         nested_vmcb->control.event_inj         = 0;
1749         nested_vmcb->control.event_inj_err     = 0;
1750
1751         /* We always set V_INTR_MASKING and remember the old value in hflags */
1752         if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
1753                 nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
1754
1755         /* Restore the original control entries */
1756         copy_vmcb_control_area(vmcb, hsave);
1757
1758         kvm_clear_exception_queue(&svm->vcpu);
1759         kvm_clear_interrupt_queue(&svm->vcpu);
1760
1761         /* Restore selected save entries */
1762         svm->vmcb->save.es = hsave->save.es;
1763         svm->vmcb->save.cs = hsave->save.cs;
1764         svm->vmcb->save.ss = hsave->save.ss;
1765         svm->vmcb->save.ds = hsave->save.ds;
1766         svm->vmcb->save.gdtr = hsave->save.gdtr;
1767         svm->vmcb->save.idtr = hsave->save.idtr;
1768         svm->vmcb->save.rflags = hsave->save.rflags;
1769         svm_set_efer(&svm->vcpu, hsave->save.efer);
1770         svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
1771         svm_set_cr4(&svm->vcpu, hsave->save.cr4);
1772         if (npt_enabled) {
1773                 svm->vmcb->save.cr3 = hsave->save.cr3;
1774                 svm->vcpu.arch.cr3 = hsave->save.cr3;
1775         } else {
1776                 kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
1777         }
1778         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
1779         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
1780         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
1781         svm->vmcb->save.dr7 = 0;
1782         svm->vmcb->save.cpl = 0;
1783         svm->vmcb->control.exit_int_info = 0;
1784
1785         nested_svm_unmap(page);
1786
1787         kvm_mmu_reset_context(&svm->vcpu);
1788         kvm_mmu_load(&svm->vcpu);
1789
1790         return 0;
1791 }
1792
1793 static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
1794 {
1795         u32 *nested_msrpm;
1796         struct page *page;
1797         int i;
1798
1799         nested_msrpm = nested_svm_map(svm, svm->nested.vmcb_msrpm, &page);
1800         if (!nested_msrpm)
1801                 return false;
1802
1803         for (i = 0; i < PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER) / 4; i++)
1804                 svm->nested.msrpm[i] = svm->msrpm[i] | nested_msrpm[i];
1805
1806         svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
1807
1808         nested_svm_unmap(page);
1809
1810         return true;
1811 }
1812
1813 static bool nested_svm_vmrun(struct vcpu_svm *svm)
1814 {
1815         struct vmcb *nested_vmcb;
1816         struct vmcb *hsave = svm->nested.hsave;
1817         struct vmcb *vmcb = svm->vmcb;
1818         struct page *page;
1819         u64 vmcb_gpa;
1820
1821         vmcb_gpa = svm->vmcb->save.rax;
1822
1823         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
1824         if (!nested_vmcb)
1825                 return false;
1826
1827         trace_kvm_nested_vmrun(svm->vmcb->save.rip - 3, svm->nested.vmcb,
1828                                nested_vmcb->save.rip,
1829                                nested_vmcb->control.int_ctl,
1830                                nested_vmcb->control.event_inj,
1831                                nested_vmcb->control.nested_ctl);
1832
1833         /* Clear internal status */
1834         kvm_clear_exception_queue(&svm->vcpu);
1835         kvm_clear_interrupt_queue(&svm->vcpu);
1836
1837         /*
1838          * Save the old vmcb, so we don't need to pick what we save, but can
1839          * restore everything when a VMEXIT occurs
1840          */
1841         hsave->save.es     = vmcb->save.es;
1842         hsave->save.cs     = vmcb->save.cs;
1843         hsave->save.ss     = vmcb->save.ss;
1844         hsave->save.ds     = vmcb->save.ds;
1845         hsave->save.gdtr   = vmcb->save.gdtr;
1846         hsave->save.idtr   = vmcb->save.idtr;
1847         hsave->save.efer   = svm->vcpu.arch.efer;
1848         hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
1849         hsave->save.cr4    = svm->vcpu.arch.cr4;
1850         hsave->save.rflags = vmcb->save.rflags;
1851         hsave->save.rip    = svm->next_rip;
1852         hsave->save.rsp    = vmcb->save.rsp;
1853         hsave->save.rax    = vmcb->save.rax;
1854         if (npt_enabled)
1855                 hsave->save.cr3    = vmcb->save.cr3;
1856         else
1857                 hsave->save.cr3    = svm->vcpu.arch.cr3;
1858
1859         copy_vmcb_control_area(hsave, vmcb);
1860
1861         if (svm->vmcb->save.rflags & X86_EFLAGS_IF)
1862                 svm->vcpu.arch.hflags |= HF_HIF_MASK;
1863         else
1864                 svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
1865
1866         /* Load the nested guest state */
1867         svm->vmcb->save.es = nested_vmcb->save.es;
1868         svm->vmcb->save.cs = nested_vmcb->save.cs;
1869         svm->vmcb->save.ss = nested_vmcb->save.ss;
1870         svm->vmcb->save.ds = nested_vmcb->save.ds;
1871         svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
1872         svm->vmcb->save.idtr = nested_vmcb->save.idtr;
1873         svm->vmcb->save.rflags = nested_vmcb->save.rflags;
1874         svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
1875         svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
1876         svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
1877         if (npt_enabled) {
1878                 svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
1879                 svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
1880         } else {
1881                 kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
1882                 kvm_mmu_reset_context(&svm->vcpu);
1883         }
1884         svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
1885         kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
1886         kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
1887         kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
1888
1889         /* In case we don't even reach vcpu_run, the fields are not updated */
1890         svm->vmcb->save.rax = nested_vmcb->save.rax;
1891         svm->vmcb->save.rsp = nested_vmcb->save.rsp;
1892         svm->vmcb->save.rip = nested_vmcb->save.rip;
1893         svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
1894         svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
1895         svm->vmcb->save.cpl = nested_vmcb->save.cpl;
1896
1897         svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa;
1898
1899         /* cache intercepts */
1900         svm->nested.intercept_cr_read    = nested_vmcb->control.intercept_cr_read;
1901         svm->nested.intercept_cr_write   = nested_vmcb->control.intercept_cr_write;
1902         svm->nested.intercept_dr_read    = nested_vmcb->control.intercept_dr_read;
1903         svm->nested.intercept_dr_write   = nested_vmcb->control.intercept_dr_write;
1904         svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
1905         svm->nested.intercept            = nested_vmcb->control.intercept;
1906
1907         force_new_asid(&svm->vcpu);
1908         svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
1909         if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
1910                 svm->vcpu.arch.hflags |= HF_VINTR_MASK;
1911         else
1912                 svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
1913
1914         if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
1915                 /* We only want the cr8 intercept bits of the guest */
1916                 svm->vmcb->control.intercept_cr_read &= ~INTERCEPT_CR8_MASK;
1917                 svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
1918         }
1919
1920         /*
1921          * We don't want a nested guest to be more powerful than the guest, so
1922          * all intercepts are ORed
1923          */
1924         svm->vmcb->control.intercept_cr_read |=
1925                 nested_vmcb->control.intercept_cr_read;
1926         svm->vmcb->control.intercept_cr_write |=
1927                 nested_vmcb->control.intercept_cr_write;
1928         svm->vmcb->control.intercept_dr_read |=
1929                 nested_vmcb->control.intercept_dr_read;
1930         svm->vmcb->control.intercept_dr_write |=
1931                 nested_vmcb->control.intercept_dr_write;
1932         svm->vmcb->control.intercept_exceptions |=
1933                 nested_vmcb->control.intercept_exceptions;
1934
1935         svm->vmcb->control.intercept |= nested_vmcb->control.intercept;
1936
1937         svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
1938         svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
1939         svm->vmcb->control.int_state = nested_vmcb->control.int_state;
1940         svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
1941         svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
1942         svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
1943
1944         nested_svm_unmap(page);
1945
1946         /* nested_vmcb is our indicator if nested SVM is activated */
1947         svm->nested.vmcb = vmcb_gpa;
1948
1949         enable_gif(svm);
1950
1951         return true;
1952 }
1953
1954 static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
1955 {
1956         to_vmcb->save.fs = from_vmcb->save.fs;
1957         to_vmcb->save.gs = from_vmcb->save.gs;
1958         to_vmcb->save.tr = from_vmcb->save.tr;
1959         to_vmcb->save.ldtr = from_vmcb->save.ldtr;
1960         to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
1961         to_vmcb->save.star = from_vmcb->save.star;
1962         to_vmcb->save.lstar = from_vmcb->save.lstar;
1963         to_vmcb->save.cstar = from_vmcb->save.cstar;
1964         to_vmcb->save.sfmask = from_vmcb->save.sfmask;
1965         to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
1966         to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
1967         to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
1968 }
1969
1970 static int vmload_interception(struct vcpu_svm *svm)
1971 {
1972         struct vmcb *nested_vmcb;
1973         struct page *page;
1974
1975         if (nested_svm_check_permissions(svm))
1976                 return 1;
1977
1978         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1979         skip_emulated_instruction(&svm->vcpu);
1980
1981         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
1982         if (!nested_vmcb)
1983                 return 1;
1984
1985         nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
1986         nested_svm_unmap(page);
1987
1988         return 1;
1989 }
1990
1991 static int vmsave_interception(struct vcpu_svm *svm)
1992 {
1993         struct vmcb *nested_vmcb;
1994         struct page *page;
1995
1996         if (nested_svm_check_permissions(svm))
1997                 return 1;
1998
1999         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2000         skip_emulated_instruction(&svm->vcpu);
2001
2002         nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2003         if (!nested_vmcb)
2004                 return 1;
2005
2006         nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2007         nested_svm_unmap(page);
2008
2009         return 1;
2010 }
2011
2012 static int vmrun_interception(struct vcpu_svm *svm)
2013 {
2014         if (nested_svm_check_permissions(svm))
2015                 return 1;
2016
2017         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2018         skip_emulated_instruction(&svm->vcpu);
2019
2020         if (!nested_svm_vmrun(svm))
2021                 return 1;
2022
2023         if (!nested_svm_vmrun_msrpm(svm))
2024                 goto failed;
2025
2026         return 1;
2027
2028 failed:
2029
2030         svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
2031         svm->vmcb->control.exit_code_hi = 0;
2032         svm->vmcb->control.exit_info_1  = 0;
2033         svm->vmcb->control.exit_info_2  = 0;
2034
2035         nested_svm_vmexit(svm);
2036
2037         return 1;
2038 }
2039
2040 static int stgi_interception(struct vcpu_svm *svm)
2041 {
2042         if (nested_svm_check_permissions(svm))
2043                 return 1;
2044
2045         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2046         skip_emulated_instruction(&svm->vcpu);
2047
2048         enable_gif(svm);
2049
2050         return 1;
2051 }
2052
2053 static int clgi_interception(struct vcpu_svm *svm)
2054 {
2055         if (nested_svm_check_permissions(svm))
2056                 return 1;
2057
2058         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2059         skip_emulated_instruction(&svm->vcpu);
2060
2061         disable_gif(svm);
2062
2063         /* After a CLGI no interrupts should come */
2064         svm_clear_vintr(svm);
2065         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2066
2067         return 1;
2068 }
2069
2070 static int invlpga_interception(struct vcpu_svm *svm)
2071 {
2072         struct kvm_vcpu *vcpu = &svm->vcpu;
2073
2074         trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX],
2075                           vcpu->arch.regs[VCPU_REGS_RAX]);
2076
2077         /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2078         kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
2079
2080         svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2081         skip_emulated_instruction(&svm->vcpu);
2082         return 1;
2083 }
2084
2085 static int skinit_interception(struct vcpu_svm *svm)
2086 {
2087         trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]);
2088
2089         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2090         return 1;
2091 }
2092
2093 static int invalid_op_interception(struct vcpu_svm *svm)
2094 {
2095         kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2096         return 1;
2097 }
2098
2099 static int task_switch_interception(struct vcpu_svm *svm)
2100 {
2101         u16 tss_selector;
2102         int reason;
2103         int int_type = svm->vmcb->control.exit_int_info &
2104                 SVM_EXITINTINFO_TYPE_MASK;
2105         int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2106         uint32_t type =
2107                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2108         uint32_t idt_v =
2109                 svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2110
2111         tss_selector = (u16)svm->vmcb->control.exit_info_1;
2112
2113         if (svm->vmcb->control.exit_info_2 &
2114             (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2115                 reason = TASK_SWITCH_IRET;
2116         else if (svm->vmcb->control.exit_info_2 &
2117                  (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2118                 reason = TASK_SWITCH_JMP;
2119         else if (idt_v)
2120                 reason = TASK_SWITCH_GATE;
2121         else
2122                 reason = TASK_SWITCH_CALL;
2123
2124         if (reason == TASK_SWITCH_GATE) {
2125                 switch (type) {
2126                 case SVM_EXITINTINFO_TYPE_NMI:
2127                         svm->vcpu.arch.nmi_injected = false;
2128                         break;
2129                 case SVM_EXITINTINFO_TYPE_EXEPT:
2130                         kvm_clear_exception_queue(&svm->vcpu);
2131                         break;
2132                 case SVM_EXITINTINFO_TYPE_INTR:
2133                         kvm_clear_interrupt_queue(&svm->vcpu);
2134                         break;
2135                 default:
2136                         break;
2137                 }
2138         }
2139
2140         if (reason != TASK_SWITCH_GATE ||
2141             int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2142             (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2143              (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2144                 skip_emulated_instruction(&svm->vcpu);
2145
2146         return kvm_task_switch(&svm->vcpu, tss_selector, reason);
2147 }
2148
2149 static int cpuid_interception(struct vcpu_svm *svm)
2150 {
2151         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2152         kvm_emulate_cpuid(&svm->vcpu);
2153         return 1;
2154 }
2155
2156 static int iret_interception(struct vcpu_svm *svm)
2157 {
2158         ++svm->vcpu.stat.nmi_window_exits;
2159         svm->vmcb->control.intercept &= ~(1UL << INTERCEPT_IRET);
2160         svm->vcpu.arch.hflags |= HF_IRET_MASK;
2161         return 1;
2162 }
2163
2164 static int invlpg_interception(struct vcpu_svm *svm)
2165 {
2166         if (emulate_instruction(&svm->vcpu, 0, 0, 0) != EMULATE_DONE)
2167                 pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
2168         return 1;
2169 }
2170
2171 static int emulate_on_interception(struct vcpu_svm *svm)
2172 {
2173         if (emulate_instruction(&svm->vcpu, 0, 0, 0) != EMULATE_DONE)
2174                 pr_unimpl(&svm->vcpu, "%s: failed\n", __func__);
2175         return 1;
2176 }
2177
2178 static int cr8_write_interception(struct vcpu_svm *svm)
2179 {
2180         struct kvm_run *kvm_run = svm->vcpu.run;
2181
2182         u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2183         /* instruction emulation calls kvm_set_cr8() */
2184         emulate_instruction(&svm->vcpu, 0, 0, 0);
2185         if (irqchip_in_kernel(svm->vcpu.kvm)) {
2186                 svm->vmcb->control.intercept_cr_write &= ~INTERCEPT_CR8_MASK;
2187                 return 1;
2188         }
2189         if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2190                 return 1;
2191         kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2192         return 0;
2193 }
2194
2195 static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
2196 {
2197         struct vcpu_svm *svm = to_svm(vcpu);
2198
2199         switch (ecx) {
2200         case MSR_IA32_TSC: {
2201                 u64 tsc_offset;
2202
2203                 if (is_nested(svm))
2204                         tsc_offset = svm->nested.hsave->control.tsc_offset;
2205                 else
2206                         tsc_offset = svm->vmcb->control.tsc_offset;
2207
2208                 *data = tsc_offset + native_read_tsc();
2209                 break;
2210         }
2211         case MSR_K6_STAR:
2212                 *data = svm->vmcb->save.star;
2213                 break;
2214 #ifdef CONFIG_X86_64
2215         case MSR_LSTAR:
2216                 *data = svm->vmcb->save.lstar;
2217                 break;
2218         case MSR_CSTAR:
2219                 *data = svm->vmcb->save.cstar;
2220                 break;
2221         case MSR_KERNEL_GS_BASE:
2222                 *data = svm->vmcb->save.kernel_gs_base;
2223                 break;
2224         case MSR_SYSCALL_MASK:
2225                 *data = svm->vmcb->save.sfmask;
2226                 break;
2227 #endif
2228         case MSR_IA32_SYSENTER_CS:
2229                 *data = svm->vmcb->save.sysenter_cs;
2230                 break;
2231         case MSR_IA32_SYSENTER_EIP:
2232                 *data = svm->sysenter_eip;
2233                 break;
2234         case MSR_IA32_SYSENTER_ESP:
2235                 *data = svm->sysenter_esp;
2236                 break;
2237         /*
2238          * Nobody will change the following 5 values in the VMCB so we can
2239          * safely return them on rdmsr. They will always be 0 until LBRV is
2240          * implemented.
2241          */
2242         case MSR_IA32_DEBUGCTLMSR:
2243                 *data = svm->vmcb->save.dbgctl;
2244                 break;
2245         case MSR_IA32_LASTBRANCHFROMIP:
2246                 *data = svm->vmcb->save.br_from;
2247                 break;
2248         case MSR_IA32_LASTBRANCHTOIP:
2249                 *data = svm->vmcb->save.br_to;
2250                 break;
2251         case MSR_IA32_LASTINTFROMIP:
2252                 *data = svm->vmcb->save.last_excp_from;
2253                 break;
2254         case MSR_IA32_LASTINTTOIP:
2255                 *data = svm->vmcb->save.last_excp_to;
2256                 break;
2257         case MSR_VM_HSAVE_PA:
2258                 *data = svm->nested.hsave_msr;
2259                 break;
2260         case MSR_VM_CR:
2261                 *data = 0;
2262                 break;
2263         case MSR_IA32_UCODE_REV:
2264                 *data = 0x01000065;
2265                 break;
2266         default:
2267                 return kvm_get_msr_common(vcpu, ecx, data);
2268         }
2269         return 0;
2270 }
2271
2272 static int rdmsr_interception(struct vcpu_svm *svm)
2273 {
2274         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2275         u64 data;
2276
2277         if (svm_get_msr(&svm->vcpu, ecx, &data)) {
2278                 trace_kvm_msr_read_ex(ecx);
2279                 kvm_inject_gp(&svm->vcpu, 0);
2280         } else {
2281                 trace_kvm_msr_read(ecx, data);
2282
2283                 svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
2284                 svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
2285                 svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2286                 skip_emulated_instruction(&svm->vcpu);
2287         }
2288         return 1;
2289 }
2290
2291 static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data)
2292 {
2293         struct vcpu_svm *svm = to_svm(vcpu);
2294
2295         switch (ecx) {
2296         case MSR_IA32_TSC: {
2297                 u64 tsc_offset = data - native_read_tsc();
2298                 u64 g_tsc_offset = 0;
2299
2300                 if (is_nested(svm)) {
2301                         g_tsc_offset = svm->vmcb->control.tsc_offset -
2302                                        svm->nested.hsave->control.tsc_offset;
2303                         svm->nested.hsave->control.tsc_offset = tsc_offset;
2304                 }
2305
2306                 svm->vmcb->control.tsc_offset = tsc_offset + g_tsc_offset;
2307
2308                 break;
2309         }
2310         case MSR_K6_STAR:
2311                 svm->vmcb->save.star = data;
2312                 break;
2313 #ifdef CONFIG_X86_64
2314         case MSR_LSTAR:
2315                 svm->vmcb->save.lstar = data;
2316                 break;
2317         case MSR_CSTAR:
2318                 svm->vmcb->save.cstar = data;
2319                 break;
2320         case MSR_KERNEL_GS_BASE:
2321                 svm->vmcb->save.kernel_gs_base = data;
2322                 break;
2323         case MSR_SYSCALL_MASK:
2324                 svm->vmcb->save.sfmask = data;
2325                 break;
2326 #endif
2327         case MSR_IA32_SYSENTER_CS:
2328                 svm->vmcb->save.sysenter_cs = data;
2329                 break;
2330         case MSR_IA32_SYSENTER_EIP:
2331                 svm->sysenter_eip = data;
2332                 svm->vmcb->save.sysenter_eip = data;
2333                 break;
2334         case MSR_IA32_SYSENTER_ESP:
2335                 svm->sysenter_esp = data;
2336                 svm->vmcb->save.sysenter_esp = data;
2337                 break;
2338         case MSR_IA32_DEBUGCTLMSR:
2339                 if (!svm_has(SVM_FEATURE_LBRV)) {
2340                         pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
2341                                         __func__, data);
2342                         break;
2343                 }
2344                 if (data & DEBUGCTL_RESERVED_BITS)
2345                         return 1;
2346
2347                 svm->vmcb->save.dbgctl = data;
2348                 if (data & (1ULL<<0))
2349                         svm_enable_lbrv(svm);
2350                 else
2351                         svm_disable_lbrv(svm);
2352                 break;
2353         case MSR_VM_HSAVE_PA:
2354                 svm->nested.hsave_msr = data;
2355                 break;
2356         case MSR_VM_CR:
2357         case MSR_VM_IGNNE:
2358                 pr_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
2359                 break;
2360         default:
2361                 return kvm_set_msr_common(vcpu, ecx, data);
2362         }
2363         return 0;
2364 }
2365
2366 static int wrmsr_interception(struct vcpu_svm *svm)
2367 {
2368         u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2369         u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
2370                 | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
2371
2372
2373         svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2374         if (svm_set_msr(&svm->vcpu, ecx, data)) {
2375                 trace_kvm_msr_write_ex(ecx, data);
2376                 kvm_inject_gp(&svm->vcpu, 0);
2377         } else {
2378                 trace_kvm_msr_write(ecx, data);
2379                 skip_emulated_instruction(&svm->vcpu);
2380         }
2381         return 1;
2382 }
2383
2384 static int msr_interception(struct vcpu_svm *svm)
2385 {
2386         if (svm->vmcb->control.exit_info_1)
2387                 return wrmsr_interception(svm);
2388         else
2389                 return rdmsr_interception(svm);
2390 }
2391
2392 static int interrupt_window_interception(struct vcpu_svm *svm)
2393 {
2394         struct kvm_run *kvm_run = svm->vcpu.run;
2395
2396         svm_clear_vintr(svm);
2397         svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2398         /*
2399          * If the user space waits to inject interrupts, exit as soon as
2400          * possible
2401          */
2402         if (!irqchip_in_kernel(svm->vcpu.kvm) &&
2403             kvm_run->request_interrupt_window &&
2404             !kvm_cpu_has_interrupt(&svm->vcpu)) {
2405                 ++svm->vcpu.stat.irq_window_exits;
2406                 kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
2407                 return 0;
2408         }
2409
2410         return 1;
2411 }
2412
2413 static int pause_interception(struct vcpu_svm *svm)
2414 {
2415         kvm_vcpu_on_spin(&(svm->vcpu));
2416         return 1;
2417 }
2418
2419 static int (*svm_exit_handlers[])(struct vcpu_svm *svm) = {
2420         [SVM_EXIT_READ_CR0]                     = emulate_on_interception,
2421         [SVM_EXIT_READ_CR3]                     = emulate_on_interception,
2422         [SVM_EXIT_READ_CR4]                     = emulate_on_interception,
2423         [SVM_EXIT_READ_CR8]                     = emulate_on_interception,
2424         [SVM_EXIT_CR0_SEL_WRITE]                = emulate_on_interception,
2425         [SVM_EXIT_WRITE_CR0]                    = emulate_on_interception,
2426         [SVM_EXIT_WRITE_CR3]                    = emulate_on_interception,
2427         [SVM_EXIT_WRITE_CR4]                    = emulate_on_interception,
2428         [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
2429         [SVM_EXIT_READ_DR0]                     = emulate_on_interception,
2430         [SVM_EXIT_READ_DR1]                     = emulate_on_interception,
2431         [SVM_EXIT_READ_DR2]                     = emulate_on_interception,
2432         [SVM_EXIT_READ_DR3]                     = emulate_on_interception,
2433         [SVM_EXIT_READ_DR4]                     = emulate_on_interception,
2434         [SVM_EXIT_READ_DR5]                     = emulate_on_interception,
2435         [SVM_EXIT_READ_DR6]                     = emulate_on_interception,
2436         [SVM_EXIT_READ_DR7]                     = emulate_on_interception,
2437         [SVM_EXIT_WRITE_DR0]                    = emulate_on_interception,
2438         [SVM_EXIT_WRITE_DR1]                    = emulate_on_interception,
2439         [SVM_EXIT_WRITE_DR2]                    = emulate_on_interception,
2440         [SVM_EXIT_WRITE_DR3]                    = emulate_on_interception,
2441         [SVM_EXIT_WRITE_DR4]                    = emulate_on_interception,
2442         [SVM_EXIT_WRITE_DR5]                    = emulate_on_interception,
2443         [SVM_EXIT_WRITE_DR6]                    = emulate_on_interception,
2444         [SVM_EXIT_WRITE_DR7]                    = emulate_on_interception,
2445         [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
2446         [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
2447         [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
2448         [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
2449         [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
2450         [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
2451         [SVM_EXIT_INTR]                         = intr_interception,
2452         [SVM_EXIT_NMI]                          = nmi_interception,
2453         [SVM_EXIT_SMI]                          = nop_on_interception,
2454         [SVM_EXIT_INIT]                         = nop_on_interception,
2455         [SVM_EXIT_VINTR]                        = interrupt_window_interception,
2456         [SVM_EXIT_CPUID]                        = cpuid_interception,
2457         [SVM_EXIT_IRET]                         = iret_interception,
2458         [SVM_EXIT_INVD]                         = emulate_on_interception,
2459         [SVM_EXIT_PAUSE]                        = pause_interception,
2460         [SVM_EXIT_HLT]                          = halt_interception,
2461         [SVM_EXIT_INVLPG]                       = invlpg_interception,
2462         [SVM_EXIT_INVLPGA]                      = invlpga_interception,
2463         [SVM_EXIT_IOIO]                         = io_interception,
2464         [SVM_EXIT_MSR]                          = msr_interception,
2465         [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
2466         [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
2467         [SVM_EXIT_VMRUN]                        = vmrun_interception,
2468         [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
2469         [SVM_EXIT_VMLOAD]                       = vmload_interception,
2470         [SVM_EXIT_VMSAVE]                       = vmsave_interception,
2471         [SVM_EXIT_STGI]                         = stgi_interception,
2472         [SVM_EXIT_CLGI]                         = clgi_interception,
2473         [SVM_EXIT_SKINIT]                       = skinit_interception,
2474         [SVM_EXIT_WBINVD]                       = emulate_on_interception,
2475         [SVM_EXIT_MONITOR]                      = invalid_op_interception,
2476         [SVM_EXIT_MWAIT]                        = invalid_op_interception,
2477         [SVM_EXIT_NPF]                          = pf_interception,
2478 };
2479
2480 static int handle_exit(struct kvm_vcpu *vcpu)
2481 {
2482         struct vcpu_svm *svm = to_svm(vcpu);
2483         struct kvm_run *kvm_run = vcpu->run;
2484         u32 exit_code = svm->vmcb->control.exit_code;
2485
2486         trace_kvm_exit(exit_code, svm->vmcb->save.rip);
2487
2488         if (unlikely(svm->nested.exit_required)) {
2489                 nested_svm_vmexit(svm);
2490                 svm->nested.exit_required = false;
2491
2492                 return 1;
2493         }
2494
2495         if (is_nested(svm)) {
2496                 int vmexit;
2497
2498                 trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
2499                                         svm->vmcb->control.exit_info_1,
2500                                         svm->vmcb->control.exit_info_2,
2501                                         svm->vmcb->control.exit_int_info,
2502                                         svm->vmcb->control.exit_int_info_err);
2503
2504                 vmexit = nested_svm_exit_special(svm);
2505
2506                 if (vmexit == NESTED_EXIT_CONTINUE)
2507                         vmexit = nested_svm_exit_handled(svm);
2508
2509                 if (vmexit == NESTED_EXIT_DONE)
2510                         return 1;
2511         }
2512
2513         svm_complete_interrupts(svm);
2514
2515         if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR0_MASK))
2516                 vcpu->arch.cr0 = svm->vmcb->save.cr0;
2517         if (npt_enabled)
2518                 vcpu->arch.cr3 = svm->vmcb->save.cr3;
2519
2520         if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
2521                 kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
2522                 kvm_run->fail_entry.hardware_entry_failure_reason
2523                         = svm->vmcb->control.exit_code;
2524                 return 0;
2525         }
2526
2527         if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
2528             exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
2529             exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH)
2530                 printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x "
2531                        "exit_code 0x%x\n",
2532                        __func__, svm->vmcb->control.exit_int_info,
2533                        exit_code);
2534
2535         if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
2536             || !svm_exit_handlers[exit_code]) {
2537                 kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
2538                 kvm_run->hw.hardware_exit_reason = exit_code;
2539                 return 0;
2540         }
2541
2542         return svm_exit_handlers[exit_code](svm);
2543 }
2544
2545 static void reload_tss(struct kvm_vcpu *vcpu)
2546 {
2547         int cpu = raw_smp_processor_id();
2548
2549         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2550         sd->tss_desc->type = 9; /* available 32/64-bit TSS */
2551         load_TR_desc();
2552 }
2553
2554 static void pre_svm_run(struct vcpu_svm *svm)
2555 {
2556         int cpu = raw_smp_processor_id();
2557
2558         struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
2559
2560         svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
2561         /* FIXME: handle wraparound of asid_generation */
2562         if (svm->asid_generation != sd->asid_generation)
2563                 new_asid(svm, sd);
2564 }
2565
2566 static void svm_inject_nmi(struct kvm_vcpu *vcpu)
2567 {
2568         struct vcpu_svm *svm = to_svm(vcpu);
2569
2570         svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
2571         vcpu->arch.hflags |= HF_NMI_MASK;
2572         svm->vmcb->control.intercept |= (1UL << INTERCEPT_IRET);
2573         ++vcpu->stat.nmi_injections;
2574 }
2575
2576 static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
2577 {
2578         struct vmcb_control_area *control;
2579
2580         trace_kvm_inj_virq(irq);
2581
2582         ++svm->vcpu.stat.irq_injections;
2583         control = &svm->vmcb->control;
2584         control->int_vector = irq;
2585         control->int_ctl &= ~V_INTR_PRIO_MASK;
2586         control->int_ctl |= V_IRQ_MASK |
2587                 ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
2588 }
2589
2590 static void svm_set_irq(struct kvm_vcpu *vcpu)
2591 {
2592         struct vcpu_svm *svm = to_svm(vcpu);
2593
2594         BUG_ON(!(gif_set(svm)));
2595
2596         svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
2597                 SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
2598 }
2599
2600 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
2601 {
2602         struct vcpu_svm *svm = to_svm(vcpu);
2603
2604         if (is_nested(svm) && (vcpu->arch.hflags & HF_VINTR_MASK))
2605                 return;
2606
2607         if (irr == -1)
2608                 return;
2609
2610         if (tpr >= irr)
2611                 svm->vmcb->control.intercept_cr_write |= INTERCEPT_CR8_MASK;
2612 }
2613
2614 static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
2615 {
2616         struct vcpu_svm *svm = to_svm(vcpu);
2617         struct vmcb *vmcb = svm->vmcb;
2618         return !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
2619                 !(svm->vcpu.arch.hflags & HF_NMI_MASK);
2620 }
2621
2622 static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
2623 {
2624         struct vcpu_svm *svm = to_svm(vcpu);
2625
2626         return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
2627 }
2628
2629 static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
2630 {
2631         struct vcpu_svm *svm = to_svm(vcpu);
2632
2633         if (masked) {
2634                 svm->vcpu.arch.hflags |= HF_NMI_MASK;
2635                 svm->vmcb->control.intercept |= (1UL << INTERCEPT_IRET);
2636         } else {
2637                 svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
2638                 svm->vmcb->control.intercept &= ~(1UL << INTERCEPT_IRET);
2639         }
2640 }
2641
2642 static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
2643 {
2644         struct vcpu_svm *svm = to_svm(vcpu);
2645         struct vmcb *vmcb = svm->vmcb;
2646         int ret;
2647
2648         if (!gif_set(svm) ||
2649              (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
2650                 return 0;
2651
2652         ret = !!(vmcb->save.rflags & X86_EFLAGS_IF);
2653
2654         if (is_nested(svm))
2655                 return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
2656
2657         return ret;
2658 }
2659
2660 static void enable_irq_window(struct kvm_vcpu *vcpu)
2661 {
2662         struct vcpu_svm *svm = to_svm(vcpu);
2663
2664         /*
2665          * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
2666          * 1, because that's a separate STGI/VMRUN intercept.  The next time we
2667          * get that intercept, this function will be called again though and
2668          * we'll get the vintr intercept.
2669          */
2670         if (gif_set(svm) && nested_svm_intr(svm)) {
2671                 svm_set_vintr(svm);
2672                 svm_inject_irq(svm, 0x0);
2673         }
2674 }
2675
2676 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2677 {
2678         struct vcpu_svm *svm = to_svm(vcpu);
2679
2680         if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
2681             == HF_NMI_MASK)
2682                 return; /* IRET will cause a vm exit */
2683
2684         /*
2685          * Something prevents NMI from been injected. Single step over possible
2686          * problem (IRET or exception injection or interrupt shadow)
2687          */
2688         svm->nmi_singlestep = true;
2689         svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
2690         update_db_intercept(vcpu);
2691 }
2692
2693 static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
2694 {
2695         return 0;
2696 }
2697
2698 static void svm_flush_tlb(struct kvm_vcpu *vcpu)
2699 {
2700         force_new_asid(vcpu);
2701 }
2702
2703 static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
2704 {
2705 }
2706
2707 static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
2708 {
2709         struct vcpu_svm *svm = to_svm(vcpu);
2710
2711         if (is_nested(svm) && (vcpu->arch.hflags & HF_VINTR_MASK))
2712                 return;
2713
2714         if (!(svm->vmcb->control.intercept_cr_write & INTERCEPT_CR8_MASK)) {
2715                 int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
2716                 kvm_set_cr8(vcpu, cr8);
2717         }
2718 }
2719
2720 static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
2721 {
2722         struct vcpu_svm *svm = to_svm(vcpu);
2723         u64 cr8;
2724
2725         if (is_nested(svm) && (vcpu->arch.hflags & HF_VINTR_MASK))
2726                 return;
2727
2728         cr8 = kvm_get_cr8(vcpu);
2729         svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
2730         svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
2731 }
2732
2733 static void svm_complete_interrupts(struct vcpu_svm *svm)
2734 {
2735         u8 vector;
2736         int type;
2737         u32 exitintinfo = svm->vmcb->control.exit_int_info;
2738         unsigned int3_injected = svm->int3_injected;
2739
2740         svm->int3_injected = 0;
2741
2742         if (svm->vcpu.arch.hflags & HF_IRET_MASK)
2743                 svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
2744
2745         svm->vcpu.arch.nmi_injected = false;
2746         kvm_clear_exception_queue(&svm->vcpu);
2747         kvm_clear_interrupt_queue(&svm->vcpu);
2748
2749         if (!(exitintinfo & SVM_EXITINTINFO_VALID))
2750                 return;
2751
2752         vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
2753         type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
2754
2755         switch (type) {
2756         case SVM_EXITINTINFO_TYPE_NMI:
2757                 svm->vcpu.arch.nmi_injected = true;
2758                 break;
2759         case SVM_EXITINTINFO_TYPE_EXEPT:
2760                 if (is_nested(svm))
2761                         break;
2762                 /*
2763                  * In case of software exceptions, do not reinject the vector,
2764                  * but re-execute the instruction instead. Rewind RIP first
2765                  * if we emulated INT3 before.
2766                  */
2767                 if (kvm_exception_is_soft(vector)) {
2768                         if (vector == BP_VECTOR && int3_injected &&
2769                             kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
2770                                 kvm_rip_write(&svm->vcpu,
2771                                               kvm_rip_read(&svm->vcpu) -
2772                                               int3_injected);
2773                         break;
2774                 }
2775                 if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
2776                         u32 err = svm->vmcb->control.exit_int_info_err;
2777                         kvm_queue_exception_e(&svm->vcpu, vector, err);
2778
2779                 } else
2780                         kvm_queue_exception(&svm->vcpu, vector);
2781                 break;
2782         case SVM_EXITINTINFO_TYPE_INTR:
2783                 kvm_queue_interrupt(&svm->vcpu, vector, false);
2784                 break;
2785         default:
2786                 break;
2787         }
2788 }
2789
2790 #ifdef CONFIG_X86_64
2791 #define R "r"
2792 #else
2793 #define R "e"
2794 #endif
2795
2796 static void svm_vcpu_run(struct kvm_vcpu *vcpu)
2797 {
2798         struct vcpu_svm *svm = to_svm(vcpu);
2799         u16 fs_selector;
2800         u16 gs_selector;
2801         u16 ldt_selector;
2802
2803         /*
2804          * A vmexit emulation is required before the vcpu can be executed
2805          * again.
2806          */
2807         if (unlikely(svm->nested.exit_required))
2808                 return;
2809
2810         svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
2811         svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
2812         svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
2813
2814         pre_svm_run(svm);
2815
2816         sync_lapic_to_cr8(vcpu);
2817
2818         save_host_msrs(vcpu);
2819         fs_selector = kvm_read_fs();
2820         gs_selector = kvm_read_gs();
2821         ldt_selector = kvm_read_ldt();
2822         svm->vmcb->save.cr2 = vcpu->arch.cr2;
2823         /* required for live migration with NPT */
2824         if (npt_enabled)
2825                 svm->vmcb->save.cr3 = vcpu->arch.cr3;
2826
2827         clgi();
2828
2829         local_irq_enable();
2830
2831         asm volatile (
2832                 "push %%"R"bp; \n\t"
2833                 "mov %c[rbx](%[svm]), %%"R"bx \n\t"
2834                 "mov %c[rcx](%[svm]), %%"R"cx \n\t"
2835                 "mov %c[rdx](%[svm]), %%"R"dx \n\t"
2836                 "mov %c[rsi](%[svm]), %%"R"si \n\t"
2837                 "mov %c[rdi](%[svm]), %%"R"di \n\t"
2838                 "mov %c[rbp](%[svm]), %%"R"bp \n\t"
2839 #ifdef CONFIG_X86_64
2840                 "mov %c[r8](%[svm]),  %%r8  \n\t"
2841                 "mov %c[r9](%[svm]),  %%r9  \n\t"
2842                 "mov %c[r10](%[svm]), %%r10 \n\t"
2843                 "mov %c[r11](%[svm]), %%r11 \n\t"
2844                 "mov %c[r12](%[svm]), %%r12 \n\t"
2845                 "mov %c[r13](%[svm]), %%r13 \n\t"
2846                 "mov %c[r14](%[svm]), %%r14 \n\t"
2847                 "mov %c[r15](%[svm]), %%r15 \n\t"
2848 #endif
2849
2850                 /* Enter guest mode */
2851                 "push %%"R"ax \n\t"
2852                 "mov %c[vmcb](%[svm]), %%"R"ax \n\t"
2853                 __ex(SVM_VMLOAD) "\n\t"
2854                 __ex(SVM_VMRUN) "\n\t"
2855                 __ex(SVM_VMSAVE) "\n\t"
2856                 "pop %%"R"ax \n\t"
2857
2858                 /* Save guest registers, load host registers */
2859                 "mov %%"R"bx, %c[rbx](%[svm]) \n\t"
2860                 "mov %%"R"cx, %c[rcx](%[svm]) \n\t"
2861                 "mov %%"R"dx, %c[rdx](%[svm]) \n\t"
2862                 "mov %%"R"si, %c[rsi](%[svm]) \n\t"
2863                 "mov %%"R"di, %c[rdi](%[svm]) \n\t"
2864                 "mov %%"R"bp, %c[rbp](%[svm]) \n\t"
2865 #ifdef CONFIG_X86_64
2866                 "mov %%r8,  %c[r8](%[svm]) \n\t"
2867                 "mov %%r9,  %c[r9](%[svm]) \n\t"
2868                 "mov %%r10, %c[r10](%[svm]) \n\t"
2869                 "mov %%r11, %c[r11](%[svm]) \n\t"
2870                 "mov %%r12, %c[r12](%[svm]) \n\t"
2871                 "mov %%r13, %c[r13](%[svm]) \n\t"
2872                 "mov %%r14, %c[r14](%[svm]) \n\t"
2873                 "mov %%r15, %c[r15](%[svm]) \n\t"
2874 #endif
2875                 "pop %%"R"bp"
2876                 :
2877                 : [svm]"a"(svm),
2878                   [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
2879                   [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
2880                   [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
2881                   [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
2882                   [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
2883                   [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
2884                   [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
2885 #ifdef CONFIG_X86_64
2886                   , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
2887                   [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
2888                   [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
2889                   [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
2890                   [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
2891                   [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
2892                   [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
2893                   [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
2894 #endif
2895                 : "cc", "memory"
2896                 , R"bx", R"cx", R"dx", R"si", R"di"
2897 #ifdef CONFIG_X86_64
2898                 , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
2899 #endif
2900                 );
2901
2902         vcpu->arch.cr2 = svm->vmcb->save.cr2;
2903         vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
2904         vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
2905         vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
2906
2907         kvm_load_fs(fs_selector);
2908         kvm_load_gs(gs_selector);
2909         kvm_load_ldt(ldt_selector);
2910         load_host_msrs(vcpu);
2911
2912         reload_tss(vcpu);
2913
2914         local_irq_disable();
2915
2916         stgi();
2917
2918         sync_cr8_to_lapic(vcpu);
2919
2920         svm->next_rip = 0;
2921
2922         if (npt_enabled) {
2923                 vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
2924                 vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
2925         }
2926 }
2927
2928 #undef R
2929
2930 static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
2931 {
2932         struct vcpu_svm *svm = to_svm(vcpu);
2933
2934         if (npt_enabled) {
2935                 svm->vmcb->control.nested_cr3 = root;
2936                 force_new_asid(vcpu);
2937                 return;
2938         }
2939
2940         svm->vmcb->save.cr3 = root;
2941         force_new_asid(vcpu);
2942 }
2943
2944 static int is_disabled(void)
2945 {
2946         u64 vm_cr;
2947
2948         rdmsrl(MSR_VM_CR, vm_cr);
2949         if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
2950                 return 1;
2951
2952         return 0;
2953 }
2954
2955 static void
2956 svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
2957 {
2958         /*
2959          * Patch in the VMMCALL instruction:
2960          */
2961         hypercall[0] = 0x0f;
2962         hypercall[1] = 0x01;
2963         hypercall[2] = 0xd9;
2964 }
2965
2966 static void svm_check_processor_compat(void *rtn)
2967 {
2968         *(int *)rtn = 0;
2969 }
2970
2971 static bool svm_cpu_has_accelerated_tpr(void)
2972 {
2973         return false;
2974 }
2975
2976 static int get_npt_level(void)
2977 {
2978 #ifdef CONFIG_X86_64
2979         return PT64_ROOT_LEVEL;
2980 #else
2981         return PT32E_ROOT_LEVEL;
2982 #endif
2983 }
2984
2985 static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
2986 {
2987         return 0;
2988 }
2989
2990 static void svm_cpuid_update(struct kvm_vcpu *vcpu)
2991 {
2992 }
2993
2994 static const struct trace_print_flags svm_exit_reasons_str[] = {
2995         { SVM_EXIT_READ_CR0,                    "read_cr0" },
2996         { SVM_EXIT_READ_CR3,                    "read_cr3" },
2997         { SVM_EXIT_READ_CR4,                    "read_cr4" },
2998         { SVM_EXIT_READ_CR8,                    "read_cr8" },
2999         { SVM_EXIT_WRITE_CR0,                   "write_cr0" },
3000         { SVM_EXIT_WRITE_CR3,                   "write_cr3" },
3001         { SVM_EXIT_WRITE_CR4,                   "write_cr4" },
3002         { SVM_EXIT_WRITE_CR8,                   "write_cr8" },
3003         { SVM_EXIT_READ_DR0,                    "read_dr0" },
3004         { SVM_EXIT_READ_DR1,                    "read_dr1" },
3005         { SVM_EXIT_READ_DR2,                    "read_dr2" },
3006         { SVM_EXIT_READ_DR3,                    "read_dr3" },
3007         { SVM_EXIT_WRITE_DR0,                   "write_dr0" },
3008         { SVM_EXIT_WRITE_DR1,                   "write_dr1" },
3009         { SVM_EXIT_WRITE_DR2,                   "write_dr2" },
3010         { SVM_EXIT_WRITE_DR3,                   "write_dr3" },
3011         { SVM_EXIT_WRITE_DR5,                   "write_dr5" },
3012         { SVM_EXIT_WRITE_DR7,                   "write_dr7" },
3013         { SVM_EXIT_EXCP_BASE + DB_VECTOR,       "DB excp" },
3014         { SVM_EXIT_EXCP_BASE + BP_VECTOR,       "BP excp" },
3015         { SVM_EXIT_EXCP_BASE + UD_VECTOR,       "UD excp" },
3016         { SVM_EXIT_EXCP_BASE + PF_VECTOR,       "PF excp" },
3017         { SVM_EXIT_EXCP_BASE + NM_VECTOR,       "NM excp" },
3018         { SVM_EXIT_EXCP_BASE + MC_VECTOR,       "MC excp" },
3019         { SVM_EXIT_INTR,                        "interrupt" },
3020         { SVM_EXIT_NMI,                         "nmi" },
3021         { SVM_EXIT_SMI,                         "smi" },
3022         { SVM_EXIT_INIT,                        "init" },
3023         { SVM_EXIT_VINTR,                       "vintr" },
3024         { SVM_EXIT_CPUID,                       "cpuid" },
3025         { SVM_EXIT_INVD,                        "invd" },
3026         { SVM_EXIT_HLT,                         "hlt" },
3027         { SVM_EXIT_INVLPG,                      "invlpg" },
3028         { SVM_EXIT_INVLPGA,                     "invlpga" },
3029         { SVM_EXIT_IOIO,                        "io" },
3030         { SVM_EXIT_MSR,                         "msr" },
3031         { SVM_EXIT_TASK_SWITCH,                 "task_switch" },
3032         { SVM_EXIT_SHUTDOWN,                    "shutdown" },
3033         { SVM_EXIT_VMRUN,                       "vmrun" },
3034         { SVM_EXIT_VMMCALL,                     "hypercall" },
3035         { SVM_EXIT_VMLOAD,                      "vmload" },
3036         { SVM_EXIT_VMSAVE,                      "vmsave" },
3037         { SVM_EXIT_STGI,                        "stgi" },
3038         { SVM_EXIT_CLGI,                        "clgi" },
3039         { SVM_EXIT_SKINIT,                      "skinit" },
3040         { SVM_EXIT_WBINVD,                      "wbinvd" },
3041         { SVM_EXIT_MONITOR,                     "monitor" },
3042         { SVM_EXIT_MWAIT,                       "mwait" },
3043         { SVM_EXIT_NPF,                         "npf" },
3044         { -1, NULL }
3045 };
3046
3047 static int svm_get_lpage_level(void)
3048 {
3049         return PT_PDPE_LEVEL;
3050 }
3051
3052 static bool svm_rdtscp_supported(void)
3053 {
3054         return false;
3055 }
3056
3057 static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
3058 {
3059         struct vcpu_svm *svm = to_svm(vcpu);
3060
3061         svm->vmcb->control.intercept_exceptions |= 1 << NM_VECTOR;
3062         if (is_nested(svm))
3063                 svm->nested.hsave->control.intercept_exceptions |= 1 << NM_VECTOR;
3064         update_cr0_intercept(svm);
3065 }
3066
3067 static struct kvm_x86_ops svm_x86_ops = {
3068         .cpu_has_kvm_support = has_svm,
3069         .disabled_by_bios = is_disabled,
3070         .hardware_setup = svm_hardware_setup,
3071         .hardware_unsetup = svm_hardware_unsetup,
3072         .check_processor_compatibility = svm_check_processor_compat,
3073         .hardware_enable = svm_hardware_enable,
3074         .hardware_disable = svm_hardware_disable,
3075         .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
3076
3077         .vcpu_create = svm_create_vcpu,
3078         .vcpu_free = svm_free_vcpu,
3079         .vcpu_reset = svm_vcpu_reset,
3080
3081         .prepare_guest_switch = svm_prepare_guest_switch,
3082         .vcpu_load = svm_vcpu_load,
3083         .vcpu_put = svm_vcpu_put,
3084
3085         .set_guest_debug = svm_guest_debug,
3086         .get_msr = svm_get_msr,
3087         .set_msr = svm_set_msr,
3088         .get_segment_base = svm_get_segment_base,
3089         .get_segment = svm_get_segment,
3090         .set_segment = svm_set_segment,
3091         .get_cpl = svm_get_cpl,
3092         .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
3093         .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
3094         .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
3095         .set_cr0 = svm_set_cr0,
3096         .set_cr3 = svm_set_cr3,
3097         .set_cr4 = svm_set_cr4,
3098         .set_efer = svm_set_efer,
3099         .get_idt = svm_get_idt,
3100         .set_idt = svm_set_idt,
3101         .get_gdt = svm_get_gdt,
3102         .set_gdt = svm_set_gdt,
3103         .get_dr = svm_get_dr,
3104         .set_dr = svm_set_dr,
3105         .cache_reg = svm_cache_reg,
3106         .get_rflags = svm_get_rflags,
3107         .set_rflags = svm_set_rflags,
3108         .fpu_activate = svm_fpu_activate,
3109         .fpu_deactivate = svm_fpu_deactivate,
3110
3111         .tlb_flush = svm_flush_tlb,
3112
3113         .run = svm_vcpu_run,
3114         .handle_exit = handle_exit,
3115         .skip_emulated_instruction = skip_emulated_instruction,
3116         .set_interrupt_shadow = svm_set_interrupt_shadow,
3117         .get_interrupt_shadow = svm_get_interrupt_shadow,
3118         .patch_hypercall = svm_patch_hypercall,
3119         .set_irq = svm_set_irq,
3120         .set_nmi = svm_inject_nmi,
3121         .queue_exception = svm_queue_exception,
3122         .interrupt_allowed = svm_interrupt_allowed,
3123         .nmi_allowed = svm_nmi_allowed,
3124         .get_nmi_mask = svm_get_nmi_mask,
3125         .set_nmi_mask = svm_set_nmi_mask,
3126         .enable_nmi_window = enable_nmi_window,
3127         .enable_irq_window = enable_irq_window,
3128         .update_cr8_intercept = update_cr8_intercept,
3129
3130         .set_tss_addr = svm_set_tss_addr,
3131         .get_tdp_level = get_npt_level,
3132         .get_mt_mask = svm_get_mt_mask,
3133
3134         .exit_reasons_str = svm_exit_reasons_str,
3135         .get_lpage_level = svm_get_lpage_level,
3136
3137         .cpuid_update = svm_cpuid_update,
3138
3139         .rdtscp_supported = svm_rdtscp_supported,
3140 };
3141
3142 static int __init svm_init(void)
3143 {
3144         return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
3145                               THIS_MODULE);
3146 }
3147
3148 static void __exit svm_exit(void)
3149 {
3150         kvm_exit();
3151 }
3152
3153 module_init(svm_init)
3154 module_exit(svm_exit)