5356d8d2d496078a7a227dcb9b595c481ec0016a
[pandora-kernel.git] / arch / x86 / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20
21 #include "irq.h"
22 #include "mmu.h"
23 #include "x86.h"
24 #include "kvm_cache_regs.h"
25
26 #include <linux/kvm_host.h>
27 #include <linux/types.h>
28 #include <linux/string.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/module.h>
32 #include <linux/swap.h>
33 #include <linux/hugetlb.h>
34 #include <linux/compiler.h>
35 #include <linux/srcu.h>
36 #include <linux/slab.h>
37 #include <linux/uaccess.h>
38
39 #include <asm/page.h>
40 #include <asm/cmpxchg.h>
41 #include <asm/io.h>
42 #include <asm/vmx.h>
43
44 /*
45  * When setting this variable to true it enables Two-Dimensional-Paging
46  * where the hardware walks 2 page tables:
47  * 1. the guest-virtual to guest-physical
48  * 2. while doing 1. it walks guest-physical to host-physical
49  * If the hardware supports that we don't need to do shadow paging.
50  */
51 bool tdp_enabled = false;
52
53 enum {
54         AUDIT_PRE_PAGE_FAULT,
55         AUDIT_POST_PAGE_FAULT,
56         AUDIT_PRE_PTE_WRITE,
57         AUDIT_POST_PTE_WRITE,
58         AUDIT_PRE_SYNC,
59         AUDIT_POST_SYNC
60 };
61
62 #undef MMU_DEBUG
63
64 #ifdef MMU_DEBUG
65
66 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69 #else
70
71 #define pgprintk(x...) do { } while (0)
72 #define rmap_printk(x...) do { } while (0)
73
74 #endif
75
76 #ifdef MMU_DEBUG
77 static bool dbg = 0;
78 module_param(dbg, bool, 0644);
79 #endif
80
81 #ifndef MMU_DEBUG
82 #define ASSERT(x) do { } while (0)
83 #else
84 #define ASSERT(x)                                                       \
85         if (!(x)) {                                                     \
86                 printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
87                        __FILE__, __LINE__, #x);                         \
88         }
89 #endif
90
91 #define PTE_PREFETCH_NUM                8
92
93 #define PT_FIRST_AVAIL_BITS_SHIFT 10
94 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
96 #define PT64_LEVEL_BITS 9
97
98 #define PT64_LEVEL_SHIFT(level) \
99                 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
100
101 #define PT64_INDEX(address, level)\
102         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105 #define PT32_LEVEL_BITS 10
106
107 #define PT32_LEVEL_SHIFT(level) \
108                 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
109
110 #define PT32_LVL_OFFSET_MASK(level) \
111         (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112                                                 * PT32_LEVEL_BITS))) - 1))
113
114 #define PT32_INDEX(address, level)\
115         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
118 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
119 #define PT64_DIR_BASE_ADDR_MASK \
120         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
121 #define PT64_LVL_ADDR_MASK(level) \
122         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123                                                 * PT64_LEVEL_BITS))) - 1))
124 #define PT64_LVL_OFFSET_MASK(level) \
125         (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126                                                 * PT64_LEVEL_BITS))) - 1))
127
128 #define PT32_BASE_ADDR_MASK PAGE_MASK
129 #define PT32_DIR_BASE_ADDR_MASK \
130         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131 #define PT32_LVL_ADDR_MASK(level) \
132         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133                                             * PT32_LEVEL_BITS))) - 1))
134
135 #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136                         | PT64_NX_MASK)
137
138 #define ACC_EXEC_MASK    1
139 #define ACC_WRITE_MASK   PT_WRITABLE_MASK
140 #define ACC_USER_MASK    PT_USER_MASK
141 #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
143 #include <trace/events/kvm.h>
144
145 #define CREATE_TRACE_POINTS
146 #include "mmutrace.h"
147
148 #define SPTE_HOST_WRITEABLE     (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149 #define SPTE_MMU_WRITEABLE      (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
150
151 #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
152
153 /* make pte_list_desc fit well in cache line */
154 #define PTE_LIST_EXT 3
155
156 struct pte_list_desc {
157         u64 *sptes[PTE_LIST_EXT];
158         struct pte_list_desc *more;
159 };
160
161 struct kvm_shadow_walk_iterator {
162         u64 addr;
163         hpa_t shadow_addr;
164         u64 *sptep;
165         int level;
166         unsigned index;
167 };
168
169 #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
170         for (shadow_walk_init(&(_walker), _vcpu, _addr);        \
171              shadow_walk_okay(&(_walker));                      \
172              shadow_walk_next(&(_walker)))
173
174 #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)     \
175         for (shadow_walk_init(&(_walker), _vcpu, _addr);                \
176              shadow_walk_okay(&(_walker)) &&                            \
177                 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });  \
178              __shadow_walk_next(&(_walker), spte))
179
180 static struct kmem_cache *pte_list_desc_cache;
181 static struct kmem_cache *mmu_page_header_cache;
182 static struct percpu_counter kvm_total_used_mmu_pages;
183
184 static u64 __read_mostly shadow_nx_mask;
185 static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
186 static u64 __read_mostly shadow_user_mask;
187 static u64 __read_mostly shadow_accessed_mask;
188 static u64 __read_mostly shadow_dirty_mask;
189 static u64 __read_mostly shadow_mmio_mask;
190
191 static void mmu_spte_set(u64 *sptep, u64 spte);
192 static void mmu_free_roots(struct kvm_vcpu *vcpu);
193
194 void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
195 {
196         shadow_mmio_mask = mmio_mask;
197 }
198 EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
199
200 static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
201 {
202         access &= ACC_WRITE_MASK | ACC_USER_MASK;
203
204         trace_mark_mmio_spte(sptep, gfn, access);
205         mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
206 }
207
208 static bool is_mmio_spte(u64 spte)
209 {
210         return (spte & shadow_mmio_mask) == shadow_mmio_mask;
211 }
212
213 static gfn_t get_mmio_spte_gfn(u64 spte)
214 {
215         return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
216 }
217
218 static unsigned get_mmio_spte_access(u64 spte)
219 {
220         return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
221 }
222
223 static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
224 {
225         if (unlikely(is_noslot_pfn(pfn))) {
226                 mark_mmio_spte(sptep, gfn, access);
227                 return true;
228         }
229
230         return false;
231 }
232
233 static inline u64 rsvd_bits(int s, int e)
234 {
235         return ((1ULL << (e - s + 1)) - 1) << s;
236 }
237
238 void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
239                 u64 dirty_mask, u64 nx_mask, u64 x_mask)
240 {
241         shadow_user_mask = user_mask;
242         shadow_accessed_mask = accessed_mask;
243         shadow_dirty_mask = dirty_mask;
244         shadow_nx_mask = nx_mask;
245         shadow_x_mask = x_mask;
246 }
247 EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
248
249 static int is_cpuid_PSE36(void)
250 {
251         return 1;
252 }
253
254 static int is_nx(struct kvm_vcpu *vcpu)
255 {
256         return vcpu->arch.efer & EFER_NX;
257 }
258
259 static int is_shadow_present_pte(u64 pte)
260 {
261         return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
262 }
263
264 static int is_large_pte(u64 pte)
265 {
266         return pte & PT_PAGE_SIZE_MASK;
267 }
268
269 static int is_dirty_gpte(unsigned long pte)
270 {
271         return pte & PT_DIRTY_MASK;
272 }
273
274 static int is_rmap_spte(u64 pte)
275 {
276         return is_shadow_present_pte(pte);
277 }
278
279 static int is_last_spte(u64 pte, int level)
280 {
281         if (level == PT_PAGE_TABLE_LEVEL)
282                 return 1;
283         if (is_large_pte(pte))
284                 return 1;
285         return 0;
286 }
287
288 static pfn_t spte_to_pfn(u64 pte)
289 {
290         return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
291 }
292
293 static gfn_t pse36_gfn_delta(u32 gpte)
294 {
295         int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
296
297         return (gpte & PT32_DIR_PSE36_MASK) << shift;
298 }
299
300 #ifdef CONFIG_X86_64
301 static void __set_spte(u64 *sptep, u64 spte)
302 {
303         *sptep = spte;
304 }
305
306 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
307 {
308         *sptep = spte;
309 }
310
311 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
312 {
313         return xchg(sptep, spte);
314 }
315
316 static u64 __get_spte_lockless(u64 *sptep)
317 {
318         return ACCESS_ONCE(*sptep);
319 }
320
321 static bool __check_direct_spte_mmio_pf(u64 spte)
322 {
323         /* It is valid if the spte is zapped. */
324         return spte == 0ull;
325 }
326 #else
327 union split_spte {
328         struct {
329                 u32 spte_low;
330                 u32 spte_high;
331         };
332         u64 spte;
333 };
334
335 static void count_spte_clear(u64 *sptep, u64 spte)
336 {
337         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
338
339         if (is_shadow_present_pte(spte))
340                 return;
341
342         /* Ensure the spte is completely set before we increase the count */
343         smp_wmb();
344         sp->clear_spte_count++;
345 }
346
347 static void __set_spte(u64 *sptep, u64 spte)
348 {
349         union split_spte *ssptep, sspte;
350
351         ssptep = (union split_spte *)sptep;
352         sspte = (union split_spte)spte;
353
354         ssptep->spte_high = sspte.spte_high;
355
356         /*
357          * If we map the spte from nonpresent to present, We should store
358          * the high bits firstly, then set present bit, so cpu can not
359          * fetch this spte while we are setting the spte.
360          */
361         smp_wmb();
362
363         ssptep->spte_low = sspte.spte_low;
364 }
365
366 static void __update_clear_spte_fast(u64 *sptep, u64 spte)
367 {
368         union split_spte *ssptep, sspte;
369
370         ssptep = (union split_spte *)sptep;
371         sspte = (union split_spte)spte;
372
373         ssptep->spte_low = sspte.spte_low;
374
375         /*
376          * If we map the spte from present to nonpresent, we should clear
377          * present bit firstly to avoid vcpu fetch the old high bits.
378          */
379         smp_wmb();
380
381         ssptep->spte_high = sspte.spte_high;
382         count_spte_clear(sptep, spte);
383 }
384
385 static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
386 {
387         union split_spte *ssptep, sspte, orig;
388
389         ssptep = (union split_spte *)sptep;
390         sspte = (union split_spte)spte;
391
392         /* xchg acts as a barrier before the setting of the high bits */
393         orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
394         orig.spte_high = ssptep->spte_high;
395         ssptep->spte_high = sspte.spte_high;
396         count_spte_clear(sptep, spte);
397
398         return orig.spte;
399 }
400
401 /*
402  * The idea using the light way get the spte on x86_32 guest is from
403  * gup_get_pte(arch/x86/mm/gup.c).
404  * The difference is we can not catch the spte tlb flush if we leave
405  * guest mode, so we emulate it by increase clear_spte_count when spte
406  * is cleared.
407  */
408 static u64 __get_spte_lockless(u64 *sptep)
409 {
410         struct kvm_mmu_page *sp =  page_header(__pa(sptep));
411         union split_spte spte, *orig = (union split_spte *)sptep;
412         int count;
413
414 retry:
415         count = sp->clear_spte_count;
416         smp_rmb();
417
418         spte.spte_low = orig->spte_low;
419         smp_rmb();
420
421         spte.spte_high = orig->spte_high;
422         smp_rmb();
423
424         if (unlikely(spte.spte_low != orig->spte_low ||
425               count != sp->clear_spte_count))
426                 goto retry;
427
428         return spte.spte;
429 }
430
431 static bool __check_direct_spte_mmio_pf(u64 spte)
432 {
433         union split_spte sspte = (union split_spte)spte;
434         u32 high_mmio_mask = shadow_mmio_mask >> 32;
435
436         /* It is valid if the spte is zapped. */
437         if (spte == 0ull)
438                 return true;
439
440         /* It is valid if the spte is being zapped. */
441         if (sspte.spte_low == 0ull &&
442             (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
443                 return true;
444
445         return false;
446 }
447 #endif
448
449 static bool spte_is_locklessly_modifiable(u64 spte)
450 {
451         return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
452                 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
453 }
454
455 static bool spte_has_volatile_bits(u64 spte)
456 {
457         /*
458          * Always atomicly update spte if it can be updated
459          * out of mmu-lock, it can ensure dirty bit is not lost,
460          * also, it can help us to get a stable is_writable_pte()
461          * to ensure tlb flush is not missed.
462          */
463         if (spte_is_locklessly_modifiable(spte))
464                 return true;
465
466         if (!shadow_accessed_mask)
467                 return false;
468
469         if (!is_shadow_present_pte(spte))
470                 return false;
471
472         if ((spte & shadow_accessed_mask) &&
473               (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
474                 return false;
475
476         return true;
477 }
478
479 static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
480 {
481         return (old_spte & bit_mask) && !(new_spte & bit_mask);
482 }
483
484 /* Rules for using mmu_spte_set:
485  * Set the sptep from nonpresent to present.
486  * Note: the sptep being assigned *must* be either not present
487  * or in a state where the hardware will not attempt to update
488  * the spte.
489  */
490 static void mmu_spte_set(u64 *sptep, u64 new_spte)
491 {
492         WARN_ON(is_shadow_present_pte(*sptep));
493         __set_spte(sptep, new_spte);
494 }
495
496 /* Rules for using mmu_spte_update:
497  * Update the state bits, it means the mapped pfn is not changged.
498  *
499  * Whenever we overwrite a writable spte with a read-only one we
500  * should flush remote TLBs. Otherwise rmap_write_protect
501  * will find a read-only spte, even though the writable spte
502  * might be cached on a CPU's TLB, the return value indicates this
503  * case.
504  */
505 static bool mmu_spte_update(u64 *sptep, u64 new_spte)
506 {
507         u64 old_spte = *sptep;
508         bool ret = false;
509
510         WARN_ON(!is_rmap_spte(new_spte));
511
512         if (!is_shadow_present_pte(old_spte)) {
513                 mmu_spte_set(sptep, new_spte);
514                 return ret;
515         }
516
517         if (!spte_has_volatile_bits(old_spte))
518                 __update_clear_spte_fast(sptep, new_spte);
519         else
520                 old_spte = __update_clear_spte_slow(sptep, new_spte);
521
522         /*
523          * For the spte updated out of mmu-lock is safe, since
524          * we always atomicly update it, see the comments in
525          * spte_has_volatile_bits().
526          */
527         if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
528                 ret = true;
529
530         if (!shadow_accessed_mask)
531                 return ret;
532
533         if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
534                 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
535         if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
536                 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
537
538         return ret;
539 }
540
541 /*
542  * Rules for using mmu_spte_clear_track_bits:
543  * It sets the sptep from present to nonpresent, and track the
544  * state bits, it is used to clear the last level sptep.
545  */
546 static int mmu_spte_clear_track_bits(u64 *sptep)
547 {
548         pfn_t pfn;
549         u64 old_spte = *sptep;
550
551         if (!spte_has_volatile_bits(old_spte))
552                 __update_clear_spte_fast(sptep, 0ull);
553         else
554                 old_spte = __update_clear_spte_slow(sptep, 0ull);
555
556         if (!is_rmap_spte(old_spte))
557                 return 0;
558
559         pfn = spte_to_pfn(old_spte);
560
561         /*
562          * KVM does not hold the refcount of the page used by
563          * kvm mmu, before reclaiming the page, we should
564          * unmap it from mmu first.
565          */
566         WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
567
568         if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
569                 kvm_set_pfn_accessed(pfn);
570         if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
571                 kvm_set_pfn_dirty(pfn);
572         return 1;
573 }
574
575 /*
576  * Rules for using mmu_spte_clear_no_track:
577  * Directly clear spte without caring the state bits of sptep,
578  * it is used to set the upper level spte.
579  */
580 static void mmu_spte_clear_no_track(u64 *sptep)
581 {
582         __update_clear_spte_fast(sptep, 0ull);
583 }
584
585 static u64 mmu_spte_get_lockless(u64 *sptep)
586 {
587         return __get_spte_lockless(sptep);
588 }
589
590 static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
591 {
592         /*
593          * Prevent page table teardown by making any free-er wait during
594          * kvm_flush_remote_tlbs() IPI to all active vcpus.
595          */
596         local_irq_disable();
597         vcpu->mode = READING_SHADOW_PAGE_TABLES;
598         /*
599          * Make sure a following spte read is not reordered ahead of the write
600          * to vcpu->mode.
601          */
602         smp_mb();
603 }
604
605 static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
606 {
607         /*
608          * Make sure the write to vcpu->mode is not reordered in front of
609          * reads to sptes.  If it does, kvm_commit_zap_page() can see us
610          * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
611          */
612         smp_mb();
613         vcpu->mode = OUTSIDE_GUEST_MODE;
614         local_irq_enable();
615 }
616
617 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
618                                   struct kmem_cache *base_cache, int min)
619 {
620         void *obj;
621
622         if (cache->nobjs >= min)
623                 return 0;
624         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
625                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
626                 if (!obj)
627                         return -ENOMEM;
628                 cache->objects[cache->nobjs++] = obj;
629         }
630         return 0;
631 }
632
633 static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
634 {
635         return cache->nobjs;
636 }
637
638 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
639                                   struct kmem_cache *cache)
640 {
641         while (mc->nobjs)
642                 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
643 }
644
645 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
646                                        int min)
647 {
648         void *page;
649
650         if (cache->nobjs >= min)
651                 return 0;
652         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
653                 page = (void *)__get_free_page(GFP_KERNEL);
654                 if (!page)
655                         return -ENOMEM;
656                 cache->objects[cache->nobjs++] = page;
657         }
658         return 0;
659 }
660
661 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
662 {
663         while (mc->nobjs)
664                 free_page((unsigned long)mc->objects[--mc->nobjs]);
665 }
666
667 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
668 {
669         int r;
670
671         r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
672                                    pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
673         if (r)
674                 goto out;
675         r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
676         if (r)
677                 goto out;
678         r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
679                                    mmu_page_header_cache, 4);
680 out:
681         return r;
682 }
683
684 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
685 {
686         mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
687                                 pte_list_desc_cache);
688         mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
689         mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
690                                 mmu_page_header_cache);
691 }
692
693 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
694 {
695         void *p;
696
697         BUG_ON(!mc->nobjs);
698         p = mc->objects[--mc->nobjs];
699         return p;
700 }
701
702 static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
703 {
704         return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
705 }
706
707 static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
708 {
709         kmem_cache_free(pte_list_desc_cache, pte_list_desc);
710 }
711
712 static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
713 {
714         if (!sp->role.direct)
715                 return sp->gfns[index];
716
717         return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
718 }
719
720 static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
721 {
722         if (sp->role.direct)
723                 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
724         else
725                 sp->gfns[index] = gfn;
726 }
727
728 /*
729  * Return the pointer to the large page information for a given gfn,
730  * handling slots that are not large page aligned.
731  */
732 static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
733                                               struct kvm_memory_slot *slot,
734                                               int level)
735 {
736         unsigned long idx;
737
738         idx = gfn_to_index(gfn, slot->base_gfn, level);
739         return &slot->arch.lpage_info[level - 2][idx];
740 }
741
742 static void account_shadowed(struct kvm *kvm, gfn_t gfn)
743 {
744         struct kvm_memory_slot *slot;
745         struct kvm_lpage_info *linfo;
746         int i;
747
748         slot = gfn_to_memslot(kvm, gfn);
749         for (i = PT_DIRECTORY_LEVEL;
750              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
751                 linfo = lpage_info_slot(gfn, slot, i);
752                 linfo->write_count += 1;
753         }
754         kvm->arch.indirect_shadow_pages++;
755 }
756
757 static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
758 {
759         struct kvm_memory_slot *slot;
760         struct kvm_lpage_info *linfo;
761         int i;
762
763         slot = gfn_to_memslot(kvm, gfn);
764         for (i = PT_DIRECTORY_LEVEL;
765              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
766                 linfo = lpage_info_slot(gfn, slot, i);
767                 linfo->write_count -= 1;
768                 WARN_ON(linfo->write_count < 0);
769         }
770         kvm->arch.indirect_shadow_pages--;
771 }
772
773 static int has_wrprotected_page(struct kvm *kvm,
774                                 gfn_t gfn,
775                                 int level)
776 {
777         struct kvm_memory_slot *slot;
778         struct kvm_lpage_info *linfo;
779
780         slot = gfn_to_memslot(kvm, gfn);
781         if (slot) {
782                 linfo = lpage_info_slot(gfn, slot, level);
783                 return linfo->write_count;
784         }
785
786         return 1;
787 }
788
789 static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
790 {
791         unsigned long page_size;
792         int i, ret = 0;
793
794         page_size = kvm_host_page_size(kvm, gfn);
795
796         for (i = PT_PAGE_TABLE_LEVEL;
797              i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
798                 if (page_size >= KVM_HPAGE_SIZE(i))
799                         ret = i;
800                 else
801                         break;
802         }
803
804         return ret;
805 }
806
807 static struct kvm_memory_slot *
808 gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
809                             bool no_dirty_log)
810 {
811         struct kvm_memory_slot *slot;
812
813         slot = gfn_to_memslot(vcpu->kvm, gfn);
814         if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
815               (no_dirty_log && slot->dirty_bitmap))
816                 slot = NULL;
817
818         return slot;
819 }
820
821 static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
822 {
823         return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
824 }
825
826 static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
827 {
828         int host_level, level, max_level;
829
830         host_level = host_mapping_level(vcpu->kvm, large_gfn);
831
832         if (host_level == PT_PAGE_TABLE_LEVEL)
833                 return host_level;
834
835         max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
836
837         for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
838                 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
839                         break;
840
841         return level - 1;
842 }
843
844 /*
845  * Pte mapping structures:
846  *
847  * If pte_list bit zero is zero, then pte_list point to the spte.
848  *
849  * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
850  * pte_list_desc containing more mappings.
851  *
852  * Returns the number of pte entries before the spte was added or zero if
853  * the spte was not added.
854  *
855  */
856 static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
857                         unsigned long *pte_list)
858 {
859         struct pte_list_desc *desc;
860         int i, count = 0;
861
862         if (!*pte_list) {
863                 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
864                 *pte_list = (unsigned long)spte;
865         } else if (!(*pte_list & 1)) {
866                 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
867                 desc = mmu_alloc_pte_list_desc(vcpu);
868                 desc->sptes[0] = (u64 *)*pte_list;
869                 desc->sptes[1] = spte;
870                 *pte_list = (unsigned long)desc | 1;
871                 ++count;
872         } else {
873                 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
874                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
875                 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
876                         desc = desc->more;
877                         count += PTE_LIST_EXT;
878                 }
879                 if (desc->sptes[PTE_LIST_EXT-1]) {
880                         desc->more = mmu_alloc_pte_list_desc(vcpu);
881                         desc = desc->more;
882                 }
883                 for (i = 0; desc->sptes[i]; ++i)
884                         ++count;
885                 desc->sptes[i] = spte;
886         }
887         return count;
888 }
889
890 static void
891 pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
892                            int i, struct pte_list_desc *prev_desc)
893 {
894         int j;
895
896         for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
897                 ;
898         desc->sptes[i] = desc->sptes[j];
899         desc->sptes[j] = NULL;
900         if (j != 0)
901                 return;
902         if (!prev_desc && !desc->more)
903                 *pte_list = (unsigned long)desc->sptes[0];
904         else
905                 if (prev_desc)
906                         prev_desc->more = desc->more;
907                 else
908                         *pte_list = (unsigned long)desc->more | 1;
909         mmu_free_pte_list_desc(desc);
910 }
911
912 static void pte_list_remove(u64 *spte, unsigned long *pte_list)
913 {
914         struct pte_list_desc *desc;
915         struct pte_list_desc *prev_desc;
916         int i;
917
918         if (!*pte_list) {
919                 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
920                 BUG();
921         } else if (!(*pte_list & 1)) {
922                 rmap_printk("pte_list_remove:  %p 1->0\n", spte);
923                 if ((u64 *)*pte_list != spte) {
924                         printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
925                         BUG();
926                 }
927                 *pte_list = 0;
928         } else {
929                 rmap_printk("pte_list_remove:  %p many->many\n", spte);
930                 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
931                 prev_desc = NULL;
932                 while (desc) {
933                         for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
934                                 if (desc->sptes[i] == spte) {
935                                         pte_list_desc_remove_entry(pte_list,
936                                                                desc, i,
937                                                                prev_desc);
938                                         return;
939                                 }
940                         prev_desc = desc;
941                         desc = desc->more;
942                 }
943                 pr_err("pte_list_remove: %p many->many\n", spte);
944                 BUG();
945         }
946 }
947
948 typedef void (*pte_list_walk_fn) (u64 *spte);
949 static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
950 {
951         struct pte_list_desc *desc;
952         int i;
953
954         if (!*pte_list)
955                 return;
956
957         if (!(*pte_list & 1))
958                 return fn((u64 *)*pte_list);
959
960         desc = (struct pte_list_desc *)(*pte_list & ~1ul);
961         while (desc) {
962                 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
963                         fn(desc->sptes[i]);
964                 desc = desc->more;
965         }
966 }
967
968 static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
969                                     struct kvm_memory_slot *slot)
970 {
971         unsigned long idx;
972
973         idx = gfn_to_index(gfn, slot->base_gfn, level);
974         return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
975 }
976
977 /*
978  * Take gfn and return the reverse mapping to it.
979  */
980 static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
981 {
982         struct kvm_memory_slot *slot;
983
984         slot = gfn_to_memslot(kvm, gfn);
985         return __gfn_to_rmap(gfn, level, slot);
986 }
987
988 static bool rmap_can_add(struct kvm_vcpu *vcpu)
989 {
990         struct kvm_mmu_memory_cache *cache;
991
992         cache = &vcpu->arch.mmu_pte_list_desc_cache;
993         return mmu_memory_cache_free_objects(cache);
994 }
995
996 static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
997 {
998         struct kvm_mmu_page *sp;
999         unsigned long *rmapp;
1000
1001         sp = page_header(__pa(spte));
1002         kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1003         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1004         return pte_list_add(vcpu, spte, rmapp);
1005 }
1006
1007 static void rmap_remove(struct kvm *kvm, u64 *spte)
1008 {
1009         struct kvm_mmu_page *sp;
1010         gfn_t gfn;
1011         unsigned long *rmapp;
1012
1013         sp = page_header(__pa(spte));
1014         gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1015         rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1016         pte_list_remove(spte, rmapp);
1017 }
1018
1019 /*
1020  * Used by the following functions to iterate through the sptes linked by a
1021  * rmap.  All fields are private and not assumed to be used outside.
1022  */
1023 struct rmap_iterator {
1024         /* private fields */
1025         struct pte_list_desc *desc;     /* holds the sptep if not NULL */
1026         int pos;                        /* index of the sptep */
1027 };
1028
1029 /*
1030  * Iteration must be started by this function.  This should also be used after
1031  * removing/dropping sptes from the rmap link because in such cases the
1032  * information in the itererator may not be valid.
1033  *
1034  * Returns sptep if found, NULL otherwise.
1035  */
1036 static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1037 {
1038         if (!rmap)
1039                 return NULL;
1040
1041         if (!(rmap & 1)) {
1042                 iter->desc = NULL;
1043                 return (u64 *)rmap;
1044         }
1045
1046         iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1047         iter->pos = 0;
1048         return iter->desc->sptes[iter->pos];
1049 }
1050
1051 /*
1052  * Must be used with a valid iterator: e.g. after rmap_get_first().
1053  *
1054  * Returns sptep if found, NULL otherwise.
1055  */
1056 static u64 *rmap_get_next(struct rmap_iterator *iter)
1057 {
1058         if (iter->desc) {
1059                 if (iter->pos < PTE_LIST_EXT - 1) {
1060                         u64 *sptep;
1061
1062                         ++iter->pos;
1063                         sptep = iter->desc->sptes[iter->pos];
1064                         if (sptep)
1065                                 return sptep;
1066                 }
1067
1068                 iter->desc = iter->desc->more;
1069
1070                 if (iter->desc) {
1071                         iter->pos = 0;
1072                         /* desc->sptes[0] cannot be NULL */
1073                         return iter->desc->sptes[iter->pos];
1074                 }
1075         }
1076
1077         return NULL;
1078 }
1079
1080 static void drop_spte(struct kvm *kvm, u64 *sptep)
1081 {
1082         if (mmu_spte_clear_track_bits(sptep))
1083                 rmap_remove(kvm, sptep);
1084 }
1085
1086
1087 static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1088 {
1089         if (is_large_pte(*sptep)) {
1090                 WARN_ON(page_header(__pa(sptep))->role.level ==
1091                         PT_PAGE_TABLE_LEVEL);
1092                 drop_spte(kvm, sptep);
1093                 --kvm->stat.lpages;
1094                 return true;
1095         }
1096
1097         return false;
1098 }
1099
1100 static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1101 {
1102         if (__drop_large_spte(vcpu->kvm, sptep))
1103                 kvm_flush_remote_tlbs(vcpu->kvm);
1104 }
1105
1106 /*
1107  * Write-protect on the specified @sptep, @pt_protect indicates whether
1108  * spte write-protection is caused by protecting shadow page table.
1109  *
1110  * Note: write protection is difference between drity logging and spte
1111  * protection:
1112  * - for dirty logging, the spte can be set to writable at anytime if
1113  *   its dirty bitmap is properly set.
1114  * - for spte protection, the spte can be writable only after unsync-ing
1115  *   shadow page.
1116  *
1117  * Return true if tlb need be flushed.
1118  */
1119 static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
1120 {
1121         u64 spte = *sptep;
1122
1123         if (!is_writable_pte(spte) &&
1124               !(pt_protect && spte_is_locklessly_modifiable(spte)))
1125                 return false;
1126
1127         rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1128
1129         if (pt_protect)
1130                 spte &= ~SPTE_MMU_WRITEABLE;
1131         spte = spte & ~PT_WRITABLE_MASK;
1132
1133         return mmu_spte_update(sptep, spte);
1134 }
1135
1136 static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1137                                  bool pt_protect)
1138 {
1139         u64 *sptep;
1140         struct rmap_iterator iter;
1141         bool flush = false;
1142
1143         for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1144                 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1145
1146                 flush |= spte_write_protect(kvm, sptep, pt_protect);
1147                 sptep = rmap_get_next(&iter);
1148         }
1149
1150         return flush;
1151 }
1152
1153 /**
1154  * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1155  * @kvm: kvm instance
1156  * @slot: slot to protect
1157  * @gfn_offset: start of the BITS_PER_LONG pages we care about
1158  * @mask: indicates which pages we should protect
1159  *
1160  * Used when we do not need to care about huge page mappings: e.g. during dirty
1161  * logging we do not have any such mappings.
1162  */
1163 void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1164                                      struct kvm_memory_slot *slot,
1165                                      gfn_t gfn_offset, unsigned long mask)
1166 {
1167         unsigned long *rmapp;
1168
1169         while (mask) {
1170                 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1171                                       PT_PAGE_TABLE_LEVEL, slot);
1172                 __rmap_write_protect(kvm, rmapp, false);
1173
1174                 /* clear the first set bit */
1175                 mask &= mask - 1;
1176         }
1177 }
1178
1179 static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
1180 {
1181         struct kvm_memory_slot *slot;
1182         unsigned long *rmapp;
1183         int i;
1184         bool write_protected = false;
1185
1186         slot = gfn_to_memslot(kvm, gfn);
1187
1188         for (i = PT_PAGE_TABLE_LEVEL;
1189              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1190                 rmapp = __gfn_to_rmap(gfn, i, slot);
1191                 write_protected |= __rmap_write_protect(kvm, rmapp, true);
1192         }
1193
1194         return write_protected;
1195 }
1196
1197 static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1198                            struct kvm_memory_slot *slot, unsigned long data)
1199 {
1200         u64 *sptep;
1201         struct rmap_iterator iter;
1202         int need_tlb_flush = 0;
1203
1204         while ((sptep = rmap_get_first(*rmapp, &iter))) {
1205                 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1206                 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1207
1208                 drop_spte(kvm, sptep);
1209                 need_tlb_flush = 1;
1210         }
1211
1212         return need_tlb_flush;
1213 }
1214
1215 static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1216                              struct kvm_memory_slot *slot, unsigned long data)
1217 {
1218         u64 *sptep;
1219         struct rmap_iterator iter;
1220         int need_flush = 0;
1221         u64 new_spte;
1222         pte_t *ptep = (pte_t *)data;
1223         pfn_t new_pfn;
1224
1225         WARN_ON(pte_huge(*ptep));
1226         new_pfn = pte_pfn(*ptep);
1227
1228         for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1229                 BUG_ON(!is_shadow_present_pte(*sptep));
1230                 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1231
1232                 need_flush = 1;
1233
1234                 if (pte_write(*ptep)) {
1235                         drop_spte(kvm, sptep);
1236                         sptep = rmap_get_first(*rmapp, &iter);
1237                 } else {
1238                         new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
1239                         new_spte |= (u64)new_pfn << PAGE_SHIFT;
1240
1241                         new_spte &= ~PT_WRITABLE_MASK;
1242                         new_spte &= ~SPTE_HOST_WRITEABLE;
1243                         new_spte &= ~shadow_accessed_mask;
1244
1245                         mmu_spte_clear_track_bits(sptep);
1246                         mmu_spte_set(sptep, new_spte);
1247                         sptep = rmap_get_next(&iter);
1248                 }
1249         }
1250
1251         if (need_flush)
1252                 kvm_flush_remote_tlbs(kvm);
1253
1254         return 0;
1255 }
1256
1257 static int kvm_handle_hva_range(struct kvm *kvm,
1258                                 unsigned long start,
1259                                 unsigned long end,
1260                                 unsigned long data,
1261                                 int (*handler)(struct kvm *kvm,
1262                                                unsigned long *rmapp,
1263                                                struct kvm_memory_slot *slot,
1264                                                unsigned long data))
1265 {
1266         int j;
1267         int ret = 0;
1268         struct kvm_memslots *slots;
1269         struct kvm_memory_slot *memslot;
1270
1271         slots = kvm_memslots(kvm);
1272
1273         kvm_for_each_memslot(memslot, slots) {
1274                 unsigned long hva_start, hva_end;
1275                 gfn_t gfn_start, gfn_end;
1276
1277                 hva_start = max(start, memslot->userspace_addr);
1278                 hva_end = min(end, memslot->userspace_addr +
1279                                         (memslot->npages << PAGE_SHIFT));
1280                 if (hva_start >= hva_end)
1281                         continue;
1282                 /*
1283                  * {gfn(page) | page intersects with [hva_start, hva_end)} =
1284                  * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1285                  */
1286                 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1287                 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1288
1289                 for (j = PT_PAGE_TABLE_LEVEL;
1290                      j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1291                         unsigned long idx, idx_end;
1292                         unsigned long *rmapp;
1293
1294                         /*
1295                          * {idx(page_j) | page_j intersects with
1296                          *  [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1297                          */
1298                         idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1299                         idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
1300
1301                         rmapp = __gfn_to_rmap(gfn_start, j, memslot);
1302
1303                         for (; idx <= idx_end; ++idx)
1304                                 ret |= handler(kvm, rmapp++, memslot, data);
1305                 }
1306         }
1307
1308         return ret;
1309 }
1310
1311 static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1312                           unsigned long data,
1313                           int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1314                                          struct kvm_memory_slot *slot,
1315                                          unsigned long data))
1316 {
1317         return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1318 }
1319
1320 int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1321 {
1322         return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1323 }
1324
1325 int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1326 {
1327         return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1328 }
1329
1330 void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1331 {
1332         kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1333 }
1334
1335 static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1336                          struct kvm_memory_slot *slot, unsigned long data)
1337 {
1338         u64 *sptep;
1339         struct rmap_iterator uninitialized_var(iter);
1340         int young = 0;
1341
1342         /*
1343          * In case of absence of EPT Access and Dirty Bits supports,
1344          * emulate the accessed bit for EPT, by checking if this page has
1345          * an EPT mapping, and clearing it if it does. On the next access,
1346          * a new EPT mapping will be established.
1347          * This has some overhead, but not as much as the cost of swapping
1348          * out actively used pages or breaking up actively used hugepages.
1349          */
1350         if (!shadow_accessed_mask) {
1351                 young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
1352                 goto out;
1353         }
1354
1355         for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1356              sptep = rmap_get_next(&iter)) {
1357                 BUG_ON(!is_shadow_present_pte(*sptep));
1358
1359                 if (*sptep & shadow_accessed_mask) {
1360                         young = 1;
1361                         clear_bit((ffs(shadow_accessed_mask) - 1),
1362                                  (unsigned long *)sptep);
1363                 }
1364         }
1365 out:
1366         /* @data has hva passed to kvm_age_hva(). */
1367         trace_kvm_age_page(data, slot, young);
1368         return young;
1369 }
1370
1371 static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1372                               struct kvm_memory_slot *slot, unsigned long data)
1373 {
1374         u64 *sptep;
1375         struct rmap_iterator iter;
1376         int young = 0;
1377
1378         /*
1379          * If there's no access bit in the secondary pte set by the
1380          * hardware it's up to gup-fast/gup to set the access bit in
1381          * the primary pte or in the page structure.
1382          */
1383         if (!shadow_accessed_mask)
1384                 goto out;
1385
1386         for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1387              sptep = rmap_get_next(&iter)) {
1388                 BUG_ON(!is_shadow_present_pte(*sptep));
1389
1390                 if (*sptep & shadow_accessed_mask) {
1391                         young = 1;
1392                         break;
1393                 }
1394         }
1395 out:
1396         return young;
1397 }
1398
1399 #define RMAP_RECYCLE_THRESHOLD 1000
1400
1401 static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1402 {
1403         unsigned long *rmapp;
1404         struct kvm_mmu_page *sp;
1405
1406         sp = page_header(__pa(spte));
1407
1408         rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1409
1410         kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
1411         kvm_flush_remote_tlbs(vcpu->kvm);
1412 }
1413
1414 int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1415 {
1416         return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
1417 }
1418
1419 int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1420 {
1421         return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1422 }
1423
1424 #ifdef MMU_DEBUG
1425 static int is_empty_shadow_page(u64 *spt)
1426 {
1427         u64 *pos;
1428         u64 *end;
1429
1430         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1431                 if (is_shadow_present_pte(*pos)) {
1432                         printk(KERN_ERR "%s: %p %llx\n", __func__,
1433                                pos, *pos);
1434                         return 0;
1435                 }
1436         return 1;
1437 }
1438 #endif
1439
1440 /*
1441  * This value is the sum of all of the kvm instances's
1442  * kvm->arch.n_used_mmu_pages values.  We need a global,
1443  * aggregate version in order to make the slab shrinker
1444  * faster
1445  */
1446 static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1447 {
1448         kvm->arch.n_used_mmu_pages += nr;
1449         percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1450 }
1451
1452 static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1453 {
1454         ASSERT(is_empty_shadow_page(sp->spt));
1455         hlist_del(&sp->hash_link);
1456         list_del(&sp->link);
1457         free_page((unsigned long)sp->spt);
1458         if (!sp->role.direct)
1459                 free_page((unsigned long)sp->gfns);
1460         kmem_cache_free(mmu_page_header_cache, sp);
1461 }
1462
1463 static unsigned kvm_page_table_hashfn(gfn_t gfn)
1464 {
1465         return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1466 }
1467
1468 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1469                                     struct kvm_mmu_page *sp, u64 *parent_pte)
1470 {
1471         if (!parent_pte)
1472                 return;
1473
1474         pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1475 }
1476
1477 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1478                                        u64 *parent_pte)
1479 {
1480         pte_list_remove(parent_pte, &sp->parent_ptes);
1481 }
1482
1483 static void drop_parent_pte(struct kvm_mmu_page *sp,
1484                             u64 *parent_pte)
1485 {
1486         mmu_page_remove_parent_pte(sp, parent_pte);
1487         mmu_spte_clear_no_track(parent_pte);
1488 }
1489
1490 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1491                                                u64 *parent_pte, int direct)
1492 {
1493         struct kvm_mmu_page *sp;
1494         sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1495         sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1496         if (!direct)
1497                 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
1498         set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1499         list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1500         sp->parent_ptes = 0;
1501         mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1502         kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1503         return sp;
1504 }
1505
1506 static void mark_unsync(u64 *spte);
1507 static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1508 {
1509         pte_list_walk(&sp->parent_ptes, mark_unsync);
1510 }
1511
1512 static void mark_unsync(u64 *spte)
1513 {
1514         struct kvm_mmu_page *sp;
1515         unsigned int index;
1516
1517         sp = page_header(__pa(spte));
1518         index = spte - sp->spt;
1519         if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1520                 return;
1521         if (sp->unsync_children++)
1522                 return;
1523         kvm_mmu_mark_parents_unsync(sp);
1524 }
1525
1526 static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1527                                struct kvm_mmu_page *sp)
1528 {
1529         return 1;
1530 }
1531
1532 static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1533 {
1534 }
1535
1536 static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1537                                  struct kvm_mmu_page *sp, u64 *spte,
1538                                  const void *pte)
1539 {
1540         WARN_ON(1);
1541 }
1542
1543 #define KVM_PAGE_ARRAY_NR 16
1544
1545 struct kvm_mmu_pages {
1546         struct mmu_page_and_offset {
1547                 struct kvm_mmu_page *sp;
1548                 unsigned int idx;
1549         } page[KVM_PAGE_ARRAY_NR];
1550         unsigned int nr;
1551 };
1552
1553 static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1554                          int idx)
1555 {
1556         int i;
1557
1558         if (sp->unsync)
1559                 for (i=0; i < pvec->nr; i++)
1560                         if (pvec->page[i].sp == sp)
1561                                 return 0;
1562
1563         pvec->page[pvec->nr].sp = sp;
1564         pvec->page[pvec->nr].idx = idx;
1565         pvec->nr++;
1566         return (pvec->nr == KVM_PAGE_ARRAY_NR);
1567 }
1568
1569 static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1570                            struct kvm_mmu_pages *pvec)
1571 {
1572         int i, ret, nr_unsync_leaf = 0;
1573
1574         for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1575                 struct kvm_mmu_page *child;
1576                 u64 ent = sp->spt[i];
1577
1578                 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1579                         goto clear_child_bitmap;
1580
1581                 child = page_header(ent & PT64_BASE_ADDR_MASK);
1582
1583                 if (child->unsync_children) {
1584                         if (mmu_pages_add(pvec, child, i))
1585                                 return -ENOSPC;
1586
1587                         ret = __mmu_unsync_walk(child, pvec);
1588                         if (!ret)
1589                                 goto clear_child_bitmap;
1590                         else if (ret > 0)
1591                                 nr_unsync_leaf += ret;
1592                         else
1593                                 return ret;
1594                 } else if (child->unsync) {
1595                         nr_unsync_leaf++;
1596                         if (mmu_pages_add(pvec, child, i))
1597                                 return -ENOSPC;
1598                 } else
1599                          goto clear_child_bitmap;
1600
1601                 continue;
1602
1603 clear_child_bitmap:
1604                 __clear_bit(i, sp->unsync_child_bitmap);
1605                 sp->unsync_children--;
1606                 WARN_ON((int)sp->unsync_children < 0);
1607         }
1608
1609
1610         return nr_unsync_leaf;
1611 }
1612
1613 static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1614                            struct kvm_mmu_pages *pvec)
1615 {
1616         if (!sp->unsync_children)
1617                 return 0;
1618
1619         mmu_pages_add(pvec, sp, 0);
1620         return __mmu_unsync_walk(sp, pvec);
1621 }
1622
1623 static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1624 {
1625         WARN_ON(!sp->unsync);
1626         trace_kvm_mmu_sync_page(sp);
1627         sp->unsync = 0;
1628         --kvm->stat.mmu_unsync;
1629 }
1630
1631 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1632                                     struct list_head *invalid_list);
1633 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1634                                     struct list_head *invalid_list);
1635
1636 #define for_each_gfn_sp(kvm, sp, gfn, pos)                              \
1637   hlist_for_each_entry(sp, pos,                                         \
1638    &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link)   \
1639         if ((sp)->gfn != (gfn)) {} else
1640
1641 #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos)               \
1642   hlist_for_each_entry(sp, pos,                                         \
1643    &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link)   \
1644                 if ((sp)->gfn != (gfn) || (sp)->role.direct ||          \
1645                         (sp)->role.invalid) {} else
1646
1647 /* @sp->gfn should be write-protected at the call site */
1648 static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1649                            struct list_head *invalid_list, bool clear_unsync)
1650 {
1651         if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1652                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1653                 return 1;
1654         }
1655
1656         if (clear_unsync)
1657                 kvm_unlink_unsync_page(vcpu->kvm, sp);
1658
1659         if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1660                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1661                 return 1;
1662         }
1663
1664         kvm_mmu_flush_tlb(vcpu);
1665         return 0;
1666 }
1667
1668 static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1669                                    struct kvm_mmu_page *sp)
1670 {
1671         LIST_HEAD(invalid_list);
1672         int ret;
1673
1674         ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1675         if (ret)
1676                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1677
1678         return ret;
1679 }
1680
1681 #ifdef CONFIG_KVM_MMU_AUDIT
1682 #include "mmu_audit.c"
1683 #else
1684 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1685 static void mmu_audit_disable(void) { }
1686 #endif
1687
1688 static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1689                          struct list_head *invalid_list)
1690 {
1691         return __kvm_sync_page(vcpu, sp, invalid_list, true);
1692 }
1693
1694 /* @gfn should be write-protected at the call site */
1695 static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
1696 {
1697         struct kvm_mmu_page *s;
1698         struct hlist_node *node;
1699         LIST_HEAD(invalid_list);
1700         bool flush = false;
1701
1702         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1703                 if (!s->unsync)
1704                         continue;
1705
1706                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1707                 kvm_unlink_unsync_page(vcpu->kvm, s);
1708                 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1709                         (vcpu->arch.mmu.sync_page(vcpu, s))) {
1710                         kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1711                         continue;
1712                 }
1713                 flush = true;
1714         }
1715
1716         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1717         if (flush)
1718                 kvm_mmu_flush_tlb(vcpu);
1719 }
1720
1721 struct mmu_page_path {
1722         struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1723         unsigned int idx[PT64_ROOT_LEVEL-1];
1724 };
1725
1726 #define for_each_sp(pvec, sp, parents, i)                       \
1727                 for (i = mmu_pages_next(&pvec, &parents, -1),   \
1728                         sp = pvec.page[i].sp;                   \
1729                         i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});   \
1730                         i = mmu_pages_next(&pvec, &parents, i))
1731
1732 static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1733                           struct mmu_page_path *parents,
1734                           int i)
1735 {
1736         int n;
1737
1738         for (n = i+1; n < pvec->nr; n++) {
1739                 struct kvm_mmu_page *sp = pvec->page[n].sp;
1740
1741                 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1742                         parents->idx[0] = pvec->page[n].idx;
1743                         return n;
1744                 }
1745
1746                 parents->parent[sp->role.level-2] = sp;
1747                 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1748         }
1749
1750         return n;
1751 }
1752
1753 static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1754 {
1755         struct kvm_mmu_page *sp;
1756         unsigned int level = 0;
1757
1758         do {
1759                 unsigned int idx = parents->idx[level];
1760
1761                 sp = parents->parent[level];
1762                 if (!sp)
1763                         return;
1764
1765                 --sp->unsync_children;
1766                 WARN_ON((int)sp->unsync_children < 0);
1767                 __clear_bit(idx, sp->unsync_child_bitmap);
1768                 level++;
1769         } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1770 }
1771
1772 static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1773                                struct mmu_page_path *parents,
1774                                struct kvm_mmu_pages *pvec)
1775 {
1776         parents->parent[parent->role.level-1] = NULL;
1777         pvec->nr = 0;
1778 }
1779
1780 static void mmu_sync_children(struct kvm_vcpu *vcpu,
1781                               struct kvm_mmu_page *parent)
1782 {
1783         int i;
1784         struct kvm_mmu_page *sp;
1785         struct mmu_page_path parents;
1786         struct kvm_mmu_pages pages;
1787         LIST_HEAD(invalid_list);
1788
1789         kvm_mmu_pages_init(parent, &parents, &pages);
1790         while (mmu_unsync_walk(parent, &pages)) {
1791                 bool protected = false;
1792
1793                 for_each_sp(pages, sp, parents, i)
1794                         protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1795
1796                 if (protected)
1797                         kvm_flush_remote_tlbs(vcpu->kvm);
1798
1799                 for_each_sp(pages, sp, parents, i) {
1800                         kvm_sync_page(vcpu, sp, &invalid_list);
1801                         mmu_pages_clear_parents(&parents);
1802                 }
1803                 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1804                 cond_resched_lock(&vcpu->kvm->mmu_lock);
1805                 kvm_mmu_pages_init(parent, &parents, &pages);
1806         }
1807 }
1808
1809 static void init_shadow_page_table(struct kvm_mmu_page *sp)
1810 {
1811         int i;
1812
1813         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1814                 sp->spt[i] = 0ull;
1815 }
1816
1817 static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1818 {
1819         sp->write_flooding_count = 0;
1820 }
1821
1822 static void clear_sp_write_flooding_count(u64 *spte)
1823 {
1824         struct kvm_mmu_page *sp =  page_header(__pa(spte));
1825
1826         __clear_sp_write_flooding_count(sp);
1827 }
1828
1829 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1830                                              gfn_t gfn,
1831                                              gva_t gaddr,
1832                                              unsigned level,
1833                                              int direct,
1834                                              unsigned access,
1835                                              u64 *parent_pte)
1836 {
1837         union kvm_mmu_page_role role;
1838         unsigned quadrant;
1839         struct kvm_mmu_page *sp;
1840         struct hlist_node *node;
1841         bool need_sync = false;
1842
1843         role = vcpu->arch.mmu.base_role;
1844         role.level = level;
1845         role.direct = direct;
1846         if (role.direct)
1847                 role.cr4_pae = 0;
1848         role.access = access;
1849         if (!vcpu->arch.mmu.direct_map
1850             && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1851                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1852                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1853                 role.quadrant = quadrant;
1854         }
1855         for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
1856                 if (!need_sync && sp->unsync)
1857                         need_sync = true;
1858
1859                 if (sp->role.word != role.word)
1860                         continue;
1861
1862                 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1863                         break;
1864
1865                 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1866                 if (sp->unsync_children) {
1867                         kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1868                         kvm_mmu_mark_parents_unsync(sp);
1869                 } else if (sp->unsync)
1870                         kvm_mmu_mark_parents_unsync(sp);
1871
1872                 __clear_sp_write_flooding_count(sp);
1873                 trace_kvm_mmu_get_page(sp, false);
1874                 return sp;
1875         }
1876         ++vcpu->kvm->stat.mmu_cache_miss;
1877         sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1878         if (!sp)
1879                 return sp;
1880         sp->gfn = gfn;
1881         sp->role = role;
1882         hlist_add_head(&sp->hash_link,
1883                 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1884         if (!direct) {
1885                 if (rmap_write_protect(vcpu->kvm, gfn))
1886                         kvm_flush_remote_tlbs(vcpu->kvm);
1887                 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1888                         kvm_sync_pages(vcpu, gfn);
1889
1890                 account_shadowed(vcpu->kvm, gfn);
1891         }
1892         init_shadow_page_table(sp);
1893         trace_kvm_mmu_get_page(sp, true);
1894         return sp;
1895 }
1896
1897 static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1898                              struct kvm_vcpu *vcpu, u64 addr)
1899 {
1900         iterator->addr = addr;
1901         iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1902         iterator->level = vcpu->arch.mmu.shadow_root_level;
1903
1904         if (iterator->level == PT64_ROOT_LEVEL &&
1905             vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1906             !vcpu->arch.mmu.direct_map)
1907                 --iterator->level;
1908
1909         if (iterator->level == PT32E_ROOT_LEVEL) {
1910                 iterator->shadow_addr
1911                         = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1912                 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1913                 --iterator->level;
1914                 if (!iterator->shadow_addr)
1915                         iterator->level = 0;
1916         }
1917 }
1918
1919 static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1920 {
1921         if (iterator->level < PT_PAGE_TABLE_LEVEL)
1922                 return false;
1923
1924         iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1925         iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1926         return true;
1927 }
1928
1929 static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1930                                u64 spte)
1931 {
1932         if (is_last_spte(spte, iterator->level)) {
1933                 iterator->level = 0;
1934                 return;
1935         }
1936
1937         iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
1938         --iterator->level;
1939 }
1940
1941 static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1942 {
1943         return __shadow_walk_next(iterator, *iterator->sptep);
1944 }
1945
1946 static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1947 {
1948         u64 spte;
1949
1950         spte = __pa(sp->spt)
1951                 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1952                 | PT_WRITABLE_MASK | PT_USER_MASK;
1953         mmu_spte_set(sptep, spte);
1954 }
1955
1956 static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1957                                    unsigned direct_access)
1958 {
1959         if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1960                 struct kvm_mmu_page *child;
1961
1962                 /*
1963                  * For the direct sp, if the guest pte's dirty bit
1964                  * changed form clean to dirty, it will corrupt the
1965                  * sp's access: allow writable in the read-only sp,
1966                  * so we should update the spte at this point to get
1967                  * a new sp with the correct access.
1968                  */
1969                 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1970                 if (child->role.access == direct_access)
1971                         return;
1972
1973                 drop_parent_pte(child, sptep);
1974                 kvm_flush_remote_tlbs(vcpu->kvm);
1975         }
1976 }
1977
1978 static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
1979                              u64 *spte)
1980 {
1981         u64 pte;
1982         struct kvm_mmu_page *child;
1983
1984         pte = *spte;
1985         if (is_shadow_present_pte(pte)) {
1986                 if (is_last_spte(pte, sp->role.level)) {
1987                         drop_spte(kvm, spte);
1988                         if (is_large_pte(pte))
1989                                 --kvm->stat.lpages;
1990                 } else {
1991                         child = page_header(pte & PT64_BASE_ADDR_MASK);
1992                         drop_parent_pte(child, spte);
1993                 }
1994                 return true;
1995         }
1996
1997         if (is_mmio_spte(pte))
1998                 mmu_spte_clear_no_track(spte);
1999
2000         return false;
2001 }
2002
2003 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
2004                                          struct kvm_mmu_page *sp)
2005 {
2006         unsigned i;
2007
2008         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2009                 mmu_page_zap_pte(kvm, sp, sp->spt + i);
2010 }
2011
2012 static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
2013 {
2014         mmu_page_remove_parent_pte(sp, parent_pte);
2015 }
2016
2017 static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2018 {
2019         u64 *sptep;
2020         struct rmap_iterator iter;
2021
2022         while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2023                 drop_parent_pte(sp, sptep);
2024 }
2025
2026 static int mmu_zap_unsync_children(struct kvm *kvm,
2027                                    struct kvm_mmu_page *parent,
2028                                    struct list_head *invalid_list)
2029 {
2030         int i, zapped = 0;
2031         struct mmu_page_path parents;
2032         struct kvm_mmu_pages pages;
2033
2034         if (parent->role.level == PT_PAGE_TABLE_LEVEL)
2035                 return 0;
2036
2037         kvm_mmu_pages_init(parent, &parents, &pages);
2038         while (mmu_unsync_walk(parent, &pages)) {
2039                 struct kvm_mmu_page *sp;
2040
2041                 for_each_sp(pages, sp, parents, i) {
2042                         kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2043                         mmu_pages_clear_parents(&parents);
2044                         zapped++;
2045                 }
2046                 kvm_mmu_pages_init(parent, &parents, &pages);
2047         }
2048
2049         return zapped;
2050 }
2051
2052 static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2053                                     struct list_head *invalid_list)
2054 {
2055         int ret;
2056
2057         trace_kvm_mmu_prepare_zap_page(sp);
2058         ++kvm->stat.mmu_shadow_zapped;
2059         ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
2060         kvm_mmu_page_unlink_children(kvm, sp);
2061         kvm_mmu_unlink_parents(kvm, sp);
2062         if (!sp->role.invalid && !sp->role.direct)
2063                 unaccount_shadowed(kvm, sp->gfn);
2064         if (sp->unsync)
2065                 kvm_unlink_unsync_page(kvm, sp);
2066         if (!sp->root_count) {
2067                 /* Count self */
2068                 ret++;
2069                 list_move(&sp->link, invalid_list);
2070                 kvm_mod_used_mmu_pages(kvm, -1);
2071         } else {
2072                 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2073                 kvm_reload_remote_mmus(kvm);
2074         }
2075
2076         sp->role.invalid = 1;
2077         return ret;
2078 }
2079
2080 static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2081                                     struct list_head *invalid_list)
2082 {
2083         struct kvm_mmu_page *sp;
2084
2085         if (list_empty(invalid_list))
2086                 return;
2087
2088         /*
2089          * wmb: make sure everyone sees our modifications to the page tables
2090          * rmb: make sure we see changes to vcpu->mode
2091          */
2092         smp_mb();
2093
2094         /*
2095          * Wait for all vcpus to exit guest mode and/or lockless shadow
2096          * page table walks.
2097          */
2098         kvm_flush_remote_tlbs(kvm);
2099
2100         do {
2101                 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
2102                 WARN_ON(!sp->role.invalid || sp->root_count);
2103                 kvm_mmu_free_page(sp);
2104         } while (!list_empty(invalid_list));
2105 }
2106
2107 /*
2108  * Changing the number of mmu pages allocated to the vm
2109  * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2110  */
2111 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
2112 {
2113         LIST_HEAD(invalid_list);
2114         /*
2115          * If we set the number of mmu pages to be smaller be than the
2116          * number of actived pages , we must to free some mmu pages before we
2117          * change the value
2118          */
2119
2120         spin_lock(&kvm->mmu_lock);
2121
2122         if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2123                 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
2124                         !list_empty(&kvm->arch.active_mmu_pages)) {
2125                         struct kvm_mmu_page *page;
2126
2127                         page = container_of(kvm->arch.active_mmu_pages.prev,
2128                                             struct kvm_mmu_page, link);
2129                         kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
2130                 }
2131                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
2132                 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2133         }
2134
2135         kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2136
2137         spin_unlock(&kvm->mmu_lock);
2138 }
2139
2140 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2141 {
2142         struct kvm_mmu_page *sp;
2143         struct hlist_node *node;
2144         LIST_HEAD(invalid_list);
2145         int r;
2146
2147         pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2148         r = 0;
2149         spin_lock(&kvm->mmu_lock);
2150         for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
2151                 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2152                          sp->role.word);
2153                 r = 1;
2154                 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2155         }
2156         kvm_mmu_commit_zap_page(kvm, &invalid_list);
2157         spin_unlock(&kvm->mmu_lock);
2158
2159         return r;
2160 }
2161 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2162
2163 /*
2164  * The function is based on mtrr_type_lookup() in
2165  * arch/x86/kernel/cpu/mtrr/generic.c
2166  */
2167 static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2168                          u64 start, u64 end)
2169 {
2170         int i;
2171         u64 base, mask;
2172         u8 prev_match, curr_match;
2173         int num_var_ranges = KVM_NR_VAR_MTRR;
2174
2175         if (!mtrr_state->enabled)
2176                 return 0xFF;
2177
2178         /* Make end inclusive end, instead of exclusive */
2179         end--;
2180
2181         /* Look in fixed ranges. Just return the type as per start */
2182         if (mtrr_state->have_fixed && (start < 0x100000)) {
2183                 int idx;
2184
2185                 if (start < 0x80000) {
2186                         idx = 0;
2187                         idx += (start >> 16);
2188                         return mtrr_state->fixed_ranges[idx];
2189                 } else if (start < 0xC0000) {
2190                         idx = 1 * 8;
2191                         idx += ((start - 0x80000) >> 14);
2192                         return mtrr_state->fixed_ranges[idx];
2193                 } else if (start < 0x1000000) {
2194                         idx = 3 * 8;
2195                         idx += ((start - 0xC0000) >> 12);
2196                         return mtrr_state->fixed_ranges[idx];
2197                 }
2198         }
2199
2200         /*
2201          * Look in variable ranges
2202          * Look of multiple ranges matching this address and pick type
2203          * as per MTRR precedence
2204          */
2205         if (!(mtrr_state->enabled & 2))
2206                 return mtrr_state->def_type;
2207
2208         prev_match = 0xFF;
2209         for (i = 0; i < num_var_ranges; ++i) {
2210                 unsigned short start_state, end_state;
2211
2212                 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2213                         continue;
2214
2215                 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2216                        (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2217                 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2218                        (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2219
2220                 start_state = ((start & mask) == (base & mask));
2221                 end_state = ((end & mask) == (base & mask));
2222                 if (start_state != end_state)
2223                         return 0xFE;
2224
2225                 if ((start & mask) != (base & mask))
2226                         continue;
2227
2228                 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2229                 if (prev_match == 0xFF) {
2230                         prev_match = curr_match;
2231                         continue;
2232                 }
2233
2234                 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2235                     curr_match == MTRR_TYPE_UNCACHABLE)
2236                         return MTRR_TYPE_UNCACHABLE;
2237
2238                 if ((prev_match == MTRR_TYPE_WRBACK &&
2239                      curr_match == MTRR_TYPE_WRTHROUGH) ||
2240                     (prev_match == MTRR_TYPE_WRTHROUGH &&
2241                      curr_match == MTRR_TYPE_WRBACK)) {
2242                         prev_match = MTRR_TYPE_WRTHROUGH;
2243                         curr_match = MTRR_TYPE_WRTHROUGH;
2244                 }
2245
2246                 if (prev_match != curr_match)
2247                         return MTRR_TYPE_UNCACHABLE;
2248         }
2249
2250         if (prev_match != 0xFF)
2251                 return prev_match;
2252
2253         return mtrr_state->def_type;
2254 }
2255
2256 u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2257 {
2258         u8 mtrr;
2259
2260         mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2261                              (gfn << PAGE_SHIFT) + PAGE_SIZE);
2262         if (mtrr == 0xfe || mtrr == 0xff)
2263                 mtrr = MTRR_TYPE_WRBACK;
2264         return mtrr;
2265 }
2266 EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2267
2268 static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2269 {
2270         trace_kvm_mmu_unsync_page(sp);
2271         ++vcpu->kvm->stat.mmu_unsync;
2272         sp->unsync = 1;
2273
2274         kvm_mmu_mark_parents_unsync(sp);
2275 }
2276
2277 static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2278 {
2279         struct kvm_mmu_page *s;
2280         struct hlist_node *node;
2281
2282         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2283                 if (s->unsync)
2284                         continue;
2285                 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2286                 __kvm_unsync_page(vcpu, s);
2287         }
2288 }
2289
2290 static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2291                                   bool can_unsync)
2292 {
2293         struct kvm_mmu_page *s;
2294         struct hlist_node *node;
2295         bool need_unsync = false;
2296
2297         for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2298                 if (!can_unsync)
2299                         return 1;
2300
2301                 if (s->role.level != PT_PAGE_TABLE_LEVEL)
2302                         return 1;
2303
2304                 if (!s->unsync)
2305                         need_unsync = true;
2306         }
2307         if (need_unsync)
2308                 kvm_unsync_pages(vcpu, gfn);
2309         return 0;
2310 }
2311
2312 static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2313                     unsigned pte_access, int level,
2314                     gfn_t gfn, pfn_t pfn, bool speculative,
2315                     bool can_unsync, bool host_writable)
2316 {
2317         u64 spte;
2318         int ret = 0;
2319
2320         if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2321                 return 0;
2322
2323         spte = PT_PRESENT_MASK;
2324         if (!speculative)
2325                 spte |= shadow_accessed_mask;
2326
2327         if (pte_access & ACC_EXEC_MASK)
2328                 spte |= shadow_x_mask;
2329         else
2330                 spte |= shadow_nx_mask;
2331
2332         if (pte_access & ACC_USER_MASK)
2333                 spte |= shadow_user_mask;
2334
2335         if (level > PT_PAGE_TABLE_LEVEL)
2336                 spte |= PT_PAGE_SIZE_MASK;
2337         if (tdp_enabled)
2338                 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2339                         kvm_is_mmio_pfn(pfn));
2340
2341         if (host_writable)
2342                 spte |= SPTE_HOST_WRITEABLE;
2343         else
2344                 pte_access &= ~ACC_WRITE_MASK;
2345
2346         spte |= (u64)pfn << PAGE_SHIFT;
2347
2348         if (pte_access & ACC_WRITE_MASK) {
2349
2350                 /*
2351                  * Other vcpu creates new sp in the window between
2352                  * mapping_level() and acquiring mmu-lock. We can
2353                  * allow guest to retry the access, the mapping can
2354                  * be fixed if guest refault.
2355                  */
2356                 if (level > PT_PAGE_TABLE_LEVEL &&
2357                     has_wrprotected_page(vcpu->kvm, gfn, level))
2358                         goto done;
2359
2360                 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
2361
2362                 /*
2363                  * Optimization: for pte sync, if spte was writable the hash
2364                  * lookup is unnecessary (and expensive). Write protection
2365                  * is responsibility of mmu_get_page / kvm_sync_page.
2366                  * Same reasoning can be applied to dirty page accounting.
2367                  */
2368                 if (!can_unsync && is_writable_pte(*sptep))
2369                         goto set_pte;
2370
2371                 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2372                         pgprintk("%s: found shadow page for %llx, marking ro\n",
2373                                  __func__, gfn);
2374                         ret = 1;
2375                         pte_access &= ~ACC_WRITE_MASK;
2376                         spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
2377                 }
2378         }
2379
2380         if (pte_access & ACC_WRITE_MASK)
2381                 mark_page_dirty(vcpu->kvm, gfn);
2382
2383 set_pte:
2384         if (mmu_spte_update(sptep, spte))
2385                 kvm_flush_remote_tlbs(vcpu->kvm);
2386 done:
2387         return ret;
2388 }
2389
2390 static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2391                          unsigned pt_access, unsigned pte_access,
2392                          int write_fault, int *emulate, int level, gfn_t gfn,
2393                          pfn_t pfn, bool speculative, bool host_writable)
2394 {
2395         int was_rmapped = 0;
2396         int rmap_count;
2397
2398         pgprintk("%s: spte %llx access %x write_fault %d gfn %llx\n",
2399                  __func__, *sptep, pt_access,
2400                  write_fault, gfn);
2401
2402         if (is_rmap_spte(*sptep)) {
2403                 /*
2404                  * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2405                  * the parent of the now unreachable PTE.
2406                  */
2407                 if (level > PT_PAGE_TABLE_LEVEL &&
2408                     !is_large_pte(*sptep)) {
2409                         struct kvm_mmu_page *child;
2410                         u64 pte = *sptep;
2411
2412                         child = page_header(pte & PT64_BASE_ADDR_MASK);
2413                         drop_parent_pte(child, sptep);
2414                         kvm_flush_remote_tlbs(vcpu->kvm);
2415                 } else if (pfn != spte_to_pfn(*sptep)) {
2416                         pgprintk("hfn old %llx new %llx\n",
2417                                  spte_to_pfn(*sptep), pfn);
2418                         drop_spte(vcpu->kvm, sptep);
2419                         kvm_flush_remote_tlbs(vcpu->kvm);
2420                 } else
2421                         was_rmapped = 1;
2422         }
2423
2424         if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2425               true, host_writable)) {
2426                 if (write_fault)
2427                         *emulate = 1;
2428                 kvm_mmu_flush_tlb(vcpu);
2429         }
2430
2431         if (unlikely(is_mmio_spte(*sptep) && emulate))
2432                 *emulate = 1;
2433
2434         pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2435         pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2436                  is_large_pte(*sptep)? "2MB" : "4kB",
2437                  *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2438                  *sptep, sptep);
2439         if (!was_rmapped && is_large_pte(*sptep))
2440                 ++vcpu->kvm->stat.lpages;
2441
2442         if (is_shadow_present_pte(*sptep)) {
2443                 if (!was_rmapped) {
2444                         rmap_count = rmap_add(vcpu, sptep, gfn);
2445                         if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2446                                 rmap_recycle(vcpu, sptep, gfn);
2447                 }
2448         }
2449
2450         kvm_release_pfn_clean(pfn);
2451 }
2452
2453 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2454 {
2455         mmu_free_roots(vcpu);
2456 }
2457
2458 static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
2459 {
2460         int bit7;
2461
2462         bit7 = (gpte >> 7) & 1;
2463         return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
2464 }
2465
2466 static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2467                                      bool no_dirty_log)
2468 {
2469         struct kvm_memory_slot *slot;
2470
2471         slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2472         if (!slot)
2473                 return KVM_PFN_ERR_FAULT;
2474
2475         return gfn_to_pfn_memslot_atomic(slot, gfn);
2476 }
2477
2478 static bool prefetch_invalid_gpte(struct kvm_vcpu *vcpu,
2479                                   struct kvm_mmu_page *sp, u64 *spte,
2480                                   u64 gpte)
2481 {
2482         if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
2483                 goto no_present;
2484
2485         if (!is_present_gpte(gpte))
2486                 goto no_present;
2487
2488         if (!(gpte & PT_ACCESSED_MASK))
2489                 goto no_present;
2490
2491         return false;
2492
2493 no_present:
2494         drop_spte(vcpu->kvm, spte);
2495         return true;
2496 }
2497
2498 static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2499                                     struct kvm_mmu_page *sp,
2500                                     u64 *start, u64 *end)
2501 {
2502         struct page *pages[PTE_PREFETCH_NUM];
2503         unsigned access = sp->role.access;
2504         int i, ret;
2505         gfn_t gfn;
2506
2507         gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2508         if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2509                 return -1;
2510
2511         ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2512         if (ret <= 0)
2513                 return -1;
2514
2515         for (i = 0; i < ret; i++, gfn++, start++)
2516                 mmu_set_spte(vcpu, start, ACC_ALL, access, 0, NULL,
2517                              sp->role.level, gfn, page_to_pfn(pages[i]),
2518                              true, true);
2519
2520         return 0;
2521 }
2522
2523 static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2524                                   struct kvm_mmu_page *sp, u64 *sptep)
2525 {
2526         u64 *spte, *start = NULL;
2527         int i;
2528
2529         WARN_ON(!sp->role.direct);
2530
2531         i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2532         spte = sp->spt + i;
2533
2534         for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2535                 if (is_shadow_present_pte(*spte) || spte == sptep) {
2536                         if (!start)
2537                                 continue;
2538                         if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2539                                 break;
2540                         start = NULL;
2541                 } else if (!start)
2542                         start = spte;
2543         }
2544 }
2545
2546 static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2547 {
2548         struct kvm_mmu_page *sp;
2549
2550         /*
2551          * Since it's no accessed bit on EPT, it's no way to
2552          * distinguish between actually accessed translations
2553          * and prefetched, so disable pte prefetch if EPT is
2554          * enabled.
2555          */
2556         if (!shadow_accessed_mask)
2557                 return;
2558
2559         sp = page_header(__pa(sptep));
2560         if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2561                 return;
2562
2563         __direct_pte_prefetch(vcpu, sp, sptep);
2564 }
2565
2566 static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2567                         int map_writable, int level, gfn_t gfn, pfn_t pfn,
2568                         bool prefault)
2569 {
2570         struct kvm_shadow_walk_iterator iterator;
2571         struct kvm_mmu_page *sp;
2572         int emulate = 0;
2573         gfn_t pseudo_gfn;
2574
2575         for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2576                 if (iterator.level == level) {
2577                         unsigned pte_access = ACC_ALL;
2578
2579                         mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
2580                                      write, &emulate, level, gfn, pfn,
2581                                      prefault, map_writable);
2582                         direct_pte_prefetch(vcpu, iterator.sptep);
2583                         ++vcpu->stat.pf_fixed;
2584                         break;
2585                 }
2586
2587                 drop_large_spte(vcpu, iterator.sptep);
2588
2589                 if (!is_shadow_present_pte(*iterator.sptep)) {
2590                         u64 base_addr = iterator.addr;
2591
2592                         base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2593                         pseudo_gfn = base_addr >> PAGE_SHIFT;
2594                         sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2595                                               iterator.level - 1,
2596                                               1, ACC_ALL, iterator.sptep);
2597
2598                         mmu_spte_set(iterator.sptep,
2599                                      __pa(sp->spt)
2600                                      | PT_PRESENT_MASK | PT_WRITABLE_MASK
2601                                      | shadow_user_mask | shadow_x_mask
2602                                      | shadow_accessed_mask);
2603                 }
2604         }
2605         return emulate;
2606 }
2607
2608 static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2609 {
2610         siginfo_t info;
2611
2612         info.si_signo   = SIGBUS;
2613         info.si_errno   = 0;
2614         info.si_code    = BUS_MCEERR_AR;
2615         info.si_addr    = (void __user *)address;
2616         info.si_addr_lsb = PAGE_SHIFT;
2617
2618         send_sig_info(SIGBUS, &info, tsk);
2619 }
2620
2621 static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2622 {
2623         /*
2624          * Do not cache the mmio info caused by writing the readonly gfn
2625          * into the spte otherwise read access on readonly gfn also can
2626          * caused mmio page fault and treat it as mmio access.
2627          * Return 1 to tell kvm to emulate it.
2628          */
2629         if (pfn == KVM_PFN_ERR_RO_FAULT)
2630                 return 1;
2631
2632         if (pfn == KVM_PFN_ERR_HWPOISON) {
2633                 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2634                 return 0;
2635         }
2636
2637         return -EFAULT;
2638 }
2639
2640 static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2641                                         gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2642 {
2643         pfn_t pfn = *pfnp;
2644         gfn_t gfn = *gfnp;
2645         int level = *levelp;
2646
2647         /*
2648          * Check if it's a transparent hugepage. If this would be an
2649          * hugetlbfs page, level wouldn't be set to
2650          * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2651          * here.
2652          */
2653         if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2654             level == PT_PAGE_TABLE_LEVEL &&
2655             PageTransCompound(pfn_to_page(pfn)) &&
2656             !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2657                 unsigned long mask;
2658                 /*
2659                  * mmu_notifier_retry was successful and we hold the
2660                  * mmu_lock here, so the pmd can't become splitting
2661                  * from under us, and in turn
2662                  * __split_huge_page_refcount() can't run from under
2663                  * us and we can safely transfer the refcount from
2664                  * PG_tail to PG_head as we switch the pfn to tail to
2665                  * head.
2666                  */
2667                 *levelp = level = PT_DIRECTORY_LEVEL;
2668                 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2669                 VM_BUG_ON((gfn & mask) != (pfn & mask));
2670                 if (pfn & mask) {
2671                         gfn &= ~mask;
2672                         *gfnp = gfn;
2673                         kvm_release_pfn_clean(pfn);
2674                         pfn &= ~mask;
2675                         kvm_get_pfn(pfn);
2676                         *pfnp = pfn;
2677                 }
2678         }
2679 }
2680
2681 static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2682                                 pfn_t pfn, unsigned access, int *ret_val)
2683 {
2684         bool ret = true;
2685
2686         /* The pfn is invalid, report the error! */
2687         if (unlikely(is_error_pfn(pfn))) {
2688                 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2689                 goto exit;
2690         }
2691
2692         if (unlikely(is_noslot_pfn(pfn)))
2693                 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2694
2695         ret = false;
2696 exit:
2697         return ret;
2698 }
2699
2700 static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
2701 {
2702         /*
2703          * #PF can be fast only if the shadow page table is present and it
2704          * is caused by write-protect, that means we just need change the
2705          * W bit of the spte which can be done out of mmu-lock.
2706          */
2707         if (!(error_code & PFERR_PRESENT_MASK) ||
2708               !(error_code & PFERR_WRITE_MASK))
2709                 return false;
2710
2711         return true;
2712 }
2713
2714 static bool
2715 fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
2716 {
2717         struct kvm_mmu_page *sp = page_header(__pa(sptep));
2718         gfn_t gfn;
2719
2720         WARN_ON(!sp->role.direct);
2721
2722         /*
2723          * The gfn of direct spte is stable since it is calculated
2724          * by sp->gfn.
2725          */
2726         gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2727
2728         if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2729                 mark_page_dirty(vcpu->kvm, gfn);
2730
2731         return true;
2732 }
2733
2734 /*
2735  * Return value:
2736  * - true: let the vcpu to access on the same address again.
2737  * - false: let the real page fault path to fix it.
2738  */
2739 static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2740                             u32 error_code)
2741 {
2742         struct kvm_shadow_walk_iterator iterator;
2743         bool ret = false;
2744         u64 spte = 0ull;
2745
2746         if (!page_fault_can_be_fast(vcpu, error_code))
2747                 return false;
2748
2749         walk_shadow_page_lockless_begin(vcpu);
2750         for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2751                 if (!is_shadow_present_pte(spte) || iterator.level < level)
2752                         break;
2753
2754         /*
2755          * If the mapping has been changed, let the vcpu fault on the
2756          * same address again.
2757          */
2758         if (!is_rmap_spte(spte)) {
2759                 ret = true;
2760                 goto exit;
2761         }
2762
2763         if (!is_last_spte(spte, level))
2764                 goto exit;
2765
2766         /*
2767          * Check if it is a spurious fault caused by TLB lazily flushed.
2768          *
2769          * Need not check the access of upper level table entries since
2770          * they are always ACC_ALL.
2771          */
2772          if (is_writable_pte(spte)) {
2773                 ret = true;
2774                 goto exit;
2775         }
2776
2777         /*
2778          * Currently, to simplify the code, only the spte write-protected
2779          * by dirty-log can be fast fixed.
2780          */
2781         if (!spte_is_locklessly_modifiable(spte))
2782                 goto exit;
2783
2784         /*
2785          * Currently, fast page fault only works for direct mapping since
2786          * the gfn is not stable for indirect shadow page.
2787          * See Documentation/virtual/kvm/locking.txt to get more detail.
2788          */
2789         ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
2790 exit:
2791         trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2792                               spte, ret);
2793         walk_shadow_page_lockless_end(vcpu);
2794
2795         return ret;
2796 }
2797
2798 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2799                          gva_t gva, pfn_t *pfn, bool write, bool *writable);
2800
2801 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2802                          gfn_t gfn, bool prefault)
2803 {
2804         int r;
2805         int level;
2806         int force_pt_level;
2807         pfn_t pfn;
2808         unsigned long mmu_seq;
2809         bool map_writable, write = error_code & PFERR_WRITE_MASK;
2810
2811         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2812         if (likely(!force_pt_level)) {
2813                 level = mapping_level(vcpu, gfn);
2814                 /*
2815                  * This path builds a PAE pagetable - so we can map
2816                  * 2mb pages at maximum. Therefore check if the level
2817                  * is larger than that.
2818                  */
2819                 if (level > PT_DIRECTORY_LEVEL)
2820                         level = PT_DIRECTORY_LEVEL;
2821
2822                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2823         } else
2824                 level = PT_PAGE_TABLE_LEVEL;
2825
2826         if (fast_page_fault(vcpu, v, level, error_code))
2827                 return 0;
2828
2829         mmu_seq = vcpu->kvm->mmu_notifier_seq;
2830         smp_rmb();
2831
2832         if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2833                 return 0;
2834
2835         if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2836                 return r;
2837
2838         spin_lock(&vcpu->kvm->mmu_lock);
2839         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
2840                 goto out_unlock;
2841         kvm_mmu_free_some_pages(vcpu);
2842         if (likely(!force_pt_level))
2843                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2844         r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2845                          prefault);
2846         spin_unlock(&vcpu->kvm->mmu_lock);
2847
2848
2849         return r;
2850
2851 out_unlock:
2852         spin_unlock(&vcpu->kvm->mmu_lock);
2853         kvm_release_pfn_clean(pfn);
2854         return 0;
2855 }
2856
2857
2858 static void mmu_free_roots(struct kvm_vcpu *vcpu)
2859 {
2860         int i;
2861         struct kvm_mmu_page *sp;
2862         LIST_HEAD(invalid_list);
2863
2864         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2865                 return;
2866         spin_lock(&vcpu->kvm->mmu_lock);
2867         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2868             (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2869              vcpu->arch.mmu.direct_map)) {
2870                 hpa_t root = vcpu->arch.mmu.root_hpa;
2871
2872                 sp = page_header(root);
2873                 --sp->root_count;
2874                 if (!sp->root_count && sp->role.invalid) {
2875                         kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2876                         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2877                 }
2878                 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2879                 spin_unlock(&vcpu->kvm->mmu_lock);
2880                 return;
2881         }
2882         for (i = 0; i < 4; ++i) {
2883                 hpa_t root = vcpu->arch.mmu.pae_root[i];
2884
2885                 if (root) {
2886                         root &= PT64_BASE_ADDR_MASK;
2887                         sp = page_header(root);
2888                         --sp->root_count;
2889                         if (!sp->root_count && sp->role.invalid)
2890                                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2891                                                          &invalid_list);
2892                 }
2893                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2894         }
2895         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2896         spin_unlock(&vcpu->kvm->mmu_lock);
2897         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2898 }
2899
2900 static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2901 {
2902         int ret = 0;
2903
2904         if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2905                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2906                 ret = 1;
2907         }
2908
2909         return ret;
2910 }
2911
2912 static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2913 {
2914         struct kvm_mmu_page *sp;
2915         unsigned i;
2916
2917         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2918                 spin_lock(&vcpu->kvm->mmu_lock);
2919                 kvm_mmu_free_some_pages(vcpu);
2920                 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2921                                       1, ACC_ALL, NULL);
2922                 ++sp->root_count;
2923                 spin_unlock(&vcpu->kvm->mmu_lock);
2924                 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2925         } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2926                 for (i = 0; i < 4; ++i) {
2927                         hpa_t root = vcpu->arch.mmu.pae_root[i];
2928
2929                         ASSERT(!VALID_PAGE(root));
2930                         spin_lock(&vcpu->kvm->mmu_lock);
2931                         kvm_mmu_free_some_pages(vcpu);
2932                         sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2933                                               i << 30,
2934                                               PT32_ROOT_LEVEL, 1, ACC_ALL,
2935                                               NULL);
2936                         root = __pa(sp->spt);
2937                         ++sp->root_count;
2938                         spin_unlock(&vcpu->kvm->mmu_lock);
2939                         vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2940                 }
2941                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2942         } else
2943                 BUG();
2944
2945         return 0;
2946 }
2947
2948 static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
2949 {
2950         struct kvm_mmu_page *sp;
2951         u64 pdptr, pm_mask;
2952         gfn_t root_gfn;
2953         int i;
2954
2955         root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
2956
2957         if (mmu_check_root(vcpu, root_gfn))
2958                 return 1;
2959
2960         /*
2961          * Do we shadow a long mode page table? If so we need to
2962          * write-protect the guests page table root.
2963          */
2964         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2965                 hpa_t root = vcpu->arch.mmu.root_hpa;
2966
2967                 ASSERT(!VALID_PAGE(root));
2968
2969                 spin_lock(&vcpu->kvm->mmu_lock);
2970                 kvm_mmu_free_some_pages(vcpu);
2971                 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2972                                       0, ACC_ALL, NULL);
2973                 root = __pa(sp->spt);
2974                 ++sp->root_count;
2975                 spin_unlock(&vcpu->kvm->mmu_lock);
2976                 vcpu->arch.mmu.root_hpa = root;
2977                 return 0;
2978         }
2979
2980         /*
2981          * We shadow a 32 bit page table. This may be a legacy 2-level
2982          * or a PAE 3-level page table. In either case we need to be aware that
2983          * the shadow page table may be a PAE or a long mode page table.
2984          */
2985         pm_mask = PT_PRESENT_MASK;
2986         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2987                 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2988
2989         for (i = 0; i < 4; ++i) {
2990                 hpa_t root = vcpu->arch.mmu.pae_root[i];
2991
2992                 ASSERT(!VALID_PAGE(root));
2993                 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
2994                         pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
2995                         if (!is_present_gpte(pdptr)) {
2996                                 vcpu->arch.mmu.pae_root[i] = 0;
2997                                 continue;
2998                         }
2999                         root_gfn = pdptr >> PAGE_SHIFT;
3000                         if (mmu_check_root(vcpu, root_gfn))
3001                                 return 1;
3002                 }
3003                 spin_lock(&vcpu->kvm->mmu_lock);
3004                 kvm_mmu_free_some_pages(vcpu);
3005                 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
3006                                       PT32_ROOT_LEVEL, 0,
3007                                       ACC_ALL, NULL);
3008                 root = __pa(sp->spt);
3009                 ++sp->root_count;
3010                 spin_unlock(&vcpu->kvm->mmu_lock);
3011
3012                 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
3013         }
3014         vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
3015
3016         /*
3017          * If we shadow a 32 bit page table with a long mode page
3018          * table we enter this path.
3019          */
3020         if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3021                 if (vcpu->arch.mmu.lm_root == NULL) {
3022                         /*
3023                          * The additional page necessary for this is only
3024                          * allocated on demand.
3025                          */
3026
3027                         u64 *lm_root;
3028
3029                         lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3030                         if (lm_root == NULL)
3031                                 return 1;
3032
3033                         lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3034
3035                         vcpu->arch.mmu.lm_root = lm_root;
3036                 }
3037
3038                 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3039         }
3040
3041         return 0;
3042 }
3043
3044 static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3045 {
3046         if (vcpu->arch.mmu.direct_map)
3047                 return mmu_alloc_direct_roots(vcpu);
3048         else
3049                 return mmu_alloc_shadow_roots(vcpu);
3050 }
3051
3052 static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3053 {
3054         int i;
3055         struct kvm_mmu_page *sp;
3056
3057         if (vcpu->arch.mmu.direct_map)
3058                 return;
3059
3060         if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3061                 return;
3062
3063         vcpu_clear_mmio_info(vcpu, ~0ul);
3064         kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3065         if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
3066                 hpa_t root = vcpu->arch.mmu.root_hpa;
3067                 sp = page_header(root);
3068                 mmu_sync_children(vcpu, sp);
3069                 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3070                 return;
3071         }
3072         for (i = 0; i < 4; ++i) {
3073                 hpa_t root = vcpu->arch.mmu.pae_root[i];
3074
3075                 if (root && VALID_PAGE(root)) {
3076                         root &= PT64_BASE_ADDR_MASK;
3077                         sp = page_header(root);
3078                         mmu_sync_children(vcpu, sp);
3079                 }
3080         }
3081         kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3082 }
3083
3084 void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3085 {
3086         spin_lock(&vcpu->kvm->mmu_lock);
3087         mmu_sync_roots(vcpu);
3088         spin_unlock(&vcpu->kvm->mmu_lock);
3089 }
3090
3091 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
3092                                   u32 access, struct x86_exception *exception)
3093 {
3094         if (exception)
3095                 exception->error_code = 0;
3096         return vaddr;
3097 }
3098
3099 static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
3100                                          u32 access,
3101                                          struct x86_exception *exception)
3102 {
3103         if (exception)
3104                 exception->error_code = 0;
3105         return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
3106 }
3107
3108 static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3109 {
3110         if (direct)
3111                 return vcpu_match_mmio_gpa(vcpu, addr);
3112
3113         return vcpu_match_mmio_gva(vcpu, addr);
3114 }
3115
3116
3117 /*
3118  * On direct hosts, the last spte is only allows two states
3119  * for mmio page fault:
3120  *   - It is the mmio spte
3121  *   - It is zapped or it is being zapped.
3122  *
3123  * This function completely checks the spte when the last spte
3124  * is not the mmio spte.
3125  */
3126 static bool check_direct_spte_mmio_pf(u64 spte)
3127 {
3128         return __check_direct_spte_mmio_pf(spte);
3129 }
3130
3131 static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3132 {
3133         struct kvm_shadow_walk_iterator iterator;
3134         u64 spte = 0ull;
3135
3136         walk_shadow_page_lockless_begin(vcpu);
3137         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3138                 if (!is_shadow_present_pte(spte))
3139                         break;
3140         walk_shadow_page_lockless_end(vcpu);
3141
3142         return spte;
3143 }
3144
3145 /*
3146  * If it is a real mmio page fault, return 1 and emulat the instruction
3147  * directly, return 0 to let CPU fault again on the address, -1 is
3148  * returned if bug is detected.
3149  */
3150 int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3151 {
3152         u64 spte;
3153
3154         if (quickly_check_mmio_pf(vcpu, addr, direct))
3155                 return 1;
3156
3157         spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3158
3159         if (is_mmio_spte(spte)) {
3160                 gfn_t gfn = get_mmio_spte_gfn(spte);
3161                 unsigned access = get_mmio_spte_access(spte);
3162
3163                 if (direct)
3164                         addr = 0;
3165
3166                 trace_handle_mmio_page_fault(addr, gfn, access);
3167                 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3168                 return 1;
3169         }
3170
3171         /*
3172          * It's ok if the gva is remapped by other cpus on shadow guest,
3173          * it's a BUG if the gfn is not a mmio page.
3174          */
3175         if (direct && !check_direct_spte_mmio_pf(spte))
3176                 return -1;
3177
3178         /*
3179          * If the page table is zapped by other cpus, let CPU fault again on
3180          * the address.
3181          */
3182         return 0;
3183 }
3184 EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3185
3186 static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3187                                   u32 error_code, bool direct)
3188 {
3189         int ret;
3190
3191         ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3192         WARN_ON(ret < 0);
3193         return ret;
3194 }
3195
3196 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
3197                                 u32 error_code, bool prefault)
3198 {
3199         gfn_t gfn;
3200         int r;
3201
3202         pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
3203
3204         if (unlikely(error_code & PFERR_RSVD_MASK))
3205                 return handle_mmio_page_fault(vcpu, gva, error_code, true);
3206
3207         r = mmu_topup_memory_caches(vcpu);
3208         if (r)
3209                 return r;
3210
3211         ASSERT(vcpu);
3212         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3213
3214         gfn = gva >> PAGE_SHIFT;
3215
3216         return nonpaging_map(vcpu, gva & PAGE_MASK,
3217                              error_code, gfn, prefault);
3218 }
3219
3220 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3221 {
3222         struct kvm_arch_async_pf arch;
3223
3224         arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3225         arch.gfn = gfn;
3226         arch.direct_map = vcpu->arch.mmu.direct_map;
3227         arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3228
3229         return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3230 }
3231
3232 static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3233 {
3234         if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3235                      kvm_event_needs_reinjection(vcpu)))
3236                 return false;
3237
3238         return kvm_x86_ops->interrupt_allowed(vcpu);
3239 }
3240
3241 static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3242                          gva_t gva, pfn_t *pfn, bool write, bool *writable)
3243 {
3244         bool async;
3245
3246         *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3247
3248         if (!async)
3249                 return false; /* *pfn has correct page already */
3250
3251         if (!prefault && can_do_async_pf(vcpu)) {
3252                 trace_kvm_try_async_get_page(gva, gfn);
3253                 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3254                         trace_kvm_async_pf_doublefault(gva, gfn);
3255                         kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3256                         return true;
3257                 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3258                         return true;
3259         }
3260
3261         *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3262
3263         return false;
3264 }
3265
3266 static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3267                           bool prefault)
3268 {
3269         pfn_t pfn;
3270         int r;
3271         int level;
3272         int force_pt_level;
3273         gfn_t gfn = gpa >> PAGE_SHIFT;
3274         unsigned long mmu_seq;
3275         int write = error_code & PFERR_WRITE_MASK;
3276         bool map_writable;
3277
3278         ASSERT(vcpu);
3279         ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3280
3281         if (unlikely(error_code & PFERR_RSVD_MASK))
3282                 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3283
3284         r = mmu_topup_memory_caches(vcpu);
3285         if (r)
3286                 return r;
3287
3288         force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3289         if (likely(!force_pt_level)) {
3290                 level = mapping_level(vcpu, gfn);
3291                 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3292         } else
3293                 level = PT_PAGE_TABLE_LEVEL;
3294
3295         if (fast_page_fault(vcpu, gpa, level, error_code))
3296                 return 0;
3297
3298         mmu_seq = vcpu->kvm->mmu_notifier_seq;
3299         smp_rmb();
3300
3301         if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3302                 return 0;
3303
3304         if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3305                 return r;
3306
3307         spin_lock(&vcpu->kvm->mmu_lock);
3308         if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3309                 goto out_unlock;
3310         kvm_mmu_free_some_pages(vcpu);
3311         if (likely(!force_pt_level))
3312                 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3313         r = __direct_map(vcpu, gpa, write, map_writable,
3314                          level, gfn, pfn, prefault);
3315         spin_unlock(&vcpu->kvm->mmu_lock);
3316
3317         return r;
3318
3319 out_unlock:
3320         spin_unlock(&vcpu->kvm->mmu_lock);
3321         kvm_release_pfn_clean(pfn);
3322         return 0;
3323 }
3324
3325 static void nonpaging_free(struct kvm_vcpu *vcpu)
3326 {
3327         mmu_free_roots(vcpu);
3328 }
3329
3330 static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3331                                   struct kvm_mmu *context)
3332 {
3333         context->new_cr3 = nonpaging_new_cr3;
3334         context->page_fault = nonpaging_page_fault;
3335         context->gva_to_gpa = nonpaging_gva_to_gpa;
3336         context->free = nonpaging_free;
3337         context->sync_page = nonpaging_sync_page;
3338         context->invlpg = nonpaging_invlpg;
3339         context->update_pte = nonpaging_update_pte;
3340         context->root_level = 0;
3341         context->shadow_root_level = PT32E_ROOT_LEVEL;
3342         context->root_hpa = INVALID_PAGE;
3343         context->direct_map = true;
3344         context->nx = false;
3345         return 0;
3346 }
3347
3348 void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3349 {
3350         ++vcpu->stat.tlb_flush;
3351         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3352 }
3353
3354 static void paging_new_cr3(struct kvm_vcpu *vcpu)
3355 {
3356         pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
3357         mmu_free_roots(vcpu);
3358 }
3359
3360 static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3361 {
3362         return kvm_read_cr3(vcpu);
3363 }
3364
3365 static void inject_page_fault(struct kvm_vcpu *vcpu,
3366                               struct x86_exception *fault)
3367 {
3368         vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3369 }
3370
3371 static void paging_free(struct kvm_vcpu *vcpu)
3372 {
3373         nonpaging_free(vcpu);
3374 }
3375
3376 static inline void protect_clean_gpte(unsigned *access, unsigned gpte)
3377 {
3378         unsigned mask;
3379
3380         BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
3381
3382         mask = (unsigned)~ACC_WRITE_MASK;
3383         /* Allow write access to dirty gptes */
3384         mask |= (gpte >> (PT_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & PT_WRITABLE_MASK;
3385         *access &= mask;
3386 }
3387
3388 static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3389                            int *nr_present)
3390 {
3391         if (unlikely(is_mmio_spte(*sptep))) {
3392                 if (gfn != get_mmio_spte_gfn(*sptep)) {
3393                         mmu_spte_clear_no_track(sptep);
3394                         return true;
3395                 }
3396
3397                 (*nr_present)++;
3398                 mark_mmio_spte(sptep, gfn, access);
3399                 return true;
3400         }
3401
3402         return false;
3403 }
3404
3405 static inline unsigned gpte_access(struct kvm_vcpu *vcpu, u64 gpte)
3406 {
3407         unsigned access;
3408
3409         access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
3410         access &= ~(gpte >> PT64_NX_SHIFT);
3411
3412         return access;
3413 }
3414
3415 static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3416 {
3417         unsigned index;
3418
3419         index = level - 1;
3420         index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3421         return mmu->last_pte_bitmap & (1 << index);
3422 }
3423
3424 #define PTTYPE 64
3425 #include "paging_tmpl.h"
3426 #undef PTTYPE
3427
3428 #define PTTYPE 32
3429 #include "paging_tmpl.h"
3430 #undef PTTYPE
3431
3432 static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3433                                   struct kvm_mmu *context)
3434 {
3435         int maxphyaddr = cpuid_maxphyaddr(vcpu);
3436         u64 exb_bit_rsvd = 0;
3437
3438         if (!context->nx)
3439                 exb_bit_rsvd = rsvd_bits(63, 63);
3440         switch (context->root_level) {
3441         case PT32_ROOT_LEVEL:
3442                 /* no rsvd bits for 2 level 4K page table entries */
3443                 context->rsvd_bits_mask[0][1] = 0;
3444                 context->rsvd_bits_mask[0][0] = 0;
3445                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3446
3447                 if (!is_pse(vcpu)) {
3448                         context->rsvd_bits_mask[1][1] = 0;
3449                         break;
3450                 }
3451
3452                 if (is_cpuid_PSE36())
3453                         /* 36bits PSE 4MB page */
3454                         context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3455                 else
3456                         /* 32 bits PSE 4MB page */
3457                         context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3458                 break;
3459         case PT32E_ROOT_LEVEL:
3460                 context->rsvd_bits_mask[0][2] =
3461                         rsvd_bits(maxphyaddr, 63) |
3462                         rsvd_bits(7, 8) | rsvd_bits(1, 2);      /* PDPTE */
3463                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3464                         rsvd_bits(maxphyaddr, 62);      /* PDE */
3465                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3466                         rsvd_bits(maxphyaddr, 62);      /* PTE */
3467                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3468                         rsvd_bits(maxphyaddr, 62) |
3469                         rsvd_bits(13, 20);              /* large page */
3470                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3471                 break;
3472         case PT64_ROOT_LEVEL:
3473                 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3474                         rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3475                 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3476                         rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3477                 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3478                         rsvd_bits(maxphyaddr, 51);
3479                 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3480                         rsvd_bits(maxphyaddr, 51);
3481                 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3482                 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3483                         rsvd_bits(maxphyaddr, 51) |
3484                         rsvd_bits(13, 29);
3485                 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3486                         rsvd_bits(maxphyaddr, 51) |
3487                         rsvd_bits(13, 20);              /* large page */
3488                 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3489                 break;
3490         }
3491 }
3492
3493 static void update_permission_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3494 {
3495         unsigned bit, byte, pfec;
3496         u8 map;
3497         bool fault, x, w, u, wf, uf, ff, smep;
3498
3499         smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3500         for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3501                 pfec = byte << 1;
3502                 map = 0;
3503                 wf = pfec & PFERR_WRITE_MASK;
3504                 uf = pfec & PFERR_USER_MASK;
3505                 ff = pfec & PFERR_FETCH_MASK;
3506                 for (bit = 0; bit < 8; ++bit) {
3507                         x = bit & ACC_EXEC_MASK;
3508                         w = bit & ACC_WRITE_MASK;
3509                         u = bit & ACC_USER_MASK;
3510
3511                         /* Not really needed: !nx will cause pte.nx to fault */
3512                         x |= !mmu->nx;
3513                         /* Allow supervisor writes if !cr0.wp */
3514                         w |= !is_write_protection(vcpu) && !uf;
3515                         /* Disallow supervisor fetches of user code if cr4.smep */
3516                         x &= !(smep && u && !uf);
3517
3518                         fault = (ff && !x) || (uf && !u) || (wf && !w);
3519                         map |= fault << bit;
3520                 }
3521                 mmu->permissions[byte] = map;
3522         }
3523 }
3524
3525 static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3526 {
3527         u8 map;
3528         unsigned level, root_level = mmu->root_level;
3529         const unsigned ps_set_index = 1 << 2;  /* bit 2 of index: ps */
3530
3531         if (root_level == PT32E_ROOT_LEVEL)
3532                 --root_level;
3533         /* PT_PAGE_TABLE_LEVEL always terminates */
3534         map = 1 | (1 << ps_set_index);
3535         for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3536                 if (level <= PT_PDPE_LEVEL
3537                     && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3538                         map |= 1 << (ps_set_index | (level - 1));
3539         }
3540         mmu->last_pte_bitmap = map;
3541 }
3542
3543 static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3544                                         struct kvm_mmu *context,
3545                                         int level)
3546 {
3547         context->nx = is_nx(vcpu);
3548         context->root_level = level;
3549
3550         reset_rsvds_bits_mask(vcpu, context);
3551         update_permission_bitmask(vcpu, context);
3552         update_last_pte_bitmap(vcpu, context);
3553
3554         ASSERT(is_pae(vcpu));
3555         context->new_cr3 = paging_new_cr3;
3556         context->page_fault = paging64_page_fault;
3557         context->gva_to_gpa = paging64_gva_to_gpa;
3558         context->sync_page = paging64_sync_page;
3559         context->invlpg = paging64_invlpg;
3560         context->update_pte = paging64_update_pte;
3561         context->free = paging_free;
3562         context->shadow_root_level = level;
3563         context->root_hpa = INVALID_PAGE;
3564         context->direct_map = false;
3565         return 0;
3566 }
3567
3568 static int paging64_init_context(struct kvm_vcpu *vcpu,
3569                                  struct kvm_mmu *context)
3570 {
3571         return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3572 }
3573
3574 static int paging32_init_context(struct kvm_vcpu *vcpu,
3575                                  struct kvm_mmu *context)
3576 {
3577         context->nx = false;
3578         context->root_level = PT32_ROOT_LEVEL;
3579
3580         reset_rsvds_bits_mask(vcpu, context);
3581         update_permission_bitmask(vcpu, context);
3582         update_last_pte_bitmap(vcpu, context);
3583
3584         context->new_cr3 = paging_new_cr3;
3585         context->page_fault = paging32_page_fault;
3586         context->gva_to_gpa = paging32_gva_to_gpa;
3587         context->free = paging_free;
3588         context->sync_page = paging32_sync_page;
3589         context->invlpg = paging32_invlpg;
3590         context->update_pte = paging32_update_pte;
3591         context->shadow_root_level = PT32E_ROOT_LEVEL;
3592         context->root_hpa = INVALID_PAGE;
3593         context->direct_map = false;
3594         return 0;
3595 }
3596
3597 static int paging32E_init_context(struct kvm_vcpu *vcpu,
3598                                   struct kvm_mmu *context)
3599 {
3600         return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3601 }
3602
3603 static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3604 {
3605         struct kvm_mmu *context = vcpu->arch.walk_mmu;
3606
3607         context->base_role.word = 0;
3608         context->new_cr3 = nonpaging_new_cr3;
3609         context->page_fault = tdp_page_fault;
3610         context->free = nonpaging_free;
3611         context->sync_page = nonpaging_sync_page;
3612         context->invlpg = nonpaging_invlpg;
3613         context->update_pte = nonpaging_update_pte;
3614         context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3615         context->root_hpa = INVALID_PAGE;
3616         context->direct_map = true;
3617         context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3618         context->get_cr3 = get_cr3;
3619         context->get_pdptr = kvm_pdptr_read;
3620         context->inject_page_fault = kvm_inject_page_fault;
3621
3622         if (!is_paging(vcpu)) {
3623                 context->nx = false;
3624                 context->gva_to_gpa = nonpaging_gva_to_gpa;
3625                 context->root_level = 0;
3626         } else if (is_long_mode(vcpu)) {
3627                 context->nx = is_nx(vcpu);
3628                 context->root_level = PT64_ROOT_LEVEL;
3629                 reset_rsvds_bits_mask(vcpu, context);
3630                 context->gva_to_gpa = paging64_gva_to_gpa;
3631         } else if (is_pae(vcpu)) {
3632                 context->nx = is_nx(vcpu);
3633                 context->root_level = PT32E_ROOT_LEVEL;
3634                 reset_rsvds_bits_mask(vcpu, context);
3635                 context->gva_to_gpa = paging64_gva_to_gpa;
3636         } else {
3637                 context->nx = false;
3638                 context->root_level = PT32_ROOT_LEVEL;
3639                 reset_rsvds_bits_mask(vcpu, context);
3640                 context->gva_to_gpa = paging32_gva_to_gpa;
3641         }
3642
3643         update_permission_bitmask(vcpu, context);
3644         update_last_pte_bitmap(vcpu, context);
3645
3646         return 0;
3647 }
3648
3649 int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3650 {
3651         int r;
3652         bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3653         ASSERT(vcpu);
3654         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3655
3656         if (!is_paging(vcpu))
3657                 r = nonpaging_init_context(vcpu, context);
3658         else if (is_long_mode(vcpu))
3659                 r = paging64_init_context(vcpu, context);
3660         else if (is_pae(vcpu))
3661                 r = paging32E_init_context(vcpu, context);
3662         else
3663                 r = paging32_init_context(vcpu, context);
3664
3665         vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
3666         vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3667         vcpu->arch.mmu.base_role.cr0_wp  = is_write_protection(vcpu);
3668         vcpu->arch.mmu.base_role.smep_andnot_wp
3669                 = smep && !is_write_protection(vcpu);
3670
3671         return r;
3672 }
3673 EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3674
3675 static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3676 {
3677         int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3678
3679         vcpu->arch.walk_mmu->set_cr3           = kvm_x86_ops->set_cr3;
3680         vcpu->arch.walk_mmu->get_cr3           = get_cr3;
3681         vcpu->arch.walk_mmu->get_pdptr         = kvm_pdptr_read;
3682         vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3683
3684         return r;
3685 }
3686
3687 static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3688 {
3689         struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3690
3691         g_context->get_cr3           = get_cr3;
3692         g_context->get_pdptr         = kvm_pdptr_read;
3693         g_context->inject_page_fault = kvm_inject_page_fault;
3694
3695         /*
3696          * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3697          * translation of l2_gpa to l1_gpa addresses is done using the
3698          * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3699          * functions between mmu and nested_mmu are swapped.
3700          */
3701         if (!is_paging(vcpu)) {
3702                 g_context->nx = false;
3703                 g_context->root_level = 0;
3704                 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3705         } else if (is_long_mode(vcpu)) {
3706                 g_context->nx = is_nx(vcpu);
3707                 g_context->root_level = PT64_ROOT_LEVEL;
3708                 reset_rsvds_bits_mask(vcpu, g_context);
3709                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3710         } else if (is_pae(vcpu)) {
3711                 g_context->nx = is_nx(vcpu);
3712                 g_context->root_level = PT32E_ROOT_LEVEL;
3713                 reset_rsvds_bits_mask(vcpu, g_context);
3714                 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3715         } else {
3716                 g_context->nx = false;
3717                 g_context->root_level = PT32_ROOT_LEVEL;
3718                 reset_rsvds_bits_mask(vcpu, g_context);
3719                 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3720         }
3721
3722         update_permission_bitmask(vcpu, g_context);
3723         update_last_pte_bitmap(vcpu, g_context);
3724
3725         return 0;
3726 }
3727
3728 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3729 {
3730         if (mmu_is_nested(vcpu))
3731                 return init_kvm_nested_mmu(vcpu);
3732         else if (tdp_enabled)
3733                 return init_kvm_tdp_mmu(vcpu);
3734         else
3735                 return init_kvm_softmmu(vcpu);
3736 }
3737
3738 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3739 {
3740         ASSERT(vcpu);
3741         if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3742                 /* mmu.free() should set root_hpa = INVALID_PAGE */
3743                 vcpu->arch.mmu.free(vcpu);
3744 }
3745
3746 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3747 {
3748         destroy_kvm_mmu(vcpu);
3749         return init_kvm_mmu(vcpu);
3750 }
3751 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3752
3753 int kvm_mmu_load(struct kvm_vcpu *vcpu)
3754 {
3755         int r;
3756
3757         r = mmu_topup_memory_caches(vcpu);
3758         if (r)
3759                 goto out;
3760         r = mmu_alloc_roots(vcpu);
3761         spin_lock(&vcpu->kvm->mmu_lock);
3762         mmu_sync_roots(vcpu);
3763         spin_unlock(&vcpu->kvm->mmu_lock);
3764         if (r)
3765                 goto out;
3766         /* set_cr3() should ensure TLB has been flushed */
3767         vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3768 out:
3769         return r;
3770 }
3771 EXPORT_SYMBOL_GPL(kvm_mmu_load);
3772
3773 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3774 {
3775         mmu_free_roots(vcpu);
3776 }
3777 EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3778
3779 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3780                                   struct kvm_mmu_page *sp, u64 *spte,
3781                                   const void *new)
3782 {
3783         if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3784                 ++vcpu->kvm->stat.mmu_pde_zapped;
3785                 return;
3786         }
3787
3788         ++vcpu->kvm->stat.mmu_pte_updated;
3789         vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3790 }
3791
3792 static bool need_remote_flush(u64 old, u64 new)
3793 {
3794         if (!is_shadow_present_pte(old))
3795                 return false;
3796         if (!is_shadow_present_pte(new))
3797                 return true;
3798         if ((old ^ new) & PT64_BASE_ADDR_MASK)
3799                 return true;
3800         old ^= PT64_NX_MASK;
3801         new ^= PT64_NX_MASK;
3802         return (old & ~new & PT64_PERM_MASK) != 0;
3803 }
3804
3805 static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3806                                     bool remote_flush, bool local_flush)
3807 {
3808         if (zap_page)
3809                 return;
3810
3811         if (remote_flush)
3812                 kvm_flush_remote_tlbs(vcpu->kvm);
3813         else if (local_flush)
3814                 kvm_mmu_flush_tlb(vcpu);
3815 }
3816
3817 static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3818                                     const u8 *new, int *bytes)
3819 {
3820         u64 gentry;
3821         int r;
3822
3823         /*
3824          * Assume that the pte write on a page table of the same type
3825          * as the current vcpu paging mode since we update the sptes only
3826          * when they have the same mode.
3827          */
3828         if (is_pae(vcpu) && *bytes == 4) {
3829                 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3830                 *gpa &= ~(gpa_t)7;
3831                 *bytes = 8;
3832                 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
3833                 if (r)
3834                         gentry = 0;
3835                 new = (const u8 *)&gentry;
3836         }
3837
3838         switch (*bytes) {
3839         case 4:
3840                 gentry = *(const u32 *)new;
3841                 break;
3842         case 8:
3843                 gentry = *(const u64 *)new;
3844                 break;
3845         default:
3846                 gentry = 0;
3847                 break;
3848         }
3849
3850         return gentry;
3851 }
3852
3853 /*
3854  * If we're seeing too many writes to a page, it may no longer be a page table,
3855  * or we may be forking, in which case it is better to unmap the page.
3856  */
3857 static bool detect_write_flooding(struct kvm_mmu_page *sp)
3858 {
3859         /*
3860          * Skip write-flooding detected for the sp whose level is 1, because
3861          * it can become unsync, then the guest page is not write-protected.
3862          */
3863         if (sp->role.level == PT_PAGE_TABLE_LEVEL)
3864                 return false;
3865
3866         return ++sp->write_flooding_count >= 3;
3867 }
3868
3869 /*
3870  * Misaligned accesses are too much trouble to fix up; also, they usually
3871  * indicate a page is not used as a page table.
3872  */
3873 static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3874                                     int bytes)
3875 {
3876         unsigned offset, pte_size, misaligned;
3877
3878         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3879                  gpa, bytes, sp->role.word);
3880
3881         offset = offset_in_page(gpa);
3882         pte_size = sp->role.cr4_pae ? 8 : 4;
3883
3884         /*
3885          * Sometimes, the OS only writes the last one bytes to update status
3886          * bits, for example, in linux, andb instruction is used in clear_bit().
3887          */
3888         if (!(offset & (pte_size - 1)) && bytes == 1)
3889                 return false;
3890
3891         misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3892         misaligned |= bytes < 4;
3893
3894         return misaligned;
3895 }
3896
3897 static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3898 {
3899         unsigned page_offset, quadrant;
3900         u64 *spte;
3901         int level;
3902
3903         page_offset = offset_in_page(gpa);
3904         level = sp->role.level;
3905         *nspte = 1;
3906         if (!sp->role.cr4_pae) {
3907                 page_offset <<= 1;      /* 32->64 */
3908                 /*
3909                  * A 32-bit pde maps 4MB while the shadow pdes map
3910                  * only 2MB.  So we need to double the offset again
3911                  * and zap two pdes instead of one.
3912                  */
3913                 if (level == PT32_ROOT_LEVEL) {
3914                         page_offset &= ~7; /* kill rounding error */
3915                         page_offset <<= 1;
3916                         *nspte = 2;
3917                 }
3918                 quadrant = page_offset >> PAGE_SHIFT;
3919                 page_offset &= ~PAGE_MASK;
3920                 if (quadrant != sp->role.quadrant)
3921                         return NULL;
3922         }
3923
3924         spte = &sp->spt[page_offset / sizeof(*spte)];
3925         return spte;
3926 }
3927
3928 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3929                        const u8 *new, int bytes)
3930 {
3931         gfn_t gfn = gpa >> PAGE_SHIFT;
3932         union kvm_mmu_page_role mask = { .word = 0 };
3933         struct kvm_mmu_page *sp;
3934         struct hlist_node *node;
3935         LIST_HEAD(invalid_list);
3936         u64 entry, gentry, *spte;
3937         int npte;
3938         bool remote_flush, local_flush, zap_page;
3939
3940         /*
3941          * If we don't have indirect shadow pages, it means no page is
3942          * write-protected, so we can exit simply.
3943          */
3944         if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3945                 return;
3946
3947         zap_page = remote_flush = local_flush = false;
3948
3949         pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3950
3951         gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
3952
3953         /*
3954          * No need to care whether allocation memory is successful
3955          * or not since pte prefetch is skiped if it does not have
3956          * enough objects in the cache.
3957          */
3958         mmu_topup_memory_caches(vcpu);
3959
3960         spin_lock(&vcpu->kvm->mmu_lock);
3961         ++vcpu->kvm->stat.mmu_pte_write;
3962         kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
3963
3964         mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
3965         for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
3966                 if (detect_write_misaligned(sp, gpa, bytes) ||
3967                       detect_write_flooding(sp)) {
3968                         zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3969                                                      &invalid_list);
3970                         ++vcpu->kvm->stat.mmu_flooded;
3971                         continue;
3972                 }
3973
3974                 spte = get_written_sptes(sp, gpa, &npte);
3975                 if (!spte)
3976                         continue;
3977
3978                 local_flush = true;
3979                 while (npte--) {
3980                         entry = *spte;
3981                         mmu_page_zap_pte(vcpu->kvm, sp, spte);
3982                         if (gentry &&
3983                               !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
3984                               & mask.word) && rmap_can_add(vcpu))
3985                                 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
3986                         if (need_remote_flush(entry, *spte))
3987                                 remote_flush = true;
3988                         ++spte;
3989                 }
3990         }
3991         mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
3992         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3993         kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
3994         spin_unlock(&vcpu->kvm->mmu_lock);
3995 }
3996
3997 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3998 {
3999         gpa_t gpa;
4000         int r;
4001
4002         if (vcpu->arch.mmu.direct_map)
4003                 return 0;
4004
4005         gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
4006
4007         r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4008
4009         return r;
4010 }
4011 EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
4012
4013 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
4014 {
4015         LIST_HEAD(invalid_list);
4016
4017         while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
4018                !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
4019                 struct kvm_mmu_page *sp;
4020
4021                 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
4022                                   struct kvm_mmu_page, link);
4023                 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4024                 ++vcpu->kvm->stat.mmu_recycled;
4025         }
4026         kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4027 }
4028
4029 static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4030 {
4031         if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4032                 return vcpu_match_mmio_gpa(vcpu, addr);
4033
4034         return vcpu_match_mmio_gva(vcpu, addr);
4035 }
4036
4037 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4038                        void *insn, int insn_len)
4039 {
4040         int r, emulation_type = EMULTYPE_RETRY;
4041         enum emulation_result er;
4042
4043         r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
4044         if (r < 0)
4045                 goto out;
4046
4047         if (!r) {
4048                 r = 1;
4049                 goto out;
4050         }
4051
4052         if (is_mmio_page_fault(vcpu, cr2))
4053                 emulation_type = 0;
4054
4055         er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
4056
4057         switch (er) {
4058         case EMULATE_DONE:
4059                 return 1;
4060         case EMULATE_DO_MMIO:
4061                 ++vcpu->stat.mmio_exits;
4062                 /* fall through */
4063         case EMULATE_FAIL:
4064                 return 0;
4065         default:
4066                 BUG();
4067         }
4068 out:
4069         return r;
4070 }
4071 EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4072
4073 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4074 {
4075         vcpu->arch.mmu.invlpg(vcpu, gva);
4076         kvm_mmu_flush_tlb(vcpu);
4077         ++vcpu->stat.invlpg;
4078 }
4079 EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4080
4081 void kvm_enable_tdp(void)
4082 {
4083         tdp_enabled = true;
4084 }
4085 EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4086
4087 void kvm_disable_tdp(void)
4088 {
4089         tdp_enabled = false;
4090 }
4091 EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4092
4093 static void free_mmu_pages(struct kvm_vcpu *vcpu)
4094 {
4095         free_page((unsigned long)vcpu->arch.mmu.pae_root);
4096         if (vcpu->arch.mmu.lm_root != NULL)
4097                 free_page((unsigned long)vcpu->arch.mmu.lm_root);
4098 }
4099
4100 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4101 {
4102         struct page *page;
4103         int i;
4104
4105         ASSERT(vcpu);
4106
4107         /*
4108          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4109          * Therefore we need to allocate shadow page tables in the first
4110          * 4GB of memory, which happens to fit the DMA32 zone.
4111          */
4112         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4113         if (!page)
4114                 return -ENOMEM;
4115
4116         vcpu->arch.mmu.pae_root = page_address(page);
4117         for (i = 0; i < 4; ++i)
4118                 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
4119
4120         return 0;
4121 }
4122
4123 int kvm_mmu_create(struct kvm_vcpu *vcpu)
4124 {
4125         ASSERT(vcpu);
4126
4127         vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4128         vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4129         vcpu->arch.mmu.translate_gpa = translate_gpa;
4130         vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
4131
4132         return alloc_mmu_pages(vcpu);
4133 }
4134
4135 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
4136 {
4137         ASSERT(vcpu);
4138         ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
4139
4140         return init_kvm_mmu(vcpu);
4141 }
4142
4143 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
4144 {
4145         struct kvm_memory_slot *memslot;
4146         gfn_t last_gfn;
4147         int i;
4148
4149         memslot = id_to_memslot(kvm->memslots, slot);
4150         last_gfn = memslot->base_gfn + memslot->npages - 1;
4151
4152         spin_lock(&kvm->mmu_lock);
4153
4154         for (i = PT_PAGE_TABLE_LEVEL;
4155              i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4156                 unsigned long *rmapp;
4157                 unsigned long last_index, index;
4158
4159                 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4160                 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
4161
4162                 for (index = 0; index <= last_index; ++index, ++rmapp) {
4163                         if (*rmapp)
4164                                 __rmap_write_protect(kvm, rmapp, false);
4165
4166                         if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4167                                 kvm_flush_remote_tlbs(kvm);
4168                                 cond_resched_lock(&kvm->mmu_lock);
4169                         }
4170                 }
4171         }
4172
4173         kvm_flush_remote_tlbs(kvm);
4174         spin_unlock(&kvm->mmu_lock);
4175 }
4176
4177 void kvm_mmu_zap_all(struct kvm *kvm)
4178 {
4179         struct kvm_mmu_page *sp, *node;
4180         LIST_HEAD(invalid_list);
4181
4182         spin_lock(&kvm->mmu_lock);
4183 restart:
4184         list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
4185                 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
4186                         goto restart;
4187
4188         kvm_mmu_commit_zap_page(kvm, &invalid_list);
4189         spin_unlock(&kvm->mmu_lock);
4190 }
4191
4192 static void kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
4193                                                 struct list_head *invalid_list)
4194 {
4195         struct kvm_mmu_page *page;
4196
4197         if (list_empty(&kvm->arch.active_mmu_pages))
4198                 return;
4199
4200         page = container_of(kvm->arch.active_mmu_pages.prev,
4201                             struct kvm_mmu_page, link);
4202         kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
4203 }
4204
4205 static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
4206 {
4207         struct kvm *kvm;
4208         int nr_to_scan = sc->nr_to_scan;
4209
4210         if (nr_to_scan == 0)
4211                 goto out;
4212
4213         raw_spin_lock(&kvm_lock);
4214
4215         list_for_each_entry(kvm, &vm_list, vm_list) {
4216                 int idx;
4217                 LIST_HEAD(invalid_list);
4218
4219                 /*
4220                  * Never scan more than sc->nr_to_scan VM instances.
4221                  * Will not hit this condition practically since we do not try
4222                  * to shrink more than one VM and it is very unlikely to see
4223                  * !n_used_mmu_pages so many times.
4224                  */
4225                 if (!nr_to_scan--)
4226                         break;
4227                 /*
4228                  * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4229                  * here. We may skip a VM instance errorneosly, but we do not
4230                  * want to shrink a VM that only started to populate its MMU
4231                  * anyway.
4232                  */
4233                 if (!kvm->arch.n_used_mmu_pages)
4234                         continue;
4235
4236                 idx = srcu_read_lock(&kvm->srcu);
4237                 spin_lock(&kvm->mmu_lock);
4238
4239                 kvm_mmu_remove_some_alloc_mmu_pages(kvm, &invalid_list);
4240                 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4241
4242                 spin_unlock(&kvm->mmu_lock);
4243                 srcu_read_unlock(&kvm->srcu, idx);
4244
4245                 list_move_tail(&kvm->vm_list, &vm_list);
4246                 break;
4247         }
4248
4249         raw_spin_unlock(&kvm_lock);
4250
4251 out:
4252         return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
4253 }
4254
4255 static struct shrinker mmu_shrinker = {
4256         .shrink = mmu_shrink,
4257         .seeks = DEFAULT_SEEKS * 10,
4258 };
4259
4260 static void mmu_destroy_caches(void)
4261 {
4262         if (pte_list_desc_cache)
4263                 kmem_cache_destroy(pte_list_desc_cache);
4264         if (mmu_page_header_cache)
4265                 kmem_cache_destroy(mmu_page_header_cache);
4266 }
4267
4268 int kvm_mmu_module_init(void)
4269 {
4270         pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4271                                             sizeof(struct pte_list_desc),
4272                                             0, 0, NULL);
4273         if (!pte_list_desc_cache)
4274                 goto nomem;
4275
4276         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4277                                                   sizeof(struct kvm_mmu_page),
4278                                                   0, 0, NULL);
4279         if (!mmu_page_header_cache)
4280                 goto nomem;
4281
4282         if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4283                 goto nomem;
4284
4285         register_shrinker(&mmu_shrinker);
4286
4287         return 0;
4288
4289 nomem:
4290         mmu_destroy_caches();
4291         return -ENOMEM;
4292 }
4293
4294 /*
4295  * Caculate mmu pages needed for kvm.
4296  */
4297 unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4298 {
4299         unsigned int nr_mmu_pages;
4300         unsigned int  nr_pages = 0;
4301         struct kvm_memslots *slots;
4302         struct kvm_memory_slot *memslot;
4303
4304         slots = kvm_memslots(kvm);
4305
4306         kvm_for_each_memslot(memslot, slots)
4307                 nr_pages += memslot->npages;
4308
4309         nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4310         nr_mmu_pages = max(nr_mmu_pages,
4311                         (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4312
4313         return nr_mmu_pages;
4314 }
4315
4316 int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4317 {
4318         struct kvm_shadow_walk_iterator iterator;
4319         u64 spte;
4320         int nr_sptes = 0;
4321
4322         walk_shadow_page_lockless_begin(vcpu);
4323         for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4324                 sptes[iterator.level-1] = spte;
4325                 nr_sptes++;
4326                 if (!is_shadow_present_pte(spte))
4327                         break;
4328         }
4329         walk_shadow_page_lockless_end(vcpu);
4330
4331         return nr_sptes;
4332 }
4333 EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4334
4335 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4336 {
4337         ASSERT(vcpu);
4338
4339         destroy_kvm_mmu(vcpu);
4340         free_mmu_pages(vcpu);
4341         mmu_free_memory_caches(vcpu);
4342 }
4343
4344 void kvm_mmu_module_exit(void)
4345 {
4346         mmu_destroy_caches();
4347         percpu_counter_destroy(&kvm_total_used_mmu_pages);
4348         unregister_shrinker(&mmu_shrinker);
4349         mmu_audit_disable();
4350 }