0de6b2b31f61a1700ee9fdf41ec426345f93331e
[pandora-kernel.git] / arch / x86 / kernel / cpu / perf_event.c
1 /*
2  * Performance events x86 architecture code
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2009 Jaswinder Singh Rajput
7  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/highmem.h>
26 #include <linux/cpu.h>
27 #include <linux/bitops.h>
28
29 #include <asm/apic.h>
30 #include <asm/stacktrace.h>
31 #include <asm/nmi.h>
32 #include <asm/compat.h>
33 #include <asm/smp.h>
34 #include <asm/alternative.h>
35
36 #if 0
37 #undef wrmsrl
38 #define wrmsrl(msr, val)                                        \
39 do {                                                            \
40         trace_printk("wrmsrl(%lx, %lx)\n", (unsigned long)(msr),\
41                         (unsigned long)(val));                  \
42         native_write_msr((msr), (u32)((u64)(val)),              \
43                         (u32)((u64)(val) >> 32));               \
44 } while (0)
45 #endif
46
47 /*
48  * best effort, GUP based copy_from_user() that assumes IRQ or NMI context
49  */
50 static unsigned long
51 copy_from_user_nmi(void *to, const void __user *from, unsigned long n)
52 {
53         unsigned long offset, addr = (unsigned long)from;
54         unsigned long size, len = 0;
55         struct page *page;
56         void *map;
57         int ret;
58
59         do {
60                 ret = __get_user_pages_fast(addr, 1, 0, &page);
61                 if (!ret)
62                         break;
63
64                 offset = addr & (PAGE_SIZE - 1);
65                 size = min(PAGE_SIZE - offset, n - len);
66
67                 map = kmap_atomic(page);
68                 memcpy(to, map+offset, size);
69                 kunmap_atomic(map);
70                 put_page(page);
71
72                 len  += size;
73                 to   += size;
74                 addr += size;
75
76         } while (len < n);
77
78         return len;
79 }
80
81 struct event_constraint {
82         union {
83                 unsigned long   idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
84                 u64             idxmsk64;
85         };
86         u64     code;
87         u64     cmask;
88         int     weight;
89 };
90
91 struct amd_nb {
92         int nb_id;  /* NorthBridge id */
93         int refcnt; /* reference count */
94         struct perf_event *owners[X86_PMC_IDX_MAX];
95         struct event_constraint event_constraints[X86_PMC_IDX_MAX];
96 };
97
98 struct intel_percore;
99
100 #define MAX_LBR_ENTRIES         16
101
102 struct cpu_hw_events {
103         /*
104          * Generic x86 PMC bits
105          */
106         struct perf_event       *events[X86_PMC_IDX_MAX]; /* in counter order */
107         unsigned long           active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
108         unsigned long           running[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
109         int                     enabled;
110
111         int                     n_events;
112         int                     n_added;
113         int                     n_txn;
114         int                     assign[X86_PMC_IDX_MAX]; /* event to counter assignment */
115         u64                     tags[X86_PMC_IDX_MAX];
116         struct perf_event       *event_list[X86_PMC_IDX_MAX]; /* in enabled order */
117
118         unsigned int            group_flag;
119
120         /*
121          * Intel DebugStore bits
122          */
123         struct debug_store      *ds;
124         u64                     pebs_enabled;
125
126         /*
127          * Intel LBR bits
128          */
129         int                             lbr_users;
130         void                            *lbr_context;
131         struct perf_branch_stack        lbr_stack;
132         struct perf_branch_entry        lbr_entries[MAX_LBR_ENTRIES];
133
134         /*
135          * Intel percore register state.
136          * Coordinate shared resources between HT threads.
137          */
138         int                             percore_used; /* Used by this CPU? */
139         struct intel_percore            *per_core;
140
141         /*
142          * AMD specific bits
143          */
144         struct amd_nb           *amd_nb;
145 };
146
147 #define __EVENT_CONSTRAINT(c, n, m, w) {\
148         { .idxmsk64 = (n) },            \
149         .code = (c),                    \
150         .cmask = (m),                   \
151         .weight = (w),                  \
152 }
153
154 #define EVENT_CONSTRAINT(c, n, m)       \
155         __EVENT_CONSTRAINT(c, n, m, HWEIGHT(n))
156
157 /*
158  * Constraint on the Event code.
159  */
160 #define INTEL_EVENT_CONSTRAINT(c, n)    \
161         EVENT_CONSTRAINT(c, n, ARCH_PERFMON_EVENTSEL_EVENT)
162
163 /*
164  * Constraint on the Event code + UMask + fixed-mask
165  *
166  * filter mask to validate fixed counter events.
167  * the following filters disqualify for fixed counters:
168  *  - inv
169  *  - edge
170  *  - cnt-mask
171  *  The other filters are supported by fixed counters.
172  *  The any-thread option is supported starting with v3.
173  */
174 #define FIXED_EVENT_CONSTRAINT(c, n)    \
175         EVENT_CONSTRAINT(c, (1ULL << (32+n)), X86_RAW_EVENT_MASK)
176
177 /*
178  * Constraint on the Event code + UMask
179  */
180 #define INTEL_UEVENT_CONSTRAINT(c, n)   \
181         EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVENT_MASK)
182
183 #define EVENT_CONSTRAINT_END            \
184         EVENT_CONSTRAINT(0, 0, 0)
185
186 #define for_each_event_constraint(e, c) \
187         for ((e) = (c); (e)->weight; (e)++)
188
189 /*
190  * Extra registers for specific events.
191  * Some events need large masks and require external MSRs.
192  * Define a mapping to these extra registers.
193  */
194 struct extra_reg {
195         unsigned int            event;
196         unsigned int            msr;
197         u64                     config_mask;
198         u64                     valid_mask;
199 };
200
201 #define EVENT_EXTRA_REG(e, ms, m, vm) { \
202         .event = (e),           \
203         .msr = (ms),            \
204         .config_mask = (m),     \
205         .valid_mask = (vm),     \
206         }
207 #define INTEL_EVENT_EXTRA_REG(event, msr, vm)   \
208         EVENT_EXTRA_REG(event, msr, ARCH_PERFMON_EVENTSEL_EVENT, vm)
209 #define EVENT_EXTRA_END EVENT_EXTRA_REG(0, 0, 0, 0)
210
211 union perf_capabilities {
212         struct {
213                 u64     lbr_format    : 6;
214                 u64     pebs_trap     : 1;
215                 u64     pebs_arch_reg : 1;
216                 u64     pebs_format   : 4;
217                 u64     smm_freeze    : 1;
218         };
219         u64     capabilities;
220 };
221
222 /*
223  * struct x86_pmu - generic x86 pmu
224  */
225 struct x86_pmu {
226         /*
227          * Generic x86 PMC bits
228          */
229         const char      *name;
230         int             version;
231         int             (*handle_irq)(struct pt_regs *);
232         void            (*disable_all)(void);
233         void            (*enable_all)(int added);
234         void            (*enable)(struct perf_event *);
235         void            (*disable)(struct perf_event *);
236         int             (*hw_config)(struct perf_event *event);
237         int             (*schedule_events)(struct cpu_hw_events *cpuc, int n, int *assign);
238         unsigned        eventsel;
239         unsigned        perfctr;
240         u64             (*event_map)(int);
241         int             max_events;
242         int             num_counters;
243         int             num_counters_fixed;
244         int             cntval_bits;
245         u64             cntval_mask;
246         int             apic;
247         u64             max_period;
248         struct event_constraint *
249                         (*get_event_constraints)(struct cpu_hw_events *cpuc,
250                                                  struct perf_event *event);
251
252         void            (*put_event_constraints)(struct cpu_hw_events *cpuc,
253                                                  struct perf_event *event);
254         struct event_constraint *event_constraints;
255         struct event_constraint *percore_constraints;
256         void            (*quirks)(void);
257         int             perfctr_second_write;
258
259         int             (*cpu_prepare)(int cpu);
260         void            (*cpu_starting)(int cpu);
261         void            (*cpu_dying)(int cpu);
262         void            (*cpu_dead)(int cpu);
263
264         /*
265          * Intel Arch Perfmon v2+
266          */
267         u64                     intel_ctrl;
268         union perf_capabilities intel_cap;
269
270         /*
271          * Intel DebugStore bits
272          */
273         int             bts, pebs;
274         int             bts_active, pebs_active;
275         int             pebs_record_size;
276         void            (*drain_pebs)(struct pt_regs *regs);
277         struct event_constraint *pebs_constraints;
278
279         /*
280          * Intel LBR
281          */
282         unsigned long   lbr_tos, lbr_from, lbr_to; /* MSR base regs       */
283         int             lbr_nr;                    /* hardware stack size */
284
285         /*
286          * Extra registers for events
287          */
288         struct extra_reg *extra_regs;
289 };
290
291 static struct x86_pmu x86_pmu __read_mostly;
292
293 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
294         .enabled = 1,
295 };
296
297 static int x86_perf_event_set_period(struct perf_event *event);
298
299 /*
300  * Generalized hw caching related hw_event table, filled
301  * in on a per model basis. A value of 0 means
302  * 'not supported', -1 means 'hw_event makes no sense on
303  * this CPU', any other value means the raw hw_event
304  * ID.
305  */
306
307 #define C(x) PERF_COUNT_HW_CACHE_##x
308
309 static u64 __read_mostly hw_cache_event_ids
310                                 [PERF_COUNT_HW_CACHE_MAX]
311                                 [PERF_COUNT_HW_CACHE_OP_MAX]
312                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
313 static u64 __read_mostly hw_cache_extra_regs
314                                 [PERF_COUNT_HW_CACHE_MAX]
315                                 [PERF_COUNT_HW_CACHE_OP_MAX]
316                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
317
318 /*
319  * Propagate event elapsed time into the generic event.
320  * Can only be executed on the CPU where the event is active.
321  * Returns the delta events processed.
322  */
323 static u64
324 x86_perf_event_update(struct perf_event *event)
325 {
326         struct hw_perf_event *hwc = &event->hw;
327         int shift = 64 - x86_pmu.cntval_bits;
328         u64 prev_raw_count, new_raw_count;
329         int idx = hwc->idx;
330         s64 delta;
331
332         if (idx == X86_PMC_IDX_FIXED_BTS)
333                 return 0;
334
335         /*
336          * Careful: an NMI might modify the previous event value.
337          *
338          * Our tactic to handle this is to first atomically read and
339          * exchange a new raw count - then add that new-prev delta
340          * count to the generic event atomically:
341          */
342 again:
343         prev_raw_count = local64_read(&hwc->prev_count);
344         rdmsrl(hwc->event_base, new_raw_count);
345
346         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
347                                         new_raw_count) != prev_raw_count)
348                 goto again;
349
350         /*
351          * Now we have the new raw value and have updated the prev
352          * timestamp already. We can now calculate the elapsed delta
353          * (event-)time and add that to the generic event.
354          *
355          * Careful, not all hw sign-extends above the physical width
356          * of the count.
357          */
358         delta = (new_raw_count << shift) - (prev_raw_count << shift);
359         delta >>= shift;
360
361         local64_add(delta, &event->count);
362         local64_sub(delta, &hwc->period_left);
363
364         return new_raw_count;
365 }
366
367 static inline int x86_pmu_addr_offset(int index)
368 {
369         int offset;
370
371         /* offset = X86_FEATURE_PERFCTR_CORE ? index << 1 : index */
372         alternative_io(ASM_NOP2,
373                        "shll $1, %%eax",
374                        X86_FEATURE_PERFCTR_CORE,
375                        "=a" (offset),
376                        "a"  (index));
377
378         return offset;
379 }
380
381 static inline unsigned int x86_pmu_config_addr(int index)
382 {
383         return x86_pmu.eventsel + x86_pmu_addr_offset(index);
384 }
385
386 static inline unsigned int x86_pmu_event_addr(int index)
387 {
388         return x86_pmu.perfctr + x86_pmu_addr_offset(index);
389 }
390
391 /*
392  * Find and validate any extra registers to set up.
393  */
394 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
395 {
396         struct extra_reg *er;
397
398         event->hw.extra_reg = 0;
399         event->hw.extra_config = 0;
400
401         if (!x86_pmu.extra_regs)
402                 return 0;
403
404         for (er = x86_pmu.extra_regs; er->msr; er++) {
405                 if (er->event != (config & er->config_mask))
406                         continue;
407                 if (event->attr.config1 & ~er->valid_mask)
408                         return -EINVAL;
409                 event->hw.extra_reg = er->msr;
410                 event->hw.extra_config = event->attr.config1;
411                 break;
412         }
413         return 0;
414 }
415
416 static atomic_t active_events;
417 static DEFINE_MUTEX(pmc_reserve_mutex);
418
419 #ifdef CONFIG_X86_LOCAL_APIC
420
421 static bool reserve_pmc_hardware(void)
422 {
423         int i;
424
425         for (i = 0; i < x86_pmu.num_counters; i++) {
426                 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
427                         goto perfctr_fail;
428         }
429
430         for (i = 0; i < x86_pmu.num_counters; i++) {
431                 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
432                         goto eventsel_fail;
433         }
434
435         return true;
436
437 eventsel_fail:
438         for (i--; i >= 0; i--)
439                 release_evntsel_nmi(x86_pmu_config_addr(i));
440
441         i = x86_pmu.num_counters;
442
443 perfctr_fail:
444         for (i--; i >= 0; i--)
445                 release_perfctr_nmi(x86_pmu_event_addr(i));
446
447         return false;
448 }
449
450 static void release_pmc_hardware(void)
451 {
452         int i;
453
454         for (i = 0; i < x86_pmu.num_counters; i++) {
455                 release_perfctr_nmi(x86_pmu_event_addr(i));
456                 release_evntsel_nmi(x86_pmu_config_addr(i));
457         }
458 }
459
460 #else
461
462 static bool reserve_pmc_hardware(void) { return true; }
463 static void release_pmc_hardware(void) {}
464
465 #endif
466
467 static bool check_hw_exists(void)
468 {
469         u64 val, val_new = 0;
470         int i, reg, ret = 0;
471
472         /*
473          * Check to see if the BIOS enabled any of the counters, if so
474          * complain and bail.
475          */
476         for (i = 0; i < x86_pmu.num_counters; i++) {
477                 reg = x86_pmu_config_addr(i);
478                 ret = rdmsrl_safe(reg, &val);
479                 if (ret)
480                         goto msr_fail;
481                 if (val & ARCH_PERFMON_EVENTSEL_ENABLE)
482                         goto bios_fail;
483         }
484
485         if (x86_pmu.num_counters_fixed) {
486                 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
487                 ret = rdmsrl_safe(reg, &val);
488                 if (ret)
489                         goto msr_fail;
490                 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
491                         if (val & (0x03 << i*4))
492                                 goto bios_fail;
493                 }
494         }
495
496         /*
497          * Now write a value and read it back to see if it matches,
498          * this is needed to detect certain hardware emulators (qemu/kvm)
499          * that don't trap on the MSR access and always return 0s.
500          */
501         val = 0xabcdUL;
502         ret = checking_wrmsrl(x86_pmu_event_addr(0), val);
503         ret |= rdmsrl_safe(x86_pmu_event_addr(0), &val_new);
504         if (ret || val != val_new)
505                 goto msr_fail;
506
507         return true;
508
509 bios_fail:
510         /*
511          * We still allow the PMU driver to operate:
512          */
513         printk(KERN_CONT "Broken BIOS detected, complain to your hardware vendor.\n");
514         printk(KERN_ERR FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg, val);
515
516         return true;
517
518 msr_fail:
519         printk(KERN_CONT "Broken PMU hardware detected, using software events only.\n");
520
521         return false;
522 }
523
524 static void reserve_ds_buffers(void);
525 static void release_ds_buffers(void);
526
527 static void hw_perf_event_destroy(struct perf_event *event)
528 {
529         if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
530                 release_pmc_hardware();
531                 release_ds_buffers();
532                 mutex_unlock(&pmc_reserve_mutex);
533         }
534 }
535
536 static inline int x86_pmu_initialized(void)
537 {
538         return x86_pmu.handle_irq != NULL;
539 }
540
541 static inline int
542 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
543 {
544         struct perf_event_attr *attr = &event->attr;
545         unsigned int cache_type, cache_op, cache_result;
546         u64 config, val;
547
548         config = attr->config;
549
550         cache_type = (config >>  0) & 0xff;
551         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
552                 return -EINVAL;
553
554         cache_op = (config >>  8) & 0xff;
555         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
556                 return -EINVAL;
557
558         cache_result = (config >> 16) & 0xff;
559         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
560                 return -EINVAL;
561
562         val = hw_cache_event_ids[cache_type][cache_op][cache_result];
563
564         if (val == 0)
565                 return -ENOENT;
566
567         if (val == -1)
568                 return -EINVAL;
569
570         hwc->config |= val;
571         attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
572         return x86_pmu_extra_regs(val, event);
573 }
574
575 static int x86_setup_perfctr(struct perf_event *event)
576 {
577         struct perf_event_attr *attr = &event->attr;
578         struct hw_perf_event *hwc = &event->hw;
579         u64 config;
580
581         if (!is_sampling_event(event)) {
582                 hwc->sample_period = x86_pmu.max_period;
583                 hwc->last_period = hwc->sample_period;
584                 local64_set(&hwc->period_left, hwc->sample_period);
585         } else {
586                 /*
587                  * If we have a PMU initialized but no APIC
588                  * interrupts, we cannot sample hardware
589                  * events (user-space has to fall back and
590                  * sample via a hrtimer based software event):
591                  */
592                 if (!x86_pmu.apic)
593                         return -EOPNOTSUPP;
594         }
595
596         /*
597          * Do not allow config1 (extended registers) to propagate,
598          * there's no sane user-space generalization yet:
599          */
600         if (attr->type == PERF_TYPE_RAW)
601                 return 0;
602
603         if (attr->type == PERF_TYPE_HW_CACHE)
604                 return set_ext_hw_attr(hwc, event);
605
606         if (attr->config >= x86_pmu.max_events)
607                 return -EINVAL;
608
609         /*
610          * The generic map:
611          */
612         config = x86_pmu.event_map(attr->config);
613
614         if (config == 0)
615                 return -ENOENT;
616
617         if (config == -1LL)
618                 return -EINVAL;
619
620         /*
621          * Branch tracing:
622          */
623         if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
624             !attr->freq && hwc->sample_period == 1) {
625                 /* BTS is not supported by this architecture. */
626                 if (!x86_pmu.bts_active)
627                         return -EOPNOTSUPP;
628
629                 /* BTS is currently only allowed for user-mode. */
630                 if (!attr->exclude_kernel)
631                         return -EOPNOTSUPP;
632         }
633
634         hwc->config |= config;
635
636         return 0;
637 }
638
639 static int x86_pmu_hw_config(struct perf_event *event)
640 {
641         if (event->attr.precise_ip) {
642                 int precise = 0;
643
644                 /* Support for constant skid */
645                 if (x86_pmu.pebs_active) {
646                         precise++;
647
648                         /* Support for IP fixup */
649                         if (x86_pmu.lbr_nr)
650                                 precise++;
651                 }
652
653                 if (event->attr.precise_ip > precise)
654                         return -EOPNOTSUPP;
655         }
656
657         /*
658          * Generate PMC IRQs:
659          * (keep 'enabled' bit clear for now)
660          */
661         event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
662
663         /*
664          * Count user and OS events unless requested not to
665          */
666         if (!event->attr.exclude_user)
667                 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
668         if (!event->attr.exclude_kernel)
669                 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
670
671         if (event->attr.type == PERF_TYPE_RAW)
672                 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
673
674         return x86_setup_perfctr(event);
675 }
676
677 /*
678  * Setup the hardware configuration for a given attr_type
679  */
680 static int __x86_pmu_event_init(struct perf_event *event)
681 {
682         int err;
683
684         if (!x86_pmu_initialized())
685                 return -ENODEV;
686
687         err = 0;
688         if (!atomic_inc_not_zero(&active_events)) {
689                 mutex_lock(&pmc_reserve_mutex);
690                 if (atomic_read(&active_events) == 0) {
691                         if (!reserve_pmc_hardware())
692                                 err = -EBUSY;
693                         else
694                                 reserve_ds_buffers();
695                 }
696                 if (!err)
697                         atomic_inc(&active_events);
698                 mutex_unlock(&pmc_reserve_mutex);
699         }
700         if (err)
701                 return err;
702
703         event->destroy = hw_perf_event_destroy;
704
705         event->hw.idx = -1;
706         event->hw.last_cpu = -1;
707         event->hw.last_tag = ~0ULL;
708
709         return x86_pmu.hw_config(event);
710 }
711
712 static void x86_pmu_disable_all(void)
713 {
714         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
715         int idx;
716
717         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
718                 u64 val;
719
720                 if (!test_bit(idx, cpuc->active_mask))
721                         continue;
722                 rdmsrl(x86_pmu_config_addr(idx), val);
723                 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
724                         continue;
725                 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
726                 wrmsrl(x86_pmu_config_addr(idx), val);
727         }
728 }
729
730 static void x86_pmu_disable(struct pmu *pmu)
731 {
732         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
733
734         if (!x86_pmu_initialized())
735                 return;
736
737         if (!cpuc->enabled)
738                 return;
739
740         cpuc->n_added = 0;
741         cpuc->enabled = 0;
742         barrier();
743
744         x86_pmu.disable_all();
745 }
746
747 static inline void __x86_pmu_enable_event(struct hw_perf_event *hwc,
748                                           u64 enable_mask)
749 {
750         if (hwc->extra_reg)
751                 wrmsrl(hwc->extra_reg, hwc->extra_config);
752         wrmsrl(hwc->config_base, hwc->config | enable_mask);
753 }
754
755 static void x86_pmu_enable_all(int added)
756 {
757         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
758         int idx;
759
760         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
761                 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
762
763                 if (!test_bit(idx, cpuc->active_mask))
764                         continue;
765
766                 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
767         }
768 }
769
770 static struct pmu pmu;
771
772 static inline int is_x86_event(struct perf_event *event)
773 {
774         return event->pmu == &pmu;
775 }
776
777 static int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
778 {
779         struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
780         unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
781         int i, j, w, wmax, num = 0;
782         struct hw_perf_event *hwc;
783
784         bitmap_zero(used_mask, X86_PMC_IDX_MAX);
785
786         for (i = 0; i < n; i++) {
787                 c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
788                 constraints[i] = c;
789         }
790
791         /*
792          * fastpath, try to reuse previous register
793          */
794         for (i = 0; i < n; i++) {
795                 hwc = &cpuc->event_list[i]->hw;
796                 c = constraints[i];
797
798                 /* never assigned */
799                 if (hwc->idx == -1)
800                         break;
801
802                 /* constraint still honored */
803                 if (!test_bit(hwc->idx, c->idxmsk))
804                         break;
805
806                 /* not already used */
807                 if (test_bit(hwc->idx, used_mask))
808                         break;
809
810                 __set_bit(hwc->idx, used_mask);
811                 if (assign)
812                         assign[i] = hwc->idx;
813         }
814         if (i == n)
815                 goto done;
816
817         /*
818          * begin slow path
819          */
820
821         bitmap_zero(used_mask, X86_PMC_IDX_MAX);
822
823         /*
824          * weight = number of possible counters
825          *
826          * 1    = most constrained, only works on one counter
827          * wmax = least constrained, works on any counter
828          *
829          * assign events to counters starting with most
830          * constrained events.
831          */
832         wmax = x86_pmu.num_counters;
833
834         /*
835          * when fixed event counters are present,
836          * wmax is incremented by 1 to account
837          * for one more choice
838          */
839         if (x86_pmu.num_counters_fixed)
840                 wmax++;
841
842         for (w = 1, num = n; num && w <= wmax; w++) {
843                 /* for each event */
844                 for (i = 0; num && i < n; i++) {
845                         c = constraints[i];
846                         hwc = &cpuc->event_list[i]->hw;
847
848                         if (c->weight != w)
849                                 continue;
850
851                         for_each_set_bit(j, c->idxmsk, X86_PMC_IDX_MAX) {
852                                 if (!test_bit(j, used_mask))
853                                         break;
854                         }
855
856                         if (j == X86_PMC_IDX_MAX)
857                                 break;
858
859                         __set_bit(j, used_mask);
860
861                         if (assign)
862                                 assign[i] = j;
863                         num--;
864                 }
865         }
866 done:
867         /*
868          * scheduling failed or is just a simulation,
869          * free resources if necessary
870          */
871         if (!assign || num) {
872                 for (i = 0; i < n; i++) {
873                         if (x86_pmu.put_event_constraints)
874                                 x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
875                 }
876         }
877         return num ? -ENOSPC : 0;
878 }
879
880 /*
881  * dogrp: true if must collect siblings events (group)
882  * returns total number of events and error code
883  */
884 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
885 {
886         struct perf_event *event;
887         int n, max_count;
888
889         max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
890
891         /* current number of events already accepted */
892         n = cpuc->n_events;
893
894         if (is_x86_event(leader)) {
895                 if (n >= max_count)
896                         return -ENOSPC;
897                 cpuc->event_list[n] = leader;
898                 n++;
899         }
900         if (!dogrp)
901                 return n;
902
903         list_for_each_entry(event, &leader->sibling_list, group_entry) {
904                 if (!is_x86_event(event) ||
905                     event->state <= PERF_EVENT_STATE_OFF)
906                         continue;
907
908                 if (n >= max_count)
909                         return -ENOSPC;
910
911                 cpuc->event_list[n] = event;
912                 n++;
913         }
914         return n;
915 }
916
917 static inline void x86_assign_hw_event(struct perf_event *event,
918                                 struct cpu_hw_events *cpuc, int i)
919 {
920         struct hw_perf_event *hwc = &event->hw;
921
922         hwc->idx = cpuc->assign[i];
923         hwc->last_cpu = smp_processor_id();
924         hwc->last_tag = ++cpuc->tags[i];
925
926         if (hwc->idx == X86_PMC_IDX_FIXED_BTS) {
927                 hwc->config_base = 0;
928                 hwc->event_base = 0;
929         } else if (hwc->idx >= X86_PMC_IDX_FIXED) {
930                 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
931                 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - X86_PMC_IDX_FIXED);
932         } else {
933                 hwc->config_base = x86_pmu_config_addr(hwc->idx);
934                 hwc->event_base  = x86_pmu_event_addr(hwc->idx);
935         }
936 }
937
938 static inline int match_prev_assignment(struct hw_perf_event *hwc,
939                                         struct cpu_hw_events *cpuc,
940                                         int i)
941 {
942         return hwc->idx == cpuc->assign[i] &&
943                 hwc->last_cpu == smp_processor_id() &&
944                 hwc->last_tag == cpuc->tags[i];
945 }
946
947 static void x86_pmu_start(struct perf_event *event, int flags);
948 static void x86_pmu_stop(struct perf_event *event, int flags);
949
950 static void x86_pmu_enable(struct pmu *pmu)
951 {
952         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
953         struct perf_event *event;
954         struct hw_perf_event *hwc;
955         int i, added = cpuc->n_added;
956
957         if (!x86_pmu_initialized())
958                 return;
959
960         if (cpuc->enabled)
961                 return;
962
963         if (cpuc->n_added) {
964                 int n_running = cpuc->n_events - cpuc->n_added;
965                 /*
966                  * apply assignment obtained either from
967                  * hw_perf_group_sched_in() or x86_pmu_enable()
968                  *
969                  * step1: save events moving to new counters
970                  * step2: reprogram moved events into new counters
971                  */
972                 for (i = 0; i < n_running; i++) {
973                         event = cpuc->event_list[i];
974                         hwc = &event->hw;
975
976                         /*
977                          * we can avoid reprogramming counter if:
978                          * - assigned same counter as last time
979                          * - running on same CPU as last time
980                          * - no other event has used the counter since
981                          */
982                         if (hwc->idx == -1 ||
983                             match_prev_assignment(hwc, cpuc, i))
984                                 continue;
985
986                         /*
987                          * Ensure we don't accidentally enable a stopped
988                          * counter simply because we rescheduled.
989                          */
990                         if (hwc->state & PERF_HES_STOPPED)
991                                 hwc->state |= PERF_HES_ARCH;
992
993                         x86_pmu_stop(event, PERF_EF_UPDATE);
994                 }
995
996                 for (i = 0; i < cpuc->n_events; i++) {
997                         event = cpuc->event_list[i];
998                         hwc = &event->hw;
999
1000                         if (!match_prev_assignment(hwc, cpuc, i))
1001                                 x86_assign_hw_event(event, cpuc, i);
1002                         else if (i < n_running)
1003                                 continue;
1004
1005                         if (hwc->state & PERF_HES_ARCH)
1006                                 continue;
1007
1008                         x86_pmu_start(event, PERF_EF_RELOAD);
1009                 }
1010                 cpuc->n_added = 0;
1011                 perf_events_lapic_init();
1012         }
1013
1014         cpuc->enabled = 1;
1015         barrier();
1016
1017         x86_pmu.enable_all(added);
1018 }
1019
1020 static inline void x86_pmu_disable_event(struct perf_event *event)
1021 {
1022         struct hw_perf_event *hwc = &event->hw;
1023
1024         wrmsrl(hwc->config_base, hwc->config);
1025 }
1026
1027 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
1028
1029 /*
1030  * Set the next IRQ period, based on the hwc->period_left value.
1031  * To be called with the event disabled in hw:
1032  */
1033 static int
1034 x86_perf_event_set_period(struct perf_event *event)
1035 {
1036         struct hw_perf_event *hwc = &event->hw;
1037         s64 left = local64_read(&hwc->period_left);
1038         s64 period = hwc->sample_period;
1039         int ret = 0, idx = hwc->idx;
1040
1041         if (idx == X86_PMC_IDX_FIXED_BTS)
1042                 return 0;
1043
1044         /*
1045          * If we are way outside a reasonable range then just skip forward:
1046          */
1047         if (unlikely(left <= -period)) {
1048                 left = period;
1049                 local64_set(&hwc->period_left, left);
1050                 hwc->last_period = period;
1051                 ret = 1;
1052         }
1053
1054         if (unlikely(left <= 0)) {
1055                 left += period;
1056                 local64_set(&hwc->period_left, left);
1057                 hwc->last_period = period;
1058                 ret = 1;
1059         }
1060         /*
1061          * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1062          */
1063         if (unlikely(left < 2))
1064                 left = 2;
1065
1066         if (left > x86_pmu.max_period)
1067                 left = x86_pmu.max_period;
1068
1069         per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
1070
1071         /*
1072          * The hw event starts counting from this event offset,
1073          * mark it to be able to extra future deltas:
1074          */
1075         local64_set(&hwc->prev_count, (u64)-left);
1076
1077         wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1078
1079         /*
1080          * Due to erratum on certan cpu we need
1081          * a second write to be sure the register
1082          * is updated properly
1083          */
1084         if (x86_pmu.perfctr_second_write) {
1085                 wrmsrl(hwc->event_base,
1086                         (u64)(-left) & x86_pmu.cntval_mask);
1087         }
1088
1089         perf_event_update_userpage(event);
1090
1091         return ret;
1092 }
1093
1094 static void x86_pmu_enable_event(struct perf_event *event)
1095 {
1096         if (__this_cpu_read(cpu_hw_events.enabled))
1097                 __x86_pmu_enable_event(&event->hw,
1098                                        ARCH_PERFMON_EVENTSEL_ENABLE);
1099 }
1100
1101 /*
1102  * Add a single event to the PMU.
1103  *
1104  * The event is added to the group of enabled events
1105  * but only if it can be scehduled with existing events.
1106  */
1107 static int x86_pmu_add(struct perf_event *event, int flags)
1108 {
1109         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1110         struct hw_perf_event *hwc;
1111         int assign[X86_PMC_IDX_MAX];
1112         int n, n0, ret;
1113
1114         hwc = &event->hw;
1115
1116         perf_pmu_disable(event->pmu);
1117         n0 = cpuc->n_events;
1118         ret = n = collect_events(cpuc, event, false);
1119         if (ret < 0)
1120                 goto out;
1121
1122         hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1123         if (!(flags & PERF_EF_START))
1124                 hwc->state |= PERF_HES_ARCH;
1125
1126         /*
1127          * If group events scheduling transaction was started,
1128          * skip the schedulability test here, it will be performed
1129          * at commit time (->commit_txn) as a whole
1130          */
1131         if (cpuc->group_flag & PERF_EVENT_TXN)
1132                 goto done_collect;
1133
1134         ret = x86_pmu.schedule_events(cpuc, n, assign);
1135         if (ret)
1136                 goto out;
1137         /*
1138          * copy new assignment, now we know it is possible
1139          * will be used by hw_perf_enable()
1140          */
1141         memcpy(cpuc->assign, assign, n*sizeof(int));
1142
1143 done_collect:
1144         cpuc->n_events = n;
1145         cpuc->n_added += n - n0;
1146         cpuc->n_txn += n - n0;
1147
1148         ret = 0;
1149 out:
1150         perf_pmu_enable(event->pmu);
1151         return ret;
1152 }
1153
1154 static void x86_pmu_start(struct perf_event *event, int flags)
1155 {
1156         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1157         int idx = event->hw.idx;
1158
1159         if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1160                 return;
1161
1162         if (WARN_ON_ONCE(idx == -1))
1163                 return;
1164
1165         if (flags & PERF_EF_RELOAD) {
1166                 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1167                 x86_perf_event_set_period(event);
1168         }
1169
1170         event->hw.state = 0;
1171
1172         cpuc->events[idx] = event;
1173         __set_bit(idx, cpuc->active_mask);
1174         __set_bit(idx, cpuc->running);
1175         x86_pmu.enable(event);
1176         perf_event_update_userpage(event);
1177 }
1178
1179 void perf_event_print_debug(void)
1180 {
1181         u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
1182         u64 pebs;
1183         struct cpu_hw_events *cpuc;
1184         unsigned long flags;
1185         int cpu, idx;
1186
1187         if (!x86_pmu.num_counters)
1188                 return;
1189
1190         local_irq_save(flags);
1191
1192         cpu = smp_processor_id();
1193         cpuc = &per_cpu(cpu_hw_events, cpu);
1194
1195         if (x86_pmu.version >= 2) {
1196                 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1197                 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1198                 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1199                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1200                 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1201
1202                 pr_info("\n");
1203                 pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
1204                 pr_info("CPU#%d: status:     %016llx\n", cpu, status);
1205                 pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
1206                 pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
1207                 pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
1208         }
1209         pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
1210
1211         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1212                 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1213                 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
1214
1215                 prev_left = per_cpu(pmc_prev_left[idx], cpu);
1216
1217                 pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
1218                         cpu, idx, pmc_ctrl);
1219                 pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
1220                         cpu, idx, pmc_count);
1221                 pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
1222                         cpu, idx, prev_left);
1223         }
1224         for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
1225                 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1226
1227                 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
1228                         cpu, idx, pmc_count);
1229         }
1230         local_irq_restore(flags);
1231 }
1232
1233 static void x86_pmu_stop(struct perf_event *event, int flags)
1234 {
1235         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1236         struct hw_perf_event *hwc = &event->hw;
1237
1238         if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1239                 x86_pmu.disable(event);
1240                 cpuc->events[hwc->idx] = NULL;
1241                 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1242                 hwc->state |= PERF_HES_STOPPED;
1243         }
1244
1245         if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1246                 /*
1247                  * Drain the remaining delta count out of a event
1248                  * that we are disabling:
1249                  */
1250                 x86_perf_event_update(event);
1251                 hwc->state |= PERF_HES_UPTODATE;
1252         }
1253 }
1254
1255 static void x86_pmu_del(struct perf_event *event, int flags)
1256 {
1257         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1258         int i;
1259
1260         /*
1261          * If we're called during a txn, we don't need to do anything.
1262          * The events never got scheduled and ->cancel_txn will truncate
1263          * the event_list.
1264          */
1265         if (cpuc->group_flag & PERF_EVENT_TXN)
1266                 return;
1267
1268         x86_pmu_stop(event, PERF_EF_UPDATE);
1269
1270         for (i = 0; i < cpuc->n_events; i++) {
1271                 if (event == cpuc->event_list[i]) {
1272
1273                         if (x86_pmu.put_event_constraints)
1274                                 x86_pmu.put_event_constraints(cpuc, event);
1275
1276                         while (++i < cpuc->n_events)
1277                                 cpuc->event_list[i-1] = cpuc->event_list[i];
1278
1279                         --cpuc->n_events;
1280                         break;
1281                 }
1282         }
1283         perf_event_update_userpage(event);
1284 }
1285
1286 static int x86_pmu_handle_irq(struct pt_regs *regs)
1287 {
1288         struct perf_sample_data data;
1289         struct cpu_hw_events *cpuc;
1290         struct perf_event *event;
1291         int idx, handled = 0;
1292         u64 val;
1293
1294         perf_sample_data_init(&data, 0);
1295
1296         cpuc = &__get_cpu_var(cpu_hw_events);
1297
1298         /*
1299          * Some chipsets need to unmask the LVTPC in a particular spot
1300          * inside the nmi handler.  As a result, the unmasking was pushed
1301          * into all the nmi handlers.
1302          *
1303          * This generic handler doesn't seem to have any issues where the
1304          * unmasking occurs so it was left at the top.
1305          */
1306         apic_write(APIC_LVTPC, APIC_DM_NMI);
1307
1308         for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1309                 if (!test_bit(idx, cpuc->active_mask)) {
1310                         /*
1311                          * Though we deactivated the counter some cpus
1312                          * might still deliver spurious interrupts still
1313                          * in flight. Catch them:
1314                          */
1315                         if (__test_and_clear_bit(idx, cpuc->running))
1316                                 handled++;
1317                         continue;
1318                 }
1319
1320                 event = cpuc->events[idx];
1321
1322                 val = x86_perf_event_update(event);
1323                 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1324                         continue;
1325
1326                 /*
1327                  * event overflow
1328                  */
1329                 handled++;
1330                 data.period     = event->hw.last_period;
1331
1332                 if (!x86_perf_event_set_period(event))
1333                         continue;
1334
1335                 if (perf_event_overflow(event, 1, &data, regs))
1336                         x86_pmu_stop(event, 0);
1337         }
1338
1339         if (handled)
1340                 inc_irq_stat(apic_perf_irqs);
1341
1342         return handled;
1343 }
1344
1345 void perf_events_lapic_init(void)
1346 {
1347         if (!x86_pmu.apic || !x86_pmu_initialized())
1348                 return;
1349
1350         /*
1351          * Always use NMI for PMU
1352          */
1353         apic_write(APIC_LVTPC, APIC_DM_NMI);
1354 }
1355
1356 struct pmu_nmi_state {
1357         unsigned int    marked;
1358         int             handled;
1359 };
1360
1361 static DEFINE_PER_CPU(struct pmu_nmi_state, pmu_nmi);
1362
1363 static int __kprobes
1364 perf_event_nmi_handler(struct notifier_block *self,
1365                          unsigned long cmd, void *__args)
1366 {
1367         struct die_args *args = __args;
1368         unsigned int this_nmi;
1369         int handled;
1370
1371         if (!atomic_read(&active_events))
1372                 return NOTIFY_DONE;
1373
1374         switch (cmd) {
1375         case DIE_NMI:
1376                 break;
1377         case DIE_NMIUNKNOWN:
1378                 this_nmi = percpu_read(irq_stat.__nmi_count);
1379                 if (this_nmi != __this_cpu_read(pmu_nmi.marked))
1380                         /* let the kernel handle the unknown nmi */
1381                         return NOTIFY_DONE;
1382                 /*
1383                  * This one is a PMU back-to-back nmi. Two events
1384                  * trigger 'simultaneously' raising two back-to-back
1385                  * NMIs. If the first NMI handles both, the latter
1386                  * will be empty and daze the CPU. So, we drop it to
1387                  * avoid false-positive 'unknown nmi' messages.
1388                  */
1389                 return NOTIFY_STOP;
1390         default:
1391                 return NOTIFY_DONE;
1392         }
1393
1394         handled = x86_pmu.handle_irq(args->regs);
1395         if (!handled)
1396                 return NOTIFY_DONE;
1397
1398         this_nmi = percpu_read(irq_stat.__nmi_count);
1399         if ((handled > 1) ||
1400                 /* the next nmi could be a back-to-back nmi */
1401             ((__this_cpu_read(pmu_nmi.marked) == this_nmi) &&
1402              (__this_cpu_read(pmu_nmi.handled) > 1))) {
1403                 /*
1404                  * We could have two subsequent back-to-back nmis: The
1405                  * first handles more than one counter, the 2nd
1406                  * handles only one counter and the 3rd handles no
1407                  * counter.
1408                  *
1409                  * This is the 2nd nmi because the previous was
1410                  * handling more than one counter. We will mark the
1411                  * next (3rd) and then drop it if unhandled.
1412                  */
1413                 __this_cpu_write(pmu_nmi.marked, this_nmi + 1);
1414                 __this_cpu_write(pmu_nmi.handled, handled);
1415         }
1416
1417         return NOTIFY_STOP;
1418 }
1419
1420 static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1421         .notifier_call          = perf_event_nmi_handler,
1422         .next                   = NULL,
1423         .priority               = NMI_LOCAL_LOW_PRIOR,
1424 };
1425
1426 static struct event_constraint unconstrained;
1427 static struct event_constraint emptyconstraint;
1428
1429 static struct event_constraint *
1430 x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
1431 {
1432         struct event_constraint *c;
1433
1434         if (x86_pmu.event_constraints) {
1435                 for_each_event_constraint(c, x86_pmu.event_constraints) {
1436                         if ((event->hw.config & c->cmask) == c->code)
1437                                 return c;
1438                 }
1439         }
1440
1441         return &unconstrained;
1442 }
1443
1444 #include "perf_event_amd.c"
1445 #include "perf_event_p6.c"
1446 #include "perf_event_p4.c"
1447 #include "perf_event_intel_lbr.c"
1448 #include "perf_event_intel_ds.c"
1449 #include "perf_event_intel.c"
1450
1451 static int __cpuinit
1452 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1453 {
1454         unsigned int cpu = (long)hcpu;
1455         int ret = NOTIFY_OK;
1456
1457         switch (action & ~CPU_TASKS_FROZEN) {
1458         case CPU_UP_PREPARE:
1459                 if (x86_pmu.cpu_prepare)
1460                         ret = x86_pmu.cpu_prepare(cpu);
1461                 break;
1462
1463         case CPU_STARTING:
1464                 if (x86_pmu.cpu_starting)
1465                         x86_pmu.cpu_starting(cpu);
1466                 break;
1467
1468         case CPU_DYING:
1469                 if (x86_pmu.cpu_dying)
1470                         x86_pmu.cpu_dying(cpu);
1471                 break;
1472
1473         case CPU_UP_CANCELED:
1474         case CPU_DEAD:
1475                 if (x86_pmu.cpu_dead)
1476                         x86_pmu.cpu_dead(cpu);
1477                 break;
1478
1479         default:
1480                 break;
1481         }
1482
1483         return ret;
1484 }
1485
1486 static void __init pmu_check_apic(void)
1487 {
1488         if (cpu_has_apic)
1489                 return;
1490
1491         x86_pmu.apic = 0;
1492         pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1493         pr_info("no hardware sampling interrupt available.\n");
1494 }
1495
1496 static int __init init_hw_perf_events(void)
1497 {
1498         struct event_constraint *c;
1499         int err;
1500
1501         pr_info("Performance Events: ");
1502
1503         switch (boot_cpu_data.x86_vendor) {
1504         case X86_VENDOR_INTEL:
1505                 err = intel_pmu_init();
1506                 break;
1507         case X86_VENDOR_AMD:
1508                 err = amd_pmu_init();
1509                 break;
1510         default:
1511                 return 0;
1512         }
1513         if (err != 0) {
1514                 pr_cont("no PMU driver, software events only.\n");
1515                 return 0;
1516         }
1517
1518         pmu_check_apic();
1519
1520         /* sanity check that the hardware exists or is emulated */
1521         if (!check_hw_exists())
1522                 return 0;
1523
1524         pr_cont("%s PMU driver.\n", x86_pmu.name);
1525
1526         if (x86_pmu.quirks)
1527                 x86_pmu.quirks();
1528
1529         if (x86_pmu.num_counters > X86_PMC_MAX_GENERIC) {
1530                 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
1531                      x86_pmu.num_counters, X86_PMC_MAX_GENERIC);
1532                 x86_pmu.num_counters = X86_PMC_MAX_GENERIC;
1533         }
1534         x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1535
1536         if (x86_pmu.num_counters_fixed > X86_PMC_MAX_FIXED) {
1537                 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
1538                      x86_pmu.num_counters_fixed, X86_PMC_MAX_FIXED);
1539                 x86_pmu.num_counters_fixed = X86_PMC_MAX_FIXED;
1540         }
1541
1542         x86_pmu.intel_ctrl |=
1543                 ((1LL << x86_pmu.num_counters_fixed)-1) << X86_PMC_IDX_FIXED;
1544
1545         perf_events_lapic_init();
1546         register_die_notifier(&perf_event_nmi_notifier);
1547
1548         unconstrained = (struct event_constraint)
1549                 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1550                                    0, x86_pmu.num_counters);
1551
1552         if (x86_pmu.event_constraints) {
1553                 for_each_event_constraint(c, x86_pmu.event_constraints) {
1554                         if (c->cmask != X86_RAW_EVENT_MASK)
1555                                 continue;
1556
1557                         c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
1558                         c->weight += x86_pmu.num_counters;
1559                 }
1560         }
1561
1562         pr_info("... version:                %d\n",     x86_pmu.version);
1563         pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
1564         pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
1565         pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
1566         pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
1567         pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed);
1568         pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
1569
1570         perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1571         perf_cpu_notifier(x86_pmu_notifier);
1572
1573         return 0;
1574 }
1575 early_initcall(init_hw_perf_events);
1576
1577 static inline void x86_pmu_read(struct perf_event *event)
1578 {
1579         x86_perf_event_update(event);
1580 }
1581
1582 /*
1583  * Start group events scheduling transaction
1584  * Set the flag to make pmu::enable() not perform the
1585  * schedulability test, it will be performed at commit time
1586  */
1587 static void x86_pmu_start_txn(struct pmu *pmu)
1588 {
1589         perf_pmu_disable(pmu);
1590         __this_cpu_or(cpu_hw_events.group_flag, PERF_EVENT_TXN);
1591         __this_cpu_write(cpu_hw_events.n_txn, 0);
1592 }
1593
1594 /*
1595  * Stop group events scheduling transaction
1596  * Clear the flag and pmu::enable() will perform the
1597  * schedulability test.
1598  */
1599 static void x86_pmu_cancel_txn(struct pmu *pmu)
1600 {
1601         __this_cpu_and(cpu_hw_events.group_flag, ~PERF_EVENT_TXN);
1602         /*
1603          * Truncate the collected events.
1604          */
1605         __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1606         __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1607         perf_pmu_enable(pmu);
1608 }
1609
1610 /*
1611  * Commit group events scheduling transaction
1612  * Perform the group schedulability test as a whole
1613  * Return 0 if success
1614  */
1615 static int x86_pmu_commit_txn(struct pmu *pmu)
1616 {
1617         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1618         int assign[X86_PMC_IDX_MAX];
1619         int n, ret;
1620
1621         n = cpuc->n_events;
1622
1623         if (!x86_pmu_initialized())
1624                 return -EAGAIN;
1625
1626         ret = x86_pmu.schedule_events(cpuc, n, assign);
1627         if (ret)
1628                 return ret;
1629
1630         /*
1631          * copy new assignment, now we know it is possible
1632          * will be used by hw_perf_enable()
1633          */
1634         memcpy(cpuc->assign, assign, n*sizeof(int));
1635
1636         cpuc->group_flag &= ~PERF_EVENT_TXN;
1637         perf_pmu_enable(pmu);
1638         return 0;
1639 }
1640
1641 /*
1642  * validate that we can schedule this event
1643  */
1644 static int validate_event(struct perf_event *event)
1645 {
1646         struct cpu_hw_events *fake_cpuc;
1647         struct event_constraint *c;
1648         int ret = 0;
1649
1650         fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
1651         if (!fake_cpuc)
1652                 return -ENOMEM;
1653
1654         c = x86_pmu.get_event_constraints(fake_cpuc, event);
1655
1656         if (!c || !c->weight)
1657                 ret = -ENOSPC;
1658
1659         if (x86_pmu.put_event_constraints)
1660                 x86_pmu.put_event_constraints(fake_cpuc, event);
1661
1662         kfree(fake_cpuc);
1663
1664         return ret;
1665 }
1666
1667 /*
1668  * validate a single event group
1669  *
1670  * validation include:
1671  *      - check events are compatible which each other
1672  *      - events do not compete for the same counter
1673  *      - number of events <= number of counters
1674  *
1675  * validation ensures the group can be loaded onto the
1676  * PMU if it was the only group available.
1677  */
1678 static int validate_group(struct perf_event *event)
1679 {
1680         struct perf_event *leader = event->group_leader;
1681         struct cpu_hw_events *fake_cpuc;
1682         int ret, n;
1683
1684         ret = -ENOMEM;
1685         fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
1686         if (!fake_cpuc)
1687                 goto out;
1688
1689         /*
1690          * the event is not yet connected with its
1691          * siblings therefore we must first collect
1692          * existing siblings, then add the new event
1693          * before we can simulate the scheduling
1694          */
1695         ret = -ENOSPC;
1696         n = collect_events(fake_cpuc, leader, true);
1697         if (n < 0)
1698                 goto out_free;
1699
1700         fake_cpuc->n_events = n;
1701         n = collect_events(fake_cpuc, event, false);
1702         if (n < 0)
1703                 goto out_free;
1704
1705         fake_cpuc->n_events = n;
1706
1707         ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1708
1709 out_free:
1710         kfree(fake_cpuc);
1711 out:
1712         return ret;
1713 }
1714
1715 static int x86_pmu_event_init(struct perf_event *event)
1716 {
1717         struct pmu *tmp;
1718         int err;
1719
1720         switch (event->attr.type) {
1721         case PERF_TYPE_RAW:
1722         case PERF_TYPE_HARDWARE:
1723         case PERF_TYPE_HW_CACHE:
1724                 break;
1725
1726         default:
1727                 return -ENOENT;
1728         }
1729
1730         err = __x86_pmu_event_init(event);
1731         if (!err) {
1732                 /*
1733                  * we temporarily connect event to its pmu
1734                  * such that validate_group() can classify
1735                  * it as an x86 event using is_x86_event()
1736                  */
1737                 tmp = event->pmu;
1738                 event->pmu = &pmu;
1739
1740                 if (event->group_leader != event)
1741                         err = validate_group(event);
1742                 else
1743                         err = validate_event(event);
1744
1745                 event->pmu = tmp;
1746         }
1747         if (err) {
1748                 if (event->destroy)
1749                         event->destroy(event);
1750         }
1751
1752         return err;
1753 }
1754
1755 static struct pmu pmu = {
1756         .pmu_enable     = x86_pmu_enable,
1757         .pmu_disable    = x86_pmu_disable,
1758
1759         .event_init     = x86_pmu_event_init,
1760
1761         .add            = x86_pmu_add,
1762         .del            = x86_pmu_del,
1763         .start          = x86_pmu_start,
1764         .stop           = x86_pmu_stop,
1765         .read           = x86_pmu_read,
1766
1767         .start_txn      = x86_pmu_start_txn,
1768         .cancel_txn     = x86_pmu_cancel_txn,
1769         .commit_txn     = x86_pmu_commit_txn,
1770 };
1771
1772 /*
1773  * callchain support
1774  */
1775
1776 static void
1777 backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
1778 {
1779         /* Ignore warnings */
1780 }
1781
1782 static void backtrace_warning(void *data, char *msg)
1783 {
1784         /* Ignore warnings */
1785 }
1786
1787 static int backtrace_stack(void *data, char *name)
1788 {
1789         return 0;
1790 }
1791
1792 static void backtrace_address(void *data, unsigned long addr, int reliable)
1793 {
1794         struct perf_callchain_entry *entry = data;
1795
1796         perf_callchain_store(entry, addr);
1797 }
1798
1799 static const struct stacktrace_ops backtrace_ops = {
1800         .warning                = backtrace_warning,
1801         .warning_symbol         = backtrace_warning_symbol,
1802         .stack                  = backtrace_stack,
1803         .address                = backtrace_address,
1804         .walk_stack             = print_context_stack_bp,
1805 };
1806
1807 void
1808 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
1809 {
1810         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1811                 /* TODO: We don't support guest os callchain now */
1812                 return;
1813         }
1814
1815         perf_callchain_store(entry, regs->ip);
1816
1817         dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
1818 }
1819
1820 #ifdef CONFIG_COMPAT
1821 static inline int
1822 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1823 {
1824         /* 32-bit process in 64-bit kernel. */
1825         struct stack_frame_ia32 frame;
1826         const void __user *fp;
1827
1828         if (!test_thread_flag(TIF_IA32))
1829                 return 0;
1830
1831         fp = compat_ptr(regs->bp);
1832         while (entry->nr < PERF_MAX_STACK_DEPTH) {
1833                 unsigned long bytes;
1834                 frame.next_frame     = 0;
1835                 frame.return_address = 0;
1836
1837                 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1838                 if (bytes != sizeof(frame))
1839                         break;
1840
1841                 if (fp < compat_ptr(regs->sp))
1842                         break;
1843
1844                 perf_callchain_store(entry, frame.return_address);
1845                 fp = compat_ptr(frame.next_frame);
1846         }
1847         return 1;
1848 }
1849 #else
1850 static inline int
1851 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1852 {
1853     return 0;
1854 }
1855 #endif
1856
1857 void
1858 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1859 {
1860         struct stack_frame frame;
1861         const void __user *fp;
1862
1863         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1864                 /* TODO: We don't support guest os callchain now */
1865                 return;
1866         }
1867
1868         fp = (void __user *)regs->bp;
1869
1870         perf_callchain_store(entry, regs->ip);
1871
1872         if (perf_callchain_user32(regs, entry))
1873                 return;
1874
1875         while (entry->nr < PERF_MAX_STACK_DEPTH) {
1876                 unsigned long bytes;
1877                 frame.next_frame             = NULL;
1878                 frame.return_address = 0;
1879
1880                 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1881                 if (bytes != sizeof(frame))
1882                         break;
1883
1884                 if ((unsigned long)fp < regs->sp)
1885                         break;
1886
1887                 perf_callchain_store(entry, frame.return_address);
1888                 fp = frame.next_frame;
1889         }
1890 }
1891
1892 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1893 {
1894         unsigned long ip;
1895
1896         if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
1897                 ip = perf_guest_cbs->get_guest_ip();
1898         else
1899                 ip = instruction_pointer(regs);
1900
1901         return ip;
1902 }
1903
1904 unsigned long perf_misc_flags(struct pt_regs *regs)
1905 {
1906         int misc = 0;
1907
1908         if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1909                 if (perf_guest_cbs->is_user_mode())
1910                         misc |= PERF_RECORD_MISC_GUEST_USER;
1911                 else
1912                         misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1913         } else {
1914                 if (user_mode(regs))
1915                         misc |= PERF_RECORD_MISC_USER;
1916                 else
1917                         misc |= PERF_RECORD_MISC_KERNEL;
1918         }
1919
1920         if (regs->flags & PERF_EFLAGS_EXACT)
1921                 misc |= PERF_RECORD_MISC_EXACT_IP;
1922
1923         return misc;
1924 }