6ddf60b300b03d2a5bd12d78ebd9787cb1208380
[pandora-kernel.git] / arch / sparc / mm / tsb.c
1 /* arch/sparc64/mm/tsb.c
2  *
3  * Copyright (C) 2006, 2008 David S. Miller <davem@davemloft.net>
4  */
5
6 #include <linux/kernel.h>
7 #include <linux/preempt.h>
8 #include <linux/slab.h>
9 #include <asm/system.h>
10 #include <asm/page.h>
11 #include <asm/pgtable.h>
12 #include <asm/mmu_context.h>
13 #include <asm/tsb.h>
14 #include <asm/tlb.h>
15 #include <asm/oplib.h>
16
17 extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
18
19 static inline unsigned long tsb_hash(unsigned long vaddr, unsigned long hash_shift, unsigned long nentries)
20 {
21         vaddr >>= hash_shift;
22         return vaddr & (nentries - 1);
23 }
24
25 static inline int tag_compare(unsigned long tag, unsigned long vaddr)
26 {
27         return (tag == (vaddr >> 22));
28 }
29
30 /* TSB flushes need only occur on the processor initiating the address
31  * space modification, not on each cpu the address space has run on.
32  * Only the TLB flush needs that treatment.
33  */
34
35 void flush_tsb_kernel_range(unsigned long start, unsigned long end)
36 {
37         unsigned long v;
38
39         for (v = start; v < end; v += PAGE_SIZE) {
40                 unsigned long hash = tsb_hash(v, PAGE_SHIFT,
41                                               KERNEL_TSB_NENTRIES);
42                 struct tsb *ent = &swapper_tsb[hash];
43
44                 if (tag_compare(ent->tag, v))
45                         ent->tag = (1UL << TSB_TAG_INVALID_BIT);
46         }
47 }
48
49 static void __flush_tsb_one_entry(unsigned long tsb, unsigned long v,
50                                   unsigned long hash_shift,
51                                   unsigned long nentries)
52 {
53         unsigned long tag, ent, hash;
54
55         v &= ~0x1UL;
56         hash = tsb_hash(v, hash_shift, nentries);
57         ent = tsb + (hash * sizeof(struct tsb));
58         tag = (v >> 22UL);
59
60         tsb_flush(ent, tag);
61 }
62
63 static void __flush_tsb_one(struct tlb_batch *tb, unsigned long hash_shift,
64                             unsigned long tsb, unsigned long nentries)
65 {
66         unsigned long i;
67
68         for (i = 0; i < tb->tlb_nr; i++)
69                 __flush_tsb_one_entry(tsb, tb->vaddrs[i], hash_shift, nentries);
70 }
71
72 void flush_tsb_user(struct tlb_batch *tb)
73 {
74         struct mm_struct *mm = tb->mm;
75         unsigned long nentries, base, flags;
76
77         spin_lock_irqsave(&mm->context.lock, flags);
78
79         base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
80         nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
81         if (tlb_type == cheetah_plus || tlb_type == hypervisor)
82                 base = __pa(base);
83         __flush_tsb_one(tb, PAGE_SHIFT, base, nentries);
84
85 #ifdef CONFIG_HUGETLB_PAGE
86         if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
87                 base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
88                 nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
89                 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
90                         base = __pa(base);
91                 __flush_tsb_one(tb, HPAGE_SHIFT, base, nentries);
92         }
93 #endif
94         spin_unlock_irqrestore(&mm->context.lock, flags);
95 }
96
97 void flush_tsb_user_page(struct mm_struct *mm, unsigned long vaddr)
98 {
99         unsigned long nentries, base, flags;
100
101         spin_lock_irqsave(&mm->context.lock, flags);
102
103         base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
104         nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
105         if (tlb_type == cheetah_plus || tlb_type == hypervisor)
106                 base = __pa(base);
107         __flush_tsb_one_entry(base, vaddr, PAGE_SHIFT, nentries);
108
109 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
110         if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
111                 base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
112                 nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
113                 if (tlb_type == cheetah_plus || tlb_type == hypervisor)
114                         base = __pa(base);
115                 __flush_tsb_one_entry(base, vaddr, HPAGE_SHIFT, nentries);
116         }
117 #endif
118         spin_unlock_irqrestore(&mm->context.lock, flags);
119 }
120
121 #if defined(CONFIG_SPARC64_PAGE_SIZE_8KB)
122 #define HV_PGSZ_IDX_BASE        HV_PGSZ_IDX_8K
123 #define HV_PGSZ_MASK_BASE       HV_PGSZ_MASK_8K
124 #elif defined(CONFIG_SPARC64_PAGE_SIZE_64KB)
125 #define HV_PGSZ_IDX_BASE        HV_PGSZ_IDX_64K
126 #define HV_PGSZ_MASK_BASE       HV_PGSZ_MASK_64K
127 #else
128 #error Broken base page size setting...
129 #endif
130
131 #ifdef CONFIG_HUGETLB_PAGE
132 #if defined(CONFIG_HUGETLB_PAGE_SIZE_64K)
133 #define HV_PGSZ_IDX_HUGE        HV_PGSZ_IDX_64K
134 #define HV_PGSZ_MASK_HUGE       HV_PGSZ_MASK_64K
135 #elif defined(CONFIG_HUGETLB_PAGE_SIZE_512K)
136 #define HV_PGSZ_IDX_HUGE        HV_PGSZ_IDX_512K
137 #define HV_PGSZ_MASK_HUGE       HV_PGSZ_MASK_512K
138 #elif defined(CONFIG_HUGETLB_PAGE_SIZE_4MB)
139 #define HV_PGSZ_IDX_HUGE        HV_PGSZ_IDX_4MB
140 #define HV_PGSZ_MASK_HUGE       HV_PGSZ_MASK_4MB
141 #else
142 #error Broken huge page size setting...
143 #endif
144 #endif
145
146 static void setup_tsb_params(struct mm_struct *mm, unsigned long tsb_idx, unsigned long tsb_bytes)
147 {
148         unsigned long tsb_reg, base, tsb_paddr;
149         unsigned long page_sz, tte;
150
151         mm->context.tsb_block[tsb_idx].tsb_nentries =
152                 tsb_bytes / sizeof(struct tsb);
153
154         switch (tsb_idx) {
155         case MM_TSB_BASE:
156                 base = TSBMAP_8K_BASE;
157                 break;
158 #if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
159         case MM_TSB_HUGE:
160                 base = TSBMAP_4M_BASE;
161                 break;
162 #endif
163         default:
164                 BUG();
165         }
166
167         tte = pgprot_val(PAGE_KERNEL_LOCKED);
168         tsb_paddr = __pa(mm->context.tsb_block[tsb_idx].tsb);
169         BUG_ON(tsb_paddr & (tsb_bytes - 1UL));
170
171         /* Use the smallest page size that can map the whole TSB
172          * in one TLB entry.
173          */
174         switch (tsb_bytes) {
175         case 8192 << 0:
176                 tsb_reg = 0x0UL;
177 #ifdef DCACHE_ALIASING_POSSIBLE
178                 base += (tsb_paddr & 8192);
179 #endif
180                 page_sz = 8192;
181                 break;
182
183         case 8192 << 1:
184                 tsb_reg = 0x1UL;
185                 page_sz = 64 * 1024;
186                 break;
187
188         case 8192 << 2:
189                 tsb_reg = 0x2UL;
190                 page_sz = 64 * 1024;
191                 break;
192
193         case 8192 << 3:
194                 tsb_reg = 0x3UL;
195                 page_sz = 64 * 1024;
196                 break;
197
198         case 8192 << 4:
199                 tsb_reg = 0x4UL;
200                 page_sz = 512 * 1024;
201                 break;
202
203         case 8192 << 5:
204                 tsb_reg = 0x5UL;
205                 page_sz = 512 * 1024;
206                 break;
207
208         case 8192 << 6:
209                 tsb_reg = 0x6UL;
210                 page_sz = 512 * 1024;
211                 break;
212
213         case 8192 << 7:
214                 tsb_reg = 0x7UL;
215                 page_sz = 4 * 1024 * 1024;
216                 break;
217
218         default:
219                 printk(KERN_ERR "TSB[%s:%d]: Impossible TSB size %lu, killing process.\n",
220                        current->comm, current->pid, tsb_bytes);
221                 do_exit(SIGSEGV);
222         }
223         tte |= pte_sz_bits(page_sz);
224
225         if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
226                 /* Physical mapping, no locked TLB entry for TSB.  */
227                 tsb_reg |= tsb_paddr;
228
229                 mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
230                 mm->context.tsb_block[tsb_idx].tsb_map_vaddr = 0;
231                 mm->context.tsb_block[tsb_idx].tsb_map_pte = 0;
232         } else {
233                 tsb_reg |= base;
234                 tsb_reg |= (tsb_paddr & (page_sz - 1UL));
235                 tte |= (tsb_paddr & ~(page_sz - 1UL));
236
237                 mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
238                 mm->context.tsb_block[tsb_idx].tsb_map_vaddr = base;
239                 mm->context.tsb_block[tsb_idx].tsb_map_pte = tte;
240         }
241
242         /* Setup the Hypervisor TSB descriptor.  */
243         if (tlb_type == hypervisor) {
244                 struct hv_tsb_descr *hp = &mm->context.tsb_descr[tsb_idx];
245
246                 switch (tsb_idx) {
247                 case MM_TSB_BASE:
248                         hp->pgsz_idx = HV_PGSZ_IDX_BASE;
249                         break;
250 #ifdef CONFIG_HUGETLB_PAGE
251                 case MM_TSB_HUGE:
252                         hp->pgsz_idx = HV_PGSZ_IDX_HUGE;
253                         break;
254 #endif
255                 default:
256                         BUG();
257                 }
258                 hp->assoc = 1;
259                 hp->num_ttes = tsb_bytes / 16;
260                 hp->ctx_idx = 0;
261                 switch (tsb_idx) {
262                 case MM_TSB_BASE:
263                         hp->pgsz_mask = HV_PGSZ_MASK_BASE;
264                         break;
265 #ifdef CONFIG_HUGETLB_PAGE
266                 case MM_TSB_HUGE:
267                         hp->pgsz_mask = HV_PGSZ_MASK_HUGE;
268                         break;
269 #endif
270                 default:
271                         BUG();
272                 }
273                 hp->tsb_base = tsb_paddr;
274                 hp->resv = 0;
275         }
276 }
277
278 struct kmem_cache *pgtable_cache __read_mostly;
279
280 static struct kmem_cache *tsb_caches[8] __read_mostly;
281
282 static const char *tsb_cache_names[8] = {
283         "tsb_8KB",
284         "tsb_16KB",
285         "tsb_32KB",
286         "tsb_64KB",
287         "tsb_128KB",
288         "tsb_256KB",
289         "tsb_512KB",
290         "tsb_1MB",
291 };
292
293 void __init pgtable_cache_init(void)
294 {
295         unsigned long i;
296
297         pgtable_cache = kmem_cache_create("pgtable_cache",
298                                           PAGE_SIZE, PAGE_SIZE,
299                                           0,
300                                           _clear_page);
301         if (!pgtable_cache) {
302                 prom_printf("pgtable_cache_init(): Could not create!\n");
303                 prom_halt();
304         }
305
306         for (i = 0; i < 8; i++) {
307                 unsigned long size = 8192 << i;
308                 const char *name = tsb_cache_names[i];
309
310                 tsb_caches[i] = kmem_cache_create(name,
311                                                   size, size,
312                                                   0, NULL);
313                 if (!tsb_caches[i]) {
314                         prom_printf("Could not create %s cache\n", name);
315                         prom_halt();
316                 }
317         }
318 }
319
320 int sysctl_tsb_ratio = -2;
321
322 static unsigned long tsb_size_to_rss_limit(unsigned long new_size)
323 {
324         unsigned long num_ents = (new_size / sizeof(struct tsb));
325
326         if (sysctl_tsb_ratio < 0)
327                 return num_ents - (num_ents >> -sysctl_tsb_ratio);
328         else
329                 return num_ents + (num_ents >> sysctl_tsb_ratio);
330 }
331
332 /* When the RSS of an address space exceeds tsb_rss_limit for a TSB,
333  * do_sparc64_fault() invokes this routine to try and grow it.
334  *
335  * When we reach the maximum TSB size supported, we stick ~0UL into
336  * tsb_rss_limit for that TSB so the grow checks in do_sparc64_fault()
337  * will not trigger any longer.
338  *
339  * The TSB can be anywhere from 8K to 1MB in size, in increasing powers
340  * of two.  The TSB must be aligned to it's size, so f.e. a 512K TSB
341  * must be 512K aligned.  It also must be physically contiguous, so we
342  * cannot use vmalloc().
343  *
344  * The idea here is to grow the TSB when the RSS of the process approaches
345  * the number of entries that the current TSB can hold at once.  Currently,
346  * we trigger when the RSS hits 3/4 of the TSB capacity.
347  */
348 void tsb_grow(struct mm_struct *mm, unsigned long tsb_index, unsigned long rss)
349 {
350         unsigned long max_tsb_size = 1 * 1024 * 1024;
351         unsigned long new_size, old_size, flags;
352         struct tsb *old_tsb, *new_tsb;
353         unsigned long new_cache_index, old_cache_index;
354         unsigned long new_rss_limit;
355         gfp_t gfp_flags;
356
357         if (max_tsb_size > (PAGE_SIZE << MAX_ORDER))
358                 max_tsb_size = (PAGE_SIZE << MAX_ORDER);
359
360         new_cache_index = 0;
361         for (new_size = 8192; new_size < max_tsb_size; new_size <<= 1UL) {
362                 new_rss_limit = tsb_size_to_rss_limit(new_size);
363                 if (new_rss_limit > rss)
364                         break;
365                 new_cache_index++;
366         }
367
368         if (new_size == max_tsb_size)
369                 new_rss_limit = ~0UL;
370
371 retry_tsb_alloc:
372         gfp_flags = GFP_KERNEL;
373         if (new_size > (PAGE_SIZE * 2))
374                 gfp_flags = __GFP_NOWARN | __GFP_NORETRY;
375
376         new_tsb = kmem_cache_alloc_node(tsb_caches[new_cache_index],
377                                         gfp_flags, numa_node_id());
378         if (unlikely(!new_tsb)) {
379                 /* Not being able to fork due to a high-order TSB
380                  * allocation failure is very bad behavior.  Just back
381                  * down to a 0-order allocation and force no TSB
382                  * growing for this address space.
383                  */
384                 if (mm->context.tsb_block[tsb_index].tsb == NULL &&
385                     new_cache_index > 0) {
386                         new_cache_index = 0;
387                         new_size = 8192;
388                         new_rss_limit = ~0UL;
389                         goto retry_tsb_alloc;
390                 }
391
392                 /* If we failed on a TSB grow, we are under serious
393                  * memory pressure so don't try to grow any more.
394                  */
395                 if (mm->context.tsb_block[tsb_index].tsb != NULL)
396                         mm->context.tsb_block[tsb_index].tsb_rss_limit = ~0UL;
397                 return;
398         }
399
400         /* Mark all tags as invalid.  */
401         tsb_init(new_tsb, new_size);
402
403         /* Ok, we are about to commit the changes.  If we are
404          * growing an existing TSB the locking is very tricky,
405          * so WATCH OUT!
406          *
407          * We have to hold mm->context.lock while committing to the
408          * new TSB, this synchronizes us with processors in
409          * flush_tsb_user() and switch_mm() for this address space.
410          *
411          * But even with that lock held, processors run asynchronously
412          * accessing the old TSB via TLB miss handling.  This is OK
413          * because those actions are just propagating state from the
414          * Linux page tables into the TSB, page table mappings are not
415          * being changed.  If a real fault occurs, the processor will
416          * synchronize with us when it hits flush_tsb_user(), this is
417          * also true for the case where vmscan is modifying the page
418          * tables.  The only thing we need to be careful with is to
419          * skip any locked TSB entries during copy_tsb().
420          *
421          * When we finish committing to the new TSB, we have to drop
422          * the lock and ask all other cpus running this address space
423          * to run tsb_context_switch() to see the new TSB table.
424          */
425         spin_lock_irqsave(&mm->context.lock, flags);
426
427         old_tsb = mm->context.tsb_block[tsb_index].tsb;
428         old_cache_index =
429                 (mm->context.tsb_block[tsb_index].tsb_reg_val & 0x7UL);
430         old_size = (mm->context.tsb_block[tsb_index].tsb_nentries *
431                     sizeof(struct tsb));
432
433
434         /* Handle multiple threads trying to grow the TSB at the same time.
435          * One will get in here first, and bump the size and the RSS limit.
436          * The others will get in here next and hit this check.
437          */
438         if (unlikely(old_tsb &&
439                      (rss < mm->context.tsb_block[tsb_index].tsb_rss_limit))) {
440                 spin_unlock_irqrestore(&mm->context.lock, flags);
441
442                 kmem_cache_free(tsb_caches[new_cache_index], new_tsb);
443                 return;
444         }
445
446         mm->context.tsb_block[tsb_index].tsb_rss_limit = new_rss_limit;
447
448         if (old_tsb) {
449                 extern void copy_tsb(unsigned long old_tsb_base,
450                                      unsigned long old_tsb_size,
451                                      unsigned long new_tsb_base,
452                                      unsigned long new_tsb_size);
453                 unsigned long old_tsb_base = (unsigned long) old_tsb;
454                 unsigned long new_tsb_base = (unsigned long) new_tsb;
455
456                 if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
457                         old_tsb_base = __pa(old_tsb_base);
458                         new_tsb_base = __pa(new_tsb_base);
459                 }
460                 copy_tsb(old_tsb_base, old_size, new_tsb_base, new_size);
461         }
462
463         mm->context.tsb_block[tsb_index].tsb = new_tsb;
464         setup_tsb_params(mm, tsb_index, new_size);
465
466         spin_unlock_irqrestore(&mm->context.lock, flags);
467
468         /* If old_tsb is NULL, we're being invoked for the first time
469          * from init_new_context().
470          */
471         if (old_tsb) {
472                 /* Reload it on the local cpu.  */
473                 tsb_context_switch(mm);
474
475                 /* Now force other processors to do the same.  */
476                 preempt_disable();
477                 smp_tsb_sync(mm);
478                 preempt_enable();
479
480                 /* Now it is safe to free the old tsb.  */
481                 kmem_cache_free(tsb_caches[old_cache_index], old_tsb);
482         }
483 }
484
485 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
486 {
487 #ifdef CONFIG_HUGETLB_PAGE
488         unsigned long huge_pte_count;
489 #endif
490         unsigned int i;
491
492         spin_lock_init(&mm->context.lock);
493
494         mm->context.sparc64_ctx_val = 0UL;
495
496 #ifdef CONFIG_HUGETLB_PAGE
497         /* We reset it to zero because the fork() page copying
498          * will re-increment the counters as the parent PTEs are
499          * copied into the child address space.
500          */
501         huge_pte_count = mm->context.huge_pte_count;
502         mm->context.huge_pte_count = 0;
503 #endif
504
505         /* copy_mm() copies over the parent's mm_struct before calling
506          * us, so we need to zero out the TSB pointer or else tsb_grow()
507          * will be confused and think there is an older TSB to free up.
508          */
509         for (i = 0; i < MM_NUM_TSBS; i++)
510                 mm->context.tsb_block[i].tsb = NULL;
511
512         /* If this is fork, inherit the parent's TSB size.  We would
513          * grow it to that size on the first page fault anyways.
514          */
515         tsb_grow(mm, MM_TSB_BASE, get_mm_rss(mm));
516
517 #ifdef CONFIG_HUGETLB_PAGE
518         if (unlikely(huge_pte_count))
519                 tsb_grow(mm, MM_TSB_HUGE, huge_pte_count);
520 #endif
521
522         if (unlikely(!mm->context.tsb_block[MM_TSB_BASE].tsb))
523                 return -ENOMEM;
524
525         return 0;
526 }
527
528 static void tsb_destroy_one(struct tsb_config *tp)
529 {
530         unsigned long cache_index;
531
532         if (!tp->tsb)
533                 return;
534         cache_index = tp->tsb_reg_val & 0x7UL;
535         kmem_cache_free(tsb_caches[cache_index], tp->tsb);
536         tp->tsb = NULL;
537         tp->tsb_reg_val = 0UL;
538 }
539
540 void destroy_context(struct mm_struct *mm)
541 {
542         unsigned long flags, i;
543
544         for (i = 0; i < MM_NUM_TSBS; i++)
545                 tsb_destroy_one(&mm->context.tsb_block[i]);
546
547         spin_lock_irqsave(&ctx_alloc_lock, flags);
548
549         if (CTX_VALID(mm->context)) {
550                 unsigned long nr = CTX_NRBITS(mm->context);
551                 mmu_context_bmap[nr>>6] &= ~(1UL << (nr & 63));
552         }
553
554         spin_unlock_irqrestore(&ctx_alloc_lock, flags);
555 }