5e0bf399c4335165c06d2bc6ffbd62ba801623e6
[pandora-kernel.git] / arch / powerpc / kernel / perf_counter.c
1 /*
2  * Performance counter support - powerpc architecture code
3  *
4  * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/perf_counter.h>
14 #include <linux/percpu.h>
15 #include <linux/hardirq.h>
16 #include <asm/reg.h>
17 #include <asm/pmc.h>
18 #include <asm/machdep.h>
19 #include <asm/firmware.h>
20 #include <asm/ptrace.h>
21
22 struct cpu_hw_counters {
23         int n_counters;
24         int n_percpu;
25         int disabled;
26         int n_added;
27         int n_limited;
28         u8  pmcs_enabled;
29         struct perf_counter *counter[MAX_HWCOUNTERS];
30         u64 events[MAX_HWCOUNTERS];
31         unsigned int flags[MAX_HWCOUNTERS];
32         u64 mmcr[3];
33         struct perf_counter *limited_counter[MAX_LIMITED_HWCOUNTERS];
34         u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
35 };
36 DEFINE_PER_CPU(struct cpu_hw_counters, cpu_hw_counters);
37
38 struct power_pmu *ppmu;
39
40 /*
41  * Normally, to ignore kernel events we set the FCS (freeze counters
42  * in supervisor mode) bit in MMCR0, but if the kernel runs with the
43  * hypervisor bit set in the MSR, or if we are running on a processor
44  * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
45  * then we need to use the FCHV bit to ignore kernel events.
46  */
47 static unsigned int freeze_counters_kernel = MMCR0_FCS;
48
49 static void perf_counter_interrupt(struct pt_regs *regs);
50
51 void perf_counter_print_debug(void)
52 {
53 }
54
55 /*
56  * Read one performance monitor counter (PMC).
57  */
58 static unsigned long read_pmc(int idx)
59 {
60         unsigned long val;
61
62         switch (idx) {
63         case 1:
64                 val = mfspr(SPRN_PMC1);
65                 break;
66         case 2:
67                 val = mfspr(SPRN_PMC2);
68                 break;
69         case 3:
70                 val = mfspr(SPRN_PMC3);
71                 break;
72         case 4:
73                 val = mfspr(SPRN_PMC4);
74                 break;
75         case 5:
76                 val = mfspr(SPRN_PMC5);
77                 break;
78         case 6:
79                 val = mfspr(SPRN_PMC6);
80                 break;
81         case 7:
82                 val = mfspr(SPRN_PMC7);
83                 break;
84         case 8:
85                 val = mfspr(SPRN_PMC8);
86                 break;
87         default:
88                 printk(KERN_ERR "oops trying to read PMC%d\n", idx);
89                 val = 0;
90         }
91         return val;
92 }
93
94 /*
95  * Write one PMC.
96  */
97 static void write_pmc(int idx, unsigned long val)
98 {
99         switch (idx) {
100         case 1:
101                 mtspr(SPRN_PMC1, val);
102                 break;
103         case 2:
104                 mtspr(SPRN_PMC2, val);
105                 break;
106         case 3:
107                 mtspr(SPRN_PMC3, val);
108                 break;
109         case 4:
110                 mtspr(SPRN_PMC4, val);
111                 break;
112         case 5:
113                 mtspr(SPRN_PMC5, val);
114                 break;
115         case 6:
116                 mtspr(SPRN_PMC6, val);
117                 break;
118         case 7:
119                 mtspr(SPRN_PMC7, val);
120                 break;
121         case 8:
122                 mtspr(SPRN_PMC8, val);
123                 break;
124         default:
125                 printk(KERN_ERR "oops trying to write PMC%d\n", idx);
126         }
127 }
128
129 /*
130  * Check if a set of events can all go on the PMU at once.
131  * If they can't, this will look at alternative codes for the events
132  * and see if any combination of alternative codes is feasible.
133  * The feasible set is returned in event[].
134  */
135 static int power_check_constraints(u64 event[], unsigned int cflags[],
136                                    int n_ev)
137 {
138         u64 mask, value, nv;
139         u64 alternatives[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
140         u64 amasks[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
141         u64 avalues[MAX_HWCOUNTERS][MAX_EVENT_ALTERNATIVES];
142         u64 smasks[MAX_HWCOUNTERS], svalues[MAX_HWCOUNTERS];
143         int n_alt[MAX_HWCOUNTERS], choice[MAX_HWCOUNTERS];
144         int i, j;
145         u64 addf = ppmu->add_fields;
146         u64 tadd = ppmu->test_adder;
147
148         if (n_ev > ppmu->n_counter)
149                 return -1;
150
151         /* First see if the events will go on as-is */
152         for (i = 0; i < n_ev; ++i) {
153                 if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
154                     && !ppmu->limited_pmc_event(event[i])) {
155                         ppmu->get_alternatives(event[i], cflags[i],
156                                                alternatives[i]);
157                         event[i] = alternatives[i][0];
158                 }
159                 if (ppmu->get_constraint(event[i], &amasks[i][0],
160                                          &avalues[i][0]))
161                         return -1;
162         }
163         value = mask = 0;
164         for (i = 0; i < n_ev; ++i) {
165                 nv = (value | avalues[i][0]) + (value & avalues[i][0] & addf);
166                 if ((((nv + tadd) ^ value) & mask) != 0 ||
167                     (((nv + tadd) ^ avalues[i][0]) & amasks[i][0]) != 0)
168                         break;
169                 value = nv;
170                 mask |= amasks[i][0];
171         }
172         if (i == n_ev)
173                 return 0;       /* all OK */
174
175         /* doesn't work, gather alternatives... */
176         if (!ppmu->get_alternatives)
177                 return -1;
178         for (i = 0; i < n_ev; ++i) {
179                 choice[i] = 0;
180                 n_alt[i] = ppmu->get_alternatives(event[i], cflags[i],
181                                                   alternatives[i]);
182                 for (j = 1; j < n_alt[i]; ++j)
183                         ppmu->get_constraint(alternatives[i][j],
184                                              &amasks[i][j], &avalues[i][j]);
185         }
186
187         /* enumerate all possibilities and see if any will work */
188         i = 0;
189         j = -1;
190         value = mask = nv = 0;
191         while (i < n_ev) {
192                 if (j >= 0) {
193                         /* we're backtracking, restore context */
194                         value = svalues[i];
195                         mask = smasks[i];
196                         j = choice[i];
197                 }
198                 /*
199                  * See if any alternative k for event i,
200                  * where k > j, will satisfy the constraints.
201                  */
202                 while (++j < n_alt[i]) {
203                         nv = (value | avalues[i][j]) +
204                                 (value & avalues[i][j] & addf);
205                         if ((((nv + tadd) ^ value) & mask) == 0 &&
206                             (((nv + tadd) ^ avalues[i][j])
207                              & amasks[i][j]) == 0)
208                                 break;
209                 }
210                 if (j >= n_alt[i]) {
211                         /*
212                          * No feasible alternative, backtrack
213                          * to event i-1 and continue enumerating its
214                          * alternatives from where we got up to.
215                          */
216                         if (--i < 0)
217                                 return -1;
218                 } else {
219                         /*
220                          * Found a feasible alternative for event i,
221                          * remember where we got up to with this event,
222                          * go on to the next event, and start with
223                          * the first alternative for it.
224                          */
225                         choice[i] = j;
226                         svalues[i] = value;
227                         smasks[i] = mask;
228                         value = nv;
229                         mask |= amasks[i][j];
230                         ++i;
231                         j = -1;
232                 }
233         }
234
235         /* OK, we have a feasible combination, tell the caller the solution */
236         for (i = 0; i < n_ev; ++i)
237                 event[i] = alternatives[i][choice[i]];
238         return 0;
239 }
240
241 /*
242  * Check if newly-added counters have consistent settings for
243  * exclude_{user,kernel,hv} with each other and any previously
244  * added counters.
245  */
246 static int check_excludes(struct perf_counter **ctrs, unsigned int cflags[],
247                           int n_prev, int n_new)
248 {
249         int eu = 0, ek = 0, eh = 0;
250         int i, n, first;
251         struct perf_counter *counter;
252
253         n = n_prev + n_new;
254         if (n <= 1)
255                 return 0;
256
257         first = 1;
258         for (i = 0; i < n; ++i) {
259                 if (cflags[i] & PPMU_LIMITED_PMC_OK) {
260                         cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
261                         continue;
262                 }
263                 counter = ctrs[i];
264                 if (first) {
265                         eu = counter->attr.exclude_user;
266                         ek = counter->attr.exclude_kernel;
267                         eh = counter->attr.exclude_hv;
268                         first = 0;
269                 } else if (counter->attr.exclude_user != eu ||
270                            counter->attr.exclude_kernel != ek ||
271                            counter->attr.exclude_hv != eh) {
272                         return -EAGAIN;
273                 }
274         }
275
276         if (eu || ek || eh)
277                 for (i = 0; i < n; ++i)
278                         if (cflags[i] & PPMU_LIMITED_PMC_OK)
279                                 cflags[i] |= PPMU_LIMITED_PMC_REQD;
280
281         return 0;
282 }
283
284 static void power_pmu_read(struct perf_counter *counter)
285 {
286         long val, delta, prev;
287
288         if (!counter->hw.idx)
289                 return;
290         /*
291          * Performance monitor interrupts come even when interrupts
292          * are soft-disabled, as long as interrupts are hard-enabled.
293          * Therefore we treat them like NMIs.
294          */
295         do {
296                 prev = atomic64_read(&counter->hw.prev_count);
297                 barrier();
298                 val = read_pmc(counter->hw.idx);
299         } while (atomic64_cmpxchg(&counter->hw.prev_count, prev, val) != prev);
300
301         /* The counters are only 32 bits wide */
302         delta = (val - prev) & 0xfffffffful;
303         atomic64_add(delta, &counter->count);
304         atomic64_sub(delta, &counter->hw.period_left);
305 }
306
307 /*
308  * On some machines, PMC5 and PMC6 can't be written, don't respect
309  * the freeze conditions, and don't generate interrupts.  This tells
310  * us if `counter' is using such a PMC.
311  */
312 static int is_limited_pmc(int pmcnum)
313 {
314         return (ppmu->flags & PPMU_LIMITED_PMC5_6)
315                 && (pmcnum == 5 || pmcnum == 6);
316 }
317
318 static void freeze_limited_counters(struct cpu_hw_counters *cpuhw,
319                                     unsigned long pmc5, unsigned long pmc6)
320 {
321         struct perf_counter *counter;
322         u64 val, prev, delta;
323         int i;
324
325         for (i = 0; i < cpuhw->n_limited; ++i) {
326                 counter = cpuhw->limited_counter[i];
327                 if (!counter->hw.idx)
328                         continue;
329                 val = (counter->hw.idx == 5) ? pmc5 : pmc6;
330                 prev = atomic64_read(&counter->hw.prev_count);
331                 counter->hw.idx = 0;
332                 delta = (val - prev) & 0xfffffffful;
333                 atomic64_add(delta, &counter->count);
334         }
335 }
336
337 static void thaw_limited_counters(struct cpu_hw_counters *cpuhw,
338                                   unsigned long pmc5, unsigned long pmc6)
339 {
340         struct perf_counter *counter;
341         u64 val;
342         int i;
343
344         for (i = 0; i < cpuhw->n_limited; ++i) {
345                 counter = cpuhw->limited_counter[i];
346                 counter->hw.idx = cpuhw->limited_hwidx[i];
347                 val = (counter->hw.idx == 5) ? pmc5 : pmc6;
348                 atomic64_set(&counter->hw.prev_count, val);
349                 perf_counter_update_userpage(counter);
350         }
351 }
352
353 /*
354  * Since limited counters don't respect the freeze conditions, we
355  * have to read them immediately after freezing or unfreezing the
356  * other counters.  We try to keep the values from the limited
357  * counters as consistent as possible by keeping the delay (in
358  * cycles and instructions) between freezing/unfreezing and reading
359  * the limited counters as small and consistent as possible.
360  * Therefore, if any limited counters are in use, we read them
361  * both, and always in the same order, to minimize variability,
362  * and do it inside the same asm that writes MMCR0.
363  */
364 static void write_mmcr0(struct cpu_hw_counters *cpuhw, unsigned long mmcr0)
365 {
366         unsigned long pmc5, pmc6;
367
368         if (!cpuhw->n_limited) {
369                 mtspr(SPRN_MMCR0, mmcr0);
370                 return;
371         }
372
373         /*
374          * Write MMCR0, then read PMC5 and PMC6 immediately.
375          * To ensure we don't get a performance monitor interrupt
376          * between writing MMCR0 and freezing/thawing the limited
377          * counters, we first write MMCR0 with the counter overflow
378          * interrupt enable bits turned off.
379          */
380         asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
381                      : "=&r" (pmc5), "=&r" (pmc6)
382                      : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
383                        "i" (SPRN_MMCR0),
384                        "i" (SPRN_PMC5), "i" (SPRN_PMC6));
385
386         if (mmcr0 & MMCR0_FC)
387                 freeze_limited_counters(cpuhw, pmc5, pmc6);
388         else
389                 thaw_limited_counters(cpuhw, pmc5, pmc6);
390
391         /*
392          * Write the full MMCR0 including the counter overflow interrupt
393          * enable bits, if necessary.
394          */
395         if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
396                 mtspr(SPRN_MMCR0, mmcr0);
397 }
398
399 /*
400  * Disable all counters to prevent PMU interrupts and to allow
401  * counters to be added or removed.
402  */
403 void hw_perf_disable(void)
404 {
405         struct cpu_hw_counters *cpuhw;
406         unsigned long ret;
407         unsigned long flags;
408
409         local_irq_save(flags);
410         cpuhw = &__get_cpu_var(cpu_hw_counters);
411
412         ret = cpuhw->disabled;
413         if (!ret) {
414                 cpuhw->disabled = 1;
415                 cpuhw->n_added = 0;
416
417                 /*
418                  * Check if we ever enabled the PMU on this cpu.
419                  */
420                 if (!cpuhw->pmcs_enabled) {
421                         if (ppc_md.enable_pmcs)
422                                 ppc_md.enable_pmcs();
423                         cpuhw->pmcs_enabled = 1;
424                 }
425
426                 /*
427                  * Disable instruction sampling if it was enabled
428                  */
429                 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
430                         mtspr(SPRN_MMCRA,
431                               cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
432                         mb();
433                 }
434
435                 /*
436                  * Set the 'freeze counters' bit.
437                  * The barrier is to make sure the mtspr has been
438                  * executed and the PMU has frozen the counters
439                  * before we return.
440                  */
441                 write_mmcr0(cpuhw, mfspr(SPRN_MMCR0) | MMCR0_FC);
442                 mb();
443         }
444         local_irq_restore(flags);
445 }
446
447 /*
448  * Re-enable all counters if disable == 0.
449  * If we were previously disabled and counters were added, then
450  * put the new config on the PMU.
451  */
452 void hw_perf_enable(void)
453 {
454         struct perf_counter *counter;
455         struct cpu_hw_counters *cpuhw;
456         unsigned long flags;
457         long i;
458         unsigned long val;
459         s64 left;
460         unsigned int hwc_index[MAX_HWCOUNTERS];
461         int n_lim;
462         int idx;
463
464         local_irq_save(flags);
465         cpuhw = &__get_cpu_var(cpu_hw_counters);
466         if (!cpuhw->disabled) {
467                 local_irq_restore(flags);
468                 return;
469         }
470         cpuhw->disabled = 0;
471
472         /*
473          * If we didn't change anything, or only removed counters,
474          * no need to recalculate MMCR* settings and reset the PMCs.
475          * Just reenable the PMU with the current MMCR* settings
476          * (possibly updated for removal of counters).
477          */
478         if (!cpuhw->n_added) {
479                 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
480                 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
481                 if (cpuhw->n_counters == 0)
482                         get_lppaca()->pmcregs_in_use = 0;
483                 goto out_enable;
484         }
485
486         /*
487          * Compute MMCR* values for the new set of counters
488          */
489         if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_counters, hwc_index,
490                                cpuhw->mmcr)) {
491                 /* shouldn't ever get here */
492                 printk(KERN_ERR "oops compute_mmcr failed\n");
493                 goto out;
494         }
495
496         /*
497          * Add in MMCR0 freeze bits corresponding to the
498          * attr.exclude_* bits for the first counter.
499          * We have already checked that all counters have the
500          * same values for these bits as the first counter.
501          */
502         counter = cpuhw->counter[0];
503         if (counter->attr.exclude_user)
504                 cpuhw->mmcr[0] |= MMCR0_FCP;
505         if (counter->attr.exclude_kernel)
506                 cpuhw->mmcr[0] |= freeze_counters_kernel;
507         if (counter->attr.exclude_hv)
508                 cpuhw->mmcr[0] |= MMCR0_FCHV;
509
510         /*
511          * Write the new configuration to MMCR* with the freeze
512          * bit set and set the hardware counters to their initial values.
513          * Then unfreeze the counters.
514          */
515         get_lppaca()->pmcregs_in_use = 1;
516         mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
517         mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
518         mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
519                                 | MMCR0_FC);
520
521         /*
522          * Read off any pre-existing counters that need to move
523          * to another PMC.
524          */
525         for (i = 0; i < cpuhw->n_counters; ++i) {
526                 counter = cpuhw->counter[i];
527                 if (counter->hw.idx && counter->hw.idx != hwc_index[i] + 1) {
528                         power_pmu_read(counter);
529                         write_pmc(counter->hw.idx, 0);
530                         counter->hw.idx = 0;
531                 }
532         }
533
534         /*
535          * Initialize the PMCs for all the new and moved counters.
536          */
537         cpuhw->n_limited = n_lim = 0;
538         for (i = 0; i < cpuhw->n_counters; ++i) {
539                 counter = cpuhw->counter[i];
540                 if (counter->hw.idx)
541                         continue;
542                 idx = hwc_index[i] + 1;
543                 if (is_limited_pmc(idx)) {
544                         cpuhw->limited_counter[n_lim] = counter;
545                         cpuhw->limited_hwidx[n_lim] = idx;
546                         ++n_lim;
547                         continue;
548                 }
549                 val = 0;
550                 if (counter->hw.sample_period) {
551                         left = atomic64_read(&counter->hw.period_left);
552                         if (left < 0x80000000L)
553                                 val = 0x80000000L - left;
554                 }
555                 atomic64_set(&counter->hw.prev_count, val);
556                 counter->hw.idx = idx;
557                 write_pmc(idx, val);
558                 perf_counter_update_userpage(counter);
559         }
560         cpuhw->n_limited = n_lim;
561         cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
562
563  out_enable:
564         mb();
565         write_mmcr0(cpuhw, cpuhw->mmcr[0]);
566
567         /*
568          * Enable instruction sampling if necessary
569          */
570         if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
571                 mb();
572                 mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
573         }
574
575  out:
576         local_irq_restore(flags);
577 }
578
579 static int collect_events(struct perf_counter *group, int max_count,
580                           struct perf_counter *ctrs[], u64 *events,
581                           unsigned int *flags)
582 {
583         int n = 0;
584         struct perf_counter *counter;
585
586         if (!is_software_counter(group)) {
587                 if (n >= max_count)
588                         return -1;
589                 ctrs[n] = group;
590                 flags[n] = group->hw.counter_base;
591                 events[n++] = group->hw.config;
592         }
593         list_for_each_entry(counter, &group->sibling_list, list_entry) {
594                 if (!is_software_counter(counter) &&
595                     counter->state != PERF_COUNTER_STATE_OFF) {
596                         if (n >= max_count)
597                                 return -1;
598                         ctrs[n] = counter;
599                         flags[n] = counter->hw.counter_base;
600                         events[n++] = counter->hw.config;
601                 }
602         }
603         return n;
604 }
605
606 static void counter_sched_in(struct perf_counter *counter, int cpu)
607 {
608         counter->state = PERF_COUNTER_STATE_ACTIVE;
609         counter->oncpu = cpu;
610         counter->tstamp_running += counter->ctx->time - counter->tstamp_stopped;
611         if (is_software_counter(counter))
612                 counter->pmu->enable(counter);
613 }
614
615 /*
616  * Called to enable a whole group of counters.
617  * Returns 1 if the group was enabled, or -EAGAIN if it could not be.
618  * Assumes the caller has disabled interrupts and has
619  * frozen the PMU with hw_perf_save_disable.
620  */
621 int hw_perf_group_sched_in(struct perf_counter *group_leader,
622                struct perf_cpu_context *cpuctx,
623                struct perf_counter_context *ctx, int cpu)
624 {
625         struct cpu_hw_counters *cpuhw;
626         long i, n, n0;
627         struct perf_counter *sub;
628
629         cpuhw = &__get_cpu_var(cpu_hw_counters);
630         n0 = cpuhw->n_counters;
631         n = collect_events(group_leader, ppmu->n_counter - n0,
632                            &cpuhw->counter[n0], &cpuhw->events[n0],
633                            &cpuhw->flags[n0]);
634         if (n < 0)
635                 return -EAGAIN;
636         if (check_excludes(cpuhw->counter, cpuhw->flags, n0, n))
637                 return -EAGAIN;
638         i = power_check_constraints(cpuhw->events, cpuhw->flags, n + n0);
639         if (i < 0)
640                 return -EAGAIN;
641         cpuhw->n_counters = n0 + n;
642         cpuhw->n_added += n;
643
644         /*
645          * OK, this group can go on; update counter states etc.,
646          * and enable any software counters
647          */
648         for (i = n0; i < n0 + n; ++i)
649                 cpuhw->counter[i]->hw.config = cpuhw->events[i];
650         cpuctx->active_oncpu += n;
651         n = 1;
652         counter_sched_in(group_leader, cpu);
653         list_for_each_entry(sub, &group_leader->sibling_list, list_entry) {
654                 if (sub->state != PERF_COUNTER_STATE_OFF) {
655                         counter_sched_in(sub, cpu);
656                         ++n;
657                 }
658         }
659         ctx->nr_active += n;
660
661         return 1;
662 }
663
664 /*
665  * Add a counter to the PMU.
666  * If all counters are not already frozen, then we disable and
667  * re-enable the PMU in order to get hw_perf_enable to do the
668  * actual work of reconfiguring the PMU.
669  */
670 static int power_pmu_enable(struct perf_counter *counter)
671 {
672         struct cpu_hw_counters *cpuhw;
673         unsigned long flags;
674         int n0;
675         int ret = -EAGAIN;
676
677         local_irq_save(flags);
678         perf_disable();
679
680         /*
681          * Add the counter to the list (if there is room)
682          * and check whether the total set is still feasible.
683          */
684         cpuhw = &__get_cpu_var(cpu_hw_counters);
685         n0 = cpuhw->n_counters;
686         if (n0 >= ppmu->n_counter)
687                 goto out;
688         cpuhw->counter[n0] = counter;
689         cpuhw->events[n0] = counter->hw.config;
690         cpuhw->flags[n0] = counter->hw.counter_base;
691         if (check_excludes(cpuhw->counter, cpuhw->flags, n0, 1))
692                 goto out;
693         if (power_check_constraints(cpuhw->events, cpuhw->flags, n0 + 1))
694                 goto out;
695
696         counter->hw.config = cpuhw->events[n0];
697         ++cpuhw->n_counters;
698         ++cpuhw->n_added;
699
700         ret = 0;
701  out:
702         perf_enable();
703         local_irq_restore(flags);
704         return ret;
705 }
706
707 /*
708  * Remove a counter from the PMU.
709  */
710 static void power_pmu_disable(struct perf_counter *counter)
711 {
712         struct cpu_hw_counters *cpuhw;
713         long i;
714         unsigned long flags;
715
716         local_irq_save(flags);
717         perf_disable();
718
719         power_pmu_read(counter);
720
721         cpuhw = &__get_cpu_var(cpu_hw_counters);
722         for (i = 0; i < cpuhw->n_counters; ++i) {
723                 if (counter == cpuhw->counter[i]) {
724                         while (++i < cpuhw->n_counters)
725                                 cpuhw->counter[i-1] = cpuhw->counter[i];
726                         --cpuhw->n_counters;
727                         ppmu->disable_pmc(counter->hw.idx - 1, cpuhw->mmcr);
728                         if (counter->hw.idx) {
729                                 write_pmc(counter->hw.idx, 0);
730                                 counter->hw.idx = 0;
731                         }
732                         perf_counter_update_userpage(counter);
733                         break;
734                 }
735         }
736         for (i = 0; i < cpuhw->n_limited; ++i)
737                 if (counter == cpuhw->limited_counter[i])
738                         break;
739         if (i < cpuhw->n_limited) {
740                 while (++i < cpuhw->n_limited) {
741                         cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
742                         cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
743                 }
744                 --cpuhw->n_limited;
745         }
746         if (cpuhw->n_counters == 0) {
747                 /* disable exceptions if no counters are running */
748                 cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
749         }
750
751         perf_enable();
752         local_irq_restore(flags);
753 }
754
755 /*
756  * Re-enable interrupts on a counter after they were throttled
757  * because they were coming too fast.
758  */
759 static void power_pmu_unthrottle(struct perf_counter *counter)
760 {
761         s64 val, left;
762         unsigned long flags;
763
764         if (!counter->hw.idx || !counter->hw.sample_period)
765                 return;
766         local_irq_save(flags);
767         perf_disable();
768         power_pmu_read(counter);
769         left = counter->hw.sample_period;
770         val = 0;
771         if (left < 0x80000000L)
772                 val = 0x80000000L - left;
773         write_pmc(counter->hw.idx, val);
774         atomic64_set(&counter->hw.prev_count, val);
775         atomic64_set(&counter->hw.period_left, left);
776         perf_counter_update_userpage(counter);
777         perf_enable();
778         local_irq_restore(flags);
779 }
780
781 struct pmu power_pmu = {
782         .enable         = power_pmu_enable,
783         .disable        = power_pmu_disable,
784         .read           = power_pmu_read,
785         .unthrottle     = power_pmu_unthrottle,
786 };
787
788 /*
789  * Return 1 if we might be able to put counter on a limited PMC,
790  * or 0 if not.
791  * A counter can only go on a limited PMC if it counts something
792  * that a limited PMC can count, doesn't require interrupts, and
793  * doesn't exclude any processor mode.
794  */
795 static int can_go_on_limited_pmc(struct perf_counter *counter, u64 ev,
796                                  unsigned int flags)
797 {
798         int n;
799         u64 alt[MAX_EVENT_ALTERNATIVES];
800
801         if (counter->attr.exclude_user
802             || counter->attr.exclude_kernel
803             || counter->attr.exclude_hv
804             || counter->attr.sample_period)
805                 return 0;
806
807         if (ppmu->limited_pmc_event(ev))
808                 return 1;
809
810         /*
811          * The requested event isn't on a limited PMC already;
812          * see if any alternative code goes on a limited PMC.
813          */
814         if (!ppmu->get_alternatives)
815                 return 0;
816
817         flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
818         n = ppmu->get_alternatives(ev, flags, alt);
819
820         return n > 0;
821 }
822
823 /*
824  * Find an alternative event that goes on a normal PMC, if possible,
825  * and return the event code, or 0 if there is no such alternative.
826  * (Note: event code 0 is "don't count" on all machines.)
827  */
828 static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
829 {
830         u64 alt[MAX_EVENT_ALTERNATIVES];
831         int n;
832
833         flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
834         n = ppmu->get_alternatives(ev, flags, alt);
835         if (!n)
836                 return 0;
837         return alt[0];
838 }
839
840 /* Number of perf_counters counting hardware events */
841 static atomic_t num_counters;
842 /* Used to avoid races in calling reserve/release_pmc_hardware */
843 static DEFINE_MUTEX(pmc_reserve_mutex);
844
845 /*
846  * Release the PMU if this is the last perf_counter.
847  */
848 static void hw_perf_counter_destroy(struct perf_counter *counter)
849 {
850         if (!atomic_add_unless(&num_counters, -1, 1)) {
851                 mutex_lock(&pmc_reserve_mutex);
852                 if (atomic_dec_return(&num_counters) == 0)
853                         release_pmc_hardware();
854                 mutex_unlock(&pmc_reserve_mutex);
855         }
856 }
857
858 const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
859 {
860         u64 ev;
861         unsigned long flags;
862         struct perf_counter *ctrs[MAX_HWCOUNTERS];
863         u64 events[MAX_HWCOUNTERS];
864         unsigned int cflags[MAX_HWCOUNTERS];
865         int n;
866         int err;
867
868         if (!ppmu)
869                 return ERR_PTR(-ENXIO);
870         if (counter->attr.type != PERF_TYPE_RAW) {
871                 ev = counter->attr.config;
872                 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
873                         return ERR_PTR(-EOPNOTSUPP);
874                 ev = ppmu->generic_events[ev];
875         } else {
876                 ev = counter->attr.config;
877         }
878         counter->hw.config_base = ev;
879         counter->hw.idx = 0;
880
881         /*
882          * If we are not running on a hypervisor, force the
883          * exclude_hv bit to 0 so that we don't care what
884          * the user set it to.
885          */
886         if (!firmware_has_feature(FW_FEATURE_LPAR))
887                 counter->attr.exclude_hv = 0;
888
889         /*
890          * If this is a per-task counter, then we can use
891          * PM_RUN_* events interchangeably with their non RUN_*
892          * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
893          * XXX we should check if the task is an idle task.
894          */
895         flags = 0;
896         if (counter->ctx->task)
897                 flags |= PPMU_ONLY_COUNT_RUN;
898
899         /*
900          * If this machine has limited counters, check whether this
901          * event could go on a limited counter.
902          */
903         if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
904                 if (can_go_on_limited_pmc(counter, ev, flags)) {
905                         flags |= PPMU_LIMITED_PMC_OK;
906                 } else if (ppmu->limited_pmc_event(ev)) {
907                         /*
908                          * The requested event is on a limited PMC,
909                          * but we can't use a limited PMC; see if any
910                          * alternative goes on a normal PMC.
911                          */
912                         ev = normal_pmc_alternative(ev, flags);
913                         if (!ev)
914                                 return ERR_PTR(-EINVAL);
915                 }
916         }
917
918         /*
919          * If this is in a group, check if it can go on with all the
920          * other hardware counters in the group.  We assume the counter
921          * hasn't been linked into its leader's sibling list at this point.
922          */
923         n = 0;
924         if (counter->group_leader != counter) {
925                 n = collect_events(counter->group_leader, ppmu->n_counter - 1,
926                                    ctrs, events, cflags);
927                 if (n < 0)
928                         return ERR_PTR(-EINVAL);
929         }
930         events[n] = ev;
931         ctrs[n] = counter;
932         cflags[n] = flags;
933         if (check_excludes(ctrs, cflags, n, 1))
934                 return ERR_PTR(-EINVAL);
935         if (power_check_constraints(events, cflags, n + 1))
936                 return ERR_PTR(-EINVAL);
937
938         counter->hw.config = events[n];
939         counter->hw.counter_base = cflags[n];
940         atomic64_set(&counter->hw.period_left, counter->hw.sample_period);
941
942         /*
943          * See if we need to reserve the PMU.
944          * If no counters are currently in use, then we have to take a
945          * mutex to ensure that we don't race with another task doing
946          * reserve_pmc_hardware or release_pmc_hardware.
947          */
948         err = 0;
949         if (!atomic_inc_not_zero(&num_counters)) {
950                 mutex_lock(&pmc_reserve_mutex);
951                 if (atomic_read(&num_counters) == 0 &&
952                     reserve_pmc_hardware(perf_counter_interrupt))
953                         err = -EBUSY;
954                 else
955                         atomic_inc(&num_counters);
956                 mutex_unlock(&pmc_reserve_mutex);
957         }
958         counter->destroy = hw_perf_counter_destroy;
959
960         if (err)
961                 return ERR_PTR(err);
962         return &power_pmu;
963 }
964
965 /*
966  * A counter has overflowed; update its count and record
967  * things if requested.  Note that interrupts are hard-disabled
968  * here so there is no possibility of being interrupted.
969  */
970 static void record_and_restart(struct perf_counter *counter, long val,
971                                struct pt_regs *regs, int nmi)
972 {
973         u64 period = counter->hw.sample_period;
974         s64 prev, delta, left;
975         int record = 0;
976         u64 addr, mmcra, sdsync;
977
978         /* we don't have to worry about interrupts here */
979         prev = atomic64_read(&counter->hw.prev_count);
980         delta = (val - prev) & 0xfffffffful;
981         atomic64_add(delta, &counter->count);
982
983         /*
984          * See if the total period for this counter has expired,
985          * and update for the next period.
986          */
987         val = 0;
988         left = atomic64_read(&counter->hw.period_left) - delta;
989         if (period) {
990                 if (left <= 0) {
991                         left += period;
992                         if (left <= 0)
993                                 left = period;
994                         record = 1;
995                 }
996                 if (left < 0x80000000L)
997                         val = 0x80000000L - left;
998         }
999
1000         /*
1001          * Finally record data if requested.
1002          */
1003         if (record) {
1004                 struct perf_sample_data data = {
1005                         .regs = regs,
1006                         .addr = 0,
1007                 };
1008
1009                 if (counter->attr.sample_type & PERF_SAMPLE_ADDR) {
1010                         /*
1011                          * The user wants a data address recorded.
1012                          * If we're not doing instruction sampling,
1013                          * give them the SDAR (sampled data address).
1014                          * If we are doing instruction sampling, then only
1015                          * give them the SDAR if it corresponds to the
1016                          * instruction pointed to by SIAR; this is indicated
1017                          * by the [POWER6_]MMCRA_SDSYNC bit in MMCRA.
1018                          */
1019                         mmcra = regs->dsisr;
1020                         sdsync = (ppmu->flags & PPMU_ALT_SIPR) ?
1021                                 POWER6_MMCRA_SDSYNC : MMCRA_SDSYNC;
1022                         if (!(mmcra & MMCRA_SAMPLE_ENABLE) || (mmcra & sdsync))
1023                                 data.addr = mfspr(SPRN_SDAR);
1024                 }
1025                 if (perf_counter_overflow(counter, nmi, &data)) {
1026                         /*
1027                          * Interrupts are coming too fast - throttle them
1028                          * by setting the counter to 0, so it will be
1029                          * at least 2^30 cycles until the next interrupt
1030                          * (assuming each counter counts at most 2 counts
1031                          * per cycle).
1032                          */
1033                         val = 0;
1034                         left = ~0ULL >> 1;
1035                 }
1036         }
1037
1038         write_pmc(counter->hw.idx, val);
1039         atomic64_set(&counter->hw.prev_count, val);
1040         atomic64_set(&counter->hw.period_left, left);
1041         perf_counter_update_userpage(counter);
1042 }
1043
1044 /*
1045  * Called from generic code to get the misc flags (i.e. processor mode)
1046  * for an event.
1047  */
1048 unsigned long perf_misc_flags(struct pt_regs *regs)
1049 {
1050         unsigned long mmcra;
1051
1052         if (TRAP(regs) != 0xf00) {
1053                 /* not a PMU interrupt */
1054                 return user_mode(regs) ? PERF_EVENT_MISC_USER :
1055                         PERF_EVENT_MISC_KERNEL;
1056         }
1057
1058         mmcra = regs->dsisr;
1059         if (ppmu->flags & PPMU_ALT_SIPR) {
1060                 if (mmcra & POWER6_MMCRA_SIHV)
1061                         return PERF_EVENT_MISC_HYPERVISOR;
1062                 return (mmcra & POWER6_MMCRA_SIPR) ? PERF_EVENT_MISC_USER :
1063                         PERF_EVENT_MISC_KERNEL;
1064         }
1065         if (mmcra & MMCRA_SIHV)
1066                 return PERF_EVENT_MISC_HYPERVISOR;
1067         return (mmcra & MMCRA_SIPR) ? PERF_EVENT_MISC_USER :
1068                         PERF_EVENT_MISC_KERNEL;
1069 }
1070
1071 /*
1072  * Called from generic code to get the instruction pointer
1073  * for an event.
1074  */
1075 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1076 {
1077         unsigned long mmcra;
1078         unsigned long ip;
1079         unsigned long slot;
1080
1081         if (TRAP(regs) != 0xf00)
1082                 return regs->nip;       /* not a PMU interrupt */
1083
1084         ip = mfspr(SPRN_SIAR);
1085         mmcra = regs->dsisr;
1086         if ((mmcra & MMCRA_SAMPLE_ENABLE) && !(ppmu->flags & PPMU_ALT_SIPR)) {
1087                 slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
1088                 if (slot > 1)
1089                         ip += 4 * (slot - 1);
1090         }
1091         return ip;
1092 }
1093
1094 /*
1095  * Performance monitor interrupt stuff
1096  */
1097 static void perf_counter_interrupt(struct pt_regs *regs)
1098 {
1099         int i;
1100         struct cpu_hw_counters *cpuhw = &__get_cpu_var(cpu_hw_counters);
1101         struct perf_counter *counter;
1102         long val;
1103         int found = 0;
1104         int nmi;
1105
1106         if (cpuhw->n_limited)
1107                 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
1108                                         mfspr(SPRN_PMC6));
1109
1110         /*
1111          * Overload regs->dsisr to store MMCRA so we only need to read it once.
1112          */
1113         regs->dsisr = mfspr(SPRN_MMCRA);
1114
1115         /*
1116          * If interrupts were soft-disabled when this PMU interrupt
1117          * occurred, treat it as an NMI.
1118          */
1119         nmi = !regs->softe;
1120         if (nmi)
1121                 nmi_enter();
1122         else
1123                 irq_enter();
1124
1125         for (i = 0; i < cpuhw->n_counters; ++i) {
1126                 counter = cpuhw->counter[i];
1127                 if (!counter->hw.idx || is_limited_pmc(counter->hw.idx))
1128                         continue;
1129                 val = read_pmc(counter->hw.idx);
1130                 if ((int)val < 0) {
1131                         /* counter has overflowed */
1132                         found = 1;
1133                         record_and_restart(counter, val, regs, nmi);
1134                 }
1135         }
1136
1137         /*
1138          * In case we didn't find and reset the counter that caused
1139          * the interrupt, scan all counters and reset any that are
1140          * negative, to avoid getting continual interrupts.
1141          * Any that we processed in the previous loop will not be negative.
1142          */
1143         if (!found) {
1144                 for (i = 0; i < ppmu->n_counter; ++i) {
1145                         if (is_limited_pmc(i + 1))
1146                                 continue;
1147                         val = read_pmc(i + 1);
1148                         if ((int)val < 0)
1149                                 write_pmc(i + 1, 0);
1150                 }
1151         }
1152
1153         /*
1154          * Reset MMCR0 to its normal value.  This will set PMXE and
1155          * clear FC (freeze counters) and PMAO (perf mon alert occurred)
1156          * and thus allow interrupts to occur again.
1157          * XXX might want to use MSR.PM to keep the counters frozen until
1158          * we get back out of this interrupt.
1159          */
1160         write_mmcr0(cpuhw, cpuhw->mmcr[0]);
1161
1162         if (nmi)
1163                 nmi_exit();
1164         else
1165                 irq_exit();
1166 }
1167
1168 void hw_perf_counter_setup(int cpu)
1169 {
1170         struct cpu_hw_counters *cpuhw = &per_cpu(cpu_hw_counters, cpu);
1171
1172         memset(cpuhw, 0, sizeof(*cpuhw));
1173         cpuhw->mmcr[0] = MMCR0_FC;
1174 }
1175
1176 extern struct power_pmu power4_pmu;
1177 extern struct power_pmu ppc970_pmu;
1178 extern struct power_pmu power5_pmu;
1179 extern struct power_pmu power5p_pmu;
1180 extern struct power_pmu power6_pmu;
1181
1182 static int init_perf_counters(void)
1183 {
1184         unsigned long pvr;
1185
1186         /* XXX should get this from cputable */
1187         pvr = mfspr(SPRN_PVR);
1188         switch (PVR_VER(pvr)) {
1189         case PV_POWER4:
1190         case PV_POWER4p:
1191                 ppmu = &power4_pmu;
1192                 break;
1193         case PV_970:
1194         case PV_970FX:
1195         case PV_970MP:
1196                 ppmu = &ppc970_pmu;
1197                 break;
1198         case PV_POWER5:
1199                 ppmu = &power5_pmu;
1200                 break;
1201         case PV_POWER5p:
1202                 ppmu = &power5p_pmu;
1203                 break;
1204         case 0x3e:
1205                 ppmu = &power6_pmu;
1206                 break;
1207         }
1208
1209         /*
1210          * Use FCHV to ignore kernel events if MSR.HV is set.
1211          */
1212         if (mfmsr() & MSR_HV)
1213                 freeze_counters_kernel = MMCR0_FCHV;
1214
1215         return 0;
1216 }
1217
1218 arch_initcall(init_perf_counters);