05db25ef3dd5f4b7432888e27a2344300c1e758e
[pandora-kernel.git] / arch / arm / kernel / setup.c
1 /*
2  *  linux/arch/arm/kernel/setup.c
3  *
4  *  Copyright (C) 1995-2001 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/stddef.h>
13 #include <linux/ioport.h>
14 #include <linux/delay.h>
15 #include <linux/utsname.h>
16 #include <linux/initrd.h>
17 #include <linux/console.h>
18 #include <linux/bootmem.h>
19 #include <linux/seq_file.h>
20 #include <linux/screen_info.h>
21 #include <linux/init.h>
22 #include <linux/kexec.h>
23 #include <linux/of_fdt.h>
24 #include <linux/crash_dump.h>
25 #include <linux/root_dev.h>
26 #include <linux/cpu.h>
27 #include <linux/interrupt.h>
28 #include <linux/smp.h>
29 #include <linux/fs.h>
30 #include <linux/proc_fs.h>
31 #include <linux/memblock.h>
32
33 #include <asm/unified.h>
34 #include <asm/cpu.h>
35 #include <asm/cputype.h>
36 #include <asm/elf.h>
37 #include <asm/procinfo.h>
38 #include <asm/sections.h>
39 #include <asm/setup.h>
40 #include <asm/smp_plat.h>
41 #include <asm/mach-types.h>
42 #include <asm/cacheflush.h>
43 #include <asm/cachetype.h>
44 #include <asm/tlbflush.h>
45
46 #include <asm/prom.h>
47 #include <asm/mach/arch.h>
48 #include <asm/mach/irq.h>
49 #include <asm/mach/time.h>
50 #include <asm/traps.h>
51 #include <asm/unwind.h>
52
53 #if defined(CONFIG_DEPRECATED_PARAM_STRUCT)
54 #include "compat.h"
55 #endif
56 #include "atags.h"
57 #include "tcm.h"
58
59 #ifndef MEM_SIZE
60 #define MEM_SIZE        (16*1024*1024)
61 #endif
62
63 #if defined(CONFIG_FPE_NWFPE) || defined(CONFIG_FPE_FASTFPE)
64 char fpe_type[8];
65
66 static int __init fpe_setup(char *line)
67 {
68         memcpy(fpe_type, line, 8);
69         return 1;
70 }
71
72 __setup("fpe=", fpe_setup);
73 #endif
74
75 extern void paging_init(struct machine_desc *desc);
76 extern void reboot_setup(char *str);
77
78 unsigned int processor_id;
79 EXPORT_SYMBOL(processor_id);
80 unsigned int __machine_arch_type __read_mostly;
81 EXPORT_SYMBOL(__machine_arch_type);
82 unsigned int cacheid __read_mostly;
83 EXPORT_SYMBOL(cacheid);
84
85 unsigned int __atags_pointer __initdata;
86
87 unsigned int system_rev;
88 EXPORT_SYMBOL(system_rev);
89
90 unsigned int system_serial_low;
91 EXPORT_SYMBOL(system_serial_low);
92
93 unsigned int system_serial_high;
94 EXPORT_SYMBOL(system_serial_high);
95
96 unsigned int elf_hwcap __read_mostly;
97 EXPORT_SYMBOL(elf_hwcap);
98
99
100 #ifdef MULTI_CPU
101 struct processor processor __read_mostly;
102 #endif
103 #ifdef MULTI_TLB
104 struct cpu_tlb_fns cpu_tlb __read_mostly;
105 #endif
106 #ifdef MULTI_USER
107 struct cpu_user_fns cpu_user __read_mostly;
108 #endif
109 #ifdef MULTI_CACHE
110 struct cpu_cache_fns cpu_cache __read_mostly;
111 #endif
112 #ifdef CONFIG_OUTER_CACHE
113 struct outer_cache_fns outer_cache __read_mostly;
114 EXPORT_SYMBOL(outer_cache);
115 #endif
116
117 struct stack {
118         u32 irq[3];
119         u32 abt[3];
120         u32 und[3];
121 } ____cacheline_aligned;
122
123 static struct stack stacks[NR_CPUS];
124
125 char elf_platform[ELF_PLATFORM_SIZE];
126 EXPORT_SYMBOL(elf_platform);
127
128 static const char *cpu_name;
129 static const char *machine_name;
130 static char __initdata cmd_line[COMMAND_LINE_SIZE];
131 struct machine_desc *machine_desc __initdata;
132
133 static char default_command_line[COMMAND_LINE_SIZE] __initdata = CONFIG_CMDLINE;
134 static union { char c[4]; unsigned long l; } endian_test __initdata = { { 'l', '?', '?', 'b' } };
135 #define ENDIANNESS ((char)endian_test.l)
136
137 DEFINE_PER_CPU(struct cpuinfo_arm, cpu_data);
138
139 /*
140  * Standard memory resources
141  */
142 static struct resource mem_res[] = {
143         {
144                 .name = "Video RAM",
145                 .start = 0,
146                 .end = 0,
147                 .flags = IORESOURCE_MEM
148         },
149         {
150                 .name = "Kernel text",
151                 .start = 0,
152                 .end = 0,
153                 .flags = IORESOURCE_MEM
154         },
155         {
156                 .name = "Kernel data",
157                 .start = 0,
158                 .end = 0,
159                 .flags = IORESOURCE_MEM
160         }
161 };
162
163 #define video_ram   mem_res[0]
164 #define kernel_code mem_res[1]
165 #define kernel_data mem_res[2]
166
167 static struct resource io_res[] = {
168         {
169                 .name = "reserved",
170                 .start = 0x3bc,
171                 .end = 0x3be,
172                 .flags = IORESOURCE_IO | IORESOURCE_BUSY
173         },
174         {
175                 .name = "reserved",
176                 .start = 0x378,
177                 .end = 0x37f,
178                 .flags = IORESOURCE_IO | IORESOURCE_BUSY
179         },
180         {
181                 .name = "reserved",
182                 .start = 0x278,
183                 .end = 0x27f,
184                 .flags = IORESOURCE_IO | IORESOURCE_BUSY
185         }
186 };
187
188 #define lp0 io_res[0]
189 #define lp1 io_res[1]
190 #define lp2 io_res[2]
191
192 static const char *proc_arch[] = {
193         "undefined/unknown",
194         "3",
195         "4",
196         "4T",
197         "5",
198         "5T",
199         "5TE",
200         "5TEJ",
201         "6TEJ",
202         "7",
203         "?(11)",
204         "?(12)",
205         "?(13)",
206         "?(14)",
207         "?(15)",
208         "?(16)",
209         "?(17)",
210 };
211
212 int cpu_architecture(void)
213 {
214         int cpu_arch;
215
216         if ((read_cpuid_id() & 0x0008f000) == 0) {
217                 cpu_arch = CPU_ARCH_UNKNOWN;
218         } else if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
219                 cpu_arch = (read_cpuid_id() & (1 << 23)) ? CPU_ARCH_ARMv4T : CPU_ARCH_ARMv3;
220         } else if ((read_cpuid_id() & 0x00080000) == 0x00000000) {
221                 cpu_arch = (read_cpuid_id() >> 16) & 7;
222                 if (cpu_arch)
223                         cpu_arch += CPU_ARCH_ARMv3;
224         } else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
225                 unsigned int mmfr0;
226
227                 /* Revised CPUID format. Read the Memory Model Feature
228                  * Register 0 and check for VMSAv7 or PMSAv7 */
229                 asm("mrc        p15, 0, %0, c0, c1, 4"
230                     : "=r" (mmfr0));
231                 if ((mmfr0 & 0x0000000f) >= 0x00000003 ||
232                     (mmfr0 & 0x000000f0) >= 0x00000030)
233                         cpu_arch = CPU_ARCH_ARMv7;
234                 else if ((mmfr0 & 0x0000000f) == 0x00000002 ||
235                          (mmfr0 & 0x000000f0) == 0x00000020)
236                         cpu_arch = CPU_ARCH_ARMv6;
237                 else
238                         cpu_arch = CPU_ARCH_UNKNOWN;
239         } else
240                 cpu_arch = CPU_ARCH_UNKNOWN;
241
242         return cpu_arch;
243 }
244
245 static int cpu_has_aliasing_icache(unsigned int arch)
246 {
247         int aliasing_icache;
248         unsigned int id_reg, num_sets, line_size;
249
250         /* arch specifies the register format */
251         switch (arch) {
252         case CPU_ARCH_ARMv7:
253                 asm("mcr        p15, 2, %0, c0, c0, 0 @ set CSSELR"
254                     : /* No output operands */
255                     : "r" (1));
256                 isb();
257                 asm("mrc        p15, 1, %0, c0, c0, 0 @ read CCSIDR"
258                     : "=r" (id_reg));
259                 line_size = 4 << ((id_reg & 0x7) + 2);
260                 num_sets = ((id_reg >> 13) & 0x7fff) + 1;
261                 aliasing_icache = (line_size * num_sets) > PAGE_SIZE;
262                 break;
263         case CPU_ARCH_ARMv6:
264                 aliasing_icache = read_cpuid_cachetype() & (1 << 11);
265                 break;
266         default:
267                 /* I-cache aliases will be handled by D-cache aliasing code */
268                 aliasing_icache = 0;
269         }
270
271         return aliasing_icache;
272 }
273
274 static void __init cacheid_init(void)
275 {
276         unsigned int cachetype = read_cpuid_cachetype();
277         unsigned int arch = cpu_architecture();
278
279         if (arch >= CPU_ARCH_ARMv6) {
280                 if ((cachetype & (7 << 29)) == 4 << 29) {
281                         /* ARMv7 register format */
282                         cacheid = CACHEID_VIPT_NONALIASING;
283                         if ((cachetype & (3 << 14)) == 1 << 14)
284                                 cacheid |= CACHEID_ASID_TAGGED;
285                         else if (cpu_has_aliasing_icache(CPU_ARCH_ARMv7))
286                                 cacheid |= CACHEID_VIPT_I_ALIASING;
287                 } else if (cachetype & (1 << 23)) {
288                         cacheid = CACHEID_VIPT_ALIASING;
289                 } else {
290                         cacheid = CACHEID_VIPT_NONALIASING;
291                         if (cpu_has_aliasing_icache(CPU_ARCH_ARMv6))
292                                 cacheid |= CACHEID_VIPT_I_ALIASING;
293                 }
294         } else {
295                 cacheid = CACHEID_VIVT;
296         }
297
298         printk("CPU: %s data cache, %s instruction cache\n",
299                 cache_is_vivt() ? "VIVT" :
300                 cache_is_vipt_aliasing() ? "VIPT aliasing" :
301                 cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown",
302                 cache_is_vivt() ? "VIVT" :
303                 icache_is_vivt_asid_tagged() ? "VIVT ASID tagged" :
304                 icache_is_vipt_aliasing() ? "VIPT aliasing" :
305                 cache_is_vipt_nonaliasing() ? "VIPT nonaliasing" : "unknown");
306 }
307
308 /*
309  * These functions re-use the assembly code in head.S, which
310  * already provide the required functionality.
311  */
312 extern struct proc_info_list *lookup_processor_type(unsigned int);
313
314 void __init early_print(const char *str, ...)
315 {
316         extern void printascii(const char *);
317         char buf[256];
318         va_list ap;
319
320         va_start(ap, str);
321         vsnprintf(buf, sizeof(buf), str, ap);
322         va_end(ap);
323
324 #ifdef CONFIG_DEBUG_LL
325         printascii(buf);
326 #endif
327         printk("%s", buf);
328 }
329
330 static void __init feat_v6_fixup(void)
331 {
332         int id = read_cpuid_id();
333
334         if ((id & 0xff0f0000) != 0x41070000)
335                 return;
336
337         /*
338          * HWCAP_TLS is available only on 1136 r1p0 and later,
339          * see also kuser_get_tls_init.
340          */
341         if ((((id >> 4) & 0xfff) == 0xb36) && (((id >> 20) & 3) == 0))
342                 elf_hwcap &= ~HWCAP_TLS;
343 }
344
345 static void __init setup_processor(void)
346 {
347         struct proc_info_list *list;
348
349         /*
350          * locate processor in the list of supported processor
351          * types.  The linker builds this table for us from the
352          * entries in arch/arm/mm/proc-*.S
353          */
354         list = lookup_processor_type(read_cpuid_id());
355         if (!list) {
356                 printk("CPU configuration botched (ID %08x), unable "
357                        "to continue.\n", read_cpuid_id());
358                 while (1);
359         }
360
361         cpu_name = list->cpu_name;
362
363 #ifdef MULTI_CPU
364         processor = *list->proc;
365 #endif
366 #ifdef MULTI_TLB
367         cpu_tlb = *list->tlb;
368 #endif
369 #ifdef MULTI_USER
370         cpu_user = *list->user;
371 #endif
372 #ifdef MULTI_CACHE
373         cpu_cache = *list->cache;
374 #endif
375
376         printk("CPU: %s [%08x] revision %d (ARMv%s), cr=%08lx\n",
377                cpu_name, read_cpuid_id(), read_cpuid_id() & 15,
378                proc_arch[cpu_architecture()], cr_alignment);
379
380         sprintf(init_utsname()->machine, "%s%c", list->arch_name, ENDIANNESS);
381         sprintf(elf_platform, "%s%c", list->elf_name, ENDIANNESS);
382         elf_hwcap = list->elf_hwcap;
383 #ifndef CONFIG_ARM_THUMB
384         elf_hwcap &= ~HWCAP_THUMB;
385 #endif
386
387         feat_v6_fixup();
388
389         cacheid_init();
390         cpu_proc_init();
391 }
392
393 /*
394  * cpu_init - initialise one CPU.
395  *
396  * cpu_init sets up the per-CPU stacks.
397  */
398 void cpu_init(void)
399 {
400         unsigned int cpu = smp_processor_id();
401         struct stack *stk = &stacks[cpu];
402
403         if (cpu >= NR_CPUS) {
404                 printk(KERN_CRIT "CPU%u: bad primary CPU number\n", cpu);
405                 BUG();
406         }
407
408         /*
409          * Define the placement constraint for the inline asm directive below.
410          * In Thumb-2, msr with an immediate value is not allowed.
411          */
412 #ifdef CONFIG_THUMB2_KERNEL
413 #define PLC     "r"
414 #else
415 #define PLC     "I"
416 #endif
417
418         /*
419          * setup stacks for re-entrant exception handlers
420          */
421         __asm__ (
422         "msr    cpsr_c, %1\n\t"
423         "add    r14, %0, %2\n\t"
424         "mov    sp, r14\n\t"
425         "msr    cpsr_c, %3\n\t"
426         "add    r14, %0, %4\n\t"
427         "mov    sp, r14\n\t"
428         "msr    cpsr_c, %5\n\t"
429         "add    r14, %0, %6\n\t"
430         "mov    sp, r14\n\t"
431         "msr    cpsr_c, %7"
432             :
433             : "r" (stk),
434               PLC (PSR_F_BIT | PSR_I_BIT | IRQ_MODE),
435               "I" (offsetof(struct stack, irq[0])),
436               PLC (PSR_F_BIT | PSR_I_BIT | ABT_MODE),
437               "I" (offsetof(struct stack, abt[0])),
438               PLC (PSR_F_BIT | PSR_I_BIT | UND_MODE),
439               "I" (offsetof(struct stack, und[0])),
440               PLC (PSR_F_BIT | PSR_I_BIT | SVC_MODE)
441             : "r14");
442 }
443
444 void __init dump_machine_table(void)
445 {
446         struct machine_desc *p;
447
448         early_print("Available machine support:\n\nID (hex)\tNAME\n");
449         for_each_machine_desc(p)
450                 early_print("%08x\t%s\n", p->nr, p->name);
451
452         early_print("\nPlease check your kernel config and/or bootloader.\n");
453
454         while (true)
455                 /* can't use cpu_relax() here as it may require MMU setup */;
456 }
457
458 int __init arm_add_memory(phys_addr_t start, unsigned long size)
459 {
460         struct membank *bank = &meminfo.bank[meminfo.nr_banks];
461
462         if (meminfo.nr_banks >= NR_BANKS) {
463                 printk(KERN_CRIT "NR_BANKS too low, "
464                         "ignoring memory at 0x%08llx\n", (long long)start);
465                 return -EINVAL;
466         }
467
468         /*
469          * Ensure that start/size are aligned to a page boundary.
470          * Size is appropriately rounded down, start is rounded up.
471          */
472         size -= start & ~PAGE_MASK;
473         bank->start = PAGE_ALIGN(start);
474         bank->size  = size & PAGE_MASK;
475
476         /*
477          * Check whether this memory region has non-zero size or
478          * invalid node number.
479          */
480         if (bank->size == 0)
481                 return -EINVAL;
482
483         meminfo.nr_banks++;
484         return 0;
485 }
486
487 /*
488  * Pick out the memory size.  We look for mem=size@start,
489  * where start and size are "size[KkMm]"
490  */
491 static int __init early_mem(char *p)
492 {
493         static int usermem __initdata = 0;
494         unsigned long size;
495         phys_addr_t start;
496         char *endp;
497
498         /*
499          * If the user specifies memory size, we
500          * blow away any automatically generated
501          * size.
502          */
503         if (usermem == 0) {
504                 usermem = 1;
505                 meminfo.nr_banks = 0;
506         }
507
508         start = PHYS_OFFSET;
509         size  = memparse(p, &endp);
510         if (*endp == '@')
511                 start = memparse(endp + 1, NULL);
512
513         arm_add_memory(start, size);
514
515         return 0;
516 }
517 early_param("mem", early_mem);
518
519 static void __init
520 setup_ramdisk(int doload, int prompt, int image_start, unsigned int rd_sz)
521 {
522 #ifdef CONFIG_BLK_DEV_RAM
523         extern int rd_size, rd_image_start, rd_prompt, rd_doload;
524
525         rd_image_start = image_start;
526         rd_prompt = prompt;
527         rd_doload = doload;
528
529         if (rd_sz)
530                 rd_size = rd_sz;
531 #endif
532 }
533
534 static void __init request_standard_resources(struct machine_desc *mdesc)
535 {
536         struct memblock_region *region;
537         struct resource *res;
538
539         kernel_code.start   = virt_to_phys(_text);
540         kernel_code.end     = virt_to_phys(_etext - 1);
541         kernel_data.start   = virt_to_phys(_sdata);
542         kernel_data.end     = virt_to_phys(_end - 1);
543
544         for_each_memblock(memory, region) {
545                 res = alloc_bootmem_low(sizeof(*res));
546                 res->name  = "System RAM";
547                 res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
548                 res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
549                 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
550
551                 request_resource(&iomem_resource, res);
552
553                 if (kernel_code.start >= res->start &&
554                     kernel_code.end <= res->end)
555                         request_resource(res, &kernel_code);
556                 if (kernel_data.start >= res->start &&
557                     kernel_data.end <= res->end)
558                         request_resource(res, &kernel_data);
559         }
560
561         if (mdesc->video_start) {
562                 video_ram.start = mdesc->video_start;
563                 video_ram.end   = mdesc->video_end;
564                 request_resource(&iomem_resource, &video_ram);
565         }
566
567         /*
568          * Some machines don't have the possibility of ever
569          * possessing lp0, lp1 or lp2
570          */
571         if (mdesc->reserve_lp0)
572                 request_resource(&ioport_resource, &lp0);
573         if (mdesc->reserve_lp1)
574                 request_resource(&ioport_resource, &lp1);
575         if (mdesc->reserve_lp2)
576                 request_resource(&ioport_resource, &lp2);
577 }
578
579 /*
580  *  Tag parsing.
581  *
582  * This is the new way of passing data to the kernel at boot time.  Rather
583  * than passing a fixed inflexible structure to the kernel, we pass a list
584  * of variable-sized tags to the kernel.  The first tag must be a ATAG_CORE
585  * tag for the list to be recognised (to distinguish the tagged list from
586  * a param_struct).  The list is terminated with a zero-length tag (this tag
587  * is not parsed in any way).
588  */
589 static int __init parse_tag_core(const struct tag *tag)
590 {
591         if (tag->hdr.size > 2) {
592                 if ((tag->u.core.flags & 1) == 0)
593                         root_mountflags &= ~MS_RDONLY;
594                 ROOT_DEV = old_decode_dev(tag->u.core.rootdev);
595         }
596         return 0;
597 }
598
599 __tagtable(ATAG_CORE, parse_tag_core);
600
601 static int __init parse_tag_mem32(const struct tag *tag)
602 {
603         return arm_add_memory(tag->u.mem.start, tag->u.mem.size);
604 }
605
606 __tagtable(ATAG_MEM, parse_tag_mem32);
607
608 #if defined(CONFIG_VGA_CONSOLE) || defined(CONFIG_DUMMY_CONSOLE)
609 struct screen_info screen_info = {
610  .orig_video_lines      = 30,
611  .orig_video_cols       = 80,
612  .orig_video_mode       = 0,
613  .orig_video_ega_bx     = 0,
614  .orig_video_isVGA      = 1,
615  .orig_video_points     = 8
616 };
617
618 static int __init parse_tag_videotext(const struct tag *tag)
619 {
620         screen_info.orig_x            = tag->u.videotext.x;
621         screen_info.orig_y            = tag->u.videotext.y;
622         screen_info.orig_video_page   = tag->u.videotext.video_page;
623         screen_info.orig_video_mode   = tag->u.videotext.video_mode;
624         screen_info.orig_video_cols   = tag->u.videotext.video_cols;
625         screen_info.orig_video_ega_bx = tag->u.videotext.video_ega_bx;
626         screen_info.orig_video_lines  = tag->u.videotext.video_lines;
627         screen_info.orig_video_isVGA  = tag->u.videotext.video_isvga;
628         screen_info.orig_video_points = tag->u.videotext.video_points;
629         return 0;
630 }
631
632 __tagtable(ATAG_VIDEOTEXT, parse_tag_videotext);
633 #endif
634
635 static int __init parse_tag_ramdisk(const struct tag *tag)
636 {
637         setup_ramdisk((tag->u.ramdisk.flags & 1) == 0,
638                       (tag->u.ramdisk.flags & 2) == 0,
639                       tag->u.ramdisk.start, tag->u.ramdisk.size);
640         return 0;
641 }
642
643 __tagtable(ATAG_RAMDISK, parse_tag_ramdisk);
644
645 static int __init parse_tag_serialnr(const struct tag *tag)
646 {
647         system_serial_low = tag->u.serialnr.low;
648         system_serial_high = tag->u.serialnr.high;
649         return 0;
650 }
651
652 __tagtable(ATAG_SERIAL, parse_tag_serialnr);
653
654 static int __init parse_tag_revision(const struct tag *tag)
655 {
656         system_rev = tag->u.revision.rev;
657         return 0;
658 }
659
660 __tagtable(ATAG_REVISION, parse_tag_revision);
661
662 static int __init parse_tag_cmdline(const struct tag *tag)
663 {
664 #ifndef CONFIG_CMDLINE_FORCE
665         strlcpy(default_command_line, tag->u.cmdline.cmdline, COMMAND_LINE_SIZE);
666 #else
667         pr_warning("Ignoring tag cmdline (using the default kernel command line)\n");
668 #endif /* CONFIG_CMDLINE_FORCE */
669         return 0;
670 }
671
672 __tagtable(ATAG_CMDLINE, parse_tag_cmdline);
673
674 /*
675  * Scan the tag table for this tag, and call its parse function.
676  * The tag table is built by the linker from all the __tagtable
677  * declarations.
678  */
679 static int __init parse_tag(const struct tag *tag)
680 {
681         extern struct tagtable __tagtable_begin, __tagtable_end;
682         struct tagtable *t;
683
684         for (t = &__tagtable_begin; t < &__tagtable_end; t++)
685                 if (tag->hdr.tag == t->tag) {
686                         t->parse(tag);
687                         break;
688                 }
689
690         return t < &__tagtable_end;
691 }
692
693 /*
694  * Parse all tags in the list, checking both the global and architecture
695  * specific tag tables.
696  */
697 static void __init parse_tags(const struct tag *t)
698 {
699         for (; t->hdr.size; t = tag_next(t))
700                 if (!parse_tag(t))
701                         printk(KERN_WARNING
702                                 "Ignoring unrecognised tag 0x%08x\n",
703                                 t->hdr.tag);
704 }
705
706 /*
707  * This holds our defaults.
708  */
709 static struct init_tags {
710         struct tag_header hdr1;
711         struct tag_core   core;
712         struct tag_header hdr2;
713         struct tag_mem32  mem;
714         struct tag_header hdr3;
715 } init_tags __initdata = {
716         { tag_size(tag_core), ATAG_CORE },
717         { 1, PAGE_SIZE, 0xff },
718         { tag_size(tag_mem32), ATAG_MEM },
719         { MEM_SIZE },
720         { 0, ATAG_NONE }
721 };
722
723 static int __init customize_machine(void)
724 {
725         /* customizes platform devices, or adds new ones */
726         if (machine_desc->init_machine)
727                 machine_desc->init_machine();
728         return 0;
729 }
730 arch_initcall(customize_machine);
731
732 #ifdef CONFIG_KEXEC
733 static inline unsigned long long get_total_mem(void)
734 {
735         unsigned long total;
736
737         total = max_low_pfn - min_low_pfn;
738         return total << PAGE_SHIFT;
739 }
740
741 /**
742  * reserve_crashkernel() - reserves memory are for crash kernel
743  *
744  * This function reserves memory area given in "crashkernel=" kernel command
745  * line parameter. The memory reserved is used by a dump capture kernel when
746  * primary kernel is crashing.
747  */
748 static void __init reserve_crashkernel(void)
749 {
750         unsigned long long crash_size, crash_base;
751         unsigned long long total_mem;
752         int ret;
753
754         total_mem = get_total_mem();
755         ret = parse_crashkernel(boot_command_line, total_mem,
756                                 &crash_size, &crash_base);
757         if (ret)
758                 return;
759
760         ret = reserve_bootmem(crash_base, crash_size, BOOTMEM_EXCLUSIVE);
761         if (ret < 0) {
762                 printk(KERN_WARNING "crashkernel reservation failed - "
763                        "memory is in use (0x%lx)\n", (unsigned long)crash_base);
764                 return;
765         }
766
767         printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
768                "for crashkernel (System RAM: %ldMB)\n",
769                (unsigned long)(crash_size >> 20),
770                (unsigned long)(crash_base >> 20),
771                (unsigned long)(total_mem >> 20));
772
773         crashk_res.start = crash_base;
774         crashk_res.end = crash_base + crash_size - 1;
775         insert_resource(&iomem_resource, &crashk_res);
776 }
777 #else
778 static inline void reserve_crashkernel(void) {}
779 #endif /* CONFIG_KEXEC */
780
781 static void __init squash_mem_tags(struct tag *tag)
782 {
783         for (; tag->hdr.size; tag = tag_next(tag))
784                 if (tag->hdr.tag == ATAG_MEM)
785                         tag->hdr.tag = ATAG_NONE;
786 }
787
788 static struct machine_desc * __init setup_machine_tags(unsigned int nr)
789 {
790         struct tag *tags = (struct tag *)&init_tags;
791         struct machine_desc *mdesc = NULL, *p;
792         char *from = default_command_line;
793
794         init_tags.mem.start = PHYS_OFFSET;
795
796         /*
797          * locate machine in the list of supported machines.
798          */
799         for_each_machine_desc(p)
800                 if (nr == p->nr) {
801                         printk("Machine: %s\n", p->name);
802                         mdesc = p;
803                         break;
804                 }
805
806         if (!mdesc) {
807                 early_print("\nError: unrecognized/unsupported machine ID"
808                         " (r1 = 0x%08x).\n\n", nr);
809                 dump_machine_table(); /* does not return */
810         }
811
812         if (__atags_pointer)
813                 tags = phys_to_virt(__atags_pointer);
814         else if (mdesc->boot_params) {
815 #ifdef CONFIG_MMU
816                 /*
817                  * We still are executing with a minimal MMU mapping created
818                  * with the presumption that the machine default for this
819                  * is located in the first MB of RAM.  Anything else will
820                  * fault and silently hang the kernel at this point.
821                  */
822                 if (mdesc->boot_params < PHYS_OFFSET ||
823                     mdesc->boot_params >= PHYS_OFFSET + SZ_1M) {
824                         printk(KERN_WARNING
825                                "Default boot params at physical 0x%08lx out of reach\n",
826                                mdesc->boot_params);
827                 } else
828 #endif
829                 {
830                         tags = phys_to_virt(mdesc->boot_params);
831                 }
832         }
833
834 #if defined(CONFIG_DEPRECATED_PARAM_STRUCT)
835         /*
836          * If we have the old style parameters, convert them to
837          * a tag list.
838          */
839         if (tags->hdr.tag != ATAG_CORE)
840                 convert_to_tag_list(tags);
841 #endif
842
843         if (tags->hdr.tag != ATAG_CORE) {
844 #if defined(CONFIG_OF)
845                 /*
846                  * If CONFIG_OF is set, then assume this is a reasonably
847                  * modern system that should pass boot parameters
848                  */
849                 early_print("Warning: Neither atags nor dtb found\n");
850 #endif
851                 tags = (struct tag *)&init_tags;
852         }
853
854         if (mdesc->fixup)
855                 mdesc->fixup(mdesc, tags, &from, &meminfo);
856
857         if (tags->hdr.tag == ATAG_CORE) {
858                 if (meminfo.nr_banks != 0)
859                         squash_mem_tags(tags);
860                 save_atags(tags);
861                 parse_tags(tags);
862         }
863
864         /* parse_early_param needs a boot_command_line */
865         strlcpy(boot_command_line, from, COMMAND_LINE_SIZE);
866
867         return mdesc;
868 }
869
870
871 void __init setup_arch(char **cmdline_p)
872 {
873         struct machine_desc *mdesc;
874
875         unwind_init();
876
877         setup_processor();
878         mdesc = setup_machine_fdt(__atags_pointer);
879         if (!mdesc)
880                 mdesc = setup_machine_tags(machine_arch_type);
881         machine_desc = mdesc;
882         machine_name = mdesc->name;
883
884         if (mdesc->soft_reboot)
885                 reboot_setup("s");
886
887         init_mm.start_code = (unsigned long) _text;
888         init_mm.end_code   = (unsigned long) _etext;
889         init_mm.end_data   = (unsigned long) _edata;
890         init_mm.brk        = (unsigned long) _end;
891
892         /* populate cmd_line too for later use, preserving boot_command_line */
893         strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);
894         *cmdline_p = cmd_line;
895
896         parse_early_param();
897
898         arm_memblock_init(&meminfo, mdesc);
899
900         paging_init(mdesc);
901         request_standard_resources(mdesc);
902
903         unflatten_device_tree();
904
905 #ifdef CONFIG_SMP
906         if (is_smp())
907                 smp_init_cpus();
908 #endif
909         reserve_crashkernel();
910
911         cpu_init();
912         tcm_init();
913
914 #ifdef CONFIG_MULTI_IRQ_HANDLER
915         handle_arch_irq = mdesc->handle_irq;
916 #endif
917
918 #ifdef CONFIG_VT
919 #if defined(CONFIG_VGA_CONSOLE)
920         conswitchp = &vga_con;
921 #elif defined(CONFIG_DUMMY_CONSOLE)
922         conswitchp = &dummy_con;
923 #endif
924 #endif
925         early_trap_init();
926
927         if (mdesc->init_early)
928                 mdesc->init_early();
929 }
930
931
932 static int __init topology_init(void)
933 {
934         int cpu;
935
936         for_each_possible_cpu(cpu) {
937                 struct cpuinfo_arm *cpuinfo = &per_cpu(cpu_data, cpu);
938                 cpuinfo->cpu.hotpluggable = 1;
939                 register_cpu(&cpuinfo->cpu, cpu);
940         }
941
942         return 0;
943 }
944 subsys_initcall(topology_init);
945
946 #ifdef CONFIG_HAVE_PROC_CPU
947 static int __init proc_cpu_init(void)
948 {
949         struct proc_dir_entry *res;
950
951         res = proc_mkdir("cpu", NULL);
952         if (!res)
953                 return -ENOMEM;
954         return 0;
955 }
956 fs_initcall(proc_cpu_init);
957 #endif
958
959 static const char *hwcap_str[] = {
960         "swp",
961         "half",
962         "thumb",
963         "26bit",
964         "fastmult",
965         "fpa",
966         "vfp",
967         "edsp",
968         "java",
969         "iwmmxt",
970         "crunch",
971         "thumbee",
972         "neon",
973         "vfpv3",
974         "vfpv3d16",
975         NULL
976 };
977
978 static int c_show(struct seq_file *m, void *v)
979 {
980         int i;
981
982         seq_printf(m, "Processor\t: %s rev %d (%s)\n",
983                    cpu_name, read_cpuid_id() & 15, elf_platform);
984
985 #if defined(CONFIG_SMP)
986         for_each_online_cpu(i) {
987                 /*
988                  * glibc reads /proc/cpuinfo to determine the number of
989                  * online processors, looking for lines beginning with
990                  * "processor".  Give glibc what it expects.
991                  */
992                 seq_printf(m, "processor\t: %d\n", i);
993                 seq_printf(m, "BogoMIPS\t: %lu.%02lu\n\n",
994                            per_cpu(cpu_data, i).loops_per_jiffy / (500000UL/HZ),
995                            (per_cpu(cpu_data, i).loops_per_jiffy / (5000UL/HZ)) % 100);
996         }
997 #else /* CONFIG_SMP */
998         seq_printf(m, "BogoMIPS\t: %lu.%02lu\n",
999                    loops_per_jiffy / (500000/HZ),
1000                    (loops_per_jiffy / (5000/HZ)) % 100);
1001 #endif
1002
1003         /* dump out the processor features */
1004         seq_puts(m, "Features\t: ");
1005
1006         for (i = 0; hwcap_str[i]; i++)
1007                 if (elf_hwcap & (1 << i))
1008                         seq_printf(m, "%s ", hwcap_str[i]);
1009
1010         seq_printf(m, "\nCPU implementer\t: 0x%02x\n", read_cpuid_id() >> 24);
1011         seq_printf(m, "CPU architecture: %s\n", proc_arch[cpu_architecture()]);
1012
1013         if ((read_cpuid_id() & 0x0008f000) == 0x00000000) {
1014                 /* pre-ARM7 */
1015                 seq_printf(m, "CPU part\t: %07x\n", read_cpuid_id() >> 4);
1016         } else {
1017                 if ((read_cpuid_id() & 0x0008f000) == 0x00007000) {
1018                         /* ARM7 */
1019                         seq_printf(m, "CPU variant\t: 0x%02x\n",
1020                                    (read_cpuid_id() >> 16) & 127);
1021                 } else {
1022                         /* post-ARM7 */
1023                         seq_printf(m, "CPU variant\t: 0x%x\n",
1024                                    (read_cpuid_id() >> 20) & 15);
1025                 }
1026                 seq_printf(m, "CPU part\t: 0x%03x\n",
1027                            (read_cpuid_id() >> 4) & 0xfff);
1028         }
1029         seq_printf(m, "CPU revision\t: %d\n", read_cpuid_id() & 15);
1030
1031         seq_puts(m, "\n");
1032
1033         seq_printf(m, "Hardware\t: %s\n", machine_name);
1034         seq_printf(m, "Revision\t: %04x\n", system_rev);
1035         seq_printf(m, "Serial\t\t: %08x%08x\n",
1036                    system_serial_high, system_serial_low);
1037
1038         return 0;
1039 }
1040
1041 static void *c_start(struct seq_file *m, loff_t *pos)
1042 {
1043         return *pos < 1 ? (void *)1 : NULL;
1044 }
1045
1046 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
1047 {
1048         ++*pos;
1049         return NULL;
1050 }
1051
1052 static void c_stop(struct seq_file *m, void *v)
1053 {
1054 }
1055
1056 const struct seq_operations cpuinfo_op = {
1057         .start  = c_start,
1058         .next   = c_next,
1059         .stop   = c_stop,
1060         .show   = c_show
1061 };