[PATCH] powerpc: fix for kexec ppc32
[pandora-kernel.git] / mm / vmscan.c
index 428c580..5a61080 100644 (file)
@@ -71,6 +71,9 @@ struct scan_control {
 
        int may_writepage;
 
+       /* Can pages be swapped as part of reclaim? */
+       int may_swap;
+
        /* This context's SWAP_CLUSTER_MAX. If freeing memory for
         * suspend, we effectively ignore SWAP_CLUSTER_MAX.
         * In this context, it doesn't matter that we scan the
@@ -268,9 +271,7 @@ static inline int is_page_cache_freeable(struct page *page)
 
 static int may_write_to_queue(struct backing_dev_info *bdi)
 {
-       if (current_is_kswapd())
-               return 1;
-       if (current_is_pdflush())       /* This is unlikely, but why not... */
+       if (current->flags & PF_SWAPWRITE)
                return 1;
        if (!bdi_write_congested(bdi))
                return 1;
@@ -375,6 +376,43 @@ static pageout_t pageout(struct page *page, struct address_space *mapping)
        return PAGE_CLEAN;
 }
 
+static int remove_mapping(struct address_space *mapping, struct page *page)
+{
+       if (!mapping)
+               return 0;               /* truncate got there first */
+
+       write_lock_irq(&mapping->tree_lock);
+
+       /*
+        * The non-racy check for busy page.  It is critical to check
+        * PageDirty _after_ making sure that the page is freeable and
+        * not in use by anybody.       (pagecache + us == 2)
+        */
+       if (unlikely(page_count(page) != 2))
+               goto cannot_free;
+       smp_rmb();
+       if (unlikely(PageDirty(page)))
+               goto cannot_free;
+
+       if (PageSwapCache(page)) {
+               swp_entry_t swap = { .val = page_private(page) };
+               __delete_from_swap_cache(page);
+               write_unlock_irq(&mapping->tree_lock);
+               swap_free(swap);
+               __put_page(page);       /* The pagecache ref */
+               return 1;
+       }
+
+       __remove_from_page_cache(page);
+       write_unlock_irq(&mapping->tree_lock);
+       __put_page(page);
+       return 1;
+
+cannot_free:
+       write_unlock_irq(&mapping->tree_lock);
+       return 0;
+}
+
 /*
  * shrink_list adds the number of reclaimed pages to sc->nr_reclaimed
  */
@@ -423,7 +461,9 @@ static int shrink_list(struct list_head *page_list, struct scan_control *sc)
                 * Try to allocate it some swap space here.
                 */
                if (PageAnon(page) && !PageSwapCache(page)) {
-                       if (!add_to_swap(page))
+                       if (!sc->may_swap)
+                               goto keep_locked;
+                       if (!add_to_swap(page, GFP_ATOMIC))
                                goto activate_locked;
                }
 #endif /* CONFIG_SWAP */
@@ -437,7 +477,13 @@ static int shrink_list(struct list_head *page_list, struct scan_control *sc)
                 * processes. Try to unmap it here.
                 */
                if (page_mapped(page) && mapping) {
-                       switch (try_to_unmap(page)) {
+                       /*
+                        * No unmapping if we do not swap
+                        */
+                       if (!sc->may_swap)
+                               goto keep_locked;
+
+                       switch (try_to_unmap(page, 0)) {
                        case SWAP_FAIL:
                                goto activate_locked;
                        case SWAP_AGAIN:
@@ -452,7 +498,7 @@ static int shrink_list(struct list_head *page_list, struct scan_control *sc)
                                goto keep_locked;
                        if (!may_enter_fs)
                                goto keep_locked;
-                       if (laptop_mode && !sc->may_writepage)
+                       if (!sc->may_writepage)
                                goto keep_locked;
 
                        /* Page is dirty, try to write it out here */
@@ -506,36 +552,8 @@ static int shrink_list(struct list_head *page_list, struct scan_control *sc)
                                goto free_it;
                }
 
-               if (!mapping)
-                       goto keep_locked;       /* truncate got there first */
-
-               write_lock_irq(&mapping->tree_lock);
-
-               /*
-                * The non-racy check for busy page.  It is critical to check
-                * PageDirty _after_ making sure that the page is freeable and
-                * not in use by anybody.       (pagecache + us == 2)
-                */
-               if (unlikely(page_count(page) != 2))
-                       goto cannot_free;
-               smp_rmb();
-               if (unlikely(PageDirty(page)))
-                       goto cannot_free;
-
-#ifdef CONFIG_SWAP
-               if (PageSwapCache(page)) {
-                       swp_entry_t swap = { .val = page_private(page) };
-                       __delete_from_swap_cache(page);
-                       write_unlock_irq(&mapping->tree_lock);
-                       swap_free(swap);
-                       __put_page(page);       /* The pagecache ref */
-                       goto free_it;
-               }
-#endif /* CONFIG_SWAP */
-
-               __remove_from_page_cache(page);
-               write_unlock_irq(&mapping->tree_lock);
-               __put_page(page);
+               if (!remove_mapping(mapping, page))
+                       goto keep_locked;
 
 free_it:
                unlock_page(page);
@@ -544,10 +562,6 @@ free_it:
                        __pagevec_release_nonlru(&freed_pvec);
                continue;
 
-cannot_free:
-               write_unlock_irq(&mapping->tree_lock);
-               goto keep_locked;
-
 activate_locked:
                SetPageActive(page);
                pgactivate++;
@@ -565,6 +579,459 @@ keep:
        return reclaimed;
 }
 
+#ifdef CONFIG_MIGRATION
+static inline void move_to_lru(struct page *page)
+{
+       list_del(&page->lru);
+       if (PageActive(page)) {
+               /*
+                * lru_cache_add_active checks that
+                * the PG_active bit is off.
+                */
+               ClearPageActive(page);
+               lru_cache_add_active(page);
+       } else {
+               lru_cache_add(page);
+       }
+       put_page(page);
+}
+
+/*
+ * Add isolated pages on the list back to the LRU.
+ *
+ * returns the number of pages put back.
+ */
+int putback_lru_pages(struct list_head *l)
+{
+       struct page *page;
+       struct page *page2;
+       int count = 0;
+
+       list_for_each_entry_safe(page, page2, l, lru) {
+               move_to_lru(page);
+               count++;
+       }
+       return count;
+}
+
+/*
+ * Non migratable page
+ */
+int fail_migrate_page(struct page *newpage, struct page *page)
+{
+       return -EIO;
+}
+EXPORT_SYMBOL(fail_migrate_page);
+
+/*
+ * swapout a single page
+ * page is locked upon entry, unlocked on exit
+ */
+static int swap_page(struct page *page)
+{
+       struct address_space *mapping = page_mapping(page);
+
+       if (page_mapped(page) && mapping)
+               if (try_to_unmap(page, 0) != SWAP_SUCCESS)
+                       goto unlock_retry;
+
+       if (PageDirty(page)) {
+               /* Page is dirty, try to write it out here */
+               switch(pageout(page, mapping)) {
+               case PAGE_KEEP:
+               case PAGE_ACTIVATE:
+                       goto unlock_retry;
+
+               case PAGE_SUCCESS:
+                       goto retry;
+
+               case PAGE_CLEAN:
+                       ; /* try to free the page below */
+               }
+       }
+
+       if (PagePrivate(page)) {
+               if (!try_to_release_page(page, GFP_KERNEL) ||
+                   (!mapping && page_count(page) == 1))
+                       goto unlock_retry;
+       }
+
+       if (remove_mapping(mapping, page)) {
+               /* Success */
+               unlock_page(page);
+               return 0;
+       }
+
+unlock_retry:
+       unlock_page(page);
+
+retry:
+       return -EAGAIN;
+}
+EXPORT_SYMBOL(swap_page);
+
+/*
+ * Page migration was first developed in the context of the memory hotplug
+ * project. The main authors of the migration code are:
+ *
+ * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
+ * Hirokazu Takahashi <taka@valinux.co.jp>
+ * Dave Hansen <haveblue@us.ibm.com>
+ * Christoph Lameter <clameter@sgi.com>
+ */
+
+/*
+ * Remove references for a page and establish the new page with the correct
+ * basic settings to be able to stop accesses to the page.
+ */
+int migrate_page_remove_references(struct page *newpage,
+                               struct page *page, int nr_refs)
+{
+       struct address_space *mapping = page_mapping(page);
+       struct page **radix_pointer;
+
+       /*
+        * Avoid doing any of the following work if the page count
+        * indicates that the page is in use or truncate has removed
+        * the page.
+        */
+       if (!mapping || page_mapcount(page) + nr_refs != page_count(page))
+               return 1;
+
+       /*
+        * Establish swap ptes for anonymous pages or destroy pte
+        * maps for files.
+        *
+        * In order to reestablish file backed mappings the fault handlers
+        * will take the radix tree_lock which may then be used to stop
+        * processses from accessing this page until the new page is ready.
+        *
+        * A process accessing via a swap pte (an anonymous page) will take a
+        * page_lock on the old page which will block the process until the
+        * migration attempt is complete. At that time the PageSwapCache bit
+        * will be examined. If the page was migrated then the PageSwapCache
+        * bit will be clear and the operation to retrieve the page will be
+        * retried which will find the new page in the radix tree. Then a new
+        * direct mapping may be generated based on the radix tree contents.
+        *
+        * If the page was not migrated then the PageSwapCache bit
+        * is still set and the operation may continue.
+        */
+       try_to_unmap(page, 1);
+
+       /*
+        * Give up if we were unable to remove all mappings.
+        */
+       if (page_mapcount(page))
+               return 1;
+
+       write_lock_irq(&mapping->tree_lock);
+
+       radix_pointer = (struct page **)radix_tree_lookup_slot(
+                                               &mapping->page_tree,
+                                               page_index(page));
+
+       if (!page_mapping(page) || page_count(page) != nr_refs ||
+                       *radix_pointer != page) {
+               write_unlock_irq(&mapping->tree_lock);
+               return 1;
+       }
+
+       /*
+        * Now we know that no one else is looking at the page.
+        *
+        * Certain minimal information about a page must be available
+        * in order for other subsystems to properly handle the page if they
+        * find it through the radix tree update before we are finished
+        * copying the page.
+        */
+       get_page(newpage);
+       newpage->index = page->index;
+       newpage->mapping = page->mapping;
+       if (PageSwapCache(page)) {
+               SetPageSwapCache(newpage);
+               set_page_private(newpage, page_private(page));
+       }
+
+       *radix_pointer = newpage;
+       __put_page(page);
+       write_unlock_irq(&mapping->tree_lock);
+
+       return 0;
+}
+EXPORT_SYMBOL(migrate_page_remove_references);
+
+/*
+ * Copy the page to its new location
+ */
+void migrate_page_copy(struct page *newpage, struct page *page)
+{
+       copy_highpage(newpage, page);
+
+       if (PageError(page))
+               SetPageError(newpage);
+       if (PageReferenced(page))
+               SetPageReferenced(newpage);
+       if (PageUptodate(page))
+               SetPageUptodate(newpage);
+       if (PageActive(page))
+               SetPageActive(newpage);
+       if (PageChecked(page))
+               SetPageChecked(newpage);
+       if (PageMappedToDisk(page))
+               SetPageMappedToDisk(newpage);
+
+       if (PageDirty(page)) {
+               clear_page_dirty_for_io(page);
+               set_page_dirty(newpage);
+       }
+
+       ClearPageSwapCache(page);
+       ClearPageActive(page);
+       ClearPagePrivate(page);
+       set_page_private(page, 0);
+       page->mapping = NULL;
+
+       /*
+        * If any waiters have accumulated on the new page then
+        * wake them up.
+        */
+       if (PageWriteback(newpage))
+               end_page_writeback(newpage);
+}
+EXPORT_SYMBOL(migrate_page_copy);
+
+/*
+ * Common logic to directly migrate a single page suitable for
+ * pages that do not use PagePrivate.
+ *
+ * Pages are locked upon entry and exit.
+ */
+int migrate_page(struct page *newpage, struct page *page)
+{
+       BUG_ON(PageWriteback(page));    /* Writeback must be complete */
+
+       if (migrate_page_remove_references(newpage, page, 2))
+               return -EAGAIN;
+
+       migrate_page_copy(newpage, page);
+
+       /*
+        * Remove auxiliary swap entries and replace
+        * them with real ptes.
+        *
+        * Note that a real pte entry will allow processes that are not
+        * waiting on the page lock to use the new page via the page tables
+        * before the new page is unlocked.
+        */
+       remove_from_swap(newpage);
+       return 0;
+}
+EXPORT_SYMBOL(migrate_page);
+
+/*
+ * migrate_pages
+ *
+ * Two lists are passed to this function. The first list
+ * contains the pages isolated from the LRU to be migrated.
+ * The second list contains new pages that the pages isolated
+ * can be moved to. If the second list is NULL then all
+ * pages are swapped out.
+ *
+ * The function returns after 10 attempts or if no pages
+ * are movable anymore because t has become empty
+ * or no retryable pages exist anymore.
+ *
+ * Return: Number of pages not migrated when "to" ran empty.
+ */
+int migrate_pages(struct list_head *from, struct list_head *to,
+                 struct list_head *moved, struct list_head *failed)
+{
+       int retry;
+       int nr_failed = 0;
+       int pass = 0;
+       struct page *page;
+       struct page *page2;
+       int swapwrite = current->flags & PF_SWAPWRITE;
+       int rc;
+
+       if (!swapwrite)
+               current->flags |= PF_SWAPWRITE;
+
+redo:
+       retry = 0;
+
+       list_for_each_entry_safe(page, page2, from, lru) {
+               struct page *newpage = NULL;
+               struct address_space *mapping;
+
+               cond_resched();
+
+               rc = 0;
+               if (page_count(page) == 1)
+                       /* page was freed from under us. So we are done. */
+                       goto next;
+
+               if (to && list_empty(to))
+                       break;
+
+               /*
+                * Skip locked pages during the first two passes to give the
+                * functions holding the lock time to release the page. Later we
+                * use lock_page() to have a higher chance of acquiring the
+                * lock.
+                */
+               rc = -EAGAIN;
+               if (pass > 2)
+                       lock_page(page);
+               else
+                       if (TestSetPageLocked(page))
+                               goto next;
+
+               /*
+                * Only wait on writeback if we have already done a pass where
+                * we we may have triggered writeouts for lots of pages.
+                */
+               if (pass > 0) {
+                       wait_on_page_writeback(page);
+               } else {
+                       if (PageWriteback(page))
+                               goto unlock_page;
+               }
+
+               /*
+                * Anonymous pages must have swap cache references otherwise
+                * the information contained in the page maps cannot be
+                * preserved.
+                */
+               if (PageAnon(page) && !PageSwapCache(page)) {
+                       if (!add_to_swap(page, GFP_KERNEL)) {
+                               rc = -ENOMEM;
+                               goto unlock_page;
+                       }
+               }
+
+               if (!to) {
+                       rc = swap_page(page);
+                       goto next;
+               }
+
+               newpage = lru_to_page(to);
+               lock_page(newpage);
+
+               /*
+                * Pages are properly locked and writeback is complete.
+                * Try to migrate the page.
+                */
+               mapping = page_mapping(page);
+               if (!mapping)
+                       goto unlock_both;
+
+               if (mapping->a_ops->migratepage) {
+                       rc = mapping->a_ops->migratepage(newpage, page);
+                       goto unlock_both;
+                }
+
+               /*
+                * Trigger writeout if page is dirty
+                */
+               if (PageDirty(page)) {
+                       switch (pageout(page, mapping)) {
+                       case PAGE_KEEP:
+                       case PAGE_ACTIVATE:
+                               goto unlock_both;
+
+                       case PAGE_SUCCESS:
+                               unlock_page(newpage);
+                               goto next;
+
+                       case PAGE_CLEAN:
+                               ; /* try to migrate the page below */
+                       }
+                }
+               /*
+                * If we have no buffer or can release the buffer
+                * then do a simple migration.
+                */
+               if (!page_has_buffers(page) ||
+                   try_to_release_page(page, GFP_KERNEL)) {
+                       rc = migrate_page(newpage, page);
+                       goto unlock_both;
+               }
+
+               /*
+                * On early passes with mapped pages simply
+                * retry. There may be a lock held for some
+                * buffers that may go away. Later
+                * swap them out.
+                */
+               if (pass > 4) {
+                       unlock_page(newpage);
+                       newpage = NULL;
+                       rc = swap_page(page);
+                       goto next;
+               }
+
+unlock_both:
+               unlock_page(newpage);
+
+unlock_page:
+               unlock_page(page);
+
+next:
+               if (rc == -EAGAIN) {
+                       retry++;
+               } else if (rc) {
+                       /* Permanent failure */
+                       list_move(&page->lru, failed);
+                       nr_failed++;
+               } else {
+                       if (newpage) {
+                               /* Successful migration. Return page to LRU */
+                               move_to_lru(newpage);
+                       }
+                       list_move(&page->lru, moved);
+               }
+       }
+       if (retry && pass++ < 10)
+               goto redo;
+
+       if (!swapwrite)
+               current->flags &= ~PF_SWAPWRITE;
+
+       return nr_failed + retry;
+}
+
+/*
+ * Isolate one page from the LRU lists and put it on the
+ * indicated list with elevated refcount.
+ *
+ * Result:
+ *  0 = page not on LRU list
+ *  1 = page removed from LRU list and added to the specified list.
+ */
+int isolate_lru_page(struct page *page)
+{
+       int ret = 0;
+
+       if (PageLRU(page)) {
+               struct zone *zone = page_zone(page);
+               spin_lock_irq(&zone->lru_lock);
+               if (TestClearPageLRU(page)) {
+                       ret = 1;
+                       get_page(page);
+                       if (PageActive(page))
+                               del_page_from_active_list(zone, page);
+                       else
+                               del_page_from_inactive_list(zone, page);
+               }
+               spin_unlock_irq(&zone->lru_lock);
+       }
+
+       return ret;
+}
+#endif
+
 /*
  * zone->lru_lock is heavily contended.  Some of the functions that
  * shrink the lists perform better by taking out a batch of pages
@@ -940,7 +1407,8 @@ int try_to_free_pages(struct zone **zones, gfp_t gfp_mask)
        int i;
 
        sc.gfp_mask = gfp_mask;
-       sc.may_writepage = 0;
+       sc.may_writepage = !laptop_mode;
+       sc.may_swap = 1;
 
        inc_page_state(allocstall);
 
@@ -1042,7 +1510,8 @@ loop_again:
        total_scanned = 0;
        total_reclaimed = 0;
        sc.gfp_mask = GFP_KERNEL;
-       sc.may_writepage = 0;
+       sc.may_writepage = !laptop_mode;
+       sc.may_swap = 1;
        sc.nr_mapped = read_page_state(nr_mapped);
 
        inc_page_state(pageoutrun);
@@ -1225,7 +1694,7 @@ static int kswapd(void *p)
         * us from recursively trying to free more memory as we're
         * trying to free the first piece of memory in the first place).
         */
-       tsk->flags |= PF_MEMALLOC|PF_KSWAPD;
+       tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
 
        order = 0;
        for ( ; ; ) {
@@ -1340,3 +1809,115 @@ static int __init kswapd_init(void)
 }
 
 module_init(kswapd_init)
+
+#ifdef CONFIG_NUMA
+/*
+ * Zone reclaim mode
+ *
+ * If non-zero call zone_reclaim when the number of free pages falls below
+ * the watermarks.
+ *
+ * In the future we may add flags to the mode. However, the page allocator
+ * should only have to check that zone_reclaim_mode != 0 before calling
+ * zone_reclaim().
+ */
+int zone_reclaim_mode __read_mostly;
+
+#define RECLAIM_OFF 0
+#define RECLAIM_ZONE (1<<0)    /* Run shrink_cache on the zone */
+#define RECLAIM_WRITE (1<<1)   /* Writeout pages during reclaim */
+#define RECLAIM_SWAP (1<<2)    /* Swap pages out during reclaim */
+#define RECLAIM_SLAB (1<<3)    /* Do a global slab shrink if the zone is out of memory */
+
+/*
+ * Mininum time between zone reclaim scans
+ */
+int zone_reclaim_interval __read_mostly = 30*HZ;
+
+/*
+ * Priority for ZONE_RECLAIM. This determines the fraction of pages
+ * of a node considered for each zone_reclaim. 4 scans 1/16th of
+ * a zone.
+ */
+#define ZONE_RECLAIM_PRIORITY 4
+
+/*
+ * Try to free up some pages from this zone through reclaim.
+ */
+int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
+{
+       int nr_pages;
+       struct task_struct *p = current;
+       struct reclaim_state reclaim_state;
+       struct scan_control sc;
+       cpumask_t mask;
+       int node_id;
+
+       if (time_before(jiffies,
+               zone->last_unsuccessful_zone_reclaim + zone_reclaim_interval))
+                       return 0;
+
+       if (!(gfp_mask & __GFP_WAIT) ||
+               zone->all_unreclaimable ||
+               atomic_read(&zone->reclaim_in_progress) > 0)
+                       return 0;
+
+       node_id = zone->zone_pgdat->node_id;
+       mask = node_to_cpumask(node_id);
+       if (!cpus_empty(mask) && node_id != numa_node_id())
+               return 0;
+
+       sc.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE);
+       sc.may_swap = !!(zone_reclaim_mode & RECLAIM_SWAP);
+       sc.nr_scanned = 0;
+       sc.nr_reclaimed = 0;
+       sc.priority = ZONE_RECLAIM_PRIORITY + 1;
+       sc.nr_mapped = read_page_state(nr_mapped);
+       sc.gfp_mask = gfp_mask;
+
+       disable_swap_token();
+
+       nr_pages = 1 << order;
+       if (nr_pages > SWAP_CLUSTER_MAX)
+               sc.swap_cluster_max = nr_pages;
+       else
+               sc.swap_cluster_max = SWAP_CLUSTER_MAX;
+
+       cond_resched();
+       p->flags |= PF_MEMALLOC;
+       reclaim_state.reclaimed_slab = 0;
+       p->reclaim_state = &reclaim_state;
+
+       /*
+        * Free memory by calling shrink zone with increasing priorities
+        * until we have enough memory freed.
+        */
+       do {
+               sc.priority--;
+               shrink_zone(zone, &sc);
+
+       } while (sc.nr_reclaimed < nr_pages && sc.priority > 0);
+
+       if (sc.nr_reclaimed < nr_pages && (zone_reclaim_mode & RECLAIM_SLAB)) {
+               /*
+                * shrink_slab does not currently allow us to determine
+                * how many pages were freed in the zone. So we just
+                * shake the slab and then go offnode for a single allocation.
+                *
+                * shrink_slab will free memory on all zones and may take
+                * a long time.
+                */
+               shrink_slab(sc.nr_scanned, gfp_mask, order);
+               sc.nr_reclaimed = 1;    /* Avoid getting the off node timeout */
+       }
+
+       p->reclaim_state = NULL;
+       current->flags &= ~PF_MEMALLOC;
+
+       if (sc.nr_reclaimed == 0)
+               zone->last_unsuccessful_zone_reclaim = jiffies;
+
+       return sc.nr_reclaimed >= nr_pages;
+}
+#endif
+