[NET]: Eliminate unused argument from sk_stream_alloc_pskb
[pandora-kernel.git] / mm / hugetlb.c
index ba029d6..db861d8 100644 (file)
 
 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
 static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
+static unsigned long surplus_huge_pages;
 unsigned long max_huge_pages;
 static struct list_head hugepage_freelists[MAX_NUMNODES];
 static unsigned int nr_huge_pages_node[MAX_NUMNODES];
 static unsigned int free_huge_pages_node[MAX_NUMNODES];
+static unsigned int surplus_huge_pages_node[MAX_NUMNODES];
 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
 unsigned long hugepages_treat_as_movable;
+unsigned long nr_overcommit_huge_pages;
+static int hugetlb_next_nid;
 
 /*
  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
@@ -85,6 +89,8 @@ static struct page *dequeue_huge_page(struct vm_area_struct *vma,
                        list_del(&page->lru);
                        free_huge_pages--;
                        free_huge_pages_node[nid]--;
+                       if (vma && vma->vm_flags & VM_MAYSHARE)
+                               resv_huge_pages--;
                        break;
                }
        }
@@ -109,71 +115,335 @@ static void update_and_free_page(struct page *page)
 
 static void free_huge_page(struct page *page)
 {
-       BUG_ON(page_count(page));
+       int nid = page_to_nid(page);
+       struct address_space *mapping;
 
+       mapping = (struct address_space *) page_private(page);
+       BUG_ON(page_count(page));
        INIT_LIST_HEAD(&page->lru);
 
        spin_lock(&hugetlb_lock);
-       enqueue_huge_page(page);
+       if (surplus_huge_pages_node[nid]) {
+               update_and_free_page(page);
+               surplus_huge_pages--;
+               surplus_huge_pages_node[nid]--;
+       } else {
+               enqueue_huge_page(page);
+       }
        spin_unlock(&hugetlb_lock);
+       if (mapping)
+               hugetlb_put_quota(mapping, 1);
+       set_page_private(page, 0);
 }
 
-static int alloc_fresh_huge_page(void)
+/*
+ * Increment or decrement surplus_huge_pages.  Keep node-specific counters
+ * balanced by operating on them in a round-robin fashion.
+ * Returns 1 if an adjustment was made.
+ */
+static int adjust_pool_surplus(int delta)
 {
        static int prev_nid;
-       struct page *page;
-       int nid;
+       int nid = prev_nid;
+       int ret = 0;
+
+       VM_BUG_ON(delta != -1 && delta != 1);
+       do {
+               nid = next_node(nid, node_online_map);
+               if (nid == MAX_NUMNODES)
+                       nid = first_node(node_online_map);
+
+               /* To shrink on this node, there must be a surplus page */
+               if (delta < 0 && !surplus_huge_pages_node[nid])
+                       continue;
+               /* Surplus cannot exceed the total number of pages */
+               if (delta > 0 && surplus_huge_pages_node[nid] >=
+                                               nr_huge_pages_node[nid])
+                       continue;
+
+               surplus_huge_pages += delta;
+               surplus_huge_pages_node[nid] += delta;
+               ret = 1;
+               break;
+       } while (nid != prev_nid);
 
-       /*
-        * Copy static prev_nid to local nid, work on that, then copy it
-        * back to prev_nid afterwards: otherwise there's a window in which
-        * a racer might pass invalid nid MAX_NUMNODES to alloc_pages_node.
-        * But we don't need to use a spin_lock here: it really doesn't
-        * matter if occasionally a racer chooses the same nid as we do.
-        */
-       nid = next_node(prev_nid, node_online_map);
-       if (nid == MAX_NUMNODES)
-               nid = first_node(node_online_map);
        prev_nid = nid;
+       return ret;
+}
 
-       page = alloc_pages_node(nid, htlb_alloc_mask|__GFP_COMP|__GFP_NOWARN,
-                                       HUGETLB_PAGE_ORDER);
+static struct page *alloc_fresh_huge_page_node(int nid)
+{
+       struct page *page;
+
+       page = alloc_pages_node(nid,
+               htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|__GFP_NOWARN,
+               HUGETLB_PAGE_ORDER);
        if (page) {
                set_compound_page_dtor(page, free_huge_page);
                spin_lock(&hugetlb_lock);
                nr_huge_pages++;
-               nr_huge_pages_node[page_to_nid(page)]++;
+               nr_huge_pages_node[nid]++;
                spin_unlock(&hugetlb_lock);
                put_page(page); /* free it into the hugepage allocator */
-               return 1;
        }
-       return 0;
+
+       return page;
 }
 
-static struct page *alloc_huge_page(struct vm_area_struct *vma,
-                                   unsigned long addr)
+static int alloc_fresh_huge_page(void)
+{
+       struct page *page;
+       int start_nid;
+       int next_nid;
+       int ret = 0;
+
+       start_nid = hugetlb_next_nid;
+
+       do {
+               page = alloc_fresh_huge_page_node(hugetlb_next_nid);
+               if (page)
+                       ret = 1;
+               /*
+                * Use a helper variable to find the next node and then
+                * copy it back to hugetlb_next_nid afterwards:
+                * otherwise there's a window in which a racer might
+                * pass invalid nid MAX_NUMNODES to alloc_pages_node.
+                * But we don't need to use a spin_lock here: it really
+                * doesn't matter if occasionally a racer chooses the
+                * same nid as we do.  Move nid forward in the mask even
+                * if we just successfully allocated a hugepage so that
+                * the next caller gets hugepages on the next node.
+                */
+               next_nid = next_node(hugetlb_next_nid, node_online_map);
+               if (next_nid == MAX_NUMNODES)
+                       next_nid = first_node(node_online_map);
+               hugetlb_next_nid = next_nid;
+       } while (!page && hugetlb_next_nid != start_nid);
+
+       return ret;
+}
+
+static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
+                                               unsigned long address)
 {
        struct page *page;
+       unsigned int nid;
 
+       /*
+        * Assume we will successfully allocate the surplus page to
+        * prevent racing processes from causing the surplus to exceed
+        * overcommit
+        *
+        * This however introduces a different race, where a process B
+        * tries to grow the static hugepage pool while alloc_pages() is
+        * called by process A. B will only examine the per-node
+        * counters in determining if surplus huge pages can be
+        * converted to normal huge pages in adjust_pool_surplus(). A
+        * won't be able to increment the per-node counter, until the
+        * lock is dropped by B, but B doesn't drop hugetlb_lock until
+        * no more huge pages can be converted from surplus to normal
+        * state (and doesn't try to convert again). Thus, we have a
+        * case where a surplus huge page exists, the pool is grown, and
+        * the surplus huge page still exists after, even though it
+        * should just have been converted to a normal huge page. This
+        * does not leak memory, though, as the hugepage will be freed
+        * once it is out of use. It also does not allow the counters to
+        * go out of whack in adjust_pool_surplus() as we don't modify
+        * the node values until we've gotten the hugepage and only the
+        * per-node value is checked there.
+        */
        spin_lock(&hugetlb_lock);
-       if (vma->vm_flags & VM_MAYSHARE)
-               resv_huge_pages--;
-       else if (free_huge_pages <= resv_huge_pages)
-               goto fail;
+       if (surplus_huge_pages >= nr_overcommit_huge_pages) {
+               spin_unlock(&hugetlb_lock);
+               return NULL;
+       } else {
+               nr_huge_pages++;
+               surplus_huge_pages++;
+       }
+       spin_unlock(&hugetlb_lock);
+
+       page = alloc_pages(htlb_alloc_mask|__GFP_COMP|__GFP_NOWARN,
+                                       HUGETLB_PAGE_ORDER);
+
+       spin_lock(&hugetlb_lock);
+       if (page) {
+               nid = page_to_nid(page);
+               set_compound_page_dtor(page, free_huge_page);
+               /*
+                * We incremented the global counters already
+                */
+               nr_huge_pages_node[nid]++;
+               surplus_huge_pages_node[nid]++;
+       } else {
+               nr_huge_pages--;
+               surplus_huge_pages--;
+       }
+       spin_unlock(&hugetlb_lock);
+
+       return page;
+}
+
+/*
+ * Increase the hugetlb pool such that it can accomodate a reservation
+ * of size 'delta'.
+ */
+static int gather_surplus_pages(int delta)
+{
+       struct list_head surplus_list;
+       struct page *page, *tmp;
+       int ret, i;
+       int needed, allocated;
+
+       needed = (resv_huge_pages + delta) - free_huge_pages;
+       if (needed <= 0)
+               return 0;
+
+       allocated = 0;
+       INIT_LIST_HEAD(&surplus_list);
+
+       ret = -ENOMEM;
+retry:
+       spin_unlock(&hugetlb_lock);
+       for (i = 0; i < needed; i++) {
+               page = alloc_buddy_huge_page(NULL, 0);
+               if (!page) {
+                       /*
+                        * We were not able to allocate enough pages to
+                        * satisfy the entire reservation so we free what
+                        * we've allocated so far.
+                        */
+                       spin_lock(&hugetlb_lock);
+                       needed = 0;
+                       goto free;
+               }
+
+               list_add(&page->lru, &surplus_list);
+       }
+       allocated += needed;
+
+       /*
+        * After retaking hugetlb_lock, we need to recalculate 'needed'
+        * because either resv_huge_pages or free_huge_pages may have changed.
+        */
+       spin_lock(&hugetlb_lock);
+       needed = (resv_huge_pages + delta) - (free_huge_pages + allocated);
+       if (needed > 0)
+               goto retry;
+
+       /*
+        * The surplus_list now contains _at_least_ the number of extra pages
+        * needed to accomodate the reservation.  Add the appropriate number
+        * of pages to the hugetlb pool and free the extras back to the buddy
+        * allocator.
+        */
+       needed += allocated;
+       ret = 0;
+free:
+       list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
+               list_del(&page->lru);
+               if ((--needed) >= 0)
+                       enqueue_huge_page(page);
+               else {
+                       /*
+                        * Decrement the refcount and free the page using its
+                        * destructor.  This must be done with hugetlb_lock
+                        * unlocked which is safe because free_huge_page takes
+                        * hugetlb_lock before deciding how to free the page.
+                        */
+                       spin_unlock(&hugetlb_lock);
+                       put_page(page);
+                       spin_lock(&hugetlb_lock);
+               }
+       }
+
+       return ret;
+}
+
+/*
+ * When releasing a hugetlb pool reservation, any surplus pages that were
+ * allocated to satisfy the reservation must be explicitly freed if they were
+ * never used.
+ */
+static void return_unused_surplus_pages(unsigned long unused_resv_pages)
+{
+       static int nid = -1;
+       struct page *page;
+       unsigned long nr_pages;
+
+       nr_pages = min(unused_resv_pages, surplus_huge_pages);
+
+       while (nr_pages) {
+               nid = next_node(nid, node_online_map);
+               if (nid == MAX_NUMNODES)
+                       nid = first_node(node_online_map);
+
+               if (!surplus_huge_pages_node[nid])
+                       continue;
+
+               if (!list_empty(&hugepage_freelists[nid])) {
+                       page = list_entry(hugepage_freelists[nid].next,
+                                         struct page, lru);
+                       list_del(&page->lru);
+                       update_and_free_page(page);
+                       free_huge_pages--;
+                       free_huge_pages_node[nid]--;
+                       surplus_huge_pages--;
+                       surplus_huge_pages_node[nid]--;
+                       nr_pages--;
+               }
+       }
+}
 
+
+static struct page *alloc_huge_page_shared(struct vm_area_struct *vma,
+                                               unsigned long addr)
+{
+       struct page *page;
+
+       spin_lock(&hugetlb_lock);
        page = dequeue_huge_page(vma, addr);
-       if (!page)
-               goto fail;
+       spin_unlock(&hugetlb_lock);
+       return page ? page : ERR_PTR(-VM_FAULT_OOM);
+}
 
+static struct page *alloc_huge_page_private(struct vm_area_struct *vma,
+                                               unsigned long addr)
+{
+       struct page *page = NULL;
+
+       if (hugetlb_get_quota(vma->vm_file->f_mapping, 1))
+               return ERR_PTR(-VM_FAULT_SIGBUS);
+
+       spin_lock(&hugetlb_lock);
+       if (free_huge_pages > resv_huge_pages)
+               page = dequeue_huge_page(vma, addr);
        spin_unlock(&hugetlb_lock);
-       set_page_refcounted(page);
+       if (!page) {
+               page = alloc_buddy_huge_page(vma, addr);
+               if (!page) {
+                       hugetlb_put_quota(vma->vm_file->f_mapping, 1);
+                       return ERR_PTR(-VM_FAULT_OOM);
+               }
+       }
        return page;
+}
+
+static struct page *alloc_huge_page(struct vm_area_struct *vma,
+                                   unsigned long addr)
+{
+       struct page *page;
+       struct address_space *mapping = vma->vm_file->f_mapping;
 
-fail:
        if (vma->vm_flags & VM_MAYSHARE)
-               resv_huge_pages++;
-       spin_unlock(&hugetlb_lock);
-       return NULL;
+               page = alloc_huge_page_shared(vma, addr);
+       else
+               page = alloc_huge_page_private(vma, addr);
+
+       if (!IS_ERR(page)) {
+               set_page_refcounted(page);
+               set_page_private(page, (unsigned long) mapping);
+       }
+       return page;
 }
 
 static int __init hugetlb_init(void)
@@ -186,6 +456,8 @@ static int __init hugetlb_init(void)
        for (i = 0; i < MAX_NUMNODES; ++i)
                INIT_LIST_HEAD(&hugepage_freelists[i]);
 
+       hugetlb_next_nid = first_node(node_online_map);
+
        for (i = 0; i < max_huge_pages; ++i) {
                if (!alloc_fresh_huge_page())
                        break;
@@ -224,14 +496,14 @@ static void try_to_free_low(unsigned long count)
        for (i = 0; i < MAX_NUMNODES; ++i) {
                struct page *page, *next;
                list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
+                       if (count >= nr_huge_pages)
+                               return;
                        if (PageHighMem(page))
                                continue;
                        list_del(&page->lru);
                        update_and_free_page(page);
                        free_huge_pages--;
                        free_huge_pages_node[page_to_nid(page)]--;
-                       if (count >= nr_huge_pages)
-                               return;
                }
        }
 }
@@ -241,26 +513,75 @@ static inline void try_to_free_low(unsigned long count)
 }
 #endif
 
+#define persistent_huge_pages (nr_huge_pages - surplus_huge_pages)
 static unsigned long set_max_huge_pages(unsigned long count)
 {
-       while (count > nr_huge_pages) {
-               if (!alloc_fresh_huge_page())
-                       return nr_huge_pages;
-       }
-       if (count >= nr_huge_pages)
-               return nr_huge_pages;
+       unsigned long min_count, ret;
 
+       /*
+        * Increase the pool size
+        * First take pages out of surplus state.  Then make up the
+        * remaining difference by allocating fresh huge pages.
+        *
+        * We might race with alloc_buddy_huge_page() here and be unable
+        * to convert a surplus huge page to a normal huge page. That is
+        * not critical, though, it just means the overall size of the
+        * pool might be one hugepage larger than it needs to be, but
+        * within all the constraints specified by the sysctls.
+        */
        spin_lock(&hugetlb_lock);
-       count = max(count, resv_huge_pages);
-       try_to_free_low(count);
-       while (count < nr_huge_pages) {
+       while (surplus_huge_pages && count > persistent_huge_pages) {
+               if (!adjust_pool_surplus(-1))
+                       break;
+       }
+
+       while (count > persistent_huge_pages) {
+               int ret;
+               /*
+                * If this allocation races such that we no longer need the
+                * page, free_huge_page will handle it by freeing the page
+                * and reducing the surplus.
+                */
+               spin_unlock(&hugetlb_lock);
+               ret = alloc_fresh_huge_page();
+               spin_lock(&hugetlb_lock);
+               if (!ret)
+                       goto out;
+
+       }
+
+       /*
+        * Decrease the pool size
+        * First return free pages to the buddy allocator (being careful
+        * to keep enough around to satisfy reservations).  Then place
+        * pages into surplus state as needed so the pool will shrink
+        * to the desired size as pages become free.
+        *
+        * By placing pages into the surplus state independent of the
+        * overcommit value, we are allowing the surplus pool size to
+        * exceed overcommit. There are few sane options here. Since
+        * alloc_buddy_huge_page() is checking the global counter,
+        * though, we'll note that we're not allowed to exceed surplus
+        * and won't grow the pool anywhere else. Not until one of the
+        * sysctls are changed, or the surplus pages go out of use.
+        */
+       min_count = resv_huge_pages + nr_huge_pages - free_huge_pages;
+       min_count = max(count, min_count);
+       try_to_free_low(min_count);
+       while (min_count < persistent_huge_pages) {
                struct page *page = dequeue_huge_page(NULL, 0);
                if (!page)
                        break;
                update_and_free_page(page);
        }
+       while (count < persistent_huge_pages) {
+               if (!adjust_pool_surplus(1))
+                       break;
+       }
+out:
+       ret = persistent_huge_pages;
        spin_unlock(&hugetlb_lock);
-       return nr_huge_pages;
+       return ret;
 }
 
 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
@@ -292,10 +613,12 @@ int hugetlb_report_meminfo(char *buf)
                        "HugePages_Total: %5lu\n"
                        "HugePages_Free:  %5lu\n"
                        "HugePages_Rsvd:  %5lu\n"
+                       "HugePages_Surp:  %5lu\n"
                        "Hugepagesize:    %5lu kB\n",
                        nr_huge_pages,
                        free_huge_pages,
                        resv_huge_pages,
+                       surplus_huge_pages,
                        HPAGE_SIZE/1024);
 }
 
@@ -376,6 +699,11 @@ int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
                dst_pte = huge_pte_alloc(dst, addr);
                if (!dst_pte)
                        goto nomem;
+
+               /* If the pagetables are shared don't copy or take references */
+               if (dst_pte == src_pte)
+                       continue;
+
                spin_lock(&dst->page_table_lock);
                spin_lock(&src->page_table_lock);
                if (!pte_none(*src_pte)) {
@@ -478,9 +806,9 @@ static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
        page_cache_get(old_page);
        new_page = alloc_huge_page(vma, address);
 
-       if (!new_page) {
+       if (IS_ERR(new_page)) {
                page_cache_release(old_page);
-               return VM_FAULT_OOM;
+               return -PTR_ERR(new_page);
        }
 
        spin_unlock(&mm->page_table_lock);
@@ -524,27 +852,28 @@ retry:
                size = i_size_read(mapping->host) >> HPAGE_SHIFT;
                if (idx >= size)
                        goto out;
-               if (hugetlb_get_quota(mapping))
-                       goto out;
                page = alloc_huge_page(vma, address);
-               if (!page) {
-                       hugetlb_put_quota(mapping);
-                       ret = VM_FAULT_OOM;
+               if (IS_ERR(page)) {
+                       ret = -PTR_ERR(page);
                        goto out;
                }
                clear_huge_page(page, address);
 
                if (vma->vm_flags & VM_SHARED) {
                        int err;
+                       struct inode *inode = mapping->host;
 
                        err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
                        if (err) {
                                put_page(page);
-                               hugetlb_put_quota(mapping);
                                if (err == -EEXIST)
                                        goto retry;
                                goto out;
                        }
+
+                       spin_lock(&inode->i_lock);
+                       inode->i_blocks += BLOCKS_PER_HUGEPAGE;
+                       spin_unlock(&inode->i_lock);
                } else
                        lock_page(page);
        }
@@ -574,7 +903,6 @@ out:
 
 backout:
        spin_unlock(&mm->page_table_lock);
-       hugetlb_put_quota(mapping);
        unlock_page(page);
        put_page(page);
        goto out;
@@ -620,7 +948,8 @@ int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
 
 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
                        struct page **pages, struct vm_area_struct **vmas,
-                       unsigned long *position, int *length, int i)
+                       unsigned long *position, int *length, int i,
+                       int write)
 {
        unsigned long pfn_offset;
        unsigned long vaddr = *position;
@@ -638,11 +967,11 @@ int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
                 */
                pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
 
-               if (!pte || pte_none(*pte)) {
+               if (!pte || pte_none(*pte) || (write && !pte_write(*pte))) {
                        int ret;
 
                        spin_unlock(&mm->page_table_lock);
-                       ret = hugetlb_fault(mm, vma, vaddr, 0);
+                       ret = hugetlb_fault(mm, vma, vaddr, write);
                        spin_lock(&mm->page_table_lock);
                        if (!(ret & VM_FAULT_ERROR))
                                continue;
@@ -769,10 +1098,10 @@ static long region_chg(struct list_head *head, long f, long t)
 
        /* If we are below the current region then a new region is required.
         * Subtle, allocate a new region at the position but make it zero
-        * size such that we can guarentee to record the reservation. */
+        * size such that we can guarantee to record the reservation. */
        if (&rg->link == head || t < rg->from) {
                nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
-               if (nrg == 0)
+               if (!nrg)
                        return -ENOMEM;
                nrg->from = f;
                nrg->to   = f;
@@ -841,21 +1170,6 @@ static int hugetlb_acct_memory(long delta)
        int ret = -ENOMEM;
 
        spin_lock(&hugetlb_lock);
-       if ((delta + resv_huge_pages) <= free_huge_pages) {
-               resv_huge_pages += delta;
-               ret = 0;
-       }
-       spin_unlock(&hugetlb_lock);
-       return ret;
-}
-
-int hugetlb_reserve_pages(struct inode *inode, long from, long to)
-{
-       long ret, chg;
-
-       chg = region_chg(&inode->i_mapping->private_list, from, to);
-       if (chg < 0)
-               return chg;
        /*
         * When cpuset is configured, it breaks the strict hugetlb page
         * reservation as the accounting is done on a global variable. Such
@@ -873,12 +1187,39 @@ int hugetlb_reserve_pages(struct inode *inode, long from, long to)
         * a best attempt and hopefully to minimize the impact of changing
         * semantics that cpuset has.
         */
-       if (chg > cpuset_mems_nr(free_huge_pages_node))
-               return -ENOMEM;
+       if (delta > 0) {
+               if (gather_surplus_pages(delta) < 0)
+                       goto out;
+
+               if (delta > cpuset_mems_nr(free_huge_pages_node))
+                       goto out;
+       }
+
+       ret = 0;
+       resv_huge_pages += delta;
+       if (delta < 0)
+               return_unused_surplus_pages((unsigned long) -delta);
+
+out:
+       spin_unlock(&hugetlb_lock);
+       return ret;
+}
 
+int hugetlb_reserve_pages(struct inode *inode, long from, long to)
+{
+       long ret, chg;
+
+       chg = region_chg(&inode->i_mapping->private_list, from, to);
+       if (chg < 0)
+               return chg;
+
+       if (hugetlb_get_quota(inode->i_mapping, chg))
+               return -ENOSPC;
        ret = hugetlb_acct_memory(chg);
-       if (ret < 0)
+       if (ret < 0) {
+               hugetlb_put_quota(inode->i_mapping, chg);
                return ret;
+       }
        region_add(&inode->i_mapping->private_list, from, to);
        return 0;
 }
@@ -886,5 +1227,11 @@ int hugetlb_reserve_pages(struct inode *inode, long from, long to)
 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
 {
        long chg = region_truncate(&inode->i_mapping->private_list, offset);
-       hugetlb_acct_memory(freed - chg);
+
+       spin_lock(&inode->i_lock);
+       inode->i_blocks -= BLOCKS_PER_HUGEPAGE * freed;
+       spin_unlock(&inode->i_lock);
+
+       hugetlb_put_quota(inode->i_mapping, (chg - freed));
+       hugetlb_acct_memory(-(chg - freed));
 }