2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
20 #include <linux/kvm_host.h>
21 #include <linux/kvm.h>
22 #include <linux/module.h>
23 #include <linux/errno.h>
24 #include <linux/percpu.h>
25 #include <linux/gfp.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/sysdev.h>
34 #include <linux/cpu.h>
35 #include <linux/sched.h>
36 #include <linux/cpumask.h>
37 #include <linux/smp.h>
38 #include <linux/anon_inodes.h>
39 #include <linux/profile.h>
40 #include <linux/kvm_para.h>
41 #include <linux/pagemap.h>
42 #include <linux/mman.h>
43 #include <linux/swap.h>
45 #include <asm/processor.h>
47 #include <asm/uaccess.h>
48 #include <asm/pgtable.h>
51 #include <asm/msidef.h>
54 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
55 #include "coalesced_mmio.h"
58 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
59 #include <linux/pci.h>
60 #include <linux/interrupt.h>
64 MODULE_AUTHOR("Qumranet");
65 MODULE_LICENSE("GPL");
67 static int msi2intx = 1;
68 module_param(msi2intx, bool, 0);
70 DEFINE_SPINLOCK(kvm_lock);
73 static cpumask_var_t cpus_hardware_enabled;
75 struct kmem_cache *kvm_vcpu_cache;
76 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
78 static __read_mostly struct preempt_ops kvm_preempt_ops;
80 struct dentry *kvm_debugfs_dir;
82 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
85 static bool kvm_rebooting;
87 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
90 static void assigned_device_msi_dispatch(struct kvm_assigned_dev_kernel *dev)
93 struct kvm_vcpu *vcpu;
94 struct kvm_ioapic *ioapic = ioapic_irqchip(dev->kvm);
95 int dest_id = (dev->guest_msi.address_lo & MSI_ADDR_DEST_ID_MASK)
96 >> MSI_ADDR_DEST_ID_SHIFT;
97 int vector = (dev->guest_msi.data & MSI_DATA_VECTOR_MASK)
98 >> MSI_DATA_VECTOR_SHIFT;
99 int dest_mode = test_bit(MSI_ADDR_DEST_MODE_SHIFT,
100 (unsigned long *)&dev->guest_msi.address_lo);
101 int trig_mode = test_bit(MSI_DATA_TRIGGER_SHIFT,
102 (unsigned long *)&dev->guest_msi.data);
103 int delivery_mode = test_bit(MSI_DATA_DELIVERY_MODE_SHIFT,
104 (unsigned long *)&dev->guest_msi.data);
109 deliver_bitmask = kvm_ioapic_get_delivery_bitmask(ioapic,
111 /* IOAPIC delivery mode value is the same as MSI here */
112 switch (delivery_mode) {
113 case IOAPIC_LOWEST_PRIORITY:
114 vcpu = kvm_get_lowest_prio_vcpu(ioapic->kvm, vector,
117 kvm_apic_set_irq(vcpu, vector, trig_mode);
119 printk(KERN_INFO "kvm: null lowest priority vcpu!\n");
122 for (vcpu_id = 0; deliver_bitmask != 0; vcpu_id++) {
123 if (!(deliver_bitmask & (1 << vcpu_id)))
125 deliver_bitmask &= ~(1 << vcpu_id);
126 vcpu = ioapic->kvm->vcpus[vcpu_id];
128 kvm_apic_set_irq(vcpu, vector, trig_mode);
132 printk(KERN_INFO "kvm: unsupported MSI delivery mode\n");
136 static void assigned_device_msi_dispatch(struct kvm_assigned_dev_kernel *dev) {}
139 static struct kvm_assigned_dev_kernel *kvm_find_assigned_dev(struct list_head *head,
142 struct list_head *ptr;
143 struct kvm_assigned_dev_kernel *match;
145 list_for_each(ptr, head) {
146 match = list_entry(ptr, struct kvm_assigned_dev_kernel, list);
147 if (match->assigned_dev_id == assigned_dev_id)
153 static void kvm_assigned_dev_interrupt_work_handler(struct work_struct *work)
155 struct kvm_assigned_dev_kernel *assigned_dev;
157 assigned_dev = container_of(work, struct kvm_assigned_dev_kernel,
160 /* This is taken to safely inject irq inside the guest. When
161 * the interrupt injection (or the ioapic code) uses a
162 * finer-grained lock, update this
164 mutex_lock(&assigned_dev->kvm->lock);
165 if (assigned_dev->irq_requested_type & KVM_ASSIGNED_DEV_GUEST_INTX)
166 kvm_set_irq(assigned_dev->kvm,
167 assigned_dev->irq_source_id,
168 assigned_dev->guest_irq, 1);
169 else if (assigned_dev->irq_requested_type &
170 KVM_ASSIGNED_DEV_GUEST_MSI) {
171 assigned_device_msi_dispatch(assigned_dev);
172 enable_irq(assigned_dev->host_irq);
173 assigned_dev->host_irq_disabled = false;
175 mutex_unlock(&assigned_dev->kvm->lock);
178 static irqreturn_t kvm_assigned_dev_intr(int irq, void *dev_id)
180 struct kvm_assigned_dev_kernel *assigned_dev =
181 (struct kvm_assigned_dev_kernel *) dev_id;
183 schedule_work(&assigned_dev->interrupt_work);
185 disable_irq_nosync(irq);
186 assigned_dev->host_irq_disabled = true;
191 /* Ack the irq line for an assigned device */
192 static void kvm_assigned_dev_ack_irq(struct kvm_irq_ack_notifier *kian)
194 struct kvm_assigned_dev_kernel *dev;
199 dev = container_of(kian, struct kvm_assigned_dev_kernel,
202 kvm_set_irq(dev->kvm, dev->irq_source_id, dev->guest_irq, 0);
204 /* The guest irq may be shared so this ack may be
205 * from another device.
207 if (dev->host_irq_disabled) {
208 enable_irq(dev->host_irq);
209 dev->host_irq_disabled = false;
213 /* The function implicit hold kvm->lock mutex due to cancel_work_sync() */
214 static void kvm_free_assigned_irq(struct kvm *kvm,
215 struct kvm_assigned_dev_kernel *assigned_dev)
217 if (!irqchip_in_kernel(kvm))
220 kvm_unregister_irq_ack_notifier(&assigned_dev->ack_notifier);
222 if (assigned_dev->irq_source_id != -1)
223 kvm_free_irq_source_id(kvm, assigned_dev->irq_source_id);
224 assigned_dev->irq_source_id = -1;
226 if (!assigned_dev->irq_requested_type)
230 * In kvm_free_device_irq, cancel_work_sync return true if:
231 * 1. work is scheduled, and then cancelled.
232 * 2. work callback is executed.
234 * The first one ensured that the irq is disabled and no more events
235 * would happen. But for the second one, the irq may be enabled (e.g.
236 * for MSI). So we disable irq here to prevent further events.
238 * Notice this maybe result in nested disable if the interrupt type is
239 * INTx, but it's OK for we are going to free it.
241 * If this function is a part of VM destroy, please ensure that till
242 * now, the kvm state is still legal for probably we also have to wait
243 * interrupt_work done.
245 disable_irq_nosync(assigned_dev->host_irq);
246 cancel_work_sync(&assigned_dev->interrupt_work);
248 free_irq(assigned_dev->host_irq, (void *)assigned_dev);
250 if (assigned_dev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_MSI)
251 pci_disable_msi(assigned_dev->dev);
253 assigned_dev->irq_requested_type = 0;
257 static void kvm_free_assigned_device(struct kvm *kvm,
258 struct kvm_assigned_dev_kernel
261 kvm_free_assigned_irq(kvm, assigned_dev);
263 pci_reset_function(assigned_dev->dev);
265 pci_release_regions(assigned_dev->dev);
266 pci_disable_device(assigned_dev->dev);
267 pci_dev_put(assigned_dev->dev);
269 list_del(&assigned_dev->list);
273 void kvm_free_all_assigned_devices(struct kvm *kvm)
275 struct list_head *ptr, *ptr2;
276 struct kvm_assigned_dev_kernel *assigned_dev;
278 list_for_each_safe(ptr, ptr2, &kvm->arch.assigned_dev_head) {
279 assigned_dev = list_entry(ptr,
280 struct kvm_assigned_dev_kernel,
283 kvm_free_assigned_device(kvm, assigned_dev);
287 static int assigned_device_update_intx(struct kvm *kvm,
288 struct kvm_assigned_dev_kernel *adev,
289 struct kvm_assigned_irq *airq)
291 adev->guest_irq = airq->guest_irq;
292 adev->ack_notifier.gsi = airq->guest_irq;
294 if (adev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_INTX)
297 if (irqchip_in_kernel(kvm)) {
299 (adev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_MSI)) {
300 free_irq(adev->host_irq, (void *)adev);
301 pci_disable_msi(adev->dev);
304 if (!capable(CAP_SYS_RAWIO))
308 adev->host_irq = airq->host_irq;
310 adev->host_irq = adev->dev->irq;
312 /* Even though this is PCI, we don't want to use shared
313 * interrupts. Sharing host devices with guest-assigned devices
314 * on the same interrupt line is not a happy situation: there
315 * are going to be long delays in accepting, acking, etc.
317 if (request_irq(adev->host_irq, kvm_assigned_dev_intr,
318 0, "kvm_assigned_intx_device", (void *)adev))
322 adev->irq_requested_type = KVM_ASSIGNED_DEV_GUEST_INTX |
323 KVM_ASSIGNED_DEV_HOST_INTX;
328 static int assigned_device_update_msi(struct kvm *kvm,
329 struct kvm_assigned_dev_kernel *adev,
330 struct kvm_assigned_irq *airq)
334 if (airq->flags & KVM_DEV_IRQ_ASSIGN_ENABLE_MSI) {
335 /* x86 don't care upper address of guest msi message addr */
336 adev->irq_requested_type |= KVM_ASSIGNED_DEV_GUEST_MSI;
337 adev->irq_requested_type &= ~KVM_ASSIGNED_DEV_GUEST_INTX;
338 adev->guest_msi.address_lo = airq->guest_msi.addr_lo;
339 adev->guest_msi.data = airq->guest_msi.data;
340 adev->ack_notifier.gsi = -1;
341 } else if (msi2intx) {
342 adev->irq_requested_type |= KVM_ASSIGNED_DEV_GUEST_INTX;
343 adev->irq_requested_type &= ~KVM_ASSIGNED_DEV_GUEST_MSI;
344 adev->guest_irq = airq->guest_irq;
345 adev->ack_notifier.gsi = airq->guest_irq;
348 if (adev->irq_requested_type & KVM_ASSIGNED_DEV_HOST_MSI)
351 if (irqchip_in_kernel(kvm)) {
353 if (adev->irq_requested_type &
354 KVM_ASSIGNED_DEV_HOST_INTX)
355 free_irq(adev->host_irq, (void *)adev);
357 r = pci_enable_msi(adev->dev);
362 adev->host_irq = adev->dev->irq;
363 if (request_irq(adev->host_irq, kvm_assigned_dev_intr, 0,
364 "kvm_assigned_msi_device", (void *)adev))
369 adev->irq_requested_type = KVM_ASSIGNED_DEV_GUEST_MSI;
371 adev->irq_requested_type |= KVM_ASSIGNED_DEV_HOST_MSI;
376 static int kvm_vm_ioctl_assign_irq(struct kvm *kvm,
377 struct kvm_assigned_irq
381 struct kvm_assigned_dev_kernel *match;
383 mutex_lock(&kvm->lock);
385 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
386 assigned_irq->assigned_dev_id);
388 mutex_unlock(&kvm->lock);
392 if (!match->irq_requested_type) {
393 INIT_WORK(&match->interrupt_work,
394 kvm_assigned_dev_interrupt_work_handler);
395 if (irqchip_in_kernel(kvm)) {
396 /* Register ack nofitier */
397 match->ack_notifier.gsi = -1;
398 match->ack_notifier.irq_acked =
399 kvm_assigned_dev_ack_irq;
400 kvm_register_irq_ack_notifier(kvm,
401 &match->ack_notifier);
403 /* Request IRQ source ID */
404 r = kvm_request_irq_source_id(kvm);
408 match->irq_source_id = r;
411 /* Determine host device irq type, we can know the
412 * result from dev->msi_enabled */
414 pci_enable_msi(match->dev);
420 (assigned_irq->flags & KVM_DEV_IRQ_ASSIGN_ENABLE_MSI)) ||
421 (msi2intx && match->dev->msi_enabled)) {
423 r = assigned_device_update_msi(kvm, match, assigned_irq);
425 printk(KERN_WARNING "kvm: failed to enable "
432 } else if (assigned_irq->host_irq == 0 && match->dev->irq == 0) {
433 /* Host device IRQ 0 means don't support INTx */
436 "kvm: wait device to enable MSI!\n");
440 "kvm: failed to enable MSI device!\n");
445 /* Non-sharing INTx mode */
446 r = assigned_device_update_intx(kvm, match, assigned_irq);
448 printk(KERN_WARNING "kvm: failed to enable "
454 mutex_unlock(&kvm->lock);
457 mutex_unlock(&kvm->lock);
458 kvm_free_assigned_device(kvm, match);
462 static int kvm_vm_ioctl_assign_device(struct kvm *kvm,
463 struct kvm_assigned_pci_dev *assigned_dev)
466 struct kvm_assigned_dev_kernel *match;
469 mutex_lock(&kvm->lock);
471 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
472 assigned_dev->assigned_dev_id);
474 /* device already assigned */
479 match = kzalloc(sizeof(struct kvm_assigned_dev_kernel), GFP_KERNEL);
481 printk(KERN_INFO "%s: Couldn't allocate memory\n",
486 dev = pci_get_bus_and_slot(assigned_dev->busnr,
487 assigned_dev->devfn);
489 printk(KERN_INFO "%s: host device not found\n", __func__);
493 if (pci_enable_device(dev)) {
494 printk(KERN_INFO "%s: Could not enable PCI device\n", __func__);
498 r = pci_request_regions(dev, "kvm_assigned_device");
500 printk(KERN_INFO "%s: Could not get access to device regions\n",
505 pci_reset_function(dev);
507 match->assigned_dev_id = assigned_dev->assigned_dev_id;
508 match->host_busnr = assigned_dev->busnr;
509 match->host_devfn = assigned_dev->devfn;
510 match->flags = assigned_dev->flags;
512 match->irq_source_id = -1;
515 list_add(&match->list, &kvm->arch.assigned_dev_head);
517 if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU) {
518 if (!kvm->arch.iommu_domain) {
519 r = kvm_iommu_map_guest(kvm);
523 r = kvm_assign_device(kvm, match);
529 mutex_unlock(&kvm->lock);
532 list_del(&match->list);
533 pci_release_regions(dev);
535 pci_disable_device(dev);
540 mutex_unlock(&kvm->lock);
545 #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
546 static int kvm_vm_ioctl_deassign_device(struct kvm *kvm,
547 struct kvm_assigned_pci_dev *assigned_dev)
550 struct kvm_assigned_dev_kernel *match;
552 mutex_lock(&kvm->lock);
554 match = kvm_find_assigned_dev(&kvm->arch.assigned_dev_head,
555 assigned_dev->assigned_dev_id);
557 printk(KERN_INFO "%s: device hasn't been assigned before, "
558 "so cannot be deassigned\n", __func__);
563 if (assigned_dev->flags & KVM_DEV_ASSIGN_ENABLE_IOMMU)
564 kvm_deassign_device(kvm, match);
566 kvm_free_assigned_device(kvm, match);
569 mutex_unlock(&kvm->lock);
574 static inline int valid_vcpu(int n)
576 return likely(n >= 0 && n < KVM_MAX_VCPUS);
579 inline int kvm_is_mmio_pfn(pfn_t pfn)
582 return PageReserved(pfn_to_page(pfn));
588 * Switches to specified vcpu, until a matching vcpu_put()
590 void vcpu_load(struct kvm_vcpu *vcpu)
594 mutex_lock(&vcpu->mutex);
596 preempt_notifier_register(&vcpu->preempt_notifier);
597 kvm_arch_vcpu_load(vcpu, cpu);
601 void vcpu_put(struct kvm_vcpu *vcpu)
604 kvm_arch_vcpu_put(vcpu);
605 preempt_notifier_unregister(&vcpu->preempt_notifier);
607 mutex_unlock(&vcpu->mutex);
610 static void ack_flush(void *_completed)
614 static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
619 struct kvm_vcpu *vcpu;
621 if (alloc_cpumask_var(&cpus, GFP_ATOMIC))
625 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
626 vcpu = kvm->vcpus[i];
629 if (test_and_set_bit(req, &vcpu->requests))
632 if (cpus != NULL && cpu != -1 && cpu != me)
633 cpumask_set_cpu(cpu, cpus);
635 if (unlikely(cpus == NULL))
636 smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
637 else if (!cpumask_empty(cpus))
638 smp_call_function_many(cpus, ack_flush, NULL, 1);
642 free_cpumask_var(cpus);
646 void kvm_flush_remote_tlbs(struct kvm *kvm)
648 if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
649 ++kvm->stat.remote_tlb_flush;
652 void kvm_reload_remote_mmus(struct kvm *kvm)
654 make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
657 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
662 mutex_init(&vcpu->mutex);
666 init_waitqueue_head(&vcpu->wq);
668 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
673 vcpu->run = page_address(page);
675 r = kvm_arch_vcpu_init(vcpu);
681 free_page((unsigned long)vcpu->run);
685 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
687 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
689 kvm_arch_vcpu_uninit(vcpu);
690 free_page((unsigned long)vcpu->run);
692 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
694 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
695 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
697 return container_of(mn, struct kvm, mmu_notifier);
700 static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
701 struct mm_struct *mm,
702 unsigned long address)
704 struct kvm *kvm = mmu_notifier_to_kvm(mn);
708 * When ->invalidate_page runs, the linux pte has been zapped
709 * already but the page is still allocated until
710 * ->invalidate_page returns. So if we increase the sequence
711 * here the kvm page fault will notice if the spte can't be
712 * established because the page is going to be freed. If
713 * instead the kvm page fault establishes the spte before
714 * ->invalidate_page runs, kvm_unmap_hva will release it
717 * The sequence increase only need to be seen at spin_unlock
718 * time, and not at spin_lock time.
720 * Increasing the sequence after the spin_unlock would be
721 * unsafe because the kvm page fault could then establish the
722 * pte after kvm_unmap_hva returned, without noticing the page
723 * is going to be freed.
725 spin_lock(&kvm->mmu_lock);
726 kvm->mmu_notifier_seq++;
727 need_tlb_flush = kvm_unmap_hva(kvm, address);
728 spin_unlock(&kvm->mmu_lock);
730 /* we've to flush the tlb before the pages can be freed */
732 kvm_flush_remote_tlbs(kvm);
736 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
737 struct mm_struct *mm,
741 struct kvm *kvm = mmu_notifier_to_kvm(mn);
742 int need_tlb_flush = 0;
744 spin_lock(&kvm->mmu_lock);
746 * The count increase must become visible at unlock time as no
747 * spte can be established without taking the mmu_lock and
748 * count is also read inside the mmu_lock critical section.
750 kvm->mmu_notifier_count++;
751 for (; start < end; start += PAGE_SIZE)
752 need_tlb_flush |= kvm_unmap_hva(kvm, start);
753 spin_unlock(&kvm->mmu_lock);
755 /* we've to flush the tlb before the pages can be freed */
757 kvm_flush_remote_tlbs(kvm);
760 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
761 struct mm_struct *mm,
765 struct kvm *kvm = mmu_notifier_to_kvm(mn);
767 spin_lock(&kvm->mmu_lock);
769 * This sequence increase will notify the kvm page fault that
770 * the page that is going to be mapped in the spte could have
773 kvm->mmu_notifier_seq++;
775 * The above sequence increase must be visible before the
776 * below count decrease but both values are read by the kvm
777 * page fault under mmu_lock spinlock so we don't need to add
778 * a smb_wmb() here in between the two.
780 kvm->mmu_notifier_count--;
781 spin_unlock(&kvm->mmu_lock);
783 BUG_ON(kvm->mmu_notifier_count < 0);
786 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
787 struct mm_struct *mm,
788 unsigned long address)
790 struct kvm *kvm = mmu_notifier_to_kvm(mn);
793 spin_lock(&kvm->mmu_lock);
794 young = kvm_age_hva(kvm, address);
795 spin_unlock(&kvm->mmu_lock);
798 kvm_flush_remote_tlbs(kvm);
803 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
804 struct mm_struct *mm)
806 struct kvm *kvm = mmu_notifier_to_kvm(mn);
807 kvm_arch_flush_shadow(kvm);
810 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
811 .invalidate_page = kvm_mmu_notifier_invalidate_page,
812 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
813 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
814 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
815 .release = kvm_mmu_notifier_release,
817 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
819 static struct kvm *kvm_create_vm(void)
821 struct kvm *kvm = kvm_arch_create_vm();
822 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
829 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
830 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
833 return ERR_PTR(-ENOMEM);
835 kvm->coalesced_mmio_ring =
836 (struct kvm_coalesced_mmio_ring *)page_address(page);
839 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
842 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
843 err = mmu_notifier_register(&kvm->mmu_notifier, current->mm);
845 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
854 kvm->mm = current->mm;
855 atomic_inc(&kvm->mm->mm_count);
856 spin_lock_init(&kvm->mmu_lock);
857 kvm_io_bus_init(&kvm->pio_bus);
858 mutex_init(&kvm->lock);
859 kvm_io_bus_init(&kvm->mmio_bus);
860 init_rwsem(&kvm->slots_lock);
861 atomic_set(&kvm->users_count, 1);
862 spin_lock(&kvm_lock);
863 list_add(&kvm->vm_list, &vm_list);
864 spin_unlock(&kvm_lock);
865 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
866 kvm_coalesced_mmio_init(kvm);
873 * Free any memory in @free but not in @dont.
875 static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
876 struct kvm_memory_slot *dont)
878 if (!dont || free->rmap != dont->rmap)
881 if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
882 vfree(free->dirty_bitmap);
884 if (!dont || free->lpage_info != dont->lpage_info)
885 vfree(free->lpage_info);
888 free->dirty_bitmap = NULL;
890 free->lpage_info = NULL;
893 void kvm_free_physmem(struct kvm *kvm)
897 for (i = 0; i < kvm->nmemslots; ++i)
898 kvm_free_physmem_slot(&kvm->memslots[i], NULL);
901 static void kvm_destroy_vm(struct kvm *kvm)
903 struct mm_struct *mm = kvm->mm;
905 kvm_arch_sync_events(kvm);
906 spin_lock(&kvm_lock);
907 list_del(&kvm->vm_list);
908 spin_unlock(&kvm_lock);
909 kvm_io_bus_destroy(&kvm->pio_bus);
910 kvm_io_bus_destroy(&kvm->mmio_bus);
911 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
912 if (kvm->coalesced_mmio_ring != NULL)
913 free_page((unsigned long)kvm->coalesced_mmio_ring);
915 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
916 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
918 kvm_arch_destroy_vm(kvm);
922 void kvm_get_kvm(struct kvm *kvm)
924 atomic_inc(&kvm->users_count);
926 EXPORT_SYMBOL_GPL(kvm_get_kvm);
928 void kvm_put_kvm(struct kvm *kvm)
930 if (atomic_dec_and_test(&kvm->users_count))
933 EXPORT_SYMBOL_GPL(kvm_put_kvm);
936 static int kvm_vm_release(struct inode *inode, struct file *filp)
938 struct kvm *kvm = filp->private_data;
945 * Allocate some memory and give it an address in the guest physical address
948 * Discontiguous memory is allowed, mostly for framebuffers.
950 * Must be called holding mmap_sem for write.
952 int __kvm_set_memory_region(struct kvm *kvm,
953 struct kvm_userspace_memory_region *mem,
958 unsigned long npages;
960 struct kvm_memory_slot *memslot;
961 struct kvm_memory_slot old, new;
964 /* General sanity checks */
965 if (mem->memory_size & (PAGE_SIZE - 1))
967 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
969 if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
971 if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
973 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
976 memslot = &kvm->memslots[mem->slot];
977 base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
978 npages = mem->memory_size >> PAGE_SHIFT;
981 mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
983 new = old = *memslot;
985 new.base_gfn = base_gfn;
987 new.flags = mem->flags;
989 /* Disallow changing a memory slot's size. */
991 if (npages && old.npages && npages != old.npages)
994 /* Check for overlaps */
996 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
997 struct kvm_memory_slot *s = &kvm->memslots[i];
1001 if (!((base_gfn + npages <= s->base_gfn) ||
1002 (base_gfn >= s->base_gfn + s->npages)))
1006 /* Free page dirty bitmap if unneeded */
1007 if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1008 new.dirty_bitmap = NULL;
1012 /* Allocate if a slot is being created */
1014 if (npages && !new.rmap) {
1015 new.rmap = vmalloc(npages * sizeof(struct page *));
1020 memset(new.rmap, 0, npages * sizeof(*new.rmap));
1022 new.user_alloc = user_alloc;
1024 * hva_to_rmmap() serialzies with the mmu_lock and to be
1025 * safe it has to ignore memslots with !user_alloc &&
1029 new.userspace_addr = mem->userspace_addr;
1031 new.userspace_addr = 0;
1033 if (npages && !new.lpage_info) {
1034 int largepages = npages / KVM_PAGES_PER_HPAGE;
1035 if (npages % KVM_PAGES_PER_HPAGE)
1037 if (base_gfn % KVM_PAGES_PER_HPAGE)
1040 new.lpage_info = vmalloc(largepages * sizeof(*new.lpage_info));
1042 if (!new.lpage_info)
1045 memset(new.lpage_info, 0, largepages * sizeof(*new.lpage_info));
1047 if (base_gfn % KVM_PAGES_PER_HPAGE)
1048 new.lpage_info[0].write_count = 1;
1049 if ((base_gfn+npages) % KVM_PAGES_PER_HPAGE)
1050 new.lpage_info[largepages-1].write_count = 1;
1053 /* Allocate page dirty bitmap if needed */
1054 if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1055 unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
1057 new.dirty_bitmap = vmalloc(dirty_bytes);
1058 if (!new.dirty_bitmap)
1060 memset(new.dirty_bitmap, 0, dirty_bytes);
1062 #endif /* not defined CONFIG_S390 */
1065 kvm_arch_flush_shadow(kvm);
1067 spin_lock(&kvm->mmu_lock);
1068 if (mem->slot >= kvm->nmemslots)
1069 kvm->nmemslots = mem->slot + 1;
1072 spin_unlock(&kvm->mmu_lock);
1074 r = kvm_arch_set_memory_region(kvm, mem, old, user_alloc);
1076 spin_lock(&kvm->mmu_lock);
1078 spin_unlock(&kvm->mmu_lock);
1082 kvm_free_physmem_slot(&old, npages ? &new : NULL);
1083 /* Slot deletion case: we have to update the current slot */
1087 /* map the pages in iommu page table */
1088 r = kvm_iommu_map_pages(kvm, base_gfn, npages);
1095 kvm_free_physmem_slot(&new, &old);
1100 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1102 int kvm_set_memory_region(struct kvm *kvm,
1103 struct kvm_userspace_memory_region *mem,
1108 down_write(&kvm->slots_lock);
1109 r = __kvm_set_memory_region(kvm, mem, user_alloc);
1110 up_write(&kvm->slots_lock);
1113 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1115 int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1117 kvm_userspace_memory_region *mem,
1120 if (mem->slot >= KVM_MEMORY_SLOTS)
1122 return kvm_set_memory_region(kvm, mem, user_alloc);
1125 int kvm_get_dirty_log(struct kvm *kvm,
1126 struct kvm_dirty_log *log, int *is_dirty)
1128 struct kvm_memory_slot *memslot;
1131 unsigned long any = 0;
1134 if (log->slot >= KVM_MEMORY_SLOTS)
1137 memslot = &kvm->memslots[log->slot];
1139 if (!memslot->dirty_bitmap)
1142 n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
1144 for (i = 0; !any && i < n/sizeof(long); ++i)
1145 any = memslot->dirty_bitmap[i];
1148 if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1159 int is_error_page(struct page *page)
1161 return page == bad_page;
1163 EXPORT_SYMBOL_GPL(is_error_page);
1165 int is_error_pfn(pfn_t pfn)
1167 return pfn == bad_pfn;
1169 EXPORT_SYMBOL_GPL(is_error_pfn);
1171 static inline unsigned long bad_hva(void)
1176 int kvm_is_error_hva(unsigned long addr)
1178 return addr == bad_hva();
1180 EXPORT_SYMBOL_GPL(kvm_is_error_hva);
1182 struct kvm_memory_slot *gfn_to_memslot_unaliased(struct kvm *kvm, gfn_t gfn)
1186 for (i = 0; i < kvm->nmemslots; ++i) {
1187 struct kvm_memory_slot *memslot = &kvm->memslots[i];
1189 if (gfn >= memslot->base_gfn
1190 && gfn < memslot->base_gfn + memslot->npages)
1195 EXPORT_SYMBOL_GPL(gfn_to_memslot_unaliased);
1197 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1199 gfn = unalias_gfn(kvm, gfn);
1200 return gfn_to_memslot_unaliased(kvm, gfn);
1203 int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1207 gfn = unalias_gfn(kvm, gfn);
1208 for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1209 struct kvm_memory_slot *memslot = &kvm->memslots[i];
1211 if (gfn >= memslot->base_gfn
1212 && gfn < memslot->base_gfn + memslot->npages)
1217 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1219 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1221 struct kvm_memory_slot *slot;
1223 gfn = unalias_gfn(kvm, gfn);
1224 slot = gfn_to_memslot_unaliased(kvm, gfn);
1227 return (slot->userspace_addr + (gfn - slot->base_gfn) * PAGE_SIZE);
1229 EXPORT_SYMBOL_GPL(gfn_to_hva);
1231 pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1233 struct page *page[1];
1240 addr = gfn_to_hva(kvm, gfn);
1241 if (kvm_is_error_hva(addr)) {
1243 return page_to_pfn(bad_page);
1246 npages = get_user_pages_fast(addr, 1, 1, page);
1248 if (unlikely(npages != 1)) {
1249 struct vm_area_struct *vma;
1251 down_read(¤t->mm->mmap_sem);
1252 vma = find_vma(current->mm, addr);
1254 if (vma == NULL || addr < vma->vm_start ||
1255 !(vma->vm_flags & VM_PFNMAP)) {
1256 up_read(¤t->mm->mmap_sem);
1258 return page_to_pfn(bad_page);
1261 pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
1262 up_read(¤t->mm->mmap_sem);
1263 BUG_ON(!kvm_is_mmio_pfn(pfn));
1265 pfn = page_to_pfn(page[0]);
1270 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1272 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1276 pfn = gfn_to_pfn(kvm, gfn);
1277 if (!kvm_is_mmio_pfn(pfn))
1278 return pfn_to_page(pfn);
1280 WARN_ON(kvm_is_mmio_pfn(pfn));
1286 EXPORT_SYMBOL_GPL(gfn_to_page);
1288 void kvm_release_page_clean(struct page *page)
1290 kvm_release_pfn_clean(page_to_pfn(page));
1292 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1294 void kvm_release_pfn_clean(pfn_t pfn)
1296 if (!kvm_is_mmio_pfn(pfn))
1297 put_page(pfn_to_page(pfn));
1299 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1301 void kvm_release_page_dirty(struct page *page)
1303 kvm_release_pfn_dirty(page_to_pfn(page));
1305 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1307 void kvm_release_pfn_dirty(pfn_t pfn)
1309 kvm_set_pfn_dirty(pfn);
1310 kvm_release_pfn_clean(pfn);
1312 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1314 void kvm_set_page_dirty(struct page *page)
1316 kvm_set_pfn_dirty(page_to_pfn(page));
1318 EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
1320 void kvm_set_pfn_dirty(pfn_t pfn)
1322 if (!kvm_is_mmio_pfn(pfn)) {
1323 struct page *page = pfn_to_page(pfn);
1324 if (!PageReserved(page))
1328 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1330 void kvm_set_pfn_accessed(pfn_t pfn)
1332 if (!kvm_is_mmio_pfn(pfn))
1333 mark_page_accessed(pfn_to_page(pfn));
1335 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1337 void kvm_get_pfn(pfn_t pfn)
1339 if (!kvm_is_mmio_pfn(pfn))
1340 get_page(pfn_to_page(pfn));
1342 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1344 static int next_segment(unsigned long len, int offset)
1346 if (len > PAGE_SIZE - offset)
1347 return PAGE_SIZE - offset;
1352 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1358 addr = gfn_to_hva(kvm, gfn);
1359 if (kvm_is_error_hva(addr))
1361 r = copy_from_user(data, (void __user *)addr + offset, len);
1366 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1368 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1370 gfn_t gfn = gpa >> PAGE_SHIFT;
1372 int offset = offset_in_page(gpa);
1375 while ((seg = next_segment(len, offset)) != 0) {
1376 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1386 EXPORT_SYMBOL_GPL(kvm_read_guest);
1388 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1393 gfn_t gfn = gpa >> PAGE_SHIFT;
1394 int offset = offset_in_page(gpa);
1396 addr = gfn_to_hva(kvm, gfn);
1397 if (kvm_is_error_hva(addr))
1399 pagefault_disable();
1400 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1406 EXPORT_SYMBOL(kvm_read_guest_atomic);
1408 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1409 int offset, int len)
1414 addr = gfn_to_hva(kvm, gfn);
1415 if (kvm_is_error_hva(addr))
1417 r = copy_to_user((void __user *)addr + offset, data, len);
1420 mark_page_dirty(kvm, gfn);
1423 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1425 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1428 gfn_t gfn = gpa >> PAGE_SHIFT;
1430 int offset = offset_in_page(gpa);
1433 while ((seg = next_segment(len, offset)) != 0) {
1434 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1445 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
1447 return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
1449 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
1451 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
1453 gfn_t gfn = gpa >> PAGE_SHIFT;
1455 int offset = offset_in_page(gpa);
1458 while ((seg = next_segment(len, offset)) != 0) {
1459 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
1468 EXPORT_SYMBOL_GPL(kvm_clear_guest);
1470 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
1472 struct kvm_memory_slot *memslot;
1474 gfn = unalias_gfn(kvm, gfn);
1475 memslot = gfn_to_memslot_unaliased(kvm, gfn);
1476 if (memslot && memslot->dirty_bitmap) {
1477 unsigned long rel_gfn = gfn - memslot->base_gfn;
1480 if (!test_bit(rel_gfn, memslot->dirty_bitmap))
1481 set_bit(rel_gfn, memslot->dirty_bitmap);
1486 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
1488 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
1493 prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
1495 if (kvm_cpu_has_interrupt(vcpu) ||
1496 kvm_cpu_has_pending_timer(vcpu) ||
1497 kvm_arch_vcpu_runnable(vcpu)) {
1498 set_bit(KVM_REQ_UNHALT, &vcpu->requests);
1501 if (signal_pending(current))
1509 finish_wait(&vcpu->wq, &wait);
1512 void kvm_resched(struct kvm_vcpu *vcpu)
1514 if (!need_resched())
1518 EXPORT_SYMBOL_GPL(kvm_resched);
1520 static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1522 struct kvm_vcpu *vcpu = vma->vm_file->private_data;
1525 if (vmf->pgoff == 0)
1526 page = virt_to_page(vcpu->run);
1528 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
1529 page = virt_to_page(vcpu->arch.pio_data);
1531 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1532 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
1533 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
1536 return VM_FAULT_SIGBUS;
1542 static struct vm_operations_struct kvm_vcpu_vm_ops = {
1543 .fault = kvm_vcpu_fault,
1546 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
1548 vma->vm_ops = &kvm_vcpu_vm_ops;
1552 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
1554 struct kvm_vcpu *vcpu = filp->private_data;
1556 kvm_put_kvm(vcpu->kvm);
1560 static struct file_operations kvm_vcpu_fops = {
1561 .release = kvm_vcpu_release,
1562 .unlocked_ioctl = kvm_vcpu_ioctl,
1563 .compat_ioctl = kvm_vcpu_ioctl,
1564 .mmap = kvm_vcpu_mmap,
1568 * Allocates an inode for the vcpu.
1570 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
1572 int fd = anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, 0);
1574 kvm_put_kvm(vcpu->kvm);
1579 * Creates some virtual cpus. Good luck creating more than one.
1581 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
1584 struct kvm_vcpu *vcpu;
1589 vcpu = kvm_arch_vcpu_create(kvm, n);
1591 return PTR_ERR(vcpu);
1593 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
1595 r = kvm_arch_vcpu_setup(vcpu);
1599 mutex_lock(&kvm->lock);
1600 if (kvm->vcpus[n]) {
1604 kvm->vcpus[n] = vcpu;
1605 mutex_unlock(&kvm->lock);
1607 /* Now it's all set up, let userspace reach it */
1609 r = create_vcpu_fd(vcpu);
1615 mutex_lock(&kvm->lock);
1616 kvm->vcpus[n] = NULL;
1618 mutex_unlock(&kvm->lock);
1619 kvm_arch_vcpu_destroy(vcpu);
1623 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
1626 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
1627 vcpu->sigset_active = 1;
1628 vcpu->sigset = *sigset;
1630 vcpu->sigset_active = 0;
1634 static long kvm_vcpu_ioctl(struct file *filp,
1635 unsigned int ioctl, unsigned long arg)
1637 struct kvm_vcpu *vcpu = filp->private_data;
1638 void __user *argp = (void __user *)arg;
1640 struct kvm_fpu *fpu = NULL;
1641 struct kvm_sregs *kvm_sregs = NULL;
1643 if (vcpu->kvm->mm != current->mm)
1650 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
1652 case KVM_GET_REGS: {
1653 struct kvm_regs *kvm_regs;
1656 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1659 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
1663 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
1670 case KVM_SET_REGS: {
1671 struct kvm_regs *kvm_regs;
1674 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
1678 if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
1680 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
1688 case KVM_GET_SREGS: {
1689 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1693 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
1697 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
1702 case KVM_SET_SREGS: {
1703 kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
1708 if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
1710 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
1716 case KVM_GET_MP_STATE: {
1717 struct kvm_mp_state mp_state;
1719 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
1723 if (copy_to_user(argp, &mp_state, sizeof mp_state))
1728 case KVM_SET_MP_STATE: {
1729 struct kvm_mp_state mp_state;
1732 if (copy_from_user(&mp_state, argp, sizeof mp_state))
1734 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
1740 case KVM_TRANSLATE: {
1741 struct kvm_translation tr;
1744 if (copy_from_user(&tr, argp, sizeof tr))
1746 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
1750 if (copy_to_user(argp, &tr, sizeof tr))
1755 case KVM_DEBUG_GUEST: {
1756 struct kvm_debug_guest dbg;
1759 if (copy_from_user(&dbg, argp, sizeof dbg))
1761 r = kvm_arch_vcpu_ioctl_debug_guest(vcpu, &dbg);
1767 case KVM_SET_SIGNAL_MASK: {
1768 struct kvm_signal_mask __user *sigmask_arg = argp;
1769 struct kvm_signal_mask kvm_sigmask;
1770 sigset_t sigset, *p;
1775 if (copy_from_user(&kvm_sigmask, argp,
1776 sizeof kvm_sigmask))
1779 if (kvm_sigmask.len != sizeof sigset)
1782 if (copy_from_user(&sigset, sigmask_arg->sigset,
1787 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
1791 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1795 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
1799 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
1805 fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
1810 if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
1812 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
1819 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
1827 static long kvm_vm_ioctl(struct file *filp,
1828 unsigned int ioctl, unsigned long arg)
1830 struct kvm *kvm = filp->private_data;
1831 void __user *argp = (void __user *)arg;
1834 if (kvm->mm != current->mm)
1837 case KVM_CREATE_VCPU:
1838 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
1842 case KVM_SET_USER_MEMORY_REGION: {
1843 struct kvm_userspace_memory_region kvm_userspace_mem;
1846 if (copy_from_user(&kvm_userspace_mem, argp,
1847 sizeof kvm_userspace_mem))
1850 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
1855 case KVM_GET_DIRTY_LOG: {
1856 struct kvm_dirty_log log;
1859 if (copy_from_user(&log, argp, sizeof log))
1861 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
1866 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
1867 case KVM_REGISTER_COALESCED_MMIO: {
1868 struct kvm_coalesced_mmio_zone zone;
1870 if (copy_from_user(&zone, argp, sizeof zone))
1873 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
1879 case KVM_UNREGISTER_COALESCED_MMIO: {
1880 struct kvm_coalesced_mmio_zone zone;
1882 if (copy_from_user(&zone, argp, sizeof zone))
1885 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
1892 #ifdef KVM_CAP_DEVICE_ASSIGNMENT
1893 case KVM_ASSIGN_PCI_DEVICE: {
1894 struct kvm_assigned_pci_dev assigned_dev;
1897 if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
1899 r = kvm_vm_ioctl_assign_device(kvm, &assigned_dev);
1904 case KVM_ASSIGN_IRQ: {
1905 struct kvm_assigned_irq assigned_irq;
1908 if (copy_from_user(&assigned_irq, argp, sizeof assigned_irq))
1910 r = kvm_vm_ioctl_assign_irq(kvm, &assigned_irq);
1916 #ifdef KVM_CAP_DEVICE_DEASSIGNMENT
1917 case KVM_DEASSIGN_PCI_DEVICE: {
1918 struct kvm_assigned_pci_dev assigned_dev;
1921 if (copy_from_user(&assigned_dev, argp, sizeof assigned_dev))
1923 r = kvm_vm_ioctl_deassign_device(kvm, &assigned_dev);
1930 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
1936 static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1938 struct page *page[1];
1941 gfn_t gfn = vmf->pgoff;
1942 struct kvm *kvm = vma->vm_file->private_data;
1944 addr = gfn_to_hva(kvm, gfn);
1945 if (kvm_is_error_hva(addr))
1946 return VM_FAULT_SIGBUS;
1948 npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
1950 if (unlikely(npages != 1))
1951 return VM_FAULT_SIGBUS;
1953 vmf->page = page[0];
1957 static struct vm_operations_struct kvm_vm_vm_ops = {
1958 .fault = kvm_vm_fault,
1961 static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
1963 vma->vm_ops = &kvm_vm_vm_ops;
1967 static struct file_operations kvm_vm_fops = {
1968 .release = kvm_vm_release,
1969 .unlocked_ioctl = kvm_vm_ioctl,
1970 .compat_ioctl = kvm_vm_ioctl,
1971 .mmap = kvm_vm_mmap,
1974 static int kvm_dev_ioctl_create_vm(void)
1979 kvm = kvm_create_vm();
1981 return PTR_ERR(kvm);
1982 fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, 0);
1989 static long kvm_dev_ioctl_check_extension_generic(long arg)
1992 case KVM_CAP_USER_MEMORY:
1993 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
1998 return kvm_dev_ioctl_check_extension(arg);
2001 static long kvm_dev_ioctl(struct file *filp,
2002 unsigned int ioctl, unsigned long arg)
2007 case KVM_GET_API_VERSION:
2011 r = KVM_API_VERSION;
2017 r = kvm_dev_ioctl_create_vm();
2019 case KVM_CHECK_EXTENSION:
2020 r = kvm_dev_ioctl_check_extension_generic(arg);
2022 case KVM_GET_VCPU_MMAP_SIZE:
2026 r = PAGE_SIZE; /* struct kvm_run */
2028 r += PAGE_SIZE; /* pio data page */
2030 #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
2031 r += PAGE_SIZE; /* coalesced mmio ring page */
2034 case KVM_TRACE_ENABLE:
2035 case KVM_TRACE_PAUSE:
2036 case KVM_TRACE_DISABLE:
2037 r = kvm_trace_ioctl(ioctl, arg);
2040 return kvm_arch_dev_ioctl(filp, ioctl, arg);
2046 static struct file_operations kvm_chardev_ops = {
2047 .unlocked_ioctl = kvm_dev_ioctl,
2048 .compat_ioctl = kvm_dev_ioctl,
2051 static struct miscdevice kvm_dev = {
2057 static void hardware_enable(void *junk)
2059 int cpu = raw_smp_processor_id();
2061 if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
2063 cpumask_set_cpu(cpu, cpus_hardware_enabled);
2064 kvm_arch_hardware_enable(NULL);
2067 static void hardware_disable(void *junk)
2069 int cpu = raw_smp_processor_id();
2071 if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
2073 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
2074 kvm_arch_hardware_disable(NULL);
2077 static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
2082 val &= ~CPU_TASKS_FROZEN;
2085 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2087 hardware_disable(NULL);
2089 case CPU_UP_CANCELED:
2090 printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
2092 smp_call_function_single(cpu, hardware_disable, NULL, 1);
2095 printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
2097 smp_call_function_single(cpu, hardware_enable, NULL, 1);
2104 asmlinkage void kvm_handle_fault_on_reboot(void)
2107 /* spin while reset goes on */
2110 /* Fault while not rebooting. We want the trace. */
2113 EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
2115 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
2118 if (val == SYS_RESTART) {
2120 * Some (well, at least mine) BIOSes hang on reboot if
2123 printk(KERN_INFO "kvm: exiting hardware virtualization\n");
2124 kvm_rebooting = true;
2125 on_each_cpu(hardware_disable, NULL, 1);
2130 static struct notifier_block kvm_reboot_notifier = {
2131 .notifier_call = kvm_reboot,
2135 void kvm_io_bus_init(struct kvm_io_bus *bus)
2137 memset(bus, 0, sizeof(*bus));
2140 void kvm_io_bus_destroy(struct kvm_io_bus *bus)
2144 for (i = 0; i < bus->dev_count; i++) {
2145 struct kvm_io_device *pos = bus->devs[i];
2147 kvm_iodevice_destructor(pos);
2151 struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus,
2152 gpa_t addr, int len, int is_write)
2156 for (i = 0; i < bus->dev_count; i++) {
2157 struct kvm_io_device *pos = bus->devs[i];
2159 if (pos->in_range(pos, addr, len, is_write))
2166 void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
2168 BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
2170 bus->devs[bus->dev_count++] = dev;
2173 static struct notifier_block kvm_cpu_notifier = {
2174 .notifier_call = kvm_cpu_hotplug,
2175 .priority = 20, /* must be > scheduler priority */
2178 static int vm_stat_get(void *_offset, u64 *val)
2180 unsigned offset = (long)_offset;
2184 spin_lock(&kvm_lock);
2185 list_for_each_entry(kvm, &vm_list, vm_list)
2186 *val += *(u32 *)((void *)kvm + offset);
2187 spin_unlock(&kvm_lock);
2191 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
2193 static int vcpu_stat_get(void *_offset, u64 *val)
2195 unsigned offset = (long)_offset;
2197 struct kvm_vcpu *vcpu;
2201 spin_lock(&kvm_lock);
2202 list_for_each_entry(kvm, &vm_list, vm_list)
2203 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
2204 vcpu = kvm->vcpus[i];
2206 *val += *(u32 *)((void *)vcpu + offset);
2208 spin_unlock(&kvm_lock);
2212 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
2214 static struct file_operations *stat_fops[] = {
2215 [KVM_STAT_VCPU] = &vcpu_stat_fops,
2216 [KVM_STAT_VM] = &vm_stat_fops,
2219 static void kvm_init_debug(void)
2221 struct kvm_stats_debugfs_item *p;
2223 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
2224 for (p = debugfs_entries; p->name; ++p)
2225 p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
2226 (void *)(long)p->offset,
2227 stat_fops[p->kind]);
2230 static void kvm_exit_debug(void)
2232 struct kvm_stats_debugfs_item *p;
2234 for (p = debugfs_entries; p->name; ++p)
2235 debugfs_remove(p->dentry);
2236 debugfs_remove(kvm_debugfs_dir);
2239 static int kvm_suspend(struct sys_device *dev, pm_message_t state)
2241 hardware_disable(NULL);
2245 static int kvm_resume(struct sys_device *dev)
2247 hardware_enable(NULL);
2251 static struct sysdev_class kvm_sysdev_class = {
2253 .suspend = kvm_suspend,
2254 .resume = kvm_resume,
2257 static struct sys_device kvm_sysdev = {
2259 .cls = &kvm_sysdev_class,
2262 struct page *bad_page;
2266 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
2268 return container_of(pn, struct kvm_vcpu, preempt_notifier);
2271 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
2273 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2275 kvm_arch_vcpu_load(vcpu, cpu);
2278 static void kvm_sched_out(struct preempt_notifier *pn,
2279 struct task_struct *next)
2281 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
2283 kvm_arch_vcpu_put(vcpu);
2286 int kvm_init(void *opaque, unsigned int vcpu_size,
2287 struct module *module)
2294 r = kvm_arch_init(opaque);
2298 bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2300 if (bad_page == NULL) {
2305 bad_pfn = page_to_pfn(bad_page);
2307 if (!alloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
2312 r = kvm_arch_hardware_setup();
2316 for_each_online_cpu(cpu) {
2317 smp_call_function_single(cpu,
2318 kvm_arch_check_processor_compat,
2324 on_each_cpu(hardware_enable, NULL, 1);
2325 r = register_cpu_notifier(&kvm_cpu_notifier);
2328 register_reboot_notifier(&kvm_reboot_notifier);
2330 r = sysdev_class_register(&kvm_sysdev_class);
2334 r = sysdev_register(&kvm_sysdev);
2338 /* A kmem cache lets us meet the alignment requirements of fx_save. */
2339 kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
2340 __alignof__(struct kvm_vcpu),
2342 if (!kvm_vcpu_cache) {
2347 kvm_chardev_ops.owner = module;
2348 kvm_vm_fops.owner = module;
2349 kvm_vcpu_fops.owner = module;
2351 r = misc_register(&kvm_dev);
2353 printk(KERN_ERR "kvm: misc device register failed\n");
2357 kvm_preempt_ops.sched_in = kvm_sched_in;
2358 kvm_preempt_ops.sched_out = kvm_sched_out;
2366 kmem_cache_destroy(kvm_vcpu_cache);
2368 sysdev_unregister(&kvm_sysdev);
2370 sysdev_class_unregister(&kvm_sysdev_class);
2372 unregister_reboot_notifier(&kvm_reboot_notifier);
2373 unregister_cpu_notifier(&kvm_cpu_notifier);
2375 on_each_cpu(hardware_disable, NULL, 1);
2377 kvm_arch_hardware_unsetup();
2379 free_cpumask_var(cpus_hardware_enabled);
2381 __free_page(bad_page);
2388 EXPORT_SYMBOL_GPL(kvm_init);
2392 kvm_trace_cleanup();
2393 misc_deregister(&kvm_dev);
2394 kmem_cache_destroy(kvm_vcpu_cache);
2395 sysdev_unregister(&kvm_sysdev);
2396 sysdev_class_unregister(&kvm_sysdev_class);
2397 unregister_reboot_notifier(&kvm_reboot_notifier);
2398 unregister_cpu_notifier(&kvm_cpu_notifier);
2399 on_each_cpu(hardware_disable, NULL, 1);
2400 kvm_arch_hardware_unsetup();
2403 free_cpumask_var(cpus_hardware_enabled);
2404 __free_page(bad_page);
2406 EXPORT_SYMBOL_GPL(kvm_exit);