Merge branch 'for-3.1' of git://git.kernel.org/pub/scm/linux/kernel/git/lrg/asoc...
[pandora-kernel.git] / tools / perf / util / evsel.c
1 /*
2  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3  *
4  * Parts came from builtin-{top,stat,record}.c, see those files for further
5  * copyright notes.
6  *
7  * Released under the GPL v2. (and only v2, not any later version)
8  */
9
10 #include "evsel.h"
11 #include "evlist.h"
12 #include "util.h"
13 #include "cpumap.h"
14 #include "thread_map.h"
15
16 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
17
18 void perf_evsel__init(struct perf_evsel *evsel,
19                       struct perf_event_attr *attr, int idx)
20 {
21         evsel->idx         = idx;
22         evsel->attr        = *attr;
23         INIT_LIST_HEAD(&evsel->node);
24 }
25
26 struct perf_evsel *perf_evsel__new(struct perf_event_attr *attr, int idx)
27 {
28         struct perf_evsel *evsel = zalloc(sizeof(*evsel));
29
30         if (evsel != NULL)
31                 perf_evsel__init(evsel, attr, idx);
32
33         return evsel;
34 }
35
36 int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
37 {
38         int cpu, thread;
39         evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
40
41         if (evsel->fd) {
42                 for (cpu = 0; cpu < ncpus; cpu++) {
43                         for (thread = 0; thread < nthreads; thread++) {
44                                 FD(evsel, cpu, thread) = -1;
45                         }
46                 }
47         }
48
49         return evsel->fd != NULL ? 0 : -ENOMEM;
50 }
51
52 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
53 {
54         evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
55         if (evsel->sample_id == NULL)
56                 return -ENOMEM;
57
58         evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
59         if (evsel->id == NULL) {
60                 xyarray__delete(evsel->sample_id);
61                 evsel->sample_id = NULL;
62                 return -ENOMEM;
63         }
64
65         return 0;
66 }
67
68 int perf_evsel__alloc_counts(struct perf_evsel *evsel, int ncpus)
69 {
70         evsel->counts = zalloc((sizeof(*evsel->counts) +
71                                 (ncpus * sizeof(struct perf_counts_values))));
72         return evsel->counts != NULL ? 0 : -ENOMEM;
73 }
74
75 void perf_evsel__free_fd(struct perf_evsel *evsel)
76 {
77         xyarray__delete(evsel->fd);
78         evsel->fd = NULL;
79 }
80
81 void perf_evsel__free_id(struct perf_evsel *evsel)
82 {
83         xyarray__delete(evsel->sample_id);
84         evsel->sample_id = NULL;
85         free(evsel->id);
86         evsel->id = NULL;
87 }
88
89 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
90 {
91         int cpu, thread;
92
93         for (cpu = 0; cpu < ncpus; cpu++)
94                 for (thread = 0; thread < nthreads; ++thread) {
95                         close(FD(evsel, cpu, thread));
96                         FD(evsel, cpu, thread) = -1;
97                 }
98 }
99
100 void perf_evsel__exit(struct perf_evsel *evsel)
101 {
102         assert(list_empty(&evsel->node));
103         xyarray__delete(evsel->fd);
104         xyarray__delete(evsel->sample_id);
105         free(evsel->id);
106 }
107
108 void perf_evsel__delete(struct perf_evsel *evsel)
109 {
110         perf_evsel__exit(evsel);
111         close_cgroup(evsel->cgrp);
112         free(evsel->name);
113         free(evsel);
114 }
115
116 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
117                               int cpu, int thread, bool scale)
118 {
119         struct perf_counts_values count;
120         size_t nv = scale ? 3 : 1;
121
122         if (FD(evsel, cpu, thread) < 0)
123                 return -EINVAL;
124
125         if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1) < 0)
126                 return -ENOMEM;
127
128         if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0)
129                 return -errno;
130
131         if (scale) {
132                 if (count.run == 0)
133                         count.val = 0;
134                 else if (count.run < count.ena)
135                         count.val = (u64)((double)count.val * count.ena / count.run + 0.5);
136         } else
137                 count.ena = count.run = 0;
138
139         evsel->counts->cpu[cpu] = count;
140         return 0;
141 }
142
143 int __perf_evsel__read(struct perf_evsel *evsel,
144                        int ncpus, int nthreads, bool scale)
145 {
146         size_t nv = scale ? 3 : 1;
147         int cpu, thread;
148         struct perf_counts_values *aggr = &evsel->counts->aggr, count;
149
150         aggr->val = aggr->ena = aggr->run = 0;
151
152         for (cpu = 0; cpu < ncpus; cpu++) {
153                 for (thread = 0; thread < nthreads; thread++) {
154                         if (FD(evsel, cpu, thread) < 0)
155                                 continue;
156
157                         if (readn(FD(evsel, cpu, thread),
158                                   &count, nv * sizeof(u64)) < 0)
159                                 return -errno;
160
161                         aggr->val += count.val;
162                         if (scale) {
163                                 aggr->ena += count.ena;
164                                 aggr->run += count.run;
165                         }
166                 }
167         }
168
169         evsel->counts->scaled = 0;
170         if (scale) {
171                 if (aggr->run == 0) {
172                         evsel->counts->scaled = -1;
173                         aggr->val = 0;
174                         return 0;
175                 }
176
177                 if (aggr->run < aggr->ena) {
178                         evsel->counts->scaled = 1;
179                         aggr->val = (u64)((double)aggr->val * aggr->ena / aggr->run + 0.5);
180                 }
181         } else
182                 aggr->ena = aggr->run = 0;
183
184         return 0;
185 }
186
187 static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
188                               struct thread_map *threads, bool group)
189 {
190         int cpu, thread;
191         unsigned long flags = 0;
192         int pid = -1;
193
194         if (evsel->fd == NULL &&
195             perf_evsel__alloc_fd(evsel, cpus->nr, threads->nr) < 0)
196                 return -1;
197
198         if (evsel->cgrp) {
199                 flags = PERF_FLAG_PID_CGROUP;
200                 pid = evsel->cgrp->fd;
201         }
202
203         for (cpu = 0; cpu < cpus->nr; cpu++) {
204                 int group_fd = -1;
205
206                 for (thread = 0; thread < threads->nr; thread++) {
207
208                         if (!evsel->cgrp)
209                                 pid = threads->map[thread];
210
211                         FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr,
212                                                                      pid,
213                                                                      cpus->map[cpu],
214                                                                      group_fd, flags);
215                         if (FD(evsel, cpu, thread) < 0)
216                                 goto out_close;
217
218                         if (group && group_fd == -1)
219                                 group_fd = FD(evsel, cpu, thread);
220                 }
221         }
222
223         return 0;
224
225 out_close:
226         do {
227                 while (--thread >= 0) {
228                         close(FD(evsel, cpu, thread));
229                         FD(evsel, cpu, thread) = -1;
230                 }
231                 thread = threads->nr;
232         } while (--cpu >= 0);
233         return -1;
234 }
235
236 static struct {
237         struct cpu_map map;
238         int cpus[1];
239 } empty_cpu_map = {
240         .map.nr = 1,
241         .cpus   = { -1, },
242 };
243
244 static struct {
245         struct thread_map map;
246         int threads[1];
247 } empty_thread_map = {
248         .map.nr  = 1,
249         .threads = { -1, },
250 };
251
252 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
253                      struct thread_map *threads, bool group)
254 {
255         if (cpus == NULL) {
256                 /* Work around old compiler warnings about strict aliasing */
257                 cpus = &empty_cpu_map.map;
258         }
259
260         if (threads == NULL)
261                 threads = &empty_thread_map.map;
262
263         return __perf_evsel__open(evsel, cpus, threads, group);
264 }
265
266 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
267                              struct cpu_map *cpus, bool group)
268 {
269         return __perf_evsel__open(evsel, cpus, &empty_thread_map.map, group);
270 }
271
272 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
273                                 struct thread_map *threads, bool group)
274 {
275         return __perf_evsel__open(evsel, &empty_cpu_map.map, threads, group);
276 }
277
278 static int perf_event__parse_id_sample(const union perf_event *event, u64 type,
279                                        struct perf_sample *sample)
280 {
281         const u64 *array = event->sample.array;
282
283         array += ((event->header.size -
284                    sizeof(event->header)) / sizeof(u64)) - 1;
285
286         if (type & PERF_SAMPLE_CPU) {
287                 u32 *p = (u32 *)array;
288                 sample->cpu = *p;
289                 array--;
290         }
291
292         if (type & PERF_SAMPLE_STREAM_ID) {
293                 sample->stream_id = *array;
294                 array--;
295         }
296
297         if (type & PERF_SAMPLE_ID) {
298                 sample->id = *array;
299                 array--;
300         }
301
302         if (type & PERF_SAMPLE_TIME) {
303                 sample->time = *array;
304                 array--;
305         }
306
307         if (type & PERF_SAMPLE_TID) {
308                 u32 *p = (u32 *)array;
309                 sample->pid = p[0];
310                 sample->tid = p[1];
311         }
312
313         return 0;
314 }
315
316 static bool sample_overlap(const union perf_event *event,
317                            const void *offset, u64 size)
318 {
319         const void *base = event;
320
321         if (offset + size > base + event->header.size)
322                 return true;
323
324         return false;
325 }
326
327 int perf_event__parse_sample(const union perf_event *event, u64 type,
328                              int sample_size, bool sample_id_all,
329                              struct perf_sample *data)
330 {
331         const u64 *array;
332
333         data->cpu = data->pid = data->tid = -1;
334         data->stream_id = data->id = data->time = -1ULL;
335
336         if (event->header.type != PERF_RECORD_SAMPLE) {
337                 if (!sample_id_all)
338                         return 0;
339                 return perf_event__parse_id_sample(event, type, data);
340         }
341
342         array = event->sample.array;
343
344         if (sample_size + sizeof(event->header) > event->header.size)
345                 return -EFAULT;
346
347         if (type & PERF_SAMPLE_IP) {
348                 data->ip = event->ip.ip;
349                 array++;
350         }
351
352         if (type & PERF_SAMPLE_TID) {
353                 u32 *p = (u32 *)array;
354                 data->pid = p[0];
355                 data->tid = p[1];
356                 array++;
357         }
358
359         if (type & PERF_SAMPLE_TIME) {
360                 data->time = *array;
361                 array++;
362         }
363
364         if (type & PERF_SAMPLE_ADDR) {
365                 data->addr = *array;
366                 array++;
367         }
368
369         data->id = -1ULL;
370         if (type & PERF_SAMPLE_ID) {
371                 data->id = *array;
372                 array++;
373         }
374
375         if (type & PERF_SAMPLE_STREAM_ID) {
376                 data->stream_id = *array;
377                 array++;
378         }
379
380         if (type & PERF_SAMPLE_CPU) {
381                 u32 *p = (u32 *)array;
382                 data->cpu = *p;
383                 array++;
384         }
385
386         if (type & PERF_SAMPLE_PERIOD) {
387                 data->period = *array;
388                 array++;
389         }
390
391         if (type & PERF_SAMPLE_READ) {
392                 fprintf(stderr, "PERF_SAMPLE_READ is unsuported for now\n");
393                 return -1;
394         }
395
396         if (type & PERF_SAMPLE_CALLCHAIN) {
397                 if (sample_overlap(event, array, sizeof(data->callchain->nr)))
398                         return -EFAULT;
399
400                 data->callchain = (struct ip_callchain *)array;
401
402                 if (sample_overlap(event, array, data->callchain->nr))
403                         return -EFAULT;
404
405                 array += 1 + data->callchain->nr;
406         }
407
408         if (type & PERF_SAMPLE_RAW) {
409                 u32 *p = (u32 *)array;
410
411                 if (sample_overlap(event, array, sizeof(u32)))
412                         return -EFAULT;
413
414                 data->raw_size = *p;
415                 p++;
416
417                 if (sample_overlap(event, p, data->raw_size))
418                         return -EFAULT;
419
420                 data->raw_data = p;
421         }
422
423         return 0;
424 }