Merge branch 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux...
[pandora-kernel.git] / tools / perf / builtin-timechart.c
1 /*
2  * builtin-timechart.c - make an svg timechart of system activity
3  *
4  * (C) Copyright 2009 Intel Corporation
5  *
6  * Authors:
7  *     Arjan van de Ven <arjan@linux.intel.com>
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * as published by the Free Software Foundation; version 2
12  * of the License.
13  */
14
15 #include "builtin.h"
16
17 #include "util/util.h"
18
19 #include "util/color.h"
20 #include <linux/list.h>
21 #include "util/cache.h"
22 #include <linux/rbtree.h>
23 #include "util/symbol.h"
24 #include "util/callchain.h"
25 #include "util/strlist.h"
26
27 #include "perf.h"
28 #include "util/header.h"
29 #include "util/parse-options.h"
30 #include "util/parse-events.h"
31 #include "util/event.h"
32 #include "util/session.h"
33 #include "util/svghelper.h"
34
35 #define SUPPORT_OLD_POWER_EVENTS 1
36 #define PWR_EVENT_EXIT -1
37
38
39 static char             const *input_name = "perf.data";
40 static char             const *output_name = "output.svg";
41
42 static unsigned int     numcpus;
43 static u64              min_freq;       /* Lowest CPU frequency seen */
44 static u64              max_freq;       /* Highest CPU frequency seen */
45 static u64              turbo_frequency;
46
47 static u64              first_time, last_time;
48
49 static bool             power_only;
50
51
52 struct per_pid;
53 struct per_pidcomm;
54
55 struct cpu_sample;
56 struct power_event;
57 struct wake_event;
58
59 struct sample_wrapper;
60
61 /*
62  * Datastructure layout:
63  * We keep an list of "pid"s, matching the kernels notion of a task struct.
64  * Each "pid" entry, has a list of "comm"s.
65  *      this is because we want to track different programs different, while
66  *      exec will reuse the original pid (by design).
67  * Each comm has a list of samples that will be used to draw
68  * final graph.
69  */
70
71 struct per_pid {
72         struct per_pid *next;
73
74         int             pid;
75         int             ppid;
76
77         u64             start_time;
78         u64             end_time;
79         u64             total_time;
80         int             display;
81
82         struct per_pidcomm *all;
83         struct per_pidcomm *current;
84 };
85
86
87 struct per_pidcomm {
88         struct per_pidcomm *next;
89
90         u64             start_time;
91         u64             end_time;
92         u64             total_time;
93
94         int             Y;
95         int             display;
96
97         long            state;
98         u64             state_since;
99
100         char            *comm;
101
102         struct cpu_sample *samples;
103 };
104
105 struct sample_wrapper {
106         struct sample_wrapper *next;
107
108         u64             timestamp;
109         unsigned char   data[0];
110 };
111
112 #define TYPE_NONE       0
113 #define TYPE_RUNNING    1
114 #define TYPE_WAITING    2
115 #define TYPE_BLOCKED    3
116
117 struct cpu_sample {
118         struct cpu_sample *next;
119
120         u64 start_time;
121         u64 end_time;
122         int type;
123         int cpu;
124 };
125
126 static struct per_pid *all_data;
127
128 #define CSTATE 1
129 #define PSTATE 2
130
131 struct power_event {
132         struct power_event *next;
133         int type;
134         int state;
135         u64 start_time;
136         u64 end_time;
137         int cpu;
138 };
139
140 struct wake_event {
141         struct wake_event *next;
142         int waker;
143         int wakee;
144         u64 time;
145 };
146
147 static struct power_event    *power_events;
148 static struct wake_event     *wake_events;
149
150 struct process_filter;
151 struct process_filter {
152         char                    *name;
153         int                     pid;
154         struct process_filter   *next;
155 };
156
157 static struct process_filter *process_filter;
158
159
160 static struct per_pid *find_create_pid(int pid)
161 {
162         struct per_pid *cursor = all_data;
163
164         while (cursor) {
165                 if (cursor->pid == pid)
166                         return cursor;
167                 cursor = cursor->next;
168         }
169         cursor = malloc(sizeof(struct per_pid));
170         assert(cursor != NULL);
171         memset(cursor, 0, sizeof(struct per_pid));
172         cursor->pid = pid;
173         cursor->next = all_data;
174         all_data = cursor;
175         return cursor;
176 }
177
178 static void pid_set_comm(int pid, char *comm)
179 {
180         struct per_pid *p;
181         struct per_pidcomm *c;
182         p = find_create_pid(pid);
183         c = p->all;
184         while (c) {
185                 if (c->comm && strcmp(c->comm, comm) == 0) {
186                         p->current = c;
187                         return;
188                 }
189                 if (!c->comm) {
190                         c->comm = strdup(comm);
191                         p->current = c;
192                         return;
193                 }
194                 c = c->next;
195         }
196         c = malloc(sizeof(struct per_pidcomm));
197         assert(c != NULL);
198         memset(c, 0, sizeof(struct per_pidcomm));
199         c->comm = strdup(comm);
200         p->current = c;
201         c->next = p->all;
202         p->all = c;
203 }
204
205 static void pid_fork(int pid, int ppid, u64 timestamp)
206 {
207         struct per_pid *p, *pp;
208         p = find_create_pid(pid);
209         pp = find_create_pid(ppid);
210         p->ppid = ppid;
211         if (pp->current && pp->current->comm && !p->current)
212                 pid_set_comm(pid, pp->current->comm);
213
214         p->start_time = timestamp;
215         if (p->current) {
216                 p->current->start_time = timestamp;
217                 p->current->state_since = timestamp;
218         }
219 }
220
221 static void pid_exit(int pid, u64 timestamp)
222 {
223         struct per_pid *p;
224         p = find_create_pid(pid);
225         p->end_time = timestamp;
226         if (p->current)
227                 p->current->end_time = timestamp;
228 }
229
230 static void
231 pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end)
232 {
233         struct per_pid *p;
234         struct per_pidcomm *c;
235         struct cpu_sample *sample;
236
237         p = find_create_pid(pid);
238         c = p->current;
239         if (!c) {
240                 c = malloc(sizeof(struct per_pidcomm));
241                 assert(c != NULL);
242                 memset(c, 0, sizeof(struct per_pidcomm));
243                 p->current = c;
244                 c->next = p->all;
245                 p->all = c;
246         }
247
248         sample = malloc(sizeof(struct cpu_sample));
249         assert(sample != NULL);
250         memset(sample, 0, sizeof(struct cpu_sample));
251         sample->start_time = start;
252         sample->end_time = end;
253         sample->type = type;
254         sample->next = c->samples;
255         sample->cpu = cpu;
256         c->samples = sample;
257
258         if (sample->type == TYPE_RUNNING && end > start && start > 0) {
259                 c->total_time += (end-start);
260                 p->total_time += (end-start);
261         }
262
263         if (c->start_time == 0 || c->start_time > start)
264                 c->start_time = start;
265         if (p->start_time == 0 || p->start_time > start)
266                 p->start_time = start;
267 }
268
269 #define MAX_CPUS 4096
270
271 static u64 cpus_cstate_start_times[MAX_CPUS];
272 static int cpus_cstate_state[MAX_CPUS];
273 static u64 cpus_pstate_start_times[MAX_CPUS];
274 static u64 cpus_pstate_state[MAX_CPUS];
275
276 static int process_comm_event(union perf_event *event,
277                               struct perf_sample *sample __used,
278                               struct perf_session *session __used)
279 {
280         pid_set_comm(event->comm.tid, event->comm.comm);
281         return 0;
282 }
283
284 static int process_fork_event(union perf_event *event,
285                               struct perf_sample *sample __used,
286                               struct perf_session *session __used)
287 {
288         pid_fork(event->fork.pid, event->fork.ppid, event->fork.time);
289         return 0;
290 }
291
292 static int process_exit_event(union perf_event *event,
293                               struct perf_sample *sample __used,
294                               struct perf_session *session __used)
295 {
296         pid_exit(event->fork.pid, event->fork.time);
297         return 0;
298 }
299
300 struct trace_entry {
301         unsigned short          type;
302         unsigned char           flags;
303         unsigned char           preempt_count;
304         int                     pid;
305         int                     lock_depth;
306 };
307
308 #ifdef SUPPORT_OLD_POWER_EVENTS
309 static int use_old_power_events;
310 struct power_entry_old {
311         struct trace_entry te;
312         u64     type;
313         u64     value;
314         u64     cpu_id;
315 };
316 #endif
317
318 struct power_processor_entry {
319         struct trace_entry te;
320         u32     state;
321         u32     cpu_id;
322 };
323
324 #define TASK_COMM_LEN 16
325 struct wakeup_entry {
326         struct trace_entry te;
327         char comm[TASK_COMM_LEN];
328         int   pid;
329         int   prio;
330         int   success;
331 };
332
333 /*
334  * trace_flag_type is an enumeration that holds different
335  * states when a trace occurs. These are:
336  *  IRQS_OFF            - interrupts were disabled
337  *  IRQS_NOSUPPORT      - arch does not support irqs_disabled_flags
338  *  NEED_RESCED         - reschedule is requested
339  *  HARDIRQ             - inside an interrupt handler
340  *  SOFTIRQ             - inside a softirq handler
341  */
342 enum trace_flag_type {
343         TRACE_FLAG_IRQS_OFF             = 0x01,
344         TRACE_FLAG_IRQS_NOSUPPORT       = 0x02,
345         TRACE_FLAG_NEED_RESCHED         = 0x04,
346         TRACE_FLAG_HARDIRQ              = 0x08,
347         TRACE_FLAG_SOFTIRQ              = 0x10,
348 };
349
350
351
352 struct sched_switch {
353         struct trace_entry te;
354         char prev_comm[TASK_COMM_LEN];
355         int  prev_pid;
356         int  prev_prio;
357         long prev_state; /* Arjan weeps. */
358         char next_comm[TASK_COMM_LEN];
359         int  next_pid;
360         int  next_prio;
361 };
362
363 static void c_state_start(int cpu, u64 timestamp, int state)
364 {
365         cpus_cstate_start_times[cpu] = timestamp;
366         cpus_cstate_state[cpu] = state;
367 }
368
369 static void c_state_end(int cpu, u64 timestamp)
370 {
371         struct power_event *pwr;
372         pwr = malloc(sizeof(struct power_event));
373         if (!pwr)
374                 return;
375         memset(pwr, 0, sizeof(struct power_event));
376
377         pwr->state = cpus_cstate_state[cpu];
378         pwr->start_time = cpus_cstate_start_times[cpu];
379         pwr->end_time = timestamp;
380         pwr->cpu = cpu;
381         pwr->type = CSTATE;
382         pwr->next = power_events;
383
384         power_events = pwr;
385 }
386
387 static void p_state_change(int cpu, u64 timestamp, u64 new_freq)
388 {
389         struct power_event *pwr;
390         pwr = malloc(sizeof(struct power_event));
391
392         if (new_freq > 8000000) /* detect invalid data */
393                 return;
394
395         if (!pwr)
396                 return;
397         memset(pwr, 0, sizeof(struct power_event));
398
399         pwr->state = cpus_pstate_state[cpu];
400         pwr->start_time = cpus_pstate_start_times[cpu];
401         pwr->end_time = timestamp;
402         pwr->cpu = cpu;
403         pwr->type = PSTATE;
404         pwr->next = power_events;
405
406         if (!pwr->start_time)
407                 pwr->start_time = first_time;
408
409         power_events = pwr;
410
411         cpus_pstate_state[cpu] = new_freq;
412         cpus_pstate_start_times[cpu] = timestamp;
413
414         if ((u64)new_freq > max_freq)
415                 max_freq = new_freq;
416
417         if (new_freq < min_freq || min_freq == 0)
418                 min_freq = new_freq;
419
420         if (new_freq == max_freq - 1000)
421                         turbo_frequency = max_freq;
422 }
423
424 static void
425 sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te)
426 {
427         struct wake_event *we;
428         struct per_pid *p;
429         struct wakeup_entry *wake = (void *)te;
430
431         we = malloc(sizeof(struct wake_event));
432         if (!we)
433                 return;
434
435         memset(we, 0, sizeof(struct wake_event));
436         we->time = timestamp;
437         we->waker = pid;
438
439         if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ))
440                 we->waker = -1;
441
442         we->wakee = wake->pid;
443         we->next = wake_events;
444         wake_events = we;
445         p = find_create_pid(we->wakee);
446
447         if (p && p->current && p->current->state == TYPE_NONE) {
448                 p->current->state_since = timestamp;
449                 p->current->state = TYPE_WAITING;
450         }
451         if (p && p->current && p->current->state == TYPE_BLOCKED) {
452                 pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp);
453                 p->current->state_since = timestamp;
454                 p->current->state = TYPE_WAITING;
455         }
456 }
457
458 static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te)
459 {
460         struct per_pid *p = NULL, *prev_p;
461         struct sched_switch *sw = (void *)te;
462
463
464         prev_p = find_create_pid(sw->prev_pid);
465
466         p = find_create_pid(sw->next_pid);
467
468         if (prev_p->current && prev_p->current->state != TYPE_NONE)
469                 pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp);
470         if (p && p->current) {
471                 if (p->current->state != TYPE_NONE)
472                         pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp);
473
474                 p->current->state_since = timestamp;
475                 p->current->state = TYPE_RUNNING;
476         }
477
478         if (prev_p->current) {
479                 prev_p->current->state = TYPE_NONE;
480                 prev_p->current->state_since = timestamp;
481                 if (sw->prev_state & 2)
482                         prev_p->current->state = TYPE_BLOCKED;
483                 if (sw->prev_state == 0)
484                         prev_p->current->state = TYPE_WAITING;
485         }
486 }
487
488
489 static int process_sample_event(union perf_event *event __used,
490                                 struct perf_sample *sample,
491                                 struct perf_session *session)
492 {
493         struct trace_entry *te;
494
495         if (session->sample_type & PERF_SAMPLE_TIME) {
496                 if (!first_time || first_time > sample->time)
497                         first_time = sample->time;
498                 if (last_time < sample->time)
499                         last_time = sample->time;
500         }
501
502         te = (void *)sample->raw_data;
503         if (session->sample_type & PERF_SAMPLE_RAW && sample->raw_size > 0) {
504                 char *event_str;
505 #ifdef SUPPORT_OLD_POWER_EVENTS
506                 struct power_entry_old *peo;
507                 peo = (void *)te;
508 #endif
509                 event_str = perf_header__find_event(te->type);
510
511                 if (!event_str)
512                         return 0;
513
514                 if (sample->cpu > numcpus)
515                         numcpus = sample->cpu;
516
517                 if (strcmp(event_str, "power:cpu_idle") == 0) {
518                         struct power_processor_entry *ppe = (void *)te;
519                         if (ppe->state == (u32)PWR_EVENT_EXIT)
520                                 c_state_end(ppe->cpu_id, sample->time);
521                         else
522                                 c_state_start(ppe->cpu_id, sample->time,
523                                               ppe->state);
524                 }
525                 else if (strcmp(event_str, "power:cpu_frequency") == 0) {
526                         struct power_processor_entry *ppe = (void *)te;
527                         p_state_change(ppe->cpu_id, sample->time, ppe->state);
528                 }
529
530                 else if (strcmp(event_str, "sched:sched_wakeup") == 0)
531                         sched_wakeup(sample->cpu, sample->time, sample->pid, te);
532
533                 else if (strcmp(event_str, "sched:sched_switch") == 0)
534                         sched_switch(sample->cpu, sample->time, te);
535
536 #ifdef SUPPORT_OLD_POWER_EVENTS
537                 if (use_old_power_events) {
538                         if (strcmp(event_str, "power:power_start") == 0)
539                                 c_state_start(peo->cpu_id, sample->time,
540                                               peo->value);
541
542                         else if (strcmp(event_str, "power:power_end") == 0)
543                                 c_state_end(sample->cpu, sample->time);
544
545                         else if (strcmp(event_str,
546                                         "power:power_frequency") == 0)
547                                 p_state_change(peo->cpu_id, sample->time,
548                                                peo->value);
549                 }
550 #endif
551         }
552         return 0;
553 }
554
555 /*
556  * After the last sample we need to wrap up the current C/P state
557  * and close out each CPU for these.
558  */
559 static void end_sample_processing(void)
560 {
561         u64 cpu;
562         struct power_event *pwr;
563
564         for (cpu = 0; cpu <= numcpus; cpu++) {
565                 pwr = malloc(sizeof(struct power_event));
566                 if (!pwr)
567                         return;
568                 memset(pwr, 0, sizeof(struct power_event));
569
570                 /* C state */
571 #if 0
572                 pwr->state = cpus_cstate_state[cpu];
573                 pwr->start_time = cpus_cstate_start_times[cpu];
574                 pwr->end_time = last_time;
575                 pwr->cpu = cpu;
576                 pwr->type = CSTATE;
577                 pwr->next = power_events;
578
579                 power_events = pwr;
580 #endif
581                 /* P state */
582
583                 pwr = malloc(sizeof(struct power_event));
584                 if (!pwr)
585                         return;
586                 memset(pwr, 0, sizeof(struct power_event));
587
588                 pwr->state = cpus_pstate_state[cpu];
589                 pwr->start_time = cpus_pstate_start_times[cpu];
590                 pwr->end_time = last_time;
591                 pwr->cpu = cpu;
592                 pwr->type = PSTATE;
593                 pwr->next = power_events;
594
595                 if (!pwr->start_time)
596                         pwr->start_time = first_time;
597                 if (!pwr->state)
598                         pwr->state = min_freq;
599                 power_events = pwr;
600         }
601 }
602
603 /*
604  * Sort the pid datastructure
605  */
606 static void sort_pids(void)
607 {
608         struct per_pid *new_list, *p, *cursor, *prev;
609         /* sort by ppid first, then by pid, lowest to highest */
610
611         new_list = NULL;
612
613         while (all_data) {
614                 p = all_data;
615                 all_data = p->next;
616                 p->next = NULL;
617
618                 if (new_list == NULL) {
619                         new_list = p;
620                         p->next = NULL;
621                         continue;
622                 }
623                 prev = NULL;
624                 cursor = new_list;
625                 while (cursor) {
626                         if (cursor->ppid > p->ppid ||
627                                 (cursor->ppid == p->ppid && cursor->pid > p->pid)) {
628                                 /* must insert before */
629                                 if (prev) {
630                                         p->next = prev->next;
631                                         prev->next = p;
632                                         cursor = NULL;
633                                         continue;
634                                 } else {
635                                         p->next = new_list;
636                                         new_list = p;
637                                         cursor = NULL;
638                                         continue;
639                                 }
640                         }
641
642                         prev = cursor;
643                         cursor = cursor->next;
644                         if (!cursor)
645                                 prev->next = p;
646                 }
647         }
648         all_data = new_list;
649 }
650
651
652 static void draw_c_p_states(void)
653 {
654         struct power_event *pwr;
655         pwr = power_events;
656
657         /*
658          * two pass drawing so that the P state bars are on top of the C state blocks
659          */
660         while (pwr) {
661                 if (pwr->type == CSTATE)
662                         svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
663                 pwr = pwr->next;
664         }
665
666         pwr = power_events;
667         while (pwr) {
668                 if (pwr->type == PSTATE) {
669                         if (!pwr->state)
670                                 pwr->state = min_freq;
671                         svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
672                 }
673                 pwr = pwr->next;
674         }
675 }
676
677 static void draw_wakeups(void)
678 {
679         struct wake_event *we;
680         struct per_pid *p;
681         struct per_pidcomm *c;
682
683         we = wake_events;
684         while (we) {
685                 int from = 0, to = 0;
686                 char *task_from = NULL, *task_to = NULL;
687
688                 /* locate the column of the waker and wakee */
689                 p = all_data;
690                 while (p) {
691                         if (p->pid == we->waker || p->pid == we->wakee) {
692                                 c = p->all;
693                                 while (c) {
694                                         if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
695                                                 if (p->pid == we->waker && !from) {
696                                                         from = c->Y;
697                                                         task_from = strdup(c->comm);
698                                                 }
699                                                 if (p->pid == we->wakee && !to) {
700                                                         to = c->Y;
701                                                         task_to = strdup(c->comm);
702                                                 }
703                                         }
704                                         c = c->next;
705                                 }
706                                 c = p->all;
707                                 while (c) {
708                                         if (p->pid == we->waker && !from) {
709                                                 from = c->Y;
710                                                 task_from = strdup(c->comm);
711                                         }
712                                         if (p->pid == we->wakee && !to) {
713                                                 to = c->Y;
714                                                 task_to = strdup(c->comm);
715                                         }
716                                         c = c->next;
717                                 }
718                         }
719                         p = p->next;
720                 }
721
722                 if (!task_from) {
723                         task_from = malloc(40);
724                         sprintf(task_from, "[%i]", we->waker);
725                 }
726                 if (!task_to) {
727                         task_to = malloc(40);
728                         sprintf(task_to, "[%i]", we->wakee);
729                 }
730
731                 if (we->waker == -1)
732                         svg_interrupt(we->time, to);
733                 else if (from && to && abs(from - to) == 1)
734                         svg_wakeline(we->time, from, to);
735                 else
736                         svg_partial_wakeline(we->time, from, task_from, to, task_to);
737                 we = we->next;
738
739                 free(task_from);
740                 free(task_to);
741         }
742 }
743
744 static void draw_cpu_usage(void)
745 {
746         struct per_pid *p;
747         struct per_pidcomm *c;
748         struct cpu_sample *sample;
749         p = all_data;
750         while (p) {
751                 c = p->all;
752                 while (c) {
753                         sample = c->samples;
754                         while (sample) {
755                                 if (sample->type == TYPE_RUNNING)
756                                         svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm);
757
758                                 sample = sample->next;
759                         }
760                         c = c->next;
761                 }
762                 p = p->next;
763         }
764 }
765
766 static void draw_process_bars(void)
767 {
768         struct per_pid *p;
769         struct per_pidcomm *c;
770         struct cpu_sample *sample;
771         int Y = 0;
772
773         Y = 2 * numcpus + 2;
774
775         p = all_data;
776         while (p) {
777                 c = p->all;
778                 while (c) {
779                         if (!c->display) {
780                                 c->Y = 0;
781                                 c = c->next;
782                                 continue;
783                         }
784
785                         svg_box(Y, c->start_time, c->end_time, "process");
786                         sample = c->samples;
787                         while (sample) {
788                                 if (sample->type == TYPE_RUNNING)
789                                         svg_sample(Y, sample->cpu, sample->start_time, sample->end_time);
790                                 if (sample->type == TYPE_BLOCKED)
791                                         svg_box(Y, sample->start_time, sample->end_time, "blocked");
792                                 if (sample->type == TYPE_WAITING)
793                                         svg_waiting(Y, sample->start_time, sample->end_time);
794                                 sample = sample->next;
795                         }
796
797                         if (c->comm) {
798                                 char comm[256];
799                                 if (c->total_time > 5000000000) /* 5 seconds */
800                                         sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
801                                 else
802                                         sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
803
804                                 svg_text(Y, c->start_time, comm);
805                         }
806                         c->Y = Y;
807                         Y++;
808                         c = c->next;
809                 }
810                 p = p->next;
811         }
812 }
813
814 static void add_process_filter(const char *string)
815 {
816         struct process_filter *filt;
817         int pid;
818
819         pid = strtoull(string, NULL, 10);
820         filt = malloc(sizeof(struct process_filter));
821         if (!filt)
822                 return;
823
824         filt->name = strdup(string);
825         filt->pid  = pid;
826         filt->next = process_filter;
827
828         process_filter = filt;
829 }
830
831 static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
832 {
833         struct process_filter *filt;
834         if (!process_filter)
835                 return 1;
836
837         filt = process_filter;
838         while (filt) {
839                 if (filt->pid && p->pid == filt->pid)
840                         return 1;
841                 if (strcmp(filt->name, c->comm) == 0)
842                         return 1;
843                 filt = filt->next;
844         }
845         return 0;
846 }
847
848 static int determine_display_tasks_filtered(void)
849 {
850         struct per_pid *p;
851         struct per_pidcomm *c;
852         int count = 0;
853
854         p = all_data;
855         while (p) {
856                 p->display = 0;
857                 if (p->start_time == 1)
858                         p->start_time = first_time;
859
860                 /* no exit marker, task kept running to the end */
861                 if (p->end_time == 0)
862                         p->end_time = last_time;
863
864                 c = p->all;
865
866                 while (c) {
867                         c->display = 0;
868
869                         if (c->start_time == 1)
870                                 c->start_time = first_time;
871
872                         if (passes_filter(p, c)) {
873                                 c->display = 1;
874                                 p->display = 1;
875                                 count++;
876                         }
877
878                         if (c->end_time == 0)
879                                 c->end_time = last_time;
880
881                         c = c->next;
882                 }
883                 p = p->next;
884         }
885         return count;
886 }
887
888 static int determine_display_tasks(u64 threshold)
889 {
890         struct per_pid *p;
891         struct per_pidcomm *c;
892         int count = 0;
893
894         if (process_filter)
895                 return determine_display_tasks_filtered();
896
897         p = all_data;
898         while (p) {
899                 p->display = 0;
900                 if (p->start_time == 1)
901                         p->start_time = first_time;
902
903                 /* no exit marker, task kept running to the end */
904                 if (p->end_time == 0)
905                         p->end_time = last_time;
906                 if (p->total_time >= threshold && !power_only)
907                         p->display = 1;
908
909                 c = p->all;
910
911                 while (c) {
912                         c->display = 0;
913
914                         if (c->start_time == 1)
915                                 c->start_time = first_time;
916
917                         if (c->total_time >= threshold && !power_only) {
918                                 c->display = 1;
919                                 count++;
920                         }
921
922                         if (c->end_time == 0)
923                                 c->end_time = last_time;
924
925                         c = c->next;
926                 }
927                 p = p->next;
928         }
929         return count;
930 }
931
932
933
934 #define TIME_THRESH 10000000
935
936 static void write_svg_file(const char *filename)
937 {
938         u64 i;
939         int count;
940
941         numcpus++;
942
943
944         count = determine_display_tasks(TIME_THRESH);
945
946         /* We'd like to show at least 15 tasks; be less picky if we have fewer */
947         if (count < 15)
948                 count = determine_display_tasks(TIME_THRESH / 10);
949
950         open_svg(filename, numcpus, count, first_time, last_time);
951
952         svg_time_grid();
953         svg_legenda();
954
955         for (i = 0; i < numcpus; i++)
956                 svg_cpu_box(i, max_freq, turbo_frequency);
957
958         draw_cpu_usage();
959         draw_process_bars();
960         draw_c_p_states();
961         draw_wakeups();
962
963         svg_close();
964 }
965
966 static struct perf_event_ops event_ops = {
967         .comm                   = process_comm_event,
968         .fork                   = process_fork_event,
969         .exit                   = process_exit_event,
970         .sample                 = process_sample_event,
971         .ordered_samples        = true,
972 };
973
974 static int __cmd_timechart(void)
975 {
976         struct perf_session *session = perf_session__new(input_name, O_RDONLY,
977                                                          0, false, &event_ops);
978         int ret = -EINVAL;
979
980         if (session == NULL)
981                 return -ENOMEM;
982
983         if (!perf_session__has_traces(session, "timechart record"))
984                 goto out_delete;
985
986         ret = perf_session__process_events(session, &event_ops);
987         if (ret)
988                 goto out_delete;
989
990         end_sample_processing();
991
992         sort_pids();
993
994         write_svg_file(output_name);
995
996         pr_info("Written %2.1f seconds of trace to %s.\n",
997                 (last_time - first_time) / 1000000000.0, output_name);
998 out_delete:
999         perf_session__delete(session);
1000         return ret;
1001 }
1002
1003 static const char * const timechart_usage[] = {
1004         "perf timechart [<options>] {record}",
1005         NULL
1006 };
1007
1008 #ifdef SUPPORT_OLD_POWER_EVENTS
1009 static const char * const record_old_args[] = {
1010         "record",
1011         "-a",
1012         "-R",
1013         "-f",
1014         "-c", "1",
1015         "-e", "power:power_start",
1016         "-e", "power:power_end",
1017         "-e", "power:power_frequency",
1018         "-e", "sched:sched_wakeup",
1019         "-e", "sched:sched_switch",
1020 };
1021 #endif
1022
1023 static const char * const record_new_args[] = {
1024         "record",
1025         "-a",
1026         "-R",
1027         "-f",
1028         "-c", "1",
1029         "-e", "power:cpu_frequency",
1030         "-e", "power:cpu_idle",
1031         "-e", "sched:sched_wakeup",
1032         "-e", "sched:sched_switch",
1033 };
1034
1035 static int __cmd_record(int argc, const char **argv)
1036 {
1037         unsigned int rec_argc, i, j;
1038         const char **rec_argv;
1039         const char * const *record_args = record_new_args;
1040         unsigned int record_elems = ARRAY_SIZE(record_new_args);
1041
1042 #ifdef SUPPORT_OLD_POWER_EVENTS
1043         if (!is_valid_tracepoint("power:cpu_idle") &&
1044             is_valid_tracepoint("power:power_start")) {
1045                 use_old_power_events = 1;
1046                 record_args = record_old_args;
1047                 record_elems = ARRAY_SIZE(record_old_args);
1048         }
1049 #endif
1050
1051         rec_argc = record_elems + argc - 1;
1052         rec_argv = calloc(rec_argc + 1, sizeof(char *));
1053
1054         if (rec_argv == NULL)
1055                 return -ENOMEM;
1056
1057         for (i = 0; i < record_elems; i++)
1058                 rec_argv[i] = strdup(record_args[i]);
1059
1060         for (j = 1; j < (unsigned int)argc; j++, i++)
1061                 rec_argv[i] = argv[j];
1062
1063         return cmd_record(i, rec_argv, NULL);
1064 }
1065
1066 static int
1067 parse_process(const struct option *opt __used, const char *arg, int __used unset)
1068 {
1069         if (arg)
1070                 add_process_filter(arg);
1071         return 0;
1072 }
1073
1074 static const struct option options[] = {
1075         OPT_STRING('i', "input", &input_name, "file",
1076                     "input file name"),
1077         OPT_STRING('o', "output", &output_name, "file",
1078                     "output file name"),
1079         OPT_INTEGER('w', "width", &svg_page_width,
1080                     "page width"),
1081         OPT_BOOLEAN('P', "power-only", &power_only,
1082                     "output power data only"),
1083         OPT_CALLBACK('p', "process", NULL, "process",
1084                       "process selector. Pass a pid or process name.",
1085                        parse_process),
1086         OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
1087                     "Look for files with symbols relative to this directory"),
1088         OPT_END()
1089 };
1090
1091
1092 int cmd_timechart(int argc, const char **argv, const char *prefix __used)
1093 {
1094         argc = parse_options(argc, argv, options, timechart_usage,
1095                         PARSE_OPT_STOP_AT_NON_OPTION);
1096
1097         symbol__init();
1098
1099         if (argc && !strncmp(argv[0], "rec", 3))
1100                 return __cmd_record(argc, argv);
1101         else if (argc)
1102                 usage_with_options(timechart_usage, options);
1103
1104         setup_pager();
1105
1106         return __cmd_timechart();
1107 }