Merge tag 'stable/for-linus-3.5-rc0-tag' of git://git.kernel.org/pub/scm/linux/kernel...
[pandora-kernel.git] / sound / core / pcm_lib.c
1 /*
2  *  Digital Audio (PCM) abstract layer
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *                   Abramo Bagnara <abramo@alsa-project.org>
5  *
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22
23 #include <linux/slab.h>
24 #include <linux/time.h>
25 #include <linux/math64.h>
26 #include <linux/export.h>
27 #include <sound/core.h>
28 #include <sound/control.h>
29 #include <sound/info.h>
30 #include <sound/pcm.h>
31 #include <sound/pcm_params.h>
32 #include <sound/timer.h>
33
34 /*
35  * fill ring buffer with silence
36  * runtime->silence_start: starting pointer to silence area
37  * runtime->silence_filled: size filled with silence
38  * runtime->silence_threshold: threshold from application
39  * runtime->silence_size: maximal size from application
40  *
41  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
42  */
43 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
44 {
45         struct snd_pcm_runtime *runtime = substream->runtime;
46         snd_pcm_uframes_t frames, ofs, transfer;
47
48         if (runtime->silence_size < runtime->boundary) {
49                 snd_pcm_sframes_t noise_dist, n;
50                 if (runtime->silence_start != runtime->control->appl_ptr) {
51                         n = runtime->control->appl_ptr - runtime->silence_start;
52                         if (n < 0)
53                                 n += runtime->boundary;
54                         if ((snd_pcm_uframes_t)n < runtime->silence_filled)
55                                 runtime->silence_filled -= n;
56                         else
57                                 runtime->silence_filled = 0;
58                         runtime->silence_start = runtime->control->appl_ptr;
59                 }
60                 if (runtime->silence_filled >= runtime->buffer_size)
61                         return;
62                 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
63                 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
64                         return;
65                 frames = runtime->silence_threshold - noise_dist;
66                 if (frames > runtime->silence_size)
67                         frames = runtime->silence_size;
68         } else {
69                 if (new_hw_ptr == ULONG_MAX) {  /* initialization */
70                         snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
71                         if (avail > runtime->buffer_size)
72                                 avail = runtime->buffer_size;
73                         runtime->silence_filled = avail > 0 ? avail : 0;
74                         runtime->silence_start = (runtime->status->hw_ptr +
75                                                   runtime->silence_filled) %
76                                                  runtime->boundary;
77                 } else {
78                         ofs = runtime->status->hw_ptr;
79                         frames = new_hw_ptr - ofs;
80                         if ((snd_pcm_sframes_t)frames < 0)
81                                 frames += runtime->boundary;
82                         runtime->silence_filled -= frames;
83                         if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
84                                 runtime->silence_filled = 0;
85                                 runtime->silence_start = new_hw_ptr;
86                         } else {
87                                 runtime->silence_start = ofs;
88                         }
89                 }
90                 frames = runtime->buffer_size - runtime->silence_filled;
91         }
92         if (snd_BUG_ON(frames > runtime->buffer_size))
93                 return;
94         if (frames == 0)
95                 return;
96         ofs = runtime->silence_start % runtime->buffer_size;
97         while (frames > 0) {
98                 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
99                 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
100                     runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
101                         if (substream->ops->silence) {
102                                 int err;
103                                 err = substream->ops->silence(substream, -1, ofs, transfer);
104                                 snd_BUG_ON(err < 0);
105                         } else {
106                                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
107                                 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
108                         }
109                 } else {
110                         unsigned int c;
111                         unsigned int channels = runtime->channels;
112                         if (substream->ops->silence) {
113                                 for (c = 0; c < channels; ++c) {
114                                         int err;
115                                         err = substream->ops->silence(substream, c, ofs, transfer);
116                                         snd_BUG_ON(err < 0);
117                                 }
118                         } else {
119                                 size_t dma_csize = runtime->dma_bytes / channels;
120                                 for (c = 0; c < channels; ++c) {
121                                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
122                                         snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
123                                 }
124                         }
125                 }
126                 runtime->silence_filled += transfer;
127                 frames -= transfer;
128                 ofs = 0;
129         }
130 }
131
132 #ifdef CONFIG_SND_DEBUG
133 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
134                            char *name, size_t len)
135 {
136         snprintf(name, len, "pcmC%dD%d%c:%d",
137                  substream->pcm->card->number,
138                  substream->pcm->device,
139                  substream->stream ? 'c' : 'p',
140                  substream->number);
141 }
142 EXPORT_SYMBOL(snd_pcm_debug_name);
143 #endif
144
145 #define XRUN_DEBUG_BASIC        (1<<0)
146 #define XRUN_DEBUG_STACK        (1<<1)  /* dump also stack */
147 #define XRUN_DEBUG_JIFFIESCHECK (1<<2)  /* do jiffies check */
148 #define XRUN_DEBUG_PERIODUPDATE (1<<3)  /* full period update info */
149 #define XRUN_DEBUG_HWPTRUPDATE  (1<<4)  /* full hwptr update info */
150 #define XRUN_DEBUG_LOG          (1<<5)  /* show last 10 positions on err */
151 #define XRUN_DEBUG_LOGONCE      (1<<6)  /* do above only once */
152
153 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
154
155 #define xrun_debug(substream, mask) \
156                         ((substream)->pstr->xrun_debug & (mask))
157 #else
158 #define xrun_debug(substream, mask)     0
159 #endif
160
161 #define dump_stack_on_xrun(substream) do {                      \
162                 if (xrun_debug(substream, XRUN_DEBUG_STACK))    \
163                         dump_stack();                           \
164         } while (0)
165
166 static void xrun(struct snd_pcm_substream *substream)
167 {
168         struct snd_pcm_runtime *runtime = substream->runtime;
169
170         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
171                 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
172         snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
173         if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
174                 char name[16];
175                 snd_pcm_debug_name(substream, name, sizeof(name));
176                 snd_printd(KERN_DEBUG "XRUN: %s\n", name);
177                 dump_stack_on_xrun(substream);
178         }
179 }
180
181 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
182 #define hw_ptr_error(substream, fmt, args...)                           \
183         do {                                                            \
184                 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {          \
185                         xrun_log_show(substream);                       \
186                         if (printk_ratelimit()) {                       \
187                                 snd_printd("PCM: " fmt, ##args);        \
188                         }                                               \
189                         dump_stack_on_xrun(substream);                  \
190                 }                                                       \
191         } while (0)
192
193 #define XRUN_LOG_CNT    10
194
195 struct hwptr_log_entry {
196         unsigned int in_interrupt;
197         unsigned long jiffies;
198         snd_pcm_uframes_t pos;
199         snd_pcm_uframes_t period_size;
200         snd_pcm_uframes_t buffer_size;
201         snd_pcm_uframes_t old_hw_ptr;
202         snd_pcm_uframes_t hw_ptr_base;
203 };
204
205 struct snd_pcm_hwptr_log {
206         unsigned int idx;
207         unsigned int hit: 1;
208         struct hwptr_log_entry entries[XRUN_LOG_CNT];
209 };
210
211 static void xrun_log(struct snd_pcm_substream *substream,
212                      snd_pcm_uframes_t pos, int in_interrupt)
213 {
214         struct snd_pcm_runtime *runtime = substream->runtime;
215         struct snd_pcm_hwptr_log *log = runtime->hwptr_log;
216         struct hwptr_log_entry *entry;
217
218         if (log == NULL) {
219                 log = kzalloc(sizeof(*log), GFP_ATOMIC);
220                 if (log == NULL)
221                         return;
222                 runtime->hwptr_log = log;
223         } else {
224                 if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
225                         return;
226         }
227         entry = &log->entries[log->idx];
228         entry->in_interrupt = in_interrupt;
229         entry->jiffies = jiffies;
230         entry->pos = pos;
231         entry->period_size = runtime->period_size;
232         entry->buffer_size = runtime->buffer_size;
233         entry->old_hw_ptr = runtime->status->hw_ptr;
234         entry->hw_ptr_base = runtime->hw_ptr_base;
235         log->idx = (log->idx + 1) % XRUN_LOG_CNT;
236 }
237
238 static void xrun_log_show(struct snd_pcm_substream *substream)
239 {
240         struct snd_pcm_hwptr_log *log = substream->runtime->hwptr_log;
241         struct hwptr_log_entry *entry;
242         char name[16];
243         unsigned int idx;
244         int cnt;
245
246         if (log == NULL)
247                 return;
248         if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
249                 return;
250         snd_pcm_debug_name(substream, name, sizeof(name));
251         for (cnt = 0, idx = log->idx; cnt < XRUN_LOG_CNT; cnt++) {
252                 entry = &log->entries[idx];
253                 if (entry->period_size == 0)
254                         break;
255                 snd_printd("hwptr log: %s: %sj=%lu, pos=%ld/%ld/%ld, "
256                            "hwptr=%ld/%ld\n",
257                            name, entry->in_interrupt ? "[Q] " : "",
258                            entry->jiffies,
259                            (unsigned long)entry->pos,
260                            (unsigned long)entry->period_size,
261                            (unsigned long)entry->buffer_size,
262                            (unsigned long)entry->old_hw_ptr,
263                            (unsigned long)entry->hw_ptr_base);
264                 idx++;
265                 idx %= XRUN_LOG_CNT;
266         }
267         log->hit = 1;
268 }
269
270 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
271
272 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
273 #define xrun_log(substream, pos, in_interrupt)  do { } while (0)
274 #define xrun_log_show(substream)        do { } while (0)
275
276 #endif
277
278 int snd_pcm_update_state(struct snd_pcm_substream *substream,
279                          struct snd_pcm_runtime *runtime)
280 {
281         snd_pcm_uframes_t avail;
282
283         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
284                 avail = snd_pcm_playback_avail(runtime);
285         else
286                 avail = snd_pcm_capture_avail(runtime);
287         if (avail > runtime->avail_max)
288                 runtime->avail_max = avail;
289         if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
290                 if (avail >= runtime->buffer_size) {
291                         snd_pcm_drain_done(substream);
292                         return -EPIPE;
293                 }
294         } else {
295                 if (avail >= runtime->stop_threshold) {
296                         xrun(substream);
297                         return -EPIPE;
298                 }
299         }
300         if (runtime->twake) {
301                 if (avail >= runtime->twake)
302                         wake_up(&runtime->tsleep);
303         } else if (avail >= runtime->control->avail_min)
304                 wake_up(&runtime->sleep);
305         return 0;
306 }
307
308 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
309                                   unsigned int in_interrupt)
310 {
311         struct snd_pcm_runtime *runtime = substream->runtime;
312         snd_pcm_uframes_t pos;
313         snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
314         snd_pcm_sframes_t hdelta, delta;
315         unsigned long jdelta;
316
317         old_hw_ptr = runtime->status->hw_ptr;
318         pos = substream->ops->pointer(substream);
319         if (pos == SNDRV_PCM_POS_XRUN) {
320                 xrun(substream);
321                 return -EPIPE;
322         }
323         if (pos >= runtime->buffer_size) {
324                 if (printk_ratelimit()) {
325                         char name[16];
326                         snd_pcm_debug_name(substream, name, sizeof(name));
327                         xrun_log_show(substream);
328                         snd_printd(KERN_ERR  "BUG: %s, pos = %ld, "
329                                    "buffer size = %ld, period size = %ld\n",
330                                    name, pos, runtime->buffer_size,
331                                    runtime->period_size);
332                 }
333                 pos = 0;
334         }
335         pos -= pos % runtime->min_align;
336         if (xrun_debug(substream, XRUN_DEBUG_LOG))
337                 xrun_log(substream, pos, in_interrupt);
338         hw_base = runtime->hw_ptr_base;
339         new_hw_ptr = hw_base + pos;
340         if (in_interrupt) {
341                 /* we know that one period was processed */
342                 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
343                 delta = runtime->hw_ptr_interrupt + runtime->period_size;
344                 if (delta > new_hw_ptr) {
345                         /* check for double acknowledged interrupts */
346                         hdelta = jiffies - runtime->hw_ptr_jiffies;
347                         if (hdelta > runtime->hw_ptr_buffer_jiffies/2) {
348                                 hw_base += runtime->buffer_size;
349                                 if (hw_base >= runtime->boundary)
350                                         hw_base = 0;
351                                 new_hw_ptr = hw_base + pos;
352                                 goto __delta;
353                         }
354                 }
355         }
356         /* new_hw_ptr might be lower than old_hw_ptr in case when */
357         /* pointer crosses the end of the ring buffer */
358         if (new_hw_ptr < old_hw_ptr) {
359                 hw_base += runtime->buffer_size;
360                 if (hw_base >= runtime->boundary)
361                         hw_base = 0;
362                 new_hw_ptr = hw_base + pos;
363         }
364       __delta:
365         delta = new_hw_ptr - old_hw_ptr;
366         if (delta < 0)
367                 delta += runtime->boundary;
368         if (xrun_debug(substream, in_interrupt ?
369                         XRUN_DEBUG_PERIODUPDATE : XRUN_DEBUG_HWPTRUPDATE)) {
370                 char name[16];
371                 snd_pcm_debug_name(substream, name, sizeof(name));
372                 snd_printd("%s_update: %s: pos=%u/%u/%u, "
373                            "hwptr=%ld/%ld/%ld/%ld\n",
374                            in_interrupt ? "period" : "hwptr",
375                            name,
376                            (unsigned int)pos,
377                            (unsigned int)runtime->period_size,
378                            (unsigned int)runtime->buffer_size,
379                            (unsigned long)delta,
380                            (unsigned long)old_hw_ptr,
381                            (unsigned long)new_hw_ptr,
382                            (unsigned long)runtime->hw_ptr_base);
383         }
384
385         if (runtime->no_period_wakeup) {
386                 snd_pcm_sframes_t xrun_threshold;
387                 /*
388                  * Without regular period interrupts, we have to check
389                  * the elapsed time to detect xruns.
390                  */
391                 jdelta = jiffies - runtime->hw_ptr_jiffies;
392                 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
393                         goto no_delta_check;
394                 hdelta = jdelta - delta * HZ / runtime->rate;
395                 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
396                 while (hdelta > xrun_threshold) {
397                         delta += runtime->buffer_size;
398                         hw_base += runtime->buffer_size;
399                         if (hw_base >= runtime->boundary)
400                                 hw_base = 0;
401                         new_hw_ptr = hw_base + pos;
402                         hdelta -= runtime->hw_ptr_buffer_jiffies;
403                 }
404                 goto no_delta_check;
405         }
406
407         /* something must be really wrong */
408         if (delta >= runtime->buffer_size + runtime->period_size) {
409                 hw_ptr_error(substream,
410                                "Unexpected hw_pointer value %s"
411                                "(stream=%i, pos=%ld, new_hw_ptr=%ld, "
412                                "old_hw_ptr=%ld)\n",
413                                      in_interrupt ? "[Q] " : "[P]",
414                                      substream->stream, (long)pos,
415                                      (long)new_hw_ptr, (long)old_hw_ptr);
416                 return 0;
417         }
418
419         /* Do jiffies check only in xrun_debug mode */
420         if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
421                 goto no_jiffies_check;
422
423         /* Skip the jiffies check for hardwares with BATCH flag.
424          * Such hardware usually just increases the position at each IRQ,
425          * thus it can't give any strange position.
426          */
427         if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
428                 goto no_jiffies_check;
429         hdelta = delta;
430         if (hdelta < runtime->delay)
431                 goto no_jiffies_check;
432         hdelta -= runtime->delay;
433         jdelta = jiffies - runtime->hw_ptr_jiffies;
434         if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
435                 delta = jdelta /
436                         (((runtime->period_size * HZ) / runtime->rate)
437                                                                 + HZ/100);
438                 /* move new_hw_ptr according jiffies not pos variable */
439                 new_hw_ptr = old_hw_ptr;
440                 hw_base = delta;
441                 /* use loop to avoid checks for delta overflows */
442                 /* the delta value is small or zero in most cases */
443                 while (delta > 0) {
444                         new_hw_ptr += runtime->period_size;
445                         if (new_hw_ptr >= runtime->boundary)
446                                 new_hw_ptr -= runtime->boundary;
447                         delta--;
448                 }
449                 /* align hw_base to buffer_size */
450                 hw_ptr_error(substream,
451                              "hw_ptr skipping! %s"
452                              "(pos=%ld, delta=%ld, period=%ld, "
453                              "jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
454                              in_interrupt ? "[Q] " : "",
455                              (long)pos, (long)hdelta,
456                              (long)runtime->period_size, jdelta,
457                              ((hdelta * HZ) / runtime->rate), hw_base,
458                              (unsigned long)old_hw_ptr,
459                              (unsigned long)new_hw_ptr);
460                 /* reset values to proper state */
461                 delta = 0;
462                 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
463         }
464  no_jiffies_check:
465         if (delta > runtime->period_size + runtime->period_size / 2) {
466                 hw_ptr_error(substream,
467                              "Lost interrupts? %s"
468                              "(stream=%i, delta=%ld, new_hw_ptr=%ld, "
469                              "old_hw_ptr=%ld)\n",
470                              in_interrupt ? "[Q] " : "",
471                              substream->stream, (long)delta,
472                              (long)new_hw_ptr,
473                              (long)old_hw_ptr);
474         }
475
476  no_delta_check:
477         if (runtime->status->hw_ptr == new_hw_ptr)
478                 return 0;
479
480         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
481             runtime->silence_size > 0)
482                 snd_pcm_playback_silence(substream, new_hw_ptr);
483
484         if (in_interrupt) {
485                 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
486                 if (delta < 0)
487                         delta += runtime->boundary;
488                 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
489                 runtime->hw_ptr_interrupt += delta;
490                 if (runtime->hw_ptr_interrupt >= runtime->boundary)
491                         runtime->hw_ptr_interrupt -= runtime->boundary;
492         }
493         runtime->hw_ptr_base = hw_base;
494         runtime->status->hw_ptr = new_hw_ptr;
495         runtime->hw_ptr_jiffies = jiffies;
496         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
497                 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
498
499         return snd_pcm_update_state(substream, runtime);
500 }
501
502 /* CAUTION: call it with irq disabled */
503 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
504 {
505         return snd_pcm_update_hw_ptr0(substream, 0);
506 }
507
508 /**
509  * snd_pcm_set_ops - set the PCM operators
510  * @pcm: the pcm instance
511  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
512  * @ops: the operator table
513  *
514  * Sets the given PCM operators to the pcm instance.
515  */
516 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops)
517 {
518         struct snd_pcm_str *stream = &pcm->streams[direction];
519         struct snd_pcm_substream *substream;
520         
521         for (substream = stream->substream; substream != NULL; substream = substream->next)
522                 substream->ops = ops;
523 }
524
525 EXPORT_SYMBOL(snd_pcm_set_ops);
526
527 /**
528  * snd_pcm_sync - set the PCM sync id
529  * @substream: the pcm substream
530  *
531  * Sets the PCM sync identifier for the card.
532  */
533 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
534 {
535         struct snd_pcm_runtime *runtime = substream->runtime;
536         
537         runtime->sync.id32[0] = substream->pcm->card->number;
538         runtime->sync.id32[1] = -1;
539         runtime->sync.id32[2] = -1;
540         runtime->sync.id32[3] = -1;
541 }
542
543 EXPORT_SYMBOL(snd_pcm_set_sync);
544
545 /*
546  *  Standard ioctl routine
547  */
548
549 static inline unsigned int div32(unsigned int a, unsigned int b, 
550                                  unsigned int *r)
551 {
552         if (b == 0) {
553                 *r = 0;
554                 return UINT_MAX;
555         }
556         *r = a % b;
557         return a / b;
558 }
559
560 static inline unsigned int div_down(unsigned int a, unsigned int b)
561 {
562         if (b == 0)
563                 return UINT_MAX;
564         return a / b;
565 }
566
567 static inline unsigned int div_up(unsigned int a, unsigned int b)
568 {
569         unsigned int r;
570         unsigned int q;
571         if (b == 0)
572                 return UINT_MAX;
573         q = div32(a, b, &r);
574         if (r)
575                 ++q;
576         return q;
577 }
578
579 static inline unsigned int mul(unsigned int a, unsigned int b)
580 {
581         if (a == 0)
582                 return 0;
583         if (div_down(UINT_MAX, a) < b)
584                 return UINT_MAX;
585         return a * b;
586 }
587
588 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
589                                     unsigned int c, unsigned int *r)
590 {
591         u_int64_t n = (u_int64_t) a * b;
592         if (c == 0) {
593                 snd_BUG_ON(!n);
594                 *r = 0;
595                 return UINT_MAX;
596         }
597         n = div_u64_rem(n, c, r);
598         if (n >= UINT_MAX) {
599                 *r = 0;
600                 return UINT_MAX;
601         }
602         return n;
603 }
604
605 /**
606  * snd_interval_refine - refine the interval value of configurator
607  * @i: the interval value to refine
608  * @v: the interval value to refer to
609  *
610  * Refines the interval value with the reference value.
611  * The interval is changed to the range satisfying both intervals.
612  * The interval status (min, max, integer, etc.) are evaluated.
613  *
614  * Returns non-zero if the value is changed, zero if not changed.
615  */
616 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
617 {
618         int changed = 0;
619         if (snd_BUG_ON(snd_interval_empty(i)))
620                 return -EINVAL;
621         if (i->min < v->min) {
622                 i->min = v->min;
623                 i->openmin = v->openmin;
624                 changed = 1;
625         } else if (i->min == v->min && !i->openmin && v->openmin) {
626                 i->openmin = 1;
627                 changed = 1;
628         }
629         if (i->max > v->max) {
630                 i->max = v->max;
631                 i->openmax = v->openmax;
632                 changed = 1;
633         } else if (i->max == v->max && !i->openmax && v->openmax) {
634                 i->openmax = 1;
635                 changed = 1;
636         }
637         if (!i->integer && v->integer) {
638                 i->integer = 1;
639                 changed = 1;
640         }
641         if (i->integer) {
642                 if (i->openmin) {
643                         i->min++;
644                         i->openmin = 0;
645                 }
646                 if (i->openmax) {
647                         i->max--;
648                         i->openmax = 0;
649                 }
650         } else if (!i->openmin && !i->openmax && i->min == i->max)
651                 i->integer = 1;
652         if (snd_interval_checkempty(i)) {
653                 snd_interval_none(i);
654                 return -EINVAL;
655         }
656         return changed;
657 }
658
659 EXPORT_SYMBOL(snd_interval_refine);
660
661 static int snd_interval_refine_first(struct snd_interval *i)
662 {
663         if (snd_BUG_ON(snd_interval_empty(i)))
664                 return -EINVAL;
665         if (snd_interval_single(i))
666                 return 0;
667         i->max = i->min;
668         i->openmax = i->openmin;
669         if (i->openmax)
670                 i->max++;
671         return 1;
672 }
673
674 static int snd_interval_refine_last(struct snd_interval *i)
675 {
676         if (snd_BUG_ON(snd_interval_empty(i)))
677                 return -EINVAL;
678         if (snd_interval_single(i))
679                 return 0;
680         i->min = i->max;
681         i->openmin = i->openmax;
682         if (i->openmin)
683                 i->min--;
684         return 1;
685 }
686
687 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
688 {
689         if (a->empty || b->empty) {
690                 snd_interval_none(c);
691                 return;
692         }
693         c->empty = 0;
694         c->min = mul(a->min, b->min);
695         c->openmin = (a->openmin || b->openmin);
696         c->max = mul(a->max,  b->max);
697         c->openmax = (a->openmax || b->openmax);
698         c->integer = (a->integer && b->integer);
699 }
700
701 /**
702  * snd_interval_div - refine the interval value with division
703  * @a: dividend
704  * @b: divisor
705  * @c: quotient
706  *
707  * c = a / b
708  *
709  * Returns non-zero if the value is changed, zero if not changed.
710  */
711 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
712 {
713         unsigned int r;
714         if (a->empty || b->empty) {
715                 snd_interval_none(c);
716                 return;
717         }
718         c->empty = 0;
719         c->min = div32(a->min, b->max, &r);
720         c->openmin = (r || a->openmin || b->openmax);
721         if (b->min > 0) {
722                 c->max = div32(a->max, b->min, &r);
723                 if (r) {
724                         c->max++;
725                         c->openmax = 1;
726                 } else
727                         c->openmax = (a->openmax || b->openmin);
728         } else {
729                 c->max = UINT_MAX;
730                 c->openmax = 0;
731         }
732         c->integer = 0;
733 }
734
735 /**
736  * snd_interval_muldivk - refine the interval value
737  * @a: dividend 1
738  * @b: dividend 2
739  * @k: divisor (as integer)
740  * @c: result
741   *
742  * c = a * b / k
743  *
744  * Returns non-zero if the value is changed, zero if not changed.
745  */
746 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
747                       unsigned int k, struct snd_interval *c)
748 {
749         unsigned int r;
750         if (a->empty || b->empty) {
751                 snd_interval_none(c);
752                 return;
753         }
754         c->empty = 0;
755         c->min = muldiv32(a->min, b->min, k, &r);
756         c->openmin = (r || a->openmin || b->openmin);
757         c->max = muldiv32(a->max, b->max, k, &r);
758         if (r) {
759                 c->max++;
760                 c->openmax = 1;
761         } else
762                 c->openmax = (a->openmax || b->openmax);
763         c->integer = 0;
764 }
765
766 /**
767  * snd_interval_mulkdiv - refine the interval value
768  * @a: dividend 1
769  * @k: dividend 2 (as integer)
770  * @b: divisor
771  * @c: result
772  *
773  * c = a * k / b
774  *
775  * Returns non-zero if the value is changed, zero if not changed.
776  */
777 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
778                       const struct snd_interval *b, struct snd_interval *c)
779 {
780         unsigned int r;
781         if (a->empty || b->empty) {
782                 snd_interval_none(c);
783                 return;
784         }
785         c->empty = 0;
786         c->min = muldiv32(a->min, k, b->max, &r);
787         c->openmin = (r || a->openmin || b->openmax);
788         if (b->min > 0) {
789                 c->max = muldiv32(a->max, k, b->min, &r);
790                 if (r) {
791                         c->max++;
792                         c->openmax = 1;
793                 } else
794                         c->openmax = (a->openmax || b->openmin);
795         } else {
796                 c->max = UINT_MAX;
797                 c->openmax = 0;
798         }
799         c->integer = 0;
800 }
801
802 /* ---- */
803
804
805 /**
806  * snd_interval_ratnum - refine the interval value
807  * @i: interval to refine
808  * @rats_count: number of ratnum_t 
809  * @rats: ratnum_t array
810  * @nump: pointer to store the resultant numerator
811  * @denp: pointer to store the resultant denominator
812  *
813  * Returns non-zero if the value is changed, zero if not changed.
814  */
815 int snd_interval_ratnum(struct snd_interval *i,
816                         unsigned int rats_count, struct snd_ratnum *rats,
817                         unsigned int *nump, unsigned int *denp)
818 {
819         unsigned int best_num, best_den;
820         int best_diff;
821         unsigned int k;
822         struct snd_interval t;
823         int err;
824         unsigned int result_num, result_den;
825         int result_diff;
826
827         best_num = best_den = best_diff = 0;
828         for (k = 0; k < rats_count; ++k) {
829                 unsigned int num = rats[k].num;
830                 unsigned int den;
831                 unsigned int q = i->min;
832                 int diff;
833                 if (q == 0)
834                         q = 1;
835                 den = div_up(num, q);
836                 if (den < rats[k].den_min)
837                         continue;
838                 if (den > rats[k].den_max)
839                         den = rats[k].den_max;
840                 else {
841                         unsigned int r;
842                         r = (den - rats[k].den_min) % rats[k].den_step;
843                         if (r != 0)
844                                 den -= r;
845                 }
846                 diff = num - q * den;
847                 if (diff < 0)
848                         diff = -diff;
849                 if (best_num == 0 ||
850                     diff * best_den < best_diff * den) {
851                         best_diff = diff;
852                         best_den = den;
853                         best_num = num;
854                 }
855         }
856         if (best_den == 0) {
857                 i->empty = 1;
858                 return -EINVAL;
859         }
860         t.min = div_down(best_num, best_den);
861         t.openmin = !!(best_num % best_den);
862         
863         result_num = best_num;
864         result_diff = best_diff;
865         result_den = best_den;
866         best_num = best_den = best_diff = 0;
867         for (k = 0; k < rats_count; ++k) {
868                 unsigned int num = rats[k].num;
869                 unsigned int den;
870                 unsigned int q = i->max;
871                 int diff;
872                 if (q == 0) {
873                         i->empty = 1;
874                         return -EINVAL;
875                 }
876                 den = div_down(num, q);
877                 if (den > rats[k].den_max)
878                         continue;
879                 if (den < rats[k].den_min)
880                         den = rats[k].den_min;
881                 else {
882                         unsigned int r;
883                         r = (den - rats[k].den_min) % rats[k].den_step;
884                         if (r != 0)
885                                 den += rats[k].den_step - r;
886                 }
887                 diff = q * den - num;
888                 if (diff < 0)
889                         diff = -diff;
890                 if (best_num == 0 ||
891                     diff * best_den < best_diff * den) {
892                         best_diff = diff;
893                         best_den = den;
894                         best_num = num;
895                 }
896         }
897         if (best_den == 0) {
898                 i->empty = 1;
899                 return -EINVAL;
900         }
901         t.max = div_up(best_num, best_den);
902         t.openmax = !!(best_num % best_den);
903         t.integer = 0;
904         err = snd_interval_refine(i, &t);
905         if (err < 0)
906                 return err;
907
908         if (snd_interval_single(i)) {
909                 if (best_diff * result_den < result_diff * best_den) {
910                         result_num = best_num;
911                         result_den = best_den;
912                 }
913                 if (nump)
914                         *nump = result_num;
915                 if (denp)
916                         *denp = result_den;
917         }
918         return err;
919 }
920
921 EXPORT_SYMBOL(snd_interval_ratnum);
922
923 /**
924  * snd_interval_ratden - refine the interval value
925  * @i: interval to refine
926  * @rats_count: number of struct ratden
927  * @rats: struct ratden array
928  * @nump: pointer to store the resultant numerator
929  * @denp: pointer to store the resultant denominator
930  *
931  * Returns non-zero if the value is changed, zero if not changed.
932  */
933 static int snd_interval_ratden(struct snd_interval *i,
934                                unsigned int rats_count, struct snd_ratden *rats,
935                                unsigned int *nump, unsigned int *denp)
936 {
937         unsigned int best_num, best_diff, best_den;
938         unsigned int k;
939         struct snd_interval t;
940         int err;
941
942         best_num = best_den = best_diff = 0;
943         for (k = 0; k < rats_count; ++k) {
944                 unsigned int num;
945                 unsigned int den = rats[k].den;
946                 unsigned int q = i->min;
947                 int diff;
948                 num = mul(q, den);
949                 if (num > rats[k].num_max)
950                         continue;
951                 if (num < rats[k].num_min)
952                         num = rats[k].num_max;
953                 else {
954                         unsigned int r;
955                         r = (num - rats[k].num_min) % rats[k].num_step;
956                         if (r != 0)
957                                 num += rats[k].num_step - r;
958                 }
959                 diff = num - q * den;
960                 if (best_num == 0 ||
961                     diff * best_den < best_diff * den) {
962                         best_diff = diff;
963                         best_den = den;
964                         best_num = num;
965                 }
966         }
967         if (best_den == 0) {
968                 i->empty = 1;
969                 return -EINVAL;
970         }
971         t.min = div_down(best_num, best_den);
972         t.openmin = !!(best_num % best_den);
973         
974         best_num = best_den = best_diff = 0;
975         for (k = 0; k < rats_count; ++k) {
976                 unsigned int num;
977                 unsigned int den = rats[k].den;
978                 unsigned int q = i->max;
979                 int diff;
980                 num = mul(q, den);
981                 if (num < rats[k].num_min)
982                         continue;
983                 if (num > rats[k].num_max)
984                         num = rats[k].num_max;
985                 else {
986                         unsigned int r;
987                         r = (num - rats[k].num_min) % rats[k].num_step;
988                         if (r != 0)
989                                 num -= r;
990                 }
991                 diff = q * den - num;
992                 if (best_num == 0 ||
993                     diff * best_den < best_diff * den) {
994                         best_diff = diff;
995                         best_den = den;
996                         best_num = num;
997                 }
998         }
999         if (best_den == 0) {
1000                 i->empty = 1;
1001                 return -EINVAL;
1002         }
1003         t.max = div_up(best_num, best_den);
1004         t.openmax = !!(best_num % best_den);
1005         t.integer = 0;
1006         err = snd_interval_refine(i, &t);
1007         if (err < 0)
1008                 return err;
1009
1010         if (snd_interval_single(i)) {
1011                 if (nump)
1012                         *nump = best_num;
1013                 if (denp)
1014                         *denp = best_den;
1015         }
1016         return err;
1017 }
1018
1019 /**
1020  * snd_interval_list - refine the interval value from the list
1021  * @i: the interval value to refine
1022  * @count: the number of elements in the list
1023  * @list: the value list
1024  * @mask: the bit-mask to evaluate
1025  *
1026  * Refines the interval value from the list.
1027  * When mask is non-zero, only the elements corresponding to bit 1 are
1028  * evaluated.
1029  *
1030  * Returns non-zero if the value is changed, zero if not changed.
1031  */
1032 int snd_interval_list(struct snd_interval *i, unsigned int count,
1033                       const unsigned int *list, unsigned int mask)
1034 {
1035         unsigned int k;
1036         struct snd_interval list_range;
1037
1038         if (!count) {
1039                 i->empty = 1;
1040                 return -EINVAL;
1041         }
1042         snd_interval_any(&list_range);
1043         list_range.min = UINT_MAX;
1044         list_range.max = 0;
1045         for (k = 0; k < count; k++) {
1046                 if (mask && !(mask & (1 << k)))
1047                         continue;
1048                 if (!snd_interval_test(i, list[k]))
1049                         continue;
1050                 list_range.min = min(list_range.min, list[k]);
1051                 list_range.max = max(list_range.max, list[k]);
1052         }
1053         return snd_interval_refine(i, &list_range);
1054 }
1055
1056 EXPORT_SYMBOL(snd_interval_list);
1057
1058 static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
1059 {
1060         unsigned int n;
1061         int changed = 0;
1062         n = (i->min - min) % step;
1063         if (n != 0 || i->openmin) {
1064                 i->min += step - n;
1065                 changed = 1;
1066         }
1067         n = (i->max - min) % step;
1068         if (n != 0 || i->openmax) {
1069                 i->max -= n;
1070                 changed = 1;
1071         }
1072         if (snd_interval_checkempty(i)) {
1073                 i->empty = 1;
1074                 return -EINVAL;
1075         }
1076         return changed;
1077 }
1078
1079 /* Info constraints helpers */
1080
1081 /**
1082  * snd_pcm_hw_rule_add - add the hw-constraint rule
1083  * @runtime: the pcm runtime instance
1084  * @cond: condition bits
1085  * @var: the variable to evaluate
1086  * @func: the evaluation function
1087  * @private: the private data pointer passed to function
1088  * @dep: the dependent variables
1089  *
1090  * Returns zero if successful, or a negative error code on failure.
1091  */
1092 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1093                         int var,
1094                         snd_pcm_hw_rule_func_t func, void *private,
1095                         int dep, ...)
1096 {
1097         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1098         struct snd_pcm_hw_rule *c;
1099         unsigned int k;
1100         va_list args;
1101         va_start(args, dep);
1102         if (constrs->rules_num >= constrs->rules_all) {
1103                 struct snd_pcm_hw_rule *new;
1104                 unsigned int new_rules = constrs->rules_all + 16;
1105                 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1106                 if (!new) {
1107                         va_end(args);
1108                         return -ENOMEM;
1109                 }
1110                 if (constrs->rules) {
1111                         memcpy(new, constrs->rules,
1112                                constrs->rules_num * sizeof(*c));
1113                         kfree(constrs->rules);
1114                 }
1115                 constrs->rules = new;
1116                 constrs->rules_all = new_rules;
1117         }
1118         c = &constrs->rules[constrs->rules_num];
1119         c->cond = cond;
1120         c->func = func;
1121         c->var = var;
1122         c->private = private;
1123         k = 0;
1124         while (1) {
1125                 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1126                         va_end(args);
1127                         return -EINVAL;
1128                 }
1129                 c->deps[k++] = dep;
1130                 if (dep < 0)
1131                         break;
1132                 dep = va_arg(args, int);
1133         }
1134         constrs->rules_num++;
1135         va_end(args);
1136         return 0;
1137 }
1138
1139 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1140
1141 /**
1142  * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1143  * @runtime: PCM runtime instance
1144  * @var: hw_params variable to apply the mask
1145  * @mask: the bitmap mask
1146  *
1147  * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1148  */
1149 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1150                                u_int32_t mask)
1151 {
1152         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1153         struct snd_mask *maskp = constrs_mask(constrs, var);
1154         *maskp->bits &= mask;
1155         memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1156         if (*maskp->bits == 0)
1157                 return -EINVAL;
1158         return 0;
1159 }
1160
1161 /**
1162  * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1163  * @runtime: PCM runtime instance
1164  * @var: hw_params variable to apply the mask
1165  * @mask: the 64bit bitmap mask
1166  *
1167  * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1168  */
1169 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1170                                  u_int64_t mask)
1171 {
1172         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1173         struct snd_mask *maskp = constrs_mask(constrs, var);
1174         maskp->bits[0] &= (u_int32_t)mask;
1175         maskp->bits[1] &= (u_int32_t)(mask >> 32);
1176         memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1177         if (! maskp->bits[0] && ! maskp->bits[1])
1178                 return -EINVAL;
1179         return 0;
1180 }
1181
1182 /**
1183  * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1184  * @runtime: PCM runtime instance
1185  * @var: hw_params variable to apply the integer constraint
1186  *
1187  * Apply the constraint of integer to an interval parameter.
1188  */
1189 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1190 {
1191         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1192         return snd_interval_setinteger(constrs_interval(constrs, var));
1193 }
1194
1195 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1196
1197 /**
1198  * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1199  * @runtime: PCM runtime instance
1200  * @var: hw_params variable to apply the range
1201  * @min: the minimal value
1202  * @max: the maximal value
1203  * 
1204  * Apply the min/max range constraint to an interval parameter.
1205  */
1206 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1207                                  unsigned int min, unsigned int max)
1208 {
1209         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1210         struct snd_interval t;
1211         t.min = min;
1212         t.max = max;
1213         t.openmin = t.openmax = 0;
1214         t.integer = 0;
1215         return snd_interval_refine(constrs_interval(constrs, var), &t);
1216 }
1217
1218 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1219
1220 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1221                                 struct snd_pcm_hw_rule *rule)
1222 {
1223         struct snd_pcm_hw_constraint_list *list = rule->private;
1224         return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1225 }               
1226
1227
1228 /**
1229  * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1230  * @runtime: PCM runtime instance
1231  * @cond: condition bits
1232  * @var: hw_params variable to apply the list constraint
1233  * @l: list
1234  * 
1235  * Apply the list of constraints to an interval parameter.
1236  */
1237 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1238                                unsigned int cond,
1239                                snd_pcm_hw_param_t var,
1240                                struct snd_pcm_hw_constraint_list *l)
1241 {
1242         return snd_pcm_hw_rule_add(runtime, cond, var,
1243                                    snd_pcm_hw_rule_list, l,
1244                                    var, -1);
1245 }
1246
1247 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1248
1249 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1250                                    struct snd_pcm_hw_rule *rule)
1251 {
1252         struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1253         unsigned int num = 0, den = 0;
1254         int err;
1255         err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1256                                   r->nrats, r->rats, &num, &den);
1257         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1258                 params->rate_num = num;
1259                 params->rate_den = den;
1260         }
1261         return err;
1262 }
1263
1264 /**
1265  * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1266  * @runtime: PCM runtime instance
1267  * @cond: condition bits
1268  * @var: hw_params variable to apply the ratnums constraint
1269  * @r: struct snd_ratnums constriants
1270  */
1271 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1272                                   unsigned int cond,
1273                                   snd_pcm_hw_param_t var,
1274                                   struct snd_pcm_hw_constraint_ratnums *r)
1275 {
1276         return snd_pcm_hw_rule_add(runtime, cond, var,
1277                                    snd_pcm_hw_rule_ratnums, r,
1278                                    var, -1);
1279 }
1280
1281 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1282
1283 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1284                                    struct snd_pcm_hw_rule *rule)
1285 {
1286         struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1287         unsigned int num = 0, den = 0;
1288         int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1289                                   r->nrats, r->rats, &num, &den);
1290         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1291                 params->rate_num = num;
1292                 params->rate_den = den;
1293         }
1294         return err;
1295 }
1296
1297 /**
1298  * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1299  * @runtime: PCM runtime instance
1300  * @cond: condition bits
1301  * @var: hw_params variable to apply the ratdens constraint
1302  * @r: struct snd_ratdens constriants
1303  */
1304 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1305                                   unsigned int cond,
1306                                   snd_pcm_hw_param_t var,
1307                                   struct snd_pcm_hw_constraint_ratdens *r)
1308 {
1309         return snd_pcm_hw_rule_add(runtime, cond, var,
1310                                    snd_pcm_hw_rule_ratdens, r,
1311                                    var, -1);
1312 }
1313
1314 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1315
1316 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1317                                   struct snd_pcm_hw_rule *rule)
1318 {
1319         unsigned int l = (unsigned long) rule->private;
1320         int width = l & 0xffff;
1321         unsigned int msbits = l >> 16;
1322         struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1323         if (snd_interval_single(i) && snd_interval_value(i) == width)
1324                 params->msbits = msbits;
1325         return 0;
1326 }
1327
1328 /**
1329  * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1330  * @runtime: PCM runtime instance
1331  * @cond: condition bits
1332  * @width: sample bits width
1333  * @msbits: msbits width
1334  */
1335 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1336                                  unsigned int cond,
1337                                  unsigned int width,
1338                                  unsigned int msbits)
1339 {
1340         unsigned long l = (msbits << 16) | width;
1341         return snd_pcm_hw_rule_add(runtime, cond, -1,
1342                                     snd_pcm_hw_rule_msbits,
1343                                     (void*) l,
1344                                     SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1345 }
1346
1347 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1348
1349 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1350                                 struct snd_pcm_hw_rule *rule)
1351 {
1352         unsigned long step = (unsigned long) rule->private;
1353         return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1354 }
1355
1356 /**
1357  * snd_pcm_hw_constraint_step - add a hw constraint step rule
1358  * @runtime: PCM runtime instance
1359  * @cond: condition bits
1360  * @var: hw_params variable to apply the step constraint
1361  * @step: step size
1362  */
1363 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1364                                unsigned int cond,
1365                                snd_pcm_hw_param_t var,
1366                                unsigned long step)
1367 {
1368         return snd_pcm_hw_rule_add(runtime, cond, var, 
1369                                    snd_pcm_hw_rule_step, (void *) step,
1370                                    var, -1);
1371 }
1372
1373 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1374
1375 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1376 {
1377         static unsigned int pow2_sizes[] = {
1378                 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1379                 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1380                 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1381                 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1382         };
1383         return snd_interval_list(hw_param_interval(params, rule->var),
1384                                  ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1385 }               
1386
1387 /**
1388  * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1389  * @runtime: PCM runtime instance
1390  * @cond: condition bits
1391  * @var: hw_params variable to apply the power-of-2 constraint
1392  */
1393 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1394                                unsigned int cond,
1395                                snd_pcm_hw_param_t var)
1396 {
1397         return snd_pcm_hw_rule_add(runtime, cond, var, 
1398                                    snd_pcm_hw_rule_pow2, NULL,
1399                                    var, -1);
1400 }
1401
1402 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1403
1404 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1405                                            struct snd_pcm_hw_rule *rule)
1406 {
1407         unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1408         struct snd_interval *rate;
1409
1410         rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1411         return snd_interval_list(rate, 1, &base_rate, 0);
1412 }
1413
1414 /**
1415  * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1416  * @runtime: PCM runtime instance
1417  * @base_rate: the rate at which the hardware does not resample
1418  */
1419 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1420                                unsigned int base_rate)
1421 {
1422         return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1423                                    SNDRV_PCM_HW_PARAM_RATE,
1424                                    snd_pcm_hw_rule_noresample_func,
1425                                    (void *)(uintptr_t)base_rate,
1426                                    SNDRV_PCM_HW_PARAM_RATE, -1);
1427 }
1428 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1429
1430 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1431                                   snd_pcm_hw_param_t var)
1432 {
1433         if (hw_is_mask(var)) {
1434                 snd_mask_any(hw_param_mask(params, var));
1435                 params->cmask |= 1 << var;
1436                 params->rmask |= 1 << var;
1437                 return;
1438         }
1439         if (hw_is_interval(var)) {
1440                 snd_interval_any(hw_param_interval(params, var));
1441                 params->cmask |= 1 << var;
1442                 params->rmask |= 1 << var;
1443                 return;
1444         }
1445         snd_BUG();
1446 }
1447
1448 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1449 {
1450         unsigned int k;
1451         memset(params, 0, sizeof(*params));
1452         for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1453                 _snd_pcm_hw_param_any(params, k);
1454         for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1455                 _snd_pcm_hw_param_any(params, k);
1456         params->info = ~0U;
1457 }
1458
1459 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1460
1461 /**
1462  * snd_pcm_hw_param_value - return @params field @var value
1463  * @params: the hw_params instance
1464  * @var: parameter to retrieve
1465  * @dir: pointer to the direction (-1,0,1) or %NULL
1466  *
1467  * Return the value for field @var if it's fixed in configuration space
1468  * defined by @params. Return -%EINVAL otherwise.
1469  */
1470 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1471                            snd_pcm_hw_param_t var, int *dir)
1472 {
1473         if (hw_is_mask(var)) {
1474                 const struct snd_mask *mask = hw_param_mask_c(params, var);
1475                 if (!snd_mask_single(mask))
1476                         return -EINVAL;
1477                 if (dir)
1478                         *dir = 0;
1479                 return snd_mask_value(mask);
1480         }
1481         if (hw_is_interval(var)) {
1482                 const struct snd_interval *i = hw_param_interval_c(params, var);
1483                 if (!snd_interval_single(i))
1484                         return -EINVAL;
1485                 if (dir)
1486                         *dir = i->openmin;
1487                 return snd_interval_value(i);
1488         }
1489         return -EINVAL;
1490 }
1491
1492 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1493
1494 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1495                                 snd_pcm_hw_param_t var)
1496 {
1497         if (hw_is_mask(var)) {
1498                 snd_mask_none(hw_param_mask(params, var));
1499                 params->cmask |= 1 << var;
1500                 params->rmask |= 1 << var;
1501         } else if (hw_is_interval(var)) {
1502                 snd_interval_none(hw_param_interval(params, var));
1503                 params->cmask |= 1 << var;
1504                 params->rmask |= 1 << var;
1505         } else {
1506                 snd_BUG();
1507         }
1508 }
1509
1510 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1511
1512 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1513                                    snd_pcm_hw_param_t var)
1514 {
1515         int changed;
1516         if (hw_is_mask(var))
1517                 changed = snd_mask_refine_first(hw_param_mask(params, var));
1518         else if (hw_is_interval(var))
1519                 changed = snd_interval_refine_first(hw_param_interval(params, var));
1520         else
1521                 return -EINVAL;
1522         if (changed) {
1523                 params->cmask |= 1 << var;
1524                 params->rmask |= 1 << var;
1525         }
1526         return changed;
1527 }
1528
1529
1530 /**
1531  * snd_pcm_hw_param_first - refine config space and return minimum value
1532  * @pcm: PCM instance
1533  * @params: the hw_params instance
1534  * @var: parameter to retrieve
1535  * @dir: pointer to the direction (-1,0,1) or %NULL
1536  *
1537  * Inside configuration space defined by @params remove from @var all
1538  * values > minimum. Reduce configuration space accordingly.
1539  * Return the minimum.
1540  */
1541 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1542                            struct snd_pcm_hw_params *params, 
1543                            snd_pcm_hw_param_t var, int *dir)
1544 {
1545         int changed = _snd_pcm_hw_param_first(params, var);
1546         if (changed < 0)
1547                 return changed;
1548         if (params->rmask) {
1549                 int err = snd_pcm_hw_refine(pcm, params);
1550                 if (snd_BUG_ON(err < 0))
1551                         return err;
1552         }
1553         return snd_pcm_hw_param_value(params, var, dir);
1554 }
1555
1556 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1557
1558 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1559                                   snd_pcm_hw_param_t var)
1560 {
1561         int changed;
1562         if (hw_is_mask(var))
1563                 changed = snd_mask_refine_last(hw_param_mask(params, var));
1564         else if (hw_is_interval(var))
1565                 changed = snd_interval_refine_last(hw_param_interval(params, var));
1566         else
1567                 return -EINVAL;
1568         if (changed) {
1569                 params->cmask |= 1 << var;
1570                 params->rmask |= 1 << var;
1571         }
1572         return changed;
1573 }
1574
1575
1576 /**
1577  * snd_pcm_hw_param_last - refine config space and return maximum value
1578  * @pcm: PCM instance
1579  * @params: the hw_params instance
1580  * @var: parameter to retrieve
1581  * @dir: pointer to the direction (-1,0,1) or %NULL
1582  *
1583  * Inside configuration space defined by @params remove from @var all
1584  * values < maximum. Reduce configuration space accordingly.
1585  * Return the maximum.
1586  */
1587 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1588                           struct snd_pcm_hw_params *params,
1589                           snd_pcm_hw_param_t var, int *dir)
1590 {
1591         int changed = _snd_pcm_hw_param_last(params, var);
1592         if (changed < 0)
1593                 return changed;
1594         if (params->rmask) {
1595                 int err = snd_pcm_hw_refine(pcm, params);
1596                 if (snd_BUG_ON(err < 0))
1597                         return err;
1598         }
1599         return snd_pcm_hw_param_value(params, var, dir);
1600 }
1601
1602 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1603
1604 /**
1605  * snd_pcm_hw_param_choose - choose a configuration defined by @params
1606  * @pcm: PCM instance
1607  * @params: the hw_params instance
1608  *
1609  * Choose one configuration from configuration space defined by @params.
1610  * The configuration chosen is that obtained fixing in this order:
1611  * first access, first format, first subformat, min channels,
1612  * min rate, min period time, max buffer size, min tick time
1613  */
1614 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1615                              struct snd_pcm_hw_params *params)
1616 {
1617         static int vars[] = {
1618                 SNDRV_PCM_HW_PARAM_ACCESS,
1619                 SNDRV_PCM_HW_PARAM_FORMAT,
1620                 SNDRV_PCM_HW_PARAM_SUBFORMAT,
1621                 SNDRV_PCM_HW_PARAM_CHANNELS,
1622                 SNDRV_PCM_HW_PARAM_RATE,
1623                 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1624                 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1625                 SNDRV_PCM_HW_PARAM_TICK_TIME,
1626                 -1
1627         };
1628         int err, *v;
1629
1630         for (v = vars; *v != -1; v++) {
1631                 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1632                         err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1633                 else
1634                         err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1635                 if (snd_BUG_ON(err < 0))
1636                         return err;
1637         }
1638         return 0;
1639 }
1640
1641 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1642                                    void *arg)
1643 {
1644         struct snd_pcm_runtime *runtime = substream->runtime;
1645         unsigned long flags;
1646         snd_pcm_stream_lock_irqsave(substream, flags);
1647         if (snd_pcm_running(substream) &&
1648             snd_pcm_update_hw_ptr(substream) >= 0)
1649                 runtime->status->hw_ptr %= runtime->buffer_size;
1650         else
1651                 runtime->status->hw_ptr = 0;
1652         snd_pcm_stream_unlock_irqrestore(substream, flags);
1653         return 0;
1654 }
1655
1656 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1657                                           void *arg)
1658 {
1659         struct snd_pcm_channel_info *info = arg;
1660         struct snd_pcm_runtime *runtime = substream->runtime;
1661         int width;
1662         if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1663                 info->offset = -1;
1664                 return 0;
1665         }
1666         width = snd_pcm_format_physical_width(runtime->format);
1667         if (width < 0)
1668                 return width;
1669         info->offset = 0;
1670         switch (runtime->access) {
1671         case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1672         case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1673                 info->first = info->channel * width;
1674                 info->step = runtime->channels * width;
1675                 break;
1676         case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1677         case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1678         {
1679                 size_t size = runtime->dma_bytes / runtime->channels;
1680                 info->first = info->channel * size * 8;
1681                 info->step = width;
1682                 break;
1683         }
1684         default:
1685                 snd_BUG();
1686                 break;
1687         }
1688         return 0;
1689 }
1690
1691 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1692                                        void *arg)
1693 {
1694         struct snd_pcm_hw_params *params = arg;
1695         snd_pcm_format_t format;
1696         int channels, width;
1697
1698         params->fifo_size = substream->runtime->hw.fifo_size;
1699         if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1700                 format = params_format(params);
1701                 channels = params_channels(params);
1702                 width = snd_pcm_format_physical_width(format);
1703                 params->fifo_size /= width * channels;
1704         }
1705         return 0;
1706 }
1707
1708 /**
1709  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1710  * @substream: the pcm substream instance
1711  * @cmd: ioctl command
1712  * @arg: ioctl argument
1713  *
1714  * Processes the generic ioctl commands for PCM.
1715  * Can be passed as the ioctl callback for PCM ops.
1716  *
1717  * Returns zero if successful, or a negative error code on failure.
1718  */
1719 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1720                       unsigned int cmd, void *arg)
1721 {
1722         switch (cmd) {
1723         case SNDRV_PCM_IOCTL1_INFO:
1724                 return 0;
1725         case SNDRV_PCM_IOCTL1_RESET:
1726                 return snd_pcm_lib_ioctl_reset(substream, arg);
1727         case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1728                 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1729         case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1730                 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1731         }
1732         return -ENXIO;
1733 }
1734
1735 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1736
1737 /**
1738  * snd_pcm_period_elapsed - update the pcm status for the next period
1739  * @substream: the pcm substream instance
1740  *
1741  * This function is called from the interrupt handler when the
1742  * PCM has processed the period size.  It will update the current
1743  * pointer, wake up sleepers, etc.
1744  *
1745  * Even if more than one periods have elapsed since the last call, you
1746  * have to call this only once.
1747  */
1748 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1749 {
1750         struct snd_pcm_runtime *runtime;
1751         unsigned long flags;
1752
1753         if (PCM_RUNTIME_CHECK(substream))
1754                 return;
1755         runtime = substream->runtime;
1756
1757         if (runtime->transfer_ack_begin)
1758                 runtime->transfer_ack_begin(substream);
1759
1760         snd_pcm_stream_lock_irqsave(substream, flags);
1761         if (!snd_pcm_running(substream) ||
1762             snd_pcm_update_hw_ptr0(substream, 1) < 0)
1763                 goto _end;
1764
1765         if (substream->timer_running)
1766                 snd_timer_interrupt(substream->timer, 1);
1767  _end:
1768         snd_pcm_stream_unlock_irqrestore(substream, flags);
1769         if (runtime->transfer_ack_end)
1770                 runtime->transfer_ack_end(substream);
1771         kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1772 }
1773
1774 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1775
1776 /*
1777  * Wait until avail_min data becomes available
1778  * Returns a negative error code if any error occurs during operation.
1779  * The available space is stored on availp.  When err = 0 and avail = 0
1780  * on the capture stream, it indicates the stream is in DRAINING state.
1781  */
1782 static int wait_for_avail(struct snd_pcm_substream *substream,
1783                               snd_pcm_uframes_t *availp)
1784 {
1785         struct snd_pcm_runtime *runtime = substream->runtime;
1786         int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1787         wait_queue_t wait;
1788         int err = 0;
1789         snd_pcm_uframes_t avail = 0;
1790         long wait_time, tout;
1791
1792         init_waitqueue_entry(&wait, current);
1793         set_current_state(TASK_INTERRUPTIBLE);
1794         add_wait_queue(&runtime->tsleep, &wait);
1795
1796         if (runtime->no_period_wakeup)
1797                 wait_time = MAX_SCHEDULE_TIMEOUT;
1798         else {
1799                 wait_time = 10;
1800                 if (runtime->rate) {
1801                         long t = runtime->period_size * 2 / runtime->rate;
1802                         wait_time = max(t, wait_time);
1803                 }
1804                 wait_time = msecs_to_jiffies(wait_time * 1000);
1805         }
1806
1807         for (;;) {
1808                 if (signal_pending(current)) {
1809                         err = -ERESTARTSYS;
1810                         break;
1811                 }
1812
1813                 /*
1814                  * We need to check if space became available already
1815                  * (and thus the wakeup happened already) first to close
1816                  * the race of space already having become available.
1817                  * This check must happen after been added to the waitqueue
1818                  * and having current state be INTERRUPTIBLE.
1819                  */
1820                 if (is_playback)
1821                         avail = snd_pcm_playback_avail(runtime);
1822                 else
1823                         avail = snd_pcm_capture_avail(runtime);
1824                 if (avail >= runtime->twake)
1825                         break;
1826                 snd_pcm_stream_unlock_irq(substream);
1827
1828                 tout = schedule_timeout(wait_time);
1829
1830                 snd_pcm_stream_lock_irq(substream);
1831                 set_current_state(TASK_INTERRUPTIBLE);
1832                 switch (runtime->status->state) {
1833                 case SNDRV_PCM_STATE_SUSPENDED:
1834                         err = -ESTRPIPE;
1835                         goto _endloop;
1836                 case SNDRV_PCM_STATE_XRUN:
1837                         err = -EPIPE;
1838                         goto _endloop;
1839                 case SNDRV_PCM_STATE_DRAINING:
1840                         if (is_playback)
1841                                 err = -EPIPE;
1842                         else 
1843                                 avail = 0; /* indicate draining */
1844                         goto _endloop;
1845                 case SNDRV_PCM_STATE_OPEN:
1846                 case SNDRV_PCM_STATE_SETUP:
1847                 case SNDRV_PCM_STATE_DISCONNECTED:
1848                         err = -EBADFD;
1849                         goto _endloop;
1850                 }
1851                 if (!tout) {
1852                         snd_printd("%s write error (DMA or IRQ trouble?)\n",
1853                                    is_playback ? "playback" : "capture");
1854                         err = -EIO;
1855                         break;
1856                 }
1857         }
1858  _endloop:
1859         set_current_state(TASK_RUNNING);
1860         remove_wait_queue(&runtime->tsleep, &wait);
1861         *availp = avail;
1862         return err;
1863 }
1864         
1865 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1866                                       unsigned int hwoff,
1867                                       unsigned long data, unsigned int off,
1868                                       snd_pcm_uframes_t frames)
1869 {
1870         struct snd_pcm_runtime *runtime = substream->runtime;
1871         int err;
1872         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1873         if (substream->ops->copy) {
1874                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1875                         return err;
1876         } else {
1877                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1878                 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1879                         return -EFAULT;
1880         }
1881         return 0;
1882 }
1883  
1884 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1885                           unsigned long data, unsigned int off,
1886                           snd_pcm_uframes_t size);
1887
1888 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 
1889                                             unsigned long data,
1890                                             snd_pcm_uframes_t size,
1891                                             int nonblock,
1892                                             transfer_f transfer)
1893 {
1894         struct snd_pcm_runtime *runtime = substream->runtime;
1895         snd_pcm_uframes_t xfer = 0;
1896         snd_pcm_uframes_t offset = 0;
1897         snd_pcm_uframes_t avail;
1898         int err = 0;
1899
1900         if (size == 0)
1901                 return 0;
1902
1903         snd_pcm_stream_lock_irq(substream);
1904         switch (runtime->status->state) {
1905         case SNDRV_PCM_STATE_PREPARED:
1906         case SNDRV_PCM_STATE_RUNNING:
1907         case SNDRV_PCM_STATE_PAUSED:
1908                 break;
1909         case SNDRV_PCM_STATE_XRUN:
1910                 err = -EPIPE;
1911                 goto _end_unlock;
1912         case SNDRV_PCM_STATE_SUSPENDED:
1913                 err = -ESTRPIPE;
1914                 goto _end_unlock;
1915         default:
1916                 err = -EBADFD;
1917                 goto _end_unlock;
1918         }
1919
1920         runtime->twake = runtime->control->avail_min ? : 1;
1921         if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1922                 snd_pcm_update_hw_ptr(substream);
1923         avail = snd_pcm_playback_avail(runtime);
1924         while (size > 0) {
1925                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1926                 snd_pcm_uframes_t cont;
1927                 if (!avail) {
1928                         if (nonblock) {
1929                                 err = -EAGAIN;
1930                                 goto _end_unlock;
1931                         }
1932                         runtime->twake = min_t(snd_pcm_uframes_t, size,
1933                                         runtime->control->avail_min ? : 1);
1934                         err = wait_for_avail(substream, &avail);
1935                         if (err < 0)
1936                                 goto _end_unlock;
1937                 }
1938                 frames = size > avail ? avail : size;
1939                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
1940                 if (frames > cont)
1941                         frames = cont;
1942                 if (snd_BUG_ON(!frames)) {
1943                         runtime->twake = 0;
1944                         snd_pcm_stream_unlock_irq(substream);
1945                         return -EINVAL;
1946                 }
1947                 appl_ptr = runtime->control->appl_ptr;
1948                 appl_ofs = appl_ptr % runtime->buffer_size;
1949                 snd_pcm_stream_unlock_irq(substream);
1950                 err = transfer(substream, appl_ofs, data, offset, frames);
1951                 snd_pcm_stream_lock_irq(substream);
1952                 if (err < 0)
1953                         goto _end_unlock;
1954                 switch (runtime->status->state) {
1955                 case SNDRV_PCM_STATE_XRUN:
1956                         err = -EPIPE;
1957                         goto _end_unlock;
1958                 case SNDRV_PCM_STATE_SUSPENDED:
1959                         err = -ESTRPIPE;
1960                         goto _end_unlock;
1961                 default:
1962                         break;
1963                 }
1964                 appl_ptr += frames;
1965                 if (appl_ptr >= runtime->boundary)
1966                         appl_ptr -= runtime->boundary;
1967                 runtime->control->appl_ptr = appl_ptr;
1968                 if (substream->ops->ack)
1969                         substream->ops->ack(substream);
1970
1971                 offset += frames;
1972                 size -= frames;
1973                 xfer += frames;
1974                 avail -= frames;
1975                 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
1976                     snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
1977                         err = snd_pcm_start(substream);
1978                         if (err < 0)
1979                                 goto _end_unlock;
1980                 }
1981         }
1982  _end_unlock:
1983         runtime->twake = 0;
1984         if (xfer > 0 && err >= 0)
1985                 snd_pcm_update_state(substream, runtime);
1986         snd_pcm_stream_unlock_irq(substream);
1987         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
1988 }
1989
1990 /* sanity-check for read/write methods */
1991 static int pcm_sanity_check(struct snd_pcm_substream *substream)
1992 {
1993         struct snd_pcm_runtime *runtime;
1994         if (PCM_RUNTIME_CHECK(substream))
1995                 return -ENXIO;
1996         runtime = substream->runtime;
1997         if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
1998                 return -EINVAL;
1999         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2000                 return -EBADFD;
2001         return 0;
2002 }
2003
2004 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
2005 {
2006         struct snd_pcm_runtime *runtime;
2007         int nonblock;
2008         int err;
2009
2010         err = pcm_sanity_check(substream);
2011         if (err < 0)
2012                 return err;
2013         runtime = substream->runtime;
2014         nonblock = !!(substream->f_flags & O_NONBLOCK);
2015
2016         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2017             runtime->channels > 1)
2018                 return -EINVAL;
2019         return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2020                                   snd_pcm_lib_write_transfer);
2021 }
2022
2023 EXPORT_SYMBOL(snd_pcm_lib_write);
2024
2025 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
2026                                        unsigned int hwoff,
2027                                        unsigned long data, unsigned int off,
2028                                        snd_pcm_uframes_t frames)
2029 {
2030         struct snd_pcm_runtime *runtime = substream->runtime;
2031         int err;
2032         void __user **bufs = (void __user **)data;
2033         int channels = runtime->channels;
2034         int c;
2035         if (substream->ops->copy) {
2036                 if (snd_BUG_ON(!substream->ops->silence))
2037                         return -EINVAL;
2038                 for (c = 0; c < channels; ++c, ++bufs) {
2039                         if (*bufs == NULL) {
2040                                 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2041                                         return err;
2042                         } else {
2043                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2044                                 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2045                                         return err;
2046                         }
2047                 }
2048         } else {
2049                 /* default transfer behaviour */
2050                 size_t dma_csize = runtime->dma_bytes / channels;
2051                 for (c = 0; c < channels; ++c, ++bufs) {
2052                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2053                         if (*bufs == NULL) {
2054                                 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2055                         } else {
2056                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2057                                 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2058                                         return -EFAULT;
2059                         }
2060                 }
2061         }
2062         return 0;
2063 }
2064  
2065 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2066                                      void __user **bufs,
2067                                      snd_pcm_uframes_t frames)
2068 {
2069         struct snd_pcm_runtime *runtime;
2070         int nonblock;
2071         int err;
2072
2073         err = pcm_sanity_check(substream);
2074         if (err < 0)
2075                 return err;
2076         runtime = substream->runtime;
2077         nonblock = !!(substream->f_flags & O_NONBLOCK);
2078
2079         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2080                 return -EINVAL;
2081         return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2082                                   nonblock, snd_pcm_lib_writev_transfer);
2083 }
2084
2085 EXPORT_SYMBOL(snd_pcm_lib_writev);
2086
2087 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 
2088                                      unsigned int hwoff,
2089                                      unsigned long data, unsigned int off,
2090                                      snd_pcm_uframes_t frames)
2091 {
2092         struct snd_pcm_runtime *runtime = substream->runtime;
2093         int err;
2094         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2095         if (substream->ops->copy) {
2096                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2097                         return err;
2098         } else {
2099                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2100                 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2101                         return -EFAULT;
2102         }
2103         return 0;
2104 }
2105
2106 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2107                                            unsigned long data,
2108                                            snd_pcm_uframes_t size,
2109                                            int nonblock,
2110                                            transfer_f transfer)
2111 {
2112         struct snd_pcm_runtime *runtime = substream->runtime;
2113         snd_pcm_uframes_t xfer = 0;
2114         snd_pcm_uframes_t offset = 0;
2115         snd_pcm_uframes_t avail;
2116         int err = 0;
2117
2118         if (size == 0)
2119                 return 0;
2120
2121         snd_pcm_stream_lock_irq(substream);
2122         switch (runtime->status->state) {
2123         case SNDRV_PCM_STATE_PREPARED:
2124                 if (size >= runtime->start_threshold) {
2125                         err = snd_pcm_start(substream);
2126                         if (err < 0)
2127                                 goto _end_unlock;
2128                 }
2129                 break;
2130         case SNDRV_PCM_STATE_DRAINING:
2131         case SNDRV_PCM_STATE_RUNNING:
2132         case SNDRV_PCM_STATE_PAUSED:
2133                 break;
2134         case SNDRV_PCM_STATE_XRUN:
2135                 err = -EPIPE;
2136                 goto _end_unlock;
2137         case SNDRV_PCM_STATE_SUSPENDED:
2138                 err = -ESTRPIPE;
2139                 goto _end_unlock;
2140         default:
2141                 err = -EBADFD;
2142                 goto _end_unlock;
2143         }
2144
2145         runtime->twake = runtime->control->avail_min ? : 1;
2146         if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2147                 snd_pcm_update_hw_ptr(substream);
2148         avail = snd_pcm_capture_avail(runtime);
2149         while (size > 0) {
2150                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2151                 snd_pcm_uframes_t cont;
2152                 if (!avail) {
2153                         if (runtime->status->state ==
2154                             SNDRV_PCM_STATE_DRAINING) {
2155                                 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2156                                 goto _end_unlock;
2157                         }
2158                         if (nonblock) {
2159                                 err = -EAGAIN;
2160                                 goto _end_unlock;
2161                         }
2162                         runtime->twake = min_t(snd_pcm_uframes_t, size,
2163                                         runtime->control->avail_min ? : 1);
2164                         err = wait_for_avail(substream, &avail);
2165                         if (err < 0)
2166                                 goto _end_unlock;
2167                         if (!avail)
2168                                 continue; /* draining */
2169                 }
2170                 frames = size > avail ? avail : size;
2171                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2172                 if (frames > cont)
2173                         frames = cont;
2174                 if (snd_BUG_ON(!frames)) {
2175                         runtime->twake = 0;
2176                         snd_pcm_stream_unlock_irq(substream);
2177                         return -EINVAL;
2178                 }
2179                 appl_ptr = runtime->control->appl_ptr;
2180                 appl_ofs = appl_ptr % runtime->buffer_size;
2181                 snd_pcm_stream_unlock_irq(substream);
2182                 err = transfer(substream, appl_ofs, data, offset, frames);
2183                 snd_pcm_stream_lock_irq(substream);
2184                 if (err < 0)
2185                         goto _end_unlock;
2186                 switch (runtime->status->state) {
2187                 case SNDRV_PCM_STATE_XRUN:
2188                         err = -EPIPE;
2189                         goto _end_unlock;
2190                 case SNDRV_PCM_STATE_SUSPENDED:
2191                         err = -ESTRPIPE;
2192                         goto _end_unlock;
2193                 default:
2194                         break;
2195                 }
2196                 appl_ptr += frames;
2197                 if (appl_ptr >= runtime->boundary)
2198                         appl_ptr -= runtime->boundary;
2199                 runtime->control->appl_ptr = appl_ptr;
2200                 if (substream->ops->ack)
2201                         substream->ops->ack(substream);
2202
2203                 offset += frames;
2204                 size -= frames;
2205                 xfer += frames;
2206                 avail -= frames;
2207         }
2208  _end_unlock:
2209         runtime->twake = 0;
2210         if (xfer > 0 && err >= 0)
2211                 snd_pcm_update_state(substream, runtime);
2212         snd_pcm_stream_unlock_irq(substream);
2213         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2214 }
2215
2216 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2217 {
2218         struct snd_pcm_runtime *runtime;
2219         int nonblock;
2220         int err;
2221         
2222         err = pcm_sanity_check(substream);
2223         if (err < 0)
2224                 return err;
2225         runtime = substream->runtime;
2226         nonblock = !!(substream->f_flags & O_NONBLOCK);
2227         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2228                 return -EINVAL;
2229         return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2230 }
2231
2232 EXPORT_SYMBOL(snd_pcm_lib_read);
2233
2234 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2235                                       unsigned int hwoff,
2236                                       unsigned long data, unsigned int off,
2237                                       snd_pcm_uframes_t frames)
2238 {
2239         struct snd_pcm_runtime *runtime = substream->runtime;
2240         int err;
2241         void __user **bufs = (void __user **)data;
2242         int channels = runtime->channels;
2243         int c;
2244         if (substream->ops->copy) {
2245                 for (c = 0; c < channels; ++c, ++bufs) {
2246                         char __user *buf;
2247                         if (*bufs == NULL)
2248                                 continue;
2249                         buf = *bufs + samples_to_bytes(runtime, off);
2250                         if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2251                                 return err;
2252                 }
2253         } else {
2254                 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2255                 for (c = 0; c < channels; ++c, ++bufs) {
2256                         char *hwbuf;
2257                         char __user *buf;
2258                         if (*bufs == NULL)
2259                                 continue;
2260
2261                         hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2262                         buf = *bufs + samples_to_bytes(runtime, off);
2263                         if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2264                                 return -EFAULT;
2265                 }
2266         }
2267         return 0;
2268 }
2269  
2270 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2271                                     void __user **bufs,
2272                                     snd_pcm_uframes_t frames)
2273 {
2274         struct snd_pcm_runtime *runtime;
2275         int nonblock;
2276         int err;
2277
2278         err = pcm_sanity_check(substream);
2279         if (err < 0)
2280                 return err;
2281         runtime = substream->runtime;
2282         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2283                 return -EBADFD;
2284
2285         nonblock = !!(substream->f_flags & O_NONBLOCK);
2286         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2287                 return -EINVAL;
2288         return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2289 }
2290
2291 EXPORT_SYMBOL(snd_pcm_lib_readv);