memcg: clarify use_hierarchy documentation
[pandora-kernel.git] / sound / core / pcm_lib.c
1 /*
2  *  Digital Audio (PCM) abstract layer
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *                   Abramo Bagnara <abramo@alsa-project.org>
5  *
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22
23 #include <linux/slab.h>
24 #include <linux/time.h>
25 #include <linux/math64.h>
26 #include <sound/core.h>
27 #include <sound/control.h>
28 #include <sound/info.h>
29 #include <sound/pcm.h>
30 #include <sound/pcm_params.h>
31 #include <sound/timer.h>
32
33 /*
34  * fill ring buffer with silence
35  * runtime->silence_start: starting pointer to silence area
36  * runtime->silence_filled: size filled with silence
37  * runtime->silence_threshold: threshold from application
38  * runtime->silence_size: maximal size from application
39  *
40  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
41  */
42 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
43 {
44         struct snd_pcm_runtime *runtime = substream->runtime;
45         snd_pcm_uframes_t frames, ofs, transfer;
46
47         if (runtime->silence_size < runtime->boundary) {
48                 snd_pcm_sframes_t noise_dist, n;
49                 if (runtime->silence_start != runtime->control->appl_ptr) {
50                         n = runtime->control->appl_ptr - runtime->silence_start;
51                         if (n < 0)
52                                 n += runtime->boundary;
53                         if ((snd_pcm_uframes_t)n < runtime->silence_filled)
54                                 runtime->silence_filled -= n;
55                         else
56                                 runtime->silence_filled = 0;
57                         runtime->silence_start = runtime->control->appl_ptr;
58                 }
59                 if (runtime->silence_filled >= runtime->buffer_size)
60                         return;
61                 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
62                 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
63                         return;
64                 frames = runtime->silence_threshold - noise_dist;
65                 if (frames > runtime->silence_size)
66                         frames = runtime->silence_size;
67         } else {
68                 if (new_hw_ptr == ULONG_MAX) {  /* initialization */
69                         snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
70                         if (avail > runtime->buffer_size)
71                                 avail = runtime->buffer_size;
72                         runtime->silence_filled = avail > 0 ? avail : 0;
73                         runtime->silence_start = (runtime->status->hw_ptr +
74                                                   runtime->silence_filled) %
75                                                  runtime->boundary;
76                 } else {
77                         ofs = runtime->status->hw_ptr;
78                         frames = new_hw_ptr - ofs;
79                         if ((snd_pcm_sframes_t)frames < 0)
80                                 frames += runtime->boundary;
81                         runtime->silence_filled -= frames;
82                         if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
83                                 runtime->silence_filled = 0;
84                                 runtime->silence_start = new_hw_ptr;
85                         } else {
86                                 runtime->silence_start = ofs;
87                         }
88                 }
89                 frames = runtime->buffer_size - runtime->silence_filled;
90         }
91         if (snd_BUG_ON(frames > runtime->buffer_size))
92                 return;
93         if (frames == 0)
94                 return;
95         ofs = runtime->silence_start % runtime->buffer_size;
96         while (frames > 0) {
97                 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
98                 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
99                     runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
100                         if (substream->ops->silence) {
101                                 int err;
102                                 err = substream->ops->silence(substream, -1, ofs, transfer);
103                                 snd_BUG_ON(err < 0);
104                         } else {
105                                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
106                                 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
107                         }
108                 } else {
109                         unsigned int c;
110                         unsigned int channels = runtime->channels;
111                         if (substream->ops->silence) {
112                                 for (c = 0; c < channels; ++c) {
113                                         int err;
114                                         err = substream->ops->silence(substream, c, ofs, transfer);
115                                         snd_BUG_ON(err < 0);
116                                 }
117                         } else {
118                                 size_t dma_csize = runtime->dma_bytes / channels;
119                                 for (c = 0; c < channels; ++c) {
120                                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
121                                         snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
122                                 }
123                         }
124                 }
125                 runtime->silence_filled += transfer;
126                 frames -= transfer;
127                 ofs = 0;
128         }
129 }
130
131 static void pcm_debug_name(struct snd_pcm_substream *substream,
132                            char *name, size_t len)
133 {
134         snprintf(name, len, "pcmC%dD%d%c:%d",
135                  substream->pcm->card->number,
136                  substream->pcm->device,
137                  substream->stream ? 'c' : 'p',
138                  substream->number);
139 }
140
141 #define XRUN_DEBUG_BASIC        (1<<0)
142 #define XRUN_DEBUG_STACK        (1<<1)  /* dump also stack */
143 #define XRUN_DEBUG_JIFFIESCHECK (1<<2)  /* do jiffies check */
144 #define XRUN_DEBUG_PERIODUPDATE (1<<3)  /* full period update info */
145 #define XRUN_DEBUG_HWPTRUPDATE  (1<<4)  /* full hwptr update info */
146 #define XRUN_DEBUG_LOG          (1<<5)  /* show last 10 positions on err */
147 #define XRUN_DEBUG_LOGONCE      (1<<6)  /* do above only once */
148
149 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
150
151 #define xrun_debug(substream, mask) \
152                         ((substream)->pstr->xrun_debug & (mask))
153 #else
154 #define xrun_debug(substream, mask)     0
155 #endif
156
157 #define dump_stack_on_xrun(substream) do {                      \
158                 if (xrun_debug(substream, XRUN_DEBUG_STACK))    \
159                         dump_stack();                           \
160         } while (0)
161
162 static void xrun(struct snd_pcm_substream *substream)
163 {
164         struct snd_pcm_runtime *runtime = substream->runtime;
165
166         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
167                 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
168         snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
169         if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
170                 char name[16];
171                 pcm_debug_name(substream, name, sizeof(name));
172                 snd_printd(KERN_DEBUG "XRUN: %s\n", name);
173                 dump_stack_on_xrun(substream);
174         }
175 }
176
177 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
178 #define hw_ptr_error(substream, fmt, args...)                           \
179         do {                                                            \
180                 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {          \
181                         xrun_log_show(substream);                       \
182                         if (printk_ratelimit()) {                       \
183                                 snd_printd("PCM: " fmt, ##args);        \
184                         }                                               \
185                         dump_stack_on_xrun(substream);                  \
186                 }                                                       \
187         } while (0)
188
189 #define XRUN_LOG_CNT    10
190
191 struct hwptr_log_entry {
192         unsigned long jiffies;
193         snd_pcm_uframes_t pos;
194         snd_pcm_uframes_t period_size;
195         snd_pcm_uframes_t buffer_size;
196         snd_pcm_uframes_t old_hw_ptr;
197         snd_pcm_uframes_t hw_ptr_base;
198 };
199
200 struct snd_pcm_hwptr_log {
201         unsigned int idx;
202         unsigned int hit: 1;
203         struct hwptr_log_entry entries[XRUN_LOG_CNT];
204 };
205
206 static void xrun_log(struct snd_pcm_substream *substream,
207                      snd_pcm_uframes_t pos)
208 {
209         struct snd_pcm_runtime *runtime = substream->runtime;
210         struct snd_pcm_hwptr_log *log = runtime->hwptr_log;
211         struct hwptr_log_entry *entry;
212
213         if (log == NULL) {
214                 log = kzalloc(sizeof(*log), GFP_ATOMIC);
215                 if (log == NULL)
216                         return;
217                 runtime->hwptr_log = log;
218         } else {
219                 if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
220                         return;
221         }
222         entry = &log->entries[log->idx];
223         entry->jiffies = jiffies;
224         entry->pos = pos;
225         entry->period_size = runtime->period_size;
226         entry->buffer_size = runtime->buffer_size;
227         entry->old_hw_ptr = runtime->status->hw_ptr;
228         entry->hw_ptr_base = runtime->hw_ptr_base;
229         log->idx = (log->idx + 1) % XRUN_LOG_CNT;
230 }
231
232 static void xrun_log_show(struct snd_pcm_substream *substream)
233 {
234         struct snd_pcm_hwptr_log *log = substream->runtime->hwptr_log;
235         struct hwptr_log_entry *entry;
236         char name[16];
237         unsigned int idx;
238         int cnt;
239
240         if (log == NULL)
241                 return;
242         if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
243                 return;
244         pcm_debug_name(substream, name, sizeof(name));
245         for (cnt = 0, idx = log->idx; cnt < XRUN_LOG_CNT; cnt++) {
246                 entry = &log->entries[idx];
247                 if (entry->period_size == 0)
248                         break;
249                 snd_printd("hwptr log: %s: j=%lu, pos=%ld/%ld/%ld, "
250                            "hwptr=%ld/%ld\n",
251                            name, entry->jiffies, (unsigned long)entry->pos,
252                            (unsigned long)entry->period_size,
253                            (unsigned long)entry->buffer_size,
254                            (unsigned long)entry->old_hw_ptr,
255                            (unsigned long)entry->hw_ptr_base);
256                 idx++;
257                 idx %= XRUN_LOG_CNT;
258         }
259         log->hit = 1;
260 }
261
262 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
263
264 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
265 #define xrun_log(substream, pos)        do { } while (0)
266 #define xrun_log_show(substream)        do { } while (0)
267
268 #endif
269
270 int snd_pcm_update_state(struct snd_pcm_substream *substream,
271                          struct snd_pcm_runtime *runtime)
272 {
273         snd_pcm_uframes_t avail;
274
275         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
276                 avail = snd_pcm_playback_avail(runtime);
277         else
278                 avail = snd_pcm_capture_avail(runtime);
279         if (avail > runtime->avail_max)
280                 runtime->avail_max = avail;
281         if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
282                 if (avail >= runtime->buffer_size) {
283                         snd_pcm_drain_done(substream);
284                         return -EPIPE;
285                 }
286         } else {
287                 if (avail >= runtime->stop_threshold) {
288                         xrun(substream);
289                         return -EPIPE;
290                 }
291         }
292         if (runtime->twake) {
293                 if (avail >= runtime->twake)
294                         wake_up(&runtime->tsleep);
295         } else if (avail >= runtime->control->avail_min)
296                 wake_up(&runtime->sleep);
297         return 0;
298 }
299
300 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
301                                   unsigned int in_interrupt)
302 {
303         struct snd_pcm_runtime *runtime = substream->runtime;
304         snd_pcm_uframes_t pos;
305         snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
306         snd_pcm_sframes_t hdelta, delta;
307         unsigned long jdelta;
308
309         old_hw_ptr = runtime->status->hw_ptr;
310         pos = substream->ops->pointer(substream);
311         if (pos == SNDRV_PCM_POS_XRUN) {
312                 xrun(substream);
313                 return -EPIPE;
314         }
315         if (pos >= runtime->buffer_size) {
316                 if (printk_ratelimit()) {
317                         char name[16];
318                         pcm_debug_name(substream, name, sizeof(name));
319                         xrun_log_show(substream);
320                         snd_printd(KERN_ERR  "BUG: %s, pos = %ld, "
321                                    "buffer size = %ld, period size = %ld\n",
322                                    name, pos, runtime->buffer_size,
323                                    runtime->period_size);
324                 }
325                 pos = 0;
326         }
327         pos -= pos % runtime->min_align;
328         if (xrun_debug(substream, XRUN_DEBUG_LOG))
329                 xrun_log(substream, pos);
330         hw_base = runtime->hw_ptr_base;
331         new_hw_ptr = hw_base + pos;
332         if (in_interrupt) {
333                 /* we know that one period was processed */
334                 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
335                 delta = runtime->hw_ptr_interrupt + runtime->period_size;
336                 if (delta > new_hw_ptr) {
337                         /* check for double acknowledged interrupts */
338                         hdelta = jiffies - runtime->hw_ptr_jiffies;
339                         if (hdelta > runtime->hw_ptr_buffer_jiffies/2) {
340                                 hw_base += runtime->buffer_size;
341                                 if (hw_base >= runtime->boundary)
342                                         hw_base = 0;
343                                 new_hw_ptr = hw_base + pos;
344                                 goto __delta;
345                         }
346                 }
347         }
348         /* new_hw_ptr might be lower than old_hw_ptr in case when */
349         /* pointer crosses the end of the ring buffer */
350         if (new_hw_ptr < old_hw_ptr) {
351                 hw_base += runtime->buffer_size;
352                 if (hw_base >= runtime->boundary)
353                         hw_base = 0;
354                 new_hw_ptr = hw_base + pos;
355         }
356       __delta:
357         delta = new_hw_ptr - old_hw_ptr;
358         if (delta < 0)
359                 delta += runtime->boundary;
360         if (xrun_debug(substream, in_interrupt ?
361                         XRUN_DEBUG_PERIODUPDATE : XRUN_DEBUG_HWPTRUPDATE)) {
362                 char name[16];
363                 pcm_debug_name(substream, name, sizeof(name));
364                 snd_printd("%s_update: %s: pos=%u/%u/%u, "
365                            "hwptr=%ld/%ld/%ld/%ld\n",
366                            in_interrupt ? "period" : "hwptr",
367                            name,
368                            (unsigned int)pos,
369                            (unsigned int)runtime->period_size,
370                            (unsigned int)runtime->buffer_size,
371                            (unsigned long)delta,
372                            (unsigned long)old_hw_ptr,
373                            (unsigned long)new_hw_ptr,
374                            (unsigned long)runtime->hw_ptr_base);
375         }
376
377         if (runtime->no_period_wakeup) {
378                 /*
379                  * Without regular period interrupts, we have to check
380                  * the elapsed time to detect xruns.
381                  */
382                 jdelta = jiffies - runtime->hw_ptr_jiffies;
383                 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
384                         goto no_delta_check;
385                 hdelta = jdelta - delta * HZ / runtime->rate;
386                 while (hdelta > runtime->hw_ptr_buffer_jiffies / 2 + 1) {
387                         delta += runtime->buffer_size;
388                         hw_base += runtime->buffer_size;
389                         if (hw_base >= runtime->boundary)
390                                 hw_base = 0;
391                         new_hw_ptr = hw_base + pos;
392                         hdelta -= runtime->hw_ptr_buffer_jiffies;
393                 }
394                 goto no_delta_check;
395         }
396
397         /* something must be really wrong */
398         if (delta >= runtime->buffer_size + runtime->period_size) {
399                 hw_ptr_error(substream,
400                                "Unexpected hw_pointer value %s"
401                                "(stream=%i, pos=%ld, new_hw_ptr=%ld, "
402                                "old_hw_ptr=%ld)\n",
403                                      in_interrupt ? "[Q] " : "[P]",
404                                      substream->stream, (long)pos,
405                                      (long)new_hw_ptr, (long)old_hw_ptr);
406                 return 0;
407         }
408
409         /* Do jiffies check only in xrun_debug mode */
410         if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
411                 goto no_jiffies_check;
412
413         /* Skip the jiffies check for hardwares with BATCH flag.
414          * Such hardware usually just increases the position at each IRQ,
415          * thus it can't give any strange position.
416          */
417         if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
418                 goto no_jiffies_check;
419         hdelta = delta;
420         if (hdelta < runtime->delay)
421                 goto no_jiffies_check;
422         hdelta -= runtime->delay;
423         jdelta = jiffies - runtime->hw_ptr_jiffies;
424         if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
425                 delta = jdelta /
426                         (((runtime->period_size * HZ) / runtime->rate)
427                                                                 + HZ/100);
428                 /* move new_hw_ptr according jiffies not pos variable */
429                 new_hw_ptr = old_hw_ptr;
430                 hw_base = delta;
431                 /* use loop to avoid checks for delta overflows */
432                 /* the delta value is small or zero in most cases */
433                 while (delta > 0) {
434                         new_hw_ptr += runtime->period_size;
435                         if (new_hw_ptr >= runtime->boundary)
436                                 new_hw_ptr -= runtime->boundary;
437                         delta--;
438                 }
439                 /* align hw_base to buffer_size */
440                 hw_ptr_error(substream,
441                              "hw_ptr skipping! %s"
442                              "(pos=%ld, delta=%ld, period=%ld, "
443                              "jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
444                              in_interrupt ? "[Q] " : "",
445                              (long)pos, (long)hdelta,
446                              (long)runtime->period_size, jdelta,
447                              ((hdelta * HZ) / runtime->rate), hw_base,
448                              (unsigned long)old_hw_ptr,
449                              (unsigned long)new_hw_ptr);
450                 /* reset values to proper state */
451                 delta = 0;
452                 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
453         }
454  no_jiffies_check:
455         if (delta > runtime->period_size + runtime->period_size / 2) {
456                 hw_ptr_error(substream,
457                              "Lost interrupts? %s"
458                              "(stream=%i, delta=%ld, new_hw_ptr=%ld, "
459                              "old_hw_ptr=%ld)\n",
460                              in_interrupt ? "[Q] " : "",
461                              substream->stream, (long)delta,
462                              (long)new_hw_ptr,
463                              (long)old_hw_ptr);
464         }
465
466  no_delta_check:
467         if (runtime->status->hw_ptr == new_hw_ptr)
468                 return 0;
469
470         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
471             runtime->silence_size > 0)
472                 snd_pcm_playback_silence(substream, new_hw_ptr);
473
474         if (in_interrupt) {
475                 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
476                 if (delta < 0)
477                         delta += runtime->boundary;
478                 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
479                 runtime->hw_ptr_interrupt += delta;
480                 if (runtime->hw_ptr_interrupt >= runtime->boundary)
481                         runtime->hw_ptr_interrupt -= runtime->boundary;
482         }
483         runtime->hw_ptr_base = hw_base;
484         runtime->status->hw_ptr = new_hw_ptr;
485         runtime->hw_ptr_jiffies = jiffies;
486         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
487                 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
488
489         return snd_pcm_update_state(substream, runtime);
490 }
491
492 /* CAUTION: call it with irq disabled */
493 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
494 {
495         return snd_pcm_update_hw_ptr0(substream, 0);
496 }
497
498 /**
499  * snd_pcm_set_ops - set the PCM operators
500  * @pcm: the pcm instance
501  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
502  * @ops: the operator table
503  *
504  * Sets the given PCM operators to the pcm instance.
505  */
506 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops)
507 {
508         struct snd_pcm_str *stream = &pcm->streams[direction];
509         struct snd_pcm_substream *substream;
510         
511         for (substream = stream->substream; substream != NULL; substream = substream->next)
512                 substream->ops = ops;
513 }
514
515 EXPORT_SYMBOL(snd_pcm_set_ops);
516
517 /**
518  * snd_pcm_sync - set the PCM sync id
519  * @substream: the pcm substream
520  *
521  * Sets the PCM sync identifier for the card.
522  */
523 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
524 {
525         struct snd_pcm_runtime *runtime = substream->runtime;
526         
527         runtime->sync.id32[0] = substream->pcm->card->number;
528         runtime->sync.id32[1] = -1;
529         runtime->sync.id32[2] = -1;
530         runtime->sync.id32[3] = -1;
531 }
532
533 EXPORT_SYMBOL(snd_pcm_set_sync);
534
535 /*
536  *  Standard ioctl routine
537  */
538
539 static inline unsigned int div32(unsigned int a, unsigned int b, 
540                                  unsigned int *r)
541 {
542         if (b == 0) {
543                 *r = 0;
544                 return UINT_MAX;
545         }
546         *r = a % b;
547         return a / b;
548 }
549
550 static inline unsigned int div_down(unsigned int a, unsigned int b)
551 {
552         if (b == 0)
553                 return UINT_MAX;
554         return a / b;
555 }
556
557 static inline unsigned int div_up(unsigned int a, unsigned int b)
558 {
559         unsigned int r;
560         unsigned int q;
561         if (b == 0)
562                 return UINT_MAX;
563         q = div32(a, b, &r);
564         if (r)
565                 ++q;
566         return q;
567 }
568
569 static inline unsigned int mul(unsigned int a, unsigned int b)
570 {
571         if (a == 0)
572                 return 0;
573         if (div_down(UINT_MAX, a) < b)
574                 return UINT_MAX;
575         return a * b;
576 }
577
578 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
579                                     unsigned int c, unsigned int *r)
580 {
581         u_int64_t n = (u_int64_t) a * b;
582         if (c == 0) {
583                 snd_BUG_ON(!n);
584                 *r = 0;
585                 return UINT_MAX;
586         }
587         n = div_u64_rem(n, c, r);
588         if (n >= UINT_MAX) {
589                 *r = 0;
590                 return UINT_MAX;
591         }
592         return n;
593 }
594
595 /**
596  * snd_interval_refine - refine the interval value of configurator
597  * @i: the interval value to refine
598  * @v: the interval value to refer to
599  *
600  * Refines the interval value with the reference value.
601  * The interval is changed to the range satisfying both intervals.
602  * The interval status (min, max, integer, etc.) are evaluated.
603  *
604  * Returns non-zero if the value is changed, zero if not changed.
605  */
606 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
607 {
608         int changed = 0;
609         if (snd_BUG_ON(snd_interval_empty(i)))
610                 return -EINVAL;
611         if (i->min < v->min) {
612                 i->min = v->min;
613                 i->openmin = v->openmin;
614                 changed = 1;
615         } else if (i->min == v->min && !i->openmin && v->openmin) {
616                 i->openmin = 1;
617                 changed = 1;
618         }
619         if (i->max > v->max) {
620                 i->max = v->max;
621                 i->openmax = v->openmax;
622                 changed = 1;
623         } else if (i->max == v->max && !i->openmax && v->openmax) {
624                 i->openmax = 1;
625                 changed = 1;
626         }
627         if (!i->integer && v->integer) {
628                 i->integer = 1;
629                 changed = 1;
630         }
631         if (i->integer) {
632                 if (i->openmin) {
633                         i->min++;
634                         i->openmin = 0;
635                 }
636                 if (i->openmax) {
637                         i->max--;
638                         i->openmax = 0;
639                 }
640         } else if (!i->openmin && !i->openmax && i->min == i->max)
641                 i->integer = 1;
642         if (snd_interval_checkempty(i)) {
643                 snd_interval_none(i);
644                 return -EINVAL;
645         }
646         return changed;
647 }
648
649 EXPORT_SYMBOL(snd_interval_refine);
650
651 static int snd_interval_refine_first(struct snd_interval *i)
652 {
653         if (snd_BUG_ON(snd_interval_empty(i)))
654                 return -EINVAL;
655         if (snd_interval_single(i))
656                 return 0;
657         i->max = i->min;
658         i->openmax = i->openmin;
659         if (i->openmax)
660                 i->max++;
661         return 1;
662 }
663
664 static int snd_interval_refine_last(struct snd_interval *i)
665 {
666         if (snd_BUG_ON(snd_interval_empty(i)))
667                 return -EINVAL;
668         if (snd_interval_single(i))
669                 return 0;
670         i->min = i->max;
671         i->openmin = i->openmax;
672         if (i->openmin)
673                 i->min--;
674         return 1;
675 }
676
677 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
678 {
679         if (a->empty || b->empty) {
680                 snd_interval_none(c);
681                 return;
682         }
683         c->empty = 0;
684         c->min = mul(a->min, b->min);
685         c->openmin = (a->openmin || b->openmin);
686         c->max = mul(a->max,  b->max);
687         c->openmax = (a->openmax || b->openmax);
688         c->integer = (a->integer && b->integer);
689 }
690
691 /**
692  * snd_interval_div - refine the interval value with division
693  * @a: dividend
694  * @b: divisor
695  * @c: quotient
696  *
697  * c = a / b
698  *
699  * Returns non-zero if the value is changed, zero if not changed.
700  */
701 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
702 {
703         unsigned int r;
704         if (a->empty || b->empty) {
705                 snd_interval_none(c);
706                 return;
707         }
708         c->empty = 0;
709         c->min = div32(a->min, b->max, &r);
710         c->openmin = (r || a->openmin || b->openmax);
711         if (b->min > 0) {
712                 c->max = div32(a->max, b->min, &r);
713                 if (r) {
714                         c->max++;
715                         c->openmax = 1;
716                 } else
717                         c->openmax = (a->openmax || b->openmin);
718         } else {
719                 c->max = UINT_MAX;
720                 c->openmax = 0;
721         }
722         c->integer = 0;
723 }
724
725 /**
726  * snd_interval_muldivk - refine the interval value
727  * @a: dividend 1
728  * @b: dividend 2
729  * @k: divisor (as integer)
730  * @c: result
731   *
732  * c = a * b / k
733  *
734  * Returns non-zero if the value is changed, zero if not changed.
735  */
736 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
737                       unsigned int k, struct snd_interval *c)
738 {
739         unsigned int r;
740         if (a->empty || b->empty) {
741                 snd_interval_none(c);
742                 return;
743         }
744         c->empty = 0;
745         c->min = muldiv32(a->min, b->min, k, &r);
746         c->openmin = (r || a->openmin || b->openmin);
747         c->max = muldiv32(a->max, b->max, k, &r);
748         if (r) {
749                 c->max++;
750                 c->openmax = 1;
751         } else
752                 c->openmax = (a->openmax || b->openmax);
753         c->integer = 0;
754 }
755
756 /**
757  * snd_interval_mulkdiv - refine the interval value
758  * @a: dividend 1
759  * @k: dividend 2 (as integer)
760  * @b: divisor
761  * @c: result
762  *
763  * c = a * k / b
764  *
765  * Returns non-zero if the value is changed, zero if not changed.
766  */
767 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
768                       const struct snd_interval *b, struct snd_interval *c)
769 {
770         unsigned int r;
771         if (a->empty || b->empty) {
772                 snd_interval_none(c);
773                 return;
774         }
775         c->empty = 0;
776         c->min = muldiv32(a->min, k, b->max, &r);
777         c->openmin = (r || a->openmin || b->openmax);
778         if (b->min > 0) {
779                 c->max = muldiv32(a->max, k, b->min, &r);
780                 if (r) {
781                         c->max++;
782                         c->openmax = 1;
783                 } else
784                         c->openmax = (a->openmax || b->openmin);
785         } else {
786                 c->max = UINT_MAX;
787                 c->openmax = 0;
788         }
789         c->integer = 0;
790 }
791
792 /* ---- */
793
794
795 /**
796  * snd_interval_ratnum - refine the interval value
797  * @i: interval to refine
798  * @rats_count: number of ratnum_t 
799  * @rats: ratnum_t array
800  * @nump: pointer to store the resultant numerator
801  * @denp: pointer to store the resultant denominator
802  *
803  * Returns non-zero if the value is changed, zero if not changed.
804  */
805 int snd_interval_ratnum(struct snd_interval *i,
806                         unsigned int rats_count, struct snd_ratnum *rats,
807                         unsigned int *nump, unsigned int *denp)
808 {
809         unsigned int best_num, best_den;
810         int best_diff;
811         unsigned int k;
812         struct snd_interval t;
813         int err;
814         unsigned int result_num, result_den;
815         int result_diff;
816
817         best_num = best_den = best_diff = 0;
818         for (k = 0; k < rats_count; ++k) {
819                 unsigned int num = rats[k].num;
820                 unsigned int den;
821                 unsigned int q = i->min;
822                 int diff;
823                 if (q == 0)
824                         q = 1;
825                 den = div_up(num, q);
826                 if (den < rats[k].den_min)
827                         continue;
828                 if (den > rats[k].den_max)
829                         den = rats[k].den_max;
830                 else {
831                         unsigned int r;
832                         r = (den - rats[k].den_min) % rats[k].den_step;
833                         if (r != 0)
834                                 den -= r;
835                 }
836                 diff = num - q * den;
837                 if (diff < 0)
838                         diff = -diff;
839                 if (best_num == 0 ||
840                     diff * best_den < best_diff * den) {
841                         best_diff = diff;
842                         best_den = den;
843                         best_num = num;
844                 }
845         }
846         if (best_den == 0) {
847                 i->empty = 1;
848                 return -EINVAL;
849         }
850         t.min = div_down(best_num, best_den);
851         t.openmin = !!(best_num % best_den);
852         
853         result_num = best_num;
854         result_diff = best_diff;
855         result_den = best_den;
856         best_num = best_den = best_diff = 0;
857         for (k = 0; k < rats_count; ++k) {
858                 unsigned int num = rats[k].num;
859                 unsigned int den;
860                 unsigned int q = i->max;
861                 int diff;
862                 if (q == 0) {
863                         i->empty = 1;
864                         return -EINVAL;
865                 }
866                 den = div_down(num, q);
867                 if (den > rats[k].den_max)
868                         continue;
869                 if (den < rats[k].den_min)
870                         den = rats[k].den_min;
871                 else {
872                         unsigned int r;
873                         r = (den - rats[k].den_min) % rats[k].den_step;
874                         if (r != 0)
875                                 den += rats[k].den_step - r;
876                 }
877                 diff = q * den - num;
878                 if (diff < 0)
879                         diff = -diff;
880                 if (best_num == 0 ||
881                     diff * best_den < best_diff * den) {
882                         best_diff = diff;
883                         best_den = den;
884                         best_num = num;
885                 }
886         }
887         if (best_den == 0) {
888                 i->empty = 1;
889                 return -EINVAL;
890         }
891         t.max = div_up(best_num, best_den);
892         t.openmax = !!(best_num % best_den);
893         t.integer = 0;
894         err = snd_interval_refine(i, &t);
895         if (err < 0)
896                 return err;
897
898         if (snd_interval_single(i)) {
899                 if (best_diff * result_den < result_diff * best_den) {
900                         result_num = best_num;
901                         result_den = best_den;
902                 }
903                 if (nump)
904                         *nump = result_num;
905                 if (denp)
906                         *denp = result_den;
907         }
908         return err;
909 }
910
911 EXPORT_SYMBOL(snd_interval_ratnum);
912
913 /**
914  * snd_interval_ratden - refine the interval value
915  * @i: interval to refine
916  * @rats_count: number of struct ratden
917  * @rats: struct ratden array
918  * @nump: pointer to store the resultant numerator
919  * @denp: pointer to store the resultant denominator
920  *
921  * Returns non-zero if the value is changed, zero if not changed.
922  */
923 static int snd_interval_ratden(struct snd_interval *i,
924                                unsigned int rats_count, struct snd_ratden *rats,
925                                unsigned int *nump, unsigned int *denp)
926 {
927         unsigned int best_num, best_diff, best_den;
928         unsigned int k;
929         struct snd_interval t;
930         int err;
931
932         best_num = best_den = best_diff = 0;
933         for (k = 0; k < rats_count; ++k) {
934                 unsigned int num;
935                 unsigned int den = rats[k].den;
936                 unsigned int q = i->min;
937                 int diff;
938                 num = mul(q, den);
939                 if (num > rats[k].num_max)
940                         continue;
941                 if (num < rats[k].num_min)
942                         num = rats[k].num_max;
943                 else {
944                         unsigned int r;
945                         r = (num - rats[k].num_min) % rats[k].num_step;
946                         if (r != 0)
947                                 num += rats[k].num_step - r;
948                 }
949                 diff = num - q * den;
950                 if (best_num == 0 ||
951                     diff * best_den < best_diff * den) {
952                         best_diff = diff;
953                         best_den = den;
954                         best_num = num;
955                 }
956         }
957         if (best_den == 0) {
958                 i->empty = 1;
959                 return -EINVAL;
960         }
961         t.min = div_down(best_num, best_den);
962         t.openmin = !!(best_num % best_den);
963         
964         best_num = best_den = best_diff = 0;
965         for (k = 0; k < rats_count; ++k) {
966                 unsigned int num;
967                 unsigned int den = rats[k].den;
968                 unsigned int q = i->max;
969                 int diff;
970                 num = mul(q, den);
971                 if (num < rats[k].num_min)
972                         continue;
973                 if (num > rats[k].num_max)
974                         num = rats[k].num_max;
975                 else {
976                         unsigned int r;
977                         r = (num - rats[k].num_min) % rats[k].num_step;
978                         if (r != 0)
979                                 num -= r;
980                 }
981                 diff = q * den - num;
982                 if (best_num == 0 ||
983                     diff * best_den < best_diff * den) {
984                         best_diff = diff;
985                         best_den = den;
986                         best_num = num;
987                 }
988         }
989         if (best_den == 0) {
990                 i->empty = 1;
991                 return -EINVAL;
992         }
993         t.max = div_up(best_num, best_den);
994         t.openmax = !!(best_num % best_den);
995         t.integer = 0;
996         err = snd_interval_refine(i, &t);
997         if (err < 0)
998                 return err;
999
1000         if (snd_interval_single(i)) {
1001                 if (nump)
1002                         *nump = best_num;
1003                 if (denp)
1004                         *denp = best_den;
1005         }
1006         return err;
1007 }
1008
1009 /**
1010  * snd_interval_list - refine the interval value from the list
1011  * @i: the interval value to refine
1012  * @count: the number of elements in the list
1013  * @list: the value list
1014  * @mask: the bit-mask to evaluate
1015  *
1016  * Refines the interval value from the list.
1017  * When mask is non-zero, only the elements corresponding to bit 1 are
1018  * evaluated.
1019  *
1020  * Returns non-zero if the value is changed, zero if not changed.
1021  */
1022 int snd_interval_list(struct snd_interval *i, unsigned int count, unsigned int *list, unsigned int mask)
1023 {
1024         unsigned int k;
1025         struct snd_interval list_range;
1026
1027         if (!count) {
1028                 i->empty = 1;
1029                 return -EINVAL;
1030         }
1031         snd_interval_any(&list_range);
1032         list_range.min = UINT_MAX;
1033         list_range.max = 0;
1034         for (k = 0; k < count; k++) {
1035                 if (mask && !(mask & (1 << k)))
1036                         continue;
1037                 if (!snd_interval_test(i, list[k]))
1038                         continue;
1039                 list_range.min = min(list_range.min, list[k]);
1040                 list_range.max = max(list_range.max, list[k]);
1041         }
1042         return snd_interval_refine(i, &list_range);
1043 }
1044
1045 EXPORT_SYMBOL(snd_interval_list);
1046
1047 static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
1048 {
1049         unsigned int n;
1050         int changed = 0;
1051         n = (i->min - min) % step;
1052         if (n != 0 || i->openmin) {
1053                 i->min += step - n;
1054                 changed = 1;
1055         }
1056         n = (i->max - min) % step;
1057         if (n != 0 || i->openmax) {
1058                 i->max -= n;
1059                 changed = 1;
1060         }
1061         if (snd_interval_checkempty(i)) {
1062                 i->empty = 1;
1063                 return -EINVAL;
1064         }
1065         return changed;
1066 }
1067
1068 /* Info constraints helpers */
1069
1070 /**
1071  * snd_pcm_hw_rule_add - add the hw-constraint rule
1072  * @runtime: the pcm runtime instance
1073  * @cond: condition bits
1074  * @var: the variable to evaluate
1075  * @func: the evaluation function
1076  * @private: the private data pointer passed to function
1077  * @dep: the dependent variables
1078  *
1079  * Returns zero if successful, or a negative error code on failure.
1080  */
1081 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1082                         int var,
1083                         snd_pcm_hw_rule_func_t func, void *private,
1084                         int dep, ...)
1085 {
1086         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1087         struct snd_pcm_hw_rule *c;
1088         unsigned int k;
1089         va_list args;
1090         va_start(args, dep);
1091         if (constrs->rules_num >= constrs->rules_all) {
1092                 struct snd_pcm_hw_rule *new;
1093                 unsigned int new_rules = constrs->rules_all + 16;
1094                 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1095                 if (!new) {
1096                         va_end(args);
1097                         return -ENOMEM;
1098                 }
1099                 if (constrs->rules) {
1100                         memcpy(new, constrs->rules,
1101                                constrs->rules_num * sizeof(*c));
1102                         kfree(constrs->rules);
1103                 }
1104                 constrs->rules = new;
1105                 constrs->rules_all = new_rules;
1106         }
1107         c = &constrs->rules[constrs->rules_num];
1108         c->cond = cond;
1109         c->func = func;
1110         c->var = var;
1111         c->private = private;
1112         k = 0;
1113         while (1) {
1114                 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1115                         va_end(args);
1116                         return -EINVAL;
1117                 }
1118                 c->deps[k++] = dep;
1119                 if (dep < 0)
1120                         break;
1121                 dep = va_arg(args, int);
1122         }
1123         constrs->rules_num++;
1124         va_end(args);
1125         return 0;
1126 }
1127
1128 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1129
1130 /**
1131  * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1132  * @runtime: PCM runtime instance
1133  * @var: hw_params variable to apply the mask
1134  * @mask: the bitmap mask
1135  *
1136  * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1137  */
1138 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1139                                u_int32_t mask)
1140 {
1141         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1142         struct snd_mask *maskp = constrs_mask(constrs, var);
1143         *maskp->bits &= mask;
1144         memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1145         if (*maskp->bits == 0)
1146                 return -EINVAL;
1147         return 0;
1148 }
1149
1150 /**
1151  * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1152  * @runtime: PCM runtime instance
1153  * @var: hw_params variable to apply the mask
1154  * @mask: the 64bit bitmap mask
1155  *
1156  * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1157  */
1158 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1159                                  u_int64_t mask)
1160 {
1161         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1162         struct snd_mask *maskp = constrs_mask(constrs, var);
1163         maskp->bits[0] &= (u_int32_t)mask;
1164         maskp->bits[1] &= (u_int32_t)(mask >> 32);
1165         memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1166         if (! maskp->bits[0] && ! maskp->bits[1])
1167                 return -EINVAL;
1168         return 0;
1169 }
1170
1171 /**
1172  * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1173  * @runtime: PCM runtime instance
1174  * @var: hw_params variable to apply the integer constraint
1175  *
1176  * Apply the constraint of integer to an interval parameter.
1177  */
1178 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1179 {
1180         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1181         return snd_interval_setinteger(constrs_interval(constrs, var));
1182 }
1183
1184 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1185
1186 /**
1187  * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1188  * @runtime: PCM runtime instance
1189  * @var: hw_params variable to apply the range
1190  * @min: the minimal value
1191  * @max: the maximal value
1192  * 
1193  * Apply the min/max range constraint to an interval parameter.
1194  */
1195 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1196                                  unsigned int min, unsigned int max)
1197 {
1198         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1199         struct snd_interval t;
1200         t.min = min;
1201         t.max = max;
1202         t.openmin = t.openmax = 0;
1203         t.integer = 0;
1204         return snd_interval_refine(constrs_interval(constrs, var), &t);
1205 }
1206
1207 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1208
1209 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1210                                 struct snd_pcm_hw_rule *rule)
1211 {
1212         struct snd_pcm_hw_constraint_list *list = rule->private;
1213         return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1214 }               
1215
1216
1217 /**
1218  * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1219  * @runtime: PCM runtime instance
1220  * @cond: condition bits
1221  * @var: hw_params variable to apply the list constraint
1222  * @l: list
1223  * 
1224  * Apply the list of constraints to an interval parameter.
1225  */
1226 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1227                                unsigned int cond,
1228                                snd_pcm_hw_param_t var,
1229                                struct snd_pcm_hw_constraint_list *l)
1230 {
1231         return snd_pcm_hw_rule_add(runtime, cond, var,
1232                                    snd_pcm_hw_rule_list, l,
1233                                    var, -1);
1234 }
1235
1236 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1237
1238 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1239                                    struct snd_pcm_hw_rule *rule)
1240 {
1241         struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1242         unsigned int num = 0, den = 0;
1243         int err;
1244         err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1245                                   r->nrats, r->rats, &num, &den);
1246         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1247                 params->rate_num = num;
1248                 params->rate_den = den;
1249         }
1250         return err;
1251 }
1252
1253 /**
1254  * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1255  * @runtime: PCM runtime instance
1256  * @cond: condition bits
1257  * @var: hw_params variable to apply the ratnums constraint
1258  * @r: struct snd_ratnums constriants
1259  */
1260 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1261                                   unsigned int cond,
1262                                   snd_pcm_hw_param_t var,
1263                                   struct snd_pcm_hw_constraint_ratnums *r)
1264 {
1265         return snd_pcm_hw_rule_add(runtime, cond, var,
1266                                    snd_pcm_hw_rule_ratnums, r,
1267                                    var, -1);
1268 }
1269
1270 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1271
1272 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1273                                    struct snd_pcm_hw_rule *rule)
1274 {
1275         struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1276         unsigned int num = 0, den = 0;
1277         int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1278                                   r->nrats, r->rats, &num, &den);
1279         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1280                 params->rate_num = num;
1281                 params->rate_den = den;
1282         }
1283         return err;
1284 }
1285
1286 /**
1287  * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1288  * @runtime: PCM runtime instance
1289  * @cond: condition bits
1290  * @var: hw_params variable to apply the ratdens constraint
1291  * @r: struct snd_ratdens constriants
1292  */
1293 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1294                                   unsigned int cond,
1295                                   snd_pcm_hw_param_t var,
1296                                   struct snd_pcm_hw_constraint_ratdens *r)
1297 {
1298         return snd_pcm_hw_rule_add(runtime, cond, var,
1299                                    snd_pcm_hw_rule_ratdens, r,
1300                                    var, -1);
1301 }
1302
1303 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1304
1305 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1306                                   struct snd_pcm_hw_rule *rule)
1307 {
1308         unsigned int l = (unsigned long) rule->private;
1309         int width = l & 0xffff;
1310         unsigned int msbits = l >> 16;
1311         struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1312         if (snd_interval_single(i) && snd_interval_value(i) == width)
1313                 params->msbits = msbits;
1314         return 0;
1315 }
1316
1317 /**
1318  * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1319  * @runtime: PCM runtime instance
1320  * @cond: condition bits
1321  * @width: sample bits width
1322  * @msbits: msbits width
1323  */
1324 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1325                                  unsigned int cond,
1326                                  unsigned int width,
1327                                  unsigned int msbits)
1328 {
1329         unsigned long l = (msbits << 16) | width;
1330         return snd_pcm_hw_rule_add(runtime, cond, -1,
1331                                     snd_pcm_hw_rule_msbits,
1332                                     (void*) l,
1333                                     SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1334 }
1335
1336 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1337
1338 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1339                                 struct snd_pcm_hw_rule *rule)
1340 {
1341         unsigned long step = (unsigned long) rule->private;
1342         return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1343 }
1344
1345 /**
1346  * snd_pcm_hw_constraint_step - add a hw constraint step rule
1347  * @runtime: PCM runtime instance
1348  * @cond: condition bits
1349  * @var: hw_params variable to apply the step constraint
1350  * @step: step size
1351  */
1352 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1353                                unsigned int cond,
1354                                snd_pcm_hw_param_t var,
1355                                unsigned long step)
1356 {
1357         return snd_pcm_hw_rule_add(runtime, cond, var, 
1358                                    snd_pcm_hw_rule_step, (void *) step,
1359                                    var, -1);
1360 }
1361
1362 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1363
1364 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1365 {
1366         static unsigned int pow2_sizes[] = {
1367                 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1368                 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1369                 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1370                 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1371         };
1372         return snd_interval_list(hw_param_interval(params, rule->var),
1373                                  ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1374 }               
1375
1376 /**
1377  * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1378  * @runtime: PCM runtime instance
1379  * @cond: condition bits
1380  * @var: hw_params variable to apply the power-of-2 constraint
1381  */
1382 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1383                                unsigned int cond,
1384                                snd_pcm_hw_param_t var)
1385 {
1386         return snd_pcm_hw_rule_add(runtime, cond, var, 
1387                                    snd_pcm_hw_rule_pow2, NULL,
1388                                    var, -1);
1389 }
1390
1391 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1392
1393 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1394                                   snd_pcm_hw_param_t var)
1395 {
1396         if (hw_is_mask(var)) {
1397                 snd_mask_any(hw_param_mask(params, var));
1398                 params->cmask |= 1 << var;
1399                 params->rmask |= 1 << var;
1400                 return;
1401         }
1402         if (hw_is_interval(var)) {
1403                 snd_interval_any(hw_param_interval(params, var));
1404                 params->cmask |= 1 << var;
1405                 params->rmask |= 1 << var;
1406                 return;
1407         }
1408         snd_BUG();
1409 }
1410
1411 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1412 {
1413         unsigned int k;
1414         memset(params, 0, sizeof(*params));
1415         for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1416                 _snd_pcm_hw_param_any(params, k);
1417         for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1418                 _snd_pcm_hw_param_any(params, k);
1419         params->info = ~0U;
1420 }
1421
1422 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1423
1424 /**
1425  * snd_pcm_hw_param_value - return @params field @var value
1426  * @params: the hw_params instance
1427  * @var: parameter to retrieve
1428  * @dir: pointer to the direction (-1,0,1) or %NULL
1429  *
1430  * Return the value for field @var if it's fixed in configuration space
1431  * defined by @params. Return -%EINVAL otherwise.
1432  */
1433 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1434                            snd_pcm_hw_param_t var, int *dir)
1435 {
1436         if (hw_is_mask(var)) {
1437                 const struct snd_mask *mask = hw_param_mask_c(params, var);
1438                 if (!snd_mask_single(mask))
1439                         return -EINVAL;
1440                 if (dir)
1441                         *dir = 0;
1442                 return snd_mask_value(mask);
1443         }
1444         if (hw_is_interval(var)) {
1445                 const struct snd_interval *i = hw_param_interval_c(params, var);
1446                 if (!snd_interval_single(i))
1447                         return -EINVAL;
1448                 if (dir)
1449                         *dir = i->openmin;
1450                 return snd_interval_value(i);
1451         }
1452         return -EINVAL;
1453 }
1454
1455 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1456
1457 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1458                                 snd_pcm_hw_param_t var)
1459 {
1460         if (hw_is_mask(var)) {
1461                 snd_mask_none(hw_param_mask(params, var));
1462                 params->cmask |= 1 << var;
1463                 params->rmask |= 1 << var;
1464         } else if (hw_is_interval(var)) {
1465                 snd_interval_none(hw_param_interval(params, var));
1466                 params->cmask |= 1 << var;
1467                 params->rmask |= 1 << var;
1468         } else {
1469                 snd_BUG();
1470         }
1471 }
1472
1473 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1474
1475 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1476                                    snd_pcm_hw_param_t var)
1477 {
1478         int changed;
1479         if (hw_is_mask(var))
1480                 changed = snd_mask_refine_first(hw_param_mask(params, var));
1481         else if (hw_is_interval(var))
1482                 changed = snd_interval_refine_first(hw_param_interval(params, var));
1483         else
1484                 return -EINVAL;
1485         if (changed) {
1486                 params->cmask |= 1 << var;
1487                 params->rmask |= 1 << var;
1488         }
1489         return changed;
1490 }
1491
1492
1493 /**
1494  * snd_pcm_hw_param_first - refine config space and return minimum value
1495  * @pcm: PCM instance
1496  * @params: the hw_params instance
1497  * @var: parameter to retrieve
1498  * @dir: pointer to the direction (-1,0,1) or %NULL
1499  *
1500  * Inside configuration space defined by @params remove from @var all
1501  * values > minimum. Reduce configuration space accordingly.
1502  * Return the minimum.
1503  */
1504 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1505                            struct snd_pcm_hw_params *params, 
1506                            snd_pcm_hw_param_t var, int *dir)
1507 {
1508         int changed = _snd_pcm_hw_param_first(params, var);
1509         if (changed < 0)
1510                 return changed;
1511         if (params->rmask) {
1512                 int err = snd_pcm_hw_refine(pcm, params);
1513                 if (snd_BUG_ON(err < 0))
1514                         return err;
1515         }
1516         return snd_pcm_hw_param_value(params, var, dir);
1517 }
1518
1519 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1520
1521 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1522                                   snd_pcm_hw_param_t var)
1523 {
1524         int changed;
1525         if (hw_is_mask(var))
1526                 changed = snd_mask_refine_last(hw_param_mask(params, var));
1527         else if (hw_is_interval(var))
1528                 changed = snd_interval_refine_last(hw_param_interval(params, var));
1529         else
1530                 return -EINVAL;
1531         if (changed) {
1532                 params->cmask |= 1 << var;
1533                 params->rmask |= 1 << var;
1534         }
1535         return changed;
1536 }
1537
1538
1539 /**
1540  * snd_pcm_hw_param_last - refine config space and return maximum value
1541  * @pcm: PCM instance
1542  * @params: the hw_params instance
1543  * @var: parameter to retrieve
1544  * @dir: pointer to the direction (-1,0,1) or %NULL
1545  *
1546  * Inside configuration space defined by @params remove from @var all
1547  * values < maximum. Reduce configuration space accordingly.
1548  * Return the maximum.
1549  */
1550 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1551                           struct snd_pcm_hw_params *params,
1552                           snd_pcm_hw_param_t var, int *dir)
1553 {
1554         int changed = _snd_pcm_hw_param_last(params, var);
1555         if (changed < 0)
1556                 return changed;
1557         if (params->rmask) {
1558                 int err = snd_pcm_hw_refine(pcm, params);
1559                 if (snd_BUG_ON(err < 0))
1560                         return err;
1561         }
1562         return snd_pcm_hw_param_value(params, var, dir);
1563 }
1564
1565 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1566
1567 /**
1568  * snd_pcm_hw_param_choose - choose a configuration defined by @params
1569  * @pcm: PCM instance
1570  * @params: the hw_params instance
1571  *
1572  * Choose one configuration from configuration space defined by @params.
1573  * The configuration chosen is that obtained fixing in this order:
1574  * first access, first format, first subformat, min channels,
1575  * min rate, min period time, max buffer size, min tick time
1576  */
1577 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1578                              struct snd_pcm_hw_params *params)
1579 {
1580         static int vars[] = {
1581                 SNDRV_PCM_HW_PARAM_ACCESS,
1582                 SNDRV_PCM_HW_PARAM_FORMAT,
1583                 SNDRV_PCM_HW_PARAM_SUBFORMAT,
1584                 SNDRV_PCM_HW_PARAM_CHANNELS,
1585                 SNDRV_PCM_HW_PARAM_RATE,
1586                 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1587                 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1588                 SNDRV_PCM_HW_PARAM_TICK_TIME,
1589                 -1
1590         };
1591         int err, *v;
1592
1593         for (v = vars; *v != -1; v++) {
1594                 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1595                         err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1596                 else
1597                         err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1598                 if (snd_BUG_ON(err < 0))
1599                         return err;
1600         }
1601         return 0;
1602 }
1603
1604 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1605                                    void *arg)
1606 {
1607         struct snd_pcm_runtime *runtime = substream->runtime;
1608         unsigned long flags;
1609         snd_pcm_stream_lock_irqsave(substream, flags);
1610         if (snd_pcm_running(substream) &&
1611             snd_pcm_update_hw_ptr(substream) >= 0)
1612                 runtime->status->hw_ptr %= runtime->buffer_size;
1613         else
1614                 runtime->status->hw_ptr = 0;
1615         snd_pcm_stream_unlock_irqrestore(substream, flags);
1616         return 0;
1617 }
1618
1619 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1620                                           void *arg)
1621 {
1622         struct snd_pcm_channel_info *info = arg;
1623         struct snd_pcm_runtime *runtime = substream->runtime;
1624         int width;
1625         if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1626                 info->offset = -1;
1627                 return 0;
1628         }
1629         width = snd_pcm_format_physical_width(runtime->format);
1630         if (width < 0)
1631                 return width;
1632         info->offset = 0;
1633         switch (runtime->access) {
1634         case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1635         case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1636                 info->first = info->channel * width;
1637                 info->step = runtime->channels * width;
1638                 break;
1639         case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1640         case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1641         {
1642                 size_t size = runtime->dma_bytes / runtime->channels;
1643                 info->first = info->channel * size * 8;
1644                 info->step = width;
1645                 break;
1646         }
1647         default:
1648                 snd_BUG();
1649                 break;
1650         }
1651         return 0;
1652 }
1653
1654 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1655                                        void *arg)
1656 {
1657         struct snd_pcm_hw_params *params = arg;
1658         snd_pcm_format_t format;
1659         int channels, width;
1660
1661         params->fifo_size = substream->runtime->hw.fifo_size;
1662         if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1663                 format = params_format(params);
1664                 channels = params_channels(params);
1665                 width = snd_pcm_format_physical_width(format);
1666                 params->fifo_size /= width * channels;
1667         }
1668         return 0;
1669 }
1670
1671 /**
1672  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1673  * @substream: the pcm substream instance
1674  * @cmd: ioctl command
1675  * @arg: ioctl argument
1676  *
1677  * Processes the generic ioctl commands for PCM.
1678  * Can be passed as the ioctl callback for PCM ops.
1679  *
1680  * Returns zero if successful, or a negative error code on failure.
1681  */
1682 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1683                       unsigned int cmd, void *arg)
1684 {
1685         switch (cmd) {
1686         case SNDRV_PCM_IOCTL1_INFO:
1687                 return 0;
1688         case SNDRV_PCM_IOCTL1_RESET:
1689                 return snd_pcm_lib_ioctl_reset(substream, arg);
1690         case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1691                 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1692         case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1693                 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1694         }
1695         return -ENXIO;
1696 }
1697
1698 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1699
1700 /**
1701  * snd_pcm_period_elapsed - update the pcm status for the next period
1702  * @substream: the pcm substream instance
1703  *
1704  * This function is called from the interrupt handler when the
1705  * PCM has processed the period size.  It will update the current
1706  * pointer, wake up sleepers, etc.
1707  *
1708  * Even if more than one periods have elapsed since the last call, you
1709  * have to call this only once.
1710  */
1711 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1712 {
1713         struct snd_pcm_runtime *runtime;
1714         unsigned long flags;
1715
1716         if (PCM_RUNTIME_CHECK(substream))
1717                 return;
1718         runtime = substream->runtime;
1719
1720         if (runtime->transfer_ack_begin)
1721                 runtime->transfer_ack_begin(substream);
1722
1723         snd_pcm_stream_lock_irqsave(substream, flags);
1724         if (!snd_pcm_running(substream) ||
1725             snd_pcm_update_hw_ptr0(substream, 1) < 0)
1726                 goto _end;
1727
1728         if (substream->timer_running)
1729                 snd_timer_interrupt(substream->timer, 1);
1730  _end:
1731         snd_pcm_stream_unlock_irqrestore(substream, flags);
1732         if (runtime->transfer_ack_end)
1733                 runtime->transfer_ack_end(substream);
1734         kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1735 }
1736
1737 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1738
1739 /*
1740  * Wait until avail_min data becomes available
1741  * Returns a negative error code if any error occurs during operation.
1742  * The available space is stored on availp.  When err = 0 and avail = 0
1743  * on the capture stream, it indicates the stream is in DRAINING state.
1744  */
1745 static int wait_for_avail(struct snd_pcm_substream *substream,
1746                               snd_pcm_uframes_t *availp)
1747 {
1748         struct snd_pcm_runtime *runtime = substream->runtime;
1749         int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1750         wait_queue_t wait;
1751         int err = 0;
1752         snd_pcm_uframes_t avail = 0;
1753         long tout;
1754
1755         init_waitqueue_entry(&wait, current);
1756         add_wait_queue(&runtime->tsleep, &wait);
1757         for (;;) {
1758                 if (signal_pending(current)) {
1759                         err = -ERESTARTSYS;
1760                         break;
1761                 }
1762                 set_current_state(TASK_INTERRUPTIBLE);
1763                 snd_pcm_stream_unlock_irq(substream);
1764                 tout = schedule_timeout(msecs_to_jiffies(10000));
1765                 snd_pcm_stream_lock_irq(substream);
1766                 switch (runtime->status->state) {
1767                 case SNDRV_PCM_STATE_SUSPENDED:
1768                         err = -ESTRPIPE;
1769                         goto _endloop;
1770                 case SNDRV_PCM_STATE_XRUN:
1771                         err = -EPIPE;
1772                         goto _endloop;
1773                 case SNDRV_PCM_STATE_DRAINING:
1774                         if (is_playback)
1775                                 err = -EPIPE;
1776                         else 
1777                                 avail = 0; /* indicate draining */
1778                         goto _endloop;
1779                 case SNDRV_PCM_STATE_OPEN:
1780                 case SNDRV_PCM_STATE_SETUP:
1781                 case SNDRV_PCM_STATE_DISCONNECTED:
1782                         err = -EBADFD;
1783                         goto _endloop;
1784                 }
1785                 if (!tout) {
1786                         snd_printd("%s write error (DMA or IRQ trouble?)\n",
1787                                    is_playback ? "playback" : "capture");
1788                         err = -EIO;
1789                         break;
1790                 }
1791                 if (is_playback)
1792                         avail = snd_pcm_playback_avail(runtime);
1793                 else
1794                         avail = snd_pcm_capture_avail(runtime);
1795                 if (avail >= runtime->twake)
1796                         break;
1797         }
1798  _endloop:
1799         remove_wait_queue(&runtime->tsleep, &wait);
1800         *availp = avail;
1801         return err;
1802 }
1803         
1804 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1805                                       unsigned int hwoff,
1806                                       unsigned long data, unsigned int off,
1807                                       snd_pcm_uframes_t frames)
1808 {
1809         struct snd_pcm_runtime *runtime = substream->runtime;
1810         int err;
1811         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1812         if (substream->ops->copy) {
1813                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1814                         return err;
1815         } else {
1816                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1817                 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1818                         return -EFAULT;
1819         }
1820         return 0;
1821 }
1822  
1823 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1824                           unsigned long data, unsigned int off,
1825                           snd_pcm_uframes_t size);
1826
1827 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 
1828                                             unsigned long data,
1829                                             snd_pcm_uframes_t size,
1830                                             int nonblock,
1831                                             transfer_f transfer)
1832 {
1833         struct snd_pcm_runtime *runtime = substream->runtime;
1834         snd_pcm_uframes_t xfer = 0;
1835         snd_pcm_uframes_t offset = 0;
1836         int err = 0;
1837
1838         if (size == 0)
1839                 return 0;
1840
1841         snd_pcm_stream_lock_irq(substream);
1842         switch (runtime->status->state) {
1843         case SNDRV_PCM_STATE_PREPARED:
1844         case SNDRV_PCM_STATE_RUNNING:
1845         case SNDRV_PCM_STATE_PAUSED:
1846                 break;
1847         case SNDRV_PCM_STATE_XRUN:
1848                 err = -EPIPE;
1849                 goto _end_unlock;
1850         case SNDRV_PCM_STATE_SUSPENDED:
1851                 err = -ESTRPIPE;
1852                 goto _end_unlock;
1853         default:
1854                 err = -EBADFD;
1855                 goto _end_unlock;
1856         }
1857
1858         runtime->twake = runtime->control->avail_min ? : 1;
1859         while (size > 0) {
1860                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1861                 snd_pcm_uframes_t avail;
1862                 snd_pcm_uframes_t cont;
1863                 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1864                         snd_pcm_update_hw_ptr(substream);
1865                 avail = snd_pcm_playback_avail(runtime);
1866                 if (!avail) {
1867                         if (nonblock) {
1868                                 err = -EAGAIN;
1869                                 goto _end_unlock;
1870                         }
1871                         runtime->twake = min_t(snd_pcm_uframes_t, size,
1872                                         runtime->control->avail_min ? : 1);
1873                         err = wait_for_avail(substream, &avail);
1874                         if (err < 0)
1875                                 goto _end_unlock;
1876                 }
1877                 frames = size > avail ? avail : size;
1878                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
1879                 if (frames > cont)
1880                         frames = cont;
1881                 if (snd_BUG_ON(!frames)) {
1882                         runtime->twake = 0;
1883                         snd_pcm_stream_unlock_irq(substream);
1884                         return -EINVAL;
1885                 }
1886                 appl_ptr = runtime->control->appl_ptr;
1887                 appl_ofs = appl_ptr % runtime->buffer_size;
1888                 snd_pcm_stream_unlock_irq(substream);
1889                 err = transfer(substream, appl_ofs, data, offset, frames);
1890                 snd_pcm_stream_lock_irq(substream);
1891                 if (err < 0)
1892                         goto _end_unlock;
1893                 switch (runtime->status->state) {
1894                 case SNDRV_PCM_STATE_XRUN:
1895                         err = -EPIPE;
1896                         goto _end_unlock;
1897                 case SNDRV_PCM_STATE_SUSPENDED:
1898                         err = -ESTRPIPE;
1899                         goto _end_unlock;
1900                 default:
1901                         break;
1902                 }
1903                 appl_ptr += frames;
1904                 if (appl_ptr >= runtime->boundary)
1905                         appl_ptr -= runtime->boundary;
1906                 runtime->control->appl_ptr = appl_ptr;
1907                 if (substream->ops->ack)
1908                         substream->ops->ack(substream);
1909
1910                 offset += frames;
1911                 size -= frames;
1912                 xfer += frames;
1913                 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
1914                     snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
1915                         err = snd_pcm_start(substream);
1916                         if (err < 0)
1917                                 goto _end_unlock;
1918                 }
1919         }
1920  _end_unlock:
1921         runtime->twake = 0;
1922         if (xfer > 0 && err >= 0)
1923                 snd_pcm_update_state(substream, runtime);
1924         snd_pcm_stream_unlock_irq(substream);
1925         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
1926 }
1927
1928 /* sanity-check for read/write methods */
1929 static int pcm_sanity_check(struct snd_pcm_substream *substream)
1930 {
1931         struct snd_pcm_runtime *runtime;
1932         if (PCM_RUNTIME_CHECK(substream))
1933                 return -ENXIO;
1934         runtime = substream->runtime;
1935         if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
1936                 return -EINVAL;
1937         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
1938                 return -EBADFD;
1939         return 0;
1940 }
1941
1942 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
1943 {
1944         struct snd_pcm_runtime *runtime;
1945         int nonblock;
1946         int err;
1947
1948         err = pcm_sanity_check(substream);
1949         if (err < 0)
1950                 return err;
1951         runtime = substream->runtime;
1952         nonblock = !!(substream->f_flags & O_NONBLOCK);
1953
1954         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
1955             runtime->channels > 1)
1956                 return -EINVAL;
1957         return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
1958                                   snd_pcm_lib_write_transfer);
1959 }
1960
1961 EXPORT_SYMBOL(snd_pcm_lib_write);
1962
1963 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
1964                                        unsigned int hwoff,
1965                                        unsigned long data, unsigned int off,
1966                                        snd_pcm_uframes_t frames)
1967 {
1968         struct snd_pcm_runtime *runtime = substream->runtime;
1969         int err;
1970         void __user **bufs = (void __user **)data;
1971         int channels = runtime->channels;
1972         int c;
1973         if (substream->ops->copy) {
1974                 if (snd_BUG_ON(!substream->ops->silence))
1975                         return -EINVAL;
1976                 for (c = 0; c < channels; ++c, ++bufs) {
1977                         if (*bufs == NULL) {
1978                                 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
1979                                         return err;
1980                         } else {
1981                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
1982                                 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
1983                                         return err;
1984                         }
1985                 }
1986         } else {
1987                 /* default transfer behaviour */
1988                 size_t dma_csize = runtime->dma_bytes / channels;
1989                 for (c = 0; c < channels; ++c, ++bufs) {
1990                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
1991                         if (*bufs == NULL) {
1992                                 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
1993                         } else {
1994                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
1995                                 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
1996                                         return -EFAULT;
1997                         }
1998                 }
1999         }
2000         return 0;
2001 }
2002  
2003 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2004                                      void __user **bufs,
2005                                      snd_pcm_uframes_t frames)
2006 {
2007         struct snd_pcm_runtime *runtime;
2008         int nonblock;
2009         int err;
2010
2011         err = pcm_sanity_check(substream);
2012         if (err < 0)
2013                 return err;
2014         runtime = substream->runtime;
2015         nonblock = !!(substream->f_flags & O_NONBLOCK);
2016
2017         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2018                 return -EINVAL;
2019         return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2020                                   nonblock, snd_pcm_lib_writev_transfer);
2021 }
2022
2023 EXPORT_SYMBOL(snd_pcm_lib_writev);
2024
2025 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 
2026                                      unsigned int hwoff,
2027                                      unsigned long data, unsigned int off,
2028                                      snd_pcm_uframes_t frames)
2029 {
2030         struct snd_pcm_runtime *runtime = substream->runtime;
2031         int err;
2032         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2033         if (substream->ops->copy) {
2034                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2035                         return err;
2036         } else {
2037                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2038                 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2039                         return -EFAULT;
2040         }
2041         return 0;
2042 }
2043
2044 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2045                                            unsigned long data,
2046                                            snd_pcm_uframes_t size,
2047                                            int nonblock,
2048                                            transfer_f transfer)
2049 {
2050         struct snd_pcm_runtime *runtime = substream->runtime;
2051         snd_pcm_uframes_t xfer = 0;
2052         snd_pcm_uframes_t offset = 0;
2053         int err = 0;
2054
2055         if (size == 0)
2056                 return 0;
2057
2058         snd_pcm_stream_lock_irq(substream);
2059         switch (runtime->status->state) {
2060         case SNDRV_PCM_STATE_PREPARED:
2061                 if (size >= runtime->start_threshold) {
2062                         err = snd_pcm_start(substream);
2063                         if (err < 0)
2064                                 goto _end_unlock;
2065                 }
2066                 break;
2067         case SNDRV_PCM_STATE_DRAINING:
2068         case SNDRV_PCM_STATE_RUNNING:
2069         case SNDRV_PCM_STATE_PAUSED:
2070                 break;
2071         case SNDRV_PCM_STATE_XRUN:
2072                 err = -EPIPE;
2073                 goto _end_unlock;
2074         case SNDRV_PCM_STATE_SUSPENDED:
2075                 err = -ESTRPIPE;
2076                 goto _end_unlock;
2077         default:
2078                 err = -EBADFD;
2079                 goto _end_unlock;
2080         }
2081
2082         runtime->twake = runtime->control->avail_min ? : 1;
2083         while (size > 0) {
2084                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2085                 snd_pcm_uframes_t avail;
2086                 snd_pcm_uframes_t cont;
2087                 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2088                         snd_pcm_update_hw_ptr(substream);
2089                 avail = snd_pcm_capture_avail(runtime);
2090                 if (!avail) {
2091                         if (runtime->status->state ==
2092                             SNDRV_PCM_STATE_DRAINING) {
2093                                 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2094                                 goto _end_unlock;
2095                         }
2096                         if (nonblock) {
2097                                 err = -EAGAIN;
2098                                 goto _end_unlock;
2099                         }
2100                         runtime->twake = min_t(snd_pcm_uframes_t, size,
2101                                         runtime->control->avail_min ? : 1);
2102                         err = wait_for_avail(substream, &avail);
2103                         if (err < 0)
2104                                 goto _end_unlock;
2105                         if (!avail)
2106                                 continue; /* draining */
2107                 }
2108                 frames = size > avail ? avail : size;
2109                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2110                 if (frames > cont)
2111                         frames = cont;
2112                 if (snd_BUG_ON(!frames)) {
2113                         runtime->twake = 0;
2114                         snd_pcm_stream_unlock_irq(substream);
2115                         return -EINVAL;
2116                 }
2117                 appl_ptr = runtime->control->appl_ptr;
2118                 appl_ofs = appl_ptr % runtime->buffer_size;
2119                 snd_pcm_stream_unlock_irq(substream);
2120                 err = transfer(substream, appl_ofs, data, offset, frames);
2121                 snd_pcm_stream_lock_irq(substream);
2122                 if (err < 0)
2123                         goto _end_unlock;
2124                 switch (runtime->status->state) {
2125                 case SNDRV_PCM_STATE_XRUN:
2126                         err = -EPIPE;
2127                         goto _end_unlock;
2128                 case SNDRV_PCM_STATE_SUSPENDED:
2129                         err = -ESTRPIPE;
2130                         goto _end_unlock;
2131                 default:
2132                         break;
2133                 }
2134                 appl_ptr += frames;
2135                 if (appl_ptr >= runtime->boundary)
2136                         appl_ptr -= runtime->boundary;
2137                 runtime->control->appl_ptr = appl_ptr;
2138                 if (substream->ops->ack)
2139                         substream->ops->ack(substream);
2140
2141                 offset += frames;
2142                 size -= frames;
2143                 xfer += frames;
2144         }
2145  _end_unlock:
2146         runtime->twake = 0;
2147         if (xfer > 0 && err >= 0)
2148                 snd_pcm_update_state(substream, runtime);
2149         snd_pcm_stream_unlock_irq(substream);
2150         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2151 }
2152
2153 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2154 {
2155         struct snd_pcm_runtime *runtime;
2156         int nonblock;
2157         int err;
2158         
2159         err = pcm_sanity_check(substream);
2160         if (err < 0)
2161                 return err;
2162         runtime = substream->runtime;
2163         nonblock = !!(substream->f_flags & O_NONBLOCK);
2164         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2165                 return -EINVAL;
2166         return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2167 }
2168
2169 EXPORT_SYMBOL(snd_pcm_lib_read);
2170
2171 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2172                                       unsigned int hwoff,
2173                                       unsigned long data, unsigned int off,
2174                                       snd_pcm_uframes_t frames)
2175 {
2176         struct snd_pcm_runtime *runtime = substream->runtime;
2177         int err;
2178         void __user **bufs = (void __user **)data;
2179         int channels = runtime->channels;
2180         int c;
2181         if (substream->ops->copy) {
2182                 for (c = 0; c < channels; ++c, ++bufs) {
2183                         char __user *buf;
2184                         if (*bufs == NULL)
2185                                 continue;
2186                         buf = *bufs + samples_to_bytes(runtime, off);
2187                         if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2188                                 return err;
2189                 }
2190         } else {
2191                 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2192                 for (c = 0; c < channels; ++c, ++bufs) {
2193                         char *hwbuf;
2194                         char __user *buf;
2195                         if (*bufs == NULL)
2196                                 continue;
2197
2198                         hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2199                         buf = *bufs + samples_to_bytes(runtime, off);
2200                         if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2201                                 return -EFAULT;
2202                 }
2203         }
2204         return 0;
2205 }
2206  
2207 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2208                                     void __user **bufs,
2209                                     snd_pcm_uframes_t frames)
2210 {
2211         struct snd_pcm_runtime *runtime;
2212         int nonblock;
2213         int err;
2214
2215         err = pcm_sanity_check(substream);
2216         if (err < 0)
2217                 return err;
2218         runtime = substream->runtime;
2219         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2220                 return -EBADFD;
2221
2222         nonblock = !!(substream->f_flags & O_NONBLOCK);
2223         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2224                 return -EINVAL;
2225         return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2226 }
2227
2228 EXPORT_SYMBOL(snd_pcm_lib_readv);