Merge branch 'misc' of git://git.kernel.org/pub/scm/linux/kernel/git/mmarek/kbuild
[pandora-kernel.git] / sound / core / pcm_lib.c
1 /*
2  *  Digital Audio (PCM) abstract layer
3  *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4  *                   Abramo Bagnara <abramo@alsa-project.org>
5  *
6  *
7  *   This program is free software; you can redistribute it and/or modify
8  *   it under the terms of the GNU General Public License as published by
9  *   the Free Software Foundation; either version 2 of the License, or
10  *   (at your option) any later version.
11  *
12  *   This program is distributed in the hope that it will be useful,
13  *   but WITHOUT ANY WARRANTY; without even the implied warranty of
14  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  *   GNU General Public License for more details.
16  *
17  *   You should have received a copy of the GNU General Public License
18  *   along with this program; if not, write to the Free Software
19  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
20  *
21  */
22
23 #include <linux/slab.h>
24 #include <linux/time.h>
25 #include <linux/math64.h>
26 #include <linux/export.h>
27 #include <sound/core.h>
28 #include <sound/control.h>
29 #include <sound/info.h>
30 #include <sound/pcm.h>
31 #include <sound/pcm_params.h>
32 #include <sound/timer.h>
33
34 /*
35  * fill ring buffer with silence
36  * runtime->silence_start: starting pointer to silence area
37  * runtime->silence_filled: size filled with silence
38  * runtime->silence_threshold: threshold from application
39  * runtime->silence_size: maximal size from application
40  *
41  * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
42  */
43 void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
44 {
45         struct snd_pcm_runtime *runtime = substream->runtime;
46         snd_pcm_uframes_t frames, ofs, transfer;
47
48         if (runtime->silence_size < runtime->boundary) {
49                 snd_pcm_sframes_t noise_dist, n;
50                 if (runtime->silence_start != runtime->control->appl_ptr) {
51                         n = runtime->control->appl_ptr - runtime->silence_start;
52                         if (n < 0)
53                                 n += runtime->boundary;
54                         if ((snd_pcm_uframes_t)n < runtime->silence_filled)
55                                 runtime->silence_filled -= n;
56                         else
57                                 runtime->silence_filled = 0;
58                         runtime->silence_start = runtime->control->appl_ptr;
59                 }
60                 if (runtime->silence_filled >= runtime->buffer_size)
61                         return;
62                 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
63                 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
64                         return;
65                 frames = runtime->silence_threshold - noise_dist;
66                 if (frames > runtime->silence_size)
67                         frames = runtime->silence_size;
68         } else {
69                 if (new_hw_ptr == ULONG_MAX) {  /* initialization */
70                         snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
71                         if (avail > runtime->buffer_size)
72                                 avail = runtime->buffer_size;
73                         runtime->silence_filled = avail > 0 ? avail : 0;
74                         runtime->silence_start = (runtime->status->hw_ptr +
75                                                   runtime->silence_filled) %
76                                                  runtime->boundary;
77                 } else {
78                         ofs = runtime->status->hw_ptr;
79                         frames = new_hw_ptr - ofs;
80                         if ((snd_pcm_sframes_t)frames < 0)
81                                 frames += runtime->boundary;
82                         runtime->silence_filled -= frames;
83                         if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
84                                 runtime->silence_filled = 0;
85                                 runtime->silence_start = new_hw_ptr;
86                         } else {
87                                 runtime->silence_start = ofs;
88                         }
89                 }
90                 frames = runtime->buffer_size - runtime->silence_filled;
91         }
92         if (snd_BUG_ON(frames > runtime->buffer_size))
93                 return;
94         if (frames == 0)
95                 return;
96         ofs = runtime->silence_start % runtime->buffer_size;
97         while (frames > 0) {
98                 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
99                 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
100                     runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
101                         if (substream->ops->silence) {
102                                 int err;
103                                 err = substream->ops->silence(substream, -1, ofs, transfer);
104                                 snd_BUG_ON(err < 0);
105                         } else {
106                                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
107                                 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
108                         }
109                 } else {
110                         unsigned int c;
111                         unsigned int channels = runtime->channels;
112                         if (substream->ops->silence) {
113                                 for (c = 0; c < channels; ++c) {
114                                         int err;
115                                         err = substream->ops->silence(substream, c, ofs, transfer);
116                                         snd_BUG_ON(err < 0);
117                                 }
118                         } else {
119                                 size_t dma_csize = runtime->dma_bytes / channels;
120                                 for (c = 0; c < channels; ++c) {
121                                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
122                                         snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
123                                 }
124                         }
125                 }
126                 runtime->silence_filled += transfer;
127                 frames -= transfer;
128                 ofs = 0;
129         }
130 }
131
132 #ifdef CONFIG_SND_DEBUG
133 void snd_pcm_debug_name(struct snd_pcm_substream *substream,
134                            char *name, size_t len)
135 {
136         snprintf(name, len, "pcmC%dD%d%c:%d",
137                  substream->pcm->card->number,
138                  substream->pcm->device,
139                  substream->stream ? 'c' : 'p',
140                  substream->number);
141 }
142 EXPORT_SYMBOL(snd_pcm_debug_name);
143 #endif
144
145 #define XRUN_DEBUG_BASIC        (1<<0)
146 #define XRUN_DEBUG_STACK        (1<<1)  /* dump also stack */
147 #define XRUN_DEBUG_JIFFIESCHECK (1<<2)  /* do jiffies check */
148 #define XRUN_DEBUG_PERIODUPDATE (1<<3)  /* full period update info */
149 #define XRUN_DEBUG_HWPTRUPDATE  (1<<4)  /* full hwptr update info */
150 #define XRUN_DEBUG_LOG          (1<<5)  /* show last 10 positions on err */
151 #define XRUN_DEBUG_LOGONCE      (1<<6)  /* do above only once */
152
153 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
154
155 #define xrun_debug(substream, mask) \
156                         ((substream)->pstr->xrun_debug & (mask))
157 #else
158 #define xrun_debug(substream, mask)     0
159 #endif
160
161 #define dump_stack_on_xrun(substream) do {                      \
162                 if (xrun_debug(substream, XRUN_DEBUG_STACK))    \
163                         dump_stack();                           \
164         } while (0)
165
166 static void xrun(struct snd_pcm_substream *substream)
167 {
168         struct snd_pcm_runtime *runtime = substream->runtime;
169
170         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
171                 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
172         snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
173         if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
174                 char name[16];
175                 snd_pcm_debug_name(substream, name, sizeof(name));
176                 snd_printd(KERN_DEBUG "XRUN: %s\n", name);
177                 dump_stack_on_xrun(substream);
178         }
179 }
180
181 #ifdef CONFIG_SND_PCM_XRUN_DEBUG
182 #define hw_ptr_error(substream, fmt, args...)                           \
183         do {                                                            \
184                 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {          \
185                         xrun_log_show(substream);                       \
186                         if (printk_ratelimit()) {                       \
187                                 snd_printd("PCM: " fmt, ##args);        \
188                         }                                               \
189                         dump_stack_on_xrun(substream);                  \
190                 }                                                       \
191         } while (0)
192
193 #define XRUN_LOG_CNT    10
194
195 struct hwptr_log_entry {
196         unsigned int in_interrupt;
197         unsigned long jiffies;
198         snd_pcm_uframes_t pos;
199         snd_pcm_uframes_t period_size;
200         snd_pcm_uframes_t buffer_size;
201         snd_pcm_uframes_t old_hw_ptr;
202         snd_pcm_uframes_t hw_ptr_base;
203 };
204
205 struct snd_pcm_hwptr_log {
206         unsigned int idx;
207         unsigned int hit: 1;
208         struct hwptr_log_entry entries[XRUN_LOG_CNT];
209 };
210
211 static void xrun_log(struct snd_pcm_substream *substream,
212                      snd_pcm_uframes_t pos, int in_interrupt)
213 {
214         struct snd_pcm_runtime *runtime = substream->runtime;
215         struct snd_pcm_hwptr_log *log = runtime->hwptr_log;
216         struct hwptr_log_entry *entry;
217
218         if (log == NULL) {
219                 log = kzalloc(sizeof(*log), GFP_ATOMIC);
220                 if (log == NULL)
221                         return;
222                 runtime->hwptr_log = log;
223         } else {
224                 if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
225                         return;
226         }
227         entry = &log->entries[log->idx];
228         entry->in_interrupt = in_interrupt;
229         entry->jiffies = jiffies;
230         entry->pos = pos;
231         entry->period_size = runtime->period_size;
232         entry->buffer_size = runtime->buffer_size;
233         entry->old_hw_ptr = runtime->status->hw_ptr;
234         entry->hw_ptr_base = runtime->hw_ptr_base;
235         log->idx = (log->idx + 1) % XRUN_LOG_CNT;
236 }
237
238 static void xrun_log_show(struct snd_pcm_substream *substream)
239 {
240         struct snd_pcm_hwptr_log *log = substream->runtime->hwptr_log;
241         struct hwptr_log_entry *entry;
242         char name[16];
243         unsigned int idx;
244         int cnt;
245
246         if (log == NULL)
247                 return;
248         if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
249                 return;
250         snd_pcm_debug_name(substream, name, sizeof(name));
251         for (cnt = 0, idx = log->idx; cnt < XRUN_LOG_CNT; cnt++) {
252                 entry = &log->entries[idx];
253                 if (entry->period_size == 0)
254                         break;
255                 snd_printd("hwptr log: %s: %sj=%lu, pos=%ld/%ld/%ld, "
256                            "hwptr=%ld/%ld\n",
257                            name, entry->in_interrupt ? "[Q] " : "",
258                            entry->jiffies,
259                            (unsigned long)entry->pos,
260                            (unsigned long)entry->period_size,
261                            (unsigned long)entry->buffer_size,
262                            (unsigned long)entry->old_hw_ptr,
263                            (unsigned long)entry->hw_ptr_base);
264                 idx++;
265                 idx %= XRUN_LOG_CNT;
266         }
267         log->hit = 1;
268 }
269
270 #else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
271
272 #define hw_ptr_error(substream, fmt, args...) do { } while (0)
273 #define xrun_log(substream, pos, in_interrupt)  do { } while (0)
274 #define xrun_log_show(substream)        do { } while (0)
275
276 #endif
277
278 int snd_pcm_update_state(struct snd_pcm_substream *substream,
279                          struct snd_pcm_runtime *runtime)
280 {
281         snd_pcm_uframes_t avail;
282
283         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
284                 avail = snd_pcm_playback_avail(runtime);
285         else
286                 avail = snd_pcm_capture_avail(runtime);
287         if (avail > runtime->avail_max)
288                 runtime->avail_max = avail;
289         if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
290                 if (avail >= runtime->buffer_size) {
291                         snd_pcm_drain_done(substream);
292                         return -EPIPE;
293                 }
294         } else {
295                 if (avail >= runtime->stop_threshold) {
296                         xrun(substream);
297                         return -EPIPE;
298                 }
299         }
300         if (runtime->twake) {
301                 if (avail >= runtime->twake)
302                         wake_up(&runtime->tsleep);
303         } else if (avail >= runtime->control->avail_min)
304                 wake_up(&runtime->sleep);
305         return 0;
306 }
307
308 static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
309                                   unsigned int in_interrupt)
310 {
311         struct snd_pcm_runtime *runtime = substream->runtime;
312         snd_pcm_uframes_t pos;
313         snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
314         snd_pcm_sframes_t hdelta, delta;
315         unsigned long jdelta;
316         unsigned long curr_jiffies;
317         struct timespec curr_tstamp;
318
319         old_hw_ptr = runtime->status->hw_ptr;
320
321         /*
322          * group pointer, time and jiffies reads to allow for more
323          * accurate correlations/corrections.
324          * The values are stored at the end of this routine after
325          * corrections for hw_ptr position
326          */
327         pos = substream->ops->pointer(substream);
328         curr_jiffies = jiffies;
329         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
330                 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
331
332         if (pos == SNDRV_PCM_POS_XRUN) {
333                 xrun(substream);
334                 return -EPIPE;
335         }
336         if (pos >= runtime->buffer_size) {
337                 if (printk_ratelimit()) {
338                         char name[16];
339                         snd_pcm_debug_name(substream, name, sizeof(name));
340                         xrun_log_show(substream);
341                         snd_printd(KERN_ERR  "BUG: %s, pos = %ld, "
342                                    "buffer size = %ld, period size = %ld\n",
343                                    name, pos, runtime->buffer_size,
344                                    runtime->period_size);
345                 }
346                 pos = 0;
347         }
348         pos -= pos % runtime->min_align;
349         if (xrun_debug(substream, XRUN_DEBUG_LOG))
350                 xrun_log(substream, pos, in_interrupt);
351         hw_base = runtime->hw_ptr_base;
352         new_hw_ptr = hw_base + pos;
353         if (in_interrupt) {
354                 /* we know that one period was processed */
355                 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
356                 delta = runtime->hw_ptr_interrupt + runtime->period_size;
357                 if (delta > new_hw_ptr) {
358                         /* check for double acknowledged interrupts */
359                         hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
360                         if (hdelta > runtime->hw_ptr_buffer_jiffies/2) {
361                                 hw_base += runtime->buffer_size;
362                                 if (hw_base >= runtime->boundary)
363                                         hw_base = 0;
364                                 new_hw_ptr = hw_base + pos;
365                                 goto __delta;
366                         }
367                 }
368         }
369         /* new_hw_ptr might be lower than old_hw_ptr in case when */
370         /* pointer crosses the end of the ring buffer */
371         if (new_hw_ptr < old_hw_ptr) {
372                 hw_base += runtime->buffer_size;
373                 if (hw_base >= runtime->boundary)
374                         hw_base = 0;
375                 new_hw_ptr = hw_base + pos;
376         }
377       __delta:
378         delta = new_hw_ptr - old_hw_ptr;
379         if (delta < 0)
380                 delta += runtime->boundary;
381         if (xrun_debug(substream, in_interrupt ?
382                         XRUN_DEBUG_PERIODUPDATE : XRUN_DEBUG_HWPTRUPDATE)) {
383                 char name[16];
384                 snd_pcm_debug_name(substream, name, sizeof(name));
385                 snd_printd("%s_update: %s: pos=%u/%u/%u, "
386                            "hwptr=%ld/%ld/%ld/%ld\n",
387                            in_interrupt ? "period" : "hwptr",
388                            name,
389                            (unsigned int)pos,
390                            (unsigned int)runtime->period_size,
391                            (unsigned int)runtime->buffer_size,
392                            (unsigned long)delta,
393                            (unsigned long)old_hw_ptr,
394                            (unsigned long)new_hw_ptr,
395                            (unsigned long)runtime->hw_ptr_base);
396         }
397
398         if (runtime->no_period_wakeup) {
399                 snd_pcm_sframes_t xrun_threshold;
400                 /*
401                  * Without regular period interrupts, we have to check
402                  * the elapsed time to detect xruns.
403                  */
404                 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
405                 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
406                         goto no_delta_check;
407                 hdelta = jdelta - delta * HZ / runtime->rate;
408                 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
409                 while (hdelta > xrun_threshold) {
410                         delta += runtime->buffer_size;
411                         hw_base += runtime->buffer_size;
412                         if (hw_base >= runtime->boundary)
413                                 hw_base = 0;
414                         new_hw_ptr = hw_base + pos;
415                         hdelta -= runtime->hw_ptr_buffer_jiffies;
416                 }
417                 goto no_delta_check;
418         }
419
420         /* something must be really wrong */
421         if (delta >= runtime->buffer_size + runtime->period_size) {
422                 hw_ptr_error(substream,
423                                "Unexpected hw_pointer value %s"
424                                "(stream=%i, pos=%ld, new_hw_ptr=%ld, "
425                                "old_hw_ptr=%ld)\n",
426                                      in_interrupt ? "[Q] " : "[P]",
427                                      substream->stream, (long)pos,
428                                      (long)new_hw_ptr, (long)old_hw_ptr);
429                 return 0;
430         }
431
432         /* Do jiffies check only in xrun_debug mode */
433         if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
434                 goto no_jiffies_check;
435
436         /* Skip the jiffies check for hardwares with BATCH flag.
437          * Such hardware usually just increases the position at each IRQ,
438          * thus it can't give any strange position.
439          */
440         if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
441                 goto no_jiffies_check;
442         hdelta = delta;
443         if (hdelta < runtime->delay)
444                 goto no_jiffies_check;
445         hdelta -= runtime->delay;
446         jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
447         if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
448                 delta = jdelta /
449                         (((runtime->period_size * HZ) / runtime->rate)
450                                                                 + HZ/100);
451                 /* move new_hw_ptr according jiffies not pos variable */
452                 new_hw_ptr = old_hw_ptr;
453                 hw_base = delta;
454                 /* use loop to avoid checks for delta overflows */
455                 /* the delta value is small or zero in most cases */
456                 while (delta > 0) {
457                         new_hw_ptr += runtime->period_size;
458                         if (new_hw_ptr >= runtime->boundary)
459                                 new_hw_ptr -= runtime->boundary;
460                         delta--;
461                 }
462                 /* align hw_base to buffer_size */
463                 hw_ptr_error(substream,
464                              "hw_ptr skipping! %s"
465                              "(pos=%ld, delta=%ld, period=%ld, "
466                              "jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
467                              in_interrupt ? "[Q] " : "",
468                              (long)pos, (long)hdelta,
469                              (long)runtime->period_size, jdelta,
470                              ((hdelta * HZ) / runtime->rate), hw_base,
471                              (unsigned long)old_hw_ptr,
472                              (unsigned long)new_hw_ptr);
473                 /* reset values to proper state */
474                 delta = 0;
475                 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
476         }
477  no_jiffies_check:
478         if (delta > runtime->period_size + runtime->period_size / 2) {
479                 hw_ptr_error(substream,
480                              "Lost interrupts? %s"
481                              "(stream=%i, delta=%ld, new_hw_ptr=%ld, "
482                              "old_hw_ptr=%ld)\n",
483                              in_interrupt ? "[Q] " : "",
484                              substream->stream, (long)delta,
485                              (long)new_hw_ptr,
486                              (long)old_hw_ptr);
487         }
488
489  no_delta_check:
490         if (runtime->status->hw_ptr == new_hw_ptr)
491                 return 0;
492
493         if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
494             runtime->silence_size > 0)
495                 snd_pcm_playback_silence(substream, new_hw_ptr);
496
497         if (in_interrupt) {
498                 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
499                 if (delta < 0)
500                         delta += runtime->boundary;
501                 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
502                 runtime->hw_ptr_interrupt += delta;
503                 if (runtime->hw_ptr_interrupt >= runtime->boundary)
504                         runtime->hw_ptr_interrupt -= runtime->boundary;
505         }
506         runtime->hw_ptr_base = hw_base;
507         runtime->status->hw_ptr = new_hw_ptr;
508         runtime->hw_ptr_jiffies = curr_jiffies;
509         if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
510                 runtime->status->tstamp = curr_tstamp;
511
512         return snd_pcm_update_state(substream, runtime);
513 }
514
515 /* CAUTION: call it with irq disabled */
516 int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
517 {
518         return snd_pcm_update_hw_ptr0(substream, 0);
519 }
520
521 /**
522  * snd_pcm_set_ops - set the PCM operators
523  * @pcm: the pcm instance
524  * @direction: stream direction, SNDRV_PCM_STREAM_XXX
525  * @ops: the operator table
526  *
527  * Sets the given PCM operators to the pcm instance.
528  */
529 void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops)
530 {
531         struct snd_pcm_str *stream = &pcm->streams[direction];
532         struct snd_pcm_substream *substream;
533         
534         for (substream = stream->substream; substream != NULL; substream = substream->next)
535                 substream->ops = ops;
536 }
537
538 EXPORT_SYMBOL(snd_pcm_set_ops);
539
540 /**
541  * snd_pcm_sync - set the PCM sync id
542  * @substream: the pcm substream
543  *
544  * Sets the PCM sync identifier for the card.
545  */
546 void snd_pcm_set_sync(struct snd_pcm_substream *substream)
547 {
548         struct snd_pcm_runtime *runtime = substream->runtime;
549         
550         runtime->sync.id32[0] = substream->pcm->card->number;
551         runtime->sync.id32[1] = -1;
552         runtime->sync.id32[2] = -1;
553         runtime->sync.id32[3] = -1;
554 }
555
556 EXPORT_SYMBOL(snd_pcm_set_sync);
557
558 /*
559  *  Standard ioctl routine
560  */
561
562 static inline unsigned int div32(unsigned int a, unsigned int b, 
563                                  unsigned int *r)
564 {
565         if (b == 0) {
566                 *r = 0;
567                 return UINT_MAX;
568         }
569         *r = a % b;
570         return a / b;
571 }
572
573 static inline unsigned int div_down(unsigned int a, unsigned int b)
574 {
575         if (b == 0)
576                 return UINT_MAX;
577         return a / b;
578 }
579
580 static inline unsigned int div_up(unsigned int a, unsigned int b)
581 {
582         unsigned int r;
583         unsigned int q;
584         if (b == 0)
585                 return UINT_MAX;
586         q = div32(a, b, &r);
587         if (r)
588                 ++q;
589         return q;
590 }
591
592 static inline unsigned int mul(unsigned int a, unsigned int b)
593 {
594         if (a == 0)
595                 return 0;
596         if (div_down(UINT_MAX, a) < b)
597                 return UINT_MAX;
598         return a * b;
599 }
600
601 static inline unsigned int muldiv32(unsigned int a, unsigned int b,
602                                     unsigned int c, unsigned int *r)
603 {
604         u_int64_t n = (u_int64_t) a * b;
605         if (c == 0) {
606                 snd_BUG_ON(!n);
607                 *r = 0;
608                 return UINT_MAX;
609         }
610         n = div_u64_rem(n, c, r);
611         if (n >= UINT_MAX) {
612                 *r = 0;
613                 return UINT_MAX;
614         }
615         return n;
616 }
617
618 /**
619  * snd_interval_refine - refine the interval value of configurator
620  * @i: the interval value to refine
621  * @v: the interval value to refer to
622  *
623  * Refines the interval value with the reference value.
624  * The interval is changed to the range satisfying both intervals.
625  * The interval status (min, max, integer, etc.) are evaluated.
626  *
627  * Returns non-zero if the value is changed, zero if not changed.
628  */
629 int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
630 {
631         int changed = 0;
632         if (snd_BUG_ON(snd_interval_empty(i)))
633                 return -EINVAL;
634         if (i->min < v->min) {
635                 i->min = v->min;
636                 i->openmin = v->openmin;
637                 changed = 1;
638         } else if (i->min == v->min && !i->openmin && v->openmin) {
639                 i->openmin = 1;
640                 changed = 1;
641         }
642         if (i->max > v->max) {
643                 i->max = v->max;
644                 i->openmax = v->openmax;
645                 changed = 1;
646         } else if (i->max == v->max && !i->openmax && v->openmax) {
647                 i->openmax = 1;
648                 changed = 1;
649         }
650         if (!i->integer && v->integer) {
651                 i->integer = 1;
652                 changed = 1;
653         }
654         if (i->integer) {
655                 if (i->openmin) {
656                         i->min++;
657                         i->openmin = 0;
658                 }
659                 if (i->openmax) {
660                         i->max--;
661                         i->openmax = 0;
662                 }
663         } else if (!i->openmin && !i->openmax && i->min == i->max)
664                 i->integer = 1;
665         if (snd_interval_checkempty(i)) {
666                 snd_interval_none(i);
667                 return -EINVAL;
668         }
669         return changed;
670 }
671
672 EXPORT_SYMBOL(snd_interval_refine);
673
674 static int snd_interval_refine_first(struct snd_interval *i)
675 {
676         if (snd_BUG_ON(snd_interval_empty(i)))
677                 return -EINVAL;
678         if (snd_interval_single(i))
679                 return 0;
680         i->max = i->min;
681         i->openmax = i->openmin;
682         if (i->openmax)
683                 i->max++;
684         return 1;
685 }
686
687 static int snd_interval_refine_last(struct snd_interval *i)
688 {
689         if (snd_BUG_ON(snd_interval_empty(i)))
690                 return -EINVAL;
691         if (snd_interval_single(i))
692                 return 0;
693         i->min = i->max;
694         i->openmin = i->openmax;
695         if (i->openmin)
696                 i->min--;
697         return 1;
698 }
699
700 void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
701 {
702         if (a->empty || b->empty) {
703                 snd_interval_none(c);
704                 return;
705         }
706         c->empty = 0;
707         c->min = mul(a->min, b->min);
708         c->openmin = (a->openmin || b->openmin);
709         c->max = mul(a->max,  b->max);
710         c->openmax = (a->openmax || b->openmax);
711         c->integer = (a->integer && b->integer);
712 }
713
714 /**
715  * snd_interval_div - refine the interval value with division
716  * @a: dividend
717  * @b: divisor
718  * @c: quotient
719  *
720  * c = a / b
721  *
722  * Returns non-zero if the value is changed, zero if not changed.
723  */
724 void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
725 {
726         unsigned int r;
727         if (a->empty || b->empty) {
728                 snd_interval_none(c);
729                 return;
730         }
731         c->empty = 0;
732         c->min = div32(a->min, b->max, &r);
733         c->openmin = (r || a->openmin || b->openmax);
734         if (b->min > 0) {
735                 c->max = div32(a->max, b->min, &r);
736                 if (r) {
737                         c->max++;
738                         c->openmax = 1;
739                 } else
740                         c->openmax = (a->openmax || b->openmin);
741         } else {
742                 c->max = UINT_MAX;
743                 c->openmax = 0;
744         }
745         c->integer = 0;
746 }
747
748 /**
749  * snd_interval_muldivk - refine the interval value
750  * @a: dividend 1
751  * @b: dividend 2
752  * @k: divisor (as integer)
753  * @c: result
754   *
755  * c = a * b / k
756  *
757  * Returns non-zero if the value is changed, zero if not changed.
758  */
759 void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
760                       unsigned int k, struct snd_interval *c)
761 {
762         unsigned int r;
763         if (a->empty || b->empty) {
764                 snd_interval_none(c);
765                 return;
766         }
767         c->empty = 0;
768         c->min = muldiv32(a->min, b->min, k, &r);
769         c->openmin = (r || a->openmin || b->openmin);
770         c->max = muldiv32(a->max, b->max, k, &r);
771         if (r) {
772                 c->max++;
773                 c->openmax = 1;
774         } else
775                 c->openmax = (a->openmax || b->openmax);
776         c->integer = 0;
777 }
778
779 /**
780  * snd_interval_mulkdiv - refine the interval value
781  * @a: dividend 1
782  * @k: dividend 2 (as integer)
783  * @b: divisor
784  * @c: result
785  *
786  * c = a * k / b
787  *
788  * Returns non-zero if the value is changed, zero if not changed.
789  */
790 void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
791                       const struct snd_interval *b, struct snd_interval *c)
792 {
793         unsigned int r;
794         if (a->empty || b->empty) {
795                 snd_interval_none(c);
796                 return;
797         }
798         c->empty = 0;
799         c->min = muldiv32(a->min, k, b->max, &r);
800         c->openmin = (r || a->openmin || b->openmax);
801         if (b->min > 0) {
802                 c->max = muldiv32(a->max, k, b->min, &r);
803                 if (r) {
804                         c->max++;
805                         c->openmax = 1;
806                 } else
807                         c->openmax = (a->openmax || b->openmin);
808         } else {
809                 c->max = UINT_MAX;
810                 c->openmax = 0;
811         }
812         c->integer = 0;
813 }
814
815 /* ---- */
816
817
818 /**
819  * snd_interval_ratnum - refine the interval value
820  * @i: interval to refine
821  * @rats_count: number of ratnum_t 
822  * @rats: ratnum_t array
823  * @nump: pointer to store the resultant numerator
824  * @denp: pointer to store the resultant denominator
825  *
826  * Returns non-zero if the value is changed, zero if not changed.
827  */
828 int snd_interval_ratnum(struct snd_interval *i,
829                         unsigned int rats_count, struct snd_ratnum *rats,
830                         unsigned int *nump, unsigned int *denp)
831 {
832         unsigned int best_num, best_den;
833         int best_diff;
834         unsigned int k;
835         struct snd_interval t;
836         int err;
837         unsigned int result_num, result_den;
838         int result_diff;
839
840         best_num = best_den = best_diff = 0;
841         for (k = 0; k < rats_count; ++k) {
842                 unsigned int num = rats[k].num;
843                 unsigned int den;
844                 unsigned int q = i->min;
845                 int diff;
846                 if (q == 0)
847                         q = 1;
848                 den = div_up(num, q);
849                 if (den < rats[k].den_min)
850                         continue;
851                 if (den > rats[k].den_max)
852                         den = rats[k].den_max;
853                 else {
854                         unsigned int r;
855                         r = (den - rats[k].den_min) % rats[k].den_step;
856                         if (r != 0)
857                                 den -= r;
858                 }
859                 diff = num - q * den;
860                 if (diff < 0)
861                         diff = -diff;
862                 if (best_num == 0 ||
863                     diff * best_den < best_diff * den) {
864                         best_diff = diff;
865                         best_den = den;
866                         best_num = num;
867                 }
868         }
869         if (best_den == 0) {
870                 i->empty = 1;
871                 return -EINVAL;
872         }
873         t.min = div_down(best_num, best_den);
874         t.openmin = !!(best_num % best_den);
875         
876         result_num = best_num;
877         result_diff = best_diff;
878         result_den = best_den;
879         best_num = best_den = best_diff = 0;
880         for (k = 0; k < rats_count; ++k) {
881                 unsigned int num = rats[k].num;
882                 unsigned int den;
883                 unsigned int q = i->max;
884                 int diff;
885                 if (q == 0) {
886                         i->empty = 1;
887                         return -EINVAL;
888                 }
889                 den = div_down(num, q);
890                 if (den > rats[k].den_max)
891                         continue;
892                 if (den < rats[k].den_min)
893                         den = rats[k].den_min;
894                 else {
895                         unsigned int r;
896                         r = (den - rats[k].den_min) % rats[k].den_step;
897                         if (r != 0)
898                                 den += rats[k].den_step - r;
899                 }
900                 diff = q * den - num;
901                 if (diff < 0)
902                         diff = -diff;
903                 if (best_num == 0 ||
904                     diff * best_den < best_diff * den) {
905                         best_diff = diff;
906                         best_den = den;
907                         best_num = num;
908                 }
909         }
910         if (best_den == 0) {
911                 i->empty = 1;
912                 return -EINVAL;
913         }
914         t.max = div_up(best_num, best_den);
915         t.openmax = !!(best_num % best_den);
916         t.integer = 0;
917         err = snd_interval_refine(i, &t);
918         if (err < 0)
919                 return err;
920
921         if (snd_interval_single(i)) {
922                 if (best_diff * result_den < result_diff * best_den) {
923                         result_num = best_num;
924                         result_den = best_den;
925                 }
926                 if (nump)
927                         *nump = result_num;
928                 if (denp)
929                         *denp = result_den;
930         }
931         return err;
932 }
933
934 EXPORT_SYMBOL(snd_interval_ratnum);
935
936 /**
937  * snd_interval_ratden - refine the interval value
938  * @i: interval to refine
939  * @rats_count: number of struct ratden
940  * @rats: struct ratden array
941  * @nump: pointer to store the resultant numerator
942  * @denp: pointer to store the resultant denominator
943  *
944  * Returns non-zero if the value is changed, zero if not changed.
945  */
946 static int snd_interval_ratden(struct snd_interval *i,
947                                unsigned int rats_count, struct snd_ratden *rats,
948                                unsigned int *nump, unsigned int *denp)
949 {
950         unsigned int best_num, best_diff, best_den;
951         unsigned int k;
952         struct snd_interval t;
953         int err;
954
955         best_num = best_den = best_diff = 0;
956         for (k = 0; k < rats_count; ++k) {
957                 unsigned int num;
958                 unsigned int den = rats[k].den;
959                 unsigned int q = i->min;
960                 int diff;
961                 num = mul(q, den);
962                 if (num > rats[k].num_max)
963                         continue;
964                 if (num < rats[k].num_min)
965                         num = rats[k].num_max;
966                 else {
967                         unsigned int r;
968                         r = (num - rats[k].num_min) % rats[k].num_step;
969                         if (r != 0)
970                                 num += rats[k].num_step - r;
971                 }
972                 diff = num - q * den;
973                 if (best_num == 0 ||
974                     diff * best_den < best_diff * den) {
975                         best_diff = diff;
976                         best_den = den;
977                         best_num = num;
978                 }
979         }
980         if (best_den == 0) {
981                 i->empty = 1;
982                 return -EINVAL;
983         }
984         t.min = div_down(best_num, best_den);
985         t.openmin = !!(best_num % best_den);
986         
987         best_num = best_den = best_diff = 0;
988         for (k = 0; k < rats_count; ++k) {
989                 unsigned int num;
990                 unsigned int den = rats[k].den;
991                 unsigned int q = i->max;
992                 int diff;
993                 num = mul(q, den);
994                 if (num < rats[k].num_min)
995                         continue;
996                 if (num > rats[k].num_max)
997                         num = rats[k].num_max;
998                 else {
999                         unsigned int r;
1000                         r = (num - rats[k].num_min) % rats[k].num_step;
1001                         if (r != 0)
1002                                 num -= r;
1003                 }
1004                 diff = q * den - num;
1005                 if (best_num == 0 ||
1006                     diff * best_den < best_diff * den) {
1007                         best_diff = diff;
1008                         best_den = den;
1009                         best_num = num;
1010                 }
1011         }
1012         if (best_den == 0) {
1013                 i->empty = 1;
1014                 return -EINVAL;
1015         }
1016         t.max = div_up(best_num, best_den);
1017         t.openmax = !!(best_num % best_den);
1018         t.integer = 0;
1019         err = snd_interval_refine(i, &t);
1020         if (err < 0)
1021                 return err;
1022
1023         if (snd_interval_single(i)) {
1024                 if (nump)
1025                         *nump = best_num;
1026                 if (denp)
1027                         *denp = best_den;
1028         }
1029         return err;
1030 }
1031
1032 /**
1033  * snd_interval_list - refine the interval value from the list
1034  * @i: the interval value to refine
1035  * @count: the number of elements in the list
1036  * @list: the value list
1037  * @mask: the bit-mask to evaluate
1038  *
1039  * Refines the interval value from the list.
1040  * When mask is non-zero, only the elements corresponding to bit 1 are
1041  * evaluated.
1042  *
1043  * Returns non-zero if the value is changed, zero if not changed.
1044  */
1045 int snd_interval_list(struct snd_interval *i, unsigned int count,
1046                       const unsigned int *list, unsigned int mask)
1047 {
1048         unsigned int k;
1049         struct snd_interval list_range;
1050
1051         if (!count) {
1052                 i->empty = 1;
1053                 return -EINVAL;
1054         }
1055         snd_interval_any(&list_range);
1056         list_range.min = UINT_MAX;
1057         list_range.max = 0;
1058         for (k = 0; k < count; k++) {
1059                 if (mask && !(mask & (1 << k)))
1060                         continue;
1061                 if (!snd_interval_test(i, list[k]))
1062                         continue;
1063                 list_range.min = min(list_range.min, list[k]);
1064                 list_range.max = max(list_range.max, list[k]);
1065         }
1066         return snd_interval_refine(i, &list_range);
1067 }
1068
1069 EXPORT_SYMBOL(snd_interval_list);
1070
1071 static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
1072 {
1073         unsigned int n;
1074         int changed = 0;
1075         n = (i->min - min) % step;
1076         if (n != 0 || i->openmin) {
1077                 i->min += step - n;
1078                 changed = 1;
1079         }
1080         n = (i->max - min) % step;
1081         if (n != 0 || i->openmax) {
1082                 i->max -= n;
1083                 changed = 1;
1084         }
1085         if (snd_interval_checkempty(i)) {
1086                 i->empty = 1;
1087                 return -EINVAL;
1088         }
1089         return changed;
1090 }
1091
1092 /* Info constraints helpers */
1093
1094 /**
1095  * snd_pcm_hw_rule_add - add the hw-constraint rule
1096  * @runtime: the pcm runtime instance
1097  * @cond: condition bits
1098  * @var: the variable to evaluate
1099  * @func: the evaluation function
1100  * @private: the private data pointer passed to function
1101  * @dep: the dependent variables
1102  *
1103  * Returns zero if successful, or a negative error code on failure.
1104  */
1105 int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1106                         int var,
1107                         snd_pcm_hw_rule_func_t func, void *private,
1108                         int dep, ...)
1109 {
1110         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1111         struct snd_pcm_hw_rule *c;
1112         unsigned int k;
1113         va_list args;
1114         va_start(args, dep);
1115         if (constrs->rules_num >= constrs->rules_all) {
1116                 struct snd_pcm_hw_rule *new;
1117                 unsigned int new_rules = constrs->rules_all + 16;
1118                 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1119                 if (!new) {
1120                         va_end(args);
1121                         return -ENOMEM;
1122                 }
1123                 if (constrs->rules) {
1124                         memcpy(new, constrs->rules,
1125                                constrs->rules_num * sizeof(*c));
1126                         kfree(constrs->rules);
1127                 }
1128                 constrs->rules = new;
1129                 constrs->rules_all = new_rules;
1130         }
1131         c = &constrs->rules[constrs->rules_num];
1132         c->cond = cond;
1133         c->func = func;
1134         c->var = var;
1135         c->private = private;
1136         k = 0;
1137         while (1) {
1138                 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1139                         va_end(args);
1140                         return -EINVAL;
1141                 }
1142                 c->deps[k++] = dep;
1143                 if (dep < 0)
1144                         break;
1145                 dep = va_arg(args, int);
1146         }
1147         constrs->rules_num++;
1148         va_end(args);
1149         return 0;
1150 }
1151
1152 EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1153
1154 /**
1155  * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1156  * @runtime: PCM runtime instance
1157  * @var: hw_params variable to apply the mask
1158  * @mask: the bitmap mask
1159  *
1160  * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1161  */
1162 int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1163                                u_int32_t mask)
1164 {
1165         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1166         struct snd_mask *maskp = constrs_mask(constrs, var);
1167         *maskp->bits &= mask;
1168         memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1169         if (*maskp->bits == 0)
1170                 return -EINVAL;
1171         return 0;
1172 }
1173
1174 /**
1175  * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1176  * @runtime: PCM runtime instance
1177  * @var: hw_params variable to apply the mask
1178  * @mask: the 64bit bitmap mask
1179  *
1180  * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1181  */
1182 int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1183                                  u_int64_t mask)
1184 {
1185         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1186         struct snd_mask *maskp = constrs_mask(constrs, var);
1187         maskp->bits[0] &= (u_int32_t)mask;
1188         maskp->bits[1] &= (u_int32_t)(mask >> 32);
1189         memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1190         if (! maskp->bits[0] && ! maskp->bits[1])
1191                 return -EINVAL;
1192         return 0;
1193 }
1194
1195 /**
1196  * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1197  * @runtime: PCM runtime instance
1198  * @var: hw_params variable to apply the integer constraint
1199  *
1200  * Apply the constraint of integer to an interval parameter.
1201  */
1202 int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1203 {
1204         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1205         return snd_interval_setinteger(constrs_interval(constrs, var));
1206 }
1207
1208 EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1209
1210 /**
1211  * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1212  * @runtime: PCM runtime instance
1213  * @var: hw_params variable to apply the range
1214  * @min: the minimal value
1215  * @max: the maximal value
1216  * 
1217  * Apply the min/max range constraint to an interval parameter.
1218  */
1219 int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1220                                  unsigned int min, unsigned int max)
1221 {
1222         struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1223         struct snd_interval t;
1224         t.min = min;
1225         t.max = max;
1226         t.openmin = t.openmax = 0;
1227         t.integer = 0;
1228         return snd_interval_refine(constrs_interval(constrs, var), &t);
1229 }
1230
1231 EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1232
1233 static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1234                                 struct snd_pcm_hw_rule *rule)
1235 {
1236         struct snd_pcm_hw_constraint_list *list = rule->private;
1237         return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1238 }               
1239
1240
1241 /**
1242  * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1243  * @runtime: PCM runtime instance
1244  * @cond: condition bits
1245  * @var: hw_params variable to apply the list constraint
1246  * @l: list
1247  * 
1248  * Apply the list of constraints to an interval parameter.
1249  */
1250 int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1251                                unsigned int cond,
1252                                snd_pcm_hw_param_t var,
1253                                struct snd_pcm_hw_constraint_list *l)
1254 {
1255         return snd_pcm_hw_rule_add(runtime, cond, var,
1256                                    snd_pcm_hw_rule_list, l,
1257                                    var, -1);
1258 }
1259
1260 EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1261
1262 static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1263                                    struct snd_pcm_hw_rule *rule)
1264 {
1265         struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1266         unsigned int num = 0, den = 0;
1267         int err;
1268         err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1269                                   r->nrats, r->rats, &num, &den);
1270         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1271                 params->rate_num = num;
1272                 params->rate_den = den;
1273         }
1274         return err;
1275 }
1276
1277 /**
1278  * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1279  * @runtime: PCM runtime instance
1280  * @cond: condition bits
1281  * @var: hw_params variable to apply the ratnums constraint
1282  * @r: struct snd_ratnums constriants
1283  */
1284 int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime, 
1285                                   unsigned int cond,
1286                                   snd_pcm_hw_param_t var,
1287                                   struct snd_pcm_hw_constraint_ratnums *r)
1288 {
1289         return snd_pcm_hw_rule_add(runtime, cond, var,
1290                                    snd_pcm_hw_rule_ratnums, r,
1291                                    var, -1);
1292 }
1293
1294 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1295
1296 static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1297                                    struct snd_pcm_hw_rule *rule)
1298 {
1299         struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1300         unsigned int num = 0, den = 0;
1301         int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1302                                   r->nrats, r->rats, &num, &den);
1303         if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1304                 params->rate_num = num;
1305                 params->rate_den = den;
1306         }
1307         return err;
1308 }
1309
1310 /**
1311  * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1312  * @runtime: PCM runtime instance
1313  * @cond: condition bits
1314  * @var: hw_params variable to apply the ratdens constraint
1315  * @r: struct snd_ratdens constriants
1316  */
1317 int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime, 
1318                                   unsigned int cond,
1319                                   snd_pcm_hw_param_t var,
1320                                   struct snd_pcm_hw_constraint_ratdens *r)
1321 {
1322         return snd_pcm_hw_rule_add(runtime, cond, var,
1323                                    snd_pcm_hw_rule_ratdens, r,
1324                                    var, -1);
1325 }
1326
1327 EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1328
1329 static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1330                                   struct snd_pcm_hw_rule *rule)
1331 {
1332         unsigned int l = (unsigned long) rule->private;
1333         int width = l & 0xffff;
1334         unsigned int msbits = l >> 16;
1335         struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1336         if (snd_interval_single(i) && snd_interval_value(i) == width)
1337                 params->msbits = msbits;
1338         return 0;
1339 }
1340
1341 /**
1342  * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1343  * @runtime: PCM runtime instance
1344  * @cond: condition bits
1345  * @width: sample bits width
1346  * @msbits: msbits width
1347  */
1348 int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime, 
1349                                  unsigned int cond,
1350                                  unsigned int width,
1351                                  unsigned int msbits)
1352 {
1353         unsigned long l = (msbits << 16) | width;
1354         return snd_pcm_hw_rule_add(runtime, cond, -1,
1355                                     snd_pcm_hw_rule_msbits,
1356                                     (void*) l,
1357                                     SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1358 }
1359
1360 EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1361
1362 static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1363                                 struct snd_pcm_hw_rule *rule)
1364 {
1365         unsigned long step = (unsigned long) rule->private;
1366         return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1367 }
1368
1369 /**
1370  * snd_pcm_hw_constraint_step - add a hw constraint step rule
1371  * @runtime: PCM runtime instance
1372  * @cond: condition bits
1373  * @var: hw_params variable to apply the step constraint
1374  * @step: step size
1375  */
1376 int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1377                                unsigned int cond,
1378                                snd_pcm_hw_param_t var,
1379                                unsigned long step)
1380 {
1381         return snd_pcm_hw_rule_add(runtime, cond, var, 
1382                                    snd_pcm_hw_rule_step, (void *) step,
1383                                    var, -1);
1384 }
1385
1386 EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1387
1388 static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1389 {
1390         static unsigned int pow2_sizes[] = {
1391                 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1392                 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1393                 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1394                 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1395         };
1396         return snd_interval_list(hw_param_interval(params, rule->var),
1397                                  ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1398 }               
1399
1400 /**
1401  * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1402  * @runtime: PCM runtime instance
1403  * @cond: condition bits
1404  * @var: hw_params variable to apply the power-of-2 constraint
1405  */
1406 int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1407                                unsigned int cond,
1408                                snd_pcm_hw_param_t var)
1409 {
1410         return snd_pcm_hw_rule_add(runtime, cond, var, 
1411                                    snd_pcm_hw_rule_pow2, NULL,
1412                                    var, -1);
1413 }
1414
1415 EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1416
1417 static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1418                                            struct snd_pcm_hw_rule *rule)
1419 {
1420         unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1421         struct snd_interval *rate;
1422
1423         rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1424         return snd_interval_list(rate, 1, &base_rate, 0);
1425 }
1426
1427 /**
1428  * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1429  * @runtime: PCM runtime instance
1430  * @base_rate: the rate at which the hardware does not resample
1431  */
1432 int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1433                                unsigned int base_rate)
1434 {
1435         return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1436                                    SNDRV_PCM_HW_PARAM_RATE,
1437                                    snd_pcm_hw_rule_noresample_func,
1438                                    (void *)(uintptr_t)base_rate,
1439                                    SNDRV_PCM_HW_PARAM_RATE, -1);
1440 }
1441 EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1442
1443 static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1444                                   snd_pcm_hw_param_t var)
1445 {
1446         if (hw_is_mask(var)) {
1447                 snd_mask_any(hw_param_mask(params, var));
1448                 params->cmask |= 1 << var;
1449                 params->rmask |= 1 << var;
1450                 return;
1451         }
1452         if (hw_is_interval(var)) {
1453                 snd_interval_any(hw_param_interval(params, var));
1454                 params->cmask |= 1 << var;
1455                 params->rmask |= 1 << var;
1456                 return;
1457         }
1458         snd_BUG();
1459 }
1460
1461 void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1462 {
1463         unsigned int k;
1464         memset(params, 0, sizeof(*params));
1465         for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1466                 _snd_pcm_hw_param_any(params, k);
1467         for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1468                 _snd_pcm_hw_param_any(params, k);
1469         params->info = ~0U;
1470 }
1471
1472 EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1473
1474 /**
1475  * snd_pcm_hw_param_value - return @params field @var value
1476  * @params: the hw_params instance
1477  * @var: parameter to retrieve
1478  * @dir: pointer to the direction (-1,0,1) or %NULL
1479  *
1480  * Return the value for field @var if it's fixed in configuration space
1481  * defined by @params. Return -%EINVAL otherwise.
1482  */
1483 int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1484                            snd_pcm_hw_param_t var, int *dir)
1485 {
1486         if (hw_is_mask(var)) {
1487                 const struct snd_mask *mask = hw_param_mask_c(params, var);
1488                 if (!snd_mask_single(mask))
1489                         return -EINVAL;
1490                 if (dir)
1491                         *dir = 0;
1492                 return snd_mask_value(mask);
1493         }
1494         if (hw_is_interval(var)) {
1495                 const struct snd_interval *i = hw_param_interval_c(params, var);
1496                 if (!snd_interval_single(i))
1497                         return -EINVAL;
1498                 if (dir)
1499                         *dir = i->openmin;
1500                 return snd_interval_value(i);
1501         }
1502         return -EINVAL;
1503 }
1504
1505 EXPORT_SYMBOL(snd_pcm_hw_param_value);
1506
1507 void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1508                                 snd_pcm_hw_param_t var)
1509 {
1510         if (hw_is_mask(var)) {
1511                 snd_mask_none(hw_param_mask(params, var));
1512                 params->cmask |= 1 << var;
1513                 params->rmask |= 1 << var;
1514         } else if (hw_is_interval(var)) {
1515                 snd_interval_none(hw_param_interval(params, var));
1516                 params->cmask |= 1 << var;
1517                 params->rmask |= 1 << var;
1518         } else {
1519                 snd_BUG();
1520         }
1521 }
1522
1523 EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1524
1525 static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1526                                    snd_pcm_hw_param_t var)
1527 {
1528         int changed;
1529         if (hw_is_mask(var))
1530                 changed = snd_mask_refine_first(hw_param_mask(params, var));
1531         else if (hw_is_interval(var))
1532                 changed = snd_interval_refine_first(hw_param_interval(params, var));
1533         else
1534                 return -EINVAL;
1535         if (changed) {
1536                 params->cmask |= 1 << var;
1537                 params->rmask |= 1 << var;
1538         }
1539         return changed;
1540 }
1541
1542
1543 /**
1544  * snd_pcm_hw_param_first - refine config space and return minimum value
1545  * @pcm: PCM instance
1546  * @params: the hw_params instance
1547  * @var: parameter to retrieve
1548  * @dir: pointer to the direction (-1,0,1) or %NULL
1549  *
1550  * Inside configuration space defined by @params remove from @var all
1551  * values > minimum. Reduce configuration space accordingly.
1552  * Return the minimum.
1553  */
1554 int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm, 
1555                            struct snd_pcm_hw_params *params, 
1556                            snd_pcm_hw_param_t var, int *dir)
1557 {
1558         int changed = _snd_pcm_hw_param_first(params, var);
1559         if (changed < 0)
1560                 return changed;
1561         if (params->rmask) {
1562                 int err = snd_pcm_hw_refine(pcm, params);
1563                 if (snd_BUG_ON(err < 0))
1564                         return err;
1565         }
1566         return snd_pcm_hw_param_value(params, var, dir);
1567 }
1568
1569 EXPORT_SYMBOL(snd_pcm_hw_param_first);
1570
1571 static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1572                                   snd_pcm_hw_param_t var)
1573 {
1574         int changed;
1575         if (hw_is_mask(var))
1576                 changed = snd_mask_refine_last(hw_param_mask(params, var));
1577         else if (hw_is_interval(var))
1578                 changed = snd_interval_refine_last(hw_param_interval(params, var));
1579         else
1580                 return -EINVAL;
1581         if (changed) {
1582                 params->cmask |= 1 << var;
1583                 params->rmask |= 1 << var;
1584         }
1585         return changed;
1586 }
1587
1588
1589 /**
1590  * snd_pcm_hw_param_last - refine config space and return maximum value
1591  * @pcm: PCM instance
1592  * @params: the hw_params instance
1593  * @var: parameter to retrieve
1594  * @dir: pointer to the direction (-1,0,1) or %NULL
1595  *
1596  * Inside configuration space defined by @params remove from @var all
1597  * values < maximum. Reduce configuration space accordingly.
1598  * Return the maximum.
1599  */
1600 int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm, 
1601                           struct snd_pcm_hw_params *params,
1602                           snd_pcm_hw_param_t var, int *dir)
1603 {
1604         int changed = _snd_pcm_hw_param_last(params, var);
1605         if (changed < 0)
1606                 return changed;
1607         if (params->rmask) {
1608                 int err = snd_pcm_hw_refine(pcm, params);
1609                 if (snd_BUG_ON(err < 0))
1610                         return err;
1611         }
1612         return snd_pcm_hw_param_value(params, var, dir);
1613 }
1614
1615 EXPORT_SYMBOL(snd_pcm_hw_param_last);
1616
1617 /**
1618  * snd_pcm_hw_param_choose - choose a configuration defined by @params
1619  * @pcm: PCM instance
1620  * @params: the hw_params instance
1621  *
1622  * Choose one configuration from configuration space defined by @params.
1623  * The configuration chosen is that obtained fixing in this order:
1624  * first access, first format, first subformat, min channels,
1625  * min rate, min period time, max buffer size, min tick time
1626  */
1627 int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1628                              struct snd_pcm_hw_params *params)
1629 {
1630         static int vars[] = {
1631                 SNDRV_PCM_HW_PARAM_ACCESS,
1632                 SNDRV_PCM_HW_PARAM_FORMAT,
1633                 SNDRV_PCM_HW_PARAM_SUBFORMAT,
1634                 SNDRV_PCM_HW_PARAM_CHANNELS,
1635                 SNDRV_PCM_HW_PARAM_RATE,
1636                 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1637                 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1638                 SNDRV_PCM_HW_PARAM_TICK_TIME,
1639                 -1
1640         };
1641         int err, *v;
1642
1643         for (v = vars; *v != -1; v++) {
1644                 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1645                         err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1646                 else
1647                         err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1648                 if (snd_BUG_ON(err < 0))
1649                         return err;
1650         }
1651         return 0;
1652 }
1653
1654 static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1655                                    void *arg)
1656 {
1657         struct snd_pcm_runtime *runtime = substream->runtime;
1658         unsigned long flags;
1659         snd_pcm_stream_lock_irqsave(substream, flags);
1660         if (snd_pcm_running(substream) &&
1661             snd_pcm_update_hw_ptr(substream) >= 0)
1662                 runtime->status->hw_ptr %= runtime->buffer_size;
1663         else
1664                 runtime->status->hw_ptr = 0;
1665         snd_pcm_stream_unlock_irqrestore(substream, flags);
1666         return 0;
1667 }
1668
1669 static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1670                                           void *arg)
1671 {
1672         struct snd_pcm_channel_info *info = arg;
1673         struct snd_pcm_runtime *runtime = substream->runtime;
1674         int width;
1675         if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1676                 info->offset = -1;
1677                 return 0;
1678         }
1679         width = snd_pcm_format_physical_width(runtime->format);
1680         if (width < 0)
1681                 return width;
1682         info->offset = 0;
1683         switch (runtime->access) {
1684         case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1685         case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1686                 info->first = info->channel * width;
1687                 info->step = runtime->channels * width;
1688                 break;
1689         case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1690         case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1691         {
1692                 size_t size = runtime->dma_bytes / runtime->channels;
1693                 info->first = info->channel * size * 8;
1694                 info->step = width;
1695                 break;
1696         }
1697         default:
1698                 snd_BUG();
1699                 break;
1700         }
1701         return 0;
1702 }
1703
1704 static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1705                                        void *arg)
1706 {
1707         struct snd_pcm_hw_params *params = arg;
1708         snd_pcm_format_t format;
1709         int channels, width;
1710
1711         params->fifo_size = substream->runtime->hw.fifo_size;
1712         if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1713                 format = params_format(params);
1714                 channels = params_channels(params);
1715                 width = snd_pcm_format_physical_width(format);
1716                 params->fifo_size /= width * channels;
1717         }
1718         return 0;
1719 }
1720
1721 /**
1722  * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1723  * @substream: the pcm substream instance
1724  * @cmd: ioctl command
1725  * @arg: ioctl argument
1726  *
1727  * Processes the generic ioctl commands for PCM.
1728  * Can be passed as the ioctl callback for PCM ops.
1729  *
1730  * Returns zero if successful, or a negative error code on failure.
1731  */
1732 int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1733                       unsigned int cmd, void *arg)
1734 {
1735         switch (cmd) {
1736         case SNDRV_PCM_IOCTL1_INFO:
1737                 return 0;
1738         case SNDRV_PCM_IOCTL1_RESET:
1739                 return snd_pcm_lib_ioctl_reset(substream, arg);
1740         case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1741                 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1742         case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1743                 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1744         }
1745         return -ENXIO;
1746 }
1747
1748 EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1749
1750 /**
1751  * snd_pcm_period_elapsed - update the pcm status for the next period
1752  * @substream: the pcm substream instance
1753  *
1754  * This function is called from the interrupt handler when the
1755  * PCM has processed the period size.  It will update the current
1756  * pointer, wake up sleepers, etc.
1757  *
1758  * Even if more than one periods have elapsed since the last call, you
1759  * have to call this only once.
1760  */
1761 void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1762 {
1763         struct snd_pcm_runtime *runtime;
1764         unsigned long flags;
1765
1766         if (PCM_RUNTIME_CHECK(substream))
1767                 return;
1768         runtime = substream->runtime;
1769
1770         if (runtime->transfer_ack_begin)
1771                 runtime->transfer_ack_begin(substream);
1772
1773         snd_pcm_stream_lock_irqsave(substream, flags);
1774         if (!snd_pcm_running(substream) ||
1775             snd_pcm_update_hw_ptr0(substream, 1) < 0)
1776                 goto _end;
1777
1778         if (substream->timer_running)
1779                 snd_timer_interrupt(substream->timer, 1);
1780  _end:
1781         snd_pcm_stream_unlock_irqrestore(substream, flags);
1782         if (runtime->transfer_ack_end)
1783                 runtime->transfer_ack_end(substream);
1784         kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1785 }
1786
1787 EXPORT_SYMBOL(snd_pcm_period_elapsed);
1788
1789 /*
1790  * Wait until avail_min data becomes available
1791  * Returns a negative error code if any error occurs during operation.
1792  * The available space is stored on availp.  When err = 0 and avail = 0
1793  * on the capture stream, it indicates the stream is in DRAINING state.
1794  */
1795 static int wait_for_avail(struct snd_pcm_substream *substream,
1796                               snd_pcm_uframes_t *availp)
1797 {
1798         struct snd_pcm_runtime *runtime = substream->runtime;
1799         int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1800         wait_queue_t wait;
1801         int err = 0;
1802         snd_pcm_uframes_t avail = 0;
1803         long wait_time, tout;
1804
1805         init_waitqueue_entry(&wait, current);
1806         set_current_state(TASK_INTERRUPTIBLE);
1807         add_wait_queue(&runtime->tsleep, &wait);
1808
1809         if (runtime->no_period_wakeup)
1810                 wait_time = MAX_SCHEDULE_TIMEOUT;
1811         else {
1812                 wait_time = 10;
1813                 if (runtime->rate) {
1814                         long t = runtime->period_size * 2 / runtime->rate;
1815                         wait_time = max(t, wait_time);
1816                 }
1817                 wait_time = msecs_to_jiffies(wait_time * 1000);
1818         }
1819
1820         for (;;) {
1821                 if (signal_pending(current)) {
1822                         err = -ERESTARTSYS;
1823                         break;
1824                 }
1825
1826                 /*
1827                  * We need to check if space became available already
1828                  * (and thus the wakeup happened already) first to close
1829                  * the race of space already having become available.
1830                  * This check must happen after been added to the waitqueue
1831                  * and having current state be INTERRUPTIBLE.
1832                  */
1833                 if (is_playback)
1834                         avail = snd_pcm_playback_avail(runtime);
1835                 else
1836                         avail = snd_pcm_capture_avail(runtime);
1837                 if (avail >= runtime->twake)
1838                         break;
1839                 snd_pcm_stream_unlock_irq(substream);
1840
1841                 tout = schedule_timeout(wait_time);
1842
1843                 snd_pcm_stream_lock_irq(substream);
1844                 set_current_state(TASK_INTERRUPTIBLE);
1845                 switch (runtime->status->state) {
1846                 case SNDRV_PCM_STATE_SUSPENDED:
1847                         err = -ESTRPIPE;
1848                         goto _endloop;
1849                 case SNDRV_PCM_STATE_XRUN:
1850                         err = -EPIPE;
1851                         goto _endloop;
1852                 case SNDRV_PCM_STATE_DRAINING:
1853                         if (is_playback)
1854                                 err = -EPIPE;
1855                         else 
1856                                 avail = 0; /* indicate draining */
1857                         goto _endloop;
1858                 case SNDRV_PCM_STATE_OPEN:
1859                 case SNDRV_PCM_STATE_SETUP:
1860                 case SNDRV_PCM_STATE_DISCONNECTED:
1861                         err = -EBADFD;
1862                         goto _endloop;
1863                 }
1864                 if (!tout) {
1865                         snd_printd("%s write error (DMA or IRQ trouble?)\n",
1866                                    is_playback ? "playback" : "capture");
1867                         err = -EIO;
1868                         break;
1869                 }
1870         }
1871  _endloop:
1872         set_current_state(TASK_RUNNING);
1873         remove_wait_queue(&runtime->tsleep, &wait);
1874         *availp = avail;
1875         return err;
1876 }
1877         
1878 static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1879                                       unsigned int hwoff,
1880                                       unsigned long data, unsigned int off,
1881                                       snd_pcm_uframes_t frames)
1882 {
1883         struct snd_pcm_runtime *runtime = substream->runtime;
1884         int err;
1885         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1886         if (substream->ops->copy) {
1887                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1888                         return err;
1889         } else {
1890                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1891                 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1892                         return -EFAULT;
1893         }
1894         return 0;
1895 }
1896  
1897 typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1898                           unsigned long data, unsigned int off,
1899                           snd_pcm_uframes_t size);
1900
1901 static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream, 
1902                                             unsigned long data,
1903                                             snd_pcm_uframes_t size,
1904                                             int nonblock,
1905                                             transfer_f transfer)
1906 {
1907         struct snd_pcm_runtime *runtime = substream->runtime;
1908         snd_pcm_uframes_t xfer = 0;
1909         snd_pcm_uframes_t offset = 0;
1910         snd_pcm_uframes_t avail;
1911         int err = 0;
1912
1913         if (size == 0)
1914                 return 0;
1915
1916         snd_pcm_stream_lock_irq(substream);
1917         switch (runtime->status->state) {
1918         case SNDRV_PCM_STATE_PREPARED:
1919         case SNDRV_PCM_STATE_RUNNING:
1920         case SNDRV_PCM_STATE_PAUSED:
1921                 break;
1922         case SNDRV_PCM_STATE_XRUN:
1923                 err = -EPIPE;
1924                 goto _end_unlock;
1925         case SNDRV_PCM_STATE_SUSPENDED:
1926                 err = -ESTRPIPE;
1927                 goto _end_unlock;
1928         default:
1929                 err = -EBADFD;
1930                 goto _end_unlock;
1931         }
1932
1933         runtime->twake = runtime->control->avail_min ? : 1;
1934         if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1935                 snd_pcm_update_hw_ptr(substream);
1936         avail = snd_pcm_playback_avail(runtime);
1937         while (size > 0) {
1938                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1939                 snd_pcm_uframes_t cont;
1940                 if (!avail) {
1941                         if (nonblock) {
1942                                 err = -EAGAIN;
1943                                 goto _end_unlock;
1944                         }
1945                         runtime->twake = min_t(snd_pcm_uframes_t, size,
1946                                         runtime->control->avail_min ? : 1);
1947                         err = wait_for_avail(substream, &avail);
1948                         if (err < 0)
1949                                 goto _end_unlock;
1950                 }
1951                 frames = size > avail ? avail : size;
1952                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
1953                 if (frames > cont)
1954                         frames = cont;
1955                 if (snd_BUG_ON(!frames)) {
1956                         runtime->twake = 0;
1957                         snd_pcm_stream_unlock_irq(substream);
1958                         return -EINVAL;
1959                 }
1960                 appl_ptr = runtime->control->appl_ptr;
1961                 appl_ofs = appl_ptr % runtime->buffer_size;
1962                 snd_pcm_stream_unlock_irq(substream);
1963                 err = transfer(substream, appl_ofs, data, offset, frames);
1964                 snd_pcm_stream_lock_irq(substream);
1965                 if (err < 0)
1966                         goto _end_unlock;
1967                 switch (runtime->status->state) {
1968                 case SNDRV_PCM_STATE_XRUN:
1969                         err = -EPIPE;
1970                         goto _end_unlock;
1971                 case SNDRV_PCM_STATE_SUSPENDED:
1972                         err = -ESTRPIPE;
1973                         goto _end_unlock;
1974                 default:
1975                         break;
1976                 }
1977                 appl_ptr += frames;
1978                 if (appl_ptr >= runtime->boundary)
1979                         appl_ptr -= runtime->boundary;
1980                 runtime->control->appl_ptr = appl_ptr;
1981                 if (substream->ops->ack)
1982                         substream->ops->ack(substream);
1983
1984                 offset += frames;
1985                 size -= frames;
1986                 xfer += frames;
1987                 avail -= frames;
1988                 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
1989                     snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
1990                         err = snd_pcm_start(substream);
1991                         if (err < 0)
1992                                 goto _end_unlock;
1993                 }
1994         }
1995  _end_unlock:
1996         runtime->twake = 0;
1997         if (xfer > 0 && err >= 0)
1998                 snd_pcm_update_state(substream, runtime);
1999         snd_pcm_stream_unlock_irq(substream);
2000         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2001 }
2002
2003 /* sanity-check for read/write methods */
2004 static int pcm_sanity_check(struct snd_pcm_substream *substream)
2005 {
2006         struct snd_pcm_runtime *runtime;
2007         if (PCM_RUNTIME_CHECK(substream))
2008                 return -ENXIO;
2009         runtime = substream->runtime;
2010         if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
2011                 return -EINVAL;
2012         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2013                 return -EBADFD;
2014         return 0;
2015 }
2016
2017 snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
2018 {
2019         struct snd_pcm_runtime *runtime;
2020         int nonblock;
2021         int err;
2022
2023         err = pcm_sanity_check(substream);
2024         if (err < 0)
2025                 return err;
2026         runtime = substream->runtime;
2027         nonblock = !!(substream->f_flags & O_NONBLOCK);
2028
2029         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2030             runtime->channels > 1)
2031                 return -EINVAL;
2032         return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2033                                   snd_pcm_lib_write_transfer);
2034 }
2035
2036 EXPORT_SYMBOL(snd_pcm_lib_write);
2037
2038 static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
2039                                        unsigned int hwoff,
2040                                        unsigned long data, unsigned int off,
2041                                        snd_pcm_uframes_t frames)
2042 {
2043         struct snd_pcm_runtime *runtime = substream->runtime;
2044         int err;
2045         void __user **bufs = (void __user **)data;
2046         int channels = runtime->channels;
2047         int c;
2048         if (substream->ops->copy) {
2049                 if (snd_BUG_ON(!substream->ops->silence))
2050                         return -EINVAL;
2051                 for (c = 0; c < channels; ++c, ++bufs) {
2052                         if (*bufs == NULL) {
2053                                 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2054                                         return err;
2055                         } else {
2056                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2057                                 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2058                                         return err;
2059                         }
2060                 }
2061         } else {
2062                 /* default transfer behaviour */
2063                 size_t dma_csize = runtime->dma_bytes / channels;
2064                 for (c = 0; c < channels; ++c, ++bufs) {
2065                         char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2066                         if (*bufs == NULL) {
2067                                 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2068                         } else {
2069                                 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2070                                 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2071                                         return -EFAULT;
2072                         }
2073                 }
2074         }
2075         return 0;
2076 }
2077  
2078 snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2079                                      void __user **bufs,
2080                                      snd_pcm_uframes_t frames)
2081 {
2082         struct snd_pcm_runtime *runtime;
2083         int nonblock;
2084         int err;
2085
2086         err = pcm_sanity_check(substream);
2087         if (err < 0)
2088                 return err;
2089         runtime = substream->runtime;
2090         nonblock = !!(substream->f_flags & O_NONBLOCK);
2091
2092         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2093                 return -EINVAL;
2094         return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2095                                   nonblock, snd_pcm_lib_writev_transfer);
2096 }
2097
2098 EXPORT_SYMBOL(snd_pcm_lib_writev);
2099
2100 static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream, 
2101                                      unsigned int hwoff,
2102                                      unsigned long data, unsigned int off,
2103                                      snd_pcm_uframes_t frames)
2104 {
2105         struct snd_pcm_runtime *runtime = substream->runtime;
2106         int err;
2107         char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2108         if (substream->ops->copy) {
2109                 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2110                         return err;
2111         } else {
2112                 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2113                 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2114                         return -EFAULT;
2115         }
2116         return 0;
2117 }
2118
2119 static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2120                                            unsigned long data,
2121                                            snd_pcm_uframes_t size,
2122                                            int nonblock,
2123                                            transfer_f transfer)
2124 {
2125         struct snd_pcm_runtime *runtime = substream->runtime;
2126         snd_pcm_uframes_t xfer = 0;
2127         snd_pcm_uframes_t offset = 0;
2128         snd_pcm_uframes_t avail;
2129         int err = 0;
2130
2131         if (size == 0)
2132                 return 0;
2133
2134         snd_pcm_stream_lock_irq(substream);
2135         switch (runtime->status->state) {
2136         case SNDRV_PCM_STATE_PREPARED:
2137                 if (size >= runtime->start_threshold) {
2138                         err = snd_pcm_start(substream);
2139                         if (err < 0)
2140                                 goto _end_unlock;
2141                 }
2142                 break;
2143         case SNDRV_PCM_STATE_DRAINING:
2144         case SNDRV_PCM_STATE_RUNNING:
2145         case SNDRV_PCM_STATE_PAUSED:
2146                 break;
2147         case SNDRV_PCM_STATE_XRUN:
2148                 err = -EPIPE;
2149                 goto _end_unlock;
2150         case SNDRV_PCM_STATE_SUSPENDED:
2151                 err = -ESTRPIPE;
2152                 goto _end_unlock;
2153         default:
2154                 err = -EBADFD;
2155                 goto _end_unlock;
2156         }
2157
2158         runtime->twake = runtime->control->avail_min ? : 1;
2159         if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2160                 snd_pcm_update_hw_ptr(substream);
2161         avail = snd_pcm_capture_avail(runtime);
2162         while (size > 0) {
2163                 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2164                 snd_pcm_uframes_t cont;
2165                 if (!avail) {
2166                         if (runtime->status->state ==
2167                             SNDRV_PCM_STATE_DRAINING) {
2168                                 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2169                                 goto _end_unlock;
2170                         }
2171                         if (nonblock) {
2172                                 err = -EAGAIN;
2173                                 goto _end_unlock;
2174                         }
2175                         runtime->twake = min_t(snd_pcm_uframes_t, size,
2176                                         runtime->control->avail_min ? : 1);
2177                         err = wait_for_avail(substream, &avail);
2178                         if (err < 0)
2179                                 goto _end_unlock;
2180                         if (!avail)
2181                                 continue; /* draining */
2182                 }
2183                 frames = size > avail ? avail : size;
2184                 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2185                 if (frames > cont)
2186                         frames = cont;
2187                 if (snd_BUG_ON(!frames)) {
2188                         runtime->twake = 0;
2189                         snd_pcm_stream_unlock_irq(substream);
2190                         return -EINVAL;
2191                 }
2192                 appl_ptr = runtime->control->appl_ptr;
2193                 appl_ofs = appl_ptr % runtime->buffer_size;
2194                 snd_pcm_stream_unlock_irq(substream);
2195                 err = transfer(substream, appl_ofs, data, offset, frames);
2196                 snd_pcm_stream_lock_irq(substream);
2197                 if (err < 0)
2198                         goto _end_unlock;
2199                 switch (runtime->status->state) {
2200                 case SNDRV_PCM_STATE_XRUN:
2201                         err = -EPIPE;
2202                         goto _end_unlock;
2203                 case SNDRV_PCM_STATE_SUSPENDED:
2204                         err = -ESTRPIPE;
2205                         goto _end_unlock;
2206                 default:
2207                         break;
2208                 }
2209                 appl_ptr += frames;
2210                 if (appl_ptr >= runtime->boundary)
2211                         appl_ptr -= runtime->boundary;
2212                 runtime->control->appl_ptr = appl_ptr;
2213                 if (substream->ops->ack)
2214                         substream->ops->ack(substream);
2215
2216                 offset += frames;
2217                 size -= frames;
2218                 xfer += frames;
2219                 avail -= frames;
2220         }
2221  _end_unlock:
2222         runtime->twake = 0;
2223         if (xfer > 0 && err >= 0)
2224                 snd_pcm_update_state(substream, runtime);
2225         snd_pcm_stream_unlock_irq(substream);
2226         return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2227 }
2228
2229 snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2230 {
2231         struct snd_pcm_runtime *runtime;
2232         int nonblock;
2233         int err;
2234         
2235         err = pcm_sanity_check(substream);
2236         if (err < 0)
2237                 return err;
2238         runtime = substream->runtime;
2239         nonblock = !!(substream->f_flags & O_NONBLOCK);
2240         if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2241                 return -EINVAL;
2242         return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2243 }
2244
2245 EXPORT_SYMBOL(snd_pcm_lib_read);
2246
2247 static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2248                                       unsigned int hwoff,
2249                                       unsigned long data, unsigned int off,
2250                                       snd_pcm_uframes_t frames)
2251 {
2252         struct snd_pcm_runtime *runtime = substream->runtime;
2253         int err;
2254         void __user **bufs = (void __user **)data;
2255         int channels = runtime->channels;
2256         int c;
2257         if (substream->ops->copy) {
2258                 for (c = 0; c < channels; ++c, ++bufs) {
2259                         char __user *buf;
2260                         if (*bufs == NULL)
2261                                 continue;
2262                         buf = *bufs + samples_to_bytes(runtime, off);
2263                         if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2264                                 return err;
2265                 }
2266         } else {
2267                 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2268                 for (c = 0; c < channels; ++c, ++bufs) {
2269                         char *hwbuf;
2270                         char __user *buf;
2271                         if (*bufs == NULL)
2272                                 continue;
2273
2274                         hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2275                         buf = *bufs + samples_to_bytes(runtime, off);
2276                         if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2277                                 return -EFAULT;
2278                 }
2279         }
2280         return 0;
2281 }
2282  
2283 snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2284                                     void __user **bufs,
2285                                     snd_pcm_uframes_t frames)
2286 {
2287         struct snd_pcm_runtime *runtime;
2288         int nonblock;
2289         int err;
2290
2291         err = pcm_sanity_check(substream);
2292         if (err < 0)
2293                 return err;
2294         runtime = substream->runtime;
2295         if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2296                 return -EBADFD;
2297
2298         nonblock = !!(substream->f_flags & O_NONBLOCK);
2299         if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2300                 return -EINVAL;
2301         return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2302 }
2303
2304 EXPORT_SYMBOL(snd_pcm_lib_readv);