capabilities: remove __cap_full_set definition
[pandora-kernel.git] / security / security.c
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *      This program is free software; you can redistribute it and/or modify
9  *      it under the terms of the GNU General Public License as published by
10  *      the Free Software Foundation; either version 2 of the License, or
11  *      (at your option) any later version.
12  */
13
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19 #include <linux/ima.h>
20
21 /* Boot-time LSM user choice */
22 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
23         CONFIG_DEFAULT_SECURITY;
24
25 /* things that live in capability.c */
26 extern void __init security_fixup_ops(struct security_operations *ops);
27
28 static struct security_operations *security_ops;
29 static struct security_operations default_security_ops = {
30         .name   = "default",
31 };
32
33 static inline int __init verify(struct security_operations *ops)
34 {
35         /* verify the security_operations structure exists */
36         if (!ops)
37                 return -EINVAL;
38         security_fixup_ops(ops);
39         return 0;
40 }
41
42 static void __init do_security_initcalls(void)
43 {
44         initcall_t *call;
45         call = __security_initcall_start;
46         while (call < __security_initcall_end) {
47                 (*call) ();
48                 call++;
49         }
50 }
51
52 /**
53  * security_init - initializes the security framework
54  *
55  * This should be called early in the kernel initialization sequence.
56  */
57 int __init security_init(void)
58 {
59         printk(KERN_INFO "Security Framework initialized\n");
60
61         security_fixup_ops(&default_security_ops);
62         security_ops = &default_security_ops;
63         do_security_initcalls();
64
65         return 0;
66 }
67
68 void reset_security_ops(void)
69 {
70         security_ops = &default_security_ops;
71 }
72
73 /* Save user chosen LSM */
74 static int __init choose_lsm(char *str)
75 {
76         strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
77         return 1;
78 }
79 __setup("security=", choose_lsm);
80
81 /**
82  * security_module_enable - Load given security module on boot ?
83  * @ops: a pointer to the struct security_operations that is to be checked.
84  *
85  * Each LSM must pass this method before registering its own operations
86  * to avoid security registration races. This method may also be used
87  * to check if your LSM is currently loaded during kernel initialization.
88  *
89  * Return true if:
90  *      -The passed LSM is the one chosen by user at boot time,
91  *      -or the passed LSM is configured as the default and the user did not
92  *       choose an alternate LSM at boot time.
93  * Otherwise, return false.
94  */
95 int __init security_module_enable(struct security_operations *ops)
96 {
97         return !strcmp(ops->name, chosen_lsm);
98 }
99
100 /**
101  * register_security - registers a security framework with the kernel
102  * @ops: a pointer to the struct security_options that is to be registered
103  *
104  * This function allows a security module to register itself with the
105  * kernel security subsystem.  Some rudimentary checking is done on the @ops
106  * value passed to this function. You'll need to check first if your LSM
107  * is allowed to register its @ops by calling security_module_enable(@ops).
108  *
109  * If there is already a security module registered with the kernel,
110  * an error will be returned.  Otherwise %0 is returned on success.
111  */
112 int __init register_security(struct security_operations *ops)
113 {
114         if (verify(ops)) {
115                 printk(KERN_DEBUG "%s could not verify "
116                        "security_operations structure.\n", __func__);
117                 return -EINVAL;
118         }
119
120         if (security_ops != &default_security_ops)
121                 return -EAGAIN;
122
123         security_ops = ops;
124
125         return 0;
126 }
127
128 /* Security operations */
129
130 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
131 {
132         return security_ops->ptrace_access_check(child, mode);
133 }
134
135 int security_ptrace_traceme(struct task_struct *parent)
136 {
137         return security_ops->ptrace_traceme(parent);
138 }
139
140 int security_capget(struct task_struct *target,
141                      kernel_cap_t *effective,
142                      kernel_cap_t *inheritable,
143                      kernel_cap_t *permitted)
144 {
145         return security_ops->capget(target, effective, inheritable, permitted);
146 }
147
148 int security_capset(struct cred *new, const struct cred *old,
149                     const kernel_cap_t *effective,
150                     const kernel_cap_t *inheritable,
151                     const kernel_cap_t *permitted)
152 {
153         return security_ops->capset(new, old,
154                                     effective, inheritable, permitted);
155 }
156
157 int security_capable(const struct cred *cred, struct user_namespace *ns,
158                      int cap)
159 {
160         return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
161 }
162
163 int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
164                              int cap)
165 {
166         return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
167 }
168
169 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
170 {
171         return security_ops->quotactl(cmds, type, id, sb);
172 }
173
174 int security_quota_on(struct dentry *dentry)
175 {
176         return security_ops->quota_on(dentry);
177 }
178
179 int security_syslog(int type)
180 {
181         return security_ops->syslog(type);
182 }
183
184 int security_settime(const struct timespec *ts, const struct timezone *tz)
185 {
186         return security_ops->settime(ts, tz);
187 }
188
189 int security_vm_enough_memory(long pages)
190 {
191         WARN_ON(current->mm == NULL);
192         return security_ops->vm_enough_memory(current->mm, pages);
193 }
194
195 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
196 {
197         WARN_ON(mm == NULL);
198         return security_ops->vm_enough_memory(mm, pages);
199 }
200
201 int security_vm_enough_memory_kern(long pages)
202 {
203         /* If current->mm is a kernel thread then we will pass NULL,
204            for this specific case that is fine */
205         return security_ops->vm_enough_memory(current->mm, pages);
206 }
207
208 int security_bprm_set_creds(struct linux_binprm *bprm)
209 {
210         return security_ops->bprm_set_creds(bprm);
211 }
212
213 int security_bprm_check(struct linux_binprm *bprm)
214 {
215         int ret;
216
217         ret = security_ops->bprm_check_security(bprm);
218         if (ret)
219                 return ret;
220         return ima_bprm_check(bprm);
221 }
222
223 void security_bprm_committing_creds(struct linux_binprm *bprm)
224 {
225         security_ops->bprm_committing_creds(bprm);
226 }
227
228 void security_bprm_committed_creds(struct linux_binprm *bprm)
229 {
230         security_ops->bprm_committed_creds(bprm);
231 }
232
233 int security_bprm_secureexec(struct linux_binprm *bprm)
234 {
235         return security_ops->bprm_secureexec(bprm);
236 }
237
238 int security_sb_alloc(struct super_block *sb)
239 {
240         return security_ops->sb_alloc_security(sb);
241 }
242
243 void security_sb_free(struct super_block *sb)
244 {
245         security_ops->sb_free_security(sb);
246 }
247
248 int security_sb_copy_data(char *orig, char *copy)
249 {
250         return security_ops->sb_copy_data(orig, copy);
251 }
252 EXPORT_SYMBOL(security_sb_copy_data);
253
254 int security_sb_remount(struct super_block *sb, void *data)
255 {
256         return security_ops->sb_remount(sb, data);
257 }
258
259 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
260 {
261         return security_ops->sb_kern_mount(sb, flags, data);
262 }
263
264 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
265 {
266         return security_ops->sb_show_options(m, sb);
267 }
268
269 int security_sb_statfs(struct dentry *dentry)
270 {
271         return security_ops->sb_statfs(dentry);
272 }
273
274 int security_sb_mount(char *dev_name, struct path *path,
275                        char *type, unsigned long flags, void *data)
276 {
277         return security_ops->sb_mount(dev_name, path, type, flags, data);
278 }
279
280 int security_sb_umount(struct vfsmount *mnt, int flags)
281 {
282         return security_ops->sb_umount(mnt, flags);
283 }
284
285 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
286 {
287         return security_ops->sb_pivotroot(old_path, new_path);
288 }
289
290 int security_sb_set_mnt_opts(struct super_block *sb,
291                                 struct security_mnt_opts *opts)
292 {
293         return security_ops->sb_set_mnt_opts(sb, opts);
294 }
295 EXPORT_SYMBOL(security_sb_set_mnt_opts);
296
297 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
298                                 struct super_block *newsb)
299 {
300         security_ops->sb_clone_mnt_opts(oldsb, newsb);
301 }
302 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
303
304 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
305 {
306         return security_ops->sb_parse_opts_str(options, opts);
307 }
308 EXPORT_SYMBOL(security_sb_parse_opts_str);
309
310 int security_inode_alloc(struct inode *inode)
311 {
312         inode->i_security = NULL;
313         return security_ops->inode_alloc_security(inode);
314 }
315
316 void security_inode_free(struct inode *inode)
317 {
318         ima_inode_free(inode);
319         security_ops->inode_free_security(inode);
320 }
321
322 int security_inode_init_security(struct inode *inode, struct inode *dir,
323                                  const struct qstr *qstr, char **name,
324                                  void **value, size_t *len)
325 {
326         if (unlikely(IS_PRIVATE(inode)))
327                 return -EOPNOTSUPP;
328         return security_ops->inode_init_security(inode, dir, qstr, name, value,
329                                                  len);
330 }
331 EXPORT_SYMBOL(security_inode_init_security);
332
333 #ifdef CONFIG_SECURITY_PATH
334 int security_path_mknod(struct path *dir, struct dentry *dentry, int mode,
335                         unsigned int dev)
336 {
337         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
338                 return 0;
339         return security_ops->path_mknod(dir, dentry, mode, dev);
340 }
341 EXPORT_SYMBOL(security_path_mknod);
342
343 int security_path_mkdir(struct path *dir, struct dentry *dentry, int mode)
344 {
345         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
346                 return 0;
347         return security_ops->path_mkdir(dir, dentry, mode);
348 }
349 EXPORT_SYMBOL(security_path_mkdir);
350
351 int security_path_rmdir(struct path *dir, struct dentry *dentry)
352 {
353         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
354                 return 0;
355         return security_ops->path_rmdir(dir, dentry);
356 }
357
358 int security_path_unlink(struct path *dir, struct dentry *dentry)
359 {
360         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
361                 return 0;
362         return security_ops->path_unlink(dir, dentry);
363 }
364 EXPORT_SYMBOL(security_path_unlink);
365
366 int security_path_symlink(struct path *dir, struct dentry *dentry,
367                           const char *old_name)
368 {
369         if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
370                 return 0;
371         return security_ops->path_symlink(dir, dentry, old_name);
372 }
373
374 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
375                        struct dentry *new_dentry)
376 {
377         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
378                 return 0;
379         return security_ops->path_link(old_dentry, new_dir, new_dentry);
380 }
381
382 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
383                          struct path *new_dir, struct dentry *new_dentry)
384 {
385         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
386                      (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
387                 return 0;
388         return security_ops->path_rename(old_dir, old_dentry, new_dir,
389                                          new_dentry);
390 }
391 EXPORT_SYMBOL(security_path_rename);
392
393 int security_path_truncate(struct path *path)
394 {
395         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
396                 return 0;
397         return security_ops->path_truncate(path);
398 }
399
400 int security_path_chmod(struct dentry *dentry, struct vfsmount *mnt,
401                         mode_t mode)
402 {
403         if (unlikely(IS_PRIVATE(dentry->d_inode)))
404                 return 0;
405         return security_ops->path_chmod(dentry, mnt, mode);
406 }
407
408 int security_path_chown(struct path *path, uid_t uid, gid_t gid)
409 {
410         if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
411                 return 0;
412         return security_ops->path_chown(path, uid, gid);
413 }
414
415 int security_path_chroot(struct path *path)
416 {
417         return security_ops->path_chroot(path);
418 }
419 #endif
420
421 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
422 {
423         if (unlikely(IS_PRIVATE(dir)))
424                 return 0;
425         return security_ops->inode_create(dir, dentry, mode);
426 }
427 EXPORT_SYMBOL_GPL(security_inode_create);
428
429 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
430                          struct dentry *new_dentry)
431 {
432         if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
433                 return 0;
434         return security_ops->inode_link(old_dentry, dir, new_dentry);
435 }
436
437 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
438 {
439         if (unlikely(IS_PRIVATE(dentry->d_inode)))
440                 return 0;
441         return security_ops->inode_unlink(dir, dentry);
442 }
443
444 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
445                             const char *old_name)
446 {
447         if (unlikely(IS_PRIVATE(dir)))
448                 return 0;
449         return security_ops->inode_symlink(dir, dentry, old_name);
450 }
451
452 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
453 {
454         if (unlikely(IS_PRIVATE(dir)))
455                 return 0;
456         return security_ops->inode_mkdir(dir, dentry, mode);
457 }
458 EXPORT_SYMBOL_GPL(security_inode_mkdir);
459
460 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
461 {
462         if (unlikely(IS_PRIVATE(dentry->d_inode)))
463                 return 0;
464         return security_ops->inode_rmdir(dir, dentry);
465 }
466
467 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
468 {
469         if (unlikely(IS_PRIVATE(dir)))
470                 return 0;
471         return security_ops->inode_mknod(dir, dentry, mode, dev);
472 }
473
474 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
475                            struct inode *new_dir, struct dentry *new_dentry)
476 {
477         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
478             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
479                 return 0;
480         return security_ops->inode_rename(old_dir, old_dentry,
481                                            new_dir, new_dentry);
482 }
483
484 int security_inode_readlink(struct dentry *dentry)
485 {
486         if (unlikely(IS_PRIVATE(dentry->d_inode)))
487                 return 0;
488         return security_ops->inode_readlink(dentry);
489 }
490
491 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
492 {
493         if (unlikely(IS_PRIVATE(dentry->d_inode)))
494                 return 0;
495         return security_ops->inode_follow_link(dentry, nd);
496 }
497
498 int security_inode_permission(struct inode *inode, int mask)
499 {
500         if (unlikely(IS_PRIVATE(inode)))
501                 return 0;
502         return security_ops->inode_permission(inode, mask);
503 }
504
505 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
506 {
507         if (unlikely(IS_PRIVATE(dentry->d_inode)))
508                 return 0;
509         return security_ops->inode_setattr(dentry, attr);
510 }
511 EXPORT_SYMBOL_GPL(security_inode_setattr);
512
513 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
514 {
515         if (unlikely(IS_PRIVATE(dentry->d_inode)))
516                 return 0;
517         return security_ops->inode_getattr(mnt, dentry);
518 }
519
520 int security_inode_setxattr(struct dentry *dentry, const char *name,
521                             const void *value, size_t size, int flags)
522 {
523         if (unlikely(IS_PRIVATE(dentry->d_inode)))
524                 return 0;
525         return security_ops->inode_setxattr(dentry, name, value, size, flags);
526 }
527
528 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
529                                   const void *value, size_t size, int flags)
530 {
531         if (unlikely(IS_PRIVATE(dentry->d_inode)))
532                 return;
533         security_ops->inode_post_setxattr(dentry, name, value, size, flags);
534 }
535
536 int security_inode_getxattr(struct dentry *dentry, const char *name)
537 {
538         if (unlikely(IS_PRIVATE(dentry->d_inode)))
539                 return 0;
540         return security_ops->inode_getxattr(dentry, name);
541 }
542
543 int security_inode_listxattr(struct dentry *dentry)
544 {
545         if (unlikely(IS_PRIVATE(dentry->d_inode)))
546                 return 0;
547         return security_ops->inode_listxattr(dentry);
548 }
549
550 int security_inode_removexattr(struct dentry *dentry, const char *name)
551 {
552         if (unlikely(IS_PRIVATE(dentry->d_inode)))
553                 return 0;
554         return security_ops->inode_removexattr(dentry, name);
555 }
556
557 int security_inode_need_killpriv(struct dentry *dentry)
558 {
559         return security_ops->inode_need_killpriv(dentry);
560 }
561
562 int security_inode_killpriv(struct dentry *dentry)
563 {
564         return security_ops->inode_killpriv(dentry);
565 }
566
567 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
568 {
569         if (unlikely(IS_PRIVATE(inode)))
570                 return -EOPNOTSUPP;
571         return security_ops->inode_getsecurity(inode, name, buffer, alloc);
572 }
573
574 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
575 {
576         if (unlikely(IS_PRIVATE(inode)))
577                 return -EOPNOTSUPP;
578         return security_ops->inode_setsecurity(inode, name, value, size, flags);
579 }
580
581 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
582 {
583         if (unlikely(IS_PRIVATE(inode)))
584                 return 0;
585         return security_ops->inode_listsecurity(inode, buffer, buffer_size);
586 }
587
588 void security_inode_getsecid(const struct inode *inode, u32 *secid)
589 {
590         security_ops->inode_getsecid(inode, secid);
591 }
592
593 int security_file_permission(struct file *file, int mask)
594 {
595         int ret;
596
597         ret = security_ops->file_permission(file, mask);
598         if (ret)
599                 return ret;
600
601         return fsnotify_perm(file, mask);
602 }
603
604 int security_file_alloc(struct file *file)
605 {
606         return security_ops->file_alloc_security(file);
607 }
608
609 void security_file_free(struct file *file)
610 {
611         security_ops->file_free_security(file);
612 }
613
614 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
615 {
616         return security_ops->file_ioctl(file, cmd, arg);
617 }
618
619 int security_file_mmap(struct file *file, unsigned long reqprot,
620                         unsigned long prot, unsigned long flags,
621                         unsigned long addr, unsigned long addr_only)
622 {
623         int ret;
624
625         ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
626         if (ret)
627                 return ret;
628         return ima_file_mmap(file, prot);
629 }
630
631 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
632                             unsigned long prot)
633 {
634         return security_ops->file_mprotect(vma, reqprot, prot);
635 }
636
637 int security_file_lock(struct file *file, unsigned int cmd)
638 {
639         return security_ops->file_lock(file, cmd);
640 }
641
642 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
643 {
644         return security_ops->file_fcntl(file, cmd, arg);
645 }
646
647 int security_file_set_fowner(struct file *file)
648 {
649         return security_ops->file_set_fowner(file);
650 }
651
652 int security_file_send_sigiotask(struct task_struct *tsk,
653                                   struct fown_struct *fown, int sig)
654 {
655         return security_ops->file_send_sigiotask(tsk, fown, sig);
656 }
657
658 int security_file_receive(struct file *file)
659 {
660         return security_ops->file_receive(file);
661 }
662
663 int security_dentry_open(struct file *file, const struct cred *cred)
664 {
665         int ret;
666
667         ret = security_ops->dentry_open(file, cred);
668         if (ret)
669                 return ret;
670
671         return fsnotify_perm(file, MAY_OPEN);
672 }
673
674 int security_task_create(unsigned long clone_flags)
675 {
676         return security_ops->task_create(clone_flags);
677 }
678
679 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
680 {
681         return security_ops->cred_alloc_blank(cred, gfp);
682 }
683
684 void security_cred_free(struct cred *cred)
685 {
686         security_ops->cred_free(cred);
687 }
688
689 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
690 {
691         return security_ops->cred_prepare(new, old, gfp);
692 }
693
694 void security_transfer_creds(struct cred *new, const struct cred *old)
695 {
696         security_ops->cred_transfer(new, old);
697 }
698
699 int security_kernel_act_as(struct cred *new, u32 secid)
700 {
701         return security_ops->kernel_act_as(new, secid);
702 }
703
704 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
705 {
706         return security_ops->kernel_create_files_as(new, inode);
707 }
708
709 int security_kernel_module_request(char *kmod_name)
710 {
711         return security_ops->kernel_module_request(kmod_name);
712 }
713
714 int security_task_fix_setuid(struct cred *new, const struct cred *old,
715                              int flags)
716 {
717         return security_ops->task_fix_setuid(new, old, flags);
718 }
719
720 int security_task_setpgid(struct task_struct *p, pid_t pgid)
721 {
722         return security_ops->task_setpgid(p, pgid);
723 }
724
725 int security_task_getpgid(struct task_struct *p)
726 {
727         return security_ops->task_getpgid(p);
728 }
729
730 int security_task_getsid(struct task_struct *p)
731 {
732         return security_ops->task_getsid(p);
733 }
734
735 void security_task_getsecid(struct task_struct *p, u32 *secid)
736 {
737         security_ops->task_getsecid(p, secid);
738 }
739 EXPORT_SYMBOL(security_task_getsecid);
740
741 int security_task_setnice(struct task_struct *p, int nice)
742 {
743         return security_ops->task_setnice(p, nice);
744 }
745
746 int security_task_setioprio(struct task_struct *p, int ioprio)
747 {
748         return security_ops->task_setioprio(p, ioprio);
749 }
750
751 int security_task_getioprio(struct task_struct *p)
752 {
753         return security_ops->task_getioprio(p);
754 }
755
756 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
757                 struct rlimit *new_rlim)
758 {
759         return security_ops->task_setrlimit(p, resource, new_rlim);
760 }
761
762 int security_task_setscheduler(struct task_struct *p)
763 {
764         return security_ops->task_setscheduler(p);
765 }
766
767 int security_task_getscheduler(struct task_struct *p)
768 {
769         return security_ops->task_getscheduler(p);
770 }
771
772 int security_task_movememory(struct task_struct *p)
773 {
774         return security_ops->task_movememory(p);
775 }
776
777 int security_task_kill(struct task_struct *p, struct siginfo *info,
778                         int sig, u32 secid)
779 {
780         return security_ops->task_kill(p, info, sig, secid);
781 }
782
783 int security_task_wait(struct task_struct *p)
784 {
785         return security_ops->task_wait(p);
786 }
787
788 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
789                          unsigned long arg4, unsigned long arg5)
790 {
791         return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
792 }
793
794 void security_task_to_inode(struct task_struct *p, struct inode *inode)
795 {
796         security_ops->task_to_inode(p, inode);
797 }
798
799 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
800 {
801         return security_ops->ipc_permission(ipcp, flag);
802 }
803
804 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
805 {
806         security_ops->ipc_getsecid(ipcp, secid);
807 }
808
809 int security_msg_msg_alloc(struct msg_msg *msg)
810 {
811         return security_ops->msg_msg_alloc_security(msg);
812 }
813
814 void security_msg_msg_free(struct msg_msg *msg)
815 {
816         security_ops->msg_msg_free_security(msg);
817 }
818
819 int security_msg_queue_alloc(struct msg_queue *msq)
820 {
821         return security_ops->msg_queue_alloc_security(msq);
822 }
823
824 void security_msg_queue_free(struct msg_queue *msq)
825 {
826         security_ops->msg_queue_free_security(msq);
827 }
828
829 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
830 {
831         return security_ops->msg_queue_associate(msq, msqflg);
832 }
833
834 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
835 {
836         return security_ops->msg_queue_msgctl(msq, cmd);
837 }
838
839 int security_msg_queue_msgsnd(struct msg_queue *msq,
840                                struct msg_msg *msg, int msqflg)
841 {
842         return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
843 }
844
845 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
846                                struct task_struct *target, long type, int mode)
847 {
848         return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
849 }
850
851 int security_shm_alloc(struct shmid_kernel *shp)
852 {
853         return security_ops->shm_alloc_security(shp);
854 }
855
856 void security_shm_free(struct shmid_kernel *shp)
857 {
858         security_ops->shm_free_security(shp);
859 }
860
861 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
862 {
863         return security_ops->shm_associate(shp, shmflg);
864 }
865
866 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
867 {
868         return security_ops->shm_shmctl(shp, cmd);
869 }
870
871 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
872 {
873         return security_ops->shm_shmat(shp, shmaddr, shmflg);
874 }
875
876 int security_sem_alloc(struct sem_array *sma)
877 {
878         return security_ops->sem_alloc_security(sma);
879 }
880
881 void security_sem_free(struct sem_array *sma)
882 {
883         security_ops->sem_free_security(sma);
884 }
885
886 int security_sem_associate(struct sem_array *sma, int semflg)
887 {
888         return security_ops->sem_associate(sma, semflg);
889 }
890
891 int security_sem_semctl(struct sem_array *sma, int cmd)
892 {
893         return security_ops->sem_semctl(sma, cmd);
894 }
895
896 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
897                         unsigned nsops, int alter)
898 {
899         return security_ops->sem_semop(sma, sops, nsops, alter);
900 }
901
902 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
903 {
904         if (unlikely(inode && IS_PRIVATE(inode)))
905                 return;
906         security_ops->d_instantiate(dentry, inode);
907 }
908 EXPORT_SYMBOL(security_d_instantiate);
909
910 int security_getprocattr(struct task_struct *p, char *name, char **value)
911 {
912         return security_ops->getprocattr(p, name, value);
913 }
914
915 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
916 {
917         return security_ops->setprocattr(p, name, value, size);
918 }
919
920 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
921 {
922         return security_ops->netlink_send(sk, skb);
923 }
924
925 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
926 {
927         return security_ops->secid_to_secctx(secid, secdata, seclen);
928 }
929 EXPORT_SYMBOL(security_secid_to_secctx);
930
931 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
932 {
933         return security_ops->secctx_to_secid(secdata, seclen, secid);
934 }
935 EXPORT_SYMBOL(security_secctx_to_secid);
936
937 void security_release_secctx(char *secdata, u32 seclen)
938 {
939         security_ops->release_secctx(secdata, seclen);
940 }
941 EXPORT_SYMBOL(security_release_secctx);
942
943 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
944 {
945         return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
946 }
947 EXPORT_SYMBOL(security_inode_notifysecctx);
948
949 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
950 {
951         return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
952 }
953 EXPORT_SYMBOL(security_inode_setsecctx);
954
955 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
956 {
957         return security_ops->inode_getsecctx(inode, ctx, ctxlen);
958 }
959 EXPORT_SYMBOL(security_inode_getsecctx);
960
961 #ifdef CONFIG_SECURITY_NETWORK
962
963 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
964 {
965         return security_ops->unix_stream_connect(sock, other, newsk);
966 }
967 EXPORT_SYMBOL(security_unix_stream_connect);
968
969 int security_unix_may_send(struct socket *sock,  struct socket *other)
970 {
971         return security_ops->unix_may_send(sock, other);
972 }
973 EXPORT_SYMBOL(security_unix_may_send);
974
975 int security_socket_create(int family, int type, int protocol, int kern)
976 {
977         return security_ops->socket_create(family, type, protocol, kern);
978 }
979
980 int security_socket_post_create(struct socket *sock, int family,
981                                 int type, int protocol, int kern)
982 {
983         return security_ops->socket_post_create(sock, family, type,
984                                                 protocol, kern);
985 }
986
987 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
988 {
989         return security_ops->socket_bind(sock, address, addrlen);
990 }
991
992 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
993 {
994         return security_ops->socket_connect(sock, address, addrlen);
995 }
996
997 int security_socket_listen(struct socket *sock, int backlog)
998 {
999         return security_ops->socket_listen(sock, backlog);
1000 }
1001
1002 int security_socket_accept(struct socket *sock, struct socket *newsock)
1003 {
1004         return security_ops->socket_accept(sock, newsock);
1005 }
1006
1007 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1008 {
1009         return security_ops->socket_sendmsg(sock, msg, size);
1010 }
1011
1012 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1013                             int size, int flags)
1014 {
1015         return security_ops->socket_recvmsg(sock, msg, size, flags);
1016 }
1017
1018 int security_socket_getsockname(struct socket *sock)
1019 {
1020         return security_ops->socket_getsockname(sock);
1021 }
1022
1023 int security_socket_getpeername(struct socket *sock)
1024 {
1025         return security_ops->socket_getpeername(sock);
1026 }
1027
1028 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1029 {
1030         return security_ops->socket_getsockopt(sock, level, optname);
1031 }
1032
1033 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1034 {
1035         return security_ops->socket_setsockopt(sock, level, optname);
1036 }
1037
1038 int security_socket_shutdown(struct socket *sock, int how)
1039 {
1040         return security_ops->socket_shutdown(sock, how);
1041 }
1042
1043 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1044 {
1045         return security_ops->socket_sock_rcv_skb(sk, skb);
1046 }
1047 EXPORT_SYMBOL(security_sock_rcv_skb);
1048
1049 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1050                                       int __user *optlen, unsigned len)
1051 {
1052         return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1053 }
1054
1055 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1056 {
1057         return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1058 }
1059 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1060
1061 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1062 {
1063         return security_ops->sk_alloc_security(sk, family, priority);
1064 }
1065
1066 void security_sk_free(struct sock *sk)
1067 {
1068         security_ops->sk_free_security(sk);
1069 }
1070
1071 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1072 {
1073         security_ops->sk_clone_security(sk, newsk);
1074 }
1075 EXPORT_SYMBOL(security_sk_clone);
1076
1077 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1078 {
1079         security_ops->sk_getsecid(sk, &fl->flowi_secid);
1080 }
1081 EXPORT_SYMBOL(security_sk_classify_flow);
1082
1083 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1084 {
1085         security_ops->req_classify_flow(req, fl);
1086 }
1087 EXPORT_SYMBOL(security_req_classify_flow);
1088
1089 void security_sock_graft(struct sock *sk, struct socket *parent)
1090 {
1091         security_ops->sock_graft(sk, parent);
1092 }
1093 EXPORT_SYMBOL(security_sock_graft);
1094
1095 int security_inet_conn_request(struct sock *sk,
1096                         struct sk_buff *skb, struct request_sock *req)
1097 {
1098         return security_ops->inet_conn_request(sk, skb, req);
1099 }
1100 EXPORT_SYMBOL(security_inet_conn_request);
1101
1102 void security_inet_csk_clone(struct sock *newsk,
1103                         const struct request_sock *req)
1104 {
1105         security_ops->inet_csk_clone(newsk, req);
1106 }
1107
1108 void security_inet_conn_established(struct sock *sk,
1109                         struct sk_buff *skb)
1110 {
1111         security_ops->inet_conn_established(sk, skb);
1112 }
1113
1114 int security_secmark_relabel_packet(u32 secid)
1115 {
1116         return security_ops->secmark_relabel_packet(secid);
1117 }
1118 EXPORT_SYMBOL(security_secmark_relabel_packet);
1119
1120 void security_secmark_refcount_inc(void)
1121 {
1122         security_ops->secmark_refcount_inc();
1123 }
1124 EXPORT_SYMBOL(security_secmark_refcount_inc);
1125
1126 void security_secmark_refcount_dec(void)
1127 {
1128         security_ops->secmark_refcount_dec();
1129 }
1130 EXPORT_SYMBOL(security_secmark_refcount_dec);
1131
1132 int security_tun_dev_create(void)
1133 {
1134         return security_ops->tun_dev_create();
1135 }
1136 EXPORT_SYMBOL(security_tun_dev_create);
1137
1138 void security_tun_dev_post_create(struct sock *sk)
1139 {
1140         return security_ops->tun_dev_post_create(sk);
1141 }
1142 EXPORT_SYMBOL(security_tun_dev_post_create);
1143
1144 int security_tun_dev_attach(struct sock *sk)
1145 {
1146         return security_ops->tun_dev_attach(sk);
1147 }
1148 EXPORT_SYMBOL(security_tun_dev_attach);
1149
1150 #endif  /* CONFIG_SECURITY_NETWORK */
1151
1152 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1153
1154 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1155 {
1156         return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1157 }
1158 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1159
1160 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1161                               struct xfrm_sec_ctx **new_ctxp)
1162 {
1163         return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1164 }
1165
1166 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1167 {
1168         security_ops->xfrm_policy_free_security(ctx);
1169 }
1170 EXPORT_SYMBOL(security_xfrm_policy_free);
1171
1172 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1173 {
1174         return security_ops->xfrm_policy_delete_security(ctx);
1175 }
1176
1177 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1178 {
1179         return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1180 }
1181 EXPORT_SYMBOL(security_xfrm_state_alloc);
1182
1183 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1184                                       struct xfrm_sec_ctx *polsec, u32 secid)
1185 {
1186         if (!polsec)
1187                 return 0;
1188         /*
1189          * We want the context to be taken from secid which is usually
1190          * from the sock.
1191          */
1192         return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1193 }
1194
1195 int security_xfrm_state_delete(struct xfrm_state *x)
1196 {
1197         return security_ops->xfrm_state_delete_security(x);
1198 }
1199 EXPORT_SYMBOL(security_xfrm_state_delete);
1200
1201 void security_xfrm_state_free(struct xfrm_state *x)
1202 {
1203         security_ops->xfrm_state_free_security(x);
1204 }
1205
1206 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1207 {
1208         return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1209 }
1210
1211 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1212                                        struct xfrm_policy *xp,
1213                                        const struct flowi *fl)
1214 {
1215         return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1216 }
1217
1218 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1219 {
1220         return security_ops->xfrm_decode_session(skb, secid, 1);
1221 }
1222
1223 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1224 {
1225         int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
1226
1227         BUG_ON(rc);
1228 }
1229 EXPORT_SYMBOL(security_skb_classify_flow);
1230
1231 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
1232
1233 #ifdef CONFIG_KEYS
1234
1235 int security_key_alloc(struct key *key, const struct cred *cred,
1236                        unsigned long flags)
1237 {
1238         return security_ops->key_alloc(key, cred, flags);
1239 }
1240
1241 void security_key_free(struct key *key)
1242 {
1243         security_ops->key_free(key);
1244 }
1245
1246 int security_key_permission(key_ref_t key_ref,
1247                             const struct cred *cred, key_perm_t perm)
1248 {
1249         return security_ops->key_permission(key_ref, cred, perm);
1250 }
1251
1252 int security_key_getsecurity(struct key *key, char **_buffer)
1253 {
1254         return security_ops->key_getsecurity(key, _buffer);
1255 }
1256
1257 #endif  /* CONFIG_KEYS */
1258
1259 #ifdef CONFIG_AUDIT
1260
1261 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1262 {
1263         return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1264 }
1265
1266 int security_audit_rule_known(struct audit_krule *krule)
1267 {
1268         return security_ops->audit_rule_known(krule);
1269 }
1270
1271 void security_audit_rule_free(void *lsmrule)
1272 {
1273         security_ops->audit_rule_free(lsmrule);
1274 }
1275
1276 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1277                               struct audit_context *actx)
1278 {
1279         return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1280 }
1281
1282 #endif /* CONFIG_AUDIT */